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An Initiation Kinetics Prediction Model Enables Rational Design 
of Ruthenium Olefin Metathesis Catalysts Bearing Modified 
Chelating Benzylidenes

Shao-Xiong Luo†,∇, Keary M. Engle†,¶, Xiaofei Dong║, Andrew Hejl†,‡, Michael K. Takase†, 
Lawrence M. Henling†, Peng Liu§, K. N. Houk║, Robert H. Grubbs†

†Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of 
Technology, Pasadena, California 91125, United States

§Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United 
States

║Department of Chemistry and Biochemistry, University of California, Los Angeles, California 
90095, United States

Abstract

Rational design of second-generation ruthenium olefin metathesis catalysts with desired initiation 

rates can be enabled by a computational model that depends on a single thermodynamic parameter. 

Using a computational model with no assumption about the specific initiation mechanism, the 

initiation kinetics of a spectrum of second-generation ruthenium olefin metathesis catalysts 

bearing modified chelating ortho-alkoxy benzylidenes were predicted in this work. Experimental 

tests of the validity of the computational model were achieved by the synthesis of a series of 

ruthenium olefin metathesis catalysts and investigation of initiation rates by UV/Vis kinetics, 

NMR spectroscopy, and structural characterization by X-ray crystallography. Included in this 

series of catalysts were thirteen catalysts bearing alkoxy groups with varied steric bulk on the 

chelating benzylidene, ranging from ethoxy to dicyclohexylmethoxy groups. The experimentally 

observed initiation kinetics of the synthesized catalysts were in good accordance with 

computational predictions. Notably, the fast initiation rate of the dicyclohexylmethoxy catalyst 

was successfully predicted by the model, and this complex is believed to be among the fastest 

initiating Hoveyda–Grubbs-type catalysts reported to date. The compatibility of the predictive 

model with other catalyst families, including those bearing alternative NHC ligands or 

disubstituted alkoxy benzylidenes, was also examined.
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Graphical Abstract

INTRODUCTION

Olefin metathesis is a powerful method to form carbon–carbon double bonds1 with control 

of regio-2 and stereoselectivity.3 There are extensive applications of cross metathesis (CM), 

ring closing metathesis (RCM) and ring-opening metathesis polymerization (ROMP) for a 

variety of purposes, ranging from natural product synthesis4 to chemical feedstock 

conversion5 to advanced materials synthesis.6 One of the major milestones in the 

development of olefin metathesis as a synthetic method was the discovery of well-defined 

ruthenium–alkylidene catalysts,7 which demonstrated superior tolerance towards moisture, 

air and functional groups compared to early transition metal catalysts.

Figure 1 shows a collection of commonly used ruthenium-based olefin metathesis catalysts. 

Each type of catalyst is unique in its reactivity and selectivity profile and hence has unique 

olefin metathesis applications. For example, catalysts 6 and 7 are especially fast-initiating 

and suitable for catalyzing ROMP to give polymers with high molecular weight and low 

dispersity.8 Catalyst 5, discovered by Hoveyda and Blechert,9 is well known for its stability 

and tolerance to air, moisture, and Lewis basic functional groups. The chelation of the ortho-

alkoxy benzylidene to the ruthenium center at the axial site results in the exceptional 

stability of 5 and its derivatives, making them valuable tools for organic synthesis.1a, 1b, 10 

Another advantage of catalyst 5 is the absence of the labile phosphine ligands which are 

responsible for certain phosphine-mediated catalyst decomposition pathways.11

The initiation kinetics of an olefin metathesis catalyst have significant impact on its 

reactivity and hence its applications.1a, 1b, 10a, 12 Since the initiation mechanism for 

Hoveyda–Grubbs-type catalysts is an ongoing topic of investigation,13 it is valuable to 

establish a model to correlate initiation kinetics with thermodynamic parameters in a manner 

that avoids making assumptions of the initiation mechanism. In a previous report, we 

systematically investigated a series of ruthenium-based olefin metathesis catalysts bearing 

modified chelating ortho-alkoxy/aryloxybenzylidenes (Figure 2).14 It was shown that by 

tuning the structure of the alkoxy/aryloxy group, catalysts with a wide range of initiation 

rates could be accessed. More importantly, a computational model that makes no specific 

assumptions regarding the initiation mechanism was proposed and was tested versus the 

initiation rates of the catalysts studied. This model established a good correlation between 
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the computed reaction energy of initiation with butyl vinyl ether (BVE) to form a common 

14-electron Fischer carbene complex C (ΔGr(A → C)) and the experimental initiation rate 

of the catalyst (Figure 3). The correlation is given by Equation 1. In the present work, this 

model is employed to predict the initiation kinetics of new catalysts, and these predictions 

are then tested experimentally.

