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ABSTRACT OF THE DISSERTATION

Non-receptors, Feedback, and Robust Signaling Gradients in Biological Tissue Patterning

By

Aghavni Simonyan

Doctor of Philosophy in Mathematics

University of California, Irvine, 2017

Professor Frederic Y. M. Wan, Chair

The present dissertation is concerned with robust signaling gradients in biological tissue

patterning. The patterning of many developing tissues is orchestrated by gradients of

morphogens through a variety of elaborate regulatory interactions. Such interactions are

thought to make gradients robust, that is, resistant to changes induced by genetic or en-

vironmental perturbations. A variety of inhibitors for reducing ectopic signaling activities

are known to exist and their specific role in down-regulating the undesirable ectopic activ-

ities reasonably well established. However, how a developing organism manages to adjust

inhibition/stimulation in response to genetic and/or environmental changes is still not un-

derstood. The need to adjust for ectopic signaling activities requires the presence of one or

more feedback mechanisms to stimulate the needed adjustment.

Recently extensive numerical simulations suggest that robustness of the signaling gradient

cannot be attained by negative feedback (of the Hill’s function type) on signaling receptors;

magnitude reduction of signaling gradients achieved through adequate non-signaling recep-

tors mediated degradation is accompanied by gradient shape distortion rendering develop-

ment non-robust; adequate nonreceptor-mediated degradation and commensurate negative

feedback on receptor synthesis lead to robustness, but with robustness sensitive to additional

up- or down-regulations of non-receptors.
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Since the ultimate effect of many inhibitors (including those of the non-receptor type) is

generally to reduce the availability of signaling morphogens for binding with signaling recep-

tors, we begin our examination of possible mechanisms for achieving robust development by

investigating a spatially uniform negative feedback on signaling morphogen synthesis rate.

Our findings on the effectiveness of such feedback adjustments as well as similar feedback

mechanisms on receptor and non-receptor syntheses both in steady state and during tran-

sient development will be discussed to provide a simpler theoretical explanation of the results

from numerical simulations.
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Chapter 1

Introduction

At the beginning (in the early stages of embryonic development), all the cells of a biological

organism have the same potential. However, those cells have to become what is the final

shape and pattern. Morphogen gradients are responsible for cell differentiation and hence

pattern formation. Morphogens or ligands are proteins that are synthesized and transported

away from their sources to bind to relevant cell (signaling) receptors at different locations to

form a spatial gradient of signaling morphogen-receptor complexes (or a signaling gradient

for brevity). Such signaling gradients convey positional information for cells to adopt differ-

ential fates to result in tissue patterning. This process of cell differentiation is well established

in developmental biology. For example, the morphogen Decapentaplegic (Dpp) which is a

member of the BMP gene family is one of the key morphogens required for Drosophila’s

(fruit fly) wing patterning. Dpp is involved in the development of the Drosophila wing

imaginal disc and is synthesized in a narrow region of about two-cell width at the boundary

between the anterior and posterior compartments of the disc. Dpp molecules produced are

transported away from the localized source and degrade upon reaching the edge of the disc.

As they are transported downstream toward the wing imaginal disc edge, some of the Dpp

molecules bind reversibly with the cell-surface signaling receptor Thickvein (Tkv) to form
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a spatial gradient of signaling morphogen concentration over the span of the wing imaginal

disc. Graded differences in receptor occupancy at different locations underlie the signaling

differences that ultimately lead cells down different paths of development [10, 13, 39, 47].

Simple models of this simple process of gradient formation have been shown to produce a

unique signaling gradient that is monotone and stable with respect to small perturbations

(see [22, 23] for example).

For normal biological development, it is important that signaling morphogen gradients not

be easily altered by genetic or epigenetic (such as environmental) fluctuations that affect

the constitution of the biological organism. For example, experimental results (carried out

by S. Zhou in A.D. Lander’s lab (see also [47]) show that Dpp synthesis rate doubles when

the ambient temperature is increased by 6◦C. With such an increase in Dpp synthesis rate,

the simple models developed in [22, 23, 24] would predict an enhanced (or, more commonly,

”ectopic”) signaling gradient quantitatively and qualitatively different from that for the lower

ambient temperature. However, the development of the wing imaginal disc generally does

not change significantly with temperature changes of such magnitude. The insensitivity

of system output to sustained alterations in input or system characteristics so necessary

for normal development is often termed robustness of biological development. How this

robustness requirement is met has been the subject of a number of recent studies.

An attempt to determine mechanisms for attaining robust development (after the self-

enhanced ligand degradation proposed in [8]) was to consider a negative feedback on receptor

synthesis rate in [26]. A Hill function type negative feedback was incorporated into the basic

morphogen gradient model of [23] to reduce the synthesis rate of Tkv by an amount that

depends on the ectopic signaling morphogen concentration at the spatial location. It was

found that robustness (as measured by an ”induced relative error E” defined in [26]) was not

achieved for any of the 106 combinations of system parameter values in a parameter space

of 6-dimensions. A subsequent theoretical analysis delineated and confirmed theoretically
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the ineffectiveness of this negative feedback mechanism [17]. Briefly, a Hill type of negative

feedback reduces the receptor synthesis rate nonuniformly, disproportionately more so at

locations of high signaling morphogen concentration. Such reduction generally leads to a

modified gradient of different slope and convexity from the original gradient. The theoret-

ical results suggest that a spatially uniform negative feedback responding to some overall

measure of ectopicity (such as the average impact of the local changes on the system) may

be more effective [17]. This suggestion has led to the initiation of a new general approach

to attain robustness by way of a feedback mechanism that is spatially uniform.

Thus in Chapter 2, we initiate a proof-of-concept investigation of a spatially uniform feedback

mechanism. With a view that most feedback mechanisms have the ultimate effect of reducing

the morphogen available for binding with signaling receptors, a proof-of-concept prototype

model for a spatially uniform negative feedback on morphogen synthesis rate is investigated.

The findings of this preliminary effort can also be found in [19].

Then in Chapter 3, we complement the implementation of this new spatially uniform feedback

mechanism in the steady state with feedback adjustments occurring in the transient phase

of biological development. The findings on Chapter 3 investigation can also be found in [37].

In Chapter 4, we study a set of models that are the counterparts of those investigated in

[26] but now with our new feedback instrument instead of the Hill function type previously

employed. One significant feature of our approach is that the new models may be analyzed

theoretically so that our results are mathematically conclusive. Our new model with its spa-

tially uniform negative feedback on receptor synthesis rate leads to modified ectopic signaling

gradient that is generally similar in shape as the wild-type gradient and any change in gra-

dient slope and convexity does not cause as severe a distortion of the signaling gradient as a

Hill function type feedback. However, the new negative feedback on receptor synthesis rate

generally does not reduce the unacceptable ectopic signaling gradient magnitude resulting

from the enhanced morphogen synthesis rate. The new spatially uniform negative feedback
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approach has the advantage of allowing us to see explicitly the reason for the ineffectiveness

of a feedback on receptor syntheis rate in addition to reinforcing a similar finding in [26] with

a theoretical underpin that does not involve the kind of sophisticate mathematical analyses

of [28, 29, 31].

To seek a more effective feedback mechanism to achieve robustness, it was noted that sig-

naling gradients are known to be affected by other existing molecular/protein activities.

Signaling ligands such as Dpp regularly bind with other kinds of molecular entities to form

molecular complexes that do not signal for cell differentiation [4]. Such non-signaling enti-

ties are known to exist for Dpp and other BMP family ligands; they include Nog (noggin)

[30, 45, 48], Chd (chordin) [35, 46], Dally (division abnormally delayed) [18, 1], FST (fol-

listatin (FST) [3, 15, 44, 33], Sog (short gastrulation) [5, 31], and various heparan sulfate

proteoglycans. Collectively, they are called nonreceptors since they bind with morphogens

but the resulting complexes have no role in cell differentiation. As such, the presence of

non-receptors reduces the amount of morphogens available for binding with signaling re-

ceptors and thereby down-regulates the signaling gradients. Effects of nonreceptors was

first modeled and analyzed in [25] where the simple wing disc morphogen model of [22, 23]

was extended to include the possibility of morphogens binding with a fixed concentration of

cell-surface nonreceptor. This simplest model offered the first theoretical glimpse into the

inhibiting effects of nonreceptors on the formation and properties of steady state signaling

gradients.

Subsequently, large scale computational studies of non-receptors synthesized at a prescribed

rate to absorb excessive Dpp concentration was carried out concurrently in [26]. Extensive

numerical simulations there showed that robustness can be achieved in some region of the

6-dimensional parameter space but most of the corresponding gradients are not biologically

realistic for cell differentiation for reasons such as high receptor occupancy due to a very low

receptor synthesis rate. The simulation results were validated theoretically in [28] (see also

4



[42]). Adding a negative feedback (of the Hill function type) on receptor synthesis rate to

an adequate concentration of nonreceptors was found in [26] to enhance the range of robust

gradients that are biologically useful. On the other hand, the addition of (a positive Hill’s

function type) feedback on nonreceptor synthesis rate was found by numerical simulations

to actually work against robustness.

Given the findings of [26, 25, 28, 29, 31] on non-receptors (with and without Hill function

type feedback) as an instrument for promoting signaling gradient robustness, we undertake

a similar investigation of nonreceptors with feedback but now of the spatially uniform type

investigated in Chapter 2 and Chapter 3 to show the efficacy of our new approach.

Finally, our findings are summarized and other feedback mechanisms are proposed in the

last chapter.
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Chapter 2

Feedback for Robust Signaling

Gradients: A Novel Approach

2.1 Introduction

In this chapter, we initiate a different approach to the role of feedback in ensuring robust

signaling gradients. Our goal is to investigate the effectiveness of feedback mechanisms

other than a negative feedback of the Hill’s function type. Since the ultimate effect of

many inhibitors is generally to reduce the availability of signaling morphogens for binding

with signaling receptors, as a first step, we begin our examination of possible mechanisms

for achieving robust development by investigating a spatially uniform negative feedback

(distinctly different from the conventional spatially nonuniform Hill function approach) on

signaling morphogen synthesis rate. Drosophila is one of the best researched insects in the

world, and extensive biological data is available for the processes in its imaginal wing disc.

Thus, we focus on Dpp gradients in Drosophila wing imaginal disc as our model. Our findings
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and discussions, with some modifications, can be generalized and applied to other morphogen

systems.

2.2 A Model of Drosophila Wing Imaginal Disc

We concentrate our investigation on Dpp gradients. Only the extracellular space of the

posterior compartment of a Drosophila wing imaginal disc will be regarded. We can do

so since it has been shown in [24] that the inclusion of transcytosis leads only to a re-

interpretation of the system parameters in the steady state results. Also, we may simplify

the morphogen activities in the wing imaginal disc as a one-dimensional reaction-diffusion

problem in which morphogen is introduced at the rate VL locally adjacent (and symmetric

with respect) to the border, X = −Xm, between the anterior and posterior compartments of

the disc, and absorbed at the other end, X = Xmax, the edge of the posterior compartment.

We take the biological development to be uniform in the direction along the compartment

border (except possibly for a layer phenomenon at each end of the compartment) to reflect

the fact that the ligand synthesis rate is taken to be uniform in that direction.

2.2.1 A Basic Extracellular Model

In the one-dimensional reaction-diffusion model, let [L(X,T )] be the concentration of a

diffusing ligand (such as Dpp) at time T and distance X toward wing disc edge normal to

the compartment boundary with the localized source spanning −Xm < X < 0. As in [22],

we take the diffusion of the ligand to be governed by ∂[L]/∂T = D∂2[L]/∂X2, D being the

constant diffusion coefficient. We add to this reversible binding and degradation of ligands

and receptors as well as degradation of ligand-receptor complexes with the binding rate

kon[L][R], dissociation rate koff [LR], degradation rate kdeg[LR] for the bound ligands along

7



with the degradation rates for the free ligands and receptors kL[L] and kR[R], respectively.

In these expressions, [R] is the concentration of signaling receptors (e.g., Tkv for Dpp)

synthesized at the spatially distributed rate of VR(X,T ), and [LR] is the concentration of

ligand-receptor (Dpp-Tkv) complexes. The parameters kon, kR, kL, kdeg and koff are the

the various binding, degradation and dissociation rate constants which may not be known (or

constant) due to possible feedback phenomena. Except for kon, all the other rate constants

are in units of 1/ sec . while the ”binding rate constant” kon is in units of 1/ sec ./mole.

There is no endocytosis prior to degradation in this formulation. The omission of receptor

internalization results in no loss of generality for the purpose of our investigation; it has

already been established in [24] that the boundary value problem (BVP) governing the

steady state behavior of a more general system with transcytosis can be reduced to the same

BVP for our simpler system.

Thus, we have the following nonlinear reaction-diffusion model governing the evolution of

the three unknown concentrations [L], [R] and [LR] which generally vary in space and time:

∂[L]

∂T
= D

∂2[L]

∂X2
− kon[L][R] + koff [LR]− kL[L] + VL (2.1)

∂[LR]

∂T
= kon[L][R]− (koff + kdeg)[LR], (2.2)

∂[R]

∂T
= −kon[L][R] + koff [LR]− kR[R] + VR, (2.3)

where VL(X,T ) is the localized morphogen synthesis rate (centered at and) spanning sym-

metrically with respect to the border X = −Xmin between the two wing disc compartments.

Below is a typical form of such synthesis rate relevant to our investigation:

VL(X,T ) = V̄LH(−X) =

 V̄L (−Xm < X < 0)

0 (0 < X < Xmax)
(2.4)

8



The receptor synthesis rate is typically taken to be uniform in space and time with VR(X,T ) =

V̄R > 0 for −Xmin < X < Xmax and all T > 0.

With the early stage of the anterior compartment and posterior compartment developing

more or less similarly, we consider here only the ligand activities in the posterior compartment

for which we have the following idealized boundary conditions:

X = −Xmin :
∂[L]

∂X
= 0, X = Xmax : [L] = 0, (2.5)

for all T > 0, where the no flux condition at the compartment border being a consequence

of symmetry, and the kill end condition at the distal edge, X = Xmax, of the compartment

reflects the assumption of an absorbing edge.

Until morphogens being generated starting at T = 0, ligand activities are expected to be in

quiescence so that we have as initial conditions

T = 0 : [L] = [LR] = 0, [R] = R0 (2.6)

for −Xm ≤ X ≤ Xmax. For the case of a uniform receptor synthesis rate, we have from

(2.2)

R0 =
V̄R
kR
. (2.7)

by steady state consideration prior to the onset of morphogen synthesis. With kL = 0,

the initial-boundary value problem (IBVP) defined by (2.1)-(2.6) corresponds to the model

investigated in [23].

9



2.2.2 Dimensionless Form

To non-dimensionalize the system, we introduce the normalized quantities

t =
D

X2
0

T, x =
X

X0

, `M =
Xmax

X0

, xm =
Xmin

X0

(2.8)

{a, b, r} =
1

R0

{[L], [LR], [R]}, (2.9)

{f0, g0, h0, gR, gL} =
X2

0

D
{koff , kdeg, konR0, kR, kL}, (2.10)

{vL(x, t), vR(x, t)} =
X2

0

D

{
VL
R0

,
VR
R0

}
, {v̄L, v̄R} =

X2
0

D

{
V̄L
R0

,
V̄R
R0

}
(2.11)

where X0 is some typical scale length, taken to be Xmax for the finite domain case so that

`M = Xmax/X0 = 1. With these normalized quantities, we rewrite the IBVP for the three

unknowns [L], [LR] and [R] in the following normalized form

∂a

∂t
=
∂2a

∂x2
− h0ar + f0b− gLa+ vL(x, t), (2.12)

∂b

∂t
= h0ar − (f0 + g0)b,

∂r

∂t
= vR(x, t)− h0ar + f0b− gRr, (2.13)

with the boundary conditions

x = −xm :
∂a

∂x
= 0, x = `M : a = 0, (2.14)
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all for t > 0, and the initial conditions

t = 0 : a = b = 0, r = 1. (2.15)

2.2.3 Time Independent Steady State Behavior

Reduction to a Well-Posed Boundary Value Problem for ā(x)

Given that both the ligand and receptor synthesis rates are time independent, it can be

shown [23] that the extracellular model system has a unique steady state given by

{ā(x), b̄(x), r̄(x)} = lim
t→∞
{a(x, t), b(x, t), r(x, t)}, (2.16)

that is linearly stable with respect to a small perturbation. It was shown in [23] that the

three governing equations may be reduced to a well-posed two-point boundary value problem

(BVP) for ā(x):

ā′′ − g0ā

α0 + ζ0ā
− gLā+ v̄LH(−x) = 0, (2.17)

ā′(−xm) = 0, ā(`M) = 0. (2.18)

with

b̄(x) =
ā(x)

α0 + ζ0ā(x)
, r̄(x) =

α0

α0 + ζ0ā(x)
(2.19)
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where

α0 =
f0 + g0

h0

, ζ0 =
kdeg

kR
. (2.20)

For a finite domain, X0 would normally be Xmax so that `M = 1.

Low Receptor Occupancy

The morphogen system is said to be in a state of low receptor occupancy (LRO) if

ζ0a = kdega/kR � α0. (2.21)

For such a system, we may neglect terms involving ζ0a in (2.17)-(2.19) to get an approximate

set of solutions {a0(x), b0(x), r0(x)} determined by

a′′0 − µ2
La0 + v̄LH(−x) = 0, µ2

L =
g0

α0

+ gL (2.22)

a′0(−xm) = 0, a0(`M) = 0. (2.23)

with

b0(x) =
a0(x)

α0

, r0(x) = 1. (2.24)

We limit our discussion to a finite positive Xmax so that the exact solution for ā0(x) is

a0(x) =


ν̄L
µ2L
{1− cosh(µL)

cosh(µL(1+xm))
cosh(µL(x+ xm))} (−xm ≤ x ≤ 0)

ν̄L
µ2L

sinh(µLxm)
cosh(µL(1+xm))

sinh(µL(1− x)) (0 ≤ x ≤ 1)
, (2.25)
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with

b̄(x) ' a0(x)

α0

, r̄(x) ' 1. (2.26)

2.3 Robustness of Signaling Gradient

We use the extracellular model summarized earlier to investigate the effectiveness of feedback

processes for achieving robust signaling gradients with respect to a significant change in the

morphogen synthesis rate. We do this in a broader context than the conventional Hill

function approach. In particular, the results for gradient systems in a state of low receptor

occupancy will be useful in later developments for at least two reasons. Biological gradients

that are differentiating tend to be suitably convex which is typically achieved through a

state of low receptor occupancy. The mathematical model for systems in a low receptor

occupancy state may be linearized to yield explicit solutions for the relevant BVP and IBVP

and thereby offering clearer insight to the system behavior. In the subsections below, we

recall certain aspects of robustness of signaling gradients with respect to significant changes in

the morphogen synthesis rate first formulated in [26] and further developed in [20, 28, 29, 42].

While other measures of robustness have also been considered and analyzed (see [21]), our

main purpose is to introduce a global measure of robustness to provide a key ingredient for a

new approach to effective feedback mechanisms for achieving stable biological developments.

2.3.1 Perturbation due to Enhanced Morphogen Synthesis

Normal development of wing imaginal disc and other biological organisms may be altered by

an enhanced morphogen synthesis rate stimulated by genetic or epigenetic changes. As we

have already mentioned, Dpp synthesis rate in Drosophila imaginal disc doubles when the
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ambient temperature is increased by 6◦C (shown by S. Zhou while in A.D. Lander’s Lab,

see also [47]). At a state of lower receptor occupancy, a significant increase in morphogen

synthesis rate has been shown to increase the steady state signaling gradient magnitude

proportionately and change the slope and convexity of the gradient as well. As such, the

cell fate at each spatial location would be altered [20, 23, 42]. Without the restriction of

low receptor occupancy, the steady state signaling gradient has also been shown to be an

increasing function of synthesis rate, though not necessarily proportionately [20, 23].

Even if the difference between the normal and enhanced signaling gradients is small at a

particular location x as it would be for a system in a state of high receptor occupancy

(except for a narrow region near the edge of wing disc), the pattern developed would still be

significantly different since the cell type that was at x̄ is now at some distance away at x̃.

However, the development of biological organisms are generally not particularly sensitive to a

significant change in the ambient temperature that leads to significant signaling morphogen

synthesis rate change. Some kind of feedback control process must be at work to minimize

the effects of such changes on the biological developments. First attempts in finding such

feedback control mechanisms focused on a Hill function type negative feedback on receptor

synthesis rate. It was found by numerical simulations [26] that such a feedback process

does not lead to robustness. That conclusion was proved mathematically in [17] where

some insight was gained on the reason for the ineffectiveness of such feedback. Briefly, the

effect of a Hill function type negative feedback on receptor synthesis rate tends to reduce

the convexity of the gradient leading to significant qualitative difference in the convexity

between normal and enhanced signaling gradients even if the difference in their magnitude

along much of the spatial span may have improved by the feedback.

It was suggested in [17] that a different kind of feedback process would be more appropriate

for safeguarding against such unwanted enhanced signaling gradient. Two robustness indices

have been introduced in [20, 26, 42] to provide global measures of the deviation from normal
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signaling gradient after synthesis rate enhancement. We describe one of these in the next

subsection to be used in our proof-of-concept development of a new approach to feedback

for robustness.

2.3.2 Root-Mean-Square Signaling Differential

Let b(x, t) be the normalized signaling morphogen concentration [LR]/R0 for a normal (wild

type) ligand synthesis rate VL(X,T ) = V̄LH(−X) (or vL(x, t) = v̄LH(−x) after normaliza-

tion). Let be(x, t) be same quantity for an enhanced (ectopic) synthesis rate eV̄LH(−X)

(or ev̄LH(−x) after normalization) for some amplification factor e. A rather natural global

measure of signaling gradient robustness is the following signal robustness index Rb corre-

sponding to the root mean square of the deviation between be(x, t) and b(x, t):

Rb(t) =
1

bh − b`

√
1

x` − xh

∫ x`

xh

[be(x, t)− b(x, t)]2dx (2.27)

where 0 ≤ b`(t) < bh(t) ≤ b(−xm, t) and −xm ≤ xh < x` ≤ `M = 1. The quantities x`, xh,

b` and bh may be chosen away from the extremities to minimize the exaggerated effects of

outliers.

For a system in steady state with

b̄(x) = lim
t→∞

b(x, t), b̃(x) = lim
t→∞

be(x, t), (2.28)

the robustness index Rb(t) tends to a constant R̄b:

R̄b = lim
t→∞

Rb(t) =
1

bh − b`

√
1

x` − xh

∫ x`

xh

[b̃(x)− b̄(x)]2dx (2.29)
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We set xh = 0 in part because signaling is irrelevant in the interval of ligand synthesis. We

also take b` = b(1, t) = 0 for simplicity. For the case of low receptor occupancy, we take bh

to be the explicit (approximate) steady state value for b̄(0) known from (2.25) and (2.26) to

be

bh =
v̄L
α0µ2

L

sinh(µLxm) sinh(µL`M)

cosh(µL(`M + xm))
∼ b̄(0), (2.30)

For the case of high receptor occupancy (which is usually not biologically useful), it would

be more appropriate to take bh = gr/g0 corresponding to receptor saturation.

