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ABSTRACT OF THE DISSERTATION

 

 

Multi-omic stratification of the missense variant and redox-sensitive cysteinome 

by 

 

Heta Sunil Desai 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2023 

Professor Keriann M. Backus, Chair 

 

Cysteine-directed chemoproteomic profiling methods yield high-throughput inventories of 

redox-sensitive and ligandable cysteine residues. They are enabling techniques for 

functional biology. Due to their nucleophilicity and sensitivity to alkylation, cysteines have 

emerged as attractive sites to target with chemical probes. Cysteine-reactive covalent 

compounds can access small and poorly defined binding sites and efficiently block high-

affinity interactions or compete with high concentrations of endogenous biomolecules. 

Furthermore, cysteine is the most frequently acquired amino acid due to missense 

variants in cancer databases. Acquired cysteines are both driver mutations and sites 

targeted by precision therapies; however, despite their ubiquity, nearly all acquired 

cysteines remain uncharacterized. Regardless of improvements in sample preparation 

workflows, cysteine chemoproteomic experiments still only sample a small fraction of the 

human cysteinome due to biological factors such as protein abundance, restricted protein 
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expression profiles, and technical factors such as unoptimized data analysis workflows 

not tailored to chemoproteomics, including database searches that do not sample the 

mutation-induced variant proteome. The cumbersome nature of these sample preparation 

workflows along with reagent costs hinder most chemoproteomics studies. In this work, 

we develop two new chemoproteomics platforms to enable high-throughput identification 

of redox sensitive and ligandable cysteines, including gain-of-cysteines. First, we tailor 

our single-pot, solid-phase-enhanced sample preparation (SP3) method to specifically 

probe the redox proteome, which showcases the utility of the SP3 platform in multistep 

sample-preparation workflows. Application of the SP3-Rox method to cellular proteomes 

identified cysteines sensitive to the oxidative stressor GSNO and cysteine oxidation state 

changes that occur during T cell activation. By implementing a customized workflow in 

the FragPipe computational pipeline, we achieve accurate MS1-based quantification, 

including for peptides containing multiple cysteine residues. We also present 

“chemoproteogenomics”, combining proteogenomics with established chemoproteomics 

methods to study human missense variation resulting in neo cysteine residues or 

mutations nearby cysteine residues. For both cancer and healthy genomes, we find that 

cysteine acquisition is a ubiquitous consequence of genetic variation that is further 

elevated in the context of decreased DNA repair. Our chemoproteogenomics platform 

integrates chemoproteomic, whole exome, and RNA-seq data, with a customized 2-stage 

false discovery rate (FDR) error controlled proteomic search enhanced with a user-

friendly FragPipe interface to improve coverage of acquired cysteine variants and 

proximal variants using a panel of 11 cancer cell lines. These two established pipelines 

allow us to extend activity-based profiling methods, including small molecule screening 
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and redox-profiling, to gain-of-cysteine variants and cysteines proximal to variants. We 

expect widespread utility in guiding proteoform-specific biology and therapeutic 

discovery.  
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Chapter 1: Introduction

 

Distinguished by their nucleophilicity, sensitivity to oxidative stress, propensity to 

coordinate metals, numerous post-translational modifications, and ability to form 

disulfides, cysteine residues play key roles in the structure and function of most human 

proteins. Nearly all proteins contain at least one cysteine, and in aggregate, the human 

genome encodes ∼262,000 cysteines (Yan et al., 2021). Many bioactive compounds and 

drugs have been developed that react with specific cysteine residues. For example, the 

blockbuster covalent kinase inhibitor therapeutics afatinib and ibrutinib, together with 

second-generation molecules, function by targeting non-catalytic cysteines in the active 

sites of the kinases EGFR and BTK, respectively (Liu et al., 2013; Singh, Petter, Baillie, 

& Whitty, 2011; W. Zhou et al., 2009). More recently, the Gly12Cys-mutant form of KRAS, 

an oncoprotein long thought to be “undruggable,” has been successfully targeted by a 

number of cysteine-reactive compounds, including the US Food and Drug Administration– 

approved drug sotorasib (Canon et al., 2019; Lim et al., 2014; Ostrem, Peters, Sos, Wells, 

& Shokat, 2013). Consequently, the identification and functional characterization of the 

“cysteinome” is a central challenge for both functional biology and drug development 

efforts.  

Mass spectrometry (MS)-based chemoproteomics is an enabling technology 

capable of rapidly identifying functional and “druggable” residues proteome-wide (Backus 

et al., 2016; Hacker et al., 2017; Kuljanin et al., 2021; Vinogradova et al., 2020; 

Weerapana et al., 2010). Among all amino acids that can be captured by chemical probes, 

cysteine is unique given its nucleophilicity, sensitivity to oxidative modifications, and 
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therapeutic relevance, as showcased by the number of drugs and clinical candidates that 

function through cysteine covalent modification. Although recent work, including our own 

studies, has showcased a range of technical innovations that together have substantially 

increased the throughput and coverage of chemoproteomics workflows, several important 

opportunities and challenges remain for cysteine-directed chemoproteomics studies. 

First, as our work has shown, such experiments still sample only a small fraction 

of the total cysteinome (∼10-15%; Yan et al., 2021). Achieving more complete coverage 

is an essential step to fully harness the therapeutic and mechanistic relevance of the 

cysteinome. Second, cysteine-directed chemoproteomic workflows remain laborious, are 

low throughput, and often require relatively large amounts of input material (e.g., 2 mg 

proteome/per sample used in our prior studies (Backus et al., 2016; Palafox, Desai, 

Arboleda,& Backus, 2021), which can prelude the analysis of rare cell populations and 

clinical samples. Lastly, the data analysis pipelines for quantifying labeling are not 

standardized and can be challenged by false-positive values, prohibitive cost, and 

inaccessibility to those beyond the pipeline’s developers. Standard cysteine-directed 

chemoproteomics platforms (Backus, 2019) all rely on the same general workflows with 

minor modifications. First, cells or lysates are treated with cysteine modifier of interest 

(e.g., induction of oxidative stressor or cysteine-reactive compound or vehicle) and then 

labeled with a pan-cysteine-reactive probe (e.g., iodoacetamide, maleimide, or other, 

more tailored electrophiles that are coupled to an enrichment handle, such as biotin or an 

alkyne/azide moiety that can be biotinylated by “click” chemistry). Biotinylated samples 

are then subjected to enrichment on avidin resin and sequence specific proteolysis. 

Labeled peptides are eluted from the resin and analyzed by liquid chromatography - 
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tandem mass spectrometry (LC-MS/MS). In their most simplistic form, these studies will 

report spectral counts for the peptides containing the specific cysteines modified by a 

probe (Weerapana, Speers, & Cravatt, 2007). Such semiquantitative approaches, 

although useful for identifying modification sites, have, however, been largely supplanted 

by precursor-ion mass spectrometry (MS1)- and tandem mass spectrometry (MS2)-based 

quantification of fractional occupancy afforded by a capping step with a pan-cysteine-

reactive probe (Kuljanin et al., 2021; Weerapana et al., 2010). 

For example, in the widely adopted isoTOP-ABPP method, after labeling with 

iodoacetamide alkyne (IAA), treated and control samples are conjugated via copper-

catalyzed azide-alkyne cycloadditions (CuAAC), or “click” chemistry, to isotopically 

labeled (“heavy” and “light”) tobacco etch virus (TEV)-protease-cleavable biotinylated 

peptide enrichment reagents (TEV tags). The heavy and light labeled samples are pooled 

and subjected to enrichment on streptavidin resin, and then undergo sequential 

proteolysis with trypsin and TEV proteases. LC-MS/MS analysis of the TEV-protease-

eluted fraction reports the relative labeling of treated and control samples by IAA on the 

basis of changes to the relative MS1 chromatographic peak areas. Various modified 

versions of this workflow have subsequently been developed that incorporate modified 

enrichment handles. Examples include the desthiobiotin-based tags (Zanon, Lewald, & 

Hacker, 2020), as well as chemical and photocleavable tags (Fu et al., 2020; Qian & 

Weerapana, 2017; Rabalski, Bogdan, & Baranczak, 2019). Integration of isobaric tagging 

strategies that rely upon commercially available tandem mass tags (TMT) have recently 

extended these chemoproteomic workflows from MS1- to MS2-based quantification 

(TMT-based methods; Kuljanin et al., 2021; Mnatsakanyan et al., 2019; Vinogradova et 
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al., 2020). A key advantage of MS2-based quantification is increased sample throughput 

afforded by up to 18-plex sample multiplexing (Li et al., 2021). For both MS1- and MS2-

based quantification, a key, and still largely unmet, limitation is the interpretation of so-

called singleton ions, meaning ions in which only either the light or the heavy precursor 

can be identified at the MS1 level. Although these ions can correspond to peptides with 

highly elevated ratios consistent with a large fold change between treated and control 

samples (e.g., a high-occupancy labeling event), they should be treated with an additional 

level of statistical rigor because of the increased propensity for irreproducible ratios 

observed for these singleton species. 

Our research revealed several additional key challenges and limitations that are 

ubiquitous in chemoproteomics studies. One key problem is achieving efficient 

biotinylation, which is essential for obtaining high-coverage samples. We have found that 

widely used click chemistry conditions afford only ∼30-40% yields of labeled peptides, 

leaving a substantial fraction of alkyne-modified peptides unconjugated (Yan et al., 2021). 

Our research also revealed that using a modest 2-fold excess of the biotin-azide reagent 

relative to the alkyne probe, together with a 10-fold increase in the concentrations of both 

reagents (e.g., from 200 μM IAA and 400 μM biotin-azide to 2 mM IAA and 4 mM biotin-

azide), afforded >80% yields for biotinylation.  

A second key challenge for these protocols is the relatively poor solubility of most 

biotin reagents in both aqueous and organic solvent systems. This can limit the absolute 

concentrations of reagents used for labeling; for example, the aforementioned example 

of increased biotin-azide affording increased biotinylation is not possible with some of the 

more elaborated reagents (e.g., TEV tags). More problematic still is efficient 
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decontamination of samples to remove excess biotin reagents. Our recent work has 

shown that the choice of desalting method (e.g., protein precipitation or solid-phase 

extraction) can dramatically affect the yield of peptides after affinity enrichment. Our 

comparison of standard chloroform/methanol precipitation to the recently developed 

single-pot solid-phase sample preparation (SP3) method revealed a marked increase in 

both PSMs and unique peptides for samples processed when using SP3 (Yan et al., 

2021). This finding is particularly striking for samples that require a larger excess of biotin 

reagent to achieve efficient labeling—for example, our Suzuki-Miyaura chemoproteomic 

method (Cao et al., 2021), which requires a large excess of biotin–boronic acid coupling 

partner. Contamination of samples with excess biotin reagents can result in poor recovery 

of labeled peptides and low-coverage datasets. 

Data analysis is another area that remains challenging and non-standardized for 

the cysteine chemoproteomics field. A number of different quantification pipelines have 

been developed or applied to cysteine chemoproteomics. For search, multiple algorithms 

including SEQUEST (Eng, McCormack, & Yates, 1994), ProLuCiD (Xu et al., 2015), 

MaxQuant (Tyanova, Temu, & Cox, 2016), Proteome Discoverer (Mnatsakanyan et al., 

2019), and MSFragger (Kong, Leprevost, Avtonomov, Mellacheruvu, & Nesvizhskii, 2017; 

Yu, Haynes, et al., 2020; Yu, Teo, et al., 2020) have been found to be compatible with 

cysteine chemoproteomics data. MS1-based quantification has been achieved using 

CENSUS (Park, Venable, Xu,&Yates, 2008), CIMAGE (Gao et al., 2021), Perseus 

(Tyanova et al., 2016), IonQuant (Yu et al., 2020; Yu, Haynes, & Nesvizhskii, 2021), and 

Skyline (MacLean et al., 2010). MS2- and MS3-based quantification has been reported 

using ProLuCiD together with the Integrated Proteomics Pipeline (IP2; Vinogradova et 
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al., 2020). Real-time, search-enabled, MS3-based mass spectrometry (RTS-SPS-MS3) 

analysis of TMT-labeled cysteine chemoproteomic samples was achieved using Orbiter 

together with Comet (Schweppe et al., 2020; https://uwpr.github.io/Comet/). Differences 

between the ways that these packages calculate ratios, for example by area under the 

curve, linear regression, ion intensity, or some combination thereof, can substantially 

affect the ratios calculated. The prohibitive cost of some of these softwares is another 

challenge that limits their adoption. Additionally, lack of flexibility in how peptides 

containing multiple different modifications are treated, for example, with two cysteines 

where one is carbamidomethylated and one contains a heavy or light label, can hinder 

accurate analysis for multi-cysteine-containing peptides. Both MaxQuant and Skyline 

suffer from this limitation. Our recent work yielded a custom plugin-for Skyline that 

enables such quantification 

(https://proteome.gs.washington.edu/∼nicksh/kbackus/AddLabelType/ setup.exe). 

 It is also worth highlighting several areas in which recent advances in 

instrumentation and data acquisition have improved chemoproteomics workflows. First, 

the advent of new instruments with improved acquisition speeds has dramatically 

increased the coverage of modified peptides achieved in single-shot experiments. 

