
UC Berkeley
UC Berkeley Previously Published Works

Title
Performance Characterization of De Novo Genome Assembly on Leading 
Parallel Systems

Permalink
https://escholarship.org/uc/item/81w5r9n0

ISBN
9783319642024

Authors
Ellis, Marquita
Georganas, Evangelos
Egan, Rob
et al.

Publication Date
2017

DOI
10.1007/978-3-319-64203-1_6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/81w5r9n0
https://escholarship.org/uc/item/81w5r9n0#author
https://escholarship.org
http://www.cdlib.org/


Performance Characterization of De Novo
Genome Assembly on Leading Parallel Systems

Marquita Ellis1,2(B), Evangelos Georganas1,2,5, Rob Egan3, Steven Hofmeyr2,
Aydın Buluç1,2, Brandon Cook4, Leonid Oliker2, and Katherine Yelick1,2

1 EECS Department, University of California, Berkeley, USA
mme@eecs.berkeley.edu

2 Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, USA

3 Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
4 National Energy Research Scientific Computing Center, Berkeley, USA

5 Parallel Computing Lab, Intel Corp., Santa Clara, USA

Abstract. De novo genome assembly is one of the most important
and challenging computational problems in modern genomics; further, it
shares algorithms and communication patterns important to other graph
analytic and irregular applications. Unlike simulations, it has no float-
ing point arithmetic and is dominated by small memory transactions
within and between computing nodes. In this work, we focus on the
highly scalable HipMer assembler and identify the dominant algorithms
and communication patterns, also using microbenchmarks to capture the
workload. We evaluate HipMer on a variety of platforms from the lat-
est HPC systems to ethernet clusters. HipMer performs well on all single
node systems, including the Xeon Phi manycore architecture. Given large
enough problems, it also demonstrates excellent scaling across nodes in
an HPC system, but requires a high speed network with low overhead
and high injection rates. Our results shed light on the architectural fea-
tures that are most important for achieving good parallel efficiency on
this and related problems. AQ1

1 Introduction

De novo genome assembly is essential to understanding the genomic structure of
plants, animals and microbial communities and has applications in health, the
environment, and energy. It involves constructing long genomic sequences from
short, overlapping and possibly erroneous DNA fragments produced by modern
sequencers. Due to the continued exponential increase in the size (multi-terabyte)
and complexity of the sequence datasets, massive parallelism is required to over-
come the huge memory and computational requirements, but efficient paral-
lelization is challenging. The genome assembly computation, not unlike other
graph analytic and irregular applications, involves graphs and hash tables and
is dominated by irregular memory access patterns and fine-grained synchroniza-
tion. Many assemblers therefore target shared memory hardware, where assembly
problems are limited in size and may run for days or even weeks.
c⃝ Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 1–13, 2017.
DOI: 10.1007/978-3-319-64203-1 6

A
u

th
o

r 
P

ro
o

f



2 M. Ellis et al.

In this study we present the first cross-architectural analysis of HipMer [8],
an extreme scale distributed memory genome assembler. HipMer produces bio-
logically equivalent results to a serial assembler called Meraculous [3], which
has been exhaustively studied for quality and found to excel relative to other
assemblers in most metrics [6]. Our HipMer performance evaluation includes a
broad range of platforms, ranging from a supercomputer with Intel Xeon Phi
processors and a custom HPC network to off-the-shelf Ethernet clusters. HipMer
stresses the communication fabric of these systems using communication pat-
terns that are increasingly important for irregular applications. These include
all-to-all exchanges, fine-grained lookups, and global atomic operations. Our
work presents a detailed analysis of these communication patterns and points
to requirements for future architectural designs for scalability on this important
class of codes.

2 The Parallel HipMer Assembly Pipeline

In this section we describe the basic algorithms used in the pipeline, our par-
allelization strategy, and the consequent communication patterns. Although we
focus on HipMer, the algorithms are relevant to all de novo assembly pipelines
that are based on de Bruijn graphs [14]. We describe four major stages of Hipmer
(see Fig. 1-Left), k-mer analysis, contig generation, read-to-contig alignment and
scaffolding, as well as gap closing, which is part of the scaffolding stage. Other
stages implemented in HipMer assist these main computations and are included
in the experimental results. The input to the pipeline is a set of reads, which are
short, erroneous sequence fragments of 100–250 letters sampled at random from
a genome. The sampling is redundant at a depth of coverage d, so on average
each position (base) in the genome is covered by d reads. This redundancy is
used to filter out errors in the first stage (k-mer analysis). The k-mer analysis can
work with relatively high error rates in the data (2.5%, k = 40+); the user may
also choose to decrease k when given data with higher error rates. Sequencers
produce reads in pairs with a known distance between them, a fact which is
exploited later in the pipeline (scaffolding) to improve the assembly.