The signal robustness index Rb(t) is not the only measure of the deviation of the modified

signaling gradient from the one prior to morphogen synthesis rate enhancement. Given an

existing genetic program for individual cells, a more relevant measure of robustness may be

the displacement of the same level of morphogen-receptor complex concentration due to an

ectopic morphogen synthesis rate. Such a robustness index, denoted by Rx(t), was first

introduced in [26] and investigated in [42] and references cited therein. We will be working

with Rb(t) and R̄b only and leave the discussion on Rx(t) and R̄x to an investigation in future

work.

2.3.3 Approximate Solution for Low Receptor Occupancy

For a morphogen system in a state of low occupancy so that g0a/gR � α0, we have from [23]

the following approximate steady state solutions for the signaling gradients of the normal

(wild type) and (environmentally or genetically) perturbed system:

b̃(x) ∼ eb̄(x) =
ev̄L
α0µ2

L

sinh(µLxm) sinh(µL(1− x))

cosh(µL(1 + xm))
, (0 ≤ x ≤ `M) (2.31)
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where µ2
L = gL + g0/α0 with µ2

L ' h0 + gL whenever f0 � g0 (assuming that the perturbed

system is also in a state of low receptor occupancy). In the absence of any feedback, the

parameter e is the amplification factor of the ligand synthesis rate. In particular, for e = 2,

x` = 1, xh = 0, we have

R̄b ∼
1

sinh(µL)

√∫ 1

0

[sinh(µL(1− x))]2dx

=
1

sinh(µL)

√
1

2

(
sinh(2µL)

2µL
− 1

)
. (2.32)

For a gradient system with g0 = 0.2, f0 = 0.001, gr = 1, h0 = 10, `M = 1, xm = 0.1 and

v̄L = 0.05 (together with V̄L = 0.002 µM, V̄R = 0.04 µM, D = 10−7cm2/ sec ., Xmax =

0.01cm ) corresponding to β = 0.25 in Table 2 of [23], the steady state is in low receptor

occupancy. For this case, the approximate solution for R̄b given by (2.32) is 0.3938 · ·· while

accurate numerical solutions of the BVP for ā(x) gives 0.3939... for a percentage error of less

than 0.01%.

If ligand synthesis rate is increased 20 times to V̄L = 0.04 µM , the accurate numerical

solution for R̄b is found to be 0.37486 · ·· The percentage error of the low receptor occu-

pancy approximate is still less than 1% . These comparisons serve to validate the numerical

simulation code developed for exact numerical solutions of our model.

Our main interest however is in the use of R̄b, or more generally Rb(t), in an appropriate

feedback mechanism for attaining robustness of signaling morphogen gradients. To the

extent that some enhanced ligand systems may only be near low receptor occupancy (and

still sufficiently differentiating), the use of the approximate signaling robustness index based

on the approximate solution (2.31) may not be sufficiently accurate. For these cases, it is

necessary to obtain numerical solutions for ā(x) and ãe(x) and the corresponding value for

R̄b.
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2.4 Feedback on Ligand Synthesis Rate

2.4.1 A Non-local Feedback with Delay

Down-regulation of signaling activities are known to be accomplished in different ways.

Whether it is through more nonreceptors or higher degradation rate of free or bound ligands,

the net effect is equivalent to a lower concentration of free ligand available for binding with

signaling receptors. Thus, for our proof-of-concept investigation, we focus on direct feedback

on the ligand synthesis rate. To initiate our new approach to feedback, we consider in this

first effort the effect of a negative feedback stimulated by a higher than normal signaling

ligand concentration to be simply a reduction of the ligand synthesis rate VL. To implement

this approach, we take the normalized synthesis rate vL(x, t) to include a negative feedback

factor using the signaling robustness index Rb(t) as an instrument for down-regulating the

synthesis rate:

vL(x, t) = κ(t; τ)v̄LH(−x) ≡ ev̄LH(−x)

1 + c [Rb(t− τ)]n
(2.33)

where the amplification factor e is as previously defined and where c and n are two parameters

to be chosen for appropriate feedback strength similar to those for a Hill’s function. We

should note two features of the feedback process in (2.33). First, with c = n = 1, the

feedback mechanism reduces the synthesis rate by a fraction that depends on the average

deviation over an appropriate spatial span (e.g., the distal span of the posterior compartment

of the wing imaginal disc of the Drosophila). Second, the feedback may not be instantaneous

as a delay of τ unit of dimensionless time is allowed for the feedback to become effective.

With τ > 0 (and vR(x, t) = v̄R uniformly throughout the entire distal-proximal span of the

wing imaginal disc), the IBVP for the three normalized concentration may be computed as

we would for the problem without feedback except that the ligand synthesis rate changes
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with time. In particular, for the period [0, τ ], the problem is identical to the one without

feedback. For the interval [kτ, (k+ 1)τ ] and with t = kτ + η, the synthesis rate is modified

to

vL(x, t) =
ev̄LH(−x)

1 + c [Rb((k − 1)τ + η)]n
(0 < η < τ) (2.34)

with all concentrations continuous at the junctions between the time intervals. We will

implement this solution process and analyze the results in the next chapter.

2.4.2 Time Independent Steady State with Feedback

It has been shown in [23] that the extracellular model system without feedback has a unique

steady state that is linearly stable with respect to small perturbations from the steady state.

We show here that the same is true for our model with feedback on the ligand synthesis

rate. Suppose {a(x, t), b(x, t), r(x, t)} of (2.12) - (2.15) tend to the time independent states

{ã(x), b̃(x), r̃(x)} and therewith Rb(t) → R̄b (see (2.27) and (2.29)). In that case, we have

vL(x, t) of (2.34) tends to κ̄(R̄b)v̄LH(−x) , where

κ̄(R̄b) = lim
t→∞

κ(t; τ) =
e

1 + c
(
R̄b

)n . (2.35)

Note that we have used κ̄(R̄b) for κ(t; τ) in the steady state case since the amplitude factor

κ(t; τ) is no longer time dependent and is only a function of R̄b (and of course of e, n and c

in both cases).

For the steady state solution {ã(x), b̃(x), r̃(x)}, we have ∂( )/∂t = 0 so that the governing

partial differential equations and boundary conditions become

ã′′ − h0ãr̃ + f0b̃− gLã+ κ̄(R̄b)v̄LH(−x) = 0 (2.36)
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h0ãr̃ − (f0 + g0)b̃ = 0, (gr + h0ã)r̃ − f0b̃ = v̄R, (2.37)

with

ã′(−xm) = 0, ã(1) = 0, (2.38)

where a prime indicates differentiation with respect to x, i.e., ( )′ = d( )/dx.

As in the case without feedback, we can solve (2.37) for b̃ and r̃ in terms of ã (analogous to

(2.19) and (2.20))

b̃(x) =
ã(x)

α0 + ζ0ã(x)
, r̃(x) =

α0

α0 + ζ0ã(x)
(2.39)

with

α0 =
f0 + g0

h0

, ζ0 =
kdeg

kR
. (2.40)

and use the results to eliminate these two quantities from the only ordinary differential

equation (ODE) (2.36) to get a BVP for ã alone:

ã′′ − g0ã

α0 + ζ0ã
− gLã+ κ̄(R̄b)v̄LH(−x) = 0, (2.41)

ã′(−xm) = 0, ã(1) = 0. (2.42)

where κ̄(R̄b) is given by (2.35).

The following theorem, similar to the one in [23], ensures the BVP for the steady state

concentration ā(x) above is well-posed, nonnegative and monotone decreasing:
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Theorem 2.1. For positive values of the parameters g0, f0, h0, ν̄L and ν̄R, there exists a

unique, nonnegative solution ā(x) of the BVP (2.41) and (2.42). The corresponding con-

centrations b̄(x) and r̄(x) can then be calculated from (2.39).

Proof. The existence proof is similar to that in [23] for the case without feedback. It suffices

to produce an upper solution and a lower solution for the problem in order to apply the

known monotone method of [36] (see also [2], [38]).

Evidently, a`(x) ≡ 0 is a lower solution since

−[a`]
′′ +

g0a`
α0 + ζ0a`

+ gLa` −
ev̄L

1 + c
(
R̄b

)nH(−x) (2.43)

= − ev̄L

1 + c
(
R̄b

)nH(−x) ≤ 0 (−xm < x < 1),

with

a′`(−xm) = 0, a`(1) = 0.

For an upper solution, we note that

ã′′ + ev̄L ≥ ã′′ − g0ã

α0 + ζ0ã
− gLã+

ev̄L

1 + c
(
R̄b

)nH(−x) = 0

The exact solution for ã′′ + ev̄L = 0 is

au(x) = ev̄L

{(
xm +

1

2

)
− xmx−

1

2
x2

}

with a′u(−xm) = 0 and au(1) = 0. From (i) au(−xm) = v̄L
2

(1 + xm)2 > 0, (ii) a′u(x) =

−v̄L(x+ xm) < 0 for x > −xm, and (iii) au(1) = 0, we have

au(x) > 0 (−xm ≤ x < 1).
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It follows that

−[au]
′′ +

g0au
α0 + ζ0au

+ gLau − ev̄LH(−x) (2.44)

= ev̄L +
g0au

α0 + ζ0au
+ gLau − ev̄LH(−x) > ev̄L − ev̄LH(−x) ≥ 0

for −xm < x < 1 so that au(x) is an upper solution for the BVP for ā(x). The monotone

method assures us that there exists a solution ã(x) of the BVP (2.41) and (2.42) with

0 = a`(x) ≤ ã(x) ≤ au(x).

Since au(x) is already known to be positive for −xm ≤ x < 1, ã(x) must be nonnegative in

the whole solution domain.

To prove uniqueness, let a(1)(x) and a(2)(x) be two (nonnegative) solutions and a(x) =

a(1)(x)− a(2)(x) . Then as a consequence of the differential equation (2.41) for a(1)(x) and

a(2)(x), the difference a(x) satisfies the following differential equation:

−a′′ + g0ζ0α0a

(α0 + ζ0a(1))(α0 + ζ0a(2))
+ gLa = 0.

Multiplying by a and integrating gives

∫ 1

−xm

[
− a′′ +

g0ζ0α0a

(α0 + ζ0a(1))(α0 + ζ0a(2))
+ gLa

]
adx = 0,

then we integrate by parts. Upon observing continuity of ã(x) and ã́(x), and application of

the boundary conditions in (2.42), the relation above may be transformed into

∫ 1

−xm
[á(x)]2dx+

∫ 1

−xm

{
g0ζ0α0[a(x)]2

(α0 + ζ0a(1)(x))(α0 + ζ0a(2)(x))
+ gL[a(x)]2

}
dx = 0.
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Since both integrands are non-negative and not identically zero; we must have a(x) ≡ 0 thus

proving the uniqueness.

2.4.3 Monotonicity

We follow the analysis of the model in [23] to show that the free morphogen concentration

ã(x) and the corresponding signaling morphogen gradient b̃(x) are (positive and) monotone

decreasing in the open interval (−xm, 1). First, we show that there are not any extremum

in that interval.

Proposition 2.2. Under the same hypotheses as those in Theorem 2.1, the nonnegative

steady state concentration ã(x) does not attain a maximum or minimum in (0, 1) and hence

is monotone decreasing in that interval..

Proof. First, it is easy to see that the nonnegative ã(x) does not have an interior maximum

in the interval 0 < x < 1. If it should have a local maximum at some interior point x0, then

we must have (ã′(x0) = 0 and) ã′′(x0) ≤ 0. But since ã(x) ≥ 0 and vL(x) = 0 in x > 0, we

have

ã′′ =
g0ã

α0 + ς0ã
+ gLã ≥ 0.

It follows that we must have ã′′(x0) = 0 and therewith ã(x0) = 0. Since x0 is a maximum

point, we must have ã(x) = 0 in 0 < x < 1. The continuity requirements imply ã(0) =

ã́(0) = 0. But it is impossible for any nontrivial solution of the ODE (2.41) to satisfy both

of these conditions unless ã(x) = 0 for all x in [−xm, 0] as well. Such a free morphogen

concentration does not satisfy (2.41) in the interval (−xm, 0) where the normalized Dpp

synthesis rate is a positive constant v̄L. Hence ã(x) does not have a maximum in (−xm,∞).
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Also, ã(x) does not have a positive interior minimum. If it should have one at x0 (with

ã(x0) > 0), then it must have an interior maximum at some x1 > x0 in order for ã(x) to

decrease from ã(x1) > 0 to ã(1) = 0. However, this contradicts the fact that ã(x) does

not have an interior maximum. There is still the possibility of a local interior minimum

ã(x0) = 0. With ã́(x0) = 0 at the local minimum, we have ã(x) ≡ 0 which does not satisfy

the ODE (2.41) in the interval (−xm, 0). Altogether, the solution ã(x) of the BVP must be

(nonnegative and) monotone decreasing from ã(−xm) > 0 to ã(`M) = 0.

We can actually prove that the relevant morphogen concentrations are positive for x < 1

which we will need in subsequent development.

Corollary 2.3. Under the hypotheses of Theorem 2.1, the concentrations ã(x), b̃(x), and

r̃(x) do not vanish in (−xm, 1).

Proof. Suppose ã vanishes at x0 in (−xm, 1) and hence attains a local minimum there (since

ã(x) is nonnegative). This contradicts Proposition 2.2 which asserts that ã(x) does not have

an interior minimum. That the remaining quantities do not vanish follows from (2.39) and

(2.40).

2.4.4 Low Receptor Occupancy

If the morphogen system is in a state of low receptor occupancy prior to and after ligand syn-

thesis enhancement so that (2.21) is met generally by the present feedback model (including

the special case where c = 0 and e = 1 so that ã(x; R̄b) reduces to ā(x)), we may use the

linearized model

a′′0 = µ2
La0 − κ̄(R̄b)v̄LH(−x), (2.45)
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a′0(−xm) = 0, a0(1) = 0 (2.46)

with

µ2
L = gL +

g0

α0

. (2.47)

for an approximate solution of our problem. The exact solution of (2.45)-(2.46), denoted

by a0(x; R̄b) for its dependence on R̄b, is expected to be an accurate approximation of the

exact solution ã(x; R̄b). It reduces to the (approximate) wild-type ligand concentration

when c = 0 and e = 1. For a finite positive Xmax, the exact solution for a0(x) is

a0(x) =


κ̄ν̄L
µ2L
{1− cosh(µL`m)

cosh(µL(1+xm))
cosh(µL(x+ xm))} (−xm ≤ x ≤ 0)

κ̄ν̄L
µ2L

sinh(µLxm)
cosh(µL(1+xm))

sinh(µL(1− x)) (0 ≤ x ≤ 1)
, (2.48)

with

b̃(x) ' a0(x)

α0

, α0b̃(0) ' ã(0) ' a0(0) =
κ̄ν̄L
µ2
L

sinh(µLxm)

cosh(µL(1 + xm))
sinh(µL). (2.49)

For µL � 1, the expression for a0(x) in the signaling range of 0 ≤ x < 1 is asymptotically

a0(x) ∼ κ̄ν̄L
µ2
L

e−µLx (0 ≤ x < 1),

so that the gradient is effectively a boundary layer adjacent to x = 0, steep near x = 0 and

dropping sharply to near zero away from x = 0. The discussion above leads to the following

observation:
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Proposition 2.4. Even if a morphogen system is in a steady state of low receptor occupancy

(so that the condition (2.21) is satisfied), its signaling gradient may not be a biologically

meaningful gradient for the intended tissue patterning if the condition µL = O(1) is not met.

2.5 Numerical Algorithms for Steady State Solutions

2.5.1 A Single Pass Solution Scheme

The presence of the factor R̄b in the ODE for ã makes the solution of the BVP (2.41)-(2.42)

much less straightforward. As R̄b encapsulates the unknown concentrations of normal and

enhanced signaling ligand-receptor complexes, it depends on the solutions of two BVPs over

the entire span of the solution domain through the integrated condition (2.29). To the

extent that there are reliable software for solving BVP in ODE, we may make use of these

tools by re-configuring the integro-differential equation problem for ã to a BVP for a system

of ODEs.

For this purpose, we let ā(x) and ã(x) be the unknown free (unbound) ligand concentration

for a wild type ligand synthesis rate ν̄LH(−x) and an ectopic synthesis rate κ̄ν̄LH(−x),

respectively, with the amplification factor κ̄ to be specified. The wild type concentration

ā(x) is determined by the BVP (2.41)-(2.42) with e = 1 and c = 0 so that

ā′′ − g0ā

α0 + ζ0ā
− gLā+ v̄LH(−x) = 0, (2.50)

ā′(−xm) = 0, ā(1) = 0. (2.51)
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Correspondingly, ã is determined by the BVP (2.41)-(2.42) and the integral condition (2.29)

with x` = 1, xh = 0, and b` = 0 so that

R̄b =
1

bh

√∫ 1

0

[b̃(x; R̄b)− b̄(x)]2dx. (2.52)

where

b̃(x; R̄b) =
ã(x; R̄b)

α0 + ζ0ã(x; R̄b)
, b̄(x) =

ā(x)

α0 + ζ0ā(x)
. (2.53)

As indicated previously, we take bh to be given by (2.30) for systems of low receptor occu-

pancy (and bh = kR/kdeg for less likely systems of high receptor occupancy).

For a single pass algorithm for the solution of our problem where the nonlinear relation (2.29)

involves the unknown ã(x; κ̄(Rb)), we introduce two new functions to replace the integral

relation (2.29). The first is the function R2(x) defined by

R′2 =
1

b2
h

[b̃(x)− b̄(x)]2 =
1

b2
h

(
ã(x)

α0 + ζ0ã(x)
− ā(x)

α0 + ζ0ā(x)

)2

H(x), (2.54)

and the initial condition

R2(−xm) = 0. (2.55)

With the Heaviside function H(x) on the right hand side of (2.54), we may stipulate R2(x)

to be continuous x = 0.

The second new function is Rb(x) defined by

R′b = 0 (2.56)
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specifying that it does not change with location and is therefore some (unknown) constant

R̄b, i.e., Rb(x) = R̄b. The two new functions are related by the integral condition (2.52)

taken in the form

R2(1) = R̄2
b . (2.57)

In terms of the two new functions, we may rewrite (without altering the content of the ODE

(2.36)) the BVP for ã as

ã′′ − g0ã

α0 + ζ0ã
− gLã+ κ̄(Rb)v̄LH(−x) = 0, (2.58)

ã′(−xm) = 0, ã(1) = 0, (2.59)

with

κ̄(Rb) =
2

1 + cRb

, (2.60)

where we have taken e = 2 and n = 1 to be concrete (with c still to be specified). In this

form, Rb is treated as a function of position Rb(x).

Note that (2.58), (2.54) and (2.56) are now three coupled ODE for the three unknowns

ã(x), R2(x) and Rb(x) to be solved simultaneously. It is a fourth order system with four

auxiliary conditions given in (2.59), (2.55) and (2.57) with the latter taken in the form

R2(1) = [Rb(1)]2 . (2.61)

Together, the BVP for the fourth order system defined by (2.58), (2.54), (2.56), (2.59),

(2.55) and (2.61) enables us to avoid having the global parameter R̄b as an unknown to be
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determined by an integral on the yet unknown solutions of the two principal ODE over the

entire solution domain.

Adding to this the BVP defined by (2.50) and (2.51), we have a sixth order system for the four

unknowns ā(x), ã(x), Rb(x) and R2(x). Such a BVP can be solved by computing software

generally available on MatLab, Mathematica and Maple. It should be noted however that a

single pass solution algorithm for this problem requires the software to have the capability

of handling a vanishing Jacobian in the linearization of the nonlinear BVP by some form of

Newton’s method.

2.5.2 An Iterative Algorithm

It is possible to avoid computing with vanishing Jacobians. Given the dependence of ã(x)

(and hence b̃(x)) on R̄b, the relation (2.52) may be written abstractly as

R̄b = C(R̄b), (2.62)

where

C(R̄b) =
1

bh

√∫ 1

0

[b̃(x; R̄b)− b̄(x)]2dx (2.63)

Observe that 0 ≤ C(0) < 1 and, for 0 ≤ c < 1,

0 ≤ C(R̄b) < 1 (2.64)

given
[
b̃(x; R̄b)− b̄(x)

]
/bh < 1 for x > 0.
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A typical iterative solution scheme would start with some initial estimate R̄0 and calculate

successive iterates R̄k by the simple iteration

R̄k+1 = C(R̄k) =
1

bh

√∫ 1

0

[b̃(x; R̄k)− b̄(x)]2dx, k = 0, 1, 2, 3, .... (2.65)

where b̃(x; R̄k) is determined from the solution ã(x; R̄k) of the BVP (2.58)-(2.60) with R̄b =

R̄k in

κ̄(R̄b) =
2

1 + cR̄k

. (2.66)

We first show that ã(x; R̄b) and b̃(x; R̄b) are both decreasing functions of R̄b. The non-

positivity of the marginal change of b̃(x; R̄b) with R̄b is then used in

dC

dR̄b

=
1

b2
hC

∫ 1

0

[b̃(x; R̄b)− b̄(x)]
∂b̃(x; R̄b)

∂R̄b

dx (2.67)

to analyze the convergence of the iterative process (2.65).

Upon differentiating all relations in the BVP for ã(x; R̄b) partially with respect to R̄b, we

obtain

−w′′ +
(

α0

α0 + ζ0ã
+ gL

)
w − 2v̄L(

1 + R̄b

)2H(−x) = 0, (2.68)

w′(−xm; R̄b) = 0, w(1; R̄b) = 0. (2.69)

where

w(x; R̄b) = −∂ã(x; R̄b)

∂R̄b
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Clearly, w`(x; R̄b) ≡ 0 is a lower solution of the BVP for u(x; R̄b) given

−w′′` +
α0(1 + gL) + gLζ0ã

α0 + ζ0ã
w` −

2v̄L(
1 + R̄b

)2H(−x) (2.70)

= − 2v̄L(
1 + R̄b

)2H(−x) ≤ 0 (0 ≤ x ≤ 1).

As an upper solution, we have

wu(x; R̄b) =
2v̄L(

1 + R̄b

)2

{(
xm +

1

2

)
− xmx−

1

2
x2

}

with

−w′′u −
2v̄L(

1 + R̄b

)2 = 0.

Note that

−w′′u +

(
α0

α0 + ζ0ã
+ gL

)
wu −

2v̄L(
1 + R̄b

)2H(−x) (2.71)

≥ −w′′u −
2v̄L(

1 + R̄b

)2H(−x) =
2v̄L(

1 + R̄b

)2 [1−H(−x)] ≥ 0,

and

w′u(−xm; R̄b) = 0, wu(1; R̄b) = 0.