Second, the advent of MS3-based quantification, particularly when paired with RTS, has 

improved the detection of peptides labeled with isobaric reagents, and has substantially 

decreased the ratio compression observed with these samples at the MS2 level 

(Schweppe et al., 2020). Incorporation of a field asymmetric ion mobility (FAIMS) device 

has substantially increased coverage of cysteine-containing peptides—of note, FAIMS 

does afford mild ratio compression, which should be accounted for during data 
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processing. Lastly, incorporation of labile-ion search tools in MSFragger has enabled the 

identification of diagnostic or signature ions for peptides enriched in chemoproteomics 

experiments, innovations that enabled further improved coverage of chemoproteomics 

experiments (Yan et al., 2022). 

Chemoproteomics has emerged as an enabling technology capable of assaying 

the reactivity, redox sensitivity, and ligandability of cysteines proteome-wide. Small-

molecule chemoproteomic screens using libraries of electrophilic compounds have 

mapped hundreds of novel cysteine-ligand interactions, which can serve as starting points 

for the development of new selective probes and even. Cysteine chemoproteomic 

methods began with the ICAT method pioneered by Gygi and coworkers (Gygi et 

al.,1999). The OxICAT method, developed by Leichert et al. (2008), applied the 

isotopically differentiated ICAT probes in a sequential labeling workflow tailored to 

quantify cysteine oxidation (García-Santamarina et al., 2014). A number of more recent 

methods that assay cysteine oxidation state have been developed, including Cys-Boost 

(Mnatsakanyan et al., 2019), QTRP (Fu et al., 2020), and methods that rely on isotopically 

differentiated iodoacetamide alkyne probes, including one from Abo and co-workers (Abo 

et al., 2018). Alongside this plethora of redox proteomics methods, a comparable number 

of chemoproteomic platforms capable of assaying cysteine ligandability have emerged. 

The use of alternative enrichment reagents, such as chemically cleavable and 

photocleavable enrichment tags, have improved the compatibility of these methods with 

alternative sequence specific proteases. Incorporation of isobaric tags into these 

workflows, including for example in the streamlined cysteine activity-based protein 
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profiling (SLC-ABPP) method, have enabled increased sample throughput via 

multiplexed MS2- or MS3-level quantification (Kuljanin et al., 2021).  

Despite the continuous improvements in instrumentation and sample preparation 

workflows, cysteine chemoproteomic experiments still only sample a small fraction of the 

human cysteinome. Reasons for this gap include biological factors such as protein 

abundance, restricted protein expression profiles or structural unavailability, e.g., due to 

disulfides; and also technical factors such as inefficient biotinylation, loss of sample during 

cleanup, unoptimized acquisition workflows, or data analysis workflows not tailored to 

chemoproteomics, including non-sample specific database searches that do not sample 

the mutation-induced variant proteome.  

As we have achieved substantial expansions of cysteine coverage, my work 

extends and adapts our improved methodology to new redox proteomics applications, 

described in Chapter 2, through optimization of experimental sample preparation and data 

analysis workflows. Detailed in Chapter 3, I establish a chemoproteogenomics platform 

that combines genomics data with our chemoproteomics data to identify the hidden 

landscape of cysteine acquisition. 
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Abstract 

Proteinaceous cysteine residues act as privileged sensors of oxidative stress. As reactive 

oxygen and nitrogen species have been implicated in numerous pathophysiological 

processes, deciphering which cysteines are sensitive to oxidative modification and the 

specific nature of these modifications is essential to understanding protein and cellular 

function in health and disease. While established mass spectrometry-based proteomic 

platforms have improved our understanding of the redox proteome, the widespread 

adoption of these methods is often hindered by complex sample preparation workflows, 

prohibitive cost of isotopic labeling reagents, and requirements for custom data analysis 

workflows. Here, we present the SP3-Rox redox proteomics method that combines 

tailored low cost isotopically labeled capture reagents with SP3 sample cleanup to 

achieve high throughput and high coverage proteome-wide identification of redox-

sensitive cysteines. By implementing a customized workflow in the free FragPipe 

computational pipeline, we achieve accurate MS1-based quantitation, including for 

peptides containing multiple cysteine residues. Application of the SP3-Rox method to 

cellular proteomes identified cysteines sensitive to the oxidative stressor GSNO and 

cysteine oxidation state changes that occur during T cell activation. 

 

Introduction 

Oxidative stress plays an essential role in human health and disease. Both reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) have been implicated in 

many pathophysiological processes, including cancers, neurodegenerative disorders, 

and atherosclerosis (1, 2, 3). Oxidative stress also plays an essential role in the 
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modulation of innate and adaptive immune responses, with abnormal cellular activation 

occurring at both hypo- and hyper-levels of ROS and RNS (4, 5, 6). Consequently, the 

identification of mechanisms by which cells respond to oxidative stressors is an essential 

step to improving the treatment and prevention of a wide range of human disorders. 

Inherently nucleophilic and sensitive to oxidative stress, proteinaceous cysteine residues 

function as key sensors of ROS and RNS through oxidative modifications, including 

disulfide formation, S-nitrosation, and sulfenylation (3, 7). Therefore, the proteome-wide 

identification of redox-sensitive cysteine residues has emerged as a useful strategy to 

gain insight into cellular response to oxidative stress (8). Numerous proteomic methods, 

including OxiCat, Biotin Switch, and modifications to these methodologies (8, 9, 10, 11, 

12, 13, 14) have enabled the high throughput identification of cysteines sensitive to 

oxidative modifications. Exemplifying these technical innovations, recent application of 

isobaric mass tagging coupled with immobilized metal affinity chromatography to the 

organism-wide identification of redox-sensitive cysteines identified ∼34,000 unique 

cysteines across 10 murine tissues (15). 

Most of these platforms rely upon the same general workflow: first, all reduced 

cysteines are capped using a cysteine reactive probe such as iodoacetamide (IA). After 

removal of all excess IA, oxidized cysteines are then reduced by the application of 

reducing agents tailored to the oxidized species of interest (e.g., gentler reductant such 

as sodium ascorbate for selective identification of nitrosylated cysteines or stronger 

reducing agents such as tris(2-carboxyethyl)phosphine (TCEP) or DTT for identification 

of all oxidized cysteines, including disulfides and sulfenylated cysteines) (11, 16, 17, 18). 

Newly liberated thiol side chains are then capped using a second cysteine-reactive 
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electrophile, typically one that features an enrichment handle (e.g., iodoacetamide alkyne 

(IAA) or iodoacetamide-desthiobiotin). After enrichment and proteolytic digestion, 

oxidized cysteines are then identified using standard LC-MS/MS analysis workflows. 

Incorporation of isotopic labeling strategies, including stable isotope labeling by amino 

acids in cell culture and other isotopic labeling reagents, such as isotope-coded affinity 

tag reagents, tandem mass tag labeling reagents, isobaric tags for relative and absolute 

quantification, and heavy- and light-IAA, enables inter- and intra-sample quantitation of 

relative and absolute cysteine oxidation (9, 15, 19, 20, 21, 22, 23). 

While already widely adopted, redox proteomic methods suffer from several 

shared limitations. Reliance on costly isotopically labeled reagents has made large scale 

redox studies cost-prohibitive for many groups. Efficient removal of excess cysteine-

labeling reagent, which is essential to achieving high fidelity identification of redox-

sensitive cysteines, requires laborious sample decontamination steps, such as protein 

precipitation or buffer exchange. Such sample manipulation can easily result in material 

loss or spurious results due to inefficient decontamination. The large amount of sample 

input required for most redox proteomic methods has hindered application to samples 

with limited available material, such as primary cells and biopsy samples. 

Several hurdles also exist for quantitative analysis of redox proteomics datasets. 

Accurate quantitation (frequently at the MS1 level) is an essential component of most 

chemoproteomic data analysis workflows, including methods aimed at measuring thiol 

oxidation state. Prior studies, including our own, have relied upon custom software to 

report accurate measures of relative MS1 chromatographic peak areas for the extracted 

ion chromatograms of heavy- and light-reagent–labeled peptides. While some 
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commercial software packages, such as ProLuCID/Census and Byonic have been 

successfully employed for residue-level quantification of chemoproteomics experiments, 

the cost of these tools has precluded widespread adoption (24). Powerful free software 

packages for both data search and quantitation, including Skyline and FragPipe, have 

been widely employed by the mass spectrometry community (25, 26, 27, 28, 29, 30, 31, 

32, 33, 34). However, the adoption of these tools for chemoproteomics remains limited to 

a handful of studies, due in part to incompatibility with several specific applications, 

including the quantification of peptides containing multiple modifications (e.g., peptides 

with two or more cysteine residues). As multi-cysteine-containing peptides are ubiquitous 

in redox motifs (e.g., CXXC), this limitation is particularly problematic for measures of 

thiol-oxidation state (35, 36, 37). Furthermore, the relative performance of these tools for 

chemoproteomic applications remains unexplored. 

An optimal redox proteomic method would achieve near complete removal of 

excess reagents with minimal sample loss, be compatible with all cell and tissue types, 

use a minimal amount of input material, report oxidative modifications with high sensitivity 

and specificity, and be cost-effective. The single-pot, solid-phase-enhanced sample-

preparation (SP3) method is poised to enable such a method. The single-pot, solid-

phase-enhanced sample-preparation method employs carboxyl-coated magnetic beads 

to achieve efficient sample decontamination, even for small sample sizes (38, 39). Our 

recent findings revealed that not only is SP3 compatible with cysteine chemoproteomics, 

it even affords improved coverage of labeled peptides when benchmarked against 

protein-precipitation-based cleanup methods (40). SP3 also facilitates multiple rounds of 
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sample cleanup, using a simple magnetic capture and elution system. Whether SP3 can 

enable identification of redox sensitive cysteines remains unexplored. 

To enable rapid, cost-effective, and high throughput redox proteomics, we first 

synthesized novel and low-cost isotopically labeled IAA probes. We then combined these 

reagents with a new multi-step SP3 redox sample preparation workflow (SP3-Rox) 

compatible with FragPipe-IonQuant based quantification to achieve rapid and high 

coverage identification of redox-sensitive cysteines. We validate the accuracy of 

IonQuant quantification by comparison to widely adopted Skyline-based MS1 level 

quantification. Application of the SP3-Rox method identified redox sensitive cysteines 

sensitive to S-nitrosoglutathione (GSNO) in proteomes derived from an immortalized T 

lymphocyte cell line and cysteines in primary human T cells that showed cell-state 

dependent oxidation states. The technical innovations and expanded portrait of the redox 

proteome enabled by SP3-Rox provides a roadmap for a proteome-wide understanding 

of the cellular mechanisms underlying response to oxidative stress. 

 

Experimental Procedures 

Experimental Design and Statistical Rationale 

We used a total of 58 datasets in this work. In all datasets, we estimated the identification 

false-discovery rate using the target-decoy approach (41). For MSFragger, peptide-

spectrum matches (PSMs), peptides, and proteins were filtered at 1% PSM and 1% 

protein identification FDR. For Skyline analyses, default settings were used unless 

otherwise noted. All experiments were performed in duplicate or triplicate for 

quantification accuracy assessment and method validation. S-nitrosoglutathione and T 
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cell experiments utilized experimental duplicates with two additional technical replicates 

per condition (n = 4 for ± GSNO and resting/activated T cells). Aggregated mean 

log2(heavy:light ratios) were used to assess peptide quantification accuracy in 

comparison to ground-truth ratios. Comparison of the number of unique quantified 

cysteine-containing peptides was used to evaluate the performance of quantitation 

pipelines. Means of reported log2 ratio values for each condition (± GSNO or 

unstimulated/stimulated T cells) were calculated for all replicates per condition, and the 

difference of the log2 mean values were reported. Variances were calculated for each 

sample-condition pairing and a corresponding two-sample t test was performed on the 

raw log2 ratios to generate p-values (n = 4 for ± GSNO and unstimulated/stimulated T 

cells); p-values were adjusted for multiple comparisons using Benjamini–Hochberg 

procedure. Quantified peptides identified in all replicate samples per condition for ± 

GSNO and unstimulated/stimulated T cell experiments were used for statistical analyses. 

Difference values above 2 and 1.5 were used in subsequent gene ontology and 

expression analyses for GSNO and T cell experiments respectively. 

 

Cell Culture and Preparation of Cell Lysates 

All cell lines were obtained from ATCC and maintained at a low passage number (<20 

passages) and tested regularly for mycoplasma. The cells were cultured in DMEM/RPMI-

1640 supplemented with 10 % fetal bovine serum and penicillin-streptomycin. Media was 

filtered (0.22 μm) prior to use. Cells were maintained in a humidified incubator at 37 °C 

with 5 % CO2. Cells were harvested by centrifugation, washed twice with cold DPBS, 

resuspended in DPBS, and sonicated. Blood from deidentified healthy donor was 
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obtained from UCLA/CFAR Virology Core (5P30 AI028697) after informed consent. After 

Trima filter isolation, peripheral blood mononuclear cells were purified over Ficoll–

Hypaque gradient (Sigma-Aldrich), and T cells were isolated via negative selection with 

magnetic beads (EasySep Human T Cell Iso Kit, 17951, STEMCELL). The isolated T cells 

were washed with sterile PBS. Unstimulated cells were harvested by centrifugation. The 

remaining cells were then resuspended in RPMI-1640 supplemented with FBS, penicillin, 

streptomycin, and glutamine (2 million cells per ml), and 200,000 cells per well were 

seeded on nontreated tissue culture, 96-well transparent plates that had been coated with 

anti-CD3 (1:200, BioXcell) and anti-CD28 (1:500, Biolegend) in PBS (100 μl per well). 