reads 

contigs

k-mers
1 

2 

3 

scaffolds 

alignments 

4

GAT ATC TCT CTG TGA 

AAC 

ACC 

CCG 

AAT 

ATG 

TGC 

GAA 

Contig 1: GATCTGA 

Contig 2: AACCG 

Contig 3: AATGC 

Fig. 1. Left: the HipMer de novo assembly pipeline. Right: a de Bruijn graph of k-mers
with k = 3.

A
u

th
o

r 
P

ro
o

f



Performance Characterization of De Novo Genome Assembly 3

2.1 k-mer Analysis

In this step, the input reads are processed to exclude errors. Each processor reads
a portion of the reads and chops them into k-mers, which are formed by a sliding
window of length k. A deterministic function is used to map each k-mer to a
target processor, assigning all the occurrences of a particular k-mer to the same
processor, thus eliminating the need for a global hash table. The k-mers are com-
municated among the processors using irregular all-to-all communication,
which is performed when each processor fills up out of its outgoing buffers and
is repeated until all k-mers have been redistributed. A total of Θ(Gd

L (L−k +1))
k-mers need to be communicated, where G is the genome size (number of charac-
ters in the output) and L is the read length (number of characters in the input).
Next, all the k-mers are counted, and those that appear fewer times than a
threshold are discarded as erroneous. This filtering is enabled by the redundancy
d in the read data set: k-mers that appear close to d times are likely error-free,
whereas k-mers that appear infrequently are likely erroneous. k-mer counting
is challenging for large datasets because an error in just a single base creates k
erroneous k-mers, and it is not uncommon to have over 80% of all distinct k-mers
erroneous; as a result the memory footprint increases substantially. We address
this problem [10] through the use of Bloom filters, which results in irregular
all-to-all communication. Also, highly complex plant genomes, such as wheat,
are extremely repetitive and it is not uncommon to see some k-mers occurring
millions of times. Such high-frequency k-mers create a significant load imbalance
problem, since the processors assigned to high-frequency k-mers require signifi-
cantly more memory and processing times. We deal with these “heavy hitters”
using a streaming algorithm, described further in [8] that does not require any

Table 1. Major communication operations in the HipMer pipeline. G is the genome
size, L is the read length L, d is the coverage, a is the average number of contigs that
each read aligns onto (with a < L − k + 1), and γ is the fraction of reads that are not
assembled into contigs.

Stage Communication pattern Volume of data

k-mer analysis All-to-all exchange Θ(Gd · (L − k + 1)/L)

Contig generation All-to-all exchange Θ(G)

Irregular lookups Θ(G)

Global atomics Θ(G)

Sequence alignment All-to-all exchange Θ(G)

Irregular lookups Θ(Gd · a)

Scaffolding All-to-all exchange Θ(G)

Irregular lookups Θ(G)

Global atomics Θ(dG/L · e−d)

Gap closing All-to-all exchange Θ(γGd/L)

Irregular lookups Θ(γGd/L)

A
u

th
o

r 
P

ro
o

f



4 M. Ellis et al.

additional communication since it is merged into the initialization of the Bloom
filters. Additionally, for each k-mer, the extensions are recorded: these are the
two left and right neighboring bases in the original reads. If multiple extensions
occur, the most likely one is used; if there is no obvious agreement then none
is recorded. The result of k-mer analysis is a set of k-mers and their extensions
that with high probability include no errors. This set contains Θ(G) k-mers,
and is a compressed representation of the original read dataset because multiple
occurrences of a k-mer have been collapsed to a single instance.

2.2 Contig Generation

The k-mers are assembled into longer sequences called contigs, which are error-
free (with high probability) sequences that are typically longer than the original
reads. In HipMer, Contig generation utilizes a de Bruijn graph, which is a spe-
cial graph that represents overlaps in sequences. The k-mers are the vertices in
the graph and two k-mers are connected by an edge if they overlap by k − 1
consecutive bases and have corresponding extensions that are compatible (see
Fig. 1-Right for a de Bruijn graph example with k = 3).