RESULTS AND DISCUSSION

Catalyst Design.

Having previously established the aforementioned computational model with an initial 

training set, we next sought to use this model to extrapolate and predict the initiation rates of 

other ruthenium-based olefin metathesis catalysts bearing modified chelating ortho-alkoxy 

benzylidenes. To this end, a wide variety of Hoveyda–Grubbs type olefin metathesis 

catalysts were considered (16–38). Catalyst 20, 23 and 25 are known catalysts,15 yet their 

initiation rates have not been previously measured. As analogues to the standard i-Pr control, 

catalysts 16–19 were proposed to examine the effect of increasing steric bulk from ethoxy to 

tert-butoxy. Catalysts 20 and 21 were considered to evaluate the effect of the distance of the 

phenyl ring on the initiation rates as compared to catalyst 11 discovered by Plenio and 

coworkers.16 This series of alkoxy-modified Hoveyda–Grubbs variants also includes 

cycloalkyl groups of various ring sizes, from cyclobutyl to cyclooctyl groups (22–26). They 

provide a direct comparison with the cyclopropyl catalyst (12), which was included in the 

original training set. Dicyclohexylmethoxy (27) catalyst was intended to mimic the parent i-
Pr catalyst, but with substantially greater steric bulk.17 Similar to the rationale in proposing 

catalysts 20 and 21, catalyst 28 was included to probe the impact of additional methylene 

spacer at the 1-adamantyl position compared with catalyst 14. As catalyst 15 was discovered 

to be fast-initiating in our previous report,14 we hoped to enhance the initiation rate even 

further by introducing an additional methyl group at the 2-adamantyl position. It is also 

interesting to examine how well the model is able to predict the initiation properties of 

catalysts bearing electron-withdrawing groups attached to oxygen,12g, 15a such as a 

trifluoromethyl group (30–31). To further evaluate the scope of the computational model, we 

also examined the known 2,6-dimethoxy analogue (32)12e, 18 of catalyst 10. In particular, we 

were interested to investigate the relationship between OMe-exchange and initiation in this 

catalyst. Lastly, we sought to test the scope of the computational model by examining 

catalysts with modified N-heterocyclic carbene (NHC) ligands. As common variants of the 

standard SIMes NHC ligand, SIPr19 and SITol20 NHC ligands were used, and a series of 

catalysts bearing these two ligands and chelating benzylidenes with different steric bulk at 

the alkoxy position was prepared (33 – 38).

Computed Ru–O Bond Energies and Predicted Initiation Rates.

The computational method used for the proposed catalysts is consistent with previous 

computational studies.14,21 The strengths of Ru–O bonding interactions were evaluated in 

two ways (Figure 3): (1) by calculating the energy difference between the nonchelated 14-

electron complex B formed by dechelation of the Ru–O bond and rotation of the o-

alkoxyphenyl group and the ground-state chelated conformation A (ΔGr(A → B)) and (2) by 

calculating the reaction energy to form a common 14-electron Fischer carbene complex C 
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from the ground-state chelated conformation A and BVE (ΔGr(A → C)). The geometries 

were optimized in the gas phase using B3LYP with a mixed basis set of LANL2DZ for 

ruthenium and 6–31G(d) other atoms. Energies were calculated with M06 single-point 

calculations with a mixed basis set of SDD for ruthenium and 6–311+G(d,p) for other atoms 

using the SMD solvation model in toluene. B3LYP, BP86, M06, M06-L and ωB97x-D have 

been previously employed to optimize the geometries; B3LYP and BP86 were found to 

produce better correlation between the computed Ru–O bond strengths and the observed 

initiation rate (ln(kobs)) than the others.14

Computed Ru–O bond strengths derived from both methods (ΔGr(A → B) and ΔGr(A → 
C)) are summarized in Table 1. The initiation rates of the proposed catalysts (16–38) were 

predicted by Equation 1 with the calculated ΔGr(A → C) values. In order to clearly compare 

and contrast the computational results, the calculated ΔGr(A → C) values for catalysts 

bearing SIMes NHC ligand are presented in Figure 4, and the results with catalysts bearing 

non-SIMes NHC ligands are shown in Figure 5. It should be noted that, except for the 

ethoxy catalyst 16, all proposed catalysts have a ΔGr(A → C) value lower than the i-Pr 

control (entry 1, Table 1), hence they are predicted to initiate faster than 5. In particular, the 

calculated ΔGr(A → C) values for 27 and 29–31 are significantly lower than others, which 

is attributed to steric clashing between the bulky alkoxy group (dicylohexylmethoxy or 2-

methyl-2-adamantyloxy) and the SIMes-dichlororuthenium fragment and to the strong 

electron-withdrawing effect of the trifluoromethyl group in weakening Ru–O coordination 

and destabilizing the catalysts. The benzyl catalyst (20) is predicted to initiate faster than the 

phenethyl catalyst (21), as the phenyl ring is closer to the ruthenium center in 20. Moreover, 