The monotone method of in [36] implies that w(x; R̄b) exists, is unique and non-negative so

that

−wu(x; R̄b) ≤
∂ã(x; R̄b)

∂R̄b

≤ 0

This leads to the following proposition on the non-positivity of the marginal value ∂b̃(x; R̄b)/∂R̄b:
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Proposition 2.5. ∂b̃(x; R̄b)/∂R̄b ≤ 0.

Proof. Upon differentiating the expression for b̃(x; R̄b) in (2.53) partially with respect to R̄b,

we obtain

∂b̃(x; R̄b)

∂R̄b

=
α0

(α0 + ζ0ã)2

∂ã(x; R̄b)

∂R̄b

≤ 0.

Together with (2.64) and b̃(x; R̄b) > 0, Proposition 2.5 implies dC/dR̄b ≤ 0 as long as

[b̃(x; R̄b) − b̄(x)] ≥ 0 (which is the case at the start of the iterative scheme). However,

this does not make {R̄k} a non-increasing sequence (though bounded below by 0). If

R̄k+1 < R̄k, we would have ã(x; R̄k+1) > ã(x; R̄k) and therewith R̄k+2 > R̄k+1 (consistent

with dC/dR̄b ≤ 0). As such, we have a non-negative sequence {R̄k} alternately increasing

and decreasing with successive iterations bounded below (by 0) and above (by R̄b(c = 0)

offering the prospect of convergence. As we shall see from an illustrative example in the

next section, the iterative scheme converges rapidly for c = 1 but the steady state value

found is unstable for c� 1.

2.5.3 An Illustrative Example

To gain some insight to the iterative algorithm for the steady state value R̄b of the robustness

index, we apply it to the system characterized by the parameter values shown in Table 2.1.

This system meets the condition (2.21) for a state of low receptor occupancy and is further

confirmed to be so by comparison of the exact numerical solution with that of the linearized

model. The steady state robustness index R̄b is found after less than 10 iterations with less

than 0.2% discrepancy between the 8th and 9th iterations as shown on the line for c = 1 in

Table 2.1 below:
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Table 2.1 Numerical Solutions by the Iterative Algorithm

Xmax = 0.01 cm, Xmin = 0.001 cm, konR0 = 0.01 sec ./µM,

kdeg = 2× 10−4/ sec ., kR = 0.001/ sec ., koff = 10−6/ sec ., kL = 0,

D = 10−7 cm2/ sec ., V̄L = 0.002 µM/ sec ., V̄R = 0.04 µM/ sec .

c R̄k R̄k+1 b̄(0) b̃(0; R̄k) b̃(0; R̄k+1) b̃(0; 0)
0 0.39380 0.39380 0.05798 0.11533 0.11533 0.11533
1 0.24190 0.24051 0.05798 0.09327 0.09306 0.11533
2 0.18177 0.18296 0.05798 0.08451 0.08469 0.11533
4 0.11114 0.11163 0.05798 0.07422 0.07431 0.11533

The quick convergence of the scheme for the particular example is gratifying. However,

the biological implication is not as satisfying. Taking the average of the two iterates for

R̄k shown in the Table gives a rather accurate numerical solution of R̄b ' 0.24121... for the

steady state robustness index. This is above the acceptable threshold of R̄b ≤ 0.2 set

(arbitrarily) in [26] for robustness. While there is some flexibility in setting the reference

value bh and reinterpreting the new definition, a more serious issue is the magnitude and

shape of the resulting steady state signaling gradient.

Comparing the values of b̄(0) and b̃(0; 0) with the accurate numerical solution b̃(0; R̄k) asso-

ciated with the final acceptable iterate R̄k shows that the solution with feedback is reduced

but still closer to the corresponding enhanced concentration b̃(0; 0) than the concentration

for the wild type system. The same is true for the entire signaling region of the solution

domain. Two questions arise: Is this the best we can do by the new feedback mechanism

in the form (2.33) (and consequently robustness cannot be attained by such a mechanism)?

If so, are there modifications that would lead to robustness? We examine possible answers

to these questions in the following subsections.
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Wild Type and Perturbed Systems at Low Receptor Occupancy

For our example, the model system is in a state of low receptor occupancy before and after

ligand synthesis enhancement. In that case, accurate approximate solutions for ã(x) and

ā(x) can be obtained similar to the model without feedback. In particular, the ODE for ã(x)

is linearized to give a linear equation for the approximate solution a0(x):

a′′0 − µ2
La0 + κ̄(r̄b)v̄LH(−x) = 0,

a′0(−xm) = 0, a0(1) = 0.

where µ2
L is as given by (2.47) and where R̄b in the expression (2.66) for κ̄ is now replaced by

the corresponding approximate expression r̄b using the low receptor occupancy approximate

solution b0(x; r̄b) for b̃(x; R̄b). The exact solution for this problem is given by (2.48) with

α0b̃(x; R̄b) ' a0(x; r̄b) =
κ̄(r̄b)ν̄L
µ2
L

sinh(µLxm)

cosh(µL(1 + xm))
sinh(µL(1− x)), (2.72)

α0b̄(x) ' [a0(x)]κ̄=1 =
ν̄L
µ2
L

sinh(µLxm)

cosh(µL(1 + xm))
sinh(µL(1− x)), (2.73)

for the signaling region 0 ≤ x ≤ 1.

R̄b at Low Receptor Occupancy

The expressions (2.72) and (2.73) for the enhanced and wild-type normalized signaling mor-

phogen gradients, b̃(x; R̄b) and b̄(x), in the range relevant for cell signaling are to be used,

respectively, in the expression (2.52) as was done in (2.32) to obtain for a low receptor

occupancy system

R̄b ' r̄b(c) = γ(µL)

[
2

1 + cr̄b
− 1

]
(2.74)
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with

γ(µL) =
1√

2 sinh(µL)

√(
sinh(2µL)

2µL
− 1

)
. (2.75)

For c = 0 (corresponding the case of no feedback), we have immediately

[
R̄b

]
c=0
' r̄b(0) = γ(µL),

which is 0.3938..... for our example (as already reported in the discussion following (2.32))

while accurate numerical solution by the iterative algorithm of the previous section gives

R̄b = 0.3939...

For 0 < c <∞, the relation (2.74) may be written as the quadratic equation

cr̄2
b + (1 + cγ)r̄b − γ = 0 (2.76)

for r̄b with one positive solution

R̄b ' r̄b =
1

2c

[
−(1 + cγ) +

√
(1 + cγ)2 + 4γ

]
> 0. (2.77)

For the problem specified by the parameter values in Table 2.1 and c = 1, such a feedback

process gives

[
R̄b

]
c=1
' r̄b(1) = 0.24108... (2.78)

which is almost the same as the average 0.24160... of the 8th and 9th iterates found earlier

for R̄b(c = 1). As such, R̄b(c = 1) ' 0.24121... (together with a corrected signaling gradient

that is closer to the perturbed gradient than the unperturbed one) is the best the feedback

(2.33) with c = 1 can attain.
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Modification for a More Effective Feedback Process

To improve on the feedback mechanism toward robustness of signaling gradients, we note

that a larger value of c in the expression (2.33) would reduce the enhanced synthesis rate to

result in a lower concentration level of ã(x; R̄b) and b̃(x; R̄b). This in turn should lead to a

smaller robustness index R̄b(c) as we would like to have. This expectation is easily proved

for systems in a state of low receptor occupancy by differentiating the relation (2.76) with

respect to c to get for c > 0:

dr̄b
dc

= − γ − r̄b
c(1 + cγ + 2cr̄b)

< 0,

given r̄b > 0 for c > 0. The same result can be established for gradient systems of more

general receptor occupancy:

Proposition 2.6. dR̄b/dc < 0 for c > 0.

Proof. We first prove

∂ã(x; R̄b(c))/∂c < 0, ∂b̃(x; R̄b(c))/∂c < 0,

using the approach for proving

∂b̃(x; R̄b)/∂R̄b < 0

when c was set equal to 1. The proposition follows from

dR̄b

dc
=

1

b2
hR̄b(c)

∫ 1

0

[b̃(x; R̄b(c))− b̄(x)]
∂b̃(x; R̄b(c))

∂c
dx,

given [b̃(x; R̄b(c))− b̄(x)] > 0 for 0 < c <∞.
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From (2.77), we have

lim
c→∞

R̄b(c) = 0.

Thus by choosing c large enough, we should be able to reduce the robustness index and scale

down b̃(x; R̄b(c)) to be close to b̄(x). The results for such an effort for c = 2 and c = 4

are reported in the last two rows of Table 2.1. For c = 4, not only is R̄b (' 0.111385.. )

well below the robustness threshold of 0.2, the feedback adjusted normalized signaling ligand

concentration (' 0.074265...) at x = 0 is now much closer to the wild type concentration

(' 0.05798...) than the enhanced concentration (' 0.11533...) without feedback. In fact, the

feedback adjusted gradient b̃(x; R̄b(c)) is also closer to b̄(x) than b̃(x; 0) for all x > 0.

Note that a large c value also has the effect of changing R̄b(c), and therewith b̃(x; R̄b(c)),

more drastically from iteration to iteration.

A Hill Function Type Modification

For comparison, we consider here a different kind of feedback process on the synthesis rate

for the steady state behavior of the form

κ̂ =
2

1 + [φ(x)]2
, φ =

1

bh

[
b̃(x; 0)− b̄(x)

]
(2.79)

This Hill function type feedback is spatially nonuniform and provides a crude model for a

delay feedback with effects quickly reaching a steady state. The steady state solution of

the morphogen system with such a feedback correction gives R̂b = 0.2050885... and b̂(0) '

0.0879065....

While the results are slight better than those by the spatially uniform feedback (2.60), the

two corresponding signaling gradients b̃(x; R̄k) and b̂(x) are not significantly different. More
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importantly, the comparison would favor the spatially uniform feedback if the enhanced

synthesis rate should induce a receptor saturated state. For then, the signaling gradient

resulting from (2.79) would be more concave and biologically less differentiating for the

purpose of differential cell fates similar to the results found in [17].

2.6 Concluding Remarks

Robustness with respect to an ectopic signaling gradient resulting from genetic or epigenetic

perturbations requires one or more signaling inhibiting agents to be stimulated (by the

enhanced signaling morphogen concentration) and up-regulated above their normal level.

This means the existence of some kind of feedback process in order to promote robustness.

Feedback has long been seen as a mechanism for maintaining stable developments and specific

feedback loops have been identified in the morphogen literature, for example, [8, 12, 32, 11,

34]. Though the conventional Hill function type negative feedback on receptor synthesis

rate proves to be ineffective for this purpose [26, 17, 28], we have shown in this chapter that

a spatially uniform feedback process based on a spanwise average of excess signaling can play

such a role. With the two algorithms developed for the solution of specific integro-differential

equation system for such a feedback mechanism, the results obtained confirm that at least

one such feedback mechanism can be effective for ensuring robustness and suggest that many

other effective feedback mechanisms are also possible and should be investigated.
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Chapter 3

Feedback During the Transient Phase

of the Biological Development

3.1 Introduction

In Chapter 2, we initiated a different approach to the role of feedback in ensuring robust

signaling gradients. Our goal is to investigate the effectiveness of feedback mechanisms other

than a negative feedback of the Hill’s function type on signaling receptor synthesis (which is

known to be ineffective [17, 28, 26]). With the ultimate effect of many inhibitors (of the non-

receptor type) being a reduction of the availability for signaling morphogens for binding with

signaling receptors, we embark a proof-of-concept investigation of a new spatially uniform

nonlocal feedback process (distinctly different from the conventional (spatially nonuniform)

Hill function feedback) on the morphogen synthesis rate. The negative feedback on signaling

morphogen synthesis rate based on a root-mean-square measure of the spatial distribution

of signaling concentration offers a simple approach to robustness and we have shown for

it to be effective for a signaling gradient in steady state. In this chapter, we examine the
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corresponding transient problem with repeated feedback adjustments taking effect during

the transient phase of the development.

3.2 Signaling Gradients and Pattern Formation

3.2.1 The Initial-Boundary Value Problem for the Basic Model

As in Chapter 2, we work with the basic model of Drosophila wing imaginal disc. Let us

recall the system of the differential equations in dimensionless form:

∂a

∂t
=
∂2a

∂x2
− h0ar + f0b− gLa+ vL(x, t), (3.1)

∂b

∂t
= h0ar − (f0 + g0)b,

∂r

∂t
= vR(x, t)− h0ar + f0b− gRr, (3.2)

for the concentrations, a, b and r, of free morphogen (e.g., Dpp in the Drosophila wing disc),

bound morphogen (or the ligand-receptor complex) and unoccupied receptors (e.g., Tkv for

Dpp in Drosophila wing disc), respectively. As before, all three concentrations are normal-

ized by the steady state receptor concentration R0 prior to the onset of the normalized ligand

synthesis vL(x, t). Receptors are synthesized by a time independent synthesis rate (normal-

ized to vR(x)) long before the onset of ligand production. The dimensionless space and time

variable x and t are normalized by Xmax (the span of the wing imaginal disc in the distal di-

rection from the boundary of the anterior and posterior compartment in the case of the wing

imaginal disc) and the time constant X2
max/D with D being the diffusion coefficient for the

diffusive ligand molecules, respectively. The various rate constants {konR0, koff , kL, kdeg, kR}

for binding, dissociation, free ligand degradation, bound ligand degradation and unoccupied
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receptor degradation are also normalized by the same time constant,

{h0, f0, gL, g0, gR} =
X2

max

D
{konR0, koff , kL, kdeg, kR}. (3.3)

We normalize the synthesis rate VL (setting vL(x, t) = (VL/R0)/(D/X2
max)) to get

vL(x, t) = ev̄LH(−x) =
eV̄L/R0

D/X2
max

H(−x) =

 ev̄L (−xm ≤ x < 0)

0 (0 < x ≤ 1)
(3.4)

where V̄L is the uniform (wild-type) synthesis rate in the narrow production region, xm =

Xmin/Xmax. Here e is a constant, an enhancement factor ; for wild-type systems it is normally

1. However, e may assume other values due to environmental changes. We have receptor

synthesis rate V̄R uniform in both time and space (throughout the spatial domain) with

vR(x, t) = vR(x) = v̄R =
V̄R/R0

D/X2
max

. (3.5)

Prior to the onset of ligand synthesis, unoccupied receptors should be in a steady state

concentration determined by the second equation in (3.2) to be

R0 =
V̄R
kR

=
v̄R
gR
R0 (3.6)

with

v̄R =
V̄R/R0

D/X2
0

=
kR

D/X2
0

= gR. (3.7)

For the (normalized) boundary conditions we have:

x = −xm :
∂a

∂x
= 0, x = 1 : a = 0, (3.8)
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all for t > 0. And for the (normalized) initial conditions we have:

t = 0 : a = b = 0, r = 1. (3.9)

3.2.2 A Steady State Particular Solution

Let’s denote the unique time independent particular solution by

{āe(x), b̄e(x), r̄e(x)} = lim
t→∞
{a(x, t), b(x, t), r(x, t)}. (3.10)

Note that the subscript e in these steady state quantities indicates the level of synthesis rate

enhancement (ectopicity). e = 1 corresponds to normal (wild-type) development, and e > 1

corresponds to ectopic signaling gradients.

The steady state solution may be determined by the well-posed two-point boundary value

problem (BVP) for āe(x):

ā′′e −
g0āe

α0 + ζ0āe
− gLāe + ev̄LH(−x) = 0, (3.11)

ā′e(−xm) = 0, āe(1) = 0. (3.12)

with

b̄e(x) =
āe(x)

α0 + ζ0āe(x)
, r̄e(x) =

α0

α0 + ζ0āe(x)
(3.13)

where

α0 =
f0 + g0

h0

, ζ0 =
kdeg

kR
=
g0

gR
, (3.14)
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keeping in mind v̄R = gR (see (3.7)).

3.2.3 A State of Low Receptor Occupancy

For the state of low receptor occupancy (LRO), we get an approximate set of solutions

{Āe(x), B̄e(x), R̄e(x)} to be determined by

Ā′′e − µ2
LĀe + ev̄LH(−x) = 0, µ2

L =
g0

α0

+ gL (3.15)

Ā′e(−xm) = 0, Āe(1) = 0. (3.16)

The exact solution for Āe(x) is

Āe(x) =


eν̄L
µ2L
{1− cosh(µL)

cosh(µL(1+xm))
cosh(µL(x+ xm))} (−xm ≤ x ≤ 0)

eν̄L
µ2L

sinh(µLxm)
cosh(µL(1+xm))

sinh(µL(1− x)) (0 ≤ x ≤ 1)
, (3.17)

with

b̄e(x) ' B̄e(x) =
Āe(x)

α0

, r̄e(x) ' R̄e(x) = 1. (3.18)

The following result is of some general interest:

Proposition 3.1. āe(x) > Āe(x) for all x in [−xm, 1).

Proof. We compare the steady state solutions āe(x) and Āe(x) determined by

ā′′e =
g0āe

α0 + ζ0āe
+ gLāe − ev̄LH(−x), ā′e(−xm) = āe(1) = 0
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and

Ā′′e =
g0

α0

Āe + gLĀe − ev̄LH(−x), Ā′e(−xm) = Āe(1) = 0,

respectively. We see that starting from the same end point āe(1) = Āe(1) = 0, āe(x) is less

convex than Āe(x) and hence increases faster as x decreases. With the denominator α0 +ζ0āe

also increasing with decreasing x, the difference in curvature increases with decreasing x

which further exaggerates the difference āe(x)− Āe(x) as x moves away from the disc edge.

Hence, we have āe(x) > Āe(x) for all x in [0, 1). The addition of the same negative source

term reduces the curvature of both by the same amount and hence does not affect the

expected differential of the two concentrations.

3.3 Robustness of Signaling Gradient

3.3.1 Ectopic Gradients

As we have already mentioned, Dpp synthesis rate in Drosophila imaginal wing disc doubles

when the ambient temperature is increased by 6◦C. From (3.17)-(3.18) we see that at

a state of low receptor occupancy (LRO), a significant increase in morphogen synthesis

rate will increase proportionately the magnitude of the steady state signaling morphogen

concentration. That, in turn, will change the cell fate at each spatial location. Without the

restriction of LRO, the steady state free and signaling morphogen gradients are expected to

be an increasing function of synthesis rate (but not necessarily proportionately and now also

with some gradient shape distortion) as shown below.

Proposition 3.2. āe(x; e) is a non-decreasing function of e and increasing at least for some

segment(s) of the solution domain [−xm, 1].
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Let w(x, e) = ∂āe/∂e. After doing partial differentiation of the BVP for āe(x, e) with respect

to e, we get

w′′ − α0g0w

(α0 + ζ0āe)
2 − gLw + vLH(−x) = 0,

w′(−xm, e) = 0, w(1, e) = 0

We see that w`(x, e) = 0 is a lower solution (but not an exact solution) of the BVP for

w(x, e) and wu(x, e) = vL{(xm(1−x) + (1−x2)/2} is an upper solution (again not an exact

solution). The monotone method of [36, 2, 38] affirms that w(x, e) exists with

0 = w`(x, e) ≤ w(x, e) ≤ wu(x, e),

and w(x, e) is not identically zero (since w`(x, e) = 0 is not the solution of the BVP for

w(x, e)).

Corollary 3.3. b̄e(x, e) is a non-decreasing function of e and increasing in some segment(s)

of [−xm, 1].

Proof. Upon differentiating b̄e(x, e) partially with respect to e, we obtain

∂b̄e
∂e

=
∂

∂e

[
āe(x)

α0 + ζ0āe(x)

]
=

α0g0w

(α0 + ζ0āe)
2 ≥ 0

and not identically zero in some segment of [−xm, 1].

3.3.2 A Robustness Index

In Chapter 2 we have introduced a robustness indexRb(t) to measure the deviations of ectopic

signaling gradient after ligand synthesis rate enhancement (e > 1). Now, to have more
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descriptive notation, we let b1(x, t) be the normalized signaling morphogen concentration

for a normal (e = 1) ligand synthesis rate vL(x, t) = v̄LH(−x) (after normalization) and let

be(x, t) be the same quantity for an enhanced (ectopic) synthesis rate ev̄LH(−x) . Then the

signal robustness index Rb will be:

Rb(t) =
1

bh − b`

√
1

x` − xh

∫ x`

xh

[be(x, t)− b1(x, t)]2dx (3.19)

where 0 ≤ b`(t) < bh(t) ≤ b(−xm, t) and −xm ≤ xh < x` ≤ 1.

When a system is in steady state, we have

b̄1(x) = lim
t→∞

b1(x, t), b̄e(x) = lim
t→∞

be(x, t). (3.20)

Then the robustness index Rb(t) tends to a constant R̄b:

R̄b = lim
t→∞

Rb(t) =
1

b̄h − b̄`

√
1

x` − xh

∫ x`

xh

[b̄e(x)− b̄1(x)]2dx (3.21)

As before, we take xh = 0 so that b̄h = b̄1(0) for a representative magnitude as a measure

of the extent of the root-mean-square deviation. For the other end, we take x` = 1 so that

b̄` = b̄1(1) = 0. In that case, (3.21) simplifies to

R̄b =
1

b̄1(0)

√∫ 1

0

[b̄e(x)− b̄1(x)]2dx. (3.22)

3.3.3 Approximate Solution for Low Receptor Occupancy

When a morphogen system is in a state of LRO (before and after ligand synthesis rate en-

hancement) so that g0ae/gR � α0, we have from (3.17)-(3.18) the following approximate

steady state expression for the signaling gradients of the normal (wild type) and (environ-
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mentally or genetically) perturbed system:

b̄e(x) ∼ ev̄L
α0µ2

L

sinh(µLxm) sinh(µL(1− x))

cosh(µL(1 + xm))
=

v̄L
α0µ2

L

B̄e(x) =
v̄L
α0µ2

L

[
eB̄1(x)

]
, (3.23)

for 0 ≤ x ≤ 1, where µ2
L = gL + g0/α0 with µ2

L ' h0 + gL whenever f0 � g0 (as it is for

Dpp in Drosophila wing imaginal disc).