After 72 h, the cells were then harvested, washed with PBS, and the cell pellets lysed by 

sonication in PBS. Protein concentrations were determined using a Bio-Rad DC protein 

assay kit from Bio-Rad Life Science, and the lysate diluted to the working concentrations 

as indicated. 

 

Gel-Based Proteome Labeling 

HEK293T proteome (25 μl of 2 mg/ml) was labeled with 30 μM isopropyl iodoacetamide 

alkyne (IPIAA)-H (5), IPIAA-L (4), or IAA (6) (0.75 μl of 1 mM stocks) for 1 h. Copper-

catalyzed azide–alkyne cycloaddition (CuAAC) was performed with rho-azide (#) (1 μl of 

1.25 mM stock in DMSO, final concentration = 50 μM), TCEP (0.5 μl of fresh 50 mM 

stock in water, final concentration = 1 mM), tris((1-benzyl-4-triazolyl)methyl)amine (1.5 

μl of 1.7 mM stock in DMSO/t-butanol 1:4, final concentration = 100 μM), and CuSO4 

(0.5 μl of 50 mM stock in water, final concentration = 1 mM). Samples were allowed to 

react for 1 h at ambient temperature. All samples were denatured (5 min, 95 °C) and 
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analyzed by SDS-PAGE using Criterion TGX Stain-free gels obtained from Bio-Rad. 

Loading control images were obtained after Coomassie staining. 

 

SP3-Rox Proteomic Sample Preparation 

Details for each experiment are provided in Supporting Information. Lysate samples (200 

μl of 2 mg/ml) were incubated with vehicle or 1 mM GSNO for 30 min at room temperature 

(RT) followed by labeling with 2 mM IPIAA-L (4; 2 μl of 200 mM stock solution in DMSO, 

final concentration = 2 mM) for 1 h at 37 °C. The samples were incubated with 0.5 μl 

benzonase (Fisher Scientific, 70–664–3) for 30 min at 37 °C. SP3 bead slurries were then 

transferred to the proteome samples, incubated for 10 min at RT with shaking (1000 rpm). 

Absolute ethanol (400 μl) was added to each sample, and the samples were incubated 

for 5 min at RT with shaking (1000 rpm). Using the magnetic rack as described above, 

supernatants were then removed and discarded and the beads were further washed two 

times with 80% ethanol in water (400 μl). Beads were then resuspended in 200 μl PBS 

containing 2 M urea. TCEP (10 μl of 100 mM stock in water, final concentration = 5 mM) 

was added into each sample, and the sample was incubated at 56 °C for 30 min, shaking 

(500 rpm). Beads were washed with absolute ethanol for 5 min followed by 80% ethanol 

twice as described and resuspended in 200 μl PBS containing 2 M urea. The samples 

were then labeled with IPIAA-H (5; 2 μl of 200 mM stock solution in DMSO, final 

concentration = 2 mM) for 1 h at 37 °C with shaking (500 rpm). Absolute ethanol (400 μl) 

was added to each sample, and the samples were incubated for 5 min at RT with shaking 

(1000 rpm). Samples were then placed on a magnetic rack, and the beads are allowed to 

settle. Supernatants were then removed and discarded. Beads were then resuspended 
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in 200 μl 0.5% SDS in PBS. Copper-catalyzed azide–alkyne cycloaddition was performed 

with biotin-azide 7 (4 μl of 200 mM stock in DMSO, final concentration = 4 mM), TCEP (4 

μl of fresh 50 mM stock in water, final concentration = 1 mM), tris((1-benzyl-4-

triazolyl)methyl)amine (12 μl of 1.7 mM stock in DMSO/t-butanol 1:4, final concentration 

= 100 μM), and CuSO4 (4 μl of 50 mM stock in water, final concentration = 1 mM). 

Samples were allowed to react for 1 h at ambient temperature with shaking (500 rpm). 

Samples were washed and subjected to trypsin digestion as described below. 

 

SP3 Digest and Elution 

Absolute ethanol (400 μl) was added to each sample, and the samples were incubated 

for 5 min at RT with shaking (1000 rpm). Beads were washed with 80% ethanol as 

described above. The beads were then resuspended in 200 μl 0.5% SDS in PBS 

containing 2 M urea. Dithiothreitol (DTT; 10 μl of 200 mM stock in water, final 

concentration = 10 mM) was added into each sample, and the sample was incubated at 

65 °C for 15 min. To this, iodoacetamide (10 μl of 400 mM stock in water, final 

concentration = 20 mM) was added and the solution was incubated for 30 min at 37 °C 

with shaking. After that, beads were washed with ethanol as described. Next, the beads 

were resuspended in 150 μl PBS containing 2 M urea followed by an addition of 3 μl 

trypsin 1 mg/ml solution. Digest was allowed to proceed overnight at 37 °C with shaking. 

After digestion, ∼4 ml acetonitrile was added to each sample and the mixtures were 

incubated for 10 min at RT with shaking (1000 rpm). Supernatants were then removed 

and discarded using the magnetic rack, and the beads were washed (3 × 1 ml 

acetonitrile). Peptides were then eluted from SP3 beads with 100 μl of 2% DMSO in 
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molecular biology (MB) grade water for 30 min at 37 °C with shaking two times for a total 

of 200 μl eluent. 

 

NeutrAvidin Enrichment of Labeled Peptides 

For each sample, 50 μl of NeutrAvidin Agarose resin slurry (Pierce) was washed three 

times in 10 ml immunoaffinity purification buffer (50 mM MOPS–NaOH (pH 7.2), 10 mM 

Na2HPO4, 50 mM NaCl) and then resuspended in 500 μl immunoaffinity purification 

buffer. Peptide solutions eluted from SP3 beads were then transferred, and the samples 

were then rotated for 2 h at RT. After incubation, the beads were pelleted by centrifugation 

and washed. Bound peptides were eluted with 60 μl of 80 % acetonitrile in MB water 

containing 0.1% formic acid (10 min at RT & 10 min at 72 °C). The eluants were dried 

(SpeedVac). The samples were then reconstituted with 5% acetonitrile and 1% formic 

acid in MB grade water and analyzed by LC-MS/MS. 

 

LC-MS/MS Analysis 

Details are provided in Supporting Information document. The samples were analyzed by 

liquid chromatography tandem mass spectrometry using Orbitrap Eclipse Tribrid Mass 

Spectrometer (Thermo Scientific) coupled to an Easy-nLC 1200 system. 

 

FragPipe Peptide Identification and Quantitation 

Details are provided in Supporting Information document and workflow file in PRIDE 

(PXD029500). Raw data collected by LC–MS/MS were converted to mzML format (for 

PTMProphet datasets) or left as raw files and searched using FragPipe GUI v16.0 with 
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MSFragger (version 3.3) (28, 32), Philosopher (version 4.0.0) (34) and IonQuant (version 

1.7.5) (29, 30) were enabled. Precursor and fragment mass tolerance was set as 20 ppm. 

Missed cleavages were allowed up to 2. Peptide length was set 7 to 50, and peptide mass 

range was set 500 to 5000. Cysteine residues were searched with variable modifications 

at cysteine residues for carboxyamidomethylation (+57.02146), IPIAA-L (+463.2366), and 

IPIAA-H (+467.2529) labeling allowing for 3 max occurrences and all mods used in first 

search checked. Peptide and protein level FDR were set to 1%. Permissive IonQuant 

parameters allowed minimum scan/isotope numbers set to 1. PTMProphet information 

was obtained from psm.tsv using ‘heavy’ and ‘light’ localizations scores. A FASTA 

database from UniProtKB homo sapien FASTA file containing canonical, nonredundant 

sequences (08/2018) used for all searches and is provided in the PRIDE (PXD029500 

and PXD031647) repository. Proteomic workflow of FragPipe and its collection of tools 

are outlined in Supporting Information. 

 

Skyline Quantitation 

Details are provided in Supporting Information document. Interact.pep.xml files from 

FragPipe searches were imported into Skyline v21.1.0.146 (42) with a probability 

threshold corresponding to the 1% peptide-ion level FDR in the dataset. Following the 

standard DDA analysis workflow for isotopically labeled dataset using the following 

modifications: carboxyamidomethylation (+57.02146) as a variable modification, light 

structural modification (+463.2366), and heavy isotope modification (+4.01634). As 

Skyline automatically places a heavy isotopic label on all modified cysteines, including 

carbamidomethylated residues and those modified by the IPIAA-H regent, quantification 
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fails for peptides containing two or more modified cysteines (e.g., one carbamidomethyl 

residue and one IPIAA-residue). A custom plugin was generated to remove the heavy 

mass from all carbamidomethylated residues. 

 

Data Analysis and Processing 

Custom R scripts were implemented to compile labeled peptide datasets from 

peptide_label_quant.tsv FragPipe outputs. Unique cysteines were quantified for each 

dataset using unique identifiers consisting of UniprotID_Cysteine Number. Details of data 

processing are in Supplemental Information. 

 

Synthesis of Reagents 

Compound 6 and 7 were prepared as has been reported (43). Detailed syntheses of 

compounds 4 and 5 are provided in the electronic Supplementary Information. 

 

Results 

Synthesis and Benchmarking of Low-Cost Isotopically Labeled IAA Probes 

Relatively cost-effective isotopically labeled IAA probes have been achieved, using 13C-

benzaldehyde ($115/mmol) as a low-cost isotope source (9). Here, we envisioned the 

synthesis of even lower cost second generation IAA probes, by employing isotopically 

labeled 13C-acetone ($60/mmol) for isotopic barcoding. The desired light and heavy 

isopropyl iodoacetamide probes (IPIAA-L and IPIAA-H) were obtained in three steps, and 

the key isotopic labels were incorporated by reductive alkylation with propargyl amine and 

acetone, using either 12C- or 13C-acetone and NaBH3CN or NaBD3CN for the light and 
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heavy probes, respectively, as shown in Figure 1A. Analysis of the reagents by LC-MS 

confirmed that the desired isotopologues had been obtained at equal concentrations (Fig. 

1B). 

With probes validated, we next established labeling conditions to achieve high 

occupancy cysteine capping required for redox proteomics. Benchmarking of the IPIAA 

probes against a standard unsubstituted IAA probe using a gel-based assay revealed 

comparable labeling and banding pattern for all three probes (Fig. 1C). Using a 

competitive gel-based assay under denaturing conditions (2M Urea), we found that at 2 

mM concentration, all three probes efficiently blocked lysate labeling by IA-rhodamine. 

This finding concurs with our prior study (40), which indicated that low mM concentrations 

of iodoacetamide reagents are sufficient to cap most cysteines with near completion 

(supplemental Fig. S1). Somewhat unexpectedly, a comparison of cysteine labeling at pH 

7 and pH 8.4 revealed near complete competition of IA-rhodamine labeling at both neutral 

and more basic pH (supplemental Fig. S2). Next, we carried out a mass spectrometry-

based competitive assay by subjecting Jurkat lysates to labeling with 2 mM IPIAA-H and 

IPIAA-L probes followed by 20 mM IA to completely cap all unlabeled cysteines. After 

tryptic digest and LC-MS/MS analysis, search using MSFragger revealed that for both the 

light and heavy probes, >80% of all cysteines were labeled with the IPIAA (supplemental 

Fig. S3). The observed slight decrease in labeling efficiency compared to our prior study 

using unsubstituted IAA (40) can likely be ascribed to the increased steric bulk afforded 

by the isopropyl modification. 
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FIG. 1. Synthesis and evaluation of isotopic isopropyl iodoacetamide alkyne probes. A, synthesis of 

heavy and light iodoacetamide alkyne probes. a, acetone (13C or light), NaBH3CN or NaBD3CN, 

CH2Cl2/MeOH (2:1); rt b, chloroacetyl chloride, NEt3; c, NaI, acetone, CH2Cl2, 6.2% yield for 4 over 3 steps, 

11% yield for 5 over 3 steps, and 11% yield for 5 over 3 steps. B, LC-MS of IPIAA probes in equimolar 

mixture. C, gel-based visualization of 30uM IPIAA labeling followed by CuAAC to rhodamine-azide in 

HEK293T lysates. Loading control was generated using InstantBlue Coomassie protein stain. CuAAC, 

copper-catalyzed azide–alkyne cycloaddition; IAA, iodoacetamide alkyne; IPIAA, isopropyl iodoacetamide 

alkyne. 