ΔGr(A → C) values for catalysts bearing larger cycloalkyl rings (24–26) are not 

significantly smaller than those of catalysts with smaller ring sizes (22–23) due to the 

structural flexibility of the rings. Consistent with the results from a recent computational 

study by Trzaskowski et al.,22 catalysts 22 and 23 are predicted to initiate with similar rates 

as the isopropyl control 5. It is also surprising to see that the calculated ΔGr(A → C) values 

for catalysts bearing non-SIMes NHC ligands (33–38) remain relatively constant across the 

different alkoxy groups (Figure 5). The introduction of the 2-Ada group is expected to 

significantly decrease the ΔGr(A → C) value, yet this is not borne out in the computational 

data for complexes 33–38. This data further motivated us to experimentally investigate the 

initiation kinetics of 33–38 in order to shed light on to the scope and limitations of the 

current model.

Synthesis of catalysts.

The synthesis of the proposed catalysts and their precursors followed reported procedures.
14, 23 2-Alkoxy-benzaldehyde intermediates were synthesized from 2-fluorobenzaldehyde 

and the respective alcohols via a three-step SNAr procedure (Scheme 1). The resulting 

benzaldehydes were converted to the respective styrenes by Wittig olefination.

Three different synthetic procedures (Methods A–C) were employed for the final step to 

introduce the chelating benzylidene group onto the complex. A summary of methods and 

yields for the synthesis of 16–38 (except for commercially available complexes 33 and 36) is 

shown in Table 2. Most of the proposed catalysts were synthesized in moderate to high 
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yields. Consistent with the observation in our previous study,14 Method C was found to be 

more effective in synthesizing the more sterically demanding catalyst 27 (entry 12, Table 2). 

Notably, attempts to synthesize catalysts 29–31 were unsuccessful, possibly due to weak 

Ru–O bonding from electronic (30–31) or steric (29) perturbation on the alkoxy group, as 

predicted by the DFT calculations. This observation is consistent with the unsuccessful 

attempts by Barbasiewicz and coworkers to obtain 30 by lowering the temperature or 

terminating the reaction at lower conversion.15a For catalyst 32, Method B under extended 

reaction time was effective, whereas Method C was found to be incompatible (entry 17, 

Table 2).

X-ray Crystal Structures.

Single crystals suitable for X-ray diffraction were grown and analyzed for all newly 

synthesized catalysts.24 Graphical representations of the single crystal structures are 

summarized in Figure 6, confirming the expected connectivity of the catalysts. The series 

includes commercially available catalyst 33 (the structure of which had not been previously 

reported). The X-ray structures of 32 and 35 have been previously reported.18a, 20 Catalysts 

17–18, 21, 24–25, 26 and 32 crystallized in the space group P21/n, while catalysts 20, 28 
and 34 crystallized in the space group P21/c. Catalysts 22, 33 and 35 crystallized in the 

space group P1− , and catalysts 16 and 23 crystallized in the space group C2/c. Catalyst 19 

crystallized in the space group Pbcn. Catalysts 27 and 38 crystallized in the space group 

Pbca. Catalyst 37 crystallized in the space group P212121. Two crystallographically 

inequivalent conformers were found in the unit cell for catalysts 18, 22, 26 and 33, and in 

these cases the quoted bond lengths represent the average of the values of the two 

conformers. In general, there is no apparent correlation between the Ru–O bond length and 

the size of the alkoxy substituent; the Ru–O and Ru=C bond lengths (Table 3) are observed 

to be fairly constant for most of the catalysts in the series, with the exception of 27 (entry 12, 

Table 3), 35 (entry 17, Table 3), and 38 (entry 20, Table 3), whose Ru–O bonds are 

exceptionally long. Similar to the X-ray structure for catalyst 15,14 elongation of the Ru–O 

bonds serves to accommodate the energetically unfavorable steric clash between the SIMes-

dichlororuthenium fragment and a methylene unit on the 2-Ada group (35 and 38) or the 

dicyclohexyl group (27).

NMR Spectra.