When xh = 0, for LRO systems we have from (3.17) and (3.18)

b̄h = b̄1(0) ' v̄L
α0µ2

L

sinh(µLxm) sinh(µL`M)

cosh(µL(`M + xm))
=

ev̄L
α0µ2

L

B̄1(0). (3.24)

By taking x` = 1 and b̄` = b̄(1) = 0 and with e = 2 for the enhanced synthesis rate, R̄b, in

the absence of any feedback, is approximately given by

R̄b ' r̄b =
1

sinh(µL)

√∫ 1

0

[sinh(µL(1− x))]2dx

=
1

sinh(µL)

√
1

2

(
sinh(2µL)

2µL
− 1

)
≡ γ. (3.25)

3.4 Feedback in Transient Phase

For a biological organism a feedback mechanism generally would not become effective until

the enhanced signaling reaches a noticeable level of ectopicity. Typically, this occurs during

the transient phase of the development (and not when the system is already in a quasi-steady

state). Most likely the organism does not react instantaneously, so there might be a delay

in sensing the excessive signaling and the actual initiation of the response with the delay

time short compared to the time to quasi-steady state. For systems capable of repeated

feedbacks, their impact prior to steady state may be cumulative toward eventual patterning
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and development. It is important then to investigate feedback effective during the transient

phase of the signaling morphogen gradient formation.

In principle, the developing organism may adjust continuously with continuous feedback but

is unlikely to function with such sensitivity or efficiency. It is more likely to make feedback

adjustments at a few instants or perhaps only once at some threshold ectopicity. As a

proof-of-concept investigation, we consider two models of a feedback adjustment after each

time interval τ , both for the special case of n = 1, to illustrate the method of solution for

this class of problems.

Let tk = kτ, k = 0, 1, 2, 3, ....and suppose feedback adjustments are made only at t1, t2, t3, t4, .....

and not in between these instants in time. We designate the time interval [tk, tk+1) as pe-

riod k. For both models, an additional feedback adjustment is made during period k on

the enhanced ligand synthesis rate vL(x, t) ≡ v
(k−1)
e (x, t) of the previous time interval. The

adjustment is by a factor (1 + cRb(t̄k))
−1 for some constant c and some instant t̄k (keeping

n = 1 for this first effort).

In this section, we investigate the first model in which feedback adjustment for period k is

made at the start time tk of that time interval on the basis of the robustness index Rb at

that moment so that t̄k = tk. In that case, we have for period k

vL(x, t) ≡ v(k)
e (x, t) =

v
(k−1)
e (x, t)

1 + cRb(tk)
≡ eκkv̄LH(−x).

We now examine the evolution of the signaling gradient with time in successive time intervals

[tk, tk+1).
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The Interval [0, t1)

In this initial interval corresponding to k = 0, the enhanced ligand synthesis rate with (our

nonlocal spatially uniform) feedback is

vL =
ev̄LH(−x)

1 + cRb(t0)
= ev̄LH(−x) ≡ v(0)

e (x, t) (0 ≤ t ≤ t1 = τ) (3.26)

since

Rb(t0) =
1

b̄h

∫ 1

0

[be(x, t0)− b1(x, t0)]2dx (3.27)

=
1

b̄h

∫ 1

0

[b(0)
e (x, 0)− b1(x, 0)]2dx = 0

given be(x, 0) = b1(x, 0) = 0 by the initial conditions. To emphasize that the result applies

only to the initial time interval [0, t1), we adopt the notation

Rb(t0) ≡ R
(0)
b (0) = 0.

Thus the feedback is not effective in this interval. In that case, the synthesis rate of the

ectopic IBVP (3.1), (3.2), (3.8) and (3.9) in this time interval, vL = v
(0)
e (x, t) = ev̄LH(−x) is

the same as the problem without feedback. The solution, to be denoted by a
(0)
e (x, t), b

(0)
e (x, t)

and r
(0)
e (x, t) (including the wild type corresponding to e = 1 in (3.26)) can be obtained by

numerical methods with the initial conditions (3.9) at t = 0 (as it has been done in [23] for

problems without feedback).
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The Interval [t1, t2)

In this next interval τ = t1 ≤ t < t2 = 2τ corresponding to k = 1, the enhanced ligand

synthesis rate with feedback is

vL =
ev̄LH(−x)

1 + cRb(t1)
≡ v(1)

e (x, t) (τ ≤ t < τ).

with

Rb(t1) =
1

b̄h

∫ 1

0

[be(x, t1)− b1(x, t1)]2dx (3.28)

=
1

b̄h

∫ 1

0

[b(0)
e (x, τ)− b1(x, τ)]2dx ≡ R

(1)
b (t1)

since, by continuity, be(x, t1) is the same at the junction t1 of the two adjacent intervals.

b
(1)
e (x, τ) = b

(0)
e (x, τ) by continuity. With b

(0)
e (x, τ) already known from the solution of the

IBVP for the previous interval, the modified synthesis rate for the ectopic IBVP in this time

interval,

vL = v(1)
e (x, t) =

ev̄LH(−x)

1 + cR
(1)
b (t1)

= eκ1v̄LH(−x) (t1 ≤ t < t2), (3.29)

is a known function. The solution of the IBVP in [t1, t2), denoted by
{
a

(1)
e , b

(1)
e , r

(1)
e

}
, can

be obtained by numerical methods with the continuity condition

{
a(1)
e (x, t1), b(1)

e (x, t1), r(1)
e (x, t1)

}
=
{
a(0)
e (x, t1), b(0)

e (x, t1), r(0)
e (x, t1)

}
as the initial conditions and with the quantities on the right already known from the solution

for the previous interval.

Note that feedback on the synthesis rate is now effective for the interval [t1, t2). As such

the solution of the IBVP (3.1), (3.2), (3.8) and (3.9) for the ectopic problem in this time
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interval is generally different from the corresponding solution without feedback (the special

case c = 0). Anticipating the subsequent development, we adopt the notation κ0 = 1 so

that we may write

κ1 =
κ0

1 + cR
(1)
b (t1)

.

The Interval [t2, t3)

In the next interval 2τ = t2 ≤ t < t3 = 3τ corresponding to k = 2, the enhanced ligand

synthesis rate with feedback is

vL =
v

(1)
e (x, t)

1 + cRb(t2)
≡ v(2)

e (x, t).

Similar to the previous interval, Rb(t2) for the new interval is completely determined from

the solution of the previous interval at the junction t2 between the two adjacent intervals:

Rb(t2) =
1

b̄h

∫ 1

0

[b(1)
e (x, t2)− b1(x, t2)]2dx ≡ R

(2)
b (t2).

The corresponding solution of the IBVP (3.1), (3.2), (3.8) and (3.9), to be denoted by{
a

(2)
e , b

(2)
e , r

(2)
e

}
, may be obtained by numerical methods starting from the continuity con-

ditions at t2:

{a(2)
e (x, t2), b(2)

e (x, t2), r(2)
e (x, t2)} = {a(1)

e (x, t2), b(1)
e (x, t2), r(1)

e (x, t2)} (3.30)

with the quantities on the right already obtained in the discussion of the previous interval.

The synthesis rate for the ectopic IBVP with feedback in this time interval may be written
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as

vL = v(2)
e (x, t) = ev̄Lκ2H(−x) (t2 ≤ t < t3) (3.31)

with

κ2 =
κ1

1 + cR
(2)
b (t2)

= .
κ0[

1 + cR
(2)
b (t2)

] [
1 + cR

(1)
b (t1)

] . (3.32)

The Interval [tk, tk+1), k ≥ 3 :

In a general interval kτ = tk ≤ t < tk+1 = (k + 1)τ for k ≥ 3, the enhanced ligand synthesis

rate with feedback is

vL =
v

(k−1)
e (x, t)

1 + cRb(tk)
=

ev̄Lκk−1H(−x)[
1 + cR

(k)
b (tk)

] = ev̄LκkH(−x) ≡ v(k)
e (x, t) (tk−1 ≤ t− τ < tk)

(3.33)

with

R
(k)
b (tk) =

1

b̄h

∫ 1

0

[b(k−1)
e (x, tk)− b1(x, tk)]

2dx. (3.34)

Hence, the feedback adjusted synthesis rate of the ectopic IBVP in the interval tk ≤ t < tk+1

is

vL = v(k)
e (x, t) = ev̄LκkH(−x) (tk ≤ t < tk+1) (3.35)
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with

κk(t1, ...., tk) =
1

k

Π
j=1

[
1 + cR

(j)
b (tj)

] (3.36)

given κ0 = 1. In the expression (3.36), the robustness indices {R(j)
b (tj)} are calculated from

the formula (3.34) (with k replaced by j ) sequentially with increasing j starting from j = 1.

The corresponding solution of the IBVP (3.1), (3.2), (3.8) and (3.9), denoted by
{
a

(k)
e , b

(k)
e , r

(k)
e

}
,

may be obtained by numerical methods starting from the continuity conditions at tk:

{a(k)
e (x, tk), b

(k)
e (x, tk), r

(k)
e (x, tk)} = {a(k−1)

e (x, tk), b
(k−1)
e (x, tk), r

(k−1)
e (x, tk)}.

3.4.1 Numerical Results

We see that κk decreases with k. Thus R
(k)
b also decreases with k. Then the iterative

algorithm above is expected to converge. To compare the effectiveness of cumulative repeated

feedback adjustments during the transient phase with that of steady state theory obtained

in the previous chapter, we apply the present approach to the illustrative example already

examined. With the system parameter values given in Table 2.1, we take c = 1, n = 1

and τ = 4 in units of (D/X2
max)−1 with the system reaching steady state around 5τ = 20.

Note that the top curve in the Figure 3.1 is essentially the quasi-steady state be (for e = 2)

without feedback with the signaling gradient reaching steady state around t = 20, with the

onset of morphogen synthesis at t = 0. The expected role of any feedback adjustment is

to bring b
(5)
e (x, 20) as close as possible to the the bottom steady state wild-type signaling

gradient curve in that figure (e = 1 and no feedback). After the feedback adjustments

become effective (starting with k = 2), the cumulative effect of the repeated adjustments

continues to reduce the signaling gradient in successive time intervals, leading to a gradient
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b
(5)
e (x, 20) very close to the wild-type gradient prior to synthesis rate being enhanced from

e = 1 to e = 2.

x=X/X
max

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
on

ce
nt

ra
tio

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
b2 with feedback at times k = 1
k = 2
k = 3
k = 4
k = 5
b1
b2 without feedback

Figure 3.1: Various Signaling Gradients (some with feedback adjustment): Wild-type
b1(x, 20) with (e = 1 and c = 0) at the bottom; Ectopic be(x, 20)(with e = 2 and c = 0) at
the top; In between from top down are be(x, tk) at t = t2, t3, t4, t1 and t5 = 20.

Even more important is the shape of the wild-type gradient being maintained by the feed-

back adjusted ectopic gradient. More specifically, the spatially uniform nonlocal feedback

mechanism does not suffer the same fate as the Hill’s function type feedback mechanism

applied to the signaling receptor synthesis rate first found in [17], see Figure 3.2 (reproduced

here for comparison).
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Figure 3.2: Negative feedback of Hill’s function type on receptor synthesis rate: Wild-type
signaling gradient (e = 1, no feedback) - bottom dashed curve; Ectopic signaling gradient
(e = 2 without feedback) - top dashed curve; Ectopic signaling gradient (e = 2) with negative
feedback on receptor synthesis

Table 3.1 Comparison of Rb(x, tk)

Transient (c = 1) Steady State
No Delay (k) With Delay (k) From [19] (c)

0.24937 (1) 0.24937 (1) 0.39379 (0)
0.26524 (2) 0.36501 (2) 0.24051 (1)
0.18738 (3) 0.31731 (3) 0.18296 (2)
0.10145 (4) 0.18769 (4) ........
0.03769 (5) 0.05747 (5) 0.11163 (4)

In the first column of Table 3.1, we report robustness index values at different instants in

time for the feedback mechanism described above. Except for an increase in R
(2)
b (x, t2) over

R
(1)
b (x, t1) (because there is no feedback adjustment for the interval [0, 4)), modifications of

the synthesis stimulated by feedback repeatedly reduce the robustness index to below the

acceptable robustness threshold value of 0.2 by t = 12 and well below that threshold by

t = 20 (effectively in steady state). We compare these results to the steady state approach

discussed in the previous chapter (also reported in [19]) where the same nonlocal spatially

uniform feedback mechanism becomes effective when the system reaches its steady state.

The results using that approach are reproduced in the third column of Table 3.1 and show
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that Rb(x,∞) is well above 0.2 for c = 1 (the same value of c used for all cases in the first

column).

3.5 Transient Feedback with Delay

In this section, we investigate the second model when the effect of feedback through the

robustness index Rb(t̄) is recorded at the start of the time interval tk but reacting with a

delayed time τ so that t̄k = tk − τ = tk−1:

vL(x, t) ≡ v(k)
e (x, t) =

v
(k−1)
e (x, t)

1 + cRb(tk−1)
≡ ev̄LdkH(−x)

We now examine the evolution of the signaling gradient with time in successive time intervals

[tk, tk+1).

The Interval [0, t1)

In the initial interval (0 = t0 ≤ t < t1 = τ) corresponding to k = 0, the enhanced ligand

synthesis rate with (our spatially uniform) feedback is

vL =
ev̄LH(−x)

1 + cRb(t0 − τ)
=

ev̄LH(−x)

1 + cRb(−τ)
= ev̄LH(−x) ≡ v(0)

e (x, t) (3.37)

(again with the subscript e corresponding the magnitude of ectopicity) since be(x, t) =

b1(x, t) = 0 for t prior to the onset of morphogen synthesis so that

Rb(−τ) =
1

b̄h

∫ 1

0

[be(x,−τ)− b1(x,−τ)]2dx = 0.
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With

Rb(t0 − τ) ≡ R
(0)
b (−τ) = 0

so that feedback is not effective given the delay, the synthesis rate of the ectopic IBVP (3.1),

(3.2), (3.8) and (3.9) in this time interval vL = v
(0)
e (x, t) = ev̄LH(−x) is the same as that

without feedback. The solution, to be denoted by a
(0)
e (x, t), b

(0)
e (x, t) and r

(0)
e (x, t) (including

the wild type corresponding to e = 1 in (3.26)) can be obtained by numerical methods with

the initial conditions (3.9) at t = 0.

The Interval [t1, t2)

In this next interval τ = t1 ≤ t < t2 = 2τ corresponding to k = 1, the enhanced ligand

synthesis rate with feedback is

vL =
v

(1)
e (x, t)

1 + cRb(t1 − τ)
=
ev̄LH(−x)

1 + cRb(0)
≡ v(1)

e (x, t) (0 ≤ t− τ < τ).

With

Rb(t1 − τ) =
1

b̄h

∫ 1

0

[be(x, 0)− b1(x, 0)]2dx (3.38)

=
1

b̄h

∫ 1

0

[b(0)
e (x, 0)− b1(x, 0)]2dx = 0,

given the initial conditions be(x, 0) = b1(x, 0) = 0, we have also

Rb(t1 − τ) ≡ R
(1)
b (0) = 0
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in the interval t1 ≤ t < t2 . The synthesis rate for the ectopic IBVP in this time interval is

vL = v(1)
e (x, t) =

ev̄LH(−x)

1 + cR
(1)
b (0)

= ev̄LH(−x) (t1 ≤ t < t2).

The solution, denoted by
{
a

(1)
e (x, t), b

(1)
e (x, t), r

(1)
e (x, t)

}
is the same as one without feedback

and can be obtained by the usual numerical methods with the continuity condition

{
a(1)
e (x, t1), b(1)

e (x, t1), r(1)
e (x, t1)

}
=
{
a(0)
e (x, t1), b(0)

e (x, t1), r(0)
e (x, t1)

}
as initial conditions. Note that the quantities on the right have already been obtained for

the previous interval.

With feedback on the synthesis rate not yet effective for the combined interval [0, t2), the

solution of the IBVP (3.1), (3.2), (3.8) and (3.9) for the ectopic problem in the time interval

t1 ≤ t < t2 is merely a continuation of that for the previous interval.

The Interval [t2, t3)

In the next interval 2τ = t2 ≤ t < t3 = 3τ corresponding to k = 2, the enhanced ligand

synthesis rate with feedback is

vL =
v

(1)
e (x, t)

1 + cRb(t2 − τ)
=
ev̄LH(−x)

1 + cRb(τ)
≡ v(2)

e (x, t)

with

Rb(t2 − τ) =
1

b̄h

∫ 1

0

[be(x, τ)− b1(x, τ)]2dx (3.39)

=
1

b̄h

∫ 1

0

[b(1)
e (x, τ)− b1(x, τ)]2dx = R

(2)
b (t1)

58



given b
(2)
e (x, t1) = b

(1)
e (x, t1) by continuity. For the interval t1 ≤ t̄ = t−τ < t2 and feedback

adjustment effective only at t1, we have

Rb(t2 − τ) = R
(2)
b (t1)

and the feedback modified synthesis rate for the ectopic IBVP in this time interval is

vL = v(2)
e (x, t) =

ev̄LH(−x)

1 + cR
(2)
b (t1)

≡ ev̄Ld2H(−x) (t2 ≤ t < t3) (3.40)

with

d2 =
1

1 + cR
(2)
b (t1)

. (3.41)

With the feedback adjusted synthesis rate completely known for the interval t2 ≤ t < t3,

the solution of the IBVP (3.1), (3.2), (3.8) and (3.9), denoted by
{
a

(2)
e , b

(2)
e , r

(2)
e

}
, can be

obtained by numerical methods starting from the continuity conditions at t2:

{a(2)
e (x, t2), b(2)

e (x, t2), r(2)
e (x, t2)} = {a(1)

e (x, t2), b(1)
e (x, t2), r(1)

e (x, t2)}. (3.42)

with the quantities on the right already obtained for the previous interval.

Given vL = v
(2)
e (x, t) = ev̄Ld2(t1)H(−x) which is known but different from v

(1)
e (x, t) =

v
(0)
e (x, t) = ev̄LH(−x), feedback on the synthesis rate is effective in the interval [t2, t3). As

such the solution of the IBVP for the transient ligand concentration for the ectopic problem

is expected to be different from the correspond solution without feedback in this interval.
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The Interval [tk, tk+1), k ≥ 3 :

In period k, where kτ = tk ≤ t < tk+1 = (k + 1)τ for k ≥ 3, the enhanced ligand synthesis

rate with feedback is

vL =
v

(k−1)
e (x, t)

1 + cRb(tk − τ)
=
ev̄Ldk−1H(−x)

[1 + cRb(tk−1)]
≡ v(k)

e (x, t) (tk−1 ≤ t− τ < tk) (3.43)

with

Rb(tk − τ) =
1

b̄h

∫ 1

0

[be(x, tk−1)− b1(x, tk−1)]2dx (3.44)

=
1

b̄h

∫ 1

0

[b(k−1)
e (x, tk−1)− b1(x, tk−1)]2dx = R

(k)
b (tk−1)

Hence, the feedback adjusted synthesis rate of the ectopic IBVP in the interval tk ≤ t < tk+1

is

vL = v(k)
e (x, t) = edkv̄LH(−x) (3.45)

where d0 = d1 = 1 and

dk(t1, ...., tk−1) =
1

k

Π
j=2

[
1 + cR

(j)
b (tj−1)

] (k ≥ 2).

The solution of the IBVP, denoted by
{
a

(k)
e , b

(k)
e , r

(k)
e

}
, can be obtained by numerical meth-

ods starting with the continuity condition:

{a(k)
e (x, tk), b

(k)
e (x, tk), r

(k)
e (x, tk)} = {a(k−1)

e (x, tk), b
(k−1)
e (x, tk), r

(k−1)
e (x, tk)}.
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3.5.1 Numerical Results

To compare the effectiveness of the cumulative effects from repeated (delayed) feedback

adjustments during the transient phase with that of steady state theory obtained in the pre-

vious chapter, we apply the present approach to the illustrative example already examined.

With the system parameter values given in Table 2.1, we take c = 1 and τ = 4 in units

of (D/X2
max)−1 to obtain a similar set of solutions for delayed feedback modified be(x, t) at

tk = τ, 2τ, 3τ, 4τ and 5τ = 20 as well as be(x, t) without feedback for e = 1 (wild-type) and

e = 2 (ectopic gradient). The results are shown in Figure 3.3.

As in Figure 3.1, the top curve in the figure is essentially the quasi-steady state be (for

e = 2) without feedback with the signaling gradient reaching steady state around t = 20.

The expected role of any feedback adjustment is to bring b
(5)
e (x, 20) as close as possible to

the the bottom steady state wild-type signaling gradient curve in that figure (e = 1 and

no feedback). After the feedback adjustments become effective (starting with k = 2), the

cumulative effect of the repeated adjustments continues to reduce the signaling gradient in

successive time intervals, leading to a gradient b
(5)
e (x, 20) very close to the wild-type gradient

prior to synthesis rate being enhanced from e = 1 to e = 2.

However, there are significant differences between the same nonlocal spatially uniform feed-

back mechanism without and with delay. For example, the feedback adjusted ectopic signal-

ing gradient is seen to be slightly higher than the ectopic gradient during the early transient

phase of k = 1; but this relative position is reversed for the same feedback mechanism

without delay. The reason for the difference is associated with the unmodified increase in

the deviation of the ectopic gradient from the wild-type for a second period so that feed-

back adjustment of the development actually occurs one period later when the feedback

implementation is delayed by one period.
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Figure 3.3: Various Signaling Gradients (some with delayed feedback): Wild-type with (e = 1
and c = 0) at the bottom; Ectopic (with e = 2 and c = 0) at the top; In between from top

down are b
(k)
e (x, t) at tk = 2τ, 3τ, 4τ, 5τ = 20 and τ .

In the second column of Table 3.1, we report robustness index values at different instants in

time for the same feedback mechanism as in the previous section but now with a delay in

sensing the need for, and in implementing feedback adjustments. Given that modification of

the synthesis rate stimulated by feedback only begins to be effective starting with period 2.

There is then no effect of feedback in period 0 and period 1 leading to a larger Rb after the

initial period. To reach the same robustness index with the delayed feedback would require

additional adjustments well into the steady state phase or an increase in the value for c to

2 or higher (or increasing n to a large value than 1).
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3.6 Time Dependent LRO Problem

3.6.1 A Perturbation for the Transient Phase of a LRO State

From the results for our illustrative example, we see that both the wild-type and ectopic

steady state behavior meet the requirements for a LRO state. For such cases, we may

take during the transient phase the following perturbation expansions in terms of a small

dimensionless parameter ε:

{ae, be, re} = {0, 0, 1}+
∑
i=1

{A(i)
e (x, t), B(i)

e (x, t), R(i)
e (x, t)}εi

with 0 < ε � 1. (One possible choice of the small parameter ε is the dimensionless

ligand synthesis rate v̄L which is necessarily small for a state of LRO.) Upon substituting

these expansions in to the IBVP (3.1), (3.2), (3.8) and (3.9), the leading terms of the

expansions {A(1)
e (x, t), B

(1)
e (x, t), 1} and the first order correction term R

(1)
e (x, t) for receptor

concentration are found to be determined by the simpler IBVP:

∂A
(1)
e

∂t
=
∂2A

(1)
e

∂x2
− (h0 + gL)A(1)

e + f0B
(1)
e + vL(x, t), (3.46)

∂B
(1)
e

∂t
= h0A

(1)
e − (f0 + g0)B(1)

e ,
∂R

(1)
e

∂t
= −h0A

(1)
e + f0B

(1)
e − gRR(1)

e , (3.47)

with

x = −xm :
∂A

(1)
e

∂x
= 0, x = 1 : A(1)

e = 0, (3.48)

all for t > 0, and

t = 0 : A(1)
e = B(1)

e = R(1)
e = 0 (0 ≤ x ≤ 1). (3.49)
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The two unknowns A
(1)
e (x, t) and B

(1)
e (x, t) may be solved separately with the solution used

in the second ODE of (3.47) and the initial condition R
(1)
e (x, 0) = 0 for the determination of

R
(1)
e (x, t). The first approximation solution

{
A

(1)
e (x, t), B

(1)
e (x, t), 1

}
is designated as the

low receptor occupancy solution for the problem.