A hash table is used to store a compact representation of the graph: A vertex
(k-mer) is a key in the hash table and the incident vertices are stored implicitly as
a two-letter code [ACGT][ACGT] that indicates the unique bases that immediately
precede and follow the k-mer in the read dataset. By combining the key and the
two-letter code, the neighboring vertices in the graph can be identified. These
graphs can require terabytes of memory for storing large genomes (e.g. pine or
wheat [4]), and traditionally have required specialized, very large shared-memory
machines. We overcome this limitation by employing the global address space of
Unified Parallel C [11] (UPC) in order to transparently store the hash table in
distributed memory, thereby utilizing the memory of many individual machines
in a unified address space.

During the parallel hash table construction, the input k-mers are hashed
and sent to the proper (potentially remote) bucket of the hash table by lever-
aging the one-sided communication capabilities of UPC. We avoid fine-grained
communication and excessive locking on the hash table buckets with a dynamic
aggregation algorithm [10]. This algorithm dynamically aggregates the k-mers
in batches before they are sent to the appropriate processors. The pattern here
is similar to k-mer analysis but is done asynchronously, where a single proces-
sor will send an aggregation of remote hash table inserts without waiting for
other processors. Unlike k-mer analysis, the total number of k-mers that have
to be communicated is Θ(G), since multiple occurrences of k-mers have been
collapsed during the k-mer analysis stage and this condensed k-mer set has size
proportional to the genome size.

The resulting de Bruijn subgraph is traversed in parallel to identify the con-
nected components, which are linear chains of k-mers, since we have excluded
all the vertices that do not have unique neighbors in both directions. Traditional
parallelization strategies of the traversal would not scale to large concurrencies
due to the size and shape of this high diameter graph (extremely long chains).

A
u

th
o

r 
P

ro
o

f



Performance Characterization of De Novo Genome Assembly 5

First, the de Bruijn subgraph is sparse (e.g. for human the de Bruijn graph would
be a 3 ·109 ×3 ·109 adjacency matrix with 2–8 eight non-zeros per row). Second,
the de Bruijn graph has also extremely high diameter (the connected compo-
nents in theory can have size up to the length of chromosomes, which is order
tens of millions of bases). In our specialized parallel traversal algorithm [10], a
processor Pi chooses a random k-mer as seed and initializes with it a new subcon-
tig. Then Pi attempts to extend the subcontig towards both of its endpoints by
performing lookups for the neighboring vertices in the distributed hash table.
The extending process continues until no more new edges can be found, or there
are forks in the graph (e.g. the vertex GAA in Fig. 1-Right represents a fork). The
access pattern in the distributed hash table consists of irregular, fine-grained
lookup operations. If two processors work on the same connected component
(i.e. both selected seed k-mers from the same contig), race conditions are avoided
via a lightweight synchronization scheme [10] based on remote atomics and
we have proved that our synchronization scheme scales to massive concurrencies
(thousands of compute nodes). The parallel traversal is terminated when all the
connected components in the de Bruijn graph are explored. Since the size of
the de Bruijn graph is proportional to the genome size, the traversal involves
accessing Θ(G) vertices via atomics and irregular lookup operations.

2.3 Read-to-Contig Sequence Alignment

For the alignment phase, we do not use alternative aligners, because, unlike
other aligners, HipMer’s parallel alignment scales to extreme concurrencies. It
also outputs all possible alignments, rather than a pruned subset, as input to
the scaffolding phase. HipMer’s alignment phase [9] maps the original reads onto
the contigs to provide information about the relative ordering and orientation of
the contigs, which is used in the final step of the assembly pipeline. First, each
processor stores a distinct subset of the contigs in the global address space so
that any other processor can access them. Then, substrings of length k, called
seeds, are extracted in parallel from the contigs and stored in the seed index,
which is a distributed hash table. Although seeds are conceptually the same as k-
mers, the value of k may be different than in earlier phases, and have a somewhat
different purpose. Each hash table entry has a seed as the key and a pointer to
the corresponding source contig as the value. There are Θ(G) seeds in total,
because the contigs constitute a fragmented version of the genome. The seed
index is constructed via an irregular all-to-all communication step similar to
the hash table construction in the contig generation phase. The seed index is then
used to align reads onto contigs. Each read of length L contains L − k + 1 seeds
of length k. For each seed s in a read, a fine-grained lookup in the global seed
index produces a set of candidate contigs that contain s. Although an exhaustive
lookup of all possible seeds would require a total of Θ(Gd

L (L − k + 1)) lookups,
in practice we perform Θ(Gd

L · a) lookups where a < L − k + 1, through the use
of optimizations that identify properties in the contigs during the seed index
construction [9]. Finally, after locating a candidate contig that has a matching
seed with the read under consideration, the Smith-Waterman algorithm [17] is

A
u

th
o

r 
P

ro
o

f



6 M. Ellis et al.

executed in order to perform local sequence alignment between the contig and
the read. The output of this stage is a set of reads-to-contig alignments.