The series of newly synthesized catalysts was next studied by 1H and 13C NMR 

spectroscopy in CD2Cl2. The characteristic benzylidene peaks of the catalysts were observed 

to be in the 16–17 ppm (1H) and 280–290 ppm (13C) ranges. Detailed results are 

summarized in Table 4. Chemical shifts of the carbenes on the NHC ligands, which are 

typically observed at 210 ppm (13C), are also compiled in Table 4. There seems to be no 

definitive trend between the NMR shifts of the benzylidene moiety and the size of the 

alkoxy group.

Initiation Rates by UV/Vis Kinetics Studies.

To test the validity of the predictions made by the computational model, the initiation rates 

of the synthesized catalysts were measured experimentally by UV/Vis spectrometry. We 
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have previously found that results from this assay are in good agreement with initiation rates 

of a representative catalytic RCM reaction.14 Following identical procedures as in our 

previous report, initiation rates were determined by reacting the catalysts (10−4 M) with a 

large excess of butyl vinyl ether (BVE) (30 equiv) at 10 °C under pseudo-first-order 

conditions. The observed initiation rates were calculated based on the decay of the λmax 

peak by UV/Vis spectrometry as the catalysts reacted with BVE. Detailed results are 

summarized in Table 5, and the relative rate with respect to catalyst 5 (krel) was also 

calculated. A large range of initiation rates were observed throughout the series of catalysts. 

Taking the i-Pr catalyst as control (entry 1, Table 5), krel values of the catalysts span four 

orders of magnitude, ranging from 0.69 (22, entry 3, Table 5) to 340 (27, entry 15, Table 5). 

The increase in initiation rate tracks closely with increasing steric bulk at the alkoxy 

position. In particular, dicyclohexylmethoxy catalyst 27 was found to initiate the fastest in 

the entire series, consistent with the prediction from the computational model. In fact, 27 
initiates faster than the well-known fast-initiating Blechert (8) and Plenio (11) catalysts with 

BVE at 10 °C.25 The single-crystal X-ray structure of 27 (Figure 6) shows that one of the 

cyclohexyl rings is positioned in an energetically unfavorable pseudo-axial conformation, 

thus lowering the energy barrier to access the catalytically active non-chelated 14-electron 

complex. The unfavorable energy profile of the chelated form of catalyst 27 is also reflected 

in the low yield of its preparation using method C (47%, entry 12, Table 2), which was 

typically found to be effective for the chelation of more challenging styrenes.14 The fast-

initiating properties of 27 are also consistent with the exceptionally long Ru–O bond length 

found in its X-ray structure (2.394 Å, entry 12, Table 3). Consistent with the computed 

results, the catalysts with larger cycloalkyl groups such as cyclooctyl (26, entry 7, Table 5) 

and cycloheptyl (25, entry 5, Table 5) rings do not initiate significantly faster than the 

catalysts with smaller cycloalkyl groups like cyclobutyl (22, entry 3, Table 5) or cyclopentyl 

(23, entry 9, Table 5). Again, this observation is attributed to the flexible ring structures that 

have limited contribution to the steric bulk of the alkoxy group and hence insignificant 

impact on initiation rates. Benzyl catalyst (20, entry 13, Table 5) was found to initiate 10 

times faster than the phenethyl analogue (21, entry 6, Table 5), an effect that could be steric 

or electronic in nature. In comparing the crystal structures of 20 and 21 (Figure 6), one can 

see that the benzyl group of 20 is situated perpendicular to the mesityl ring on the NHC 

ligand, whereas the phenyl ring in 21 is parallel to the mesityl ring and pointing away from 

the SIMes-dichlororuthenium fragment, suggesting potential edge-to-face and face-to-face 

π-stacking respectively. It should also be noted that the 2,6-diOMe catalyst 32 was observed 

to initiate only at elevated temperatures (55 °C),18 possibly due to rapid exchange of the 

methoxy groups, a phenomenon that merited further investigation.

Variation of the NHC ligand also had a significant impact on the initiation rates of the 

catalysts. Catalysts bearing the SIPr NHC ligand (33–35, entries 16–18, Table 5) were found 

to initiate much slower than their SIMes counterparts, consistent with the observations 

reported by Percy and coworkers,26 whereas catalysts with the SITol NHC ligand (36–38, 

entries 19–21, Table 5) were found to initiate with comparable rates. Notably, across the 

NHC ligand series, there was a consistent trend of faster initiation rate with increasing steric 

bulk on the alkoxy group from i-Pr (5, 33, 36) to 1-Ada (14, 34, 37) to 2-Ada groups (15, 35, 

38) (Table 6). In particular, fast-initiating catalysts such as 38 and 27 initiate about 2000 and 
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3600 times faster than 33, respectively. This observation is another demonstration of the 

synergistic power of tuning the alkoxy group and the NHC ligand together to access 

catalysts with a broad range of initiation rates.