3.6.2 Eigenfunction Expansions

For t in the interval [tk, tk+1), we have

vL(x, t) = eκkv̄LH(−x) ≡ v(k)
e (x, t), κk =

1
k

Π
j=2

[
1 + cR

(j)
b (tj−1)

] , (3.50)

which is independent of time except for the constant κk characterizing the cumulative effect

of prior feedback, A particular solution of the linear IBVP for A
(1)
e (x, t) and B

(1)
e (x, t) for

that interval is the steady state LRO solution Āek(x) given in (3.17) and

B̄ek(x) =
Āek(x)

α0

, (3.51)

for the synthesis rate (3.50) with ev̄L replaced by eκkv̄L. It is worth pointing out that the

particular solution pair {Āek(x), B̄ek(x)}, though time independent for at least the initial

period, generally changes from period to period since the synthesis rate vL is being adjusted

with a new robustness index from period to period. For that reason, we take the LRO

solution A
(1)
e (x, t) and B

(1)
e (x, t) in period k as a sum of the corresponding particular solution

and a transient counterpart

A(1)
e (x, t) = Āek(x) + Âek(x, t), B(1)

e (x, t) = B̄ek(x) + B̂ek(x, t). (3.52)
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The complementary solutions Âe(x, t) and B̂e(x, t) are determined by the IBVP

∂Âek
∂t

=
∂2Âek
∂x2

− (h0 + gL) Âek + f0B̂ek, (3.53)

∂B̂ek

∂t
= h0Âek − (f0 + g0)B̂ek, (3.54)

subject to the boundary conditions

x = −xm :
∂Âek
∂x

= 0, x = 1 : Âek = 0, (3.55)

for tk ≤ t < tk+1 and initial conditions

 Âek(x, tk) + Āek(x)

B̂ek(x, tk) + B̄ek(x)

 =

 Âek−1(x, tk) + Āe(k−1)(x)

B̂e(k−1)(x, tk) + B̄e(k−1)(x)

 (3.56)

for 0 ≤ x ≤ 1.

Given the linearity of the governing PDE and auxiliary conditions, the complementary so-

lution of this IBVP may be obtained by eigenfunction expansions

 Âek(x, t)

B̂ek(x, t)

 =
∞∑
j=0

 akj(t)

bkj(t)

φj(x) (3.57)

with

φj(x) = sin

(
λj

1− x
1 + xm

)
, λj =

(
j +

1

2

)
π. (3.58)

Once we substitute (3.57) into (3.53)-(3.54), we get

d

dt

 akj(t)

bkj(t)

 = −C(λ2
j)

 akj(t)

bkj(t)

 (j = 0, 1, 2, ....)

65



where

C(λ2
j) =

 c11 c12

c21 c22

 =

 λ2
j + h0 + gL −f0

−h0 f0 + g0

 .
The solution of the first order system for akj(t) and bkj(t)

 akj(t)

bkj(t)

 =

 a
(1)
kj e
−ω(1)

kj t + a
(2)
kj e
−ω(2)

kj t

b
(1)
kj e
−ω(1)

kj t + b
(2)
kj e
−ω(2)

kj t

 (3.59)

where ω
(1)
kj and ω

(2)
kj are the two roots

 ω
(1)
kj

ω
(2)
kj

 =
1

2

{
Tr[C]±

√
(Tr[C])2 − 4Det[C]

}

of the quadratic equation for ωkj

det
[
ωkjI − C(λ2

j)
]

= ω2
kj + Tr[C]ωkj +Det[C] = 0.

The coefficients {a(1)
kj , a

(2)
kj , b

(1)
kj , b

(2)
kj } are related by

b
(m)
kj =

h0a
(m)
kj

ω
(m)
kj + f0 + g0

with the two remaining unknowns a
(1)
kj and a

(2)
kj found from the two continuity conditions
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(3.56) in the form

 a
(1)
kj e
−ω(1)

kj tk + a
(2)
kj e
−ω(2)

kj tk

b
(1)
kj e
−ω(1)

kj tk + b
(2)
kj e
−ω(2)

kj tk

+

 ākj

b̄kj

 (3.60)

=

 a
(1)
(k−1)je

−ω(1)
kj tk + a

(2)
(k−1)je

−ω(2)
kj tk

b
(1)
(k−1)je

−ω(1)
kj tk + b

(2)
(k−1)je

−ω(2)
kj tk

+

 ā(k−1)j

b̄(k−1)j


where {ānj, b̄nj} are the coefficients of the eigenfunction expansions for the known particular

solutions Āek(x) and B̄ek(x), respectively,

∫ 1

−xm
[φj(x)]2 dx

 ānj

b̄nj

 =

∫ 1

−xm
φj(x)

 Āen(x)

B̄en(x)

 dx.

and {a(1)
(k−1)j, ...., b

(2)
(k−1)j} are known from the solution of period (k − 1), i.e., [tk−1, tk).

Given

c11c22 − c12c21 = g0(λ2
j + h0 + gL) + f0

(
λ2
j + gL

)
> 0 (3.61)

and

(Tr[C])2 − 4Det[C] = (c11 + c22)2 − 4(c11c22 − c12c21)

= (c11 − c22)2 + 4c12c21 = (c11 − c22)2 + f0h0 > 0, (3.62)

both ω
(1)
kj and ω

(2)
kj are real (by (3.62)) and positive (by (3.61)). It follows from (3.59) that

the transient components are dissipative and decay with time.
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3.6.3 Numerical Results

The solution process above may be implemented to obtain an approximate LRO solution for

our problem. Instead, we obtain a simpler solution by taking advantage of the fact that f0

� g0. Given that the example in Table 2.1 is of the LRO type, the eigenfunction solution

of this section provides a mean to validate the numerical solutions discussed in the previous

sections (but with the parameters in robustness index

Rb(t) =
1

bh − b`

√
1

x` − xh

∫ x`

xh

[be(x, t)− b1(x, t)]2dx (3.63)

(as defined in (3.19)) re-set to take advantage of the orthogonality of the eigenfunctions.

More specifically, we now take xh = −xm instead of 0 but keep x` = 1 to get

Rb(t) =
1

b̄h

√
1

1 + xm

∫ 1

−xm
[be(x, t)− b1(x, t)]2dx. (3.64)

While we may make use of the correct value b̃e(−xm) for b̄h, it is just as appropriate to

continue to use b̄h = b̄1(0) as we have done herein.

For the steady state LRO and neglecting f0 in f0 + g0, we have

a1(x, t) = ā1(x) ' Ā1(x) ≡ v̄L
µ2
L

A1(x), (3.65)

where

A1(x) =

 {1− cosh(µL)
cosh(µL(1+xm))

cosh(µL(x+ xm))} (−xm ≤ x ≤ 0)

sinh(µLxm)
cosh(µL(1+xm))

sinh(µL(1− x)) (0 ≤ x ≤ 1)
, (3.66)
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We also have

uj =
2

1 + xm

{∫ 0

−xm

[
1− cosh(µL)

cosh(µL(1 + xm))
cosh(µL(x+ xm))

]
φj(x)dx

+

∫ 1

0

sinh(µLxm)

cosh(µL(1 + xm))
sinh(µL(1− x))φj(x)dx

}
(3.67)

where

λj =
(2j + 1)

(1 + xm)

π

2
, (j = 0, 1, 2, ...) (3.68)

and

φj(x) = sin(λj(1− x)), µ2
j = λ2

j + h0 + gL (3.69)

with

µ2
L =

g0

α0

+ gL ' h0 + gL, (3.70)

here too we are neglecting f0 on the second equation.

λ̄2
j = µ2

j − g0 (3.71)

Thus we have the following eigenfunction expansion:

a1(x, t) ' v̄L
µ2
L

∞∑
j=0

ūj[1− e−µ
2
j t]φj(x) (3.72)

the steady state LRO and neglecting f0 gives us

b̄1(x) ' Ā1(x)

α0

' h0

g0

Ā1(x) =
h0v̄L
g0µ2

L

A1(x) ≡ B̄1(x), (3.73)
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b1(x, t) ' h0v̄L
g0µ2

L

∞∑
j=0

b1j(t)φj(x) ≡ B1(x, t), (3.74)

b1j(t) = ūj[1−
µ2
je
−g0t − g0e

−µ2j t

µ2
j − g0

] (3.75)

For the ectopic gradients (in LRO e > 1, in particular e = 2), we have

1. In the interval 0 = t0 ≤ t ≤ t1 = τ vL(x, t) = ev̄LH(−x)

a(x, t) ≡ ae
(0)(x, t) ' Āe0(x) + Âe0(x, t) ≡ Ae0(x, t)

=
ev̄L
µ2
L

[A1(x) +
Âe0(x, t)

ev̄L/µ2
L

]

≡ ev̄L
µ2
L

κ0

∞∑
j=0

[ū0j − ũ0je
−µ2j t]φj(x), (3.76)

where ū0j = ũ0j = ūj and κ0 = 1

and

b(x, t) ≡ be
(0)(x, t) ' Be0(x, t)

=
h0ev̄L
g0µ2

L

∞∑
j=0

[ū0j − w̃0je
−g0t g0

λ̄2
j

ũ0je
−µ2j t]φj(x) (3.77)

with w̃0j = ū0j +
g0

λ̄2
j

ũ0j = ū0j[1 +
g0

λ̄2
j

] =
µ2
j

λ̄2
j

ū0j =
µ2
j

λ̄2
j

ūj

therefore Be0(x, t) =
h0ev̄L
g0µL2

∑∞
j=0 b

(0)
ej (t)φj(x)b

(0)
ej = [1−

µ2
je
−g0t − g0e

−µ2j t

λ̄2
j

]ū0j.

We need to obtain Rb(t1) for the next time period
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Rb(t1) ≈ 1

bh

√
1

1 + xm

∫ 1

−xm
[Be0(x, t)−B1(x, t)]2dx

=
1

bh

h0v̄L
g0µ2

L

√√√√1

2

∞∑
j=0

[eb
(0)
ej (t1)− b1j(t1)]2dx

=
h0v̄L(e− 1)

g0µ2
Lbh
√

2

√√√√ ∞∑
j=0

[b2
1j(t1)] ≡ rb(t1) (3.78)

2. For the general interval ti = iτ ≤ t ≤ (i+ 1)τ ≡ ti+1,

vL(x, t) ≡ v
(i)
e (x, t) =

v(i−1)(x, t)

1 + cRb(t− τ)
=
κi−1ev̄LH(−x)

1 + cRb(ti)

Since ti−1 ≤ t− τ ≤ ti , we get Rb(t) = Rb(ti).

Then we write v
(i)
e (x, t) = κiev̄LH(−x) (= κiv

(0)
e (x, t))

κi =
κi−1

1 + cRb(ti)
=

1∏i
l=0[1 + cRb(tl)]

So a(x, t) ≡ a
(i)
e (x, t) and b(x, t) = b

(i)
e (x, t) are solutions for v

(i)
e (x, t) in this interval.

b
(i)
e (x, t) =

h0ev̄Lκi
g0µ2

L

∑∞
j=0 b

(i)
ej (t)φj(x)

b
(i)
ej (t) = ūij − w̃ije−g0(t−ti) +

g0

λ̄2
j

ũije
µ2j (t−ti)

with ūij = ūj
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ũij = ūij −
κi−1

κi
ūi−1,j +

κi−1

κi
ũi−1,je

µ2jτ = (1− κi−1

κi
)ūj +

κi−1

κi
ũi−1,je

µ2jτ

w̃ij =
κi−1

κi
w̃i−1,je

−g0τ + (1− κi−1

κi
)ūj +

g0

λ̄2
j

[ũij −
κi−1

κi
ũi−1,je

µ2jτ ]

We have the values of ūj for all j, ũ0j = ū0j = ūj and w̃0j =
µ2
j

λ̄2
j

ūj.

Thus, we can compute the values for ũij and w̃ij recursively.

For the robustness index, we have

Rb(ti) =
1

bh

√
1

1 + xm

∫ 1

−xm
[Bek(x, ti)−B1(x, t)]2dx

=
h0v̄L√
2bhg0µ2

L

√√√√ ∞∑
j=0

[eκib
(i)
ej (ti)− b1j(ti)]2 (3.79)

with b
(i)
ej (ti) = ūj − w̃ij +

g0

λ̄2
j

ũij

and b1j(ti) = ūj[1−
µ2
je
−g0ti − g0e

−µ2j ti

µ2
j − g0

] ≈ ūj

For the case with No Feedback, we have

a1(x, t) =
vL
µ2
L

∞∑
j=0

µj[1− e−µ
2
j t]φj(x) (3.80)

µ2
j = λ2 + h0 + gL, µ2

L =
g0

α0

+ gL ≈ h0 + gL (3.81)

λj =
(2j + 1)

(1 + xm)

π

2
, (j = 0, 1, 2, . . . ) (3.82)

φj(x) = sin(λj(1− x)) (3.83)

vL
µ2
L

uj

∫ 1

−xm
φ2
j(x)dx =

∫ 1

−xm
A1(x)φj(x)dx (3.84)
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A1(x) =



vL
µ2L

(
1− cosh(µL)

cosh(µL(1+xm))

)
cosh(µL(x+ xm)), −xm ≤ x ≤ 0

vL
µ2L

(
sinh(µLxm)

cosh(µL(1+xm))

)
sinh(µL(1− x)), 0 ≤ x ≤ 1

(3.85)

Therefore

uj =
2

1 + xm

{∫ 0

−xm

[
1− cosh(µL)

cosh(µL(1 + xm))
cosh(µL(x+ xm))

]
φj(x)dx

+

∫ 1

0

sinh(µLxm)

cosh(µL(1 + xm))
sinh(µL(1− x))φj(x)dx

}
(3.86)

Note:

1.
∫ 1

−xm φ
2
j(x)dx =

∫ 1

−xm sin2(λj(1− x))dx = 1+xm
2

2. B1(x) = A1(x)
α0
≈ h0

g0
A1(x) (steady state LRO b1(x))

3. B2(x) = 2h0
g0
A1(x) (vL → 2vL ectopic gradient e = 2)

[
We take g0 + f0 ≈ g0 so that α0 = g0+f0

h0
≈ g0

h0

]

4. b1(x, t) = vL
µ2L

h0
g0

∞∑
j=0

b1j(t)φj(x) (vL = evLH(−x), e = 1)

b1j(t) = uj

[
1− µ2je

−g0t−g0e
−µ2j t

λ
2
j

]
(j = 0, 1, 2, . . . )

λ
2

j = µ2
j − g0 = λ2

j + h0 + gL − g0
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5. b2(x, t) = 2b1(x, t) (vL(x, t) = evLH(−x), e = 2)

6. Rb(t) = 1
bh

√
1

1+xm

∫ 1

−xm [b2(x, t)− b1(x, t)]2dx

= vL
µ2L

h0
g0

1
bh
√

1+xm

√√√√∫ 1

−xm

[
∞∑
j=0

b1j(t)φj(x)]

]2

dx = vLh0√
2µ2Lg0bh

√
∞∑
j=0

b2
1j(t)

x=X/X
max
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0
  (
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b
2
 Exact Numerical Solution

Figure 3.4: Comparison of ectopic (with no feedback) concentrations

Note that the results of Figure 3.4 serve to validate our numerical solutions for the steady

state case (in LRO).

We also consider eigenfunction expansion with feedback in the transient phase (see Figure

3.5 below). For the eigenfunction expansion LRO case we have the following Rb values:
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Rb(t1) = 0.27318

Rb(t2) = 0.15784

Rb(t3) = 0.12959

Rb(t4) = 0.11663

Rb(t5) = 0.12332 (3.87)
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b2 with feedback at times k = 1
k = 2
k = 3
k = 4
k = 5

Figure 3.5: LRO Eigenfunction expansion with feedback in the transient phase

3.7 Concluding Remarks

In the proof of concept investigation examined in Chapter 2, we by-passed the actual agent

responsible for down-regulating the ectopic signaling and implemented a negative feedback

directly on the ligand synthesis rate (given the ultimate effect of the inhibition is equivalent

to a reduction of ligand for binding with signaling receptors). In addition, we took the

feedback to be effective as the development reaches a (quasi-) steady state. The work in this

chapter complements that of the previous one by examining the same feedback mechanism
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but now allowing it to be effective during the transient phase of the development, possibly

repeated until a quasi-steady state of development is reached.

The transient phase feedback mechanism applied to the same illustrative example inves-

tigated in Chapter 2 shows some significant differences from the feedback in steady state

process. The most obvious difference is that the new mechanism attains robustness for

c = 1 (and n = 1) with Rb well below 0.1 when the development reaches quasi-steady state

whether or not there is a delay in the feedback process. In fact, Rb is already below the

robustness threshold of 0.2 even during the transient phase (see Table 3.1). In contrast,

for the feedback in steady state approach with c = 1 and n = 1, the robustness index is

> 0.24 which is well above the 0.2 threshold. With n kept at 1, the latter mechanism

would require c = 2 for R̄b to decrease to 0.183... but still > 0.1 with c = 4. This advantage

of the transient feedback is not surprising since the process allows for several adjustments

before reaching steady state while the feedback in steady state effectively allows for only one

feedback modification.

Thus it is reasonable to conclude that feedback in transient is more favorable (than feedback

in steady state) to robust development of a biological organism that initiates (a spatially uni-

form nonlocal) feedback for adjusting the level of inhibition as it experiences environmental

or genetic perturbations.
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Chapter 4

Regulatory Feedbacks on Receptor

and Non-receptor Synthesis Rates

4.1 Introduction

To explore the efficacy of the spatially uniform feedback approach to robust signaling gra-

dients (investigated in Chapters 2 and 3), we apply the approach to the three robustness

problems with Hill function type feedback investigated in [26]. In particular, we investigate

the effects of the negative feedback on receptor synthesis rate, nonreceptors and a negative

feedback on receptor synthesis rate, and feedback on both receptor (negative) and nonrecep-

tor (positive) synthesis rates.
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4.2 Feedback on Receptor Synthesis Rate

4.2.1 A Non-local Feedback

Excessive ligand concentration is known to down-regulate its own signaling receptor syn-

thesis. In particular, Decapentaplegic represses the synthesis of its own receptor Tkv [27].

Another example is Wingless (Wg) repressing its signaling receptor DFz2 [6]. These and

other experimental observations suggest a possible feedback mechanism for regulating ab-

normal effects of sustained genetic or epi-genetic changes on biological developments. To

investigate this suggestion, down-regulation of Tkv by ectopic signaling Dpp gradient was

modeled by a negative feedback of the Hill function type in [26] but was found to be inef-

fective as an instrument for robust development of the wing imaginal disc. A theoretical

analysis of the model in [17] (and more recently in [28]) confirms the results of the numerical

experiment and concludes that a spatially nonuniform feedback tends to distort the shape

of the (prior to feedback) ectopic gradient as the feedback mechanism works to reduce its

ectopicity nonuniformly, reducing receptor synthesis rate more where the ectopicity is higher.

The conclusion in turn suggests that a spatially uniform feedback mechanism may be more

effective for promoting robustness. To examine the merit of a spatially uniform feedback, we

consider here the originally (normalized) spatially uniform receptor synthesis rate v̄R being

down-regulated to vR(t) by a negative feedback factor κ2(t) that is a function of the signaling

robustness index Rb(t),

vR(t) = κ2(t)v̄R, (4.1)

Unlike the feedback instrument used in [37], the relation (4.1) effectively assumes the wild

type synthesis rate v̄R at any future time t > 0 to be unaffected by how the same synthesis

rate at an earlier time has been changed by the negative feedback.
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For a specific model, we take our alternative feedback instrument (to the Hill’s function

type) for down-regulating the receptor synthesis rate to be of the form

κ2(t, τ) =
1

1 + c [Rb(t)]
m (4.2)

where c and m are two parameters to be chosen for appropriate feedback strength similar to

those for a Hill’s function. Henceforth, the receptor synthesis rate (4.1) will become

vR(t) = κ2(t, τ)v̄R =
v̄R

1 + c [Rb(t)]
m (4.3)

Two features of the feedback process in (4.3) should be noted. First, the feedback at any

location does not depend on the ectopicity of the signaling gradient at that location, only

on an average measure Rb(t) of the excess over the span of the wing disc. It seems more

reasonable (and likely) that signaling should be affected by some overall condition of the

wing imaginal disc rather than being sensitive only to the local environment of individual

cell. The other is the effect of the new feedback mechanism that only reduces the receptor

synthesis rate by the same fraction κ2(t) throughout the wing imaginal disc. As such, the

spatial variation of Dpp synthesis rate remains the same as in the absence of feedback.

As in the previous chapters, we work with the basic extracellular model of the Drosophila’s

wing imaginal disc. Let’s recall the governing differential equations in dimensionless form:

∂ae
∂t

=
∂2ae
∂x2

− h0aere + f0be + ve, (4.4)

∂be
∂t

= h0aere − (f0 + g0)be,
∂re
∂t

= vR − h0aere + f0be− grre, (4.5)
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as before the Dpp and Tkv synthesis rates have been normalized to

ve =
eVL/R0

D/X2
max

= ev̄LH(−x), vR =
V̄R/R0

D/X2
max

=
kR

D/X2
max

≡ gr. (4.6)

We have the following boundary conditions:

x = −xm :
∂ae
∂x

= 0, x = 1 : ae = 0, (4.7)

all for t > 0, and the initial conditions

t = 0 : ae = be = 0, re = 1. (4.8)

For the investigation of the effects of our particular type of negative feedback on the receptor

synthesis rate, we are interested in the modified signaling gradient (starting at t = 0) and

the corresponding robustness index of the IBVP (4.4) - (4.8) but now with an enhanced

ligand synthesis rate

vL = ev̄LH(−x) (4.9)

with an amplification factor e > 1 and a down-regulated receptor synthesis rate given by

(4.3). In the presence of the feedback, the three ectopic gradients {ae(x, t), be(x, t), re(x, t)}

of the new IBVP now depend on the robustness index Rb(t) and are to be denoted by

{aR(x, t), bR(x, t), rR(x, t)} which reduce to {ae(x, t), be(x, t), re(x, t)} when c = 0 (or Rb(t) =

0). The corresponding robustness index is determined by

Rb(t) =
1

bh

√∫ 1

0

[bR(x, t)− b1(x, t)]2dx. (4.10)
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4.2.2 Time Independent Steady State with Feedback

It has been shown in [23] that the extracellular model system without feedback has a unique

steady state that is linearly stable with respect to a small perturbation from the steady state.