2.4 Scaffolding and Gap Closing

The scaffolding step aims to “stitch” together contigs into sequences called scaf-
folds by assessing the paired-end information from the reads and the reads-to-
contigs alignments. Figure 2(a) shows three pairs of reads that map onto the same
pair of contigs i and j, creating a link that connects contigs i and j. A graph of
contigs can be created by generating links for all the contigs that are supported
by pairs of reads (see Fig. 2(b)). The contig graph is stored in a distributed hash
table, which requires irregular all-to-all communication for construction.
The graph of contigs (and consequently the number of links among them) is
orders of magnitude smaller that the k-mer de Bruijn graph because the con-
nected components in the k-mer graph are contracted to single vertices in the
contig-graph. According to the Lander-Waterman statistics [5], the expected
number of contigs is Θ(dG/L · e−d). A parallel traversal of the contig graph is
then performed to identify and remove “bubbles”, which are localized structures
involving divergent paths. This requires irregular lookups and global atom-
ics. A final traversal is done by selecting start vertices in order of decreasing
contig length (this heuristic tries to first stitch together “long” contigs) and
therefore it is inherently serial. At smaller scales, this will not have much of an
impact since the contig graph is relatively small compared to the k-mer graph.
At larger scales, the serial component will become the bottleneck. It is likely
that there will be gaps between the contigs within a scaffold (see Fig. 2(b)). An
attempt is made to close these gaps using the read-to-contig alignments, which
are processed in parallel and projected into the gaps. A distributed hash table is
used to localize the unassembled reads onto the appropriate gaps. Construction
of the table uses an irregular all-to-all communication pattern, but access-
ing the information in the table requires irregular lookups. Assuming that a
fraction γ of the genome is not assembled into contigs, this communication step
involves Θ(γGd/L) reads. Finally, the gaps are divided into subsets and each set
is processed by a separate thread, in a parallel phase. The localized reads are
used to attempt to close the gaps via a mini-assembly algorithm (an algorithm
that performs only k-mer analysis and contig generation on a strict subset of
the reads). The outcome of this step is a set of scaffolds (possibly with some
remaining gaps), constituting the result of the HipMer assembly pipeline. For
simplicity, we do not go into further detail on HipMer’s algorithms for diploid
assembly.

2.5 Summary of Communication Patterns

Table 1 summarizes the main communication patterns along with the corre-
sponding volume of communication for each stage. These communications pat-
terns govern the efficiency of the parallel pipeline at large scale, where most
of the stages are communication bound. The different communication patterns

A
u

th
o

r 
P

ro
o

f



Performance Characterization of De Novo Genome Assembly 7

contig i contig j

contig 1 contig 2 contig 3 

contig 4 contig 5 

link i j

link 1 2 link 2 3

link 4 5

scaffold 1 

scaffold 2 

(a) (b) 

Fig. 2. (a) A link between contigs i and j that is supported by three read pairs. (b)
Two scaffolds formed by traversing a graph of contigs.

have, however, vastly different overheads. For example, the all-to-all communi-
cation exchange is typically bounded by the bisection bandwidth of the system,
assuming that the partial messages are large enough and there is enough con-
currency to saturate the available bandwidth. Conversely, fine-grained, irregular
lookups and global atomics are typically latency-bound. Although conventional
wisdom would suggest that these sorts of communication patterns are prohibitive
for distributed memory systems, we have shown that HipMer can strong scale
effectively [7], because there are fewer communication operations on the critical
path as concurrency increases.

3 Experimental Results and Analysis

Our experiments are conducted on 5 computing platforms, including the Cori II
Cray XC40 and Edison Cray XC30 supercomputers at NERSC, the Cray XK7
MPP at the Oak Ridge National Lab (CPU only), the Genepool heterogenous
Mellanox InfiniBand NERSC cluster, and an Ethernet Cluster consisting of 3
SunFire x4600 servers networked via 1 Gb shared switch as well as 10 Gb fiber
optic patch. Architectural details are presented in Table 2.