Validity of Computational Model in Predicting Experimental Initiation Rates.

Predicted initiation kinetics of the synthesized catalysts are tabulated and compared against 

the experimental values from the UV/Vis kinetics experiments (Table 7). To better illustrate 

the comparison and evaluate the accuracy of the initiation-prediction model, scatter plots of 

the SIMes catalysts series (Figure 7) and SIPr and SITol series (Figure 8) are shown. The 

experimental results are illustrated as colored points on the scatterplot (SIMes: green stars; 

SIPr and SITol: red circles), whereas the solid black line represents the predicted trend given 

by Equation 1. To gauge the deviation of the experimental initiation rates from the predicted 

trend line, dashed blue lines are plotted around the predicted trend line to show the 95% 

confidence band derived and extrapolated from the training set (5 and 8–15) in the prediction 

model.

As shown in Figure 7, all of the experimental initiation rate values fall within the 95% 

confidence prediction band of the prediction model. This indicates that the model provides a 

reasonably accurate prediction of the initiation kinetics for the newly synthesized catalysts. 

Notably, catalysts 21 (phenethyl, entry 4, Table 7) and 25 (c-heptyl, entry 3, Table 7) are 

predicted to have very similar initiation rates despite their significantly different steric and 

electronic properties, and this prediction is borne out experimentally. Considering the fact 

that the initiation-prediction model is derived from a single-variable linear regression with 

an R–squared value of 0.79 (Equation 1), the new experimental results (R2 = 0.86 with 

respect to the solid prediction trendline) are in well accordance with the prediction model.

However, for the catalysts bearing different NHC ligands, as illustrated in Figure 8, the 

initiation-prediction model shows poor accuracy as illustrated by the large deviation of the 

experimental values from the predicted trend line (R2 = 0.16). Many contradictory results 

are observed (Table 7). In particular, catalysts 33 and 35 are predicted to have essentially the 

same initiation rates, yet the experimental results show that 35 initiates about 80 times faster. 

Similarly, catalyst 34 is predicted to initiate faster than 38, but the experimental results show 

that 38 is actually about 760 times faster. This suggests that the current initiation-prediction 

model, which was developed based on catalysts bearing the SIMes NHC ligand, cannot be 

extended to catalyst bearing the SIPr and SITol NHC ligands. Future directions include 

developing a new prediction model (or collection of models) to accommodate different NHC 

ligands. Moreover, although catalysts 29–31 are too unstable to be synthesized, their 

computed Ru–O bond strengths can be valuable in identifying the limits of Ru–O chelation 

in the current initiation-prediction model. This boundary condition can serve as a convenient 

indication of structural stability in the future design of fast-initiating catalysts.

In our previous report,14 the computed Ru–O bond strength from the dechelation process 

(ΔGr(A → B)) was found to be a poor predictor for catalyst initiation kinetics. This 

relationship was reevaluated with the new data from the catalysts synthesized in this study. 

Again, the computed Ru–O bond strength from ΔGr(A → B) shows weak correlation with 
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the observed initiation rates (R2 = 0.50, Figure 9), recapitulating that the use of ΔGr(A → C) 

is superior to using ΔGr(A → B) in Ru–O bond strength estimation for initiation kinetics 

studies.27

Chelate Dissociation Rate versus Initiation Rate.

It is especially interesting to investigate the initiation kinetics of the 2,6-diOMe catalyst 32 
because the 2,6-dimethoxy group on the benzylidene chelate provides an opportunity to 

study the chelate dissociation rate of Grubbs–Hoveyda olefin metathesis catalysts.

Even though catalyst 32 is predicted to have similar initiation kinetics as catalyst 22 or 26, it 

did not initiate at 10 °C like the rest of the catalysts in the series (entry 2, Table 5). 