 

FragPipe-IonQuant and Skyline-Based Quantitation for Chemoproteomic Analysis 

With probes in hand, we sought to establish a robust platform for chemoproteomic dataset 

quantitation. We subjected HEK293T cell lysates to labeling with different ratios of the 

IPIAA-H and IPIAA-L probes (1:1 and 4:1) (Fig. 2A). The heavy- and light-labeled samples 

were then subjected to CuAAC to biotin-azide, SP3 sample cleanup, on-resin digest, 

enrichment on Neutravidin, and LC-MS/MS analysis. Guided by the precedent of recent 

reports, including our prior study (40) that showcased the compatibility of MSFragger - 

ultrafast, easy-to-use search algorithm - with chemoproteomics, we opted to use 

FragPipe - the MSFragger-powered computational pipeline for proteomics data analysis. 
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In a conventional ‘closed’ MSFragger search with FragPipe v16.0, we identified 8,350 

cysteine-containing peptides, 7,126 light-labeled, and 4,017 heavy-labeled peptides in 

one 1:1 (H:L) replicate. 

Next, we sought to identify a quantitation algorithm compatible with our SP3-Rox 

method, including for multi-cysteine containing peptides. While there are many available 

quantitation algorithms, we opted to compare FragPipe’s built-in IonQuant tool (29, 30) to 

the quantitation achieved by Skyline v21.1.0.146 (42). These packages were selected 

based on widespread adoption by the proteomics community and availability of options 

for compatibility with multi-cys containing peptides and with Field Asymmetric Ion Mobility 

Spectrometry (FAIMS) data (44). To quantify data in FragPipe, we customized a workflow 

(see Supplemental Information) that substantially increased the fraction of peptides 

quantified when compared to the default settings (supplemental Fig. S5). One key 

modification that was implemented was selection of the "use all mods in first search" that 

retains all modifications from the user's setting in the initial search, which enables 

improved mass calibration for peptides. Without this option, MSFragger only keeps 

common modifications in the first search; for samples with rare modifications, the number 

of high quality PSMs would be insufficient for mass calibration. 

We quantified 5748, 5736, and 8269 cysteines in the 1:1, 4:1, and 1:10 (H:L) 

datasets respectively with IonQuant (Figs. 2 and S4), where at least 93% of all peptides 

identified fall within ratio windows [1 > log2(H/L) > −1, 4 > log2(H/L) > 1, and 1 > log2(H/L) 

> -4], supporting accurate quantification of labeled cysteines. More variability in ratios was 

observed for the 1:10 datasets consistent with decreased accuracy for larger fold change 

MS1 chromatographic peak area ratios. We also observed a marked increase in the 
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fraction of peptides detected with only one isotopic label (e.g., only heavy-label identified) 

for higher reagent ratio combinations (Fig. 2C). We found for 1:10 samples, ∼1,200 

unique cysteines and for 4:1 samples ∼100 unique cysteines with single labels (Figs. 2C 

and S4). For these peptides, we set the ratio value to a maximal ratio of 20 or minimal 

ratio of 1/20 (log2 values of ± 4.32). 

To further benchmark and optimize the IonQuant quantification, we next 

established a pipeline for Skyline quantification of these model datasets. From FragPipe 

searches, interact.pep.xml files were imported into Skyline following the standard DDA 

analysis workflow for isotopically labeled dataset with the following modifications. As 

Skyline automatically places a heavy isotopic label on all modified cysteines, including 

carbamidomethylated residues and those modified by the IPIAA-H regent, quantification 

fails for peptides containing two or more modified cysteines (e.g., one carbamidomethyl 

residue and one IPIAA-residue). Therefore, a custom plugin was generated to remove 

the heavy mass from all carbamidomethylated residues. Accurate quantification of FAIMS 

data was achieved using the Ion Mobility settings (See Supplementary Information). While 

Skyline initially outperformed IonQuant in terms of absolute numbers of peptides 

quantified (supplemental Fig. S5), we found that this difference in performance could be 

eliminated by adjusting the IonQuant parameters by setting minimum scan and minimum 

isotopes required for feature detection to 1 (supplemental Fig. S5). With these changes, 

we observed similar quantification with Skyline and IonQuant using our 1:1 and 4:1 

datasets (Fig. 2B). 

As FAIMS-based separation of peptides has only recently been implemented for 

chemoproteomics experiments (40) the impact of FAIMS on quantitation of detected ions 
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in chemoproteomics experiments has not, to our knowledge, been explored. Therefore, 

our next step was to compare the relative intensities of peptide ratios of samples analyzed 

with and without FAIMS. After observing the increased ratio variability in the 1:10 

datasets, we opted to compare quantitation for the 1:10 samples analyzed with and 

without FAIMS. This comparison revealed FAIMS-associated ratio compression 

consistent with that of reported Stable Isotope Labeling by Amino acids in Cell culture 

experiments, with more pronounced compression evident for the higher ratio 1:10 

datasets in comparison to the 4:1 datasets (supplemental Fig. S4) (45). Interestingly, 

FAIMS nearly eliminates the large fraction of single-isotopic labeled quantified peptides 

in both our FragPipe and Skyline analysis (peptides with ratio L:H ratio values >3,000 in 

Skyline datasets) (Figs. 2C and S4). We also found that FAIMS data analyzed using 

FragPipe (mean ratio = −2.57) showed reduced ratio compression relative to Skyline 

quantitation with Ion Mobility settings (mean ratio= −1.79) (Fig. 2C), supporting the use 

of a FAIMS device coupled with IonQuant for quantitative chemoproteomic applications. 

 

FIG. 2. Quantification of IPIAA probes in various heavy to light ratios using IonQuant. A, workflow to 

assess the quantification of IPIAA probes. B, heavy to light intensity ratios from 1:1 and 4:1 IPIAA-H: IPIAA-

L mixtures aggregated from triplicate datasets (+FAIMS) using FragPipe coupled with IonQuant (FP) or 

ratios of integrated peak areas from ion chromatograms Skyline (SK), mean ratio values reported. C, 

FragPipe IonQuant ratio reproducibility with and without FAIMS using 1:10 IPIAA-H: IPIAA-L mixtures, 

mean ratio values reported. Dashed lines indicate ground-truth log2 ratio. Experiments were performed in 

triplicate for ± FAIMS comparisons and 4:1 comparisons and duplicate for 1:1 comparisons. Data available 
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in supplemental Table S1. FAIMS, field asymmetric waveform ion mobility spectrometry; IPIAA, isopropyl 

iodoacetamide alkyne. 

 

 

Single-Pot, Solid Phase-Enhanced Sample-Preparation for Identification of Relative 

Cysteine Oxidation and PTMProphet-Enabled Site-of-Labeling Localization With 

heavy- and light-IPIAA probes in hand and quantitation workflow established, we next 

developed our chemoproteomic redox platform. Motivated by the improved coverage that 

we had achieved previously with SP3 solid phase sample cleanup, we tested whether the 

SP3 method could be extended to measure cysteine oxidation state with the goal of 

harnessing SP3-enabled repeated binding and elution on resin to conduct sequential 

capping, reduction, and capping steps with the heavy and light IPIAA probes. 

We adapted the optimized workflow from our previous study to produce the SP3-

Rox workflow, shown in Figure 3A (additional methodological details are shown in 

supplemental Fig. S6). Initial samples subjected to labeling in nondenaturing conditions 

indicated only partial or incomplete labeling of reduced cysteines in comparison to 

denaturing conditions with apparent ratio values nonrepresentative of a reduced thiol 

proteome (supplemental Fig. S7) (46, 47). To ensure optimal labeling, the samples were 

subjected to labeling with IPIAA-L in 2M urea first to cap all reduced cysteines; labeled 

proteins were then bound to SP3 resin and washed to remove excess IPIAA-L. Following 

on-SP3 resin thiol reduction and a second round of SP3 desalting to remove excess 

reductant, all formally oxidized cysteines were capped with IPIAA-H. The samples were 

then conjugated by CuAAC to biotin-azide, and excess reagents were removed by 

subsequent wash steps using SP3 beads. After sequence-specific digest (trypsin) and 

enrichment on neutravidin resin, labeled peptides were analyzed by LC-MS/MS. Notably, 
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minimal lysis-induced oxidation was observed for both sonication and urea-based lysis 

(supplemental Fig. S8). 

SP3-Rox analysis of Jurkat cell lysates in biological triplicate yielded 7,805 

quantified cysteines in two or more replicates after filtering the data (Figs. 3, A and B and 

S9 and S10). SP3-Rox afforded robust (90–95%) enrichment of cysteine-containing 

peptides using this workflow, consistent with our previous study (40) (supplemental Fig. 

S11) and adequate peptide recovery from 400 μg input material (supplemental Fig. S12). 

Gratifyingly, and consistent with the aforementioned vetting of both Skyline and FragPipe 

quantitation, we observed a strong correlation between ratios reported for both methods, 

both with and without FAIMS (Figs. 3B and S10A). We also find that the median IonQuant 

H/L ratio is −3, (∼10% oxidation) (supplemental Fig. S9), which is consistent with 

previously reported values for the median oxidation state of proteinaceous cysteines (46, 

47). Analysis of annotated disulfides (UniProtKB) revealed a strong enrichment for higher 

heavy/light ratios anticipated for heavily oxidized thiols with a 3-fold increase in disulfide 

annotated cysteines for IonQuant log2(H/L) ratios > −3 (more than ∼10% oxidized) in 

comparison to log2(H/L) ratios < −3. Notable disulfides identified include IGF2R Cys161, 

TF Cys137, CD1C Cys120, and HLA-A Cys188. Many disulfides with lower heavy/light 

ratios were found to be primarily in redox-active motifs (e.g., thioredoxin, peroxiredoxin), 

which rationalizes the observed partial labeling by the IPIAA-L probe (Fig. 3B). We also 

observe modest FAIMS-induced ratio compression in comparison to samples run without 

FAIMS (supplemental Fig. S10B). To maintain consistency with previous studies, we 

provide both FragPipe reported ratios as well as a % oxidation metric in the proteomic 

datasets reported in supplemental Tables S2, S4, and S5. 
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Many redox-active cysteines are located in tryptic peptides that contain multiple 

cysteines. The accurate identification of the labeling site and quantification of the area 

ratio for these multi-cysteine containing peptides is confounded by several key factors. 

First, the default assumption of many software packages (e.g., MaxQuant and Skyline) is 

that all cysteines within a given peptide are labeled by the same variable modification. 

Therefore, for methods that use multiple labels such as the SP3-Rox method, the 

identification and quantification of multi-cysteine peptides frequently fail using these 

software packages. To fix this issue, we implemented a customized plugin for Skyline 

analysis to compare multi-cysteine peptide ratios with those quantified by IonQuant in 

FragPipe. Second, as is the case with all posttranslational modifications, and described 

in detail for phosphoproteomics, identification of the labeling site for peptides containing 

multiple possible amino acid labeling sites can be confounded by the uncertainty caused 

by incomplete coverage of b and y ions (48). The lack of confidence metrics for 

posttranslational modification site assignments in most search engines makes 

differentiating these sites of labeling more difficult. 

In contrast with other search algorithms, MSFragger has the flexibility to 

accommodate multiple unique modifications on cysteines. Six percentage of all unique 

peptides (over 450) quantified by the SP3-Rox method contain multiple cysteines (Fig. 

3C). Of these, ∼300 were found to contain light labeling together with carbamidomethyl 

modifications and only ∼15 with both light and heavy labels. Comparison of the ratios 

generated for multi-cysteine containing peptides quantified by IonQuant and Skyline 

revealed a strong correlation, consistent with similar performance of both packages (Figs. 

3D and S13). Analysis of individual Skyline MS1 peak areas for multi-cys peptides 
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revealed high concordance with FragPipe identified ratios. Notably, partially labeled 

peptides containing one carbamidomethyl modification were observed to have 

substantially reduced intensities compared to fully labeled peptides, consistent with near 

complete IPIAA labeling afforded by the SP3-Rox method (supplemental Fig. S13). 

Validated against Skyline, we proceeded to use IonQuant for all subsequent analyses. 

Using the PTMProphet tool (49) which is built into FragPipe and has recently been tailored 

to localize any assigned modifications, we assessed the probability score for localization 

and found that for most peptides, the localization probability is greater than 0.8 (Fig. 3E). 

Showcasing the accuracy of PTMProphet scoring, the known redox-active cysteine 

Cys152 in GAPDH was identified with a light labeling and with carbamidomethyl labeling 

at Cys156 with localization scores ranging from 0.86 to 0.99 for each site (50). Similarly, 

for the Cys169, Cys171 multi-cys peptide from LYPLA1 thioesterase, Cys171 showed 

preferential light labeling with a localization score of 0.93. In contrast, a multi-cys peptide 

from the IKZF1 DNA-binding protein was identified with more ambiguous localization 

scores for the nonactive site, zinc-finger cysteines Cys147 and Cys150 positions 

(supplemental Table S2) (51). 
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FIG. 3. Application of SP3-Rox with FragPipe-IonQuant to identify oxidized cysteines. A, workflow to 

assess the quantification of oxidation state ratios using SP3-Rox workflow. B, pairwise comparison of ratios 

quantified using FragPipe-IonQuant or Skyline aggregated from triplicate datasets; dark color indicates 

annotated disulfides, green color indicates annotated redox-active disulfides. C, comparison of single and 

multi-cysteine peptides aggregated from triplicate datasets. D, pairwise comparison of multi-cysteine 

peptide ratios using FragPipeIonQuant or Skyline aggregated from triplicate datasets. E, localization scores 

on multi-cysteine peptides for three replicate experiments. Experiments were performed in triplicate. Data 

available in supplemental Table S2. IPIAA, isopropyl iodoacetamide alkyne; SP3, single-pot, solid-phase-

enhanced sample-preparation. 