The same is true for the case with negative feedback of the Hill function type [17, 28] on the

receptor synthesis rate. In Chapter 2, we have obtained solutions for steady state gradients

for a spatially uniform negative feedback κ(Rb) on the ligand synthesis rate. Here, we

examine the solution for the same extracellular model with the spatially uniform nonlocal

feedback on the signaling receptor synthesis rate V̄R of the type characterized by (4.3).

Suppose the ectopic gradients down-regulated by negative feedback on receptor synthesis rate

{aR(x, t), bR(x, t), rR(x, t)} tend to a time independent steady states {āR(x), b̄R(x), r̄R(x)} as

t→∞. In that case, we have also Rb(t)→ R̄b and

lim
t→∞

κ2(t; τ) =
1

1 + c
(
R̄b

)m ≡ κ̄2(R̄b) (4.11)

with

R̄b = lim
t→∞

Rb(t) =
1

bh

√∫ 1

0

[b̄R(x)− b̄1(x)]2dx (4.12)

and with bh appropriately taken to be b̄1(0) or B1(0) in most cases.

With ∂( )/∂t = 0, the governing equations and boundary conditions for the extracellular

model become

ā′′R − h0r̄RāR + f0b̄R + ev̄LH(−x) = 0 (4.13)

h0āRr̄R − (f0 + g0)b̄R = 0, (gr + h0āR)r̄R − f0b̄R = κ̄2v̄R, (4.14)

81



with

ā′R(−xm) = 0, āR(1) = 0, (4.15)

where a prime indicates differentiation with respect to x, i.e., ( )′ = d( )/dx.

As in the case without feedback, we can solve (4.14) for b̄ and r̄ in terms of ā

b̄R(x) =
κ̄2āR(x)

α0 + ζ0āR(x)
, re(x) =

κ̄2α0

α0 + ζ0āR(x)
, (4.16)

with α0 and ζ0 given by

α0 =
f0 + g0

h0

, ζ0 =
g0

gr
(4.17)

and use the results to eliminate these two quantities from the only ODE (4.13) to get a BVP

for āR alone:

ā′′R −
κ̄2g0āR
α0 + ζ0āR

+ ev̄LH(−x) = 0, (4.18)

ā′R(−xm) = 0, āR(1) = 0. (4.19)

where κ̄2(R̄b) is given by (4.11). Existence of a unique solution for this problem and its

monoticity can be proved in the same way as that for the problem without feedback carried

out in [23].
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4.2.3 Low Receptor Occupancy

For morphogen system in a state of low receptor occupancy prior to and after ligand synthesis

enhancement so that

ζ0āR � α0 (4.20)

(including the special case where c = 0 and e = 1 so that āR(x) reduces to ā1(x) =

[āe(x, 0)]e=1), we may approximate āR(x) by AR(x) ≡ Ae(x, rR) with the latter determined

by the linearized model

A′′R = µ2
RAR − ev̄LH(−x), (4.21)

A′R(−xm) = 0, AR(1) = 0 (4.22)

with

µ2
R = κ̄2(R̄b)µ

2
0 ' κ̄2(rR)

g0

α0

, (4.23)

b̄e(x) ∼ Be(x, rR) = BR(x) =
κ̄2(rR)

α0

AR(x), r̄e(x) ∼ κ̄2(rR) (4.24)

where the LRO approximation rR of R̄b is calculated from (4.12) using AR(x) and A1(x, 0)

for āR(x) and ā1(x) = [āe(x, 0)]e=1, respectively, for an approximate solution of our problem.
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The exact solution of (4.21)-(4.22), occasionally denoted by AR(x) is

AR(x) =


ev̄L

κ̄2(rR)µ20
{1− cosh(µR)

cosh(µR(1+xm))
cosh(µR(x+ xm))} (−xm ≤ x ≤ 0)

ev̄L
κ̄2(rR)µ20

sinh(µRxm)
cosh(µR(1+xm))

sinh(µR(1− x)) (0 ≤ x ≤ 1)
, (4.25)

with

b̄R(x) = b̄e(x, R̄b) ' Be(x, rR) =
κ̄2(rR)

α0

Ae(x; rR) =
κ̄2(rR)

α0

AR(x)

=
ev̄L
g0

sinh(µRxm)

cosh(µR(1 + xm))
sinh(µR(1− x)) (0 ≤ x ≤ 1), (4.26)

where

µ2
R = κ̄2(rR)µ2

0 = κ̄2(rR)
g0

α0

. (4.27)

It is expected to be an accurate approximation of the exact solution āR(x; rR) and reduces

to the (approximate) wild-type ligand concentration ā1(x) when c = 0 and e = 1. For

e > 1, the yet unknown robustness index R̄b is to be determined by the LRO approximation

of (4.12)

R̄b ∼ rR =
1

B1(0)

√∫ 1

0

[Be(x, rR)−B1(x)]2dx ≡ C(rR). (4.28)

The relation (4.28) is an equation for rR
(
' R̄b

)
since the right hand side depends on rR

through BR(x). It is to be solved for rR to complete the solution process.

Even without the explicit expression for rR, we have the following proposition:

Proposition 4.1. When both the wild-type and ectopic gradients are in a state of LRO,

the negative feedback mechanism (4.3) on receptor synthesis rate does not lead to a robust

development.
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Proof. The robustness index rb is positive when e > 1 and therewith 0 < κ̄2(rb) < 1. It

follows from

Be(0, rR) =
ev̄L
g0

sinh(µRxm)

cosh(µR(1 + xm))
sinh(µR)

that the order of magnitude of Be(0, rR) is not changed in any significant way by the presence

of an integral feedback

Be(0, rR)

B1(0)
=

sinh(µR)

sinh(µ0)

sinh(µRxm)

sinh(µ0xm)

cosh(µ0(1 + xm))

cosh(µR(1 + xm))
(4.29)

= O(e−µ0(1−κ̄)e−µ0(1−κ̄)xmeµ0(1−κ̄)(1+xm)) = O(1)

given µ2
R = κ̄2(rR)µ2

0 and µ2
0 ' h0 = O(10). While a more systematic calculation is possible,

we have from the order of magnitude relation above

BR(0)

B1(0)
=
Be(0, rR)

B1(0)
= O(e), rR = O

(√
1− e−2

)
.

Hence negative feedback on receptor synthesis rate of the form (4.3) is not effective for

attaining robust development at least for LRO gradients.

While the negative feedback (4.11) has little or no effects on the (up- or down-) regulaton

of the magnitude of steady state signaling gradient, it does lead to a less convex modified

ectopic signaling gradient since µR < µ0 whenever rR > 0.
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4.2.4 The General Case

For systems not in a state of LRO, we still can deduce results similar to that given in

Proposition 4.1. From (4.18), we have

ā′′R =
κ̄2g0āR
α0 + ζ0āR

− ev̄LH(−x)

subject to the two end conditions (4.19). This BVP generally requires some numerical

method for an accurate solution. However, the structure of (4.18) can be seen to support

the same conclusion for the moderate receptor occupancy case as well without computing

the solution. For the same concentration level for the free ligand (which may be at different

location x) in the range (0 ≤ x ≤ 1), the gradient is less convex when there is negative

feedback on receptor synthesis than when there is not.

As for the steepness of the gradient slope, we have from the first integral of (4.18),

1

2
[ā′R]

2
=

 (ev̄L − κ̄2gr)(am − āR) + g2r
µ20
κ̄2 ln

(
α0+ζ0am
α0+ζ0āR

)
(−xm ≤ x ≤ 1)

1
2

[s1]2 + κ̄2
[
grāR − g2r

µ20
ln
(
α0+ζ0āR

α0

)]
(0 ≤ x ≤ 1)

, (4.30)

with s1 = ā′R(1) < 0 given in terms of am = āR(−xm) and a0 = āR(0) by:

1

2
[s1]2 = ev̄L(am − a0)− κ̄2gr

[
am −

gr
µ2

0

ln

(
1 +

ζ0

α0

am

)]
(4.31)

Upon integration, we obtain

√
2(xm + x) =

∫ am

āR

da√
(ev̄L − κ̄2gr) (am − a) + κ̄2 g

2
r

µ20
ln ((α0 + ζ0am) / (α0 + ζ0a))

(x ≤ 0)

1− x =

∫ āR

0

da√
[s1]2 + 2κ̄2[gra− g2r

µ20
ln ((α0 + ζ0a) /α0)]

(x ≥ 0)
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where s1 < 0 is given in terms of a0 and am by (4.31) and the end conditions ãR(1) = 0 and

ãR(−xm) = am have been used to fix the two constants of integration. The two remaining

unknown constants am and a0 are then determined by specializing the integrals above to

x = −xm and x = 0, respectively to get

√
2xm =

∫ am

a0

da√
(ev̄L − κ̄2gr) (am − a) + κ̄2g2

r ln ((α0 + ζ0am) / (α0 + ζ0a)) /µ2
0

1 =

∫ a0

0

da√
[s1]2 + 2κ̄2[gra− g2

r ln ((α0 + ζ0a) /α0)]/µ2
0

Proposition 4.2. Negative feedback of the form (4.11) reduces the convexity of the free and

signaling ligand gradient and increases the slope of the gradients (making it less negative).

4.3 A Simple Iterative Algorithm for Steady State

4.3.1 An ODE Solution Process

The presence of the factor R̄b in the ODE for āR makes the solution of the BVP (4.18)-(4.19)

much less straightforward. As R̄b encapsulates the unknown concentrations of normal and

ectopic signaling ligand-receptor complexes, it depends on the solutions of two BVP over the

entire span of the solution domain through the integrated condition (4.32).

R̄b = lim
t→∞

Rb(t) =
1

bh − b`

√
1

(x` − xh)2

∫ x`

xh

[b̄e(x)− b̄1(x)]2dx (4.32)

To the extent that there are reliable software for solving BVP in ODE, we re-configure the

integro-differential equation problem for āR as a BVP for a system of ODE. While a single

pass algorithm is possible (as shown in Chapter 2), the problem is sufficiently simple to allow

us to settle for an iterative solution scheme as formulated below.
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For this purpose, we let ā1(x) and āR(x) be the unknown free ligand concentration for a wild

type ligand synthesis rate v̄LH(−x) and an ectopic synthesis rate ev̄LH(−x), respectively.

The ectopic concentration āR(x) is determined by the BVP (4.18)-(4.19) for e > 1 and κ̄2 as

given in terms of R̄b by (4.11). Results for specific calculations will be limited to the special

case of e = 2 (to reflect to effect of temperature change engineered in the Lander Lab) and

m = 1.

Having the solutions of the two BVP for āR(x) and ā1(x) with R̄b as a parameter, we can

calculate the corresponding signaling gradients b̄R(x; R̄b) and b̄1(x) and then obtain R̄b from

the integral condition (4.32). To be concrete, we take x` = 1, xh = 0, and b` = 0 so that

R̄b =
1

bh

√∫ 1

0

[b̄e(x; R̄b)− b̄1(x)]2dx (4.33)

where

b̄R(x) = b̄e(x; R̄b) =
κ̄2āR(x)

α0 + ζ0āR(x)
, b̄1(x) =

ā1(x)

α0 + ζ0ā1(x)
. (4.34)

As we have already mentioned, we take bh to be given by

bh = B1(0) =
v̄L
α0µ2

0

sinh(µ0xm) sinh(µ0)

cosh(µ0(1 + xm))
' b̄1(0) (4.35)

which is appropriate for systems of low (to moderate) receptor occupancy.

For an ODE oriented algorithm for the solution of our problem, we introduce a new function

R2(x) by the IVP

R′2 =
1

b2
h

[b̄R(x)− b̄1(x)]2 =
1

b2
h

(
κ̄2āR(x)

α0 + ζ0āR(x)
− ā1(x)

α0 + ζ0ā1(x)

)2

H(x), (4.36)
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R2(−xm) = 0, (4.37)

to replace the integral relation (4.33). In actual illustrative examples, we will work with the

special case of (4.11) with m = 1,

κ̄2 =
1

1 + cR̄b

, (4.38)

where c still to be specified. With the Heaviside function H(x) on the right hand side of

(4.36) and the stipulation of continuity on R2(x), the ODE and the auxiliary condition (4.37)

for R2 requires

R2(1) = R̄2
b (4.39)

to be consistent with (4.33).

Note that ā1(x) may be solved separately and only once independent of any knowledge of R̄b.

In theory, the two BVP for āR(x) and R2(x) should be solved simultaneously since they both

involve the unknown R̄b. The third order ODE system (4.18) and (4.36) are adequately

augmented by three auxiliary conditions (4.19) and (4.37). Together, they determine āR(x)

and R2(x) up to the unknown parameter R̄b. The condition (4.39) then determines R̄b.

4.3.2 An Iterative Algorithm

While we can take an additional step to transform (4.39) into an ODE problem to result in a

single pass algorithm for determining R̄b, it is rather straightforward to work with R2(x) as
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defined by (4.36)-(4.37) to obtain an accurate approximation of R̄b by the following iterative

process:

1. Start with an initial guess R̄0, e.g., R̄0 = 0.

2. Having R̄k, solve the BVP for āR(x) with R̄b = R̄k and denote the solution and the

corresponding signaling gradient by ā
(k)
R (x) and b̄

(k)
R (x), respectively.

3. Use b̄
(k)
R (x) for b̄R(x) in (4.36) and solve the IVP (4.36)-(4.37) to get R

(k)
2 (x).

4. Set R̄k+1 = R
(k)
2 (1) and go to step 2 to repeat the process.

The four steps iterative solution process above may be taken in the form

R̄k+1 = C(R̄k) (4.40)

where

C(R̄k) =
1

bh

√∫ 1

0

[b̄e(x; R̄k)− b̄1(x)]2dx (4.41)

can be calculated with b̄e(x; R̄k) = b̄
(k)
R (x) determined from (4.34) once we have the solution

for āe(x; R̄k) = ā
(k)
R (x). The sequence

{
R̄k

}
can be shown to converge to give the following

proposition:

Proposition 4.3. Starting with R̄0 = 0, the iterative solution scheme (4.40) converges to a

positive solution of (4.33).

Proof. see [43] for the proof.

As we shall see from an illustrative example in the next section, the iterative scheme converges

rapidly for c = 1 but was found to require more iterations for c� 1. For larger values of c,
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the sequence {R̄k}, though still bounded above and below and convergent, may alternately

increase and decrease with successive iterations.

4.3.3 An Illustrative Example

To gain some insight to the iterative algorithm for the steady state robustness index R̄b, we

apply it to the system characterized by the parameter values shown in Table 4.1. This system

meets the condition (4.20) for a state of low receptor occupancy and is further confirmed to

be so by comparison of the exact numerical solution with that of the linearized model. The

steady state robustness index R̄b is found after less than 10 iterations. For example, the R̄b

value for c = 1 given in Table 4.1 has a discrepancy of less than 0.2% between the 5th and

6th iterations.

Table 4.1 Numerical Solutions by the Iterative Algorithm

Xmax = 0.01 cm, Xmin = 0.001 cm, konR0 = 0.01 sec ./µM,

kdeg = 2× 10−4/ sec ., kR = 0.001/ sec ., koff = 10−6/ sec ., e = 2,

D = 10−7 cm2/ sec ., V̄L = 0.002 µM/ sec ., V̄R = 0.04 µM/ sec .

c k R̄k rR b̄e(0; R̄k) Be(0, rR) b̄1(0) B1(0)
0 1 0.3938 0.3943 0.11538 0.11664 0.05801 0.05832

0.5 5 0.3750 0.3739 0.1080 0.1094 0.05801 0.05832
1 5 0.3573 0.3567 0.1022 0.1038 0.05801 0.05832
2 7 0.3284 0.3284 0.09414 0.09571 0.05801 0.05832
4 10 0.2862 0.2871 0.08386 0.08551 0.05801 0.05832

While the quick convergence of the scheme for the particular example is gratifying, the

biological implication of the resulting robustness index is not. The recorded final iterate

R̄k shown in the Table 4.1 for c = 1 is well above the acceptable level of 0.2, a rather

modest requirement set arbitrarily in [26] for robustness. This is hardly surprising given

that the explicit solution Be(x; rb) ≡ BR(x) for the LRO approximation of b̄R(x) in (4.26)

and the corresponding order of magnitude estimate of rb (the LRO approximation of R̄k),
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are pretty much unaffected to the leading order by the chosen feedback instrument. These

observations are further supported by comparing the accurate numerical solution for b̄1(x)

and b̄e(x, 0) with b̄R(x) = b̄e(x, R̄b) (not shown in Table 4.1). The comparison shows that

the latter is very much closer to b̄e(x, 0) than b̄1(x). More specifically, we see from Table

4.1 that b̄2(0; 0) and b̄R(0) = b̄2(0, R̄b) are nearly double the magnitude of b̄1(0), confirming

the ineffectiveness of the negative feedback κ̄2(Rb) on the receptor synthesis rate.

In addition, increasing the value of the parameter c to larger than 1 would not make the

feedback κ̄2(R̄b) significantly more effective. The effect of cR̄b is only in the shape factor

µR in the argument of the various sinh and cosh functions (see (4.26)). The expression

Be(x; rb) for LRO signaling gradient clearly shows that the general signaling gradient not

in a state of LRO is not expected to be qualitatively different. In fact, graphs of b̄R(x) in

Figure 4.1 (and the exact solution for the LRO case) suggest that larger values of c would

only distort the shape of the gradients further and would not improve robustness. Therefore,

it is necessary to look elsewhere for a more effective feedback instrument to promote robust

development with respect to an enhanced Dpp synthesis rate. There are a number of such

instruments available for this purpose. Here, we focus only on one of these, namely, the role

of nonreceptors without or with nonlocal, spatially uniform feedback.

4.4 Effects of Nonreceptors

4.4.1 The Presence of Nonreceptors

As we have already mentioned, nonreceptors (such as heparan sulfate proteoglygans) are

molecular substances that bind with signaling ligands such as Dpp in the wing imaginal disc

but do not signal to induce cell differentiation. The effects of nonreceptors on the signaling

Dpp gradients have been investigated theoretically by mathematical modeling, analysis and
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Figure 4.1: Spatially Uniform Negative Feedback on Receptor Synthesis Rate

numerical simulations in [26, 25, 28, 29, 42]. For our purpose, it suffices to take (as in

[26] and elsewhere) the cell-surface bound non-receptor to be synthesized at a temporally

uniform rate V̄N so that we have a steady state nonreceptor concentration N0 with

N0 =
V̄N
jN
, Z =

N0

R0

=
V̄N/V̄R
jN/kR

, v̄N =
X2

0

D

{
V̄N
N0

}
=

jN
D/X2

0

, (4.42)

where jN is the degradation rate constant for the unoccupied nonreceptors. Similar to

receptors, (normalized) free nonreceptor concentration n(x, t) is also bound reversibly to Dpp

ligand to form normalized ligand-receptor complexes (or bound nonreceptors for brevity) of

concentration c(x, t),

{c, n} =
1

N0

{[LN ], [N ]}, (4.43)

with normalized ”binding rate constant” h1a (for binding between Dpp and nonreceptors),

nonreceptor-mediated degradation rate constant g1 (for degradation of Dpp-nonreceptor
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complexes), dissociation rate constant f1 (for dissociation rate of Dpp-nonreceptor com-

plexes) and unoccupied nonreceptor degradation rate constant gn:

{h1, g1, f1, gn} =
X2

0

D
{jonR0, jdeg, joff , jN}, {h̄0, h̄1} =

X2
0

D
{konN0, jonN0}. (4.44)

In terms of these normalized quantities, we have the following IBVP for the five normalized

unknowns a, b, r, c and n [42]:

∂ae
∂t

=
∂2ae
∂x2

− h0aere + f0be − Zh1aene + Zf1ce + ev̄LH(−x), (4.45)

∂be
∂t

= h0aere − (f0 + g0)be,
∂re
∂t

= v̄R − h0aere + f0be − grre, (4.46)

∂ce
∂t

= h1aene − (f1 + g1)ce,
∂ne
∂t

= v̄N − h1aene + f1ce − gnne, (4.47)

with the boundary conditions

x = −xm :
∂ae
∂x

= 0, x = 1 : ae = 0. (4.48)

As before, the parameter e is a measure of the ectopicity of the altered Dpp synthesis rate

induced by a sustained genetic or epigenetic perturbation. We are interested in the effects

of nonreceptors on the ectopic signaling gradients. To the extent that nonreceptors are

ubiquitous during the development of the embryo, we take as initial conditions

t = 0 : ae = be = ce = 0, re = 1, ne(x) = 1, (−xm ≤ x ≤ 1) (4.49)
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at the onset of Dpp synthesis. By stipulating (4.49), we effectively assume a steady state

concentration of nonreceptors at the instant of onset of Dpp synthesis. This assumption will

be reconsidered later.

The IBVP defined by (4.45)-(4.49) constitutes a new mathematical model for morphogen

activities in the presence of non-diffusive nonreceptors. It will be used to study the effects

of such nonreceptor sites on the amplitude and shape of the various ligand concentration

gradients and their robustness. Our ultimate goal is to see whether the presence of a

sufficiently high concentration of nonreceptors should make the signaling morphogen gradient

[LR] insensitive to an enhanced Dpp synthesis rate.

4.4.2 Time-Independent Steady State

We denote by āZ(x), b̄Z(x), c̄Z(x), r̄Z(x), and n̄Z(x) the time-independent steady state solu-

tion ae(x, t, Z), be(x, t, Z), ce(x, t, Z), re(x, t, Z) and ne(x, t, Z) of (4.45)-(4.49) when e 6= 1

(with
{
ā1(x), b̄1(x), c̄1(x), r̄1(x), n̄1(x)

}
defined only as the corresponding wildtype quanti-

ties, i.e., with e = 1 in the absence of non-receptors).