Nevertheless, it was previously shown to catalyze ring-closing metathesis (RCM) reaction at 

elevated temperature.18 We found that even at higher temperature (50–100 °C), the initiation 

rate of catalyst 32 is too low to obtain an accurate measurement at the concentration 

typically used for UV/Vis experiments. As such, reaction kinetics were measured by 1H 

NMR spectroscopy ([Ru]0 = 5 mM) by subjecting 32 to a large excess of BVE (30 equiv) at 

70 °C in d8-toluene.12a, 12b The initiation rate profile of 32 (Figure 10) is obtained by 

measuring the decay of the benzylidene 1H NMR peak (17.27 ppm in toluene-d8), and the 

results are in good accordance with the assumption of pseudo-first-order decay. As the 

methoxy group in 32 presents less steric bulk and the incoming BVE is relatively electron-

rich and sterically non-demanding, the initiation mode of 32 is expected to lean towards the 

interchange mechanism where the initiation kinetics is dominated by the interchange rate kI, 

which is approximated by kobs/[BVE].13b

To gauge the dissociation rate of the Ru–O bond, a series of 1H–1H EXSY NMR 

experiments were performed with 32 using pulse sequences with different mixing times to 

observe the exchange of the two methoxy groups.28 A representative spectrum is shown in 

Figure 11. The EXSY spectra allowed for direct observation of methoxy group exchange in 

32 at 70 °C in deuterated toluene, and the quantitative rate data for the exchange process was 

thus obtained.

It is instructive to compare the rate of methoxy group exchange in 32 against its initiation 

kinetics. At 70 °C in deuterated toluene, the methoxy groups exchange rate in 32 is about 

3300 times faster than the catalyst’s interchange rate with the incoming olefin during the 

initiation process (Table 8).29 The rate of Ru–O dissociation is expected to be even higher 

since the methoxy groups do not necessarily exchange every time the Ru–O bond 

dissociates. These results shed light on the initiation mechanism of 32. In particular, the 

observation that Ru–O dissociation is rapid compared to initiation is inconsistent with a 

purely dissociative initiation pathway with 32. Rather, interchange or associative 

mechanisms are more likely in this case.

CONCLUSION

The initiation rates of a series of ruthenium-based olefin metathesis catalysts bearing 

modified ortho-alkoxy benzylidenes have been predicted by a previously developed 

computational model. This series of catalysts was investigated using a combination of 
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organometallic synthesis, NMR spectroscopy, X-ray crystallography and initiation kinetics. 

The computational model satisfactorily predicts the initiation kinetics of the catalysts 

bearing the SIMes NHC ligand. A total of fourteen new second-generation Grubbs–Hoveyda 

catalysts have been synthesized and characterized. Among them, the dicyclohexylmethoxy 

catalyst 27 was found to be one of the fastest-initiating second-generation Hoveyda–Grubbs 

olefin metathesis catalysts reported to date. The enhanced initiation rate of 27 was 

successfully predicted by the computational model. A notable aspect of this model is that it 

does not make any assumptions about the mechanism of catalyst initiation and relies on a 

single, easily computed thermodynamic metric. This metric gives simple and generally 

reliable predictions of olefin metathesis catalyst properties in silico. Further improvements 

of the computational model, such as extensions to other NHC ligands, will ultimately 

provide a more powerful toolkit for the design of customized catalysts with the desired 

initiation kinetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Commonly used ruthenium-based olefin metathesis catalysts.
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Figure 2. 
Catalysts investigated previously with Hoveyda-type chelating benzylidenes (8–15).
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Figure 3. 
Computational model for catalyst initiation kinetics.
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Figure 4. 
Computed Ru–O Bond Strengths (ΔGr(A → C)) for Representative SIMes Catalysts.
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Figure 5. 
Computed Ru–O Bond Strengths (ΔGr(A → C)) for Non-SIMes Catalysts.
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Figure 6. 
Illustration of X-ray structures of the synthesized catalysts.
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Figure 7. 
Validation of the initiation-prediction model results (SIMes catalysts).
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Figure 8. 
Validation of the initiation-prediction model results (SIPr and SITol catalysts).

Luo et al. Page 21

ACS Catal. Author manuscript; available in PMC 2020 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
ln(kobs) versus Ru–O bond strength ΔGr(A → B))
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Figure 10. 
Initiation kinetics of catalyst 32 approximately over the course of two half-lives of the 

initiation reaction.
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Figure 11. 
Representative 1H–1H EXSY spectrum for OMe exchange in 32 (tmix = 500 ms)
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Scheme 1. 
Synthesis of benzaldehyde intermediates and styrene chelates. aFor detailed procedures, see 

Supporting Information.
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Table 2.