 

SP3-Rox Identification of Cysteines Sensitive to Reversible Oxidation Cysteine S-

nitrosylation has been implicated in numerous biological processes, spanning apoptosis, 

proliferation, and angiogenesis and contributes to the pathology of multiple diseases (e.g., 

Alzheimer’s and Parkinson’s disease) as well as host immune responses (7). Motivated 

by these wide ranging and significant biological impacts, we opted to apply our workflow 

to identify reversibly oxidized cysteines prone to S-nitrosation by GSNO (Fig. 4A). 

Immortalized T lymphocyte cell (Jurkat) proteome was treated with 1 mM GSNO or 

vehicle followed by SP3-Rox sample preparation to establish our method using samples 

with robust labeling. We identified 15,226 unique sites and 4,479 unique proteins using 
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our workflow. 4,060 unique sites were identified in all four replicates per condition. The 

ratio difference between treated and control samples was then calculated for these 4,060 

high confidence cysteines (Fig. 4B). Two thousand seventy two cysteines showed 

significant ratio changes (Difference >2, p-value < 0.5) sensitivity to GSNO labeling (Fig. 

4C). Of these residues, a number with high ratio changes have been previously reported 

to be involved in the oxidative stress response including superoxide dismutase (SOD1 

Cys147, ∼6.3), parkin 7 (PARK7 Cys106, ∼4.7), and thioredoxin (TXN Cys73, ∼3.7) (Fig. 

4C) (52, 53, 54). In particular, parkin 7 Cys106 oxidation is necessary for mitochondrial 

relocalization and protection against neuronal death (3, 55). The majority of Swiss-Prot 

reviewed and annotated S-nitrosocysteines identified in our dataset present significant 

and high ratio changes (Fig. 4C) (56). 

Looking beyond proteins implicated in cellular response to oxidative stress, we 

next assessed whether other subsets of proteins were enriched for harboring redox 

sensitive cysteines. Gene ontology enrichment analysis (57, 58) of proteins exhibiting 

significant high ratio-change cysteines (residues highlighted in green, Fig. 4B) did not 

reveal enrichments in redox pathways, possibly due to the excess of GSNO (1 mM) used 

in our labeling study (supplemental Fig. S14). Immune-relevant proteins have been found 

to harbor numerous reactive and ligandable cysteines (59). Consistent with these 

findings, we uncovered a number of immune-relevant proteins containing GSNO-

sensitive cysteines (supplemental Table S3). 

Given that treatment with somewhat superphysiological concentrations of GSNO 

could easily afford nonspecific cysteine oxidation, we next asked whether SP3-Rox could 

stratify the relative GSNO sensitivity of individual cysteines. Across a panel of 50 proteins 
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analyzed that all contain ≥ 6 quantified cysteines with significantly different ratio changes, 

we find that nearly all show preferential labeling of one or only a handful of cysteines 

across all residues detected (green, Fig. 4D). One notable exception is CNBP in which 

nearly all identified cysteines exhibit elevated ratios, consistent with nitrosylation. As 

CNBP contains multiple zinc finger motifs, we speculate that the observed GSNO 

promiscuous labeling is likely indicative of cysteine-modification-induced protein 

unfolding. 

As redox-sensitive cysteines are frequently found in close proximity, both in 

sequence and 3D space, to additional cysteines, we hypothesized that the GSNO-

sensitive cysteine subset would be enriched for peptides that contain multiple cysteines. 

We find that, of the sites we annotated as GSNO sensitive (Difference >2, p-value < 0.05), 

6% belong to general multi-cys peptides (supplemental Fig. S15A) in comparison to 5% 

of sites we established as insensitive (Difference <2 or p-value > 0.05) (supplemental Fig. 

S15B). We then extended this analysis to the subset of peptides that contain a putative 

redox motif (either ‘CXXC’ or ‘CXXXC’). In the GSNO-sensitive subset (green), nearly 

40% of the multi-cys peptides contain a redox motif (supplemental Fig. S15C) compared 

to 28% in the insensitive subset (gray) (supplemental Fig. S15D). While we acknowledge 

that the relatively modest number of putative redox motif-containing peptides may 

preclude generalization of our findings, we believe that this observed enrichment 

highlights the importance of considering multi-cys motifs in quantification pipelines, 

particularly those aimed at profiling redox-sensitive cysteines. 
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FIG. 4. Application of SP3-Rox to identify redox-sensitive cysteines. A, workflow to assess cysteines 

sensitive to nitrosation by GSNO. B, quantification of differential oxidation states. C, difference in mean 

log2 ratio upon GSNO treatment prior to labeling (Two-sample t test; green are significant Difference >2, 

p-value < 0.05 and dark gray are Swiss-Prot annotated S-nitrosocysteines; p-values adjusted using 

Benjamini– Hochberg procedure). D, heatmap showing log2 ratios of cysteines in multi-cys detected 

proteins, significant values bolded in gray. Experimental duplicates with two technical replicates (n = 4) 

were used for each treated and control condition. Data available in supplemental Table S4. GSNO, S-

nitrosoglutathione; IPIAA, isopropyl iodoacetamide alkyne; SP3, single-pot, solid-phase-enhanced sample-

preparation. 

 

SP3-Rox for Identification of Cell-State–Dependent Redox-Sensitive Cysteines 

Reactive oxygen species have been extensively implicated in the activation of peripheral 

T cells. T cell activation requires ROS production; however, inappropriately high levels of 

ROS are proinflammatory and have been linked to DNA damage and cell death (60, 61, 

62, 63, 64). Several oxidation-sensitive cysteines have been implicated in the regulation 

of appropriate T cell function (e.g., residues in NRF2 and NFKB) (65, 66). 
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As T cells produce a burst of ROS during cellular activation, we postulated that a 

comparison of resting (unstimulated) versus activated (anti-CD3 and anti-CD28 

stimulated) T cell redoxomes would reveal changes in the oxidation state of cysteines 

involved in cellular activation. To test this model, T cells isolated from healthy donor blood 

were subjected to the SP3-Rox workflow either before or after stimulation with 

immobilized anti-CD3 and anti-CD28 antibodies (Fig. 5A). 

Using the IonQuant workflow illustrated in Figure 3A for stimulated and resting T 

cells, we quantified 13,411 total cysteines including 4,061 high confidence cysteines 

identified in all four replicates per condition. We also find 243 multi-cysteine containing 

peptides (∼5%) with varying and quantifiable ratios (supplemental Fig. S16). We found 

55 cysteines with significant changes in cysteine redox state during activation (Difference 

< -1.5 or >1.5) (Fig. 5, A and B). As expected, we primarily observe increases in mean 

ratios indicating an oxidizing environment relative to unstimulated T cells. As in the GSNO 

analysis, we detect many proteins with multiple quantified cysteines, including a subset 

that exhibit high difference values (Fig. 5C). Comparison to the prior chemoproteomic 

inventory of ligandable cysteines in T cells revealed 33 ligandable and redox-sensitive 

cysteines (Difference >1), with several high ratio-change cysteines including RRP1B 

Cys197 and RPS6KA5 Cys475, which provides additional clues for prioritization of 

residues for future small molecule probe development campaigns (Fig. 5B) (59). 

Gratifyingly, we identified a number of cysteines in proteins with known 

involvement in adaptive immune response and T cell activation. Consistent with the 

important contributions of protein kinases, particularly serine-threonine kinases in T cell 

function (67), we detect cell-state–dependent cysteine-oxidation changes in multiple 
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kinase cysteines demonstrating changes in oxidative state with differences in the 1.5 to 

2.0 range. For example in PRKCQ, which is implicated in T cell receptor signaling, we 

identify Cys193 (Difference = 1.77) (68). In PRKDC, the DNA-dependent kinase involved 

in DNA damage repair and telomere stability, Cys1312 shows increased oxidation during 

T cell activation (Difference = 1.61) (Fig. 5B) (69). Interestingly, a prior study of cysteine 

dimethyl-fumarate sensitivity in native and activated T cells identified PRKDC (Cys4045) 

and PRKCQ (Cys14/17 and Cys322) (70). We also identify serine protein kinase ATM 

Cys2021 (Difference = 1.73) and bifunctional polynucleotide phosphatase/kinase PNKP 

Cys445 (Difference = 2.34) implicated in DNA damage response critical to T cells (71, 

72). 

Among the cysteines demonstrating very high ratio changes (>2.5) is GATOR 

complex protein MIOS Cys276 (Difference = 3.00), which indirectly positively regulates 

the mTORC pathway as well as GCN1 Cys1482 (Difference = 3.32), a positive regular of 

the EIF2AK4 kinase pathway, and E2F1 activator RRP1B Cys197 (Difference = 2.65) (73, 

74, 75). We observe many nonkinase proteins also linked to T cell regulation and viral 

and tumor immune response such as SHMT2 Cys412, ITPKB Cys693, ZC3HAV1 

Cys581, CTPS1 Cys216, and SERPINB9 Cys98 (76, 77, 78, 79, 80). Several proteins 

demonstrating high ratio changes do not have direct links to T cell activation and may 

play roles not yet elucidated. We also see a small number of cysteines with more reduced 

redox state upon stimulation including GADD45GIP1 Cys124, a negative regulator of cell-

cycle progression (81), which is more reduced in activated T cells and upregulated during 

activation (82) as well as IRF2BP2 Cys521, an important transcriptional repressor 

typically down-regulated during T cell activation (83). 
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Altered protein abundance can complicate the interpretation of putative oxidative 

modification events identified by workflows requiring inter-sample ratio comparisons such 

as IsoTOP-ABPP and adaptations to the OxICAT method. A key advantage of the SP3-

Rox method is its general insensitivity to abundance changes, even for proteins with only 

single cysteines identified. To further assess the ability of the SP3-Rox method to 

delineate oxidative modifications in the presence of expression changes, we analyzed 

unstimulated and activated T cell transcriptome profiling datasets from Zhao et al. to 

determine if significantly high ratio-change cysteine residues in Figure 5B reside in genes 

that show differential expression during activation. Comparing 0 h to 72 h differential 

expression datasets, we find that the subset of genes with high ratio-change (Difference 

>1.5) cysteines (green) show insignificant difference in the distribution of log2(R) values 

from all other genes (Fig. 5D). 

Gene ontology-analysis of proteins that harbor cysteines with significant difference 

>1.5 revealed an enrichment for proteins involved in peptidyl-serine phosphorylation and 

telomere maintenance, consistent with well-established literature on loss of telomere 

length during T cell activation (84, 85) (Fig. 5E). Many identified cysteines reside in or 

near ATP-binding sites or enzyme active sites such as SQOR, which catalyzes the 

oxidation of hydrogen sulfide with active site Cys201 (Difference = 1.76), functioning as 

part of the catalytic disulfide bond (86) with Cys379. We also identify CAMK2D Cys290 

(Difference = 2.06) near the calmodulin-binding site 291 to 301, which is intriguing given 

CAMK2D’s roles in T cell proliferation (Fig. 5, F and G) (87). 
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FIG. 5. Application of SP3-Rox to identify redox changes during T cell maturation. A, workflow to 

assess redox state in resting and activated T cells. B, difference in mean log2 ratio upon activation (Two-

sample t test, green are significant Difference >1.5, p-value < 0.05; darker gray points are ligandable 

cysteines from Vinogradova et al.) (left), including immune-relevant cysteines indicated (right). C, heatmap 

showing log2 ratios of cysteines for proteins with multiple cysteines with at least one residue with significant 

Difference >1.5, significant values bolded in gray. D, comparison of differential expression for cysteines 

with Difference >1.5, p-value < 0.05 and all other cysteines using transcriptome datasets from Zhao et al 

(Mann-Whitney U test, p-value = 0.52). E, gene ontology-analysis of cysteines with Difference >1.5, p-value 

< 0.05 from panel B. F, crystal structure of SQOR indicating FAD-binding site and detected Cys201 and 

Cys379 (PDB 6OIB).G, crystal structure of CAMK2D indicating detected Cys290 and calmodulin-binding 

site (yellow) (PDB 5VLO). Experimental duplicates with two technical replicates (n = 4) were used for each 

treated and control condition. Data available in supplemental Table S5. SP3, single-pot, solid-phase-

enhanced sample-preparation. 

 

Discussion 

Cysteine oxidative modifications are known to regulate most biological processes. 

Consequently, methods to determine the sites and fractional occupancy of thiol side chain 

modifications are widely applicable. Many such techniques are available including 

OxICAT, Cys-BOOST, and adaptations of IsoTOP-ABPP such as QTRP (10, 12, 87). 
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Near ubiquitous-shared features of these methods are the requirement for multiple rounds 

of sample decontamination (typically accomplished by precipitation or size exclusion) and 

for relatively large amounts of input material and for costly and complex isotopic reagents. 

Addressing these challenges, here, we combined new cost-effective isotopically labeled 

cysteine-reactive probes with SP3 sample cleanup to develop the SP3-Rox method, 

which is capable of quantifying cysteine oxidation state for small sample sizes, including 

for primary T cells derived from healthy donors. 