For the experimental evaluation, we used 2 datasets. The first dataset,
referred to as chr14, consists of 36.5 million paired-end reads from the fragment

Table 2. Evaluated platforms. ∗128 byte Get message latency in microseconds. †Using
the optimal number of cores per node. ‡Measured over approx. 2K cores or maximum
(128 for ethernet cluster). §MB/s with 8 K message sizes. αCPU nodes only

Processor Cori II Cray XC40 Edison Cray

XC30

Titan Cray

XK7α
Genepool Ethernet

cluster

Intel Xeon-Phi

(Knights Landing)

Intel Xeon

(Ivy Bridge)

AMD Opteron

16-Core

Intel Xeon

(Haswell)

AMD Opteron

8376 HE

Freq (GHz) 1.4 2.4 2.2 2.3 2.3

Cores/node 68 24 16 32 32

Intranode LAT†∗ 3.3 0.8 1.1 2.7 0.6

BW/node †‡§ 57.3 436.2 99.2 113.0 1.2

Memory (GB) 96 64 32 256 512

Network and topology Aries Dragonfly Aries

Dragonfly

Gemini 3D

Torus

Infiniband

Mellanox

Ethernet 1Gb

and 10Gb

A
u

th
o

r 
P

ro
o

f



8 M. Ellis et al.

library of human chromosome 14, also used in the GAGE [15] evaluation. The
reads are 101 bp (base pair) in length and the fragment library has mean insert
size 155 bp. This relatively small dataset will be used to investigate the single
node performance and scalability at small scales. The second dataset, referred
as human, is a member of the CEU HapMap population (identifier NA12878)
sequenced by the Broad Institute. The genome contains 3.2 Gbp assembled from
2.9 billion reads, which are 101 bp in length, from a paired-end insert library
with mean insert size 395 bp. This dataset which is two orders of magnitude
bigger than chr14 will be used for the evaluation of the pipeline at larger scales,
although it is still relatively small compared to the genome size of some plants
and microbial communities.

3.1 Single-Node Performance Analysis

First, we examine the on-node scalability of HipMer on Cori II (our largest mul-
ticore node with 68 cores). HipMer attains perfect single node scaling (see Fig. 3)
between 1 and 68 threads (1 thread per core) on the chr14 dataset (37,609.7 s
on a single thread and 556.5 s on 68 threads, yielding a 67.6× speedup). If we
enable hyper-threading and use 2 threads per core on 64 cores, we observe a
reduction in the execution time by 19%. If we further use 4 threads per core we
observe an additional 3% reduction in the execution time. These results suggest
that hyper-threading can help on a single node. However, our benchmarking
revealed that the increased concurrency due to hyper-threading on a single node
affects severely the efficiency of the off-node communication operations. There-
fore we configure all the experiments in this paper with 1 thread per core (no
hyper-threading).

Figure 4 displays the total runtime per stage on the chr14 dataset for one
and two nodes of each machine utilizing all cores. For now, we consider only the
performance bars that correspond to the single node experiments. Examining
single node total runtimes, shows that the ratio between the slowest (Titan, AMD

Fig. 3. Cori II single KNL
node speedup up to 68 cores
for the small chr14 dataset.

Fig. 4. Cross-architecture single-node and two-node
performance by stages.

A
u

th
o

r 
P

ro
o

f



Performance Characterization of De Novo Genome Assembly 9

Opteron) and fastest (Cori II, Intel KNL) systems is a factor of 2.4×. Across
architectures, each stage of the pipeline takes similar portion of the respective
total execution time. The most time consuming part is k-mer analysis, followed
by the sequence alignment stage, confirming our analysis in Sect. 2.

These results also highlight the idiosyncrasies of the genome assembly work-
load; it does not include any arithmetic computations, instead it heavily relies
on irregular memory accesses and string and integer operations. As such, the
modern trends in multicore processor design with wider vectors accommodating
higher arithmetic throughput do not result in substantial performance improve-
ments (e.g. the single node Cori II execution is only slightly faster than the single
node Edison experiment). Efficient vectorization of the key string computations
can increase performance, but the major improvements on a single node come
from the increased concurrency/parallelism and the ability of the memory sub-
system to facilitate concurrent irregular memory accesses. At the same time, the
simpler core design in conjunction with the decreased clock frequency results
in worse single core performance for Knights Landing compared to the other
processors.