Complexation attempts to prepare 16–32, 34–35 and 37–38.

entry Ar = R1 = R2 = cat. Method Yield

1 Mes Et H 16 A 51%

2 Mes n-Pr H 17 A 78%

3 Mes t-Bu H 18 A 91%

4 Mes i-Bu H 19 A 63%

5 Mes Bn H 20 A 58%

6 Mes PhEt H 21 A 85%

7 Mes c-Bu H 22 A 96%

8 Mes c-Pentyl H 23 A 95%

9 Mes Cy H 24 A 94%

10 Mes c-Heptyl H 25 A 98%

11 Mes c-Octyl H 26 A 77%

12 Mes CHCy2 H 27 A
C

8%
47%

13 Mes CH2-1-Ada H 28 B 54%

14 Mes 2-Me-2-Ada H 29 - 0%

15 Mes CF3 H 30 - 0%

16 Mes CH2-CF3 H 31 - 0%

17 Mes Me OMe 32
A

B
b

42%
55%

18 Dipp 1-Ada H 34 B 64%

19 Dipp 2-Ada H 35 B 42%

20 o-Tol 1-Ada H 37 B 40%

21 o-Tol 2-Ada H 38 B 33%

a
Method A: 2 (0.2 mmol), styrene (0.2 mmol), and CuCl (0.2 mmol); Method B: 2/3/4 (0.2 mmol), styrene (0.4 mmol), and Amberlyst-15 (0.8 

mmol); Method C: 39 (0.2 mmol), styrene (0.2 mmol), and Amberlyst-15 (0.8 mmol)

b
Extended reaction time (6 h). For detailed procedures, see Supporting Information.
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Table 3.

Summary of experimental Ru–O and Ru=C bond distances for catalysts 16–28 and 32–38.

Expt. (X-ray, Å)
a

entry cat. R1 = R2 = R3 = Ru–O Ru=C

1 16 Mes Et H 2.254 1.818

2 17 Mes n-Pr H 2.226 1.832

3
b 18 Mes t-Bu H 2.277 1.828

4 19 Mes i-Bu H 2.239 1.832

5 20 Mes Bn H 2.264 1.831

6 21 Mes PhEt H 2.229 1.828

7
b 22 Mes c-Bu H 2.262 1.836

8 23 Mes c-Pentyl H 2.238 1.833

9 24 Mes Cy H 2.268 1.836

10 25 Mes c-Heptyl H 2.254 1.830

11
b 26 Mes c-Octyl H 2.262 1.842

12 27 Mes CHCy2 H 2.394 1.821

13 28 Mes CH2-1-Ada H 2.265 1.828

14 32 Mes Methyl MeO 2.218 1.839

15
b 33 Dipp i-Propyl H 2.242 1.832

16 34 Dipp 1-Ada H 2.249 1.828

17 35 Dipp 2-Ada H 2.323 1.829

18
c 36 o-Tol i-Propyl H 2.298 1.833

19 37 o-Tol 1-Ada H 2.268 1.827

20 38 o-Tol 2-Ada H 2.338 1.828

a
Experimental values are shown to three decimal places without estimated standard deviations for clarity. Estimated standard errors are typically in 

the range of 0.001–0.005 Å. See Supporting Information for additional details.

b
Experimental value represents the average of the two crystallographically inequivalent molecules found in the unit cell.

c
Ref. 20.
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Table 4.

Diagnostic NMR peaks of the catalysts.

Ru=CHAr NHC

entry cat Ar = R1 = R2 = 1H 13C 13C

1 16 Mes Et H 16.52 294.71 211.58

2 17 Mes n-Pr H 16.52 295.23 211.53

3 18 Mes t-Bu H 16.50 298.91 211.77

4 19 Mes i-Bu H 16.57 296.08
c 210.81

5
b 20 Mes Bn H 16.55 290.80 209.83

6 21 Mes PhEt H 16.45 294.77 211.04

7 22 Mes c-Bu H 16.48 294.46
c 211.55

8 23 Mes c-Pentyl H 16.52 296.20
c 211.73

9 24 Mes Cy H 16.51 296.76
c 211.49

10 25 Mes c-Heptyl H 16.50 296.63
c 211.74

11 26 Mes c-Octyl H 16.51 296.44 211.21

12 27 Mes CHCy2 H 16.72 296.60
c 208.83

13 28 Mes CH2-1-Ada H 16.59 295.58
c 210.22

14
b 32 Mes Methyl OMe 17.25

d
286.02

c 211.18

15
b 33 Dipp i-Pr H 16.37 289.60

c 213.60

16 34 Dipp 1-Ada H 16.43 294.83
c 214.67

17 35 Dipp 2-Ada H 16.62 293.18
c 212.23

18
b 36 o-Tol i-Propyl H 16.47 295.21 210.89

19 37 o-Tol 1-Ada H 16.39 297.91 211.54

20 38 o-Tol 2-Ada H 16.57 296.26 209.09

a
Spectra in CD2Cl2

b
These values were independently measured and corresponded closely with the published values in the literature: entry 5 (Ref. 15a), entry 14 (Ref. 