To enable this method, we built upon our SP3 chemoproteomics sample cleanup 

workflow to incorporate two rounds of cysteine labeling, first capping all reduced cysteines 

and then all oxidized cysteines, with light and heavy isotopically differentiated 

iodoacetamide probes, respectively (40). While our method derives substantial inspiration 

from the pioneering OxICAT platform and workflows developed by Weerpana et al., the 

SP3-Rox method offers several clear advantages over these prior techniques. First, our 

reduced cost isotopically labeled IAA-reagents make subjecting samples to higher 

concentrations of reagents required for near complete capping of cysteines less cost 

prohibitive. Second, our use of SP3 sample cleanup streamlines standard redox 

preparation workflows by eliminating requirements for sample precipitation or other more 

laborious decontamination steps that frequently cause substantial material loss. As SP3 

allows for repeated rounds of high yielding binding and elution to carboxyl-coated 

magnetic beads, samples can readily be capped, reduced, capped, and subjected to click 

chemistry, all in the same pot with minimal manipulation. 

Critical to the success of the SP3-Rox method was our application of the FragPipe 

computational pipeline for highly sensitive peptide identification, as well as rigorous 
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vetting of the FragPipe's built-in quantification module IonQuant by comparison with 

Skyline quantification. While proteomics tools such as FragPipe and Skyline have been 

widely adopted by the proteomics community, their use in chemoproteomics and redox 

proteomics has been limited to a handful of examples (40, 88, 89). Building upon our prior 

findings that MSFragger is compatible with search of chemoproteomics data generated 

using a FAIMS device for online fractionation, we first confirmed that search of samples 

labeled with the heavy and light IAA probes at a 1:1 stoichiometry afforded comparable 

PSMs for light- and heavy-labeled peptides. Next, we evaluated the performance of 

IonQuant and Skyline for quantification of samples labeled with different ratios to IAA 

probes (1:1, 4:1, 1:10), which revealed comparable performance for both quantification 

methods. Comparison of quantification for samples analyzed with and without FAIMS 

revealed improved quantification with FAIMS, albeit with modestly increased ratio 

compression. Of note, we find that FragPipe-processing affords less substantial FAIMS-

induced compression when compared to Skyline. As chemoproteomics workflows have 

only recently incorporated online fractionation methods such as FAIMS, our work 

highlights the utility of FAIMS for simultaneously improving coverage and quantification 

of peptides detected in chemoproteomics studies. To enable widespread adoption of 

these free and versatile search and quantification tools by the chemoproteomics 

community, we provide a workflow file that automates implementation of our analysis 

pipeline (supporting file Sp3-Rox.workflow), and we include detailed step-by-step 

methods for our data analysis workflows. 

We then combined our isotopically labeled IAA reagents, data analysis pipeline, 

and SP3 cleanup to generate the SP3-Rox method. Application of this method to Jurkat 
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cell lysates identified 9,687 cysteines, including 219 known disulfides. In lysates 

subjected to 1 mM of the oxidant GSNO, we identified 2,072 oxidant-sensitive cysteines; 

follow-up studies should consider a dose-range of GSNO concentrations to mimic native 

cellular environments. One potential limitation of the SP3-Rox method is its reliance on a 

ratio-to-ratio comparison between oxidant and vehicle-treated samples, which may 

reduce the coverage of cysteines found in tough-to-detect peptides, including low 

abundance sequences and those that ionize poorly. This limitation is in part mitigated by 

the high coverage of the SP3-Rox method, which is achieved by our combination of 

Orbitrap Eclipse mass spectrometer (Thermo Scientific), FAIMS online fractionation, and 

enhanced coverage afforded by SP3 sample cleanup. One potential advantage of using 

relative ratio changes is the ability to control for any artificial oxidation introduced in 

sample preparation steps. The small and comparable amounts of methionine oxidation 

observed here for samples generated using two different lysis methods (sonication versus 

freeze/thaw lysis in urea) supports the generally minimal impact of artificial oxidation on 

our analyses (supplemental Fig. S8). In follow-up studies measuring general oxidation, 

steps should be taken to avoid artificial oxidation such as using mild and inactivating lysis 

conditions when possible. 

Use of alternative methods, such as isoTOP-ABPP, which rely on competitive 

decrease in IAA labeling upon cysteine oxidation, provide a complementary alternative to 

the SP3-Rox method, with the possible advantage of increased coverage of tough-to-

detect residues. However, such methods can be confounded by changes in protein 

abundance. In contrast, the SP3-Rox method and other related platforms should prove 

largely insensitive to expression-level changes, with the exception of complete activation 
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or inactivation of a gene, and thus are well suited to applications where substantial 

proteome remodeling is expected. Furthermore, we expect that integration of the SP3-

Rox method with probes tailored to capture specific oxidative modifications (e.g., recently 

repurposed Wittig reagents (90)) likely will capture modification sites missed by in vitro 

labeling studies, which should prove particularly relevant for more labile or transient 

modifications. 

Multiple redox active cysteines are often found in close proximity, both in peptide 

sequence and 3D space. Many search and quantification algorithms are not well 

equipped to handle peptides containing multiple modifications. Addressing this issue, 

here, we show that FragPipe is capable of identifying multi-cysteine containing peptides 

with two or more different modifications and that IonQuant and Skyline both accurately 

quantify isotopic ratios of labeled peptides. We find that PTMProphet can be applied to 

score the confidence of labeling sites. Collectively, these findings provide a toolbox for 

the chemoproteomics community to enable rapid and accurate search and quantitation 

of chemoproteomics datasets, including for multi-cysteine containing peptides. While 

these multi-cysteine peptides represent a smaller fraction of all data, given their potential 

biological relevance, we anticipate that this localization data should prove useful for future 

studies aimed at functional annotation of the redox-sensitive cysteinome. Future efforts 

will include the incorporation of PTMProphet localizations in IonQuant quantification 

results. 

Showcasing the utility of the SP3-Rox method, we apply our platform to identify 

cell-state dependent changes in cysteine oxidation. We find that during T cell activation, 

a number of cysteines show increased oxidation during cellular activation. As prior studies 
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have demonstrated the contributions of low-level ROS to T cell activation and 

proliferation, we expect that a subset of the residues identified here are likely functional 

regulators of cellular activation. Although our workflow controls for protein abundance 

changes upon activation, we further used unmatched RNA-seq data to rule out 

confounding expression changes of genes harboring identified residues; future studies 

would benefit from matched transcriptomic data. The clinical relevance of cysteine-

reactive molecules as immunomodulators points to future opportunities in the design and 

synthesis of tailored compounds aimed at targeting such functional residues (91). Future 

efforts to functionally validate the impact of these oxidative modifications should help to 

stratify functional and bystander oxidative modifications. 
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Chapter 2 Supporting Information:   

SP3-enabled rapid and high coverage chemoproteomic identification of cell-state 

dependent redox-sensitive cysteines   

 
Supplementary Figures 

  
Figure S1. Evaluation of isotopic iodoacetamide alkyne probes by in-gel fluorescence. 
Gel-based visualization of gradient IPIAA lysate labeling followed by chase with 5 µM IA-
rhodamine in PBS buffer.  Loading control was generated using InstantBlue Coomassie 
Protein Stain.  
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Figure S2. Evaluation of isotopic iodoacetamide alkyne probes by in-gel fluorescence. 
Gel-based visualization of 2mM IPIAA lysate labeling followed by chase with 5 µM IA-
rhodamine in ~pH7 and ~pH8 buffers. Loading control was generated using InstantBlue 
Coomassie Protein Stain.  
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Figure S3. Evaluation of isotopic iodoacetamide alkyne probes by MS. Cysteine labeling 
with 2mM IPIAA probe followed by chase with 20mM IA by MS analysis. Peptides 
identified with indicated label as a fraction of the total cysteine containing peptides 
identified. Experiments were performed in triplicate.  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 56 
 
 
 

  

 

  

Figure S4. Comparison of quantification with and without FAIMS for 4:1, H:L samples 
using FragPipe-Ion Quant (FP). Experiments were performed in triplicate (Figure 2). Data 
provided in Table S1.  

  

Figure S5. Comparison of IonQuant quantification using previous FragPipe iterations. 
Details of parameters outlined in Supplementary Information. Statistical significance was 
calculated using unpaired Student’s t-test, ** p < 0.01. Experiments were performed in 
triplicate (Figure 3). Data provided in Table S2.  
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Figure S6. SP3 workflow detailing steps and timing.  

  

   

  

  

  

  

 A  B  

  

  

Figure S7. Histogram of FragPipe ratios converted to % oxidation generated using Figure 
3A workflow +/- heat (65C) prior to light labeling. Red lines indicate median values: A) 
49.7%, no heat and B) 31.5%, with heat denaturation. Data provided in Table S2.  
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Figure S8. Comparison of methionine oxidation from urea and sonication lysis in 
HEK293T cells. Data provided in Table S6.  

  

  

  

  

Figure S9. Histogram of FragPipe ratios converted to % oxidation generated from Figure 
3B data using denaturing conditions. Median value indicated in red: 10.5%. Data provided 
in Table S2.  
  

  

  

  



 59 
 
 
 

  

  

  

 

   

  

Figure S10. Comparison of FragPipe ratios Figure 3A workflow +/- FAIMS. (A) Pairwise 
comparison of Skyline and Fragpipe ratios corresponding to samples showing in Figure 
3B analyzed without FAIMS (-FAIMS) (B) Distribution of ratios +/- FAIMS. Experiments 
were performed in triplicate. Data provided in Table S2.  
  

  

  

Figure S11. Enrichment efficiency of cysteine-containing peptides from 3 replicate 
experiments using SP3-Rox workflow (Figure 3B). Data provided in Table S6.  
  

  

  

  A   B   

- FAIMS   



 60 
 
 
 

  

  

  

Figure S12. Recovered amount of peptide following SP3-Rox workflow using input of 
400 g protein in 3 replicate samples per cell line.  
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Figure S13. MS1 peak areas of representative multi-cysteine containing peptides in ZFPL 
(top) and PSA6 (bottom). Indicated peptides with detection of only 1 heavy/light label and 
1 carbamidomethylation (CAM) or 2 heavy/light labels per pair of precursors. FragPipe 
ratio is reported log2(H/L) ratio.  
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Figure S14. GO-analysis of GSNO-sensitivity datasets. Enriched GO terms of significant 
and high ratio-change (Difference > 2, p-value < 0.05) sites (green) and GO terms for all 
other sites (grey). Data aggregated from triplicate experiments (Figure 4B)  
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Figure S15. Multi-cysteine peptide analysis from Figure 4 data (A) Fraction of quantified 
peptides containing multiple cysteines of those with a significant difference in log2ratios > 
2 upon GSNO treatment (green) (B) Fraction of quantified peptides containing multiple 
cysteines for all other sites (grey) (C) Fraction of multi-cys peptides containing redox 
motifs of those with a significant difference in log2ratios > 2 upon GSNO treatment (green) 
(D) Fraction of multicys peptides containing redox motifs for all other sites (grey). Data 
aggregated from triplicate experiments (Figure 4B). Data aggregated from Table S4.  
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Figure S16. Distribution of multi-cys peptide ratios from peptides quantified in all T cell 
experiments. Ratios shown are Log2(H/L). Data provided in Table S5.  
 

 
Methods  

  

General Synthetic Methods. General Methods. All reactions were performed in oven 

dried glassware under an inert atmosphere unless stated otherwise. Silica gel P60 

(SiliCycle) was used for column chromatography and SiliCycle 60 F254 silica gel 

(precoated sheets, 0.25 mm thick) was used for analytical thin layer chromatography. 

Plates were visualized by fluorescence quenching under UV  light or by staining with 

iodine. Other reagents were purchased from SigmaAldrich (St. Louis, MO), Alfa Aesar 

(Ward Hill, MA), EMD Millipore (Billerica, MA), Fisher Scientific (Hampton, NH), Oakwood 

Chemical (West Columbia, SC), Combi-blocks (San Diego, CA), Click Chemistry Tools 

(Scottsdale, AZ) and Cayman Chemical (Ann Arbor, MI) and used without further 
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purification. 1H NMR and 13C NMR spectra for characterization of new compounds and 

monitoring reactions were collected in CDCl3 or C6D6(Cambridge Isotope Laboratories,  

Cambridge, MA) on a Bruker AV 400 or 500 MHz spectrometer in the Department of 

Chemistry & Biochemistry at University of California, Los Angeles. All chemical shifts are 

reported in the standard notation of parts per million using the peak of residual proton 

signals of the deuterated solvent as an internal reference. Coupling constant units are in 

Hertz (Hz). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, 

triplet; q, quartet; m, multiplet; dd, doublet of doublets; dt, doublet of triplets.  

  

  

  

Scheme S1: A. Synthesis of heavy and light iodoacetamide alkyne probes. a. Acetone 

(13C or 12C), NaBH3CN or NaBD3CN, CH2Cl2/MeOH (2:1), rt   b. Chloroacetyl chloride, 

NEt3, c. NaI, acetone, CH2Cl2, 6.2% yield for 4 over 3 steps, 11% yield for 5 over 3 steps.  