3.2 Scalability from Single Node to Multiple Nodes

Having examined HipMer’s single node performance, we now examine how it
scales to multiple nodes, again using the chr14 dataset - one small enough for
single nodes. Figure 4 shows the performance difference by stage as we scale
from 1 to 2 nodes. For all machines, we observe speedups well under 2×. The
speedup is between 1.12× and 1.18× for Cori II, Edison, and Genepool. Titan
has the highest speedup at 1.6×; however note, in absolute runtime, its single
node performance is 2.1× slower than Edison’s (for example), and due to its
relatively limited on-node memory and parallelism (see Table 2), it has the most
to benefit from additional node resources. Its relative internode latency is also a
significant factor, as we will discuss momentarily. The Ethernet Cluster, ran for
810 s on a single node and with either a 1 Gb or a 10 Gb interconnect, actually
has a 18.2× and 10.6× slowdown respectively (not shown due to scale).

This behavior is justified via a detailed analysis of each stage. The k-mer
analysis step typically is computation bound because its communication involves
efficient collective all-to-all exchanges with large messages (see Table 1) which
effectively utilizes the available bandwidth. For example, on 2 Cori II nodes, 6%
of the k-mer analysis time is spent in communication, and we observe almost lin-
ear scaling of the k-mer analysis step. On the other hand, the sequence alignment
step does not speedup and in some cases actually slows down. The communica-
tion pattern necessitated in the alignment stage consists of irregular, fine-grained
lookups implemented with get operations. Such operations are latency bound and
their efficiency depends on the underlying machine/network. Consequently, we
expect the alignment phase to be communication bound. For example, the get
latency for small messages on a fully occupied Edison node is 0.75µs, while
the average latency for two nodes is 2.39 µs (measured via microbenchmarks).
We refer to “average” latency in the latter case because, under such a setting,

A
u

th
o

r 
P

ro
o

f



10 M. Ellis et al.

half the get operations are expected to result in on-node communication and
the remaining in off-node communication. Note, the number of lookups on the
critical path can be calculated from the number of reads assigned to each proces-
sor. Even though the number of threads is increased by a factor of two and the
number of irregular lookups on the critical path is decreased by a factor of two,
each of those operations is 3.2× more expensive, eventually yielding larger over-
all communication time in the alignment step. However, on Titan the respective
get latencies for small messages are 1.10 µs for a single node and 1.79µs for 2
nodes. As a result we expect a speedup in the alignment phase, which is con-
firmed in Fig. 4. The same scaling argument holds for the remaining parallel
algorithms that rely on fine-grained irregular lookups and atomics (see Table 1).
For a description of the microbenchmarks used, see [7]; we were not able to
include our microbenchmarking data for all machines due to space limitations.

Figure 5 shows the strong scaling results for all machines on the chr14
dataset. Efficiency (the y axis) is calculated as T1/(Tp · p) where T1 is the total
runtime on a single node, p is the number of nodes (x axis), and Tp is the total
runtime on p nodes. From 1 to 2 nodes, Cori II, Edison, and Genepool’s effi-
ciencies decrease down to 55–60%. This behavior is explained in the previous
paragraph. As we scale from 2 to 8 nodes, the respective parallel efficiencies
drop at most by 26%. At this range of node counts most of the irregular accesses
in the parallel algorithms are off-node and as such the efficiency levels should
remain the same as we strong scale. This is the regime where we can observe
good strong scaling. Titan has the smallest parallel efficiency decrease between 1
and 2 nodes (20%), but it is still the most significant decrease in its series (which
continues to decrease roughly by 10% as the number of nodes doubles). While
its relative efficiency is higher than other machines, its absolute runtime is much
worse, and improves significantly with more memory and compute cores (hence,
higher speedups, as discussed in the previous section). The Ethernet Cluster
drops in efficiency by 95% or more from 1 to 2 nodes; because the Ethernet
cluster has only 3 nodes, we do not present further data. These trends show
that parallelizing the computation across some minimum number of nodes is
necessary to overcome the overhead incurred by internode communication. This
minimum number is dependent on the network and node characteristics. Beyond
this minimum number, the application can scale efficiently to large number of
nodes. We emphasize here that for realistically large datasets, one might have to
use multiple nodes to acquire the necessary aggregate memory. In such scenarios
the baseline performance is of that of multiple nodes and as such the strong
scaling efficiency is even better as we will see in the next subsection.