For this steady state solution, we have ∂( )/∂t = 0 so that the governing differential equations

and boundary conditions become

ā′′Z − h0āZ r̄Z + f0b̄Z − h1ZāZ n̄Z + f1Zc̄Z + ev̄LH(−x) = 0 (4.50)

h0āZ r̄Z − (f0 + g0)b̄Z = 0, (gr + h0āZ)r̄Z − f0b̄Z = v̄R, (4.51)

h1āZ n̄Z − (f1 + g1)c̄Z = 0, (gn + h1āZ)n̄Z − f1c̄Z = v̄N , (4.52)
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with the end conditions

ā′Z(−xm) = 0, āZ(1) = 0. (4.53)

We can solve (4.51) for b̄Z and r̄Z in terms of āZ as before and (4.52) for c̄Z and n̄Z in terms

of āZ to get

b̄Z(x) =
āZ(x)

α0 + ζ0āZ(x)
, r̄Z(x) =

α0

α0 + ζ0āZ(x)
, (4.54)

c̄Z(x) =
āZ(x)

α1 + ζ1āZ(x)
, n̄Z(x) =

α1

α1 + ζ1āZ(x)
, (4.55)

with

α1 =
f1 + g1

h1

= Zᾱ1, {ζ0, ζ1} =

{
kdeg

kR
,
jdeg

jN

}
=

{
g0

gr
,
g1

gn

}
. (4.56)

The results are then used to obtain from (4.50) a BVP for āZ(x) ≡ âe(x, Z) alone:

ā′′Z −
g0āZ

α0 + ζ0āZ
− Zg1āZ
α1 + ζ1āZ

+ ev̄LH(−x) = 0. (4.57)

Evidently, āZ(x) varies with Z (and hence occasionally denoted by āe(x, Z)) and is not the

same as āe(x) unless Z = 0, i.e., āe(x) = āe(x, 0). Even if e = 1, ā1(x, Z) is different from

the wildtype free morphogen concentration ā1(x) as specified at the start of this subsection.

Existence, uniqueness and monotonicity of the BVP above have already been proved in [42].

4.4.3 Low Receptor and Non-receptor Occupancy (LRNO)

For the signaling gradient to provide positional information that differentiates cell fates, the

normalized concentration b = [LR]/R0 should not be nearly uniform. Positional indifference
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except for a steep gradient near the imaginal disc edge is less likely to occur if diffusion is

relatively fast and receptors and nonreceptors are abundant (for binding with most available

ligands) so that α0 + ζ0â(x) ' α0 and α1 + ζ1â(x) ' α1. In that case, the gradient system is

said to be in a state of low receptor and nonreceptor occupancy (LRNO) and the ODE (4.57)

can be linearized. With the corresponding approximate steady state solution denoted by

{AZ , BZ , CZ , NZ , RZ}, we have for this LRNO state case

A′′Z = µ2
ZAZ − ev̄LH(−x), µ2

Z = µ2
0 + Zµ2

1 (4.58)

A′Z(−xm) = 0, AZ(1) = 0 (4.59)

with

µ2
0 =

g0

α0

=
kdeg

kdeg + koff

x2
max

D
konR0, (4.60)

Zµ2
1 =

g1

α1

Z =
jdeg

jdeg + joff

x2
max

D
jonN0. (4.61)

The complementary solutions of the linear ODE (4.58) are the exponential functions e−µx

and eµx. The slope of

b̄Z(x) ' BZ(x) =
AZ(x)

α0

' āZ(x)

α0 + ζ0āZ(x)

is then determined by the parameter µZ . If µZ � 1, the signaling gradient would be too

steep and nearly vanishing except for a narrow interval adjacent to the Dpp source (as seen

from the corresponding wildtype solution (4.62)-(4.63)).

Ae(x) =


ev̄L
µ20
{1− cosh(µ0)

cosh(µ0(1+xm))
cosh(µ0(x+ xm))} (−xm ≤ x ≤ 0)

ev̄L
µ20

sinh(µ0xm)
cosh(µ0(1+xm))

sinh(µ0(1− x)) (0 ≤ x ≤ 1)
(4.62)
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b̄e(x) ' Be(x) =
Ae(x)

α0

, r̄e(x) ' Re(x) = 1. (4.63)

Hence, we have the following operational definition of a meaningful biological signaling gra-

dient (or a biological gradient for brevity) useful for cell differentiation:

Definition 4.4. A signaling morphogen gradient is a biological gradient if (i) the dimension-

less binding rate constants h0 and h∗1 = Zh1 are O(1), ii) α0 � ζ0āZ(0), and iii) α1 � ζ1āZ(x)

so that

α0 + ζ0āZ(x) ' α0, α1 + ζ1āZ(x) ' α1, µ2
Z = O(1). (4.64)

The first two conditions in (4.64) ensure (a state of LRNO and) the adequacy of (4.58) as

an approximation of the original nonlinear BVP. For the Drosophila wing imaginal disc, we

have f0 � g0 and f1 < g1 so that g0/α0 ' h0 and Zg1/α1 ' h∗1. In that case, we have

µ2
Z = µ2

0+Zµ2
1 = O(h0)+O(h∗1). The last condition in (4.64) then ensures that the gradient is

sufficiently differentiating and hence biologically meaningful. With both ζ0 and ζ1 typically

less than unity (and often � 1) in a Drosophila wing imaginal disc, we expect the first two

conditions of (4.64) to hold for moderate values of v̄L. This makes it possible to linearize

the BVP for āZ(x) and work with (4.58)-(4.59) for the determination of the approximating

LRNO state AZ(x) ≡ Ae(x, Z). The explicit solution for that linear problem should offer

considerable insight to the effects of nonreceptors on the wing imaginal disc development.

The exact solution for the new problem is the following:

Ae(x, Z) =


ev̄L
µ2Z
{1− cosh(µZ)

cosh(µZ(1+xm))
cosh(µZ(x+ xm))} (−xm ≤ x ≤ 0)

ev̄L
µ2Z

sinh(µZxm)
cosh(µZ(1+xm))

sinh(µZ(1− x)) (0 ≤ x ≤ 1)
, (4.65)
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with

b̄Z(x) ∼ BZ(x) =
AZ(x)

α0

(
=
Ae(x, Z)

α0

)
(4.66)

=
ev̄L
α0µ2

Z

sinh(µZxm)

cosh(µZ(1 + xm)))
sinh(µZ(1− x)) (x ≥ 0)

and

BZ(0) =
AZ(0)

α0

=
ev̄L
α0µ2

Z

O(1) =
eB1(0)

1 + h1
h0
Z
O(1) (4.67)

where B1(0) = [BZ(0) = Be(0, Z)]e=1,Z=0 (given fk � gk for both k = 0 and 1). For an

adequately high nonreceptor synthesis rate relative to that for receptors, we have Z � 1 so

that BZ(0) = O(B1(0)/Z). We have then the following result for the biologically realistic

case of fk � gk, k = 0,1:

Proposition 4.5. In the presence of an adequately high non-receptor synthesis rate and high

binding rate to nonreceptors relative to that for receptors so that h1Z/h0 ≥ e, the amplitude

of the ectopic signaling gradient at x = 0 may be reduced to the magnitude of the wildtype.

Proof. Upon rewriting (4.67) as

b̄Z(0) ∼ BZ(0) =
ev̄L/g0

1 + h1
h0
Z
O(1) =

eB1(0)

1 + h1
h0
Z
O(1)

we have

b̄Z(0) = O(B1(0))

since 1 + h1Z/h0 > e keeping in mind B1(0) = [BZ(0) = Be(0, Z)]e=1,Z=0 .
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We can also calculate the LRNO approximation r̄b of our adopted measure of robustness R̄b

from (4.28) to get

r̄b =
1

B1(0, 0)

√∫ 1

0

[Be(x, Z)−B1(x, 0)]2dx

where neither Be(x, Z) nor B1(x, 0) depends of r̄b (as there is no feedback instrument of any

kind operating in the present model). For typical values of µ0 (around 3 for our examples)

and the typical ectopicity e = 2 on the enhanced Dpp synthesis rate of interest, we have a

good approximation

r̄b ∼

√∫ 1

0

[2γ(Z)e−µZx − e−µ0x]2dx, (4.68)

where

γ(Z) =
1

1 + Zh1/h0

, µ2
Z = µ2

0

(
1 + Z

µ2
1

µ2
0

)
∼ h0

(
1 + Z

h1

h0

)

since fk is known to be � gk for Dpp in the wing imaginal disc. (Note that the factor 2 in

(4.68) would be replaced by the ectopicity factor e in the general case.)

While it is gratifying to see the reduction of ectopic signaling gradient toward robustness,

there is a negative consequence of a sufficiently large Z value. With

µ2
Z = µ2

0 + Zµ2
1 = µ2

0 (1 + h1Z/h0)� µ2
0

since we must have e/h1Z/h0 = O(1) or smaller for Proposition 4.5 to apply, BZ(x) (pro-

portional to sinh(µZ(1− x))) is effectively (or close to) a boundary layer adjacent to x = 0.

We have then the following negative result validating the corresponding finding in [26]:
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Proposition 4.6. For a sufficiently high nonreceptor synthesis rate, the signaling gradient

for a LRNO state of the wing imaginal disc is not sufficiently differentiating and hence not

suitable for normal biological development.

4.4.4 The General Case

Accurate numerical results for b̄Z(x) and R̄b have been obtained for different (uniform)

nonreceptor synthesis rates (as characterized by the parameter Z). Some typical results

are reported in Table 4.2 for the same ligand system as in Table 4.1. In addition to the

parameter values given in Table 4.1, we now have additional parameters associated with the

nonreceptors. For these, we assigned the following values in the illustrating examples:

jdeg = kdeg, jon = kon, joff = 10koff , jN = 10kR

Similar to the uniform receptor synthesis rate V̄R, the uniform nonreceptor synthesis rate

V̄N is also not involved explicitly in computing the various solutions. It only appears in

the ratio Z = N0/R0 =
(
V̄N/jN

)
/
(
V̄R/kR

)
which is to be varied to indicate the level of the

nonreceptor concentration.

It is evident from the results in Table 4.2 that r̄b = r̄b(Z) and BZ(0) = Be(0;Z) are quite

accurate approximations of the corresponding numerical solutions for R̄b(Z) and b̄Z(0) =

b̄e(0;Z) of the new model for the illustrative example. As such, the effects of nonreceptors

are pretty much delineated by the LRNO approximate solution.
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Table 4.2

(g1 = 0.2; h1 = 10, f1 = 0.01, gn = 10; vL = 0.05, e = 2)

Z R̄b r̄b b̄2(0, Z) B2(0;Z) b̄1(0, 0) B1(0, 0)
0 0.3943 0.3948 0.11517 0.11643 0.05790 0.05821
1 0.0714 0.0725 0.07398 0.07471 0.05790 0.05821
2 0.1298 0.1290 0.05597 0.05642 0.05790 0.05821

From either the LRNO solution or the numerical solutions for the original nonlinear BVP,

we see that the presence of an adequate concentration of nonreceptor would bring b̄Z(0) =

b̄e(0;Z) close to the wildtype solution b̄1(0) (=
[
b̄e(0;Z)

]
e=1,Z=0

, not to be confused with[
b̄Z(0)

]
Z=1

=
[
b̄e(0;Z)

]
Z=1

). This is also the case between b̄Z(x) and b̄1(x) but these two

gradients do not coincide for any Z > 0 since the presence of nonreceptors generally renders

b̄Z(x) steeper and more convex than b̄1(x) as shown in Figure 4.2 (even if it does not severely

distort the slope and convexity of the wild-type gradients nonuniformly as the Hill function

type feedback).

Furthermore, beyond an optimal level of V̄N , still higher receptor synthesis rate becomes

deleterious as it would reduce the ectopic gradient concentration below the wildtype gradient

b̄1(x, 0) and worsen the corresponding shape difference, possibly to an unacceptable level of

robustness. For the illustrative example, the optimal Z value that gives the smallest R̄b is for

Z = 1.134... with an R̄b = 0.0670... which is insignificantly below R̄b = 0.0714... for Z = 1

but both are significantly below R̄b = 0.1298... for Z = 2 (even if the latter is still below

robustness threshold). For that reason, we do not calculate the solution for higher Z values

for this example.
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Figure 4.2: Effects of Nonreceptors

4.5 Non-receptors and Feedback

4.5.1 Nonreceptors and a Negative Feedback on Receptor Synthe-

sis

So far we have seen that, by itself, negative feedback on receptor synthesis rate does not

lead to a robust signaling Dpp gradient. Such a negative feedback generally reduces the

signaling gradient slope steepness and flattens its curvature. That this negative feedback

generally works against a robust signaling gradient is consistent with the finding in [26]

(for a negative feedback of the Hill’s function type). The situation is somewhat different

with the presence of nonreceptors. An adequate concentration of nonreceptors would down

regulate the concentration of the Dpp-Tkv complexes (which would otherwise be enhanced

by sustained abnormal pertubations) so that bZ(x) is closer to the level of the wildtype
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concentration. At the same time, the rate of nonreceptor synthesis needed to accomplish

this may be sufficiently high that the corresponding gradient shape distortion results in an

unacceptable robustness index of Rb > 0.2 (only for c ≥ 2 in our illustrating example).

That a high concentration of nonreceptors would steepen the signaling gradient slope and

rendering it more convex suggests a role for the negative feedback on receptor synthesis.

Since the two instruments affect the slope and convexity in opposite direction, adding a

negative feedback on receptor synthesis to a gradient system with a relatively high concen-

tration of nonreceptors would ameliorate the shape distortion caused by nonreceptors and

strive toward a robust signaling gradient. Here, we extend the previous model to examine

the effects of adding (to the model with nonreceptors) the same nonlocal and spatially uni-

form negative feedback (4.11) on receptor synthesis rate. Similar to the findings in [26] for

a Hill function type feedback, the presence of an R̄b-induced negative feedback will be seen

to also ameliorate the excessive changes in slope and convexity induced by the presence of

nonreceptors and to drive the signaling gradient toward the shape of the wild type signaling

gradient.

Consider then the model (4.45)-(4.49) but now with a negative feedback of the form (4.3) on

the receptor synthesis rate. In steady state, the problem can again be reduced similarly to a

BVP for the corresponding free morphogen concentration denoted by āRZ(x) ≡ āe(x; R̄b, Z):

ā′′RZ −
κ̄2(R̄b)g0āRZ
α0 + ζ0āRZ

− Zg1āRZ
α1 + ζ1āRZ

+ ev̄LH(−x) = 0. (4.69)

ā′RZ(−xm) = 0, āRZ(1) = 0, (4.70)
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For this new problem, the steady state signaling gradient and unoccupied receptor gradient,

b̄RZ(x) ≡ b̄e(x, R̄b, Z) and r̄RZ(x) ≡ r̄e(x, R̄b, Z), are given in terms of āRZ(x) by

b̄RZ(x) =
κ̄2(R̄b)āRZ
α0 + ζ0āRZ

, r̄RZ(x) =
κ̄2(R̄b)α0

α0 + ζ0āRZ
. (4.71)

c̄RZ(x) =
āRZ(x)

α1 + ζ1āRZ(x)
, n̄RZ(x) =

α1

α1 + ζ1āRZ(x)
, (4.72)

where κ̄2(R̄b) is given by (4.11)-(4.12) with b̄R(x) replaced by b̄RZ(x).

Low Receptor and Nonreceptor Occupancy

When both receptors and nonreceptors are in a state of low occupancy, we may linearize the

ODE (4.69) to get

A′′RZ − µ2
RZARZ + ev̄LH(−x) = 0, (4.73)

for the LRNO free Dpp concentration ARZ with

µ2
RZ ≡ µ2

R + Zµ2
1 = κ̄2(r̄b)µ

2
0 + Zµ2

1

=
µ2

0

1 + cr̄b
+ Zµ2

1 = µ2
R + Zµ2

1, (4.74)

having taken m = 1 in (4.11) as before. Here κ̄2 is consistently taken to be in terms of the

LRNO approximation r̄b of the robustness index R̄b.

The ODE (4.73) is augmented by the two end conditions (4.70) to form a two point BVP

for ARZ(x). The exact solution for ARZ is

ARZ(x) =


ev̄L
µ2RZ
{1− cosh(µrZ)

cosh(µRZ(1+xm))
cosh(µRZ(x+ xm))} (−xm ≤ x ≤ 0)

ev̄L
µ2RZ

sinh(µRZxm)
cosh(µRZ(1+xm))

sinh(µRZ(1− x)) (0 ≤ x ≤ 1)
, (4.75)
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with

b̄RZ(x) ∼ BRZ(x) =
κ̄2(r̄b)

α0

ARZ(x)

=
κ̄2(r̄b)eν̄L
α0µ2

RZ

sinh(µRZxm)

cosh(µRZ(1 + xm))
sinh(µRZ(1− x)) (0 ≤ x ≤ 1) (4.76)

κ̄2(r̄b) =
1

1 + cr̄b
(4.77)

where µRZ is as given in (4.74). From the expression

α0b̄RZ(0) ∼ κ̄2(r̄b)ARZ(0) =
ev̄L
µ2
RZ

κ̄2(r̄b) sinh(µRZxm)

cosh(µRZ(1 + xm)))
sinh(µRZ),

we get for biologically typical values of µ2
0 and µ2

1 and sufficiently large value of Z (so that

µ2
RZ > 1) b̄RZ(0) ∼ BRZ(0) with

BRZ(0) =
κ̄2(r̄b)

α0

ARZ(0) =
κ̄2(r̄b)

α0

Ae(0; r̄b, Z)))

∼ κ̄2(r̄b)ev̄L
α0µ2

RZ

O(1) =
ev̄L/g0

1 + Z (1 + cr̄b) (h1/h0)
O(1). (4.78)

In the absence of nonreceptors so that Z = 0, we already learned from a previous sec-

tion that the only effect on robustness by a nonlocal spatially uniform negative feedback

on receptor synthesis rate in steady state is a leveling and flattening of the shape of (the

otherwise) ectopic signaling gradient without changing its magnitude. This negative effect

on robustness is seen again from (4.76), (4.77) and (4.78) with Z = 0. On the other hand,

the introduction of nonreceptors without a negative feedback on receptor synthesis would

reduce the magnitude of the signaling gradient by a factor 1 + Z(1 + cr̄b) (h1/h0). Hence,

an appropriate concentration of nonreceptors (e.g., Z = 1 in the normalized model) would
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reduce the ectopicity to an acceptable level. However, a still higher concentration of nonre-

ceptors would further reduce the gradient concentration and increase deviation from normal

gradient in the opposite direction. Hence, there is an optimal Z that would minimize the

ectopicity of the signaling gradient

Presence of nonreceptors also induces a change of wildtype shape factor µ2
0 to µ2

Z = µ2
0 +Zµ2

1

that would steepen the slope and increase the convexity of the ectopic signaling gradient

shape. As such the presence of nonreceptors alone affect robustness both positively and

negatively. However, in the presence of a moderate (steady state) concentration of nonre-

ceptors, the role of the same effect on the gradient shape by a negative feedback on receptor

synthesis rate now takes on the role of promoting robustness instead. The wildtype shape

factor µ2
0 having been increased to µ2

0 + Zµ2
1 with the introduction of nonreceptors (and

thereby steepening the shape of the gradients) is now ameliorated by the negative feedback

on receptor synthesis rate given:

µ2
RZ = κ̄2µ2

0 + Zµ2
1 =

µ2
0

1 + cr̄b
+ Zµ2

1 < µ2
0 + Zµ2

1 = µ2
Z .

Whether we work with the LRNO approximation or not, the new shape factor µ2
RZ (see

(4.74)) is smaller than µ2
Z = µ2

0 + Zµ2
1.

Furthermore, the benefits toward robustness from c > 0 is more than through the factor

(1 + cr̄b)
−1 multiplying µ2

0; it also benefits from the same factor multiplying Z on the right-

hand side of (4.78) leading to a smaller Z needed to attain the same reduction on the

magnitude of the signaling gradient. We have then the following proposition when the

system is in an LRNO state:

Proposition 4.7. In the presence of an appropriate non-receptor synthesis rate, the (steady

state limit of a) spatially uniform nonlocal negative feedback (4.11) on receptors reduces the
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signaling gradient concentration and ameliorates the distortion of signaling gradient shape

induced by the presence of nonreceptors.

The mathematically rigorous results for r̄b when the systems is in a state of LRNO are

recorded in Table 4.3 below for different feedback strengths for the illustrative example to

show their accuracy as approximations of the corresponding numerical solutions for the exact

model.

Table 4.3

(g0 = g1 = 0.2; h0 = h1 = 10, gr = 1, gn = 10; f0 = 0.001, f1 = 0.01, vL = 0.05, e = 2)

Z c k R̄k r̄b b̄RZ(0) BRZ(0) b̄1(0)
0 0 0 0.3943 0.3948 0.11517 0.11642 0.05790
0 1 5 0.3557 0.3569 0.10222 0.10364 0.05790
0 2 8 0.3269 0.3285 0.09407 0.09555 0.05790
1 0 0 0.0714 0.0725 0.07398 0.07471 0.05790
1 1 5 0.0619 0.0626 0.07550 0.05484 0.05790
1 2 8 0.0560 0.0566 0.06894 0.05407 0.05790
2 0 0 0.1298 0.1290 0.05597 0.05642 0.05790
2 1 5 0.1471 0.1461 0.05778 0.06657 0.05790
2 2 8 0.1683 0.1672 0.04463 0.05807 0.05790

The General Case

Accurate numerical results for b̄RZ(x) and R̄b of the original nonlinear BVP have also been

obtained for different (spatially uniform) nonreceptor synthesis rates through the parameter

Z. Some typical results are reported in Table 4.3 for the same wing imaginal disc as the

ones for Tables 4.1 and 4.2.

The numerical results in Table 4.3 support our expectation that the LRNO solution consti-

tutes an accurate approximation of the corresponding exact solution for the original non-

linear problem (4.69)-(4.70). For such cases, the effects of the R̄b-based (nonlocal spatially

uniform) negative feedback (of the R̄b-based nonlocal type) on receptor synthesis rate are
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pretty much delineated by the LRNO approximate solution. More specifically, our type

of negative feedback on receptor synthesis rate in the presence of an adequate nonreceptor

synthesis rate serves to ameliorate the ectopicity of the signaling gradient substantially by

reducing gradient magnitude without distorting the wildtype gradient shape resulting in an

acceptable value of the robustness index. The results in Table 4.3 also show that too high

a concentration of non-receptors (Z ≥ 2 in our example) would cause an excessive reduction

of signal morphogen concentration and too severe a shape distortion to result in an unac-

ceptable R̄b. With too high a non-receptor synthesis rate, more intense negative feedback on

receptor synthesis rate may reduce ectopicity only a little or not at all, at least for the illus-

trating example. The corresponding graphs of b̄RZ(x) = b̄e(x, R̄b, Z) for different Z and c in

Figure 4.3 clearly show why robustness eventually deteriorates with increasing nonreceptor

concentration.

Figure 4.3: Effects of Negative Feedback on Receptor Synthesis for Z > 0

109



The findings above for the effects of nonreceptors with our R̄b-based negative feedback on

receptor synthesis rate are generally consistent with the numerical experiments for the Hill

function type negative feedback of [26]. Together, they suggest a substantive role for the

down-regulation of signaling receptor synthesis rate in promoting robustness even if robust-

ness cannot be attained with a feedback on receptor synthesis rate alone.