  

   

2-Iodo-N-isopropyl-N-(prop-2-yn-1-yl)acetamide (4).  
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To a solution of propargyl amine (1.16 mL, 18.2 mmol, 1.1 equiv) in dichloromethane (30 

mL, 0.55 M) was added acetone (1.22 mL, 16.5 mmol, 1 equiv) at room temperature. The 

solution was stirred at room temperature for 30 min and then sodium 

triacetoxyborohydride (4.62 g, 19.8 mmol, 1.2 equiv) was added in several portions. The 

solution was stirred for 16 h at room temperature and was then quenched with 10 mL 

saturated NaHCO3 (aq). The organic solvent was removed and the aqueous phase was 

then extracted with dichloromethane (2 x 10 mL) followed by extraction with EtOAc (2 x 

10 mL). The combined organic layers were dried over Na2SO4 and then concentrated to 

provide the crude reductive amination product as a yellow oil. This crude mixture was 

carried on directly to the acylation step:  

   

The crude amine from the reductive amination step was dissolved in dichloromethane 

(30mL) and cooled to 0 °C. NEt3 (3.8 g, 24.8 mmol, 1.5 equiv) was added followed by 

chloroacetyl chloride (2.17 g, 24.8 mmol, 1.5 equiv) dropwise. A precipitate formed within 

seconds of addition of chloroacetyl chloride. The reaction was allowed to warm to room 

temperature and then stirred for 30 min. It was then quenched with 10 mL saturated 

NaHCO3 (aq) and diluted with dichloromethane (10mL). The aqueous phase was 

extracted with dichloromethane (3 x 15 ml). The combined organic phases were dried 

over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product 

was purified through a silica plug (10 → 20 % EtOAc/Hexanes) to yield 430 mg of 

chloroacetamide as a yellow oil, which was impure by 1H NMR. We elected to carry this 

impure product through the final iodination step:  
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To a solution of 360 mg of light chloroacetamide 2 dissolved in acetone (10 mL, 2M) was 

added NaI (1.5 g, 10.4 mmol, 5 equiv) at room temperature. A brown precipitate formed 

within seconds of addition of NaI. The reaction was stirred for 30 min at room temperature 

and was then directly diluted with 5 mL saturated NaCl(aq). The aqueous phase was 

extracted with EtOAc (3 x 5 mL). The combined organic phases were dried over 

anhydrous Na2SO4 and concentrated under reduced pressure. The crude iodoacetamide 

was then purified by silica gel flash chromatography (10 → 20 % EtOAc/hexanes) to afford 

the light iodoacetamide 4 as a yellow oil (270 mg, 6.2% yield over 3 steps): 1H NMR (400 

MHz, Benzene-d6) δ 4.71 (hept, J = 6.7 Hz, 1H), 3.71 (s, 1H), 3.53 (s, 1H), 3.40 (s, 2H), 

3.22 (s, 1H), 1.73 (m, 1H), 0.80 (d, J = 6.8 Hz, 6H). 13C NMR (101 MHz, Benzene-d6) δ 

(a mixture of two rotamers) 167.0, 166.3, 128.1, 81.1, 80.2, 72.3, 70.6, 50.3, 46.2,  32.4, 

29.7, 20.5, 19.4, -2.00, -3.24. HRMS (ESI): m/z calc’d for C8H13INO [M+H]+: 266.0042, 

found 266.0065.  

  

  

2-iodo-N-(prop-2-yn-1-yl)-N-(propan-2-yl-1,2,3-13C3-2-d)acetamide (5). To a solution 

of propargyl amine (384 µL, 6.0 mmol, 1.1 equiv) in dichloromethane (10 mL, 0.55 M) was 

added Acetone-13C3 (333 mg, 5.5 mmol, 1 equiv) at room temperature. The solution was 

stirred at room temperature for 30 min and then  sodium cyanoborodeuteride (431 mg, 
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6.5 mmol, 1.2 equiv) was added in several portions. The solution was stirred for 16 h at 

room temperature and was then quenched with 5 mL saturated NaHCO3 (aq). The 

organic solvent was removed and the aqueous phase was then extracted with 

dichloromethane (2 x 10 ml) followed by extraction with EtOAc (2 x 10 mL). The combined 

organic layers were dried over Na2SO4 and then concentrated to provide the crude 

reductive amination product as a yellow oil. This crude mixture was carried on directly to 

the acylation step:  

   

The crude heavy amine from the reductive amination step was dissolved in 

dichloromethane (10 mL) and cooled to 0 °C. NEt3 (1.14 mL, 8.2 mmol, 1.5 equiv) was 

added followed by chloroacetyl chloride (644 g, 8.2 mmol, 1.5 equiv) dropwise. A 

precipitate formed within seconds of addition of chloroacetyl chloride. The reaction was 

allowed to warm to room temperature and then stirred for 30 min. It was then quenched 

with 5 mL saturated NaHCO3 (aq) and diluted with dichloromethane (5 mL). The aqueous 

phase was extracted with dichloromethane (3 x 10 ml). The combined organic phases 

were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The 

crude product was purified through a silica plug (10 → 20 % EtOAc/Hexanes) to yield 330 

mg of heavy chloroacetamide as a yellow oil, which was impure by 1H NMR. We elected 

to carry this impure product through the final iodination step:  

   

To a solution of 140 mg of heavy chloroacetamide 3 dissolved in acetone (5 mL, 0.16 M) 

was added NaI (591 mg, 3.9 mmol, 5 equiv) at room temperature. A brown precipitate 

formed within seconds of addition of NaI. The reaction was stirred for 30 min at room 
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temperature and was then directly diluted with 5 mL saturated NaCl(aq). The aqueous 

phase was extracted with EtOAc (3 x 5 mL). The combined organic phases were dried 

over anhydrous Na2SO4 and concentrated under reduced pressure. The crude 

iodoacetamide was then purified by silica gel flash chromatography (10 → 20 % 

EtOAc/hexanes) to afford the heavy iodoacetamide 5 as a yellow oil (74 mg, 11% yield 

over 3 steps): 1H NMR (400 MHz, Benzene-d6) δ (a mixture of rotamers) 3.78 – 3.66 (m, 

1H), 3.52 (s, 1H), 3.44 – 3.32 (m, 1H), 3.21 (s, 1H), 1.81 – 1.66 (m, 1H), 1.05 – 0.88 (m, 

3H), 0.68 – 0.57 (m, 3H).13C NMR (101 MHz, C6D6) δ (13C spectrum exhibits complex 

splitting due to the presence of deuterium in the molecule) 174.6, 128.3, 128.1, 127.8, 

50.7, 50.5, 50.4, 50.2, 50.0, 49.8, 49.6, 47.2, 47.0, 46.9, 46.6, 46.5, 46.4, 46.3, 46.1, 46.1, 

45.9, 45.7, 20.81, 20.45, 20.4, 20.3, 20.0, 19.9, 19.7, 19.4, 19.3, 19.0, 18.9, -6.7. HRMS 

(ESI): m/z calc’d for C513C3H12DINO [M+H]+: 270.0205, found 270.0197.  

  

Compounds 6 (IAA) and 7 (biotin-azide) were prepared as previously reported (43). 

Rhodamineazide was purchased from Click Chemistry Tools (AZ109-5).  

  

Cell culture and preparation of cell lysates. Cell culture reagents including Dulbecco’s 

phosphate-buffered saline (DPBS), Dulbecco’s modified Eagle’s medium (DMEM)/high 

glucose media, Roswell Park Memorial Institute (RPMI) media, trypsin-EDTA and 

penicillin/streptomycin (Pen/Strep) were purchased from Fisher Scientific. Fetal Bovine 

Serum (FBS) were purchased from Avantor Seradigm (lot # 214B17). All cell lines were 

obtained from ATCC and were maintained at a low passage number (< 20 passages). 

HEK293T (ATCC: CRL-3216) cells were cultured in DMEM supplemented with 10% FBS 
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and 1% antibiotics (Penn/Strep, 100 U/mL). Jurkat cells were cultured in RPMI---Media 

was filtered (0.22 μm) prior to use. Cells were maintained in a humidified incubator at 37 

°C with 5% CO2. Cells were harvested by centrifugation (4500g, 5 min, 4 °C) and washed 

twice with cold DPBS. Cell pellets were then lysed with sonication (amp=10, 10 x1 sec 

pulses) or lysed in 6M urea with one freeze/thaw cycle and clarified by briefly centrifuging 

(4500g, 1 min).  Blood from a healthy donor was obtained from UCLA/CFAR Virology 

Core (5P30 AI028697) after informed consent. After Trima filter isolation, peripheral blood 

mononuclear cells (PBMCs) were purified over Ficoll–Hypaque gradients (Sigma-Aldrich) 

and T cells were purified via negative selection with magnetic beads (EasySep Human T 

Cell Iso Kit, 17951, STEMCELL). The purified T cells were washed with sterile PBS. 

Unstimulated cells were harvested by centrifugation. The remaining cells were then 

resuspended in RPMI-1640 supplemented with FBS, penicillin, streptomycin and 

glutamine (2 million cells per ml) and 200,000 cells per well were seeded on non-treated 

tissue culture, 96-well transparent plates that had been coated with anti-CD3 (1:200, 

BioXcell) and anti-CD28 (1:500, Biolegend) in PBS (100 μl per well). After 72h, the cells 

were then harvested, wasted with PBS and the cell pellets lysed by sonication in PBS and 

proteomics samples prepared as described below. The lysates were then transferred to 

a new microcentrifuge tube. Protein concentrations were determined using a BioRad DC 

protein assay kit from Bio-Rad Life Science (Hercules, CA) and the lysate diluted to the 

working concentrations indicated below.  

  

Gel-based proteome labeling with IPIAA probes. HEK293T proteome (25 µL of 2 

mg/mL) was labeled with 30 µM IPIAA-L (4), IPIAA-H (5), or IAA (6) (0.75 µL of 1 mM 
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stocks) for 1 hour. CuAAC was performed with rho-azide (8) (1 μL of 1.25 mM stock in 

DMSO, final concentration =  

50 µM), TCEP (0.5 μL of fresh 50 mM stock in water, final concentration = 1 mM), TBTA 

(1.5 μL of 1.7 mM stock in DMSO/t-butanol 1:4, final concentration = 100 µM), and CuSO4 

(0.5 μL of 50 mM stock in water, final concentration = 1 mM). Samples were allowed to 

react for 1h at RT. All samples were denatured (5 min, 95 °C) and analyzed by SDS-

PAGE using Bio-Rad Criterion TGX Stain-Free. Loading control images were obtained 

after Coomasie staining.   

  

IA-rhodamine chase gels. Jurkat proteome (25 µL of 2 mg/mL) lysed in PBS/2M urea or 

Tris/2M urea were labeled with 5 mM IPIAA-L (4), IPIAA-H (5), IAA (6), or vehicle (2.5 µL 

of 50 mM stocks) for 1 hour at 37°C and chased with 5 µM IA-rhodamine for 1 hour at 

37°C (2.5 µL of 50 µM stock). In separate tubes, Jurkat proteome (25 µL of 2 mg/mL) 

from PBS/urea lysate was labeled with 300 µM, 2 mM, 3 mM, and 5 mM  IPIAA-H (5) and 

IPIAA-L (4) (2.5, 1.5 and 1 µL of 50 mM stocks or 1.25 µL of 10 mM stock) or vehicle for 

1 hour at 37°C and chased with 5 µM IA-rhodamine for 1 hour at 37°C (2.5 µL of 50 µM 

stock). All samples were denatured (5 min, 95 °C) and analyzed by SDS-PAGE using 

Criterion TGX Stain-Free gels obtained from Bio-Rad. Loading control images were 

obtained after Coomasie staining.   

  

IPIAA labeling MS experiments. Jurkat proteome (25 µL of 2 mg/mL) from PBS/urea 

lysate was labeled with 2 mM IPIAA-H (5) or IPIAA-L (4) (1 µL of 50 mM stocks) for 1 

hour at RT and chased with 20 mM iodoacetamide (1.2 µL of 400 mM stock) for 1 hour at 
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RT. 5 µL of a 1:1 bead mixture was washed using a magnetic rack as described below in 

SP3 sample loading. 5 µL of the bead mixture was added to each sample and incubated 

for 10 min at 1000rpm at RT.  Absolute ethanol (50 µL) was added to each sample, and 

the samples were incubated for 5 min at RT with shaking (1000 rpm). Samples were then 

placed on a magnetic rack, and beads allowed to settle. Supernatants were then removed 

and discarded. Using the magnetic rack, the beads were further washed two times with 

80% ethanol in water (50 µL). Samples were resuspended in 2M urea/PBS (50 µL 2M 

urea/PBS) and subjected to digest with 1 µL trypsin overnight. Digest was allowed to 

proceed overnight at 37 ºC with shaking. After digestion, Acetonitrile (495 µL, > 95% of 

the final volume) was added to each sample and the mixtures were incubated for 10 min 

at RT with shaking (1000 rpm). Supernatants were then removed and discarded using 

the magnetic rack, and the beads were washed (3 × 125 µL acetonitrile). Peptides were 

then eluted from SP3 beads with 94 µL of 2% DMSO in MB water for 30 min at 37°C with 

shaking (1000 rpm). To each elution, 5 µL of acetonitrile and 1 µL formic acid was added. 