Another interesting feature in the data presented in Fig. 5, is the cross-over
in efficiency between Edison and Cori II at 64 nodes. Between 1 and 32 nodes,
the two machines maintain relatively close levels of efficiency (≤4% difference).
At 64 nodes onwards, Edison maintains a higher level of efficiency by roughly
10%. The key factors here are the higher core count of the Cori II nodes (64
versus 24 on Edison nodes) and the relatively small size of the dataset. At 64
nodes, the workload is parallelized over 4 K cores on Cori II, while Edison has

A
u

th
o

r 
P

ro
o

f



Performance Characterization of De Novo Genome Assembly 11

Fig. 5. Strong scaling efficiency for the
small chr14 dataset

Fig. 6. Execution time for the
human dataset

1.5 K cores at that same node count. Because the data set is relatively small, at
the concurrency of 4 K cores, Cori II lacks sufficient work per thread that can be
efficiently parallelized, especially during the scaffolding and gapclosing phases.

3.3 Large Scale Experimental Results

Finally, we present results from running HipMer at scale on the human dataset.
In Fig. 6, we show the total runtime of the pipeline (y axis) over the number
of nodes (x axis) for Cori II, Edison, and Titan. Not shown are the Ethernet
Cluster results, which ran for 22.56 h on a single node and on two nodes took
approximately 280 h and 161 h on the 1 Gb and 10 Gb interconnects respectively a
12.4× and 7.1× slowdown. Genepool results are also not shown since sufficiently
many nodes for this data set were not reservable.

The first thing to observe is the different node count that constitutes the
baseline for each machine. Since the memory requirement of the human dataset,
and the communication data structures for its effective distribution are quite
large, we need at least 32, 64, and 128 nodes on Cori II, Edison, and Titan,
respectively, to obtain the minimum required aggregate memory (approximately
4TB, see Table 2). On Cori II we scale up to 512 nodes (32,768 cores) with 47%
strong scaling efficiency, on Edison up to 1,024 nodes (24,576 cores) with 49%
efficiency and on Titan up to 1024 nodes (16,384 cores) with 37% efficiency. After
these levels of parallelism, the parallel efficiency drops substantially because the
work per thread is not sufficient. Other factors influencing the pipeline’s scala-
bility is the serial traversal in the scaffolding step and the initial I/O overhead to
load the input data. As the scale increases, the percentage of the total runtime
spent in the serial scaffolding traversal also increases. For example, on Cori II
at 512 nodes 29% of the total execution time is spent in the serial part of the
scaffolding while the corresponding serial component takes only 4% of the overall
execution time at 32 nodes.

A
u

th
o

r 
P

ro
o

f



12 M. Ellis et al.

4 Related Work

Our performance study in this paper captures the workload of other assemblers,
and here we described the most closely related ones that also use distributed
memory parallelism. Ray [2] is an end-to-end parallel de novo genome assembler
that utilizes MPI and exhibits strong scaling up to a modest number of nodes.
It produces both contigs and scaffolds directly from raw sequencing reads. One
drawback of Ray is the lack of parallel I/O support for reading and writing files.
ABySS [16] was the first de novo assembler written in MPI that also exhibits
strong scaling. Unfortunately, only the first assembly step of contig generation
is fully parallelized with MPI, and the subsequent scaffolding steps must be
performed on a single shared memory node. Spaler [1] is a contig generating
assembler based on Spark and GraphX. Results from Spaler have been given for
our smaller data set, chr14, and it shows good scaling. PASHA [12] is another
partly MPI based de Bruijn graph assembler, though not all steps are fully
parallelized as its algorithm, like ABySS, requires a large-memory single node
for the last scaffolding stages. SWAP 2 [13] is a parallelized MPI based de Bruijn
assembler that has been shown to assemble contigs efficiently for the human
genome, however it does not provide parallel scaffolding modules.

5 Conclusion

This work presents a cross-architectural evaluation of large-scale genome assem-
bly, a first study of its kind. The algorithms described in Sect. 2, are relevant for
all de novo assembly pipelines based on de Bruijn graphs [14], and is character-
ized by a workload dominated by fine-grained irregular memory accesses, with
no floating point arithmetic. Nonetheless, as shown in Sect. 3, HipMer attains
both excellent single node and distributed multinode scalability. We identified
the key computation and communication patterns, and associated architecture
and network characteristics, for achieving such effective scalability; namely all-to-
all exchanges (bisection bandwidth bounded), fine-grained irregular lookups and
global atomics (latency bounded). Further, we find the key to on-node scalability
for this type of workload is the available concurrency coupled with the memory
subsystems’ performance. We expect that these insights will help impact future
implementations of irregularly structured parallel methods and the underlying
architectural designs targeting these classes of computations.