4.5.2 Feedback on Receptor and Nonreceptor Synthesis Rates

Up to now, models involving nonreceptors examine only the effects of synthesizing nonre-

ceptors at a prescribed rate when the ligand synthesis rate becomes ectopic. In actual

developments, genetic or epigenetic perturbations typically begin in the midst of wild-type

development and the synthesis of signaling-inhibiting nonreceptors needed to counter the

enhanced ligand synthesis for a robust development is stimulated by some kind of feedback

mechanism. The existence of both inhibiting nonreceptors and the associated feedback

process are well documented for the BMP family ligands that includes the Dpp ligand (see

[45, 32] and elsewhere). Known nonreceptor type inhibitors include noggin, chordin, dally,

follistatin, sog and various heparan sulfate proteoglycans. They are ubiquitous during wing

imaginal disc and other biological developments, some prior to the onset of ectopic ligand

synthesis [30, 48, 35, 46, 18, 3, 15, 44, 5]. A more biologically realistic model should allow for

i) possible presence of nonreceptors prior to the onset of genetic or epi-genetic perturbations,

and ii) a (R̄b-based) feedback process on non-receptor concentration for stimulation of an

adequate synthesis rate of the signaling inhibiting non-receptors.

The Model

Since some form of feedback is needed to trigger additional signaling-inhibiting agents for

robust developments, we pursue here one such feedback mechanism suggested by the simu-
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lation results of [26], namely a positive feedback on nonreceptor synthesis rate to generate

more inhibitors to limit signaling. Consistent with the R̄b-based feedback mechanism inves-

tigated here, we incorporate in the model (4.45)-(4.49) a positive feedback on nonreceptor

synthesis rate of the form

VN = V̄N + V̂N [Rb(t)]
s (4.79)

with the model in the previous section corresponding to V̂N = 0 while the case V̂N > 0 offers

a positive feedback instrument for generating more nonreceptors to inhibit ectopic signaling.

As the system approaches steady state, VN(t) tends to a time independent synthesis rate:

VN(t)→ V̄N + V̂N
[
R̄b

]s
. (4.80)

In susbsequent development, we limit our discussion to the special case of s = 1 (as we did

in setting m = 1 for the negative feedback on receptor synthesis rate).

With the steady state positive feedback (4.80), the steady state system (4.69)-(4.71) is

modified to read

ā′′RN −
κ̄2(R̄b)g0āRN
α0 + ζ0āRN

− κ̄2
N(R̄b)g1āRN
α1 + ζ1āRN

+ ev̄LH(−x) = 0, (4.81)

ā′RN(−xm) = 0, āRN(1) = 0, (4.82)

where

κ̄2(R̄b) = 1 + cR̄b, κ̄2
N(R̄b) = Z + σR̄b, (4.83)
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(given s = 1) with

Z =
V̄N/jN
V̄R/kR

, σ =
V̂N/jN
V̄R/kR

. (4.84)

The ectopic solution āRN(x) = āe(x, R̄b, c, Z, σ) is equal to the wildtype solution ā1(x) =

āe(x, R̄b, 0, 0, 0) for e = 1. The other related gradients are given by

b̄RN(x) =
κ̄2(R̄b)āRN
α0 + ζ0āRN

, r̄RN(x) =
κ̄2(R̄b)α0

α0 + ζ0āRN
(4.85)

c̄RN(x) =
κ̄2
N(R̄b)āRN
α1 + ζ1āRN

, n̄RN(x) =
κ̄2
N(R̄b)α1

α1 + ζ1āRN
(4.86)

For a particular wing imaginal disc at its early stages of development, it is clear from the

model that robust development depends on 1) the nonreceptor synthesis rate prior to ectopic

ligand synthesis characterized by the parameter Z, and 2) sensitivity to feedback on recep-

tor and nonreceptor synthesis rates characterized by the parameters c and σ, respectively.

Numerical solutions for the relevant nonlinear BVP of our model have been obtained for our

illustrating example and reported in Table 4.4 for some typical combinations of values for

the parameters Z, c and σ.
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Table 4.4

(g0 = g1 = 0.2; h0 = h1 = 10, gr = 1, gn = 10; f0 = 0.001, f1 = 0.01)

Z c σ R̄k b̄2(0, R̄b, Z, c, σ) b̄2(0) b̄1(0)
0 0 0 0.3943 0.1152 0.1152 0.0580
0 1 0 0.3557 0.1022 0.1152 0.0580
0 2 0 0.3269 0.0941 0.1152 0.0580
0 0 1 0.2569 0.1000 0.1152 0.0580
0 1 1 0.2284 0.0917 0.1152 0.0580
0 0 2 0.2003 0.0936 0.1152 0.0580
0 1 2 0.1576 0.0845 0.1152 0.0580
1 0 0 0.0714 0.0740 0.1152 0.0580
1 1 0 0.0619 0.0755 0.1152 0.0580
1 2 0 0.0560 0.0689 0.1152 0.0580
1 0 1 0.0679 0.0723 0.1152 0.0580
1 1 1 0.0608 0.0697 0.1152 0.0580
2 0 0 0.1298 0.0560 0.1152 0.0580
2 1 0 0.1471 0.0578 0.1152 0.0580
2 2 0 0.1683 0.0446 0.1152 0.0580
2 0 1 0.1529 0.0522 0.1152 0.0580
2 1 1 0.1774 0.0454 0.1152 0.0580

Low Receptor and Nonreceptor Occupancy

When both receptors and nonreceptors are in a state of low occupancy, we may linearize the

ODE (4.69) to get

A′′RN − µ2
RNARN + ev̄LH(−x) = 0,

subject to the two end conditions (4.70) and with

µ2
RN = µ2

R + µ2
N = κ̄2(r̄b)µ

2
0 + κ̄2

N(r̄b)µ
2
1 =

µ2
0

1 + cr̄b
+ µ2

1 (Z + σr̄b) , (4.87)

where m and s in (4.11) and (4.80), respectively, have been taken to be 1 and r̄b is the LRNO

approximation of R̄b.
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The exact solution for ARN(x) ≡ Ae(x, r̄b, Z, c, σ) is

ARN(x) =


ev̄L
µ2RN
{1− cosh(µRN )

cosh(µRN (1+xm))
cosh(µRN(x+ xm))} (−xm ≤ x ≤ 0)

ev̄L
µ2RN

sinh(µRNxm)
cosh(µRN (1+xm))

sinh(µRN(1− x)) (0 ≤ x ≤ 1)
(4.88)

In the range (0 ≤ x ≤ 1), we have

b̄RN(x) ∼ BRN(x) =
κ̄2(r̄b)

α0

ARN(x)

=
κ̄2(r̄b)ev̄L sinh(µRNxm)

α0µ2
RN cosh(µRN(1 + xm))

sinh(µRN(1− x)) (0 ≤ x ≤ 1) (4.89)

where µ2
RN is as given in (4.87). From the expression for

α0b̄RN(0) = κ̄2(R̄b)āRN(0) (4.90)

∼ κ̄2(r̄b)ARN(0) =
ev̄L
µ2
RN

κ̄2(r̄b) sinh(µRNxm)

cosh(µRN(1 + xm)))
sinh(µRN).

we obtain

b̄RN(0) ∼ BRN(0) =
κ̄2(r̄b)

α0

ARN(0) =
κ̄2(r̄b)ev̄L
α0µ2

RN

O(1)

=
ev̄L/g0

1 + (1 + cr̄b) (Z + σr̄b) (h1/h0)
O(1) (4.91)

given fk � gk for both k = 0 and 1. Correspondingly, we have

b̄RN(0)

b̄1(0)
∼ BRN(0)

B1(0)
=

e

1 + (1 + cr̄b) (Z + σr̄b) (h1/h0)
O(1). (4.92)

Evidently, the presence on non-receptors (through a non-receptor synthesis rate) leads to

a substantial reduction of the amplitude of the signaling gradient, easily offset the ectopic-

ity factor caused by the enhanced ligand synthesis rate even for moderate values of the

parameters of Z and σ. Let’s note two general effects of non-receptors:
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1. Without non-receptors (corresponding to Z = σ = 0), negative feedback has no effect

on the amplitude of the LRNO signaling gradient BRN(x).

2. In contrast, the dimensionless gradient shape parameter µRN is substantially affected

by feedback on both receptor and non-receptor synthesis rate as evident from (4.87)

taken in the form

µ2
RN =

µ2
0

1 + cr̄b
+ µ2

1 (Z + σr̄b) '
h0

1 + cr̄b
+ h1 (Z + σr̄b) (4.93)

with the κ̄2(R̄b) negative feedback on receptor synthesis rate offering a mechanism for

ameliorating the shape distortion caused by a concentration of nonreceptors.

4.6 Feedback During the Transient Phase

Given the limited effectiveness of the steady state solution, we are led to investigate improved

effectiveness of starting feedback during the transient phase of the development. After ex-

perimenting with different approaches as to when to apply the feedback adjustment, we have

concluded that most likely a biological organism initiates an adjustment once the robust-

ness index crosses a certain threshold. For our numerical results below, we implement the

feedback during transient at the instant when the robustness index crosses the value 0.2.

4.6.1 Numerical Results

The following figures show the transient solutions of the three problems investigated in this

chapter for several sets of parameter values:
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Figure 4.4: Negative Feedback on Receptor Synthesis Rate for Various c Values (Transient)
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Figure 4.5: Effects of Non-receptors in Transient Phase

116



x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b
e
(x

,
Z
,
c
,
σ
)

0

0.02

0.04

0.06

0.08

0.1

0.12

Wild
Ectopic
b

2
(x, Z = 1, c = 0,σ = 0)

b
2
(x, Z = 1, c = 1,σ = 0)

Figure 4.6: Non-receptors and Negative Feedback on Receptors (Transient)
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Figure 4.7: Feedback on Both Non-receptor and Receptor Synthesis Rates (Transient)

In Table 4.5 below we display the results of transient counterparts to the steady state ones

shown in Table 4.4. We see that, though for some combinations of parameters, we have

similar results, for others there is a drastic difference in fact favoring steady state approach

over the transient. This could be due the fact that feedback during the transient phase
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over-adjusts the ectopicity. Thus a more careful investigation is needed to determine the

most optimal instance for applying the feedback adjustments.

Table 4.5 (Transient Feedback)

(g0 = g1 = 0.2; h0 = h1 = 10, gr = 1, gn = 10; f0 = 0.001, f1 = 0.01)

Z c σ R̄k b̄2(0, R̄b, Z, c, σ) b̄2(0) b̄1(0)
0 0 0 0.3939 0.1154 0.1152 0.0580
0 1 0 0.3718 0.1075 0.1152 0.0580
0 2 0 0.3512 0.1011 0.1152 0.0580
0 0 1 0.3939 0.1154 0.1152 0.0580
0 1 1 0.3718 0.1075 0.1152 0.0580
0 0 2 0.3939 0.1154 0.1152 0.0580
0 1 2 0.3718 0.1075 0.1152 0.0580
0 1 4 0.3718 0.1075 0.1152 0.0580
0 4 1 0.3138 0.0908 0.1152 0.0580
0 2 1 0.3512 0.1011 0.1152 0.0580
1 0 0 0.0712 0.0741 0.1152 0.0580
1 1 0 0.0504 0.0656 0.1152 0.0580
1 2 0 0.0573 0.0588 0.1152 0.0580
1 0 1 0.0677 0.0695 0.1152 0.0580
1 1 1 0.0697 0.0612 0.1152 0.0580
2 0 0 0.2367 0.0386 0.1152 0.0580

From the numerical results obtained, we conclude that the cases that are more interesting to

be investigated further appear to be for Z = 0. The reason for this is that any non-receptors

present in the organism must have been there to ensure proper wild type gradients. Any

non-receptors needed to down-regulate the ectopic signaling gradient due to e > 1 starting

at t = 0 should be induced by feedback.
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4.7 Concluding Remarks

Though the conventional Hill function type negative feedback on receptor synthesis rate

proves to be ineffective for the purpose of attaining robustness [28, 17, 26], we have shown

that a spatially uniform feedback process based on a spanwise average of excess signaling

can play such a role. With a simple iterative algorithms developed for the solution of specific

integro-differential equation system for such a feedback mechanism, the results obtained for

steady state gradient systems confirm that at least one feedback mechanism can be effective

for ensuring robustness and suggest that many other effective feedback mechanisms are

possible and should be investigated.

Given the limited effectiveness of the steady state solution, we investigate improved effec-

tiveness of starting feedback during the transient phase of the development.

Overall, we have learned from this chapter that a spatially uniform negative feedback on

receptor synthesis rate, though not at all useful, by itself, for promoting robustness (similar

to the Hill function type approach), is necessary for attaining robustness in conjunction with

a positive feedback on non-receptor synthesis rate with or without pre-existing concentration

of non-receptors prior to the onset of ectopic ligand synthesis. Most results from the transient

phase appear to be somewhat similar to that of the steady state approach.
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Chapter 5

Conclusion

In this dissertation, we investigate feedback mechanisms for robust signaling gradients in

biological tissue patterning. The findings of [26] served as a motivation for us to examine a

new spatially uniform feedback mechanism distinctly different from the conventional spatially

nonuniform Hill function approach. In Chapter 2, as a first step in our investigation, we

applied the new feedback mechanism to the ligand synthesis rate. The results obtained in

Chapter 2 confirmed that such feedback mechanism can be effective for ensuring robustness.

In Chapter 3, we complemented the investigation of feedback in steady state (the one in

Chapter 2) by examining the effects of one or more feedback adjustments during the transient

phase of the biological development. At the end of our examination, we concluded that

feedback in transient is more favorable (than feedback in steady state) to robust development

of a biological organism.

In Chapter 4, we investigated the feedback controls applied directly to the inhibiting agent,

rather than by-passing it as we did in Chapters 2 and 3. Among the possible agents for

achieving robustness that appear biologically realistic, nonreceptors appear to be ubiqui-

tous for down-regulating signaling. Such down-regulation has already been observed and
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investigated theoretically in [28, 29]. Hence, we examined the efficacy of our new feedback

mechanism on the system that also includes nonreceptors. The main results obtained from

Chapter 4 are: a spatially uniform negative feedback on receptor synthesis rate, though not

at all useful, by itself, for promoting robustness (similar to the Hill function type approach),

is needed for attaining robustness in conjunction with a positive feedback on non-receptor

synthesis rate with or without pre-existing concentration of non-receptors prior to the onset

of ectopic ligand synthesis. Implementation of the feedback during transient stages of the

biological development produced similar results.

To the extent that spatially uniform feedback studied in this dissertation appears to hold

more promise in ensuring the robustness of signaling gradients, it naturally paves the way

to additional relevant investigations of other regulatory processes for Dpp gradient in wing

imaginal disc as well as of other morphogen gradient systems based on similar (spatially

uniform) feedback instruments.

Below are some additional possible spatially uniform feedback controls on a number of known

regulatory processes that may promote robust signaling and should be investigated.

1. Positive Feedback on Ligand Degradation: It has been observed that introduction of

polypeptide noggin (encoded by the NOG gene) binds and inactivates members of the

transforming growth factor-beta (TGF-beta) superfamily signaling proteins, such as

bone morphogenetic proteins (BMP). At the same time, an ectopic concentration of

BMP causes significant up-regulation of Sox9 and Noggin expression [30, 45, 48]. By-

passing the processes of ligand up-regulating noggin expression, we could model this

reduction of available BMP molecules very crudely by a negative feedback on ligand

synthesis rate. A somewhat more biologically realistic feedback process would be a

positive feedback on the degradation rate constant kL as the reduction of ligand pertain

to its concentration (and not its synthesis rate). For such a model, we would keep
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the ligand synthesis rate for both the wild type and perturbed system unaffected by

the robustness index but now with a positive feedback on the (free) ligand degradation

rate.

2. Negative Feedback on the Signaling Complex Binding Rate: It is also known that

over-expression of Dad (Daughters against dpp) blocks Dpp signaling activity (as seen

from a lack of dpp target gene optomotor blind (omb)) and there is a negative feedback

circuit in which Dpp induces expression of its own antagonist, Dad [40, 32]. (A similar

observation has been made on the BMP antagonist Chordin [35, 46].) One important

signaling activity that affects signaling gradient is the binding rate of the ligand with

its signaling receptor.

3. Other Known Signaling Inhibiting Processes: Other possible feedback controls may

come from modeling the following experimental observations:

• Dpp represses the synthesis of its own receptor Tkv which in turn enhances Dpp

destruction [27].

• Wingless (Wg) represses its signaling receptor DFz2 but Dpp signaling mediated

by DFz2 leads to stabilization of Wg rather than degradation [6].

• Positive feedback on receptor-mediated degradation rate [7].

• Dlp (Dally-like) has opposite effects at high and low levels of Wingless. Dlp

promotes low-level Wingless activity but reduces high-level Wingless activity [18].

In reality, robust signaling gradients in the presence of genetic and epigenetic changes are

likely to be the consequences of a combination of different feedback activities including those

mentioned above. Understanding how robustness is attained is important to help explain

the presence of elaborate regulatory schemes in morphogen systems. Feedback as a mean

for promoting and attaining robustness of biological developments constitutes a rich area for

theoretical and empirical research.
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A. Alvarez-Buylla. Noggin antagonizes bmp signaling to create a niche for adult neuro-
genesis. Neuron, 3(28):713–726, 2000.

[31] Y. Lou, Q. Nie, and F.Y.M. Wan. Effects of sog on dpp-receptor binding. SIAM journal
on applied mathematics, 65(5):1748–1771, 2005.

[32] Y. Ogiso, K. Tsuneizumi, N. Masuda, M. Sato, and T. Tabata. Robustness of the dpp
morphogen activity gradient depends on negative feedback regulation by the inhibitory
smad, dad. Development, growth & differentiation, 53(5):668–678, 2011.

[33] J. Pentek, L. Parker, A. Wu, and K. Arora. Follistatin preferentially antagonizes activin
rather than bmp signaling in drosophila. Genesis, 47(4):261–273, 2009.

[34] N. Perrimon and A.P. McMahon. Negative feedback mechanisms and their roles during
pattern formation. Cell, 97(1):13–16, 1999.

[35] Y. Sasai, B. Lu, H. Steinbeisser, and E.M. De Robertis. Regulation of neural in-
duction by the chd and bmp-4 antagonistic patterning signals in xenopus. Nature,
376(6538):333–336, 1995.

[36] D.H. Sattinger. Monotone methods in nonlinear elliptic and parabolic boundary value
problems. Indiana University Mathematics Journal, 21(11):979–1000, 1972.

[37] A. Simonyan and F.Y.M. Wan. Transient feedback and robust signaling gradients.
International journal of numerical analysis and modeling, 13(2):179–204, 2016.

[38] J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer Verlag New York,
2000.

[39] A.A. Teleman and S.M. Cohen. Dpp gradient formation in the drosophila wing imaginal
disc. Cell, 103(6):971–980, 2000.

[40] K. Tsuneizumi, T. Nakayama, Y. Kamoshida, T.B. Kornberg, et al. Daughters against
dpp modulates dpp organizing activity in drosophila wing development. Nature,
389(6651):627–631, 1997.

125



[41] G. von Dassow, E. Meir, E.M. Munro, and G.M. Odell. The segment polarity network
is a robust developmental module. Nature, 406:188–192, 2000.

[42] F.Y.M. Wan. Cell-surface bound nonreceptors and signaling morphogen gradients. Stud-
ies in Applied Mathematics, 133(2):151–181, 2014.

[43] F.Y.M. Wan, C. Sanchez-Tapia, and A. Simonyan. Regulatory feedbacks on receptor
and non-receptor synthesis for robust signaling. Under Preparation.

[44] X.P. Wang, M. Suomalainen, C.J. Jorgez, M.M. Matzuk, S. Werner, and I. Thesleff.
Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting
bmp signaling and ameloblast differentiation. Developmental cell, 7(5):719–730, 2004.

[45] B.K. Zehentner, A. Haussmann, and H. Burtscher. The bone morphogenetic protein an-
tagonist noggin is regulated by sox9 during endochondral differentiation. Development,
growth & differentiation, 44(1):1–9, 2002.

[46] J.L. Zhang, L.Y. Qiu, A. Kotzsch, S. Weidauer, L. Patterson, M. Hammerschmidt,
W. Sebald, and T.D. Mueller. Crystal structure analysis reveals how the chordin family
member crossveinless 2 blocks bmp-2 receptor binding. Developmental cell, 14(5):739–
750, 2008.

[47] S. Zhou. Extracellular diffusion creates the Dpp morphogen gradient of the Drosophila
wing disc. PhD thesis, University of California, Irvine, 2011.

[48] L.B. Zimmerman, J.M. De Jesus-Escobar, and R.M. Harland. The spemann organizer
signal noggin binds and inactivates bone morphogenetic protein 4. Cell, 86:599–606,
1996.

126


	LIST OF FIGURES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Feedback for Robust Signaling Gradients: A Novel Approach
	Introduction
	A Model of Drosophila Wing Imaginal Disc
	A Basic Extracellular Model
	Dimensionless Form
	Time Independent Steady State Behavior

	Robustness of Signaling Gradient
	Perturbation due to Enhanced Morphogen Synthesis
	Root-Mean-Square Signaling Differential
	Approximate Solution for Low Receptor Occupancy

	Feedback on Ligand Synthesis Rate
	A Non-local Feedback with Delay
	Time Independent Steady State with Feedback
	Monotonicity
	Low Receptor Occupancy

	Numerical Algorithms for Steady State Solutions
	A Single Pass Solution Scheme
	An Iterative Algorithm
	An Illustrative Example

	Concluding Remarks

	Feedback During the Transient Phase of the Biological Development
	Introduction
	Signaling Gradients and Pattern Formation
	The Initial-Boundary Value Problem for the Basic Model
	A Steady State Particular Solution
	A State of Low Receptor Occupancy

	Robustness of Signaling Gradient
	Ectopic Gradients
	A Robustness Index
	Approximate Solution for Low Receptor Occupancy

	Feedback in Transient Phase
	Numerical Results

	Transient Feedback with Delay
	Numerical Results

	Time Dependent LRO Problem
	A Perturbation for the Transient Phase of a LRO State
	Eigenfunction Expansions
	Numerical Results

	Concluding Remarks

	Regulatory Feedbacks on Receptor and Non-receptor Synthesis Rates
	Introduction
	Feedback on Receptor Synthesis Rate
	A Non-local Feedback
	Time Independent Steady State with Feedback
	Low Receptor Occupancy
	The General Case

	A Simple Iterative Algorithm for Steady State
	 An ODE Solution Process
	An Iterative Algorithm
	An Illustrative Example

	Effects of Nonreceptors
	The Presence of Nonreceptors
	Time-Independent Steady State
	Low Receptor and Non-receptor Occupancy (LRNO)
	The General Case

	Non-receptors and Feedback
	Nonreceptors and a Negative Feedback on Receptor Synthesis
	Feedback on Receptor and Nonreceptor Synthesis Rates

	Feedback During the Transient Phase
	Numerical Results

	Concluding Remarks

	Conclusion
	Bibliography