18a), entry 15 (Ref. 19) and entry 18 (Ref. 20).

c
Average of two or more peaks corresponding to the benzylidene NMR peak.

d
Based on the major trans isomer.
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Table 5.

Initiation rates of catalysts, displayed in increasing order for catalysts bearing the same NHC ligand.
a,b

entry cat. Ar = R1 = R2 = λmax kobs (10−4 s−1) krel

1 5 Mes i-Pr H 378 0.40 ± 0.04 1.0

2 32 Mes Me OMe 376 -
c -

3 22 Mes c-Butyl H 378 0.28 ± 0.02 0.7

4 16 Mes Et H 376 0.40 ± 0.04 1.0

5 25 Mes c-Heptyl H 380 0.41 ± 0.03 1.0

6 21 Mes PhEt H 376 0.46 ± 0.07 1.1

7 26 Mes c-Octyl H 380 0.46 ± 0.01 1.2

8 24 Mes Cy H 380 0.48 ± 0.06 1.2

9 23 Mes c-Pentyl H 380 0.58 ± 0.04 1.4

10 17 Mes n-Pr H 376 0.71 ± 0.02 1.8

11 18 Mes t-Bu H 380 1.24 ± 0.04 3.1

12 19 Mes i-Bu H 378 1.85 ± 0.06 4.6

13 20 Mes Bn H 370 5.07 ± 0.62 13

14 28 Mes CH2-1-Ada H 374 5.50 ± 0.37 14

15 27 Mes CHCy2 H 376 135 ± 4.24 340

16 33 Dipp i-Pr H 374 0.04
d 0.1

17 34 Dipp 1-Ada H 378 0.10
d 0.3

18 35 Dipp 2-Ada H 378 2.91 ± 0.09 7.3

19 36 o-Tol i-Pr H 374 0.20 ± 0.06 0.5

20 37 o-Tol 1-Ada H 378 2.48 ± 0.31 6.2

21 38 o-Tol 2-Ada H 376 75.5 ± 8.94 190

a
The kobs values are reported as averages (with 95% confidence intervals) determined from three independent trials.

b
The relative rate (krel) was calculated by dividing the kobs value of the catalyst of interest by the kobs value for catalyst 5.

c
Catalyst 32 was found not to initiate at 10 °C.

d
Due to the slow initiation kinetics, the kobs values were determined from a single trial.
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Table 6.

Effect of NHC ligand variations on initiation rates.
a

Alkoxy╲NHC SIPr SIMes SITol

i-Pr
krel = 1.0

(33)
krel = 11

(5)
krel = 5.5

(36)

1-Ada
krel = 2.6

(34)
krel = 94

(14)
krel = 67

(37)

2-Ada
krel = 79

(35)
krel = 1500

(15)
krel = 2000

(38)

a
The relative rate (krel) was calculated by dividing the kobs value of the catalyst of interest by the kobs value for catalyst 33.
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Table 7.

Comparison between predicted and experimental initiation rates

Predicted Experimental

entry cat. Ar = R1 = R2 =
ln(kobs)

ln(10−4 s−1)
ln(kobs)

ln(10−4 s−1)

1 22 Mes c-Butyl H −0.78 −1.28

2 16 Mes Et H −2.07 −0.93

3 25 Mes c-Heptyl H −1.25 −0.90

4 21 Mes PhEt H −1.15 −0.78

5 26 Mes c-Octyl H −0.44 −0.77

6 24 Mes Cy H −0.17 −0.73

7 23 Mes c-Pentyl H −0.91 −0.55

8 17 Mes n-Pr H 0.14 −0.35

9 18 Mes t-Bu H −0.28 0.22

10 19 Mes i-Bu H 0.02 0.62

11 20 Mes Bn H 1.57 1.62

12 28 Mes CH2-1-Ada H 2.51 1.70

13 27 Mes CHCy2 H 3.85 4.91

14 33 Dipp i-Pr H −0.31 −3.30

15 34 Dipp 1-Ada H 0.92 −2.32

16 35 Dipp 2-Ada H −0.31 1.07

17 36 o-Tol i-Pr H −0.79 −1.59

18 37 o-Tol 1-Ada H 0.53 0.91

19 38 o-Tol 2-Ada H 0.80 4.32
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Table 8.

Comparison of OMe exchange and interchange rate of 32

process k (10−3 s−1) T (°C) rel. rate

OMe exchange 450 70 3300

Interchange with BVE 0.14 70 1
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