Acknowledgments. All authors at Lawrence Berkeley National Laboratory (LBNL)
were supported by Department of Energy (DOE) Offices of Advanced Scientific Com-
puting Research (ASCR) and Biological and Environmental Research (BER), both
under contract number DE-AC02-05CH11231. This includes funding to BER’s Joint
Genome Institute, the ASCR-funded Exascale Computing Project, and the ASCR
Mathematics and Computer Science Research Programs. This word used resources
of ASCR’s National Energy Research Scientific Computing Center (NERSC) under
the same LBNL contract and ASCR’s Oak Ridge Leadership Facility (OLCF) under
Contract No. DE-AC05-00OR22725.

A
u

th
o

r 
P

ro
o

f



Performance Characterization of De Novo Genome Assembly 13

References

1. Abu-Doleh, A., Catalyurek, U.V.: Spaler: Spark and GraphX based de novo genome
assembler. In: 2015 IEEE International Conference on Big Data (Big Data), Octo-
ber 2015

2. Boisvert, S., Laviolette, F., Corbeil, J.: Ray: simultaneous assembly of reads from
a mix of high-throughput sequencing technologies. J. Comput. Biol. 17(11), 1519–
1533 (2010)

3. Chapman, J.A., Ho, I., Sunkara, S., Luo, S., Schroth, G.P., Rokhsar, D.S.: Mer-
aculous: de novo genome assembly with short paired-end reads. PLoS ONE 6(8),
e23501 (2011)

4. Chapman, J.A., Mascher, M., Buluç, A., Barry, K., Georganas, E., Session, A.,
Strnadova, V., Jenkins, J., Sehgal, S., Oliker, L., Schmutz, J., Yelick, K.A., Scholz,
U., Waugh, R., Poland, J.A., Muehlbauer, G.J., Stein, N., Rokhsar, D.S.: A whole-
genome shotgun approach for assembling and anchoring the hexaploid bread wheat
genome. Genome Biol. 16, 26 (2015) AQ2

5. Deonier, R.C., Tavaré, S., Waterman, M.: Computational Genome Analysis: An
Introduction. Springer Science & Business Media, New York (2005). doi:10.1007/
0-387-28807-4

6. Earl, D., Bradnam, K., St John, J., Darling, A., et al.: Assemblathon 1: a com-
petitive assessment of de novo short read assembly methods. Genome Res. 21(12),
2224–2241 (2011)

7. Georganas, E.: Scalable parallel algorithms for genome analysis. Ph.D. thesis,
EECS Department, University of California, Berkeley (2016)

8. Georganas, E., Buluç, A., Chapman, J., Hofmeyr, S., Aluru, C., Egan, R., Oliker,
L., Rokhsar, D., Yelick, K.: HipMer: an extreme-scale de novo genome assembler.
In: International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC 2015) (2015)

9. Georganas, E., Buluç, A., Chapman, J., Oliker, L., Rokhsar, D., Yelick, K.: mer-
Aligner: a fully parallel sequence aligner. In: Proceedings of the IPDPS (2015)

10. Georganas, E., Buluç, A., Chapman, J., Oliker, L., Rokhsar, D., Yelick, K.: Par-
allel de Bruijn graph construction and traversal for de novo genome assembly.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2014) (2014)

11. Husbands, P., Iancu, C., Yelick, K.: A performance analysis of the Berkeley UPC
compiler. In: Proceedings of International Conference on Supercomputing, ICS
2003, pp. 63–73. ACM, New York (2003)

12. Liu, Y., Schmidt, B., Maskell, D.L.: Parallelized short read assembly of large
genomes using de Bruijn graphs. BMC Bioinform. 12(1), 354 (2011)

13. Meng, J., Seo, S., Balaji, P., Wei, Y., Wang, B., Feng, S.: Swap-assembler 2: opti-
mization of de novo genome assembler at extreme scale. In: 45th International
Conference on Parallel Processing (ICPP), pp. 195–204. IEEE (2016)

14. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation
sequencing data. Genomics 95(6), 315–327 (2010)

15. Salzberg, S.L., Phillippy, A.M., Zimin, A., Puiu, D., et al.: GAGE: a critical evalu-
ation of genome assemblies and assembly algorithms. Genome Res. 22(3), 557–567
(2012)

16. Simpson, J.T., Wong, K., et al.: ABySS: a parallel assembler for short read sequence
data. Genome Res. 19(6), 1117–1123 (2009)

17. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

A
u

th
o

r 
P

ro
o

f

http://dx.doi.org/10.1007/0-387-28807-4
http://dx.doi.org/10.1007/0-387-28807-4