Samples were analyzed by LC-MS/MS. Experiment was done in triplicate for each IPIAA 

label. For buffer comparison, PBS/urea and Tris/urea lysates (25 µL) from gel-chase 

experiments were labeled with 2 mM IPIAA-H, IPIAA-L, or IAA (1 µL from 50 mM stocks). 

Samples were subjected to SP3 sample loading, wash, and digest as described above 

and analyzed by LC-MS/MS.   

  

IPIAA quantification MS/FAIMS experiments. IPIAA probes were mixed in ratios of 1:1, 

4:1 using initial concentrations of 500mM. HEK293T proteome (200 μL of 1 mg/mL) in 

1mM DTT was labeled with 2mM  probe mixture (0.8 µL of 500 mM stocks) for 1 hour at 



 73 
 
 
 

RT. CuAAC was performed with biotin-azide (7) (4 μL of 200 mM stock in DMSO, final 

concentration = 4 mM), TCEP (4 µL of fresh 50 mM stock in water, final concentration = 

1 mM), TBTA (12 µL of 1.7 mM stock in DMSO/t-butanol 1:4, final concentration = 100 

μM), and CuSO4 (4 µL of 50 mM stock in water, final concentration = 1 mM). Samples 

were allowed to react for 1h at RT. After CuAAC, 10 µL of 20% SDS was added to each 

sample. Samples were incubated with 0.5 μL benzonase (Fisher Scientific, 70-664-3) for 

30 min at 37°C. Samples were loaded onto beads as described in SP3 sample loading. 

After 10 min incubation at 1000rpm, samples were then subjected to SP3 digest and 

elution described below followed by Neutravidin enrichment described below.  Experiment 

was conducted in duplicate for 1:1 samples and triplicate for 4:1 samples. Samples were 

identically prepared in triplicate for FAIMS analysis using 1:10 and 4:1  IPIAAH:IPIAA-L 

ratios for labeling in Jurkat 2mg/mL proteome samples.  

  

Proteomic sample preparation for urea and sonication lysis comparison. HEK293T 

cells were harvested and lysed with sonication (amp=10, 10 x1 sec pulses) or lysed in 

6M urea with one freeze/thaw cycle. Samples were adjusted to 2 mg/mL, 2M urea/PBS. 

Samples were then labeled with 2 mM IAA (2μL of 200 mM stock solution in DMSO, final 

concentration = 2 mM) for 1h at RT (700 rpm). Samples were incubated with 0.5 μL 

benzonase (Fisher Scientific, 70-6643) for 30 min at 37°C. The samples were then 

subjected to SP3 sample loading, SP3 digest and elution, NeutrAvidin enrichment and 

LC-MS/MS analysis, as described below. Experiments were conducted in duplicate for 

each condition.  
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Proteomic sample preparation for disulfide analysis.  Jurkat proteome samples (200 

μL of 2 mg/mL, prepared as described in preparation of cell lysates) were incubated for 5 

min in 2M urea. Samples were then labeled with 2mM IPIAA-L (2μL of 200 mM stock 

solution in DMSO, final concentration = 2 mM) for 1h  at RT (700rpm). Samples were 

incubated with 0.5 μL benzonase (Fisher Scientific, 70-664-3) for 30 min at 37°C. The 

samples were then subjected to SP3 sample loading, SP3-Rox reduction and CuAAC, 

SP3 digest and elution, NeutrAvidin enrichment and LCMS/MS analysis, as described 

below. Experiments were conducted in duplicate for each condition with an additional 

technical replicate per injection, totaling 4 samples per condition.  

  

Proteomic sample preparation for disulfide analysis and GSNO sensitivity 

experiments.  Jurkat proteome samples (200 μL of 2 mg/mL, prepared as described in 

preparation of cell lysates) were incubated with vehicle or 1mM GSNO for 30 min. 

Samples were then labeled with 2mM IPIAA-L (2 μL of 200 mM stock solution in DMSO, 

final concentration = 2 mM) for 1h  at RT (700 rpm). Samples were incubated with 0.5 μL 

benzonase (Fisher Scientific, 70-664-3) for 30 min at 37°C. The samples were then 

subjected to SP3 sample loading, SP3-Rox reduction and CuAAC, SP3 digest and 

elution, NeutrAvidin enrichment and LC-MS/MS analysis, as described below. 

Experiments were conducted in duplicate for each condition with an additional technical 

replicate per injection, totaling 4 samples per condition.  

  

Proteomic sample preparation for T-cell experiments. Proteome samples (200 μL of 

2 mg/mL, prepared as described in preparation of cell lysates) were labeled with 2mM 
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IPIAA-L (4) (2 μL of 200 mM stock solution in DMSO, final concentration = 2 mM) for 1 h 

at RT (700rpm). Samples were incubated with 0.5 μL benzonase (Fisher Scientific, 70-

664-3) for 30 min at 37°C. The samples were then subjected to SP3 sample loading, SP3-

Rox reduction and CuAAC, SP3 digest and elution, NeutrAvidin enrichment and LC-

MS/MS analysis, as described below. Experiments were conducted in duplicate for each 

condition with an additional technical replicate per injection, totaling 4 samples per 

condition.  

  

SP3 sample loading.  SP3 sample cleanup was performed generally at a bead/protein 

ratio of 10:1 (wt/wt) (38). For each 200 μL sample (2 mg/mL or 1 mg/mL protein 

concentration), 20 μL Sera-Mag SpeedBeads Carboxyl Magnetic Beads, hydrophobic 

(GE Healthcare, 65152105050250, 50 μg/μL, total 1 mg) and 20 μL Sera-Mag 

SpeedBeads Carboxyl Magnetic Beads, hydrophilic (GE Healthcare, 45152105050250, 

50 μg/μL, total 1 mg) were aliquoted into a single microcentrifuge tube and gently mixed. 

Tubes were then placed on a magnetic rack until the beads settled to the tube wall, and 

the supernatants were removed. The beads were removed from the magnetic rack, 

reconstituted in 1 mL of MB water, and gently mixed. Tubes were then returned to the 

magnetic rack, beads allowed to settle, and the supernatants removed. Washes were 

repeated for two more cycles, and then the beads were reconstituted in 40 μL MB water. 

The bead slurries were then transferred to the proteome samples, incubated for 10 min 

at RT with shaking (1000 rpm). Samples were then subjected to SP3-Rox reduction and 

CuAAC.  
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SP3-Rox reduction and CuAAC. Samples are prepared as described in Proteomic 

sample preparation and SP3 sample loading. Absolute ethanol (400 μL) was added to 

each sample, and the samples were incubated for 5 min at RT with shaking (1000 rpm). 

Samples were then placed on a magnetic rack, and beads allowed to settle. Supernatants 

were then removed and discarded. Using the magnetic rack as described above, the 

beads were further washed two times with 80% ethanol in water (400 μL). Beads were 

then resuspended in 200 μL PBS containing 2 M urea. TCEP (10 μL of 100 mM stock in 

water, final concentration = 5 mM) was added into each sample and the sample was 

incubated at 56 °C for 30 min, shaking (500rpm). Absolute ethanol (400 μL) was added 

to each sample, and the samples were incubated for 5 min at RT with shaking (1000 rpm). 

Beads were washed twice with 80% ethanol as described above and resuspended in 200 

μL PBS containing 2 M urea. Samples were then labeled with IPIAA-H (5) (2 μL of 200 

mM stock solution in DMSO, final concentration = 2 mM) for 1h at 37 °C with shaking (500 

rpm). Absolute ethanol (400 μL) was added to each sample, and the samples were 

incubated for 5 min at RT with shaking (1000 rpm).Beads were washed twice with 80% 

ethanol. Samples were then placed on a magnetic rack, and beads allowed to settle. 

Supernatants were then removed and discarded. Beads were then resuspended in 200 

μL 0.5% SDS in PBS. CuAAC was performed with biotinazide (7) (4 μL of 200 mM stock 

in DMSO, final concentration = 4 mM), TCEP (4 μL of fresh 50 mM stock in water, final 

concentration = 1 mM), TBTA (12 μL of 1.7 mM stock in DMSO/t-butanol  

1:4, final concentration = 100 μM), and CuSO4 (4 μL of 50 mM stock in water, final 

concentration = 1 mM). Samples were allowed to react for 1h at RT temperature with 
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shaking (500rpm). Samples were subjected to SP3 digest and elution followed by 

NeutrAvidin enrichment as described below.  

  

SP3 digest and elution. Absolute ethanol (400 μL) was added to each sample, and the 

samples were incubated for 5 min at RT with shaking (1000 rpm). Beads were washed 

twice with 80% ethanol as described above. Beads were then resuspended in 200 μL 

0.5% SDS in PBS containing 2 M urea. DTT (10 μL of 200 mM stock in water, final 

concentration = 10 mM) was added into each sample and the sample was incubated at 

65 °C for 15 min. To this iodoacetamide (10 μL of 400 mM stock in water, final 

concentration = 20 mM) was added and the solution was incubated for 30 min at 37 °C 

with shaking. After that, absolute ethanol (400 μL) was added to each sample, and the 

samples were incubated for 5 min at RT with shaking (1000 rpm). Beads were then again 

washed three times with 80% ethanol in water (400 μL). Next, beads were resuspended 

in 150 μL PBS containing 2 M urea followed by addition of 3 μL trypsin solution 

(Worthington Biochemical, LS003740, 1 mg/mL in 666 μL of 50 mM acetic acid and 334 

μL of 100 mM CaCl2, final weight = 2 ng). Digest was allowed to proceed overnight at 37 

ºC with shaking. After digestion, ~ 4 mL acetonitrile (> 95% of the final volume) was added 

to each sample and the mixtures were incubated for 10 min at RT with shaking (1000 

rpm). Supernatants were then removed and discarded using the magnetic rack, and the 

beads were washed (3 × 1 mL acetonitrile). Peptides were then eluted from SP3 beads 

with 100 μL of 2% DMSO in MB water for 1 hour at 37 °C with shaking (1000 rpm). The 

elution was repeated again with 100 μL of 2% DMSO in MB water. Peptide concentration 
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assay (Pierce, 23275) was performed to test the concentration of the peptide. The elution 

can be used for NeutrAvidin enrichment or analyzed by LC-MS/MS.   

  

NeutrAvidin enrichment of labeled peptides. For each sample, 50 μL of NeutrAvidin® 

Agarose resin slurry (Pierce, 29200) was washed three times in 10 mL IAP 

(immunoaffinity purification) buffer (50 mm MOPS–NaOH (pH 7.2), 10 mm Na2HPO4, 50 

mm NaCl) and then resuspended in 500 μL IAP buffer. Peptide solutions eluted from SP3 

beads were then transferred to the NeutrAvidin® Agarose resin suspension, and the 

samples were then rotated for 2h at RT. After incubation, the beads were pelleted by 

centrifugation (21,000 g, 1 min) and washed by centrifugation (3 × 1 mL PBS, 6 × 1 mL 

water). Bound peptides were eluted with 60 μL of 80% acetonitrile in MB water containing 

0.1% FA (10 min at RT). The samples were then collected by centrifugation (21,000 g, 1 

min) and residual beads separated from supernatants using Micro BioSpin columns (Bio-

Rad). The remaining peptides were then eluted from pelleted beads with 60 μL of 80% 

acetonitrile in water containing 0.1% FA (10 min, 72 °C). Beads were then separated from 

the eluants using the same Bio-Spin column. Eluants were collected by centrifugation 

(21,000 g, 1 min) and dried (SpeedVac). The samples were then reconstituted with 5% 

acetonitrile and 1% FA in MB water and analyzed by LC-MS/MS.  

  

Liquid-chromatography tandem mass-spectrometry (LC-MS/MS) analysis. The 

samples were analyzed by liquid chromatography tandem mass spectrometry using a 

Thermo Scientific™ Orbitrap Eclipse™ Tribrid™ mass spectrometer coupled with a High 

Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Interface. Peptides were 
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resuspended in 5% formic acid and fractionated online using a 18cm long, 100 μM inner 

diameter (ID) fused silica capillary packed in-house with bulk C18 reversed phase resin 

(particle size, 1.9 μm; pore size, 100 Å; Dr. Maisch GmbH). The 70-minute water 

acetonitrile gradient was delivered using a Thermo Scientific™ EASY-nLC™ 1200 system 

at different flow rates (Buffer A: water with 3% DMSO and 0.1% formic acid and Buffer B: 

80% acetonitrile with 3% DMSO and 0.1% formic acid). The detailed gradient includes 0 

– 5 min from 3 % to 10 % at 300 nL/min, 5 – 64 min from 10 % to 50 % at 220 nL/min, 

and 64 – 70 min from 50 % to 95 % at 250 nL/min buffer B in buffer A. Data was collected 

with charge exclusion (1, 8,>8). Data was acquired using a Data-Dependent Acquisition 

(DDA) method comprising a full MS1 scan (Resolution = 120,000) followed by sequential 

MS2 scans (Resolution = 15,000) to utilize the remainder of the 1 second cycle time. Time 

between master scans was set 1 s. HCD collision energy of MS2 fragmentation was 30 

%.   

  

FragPipe v16.0 peptide identification and quantitation.  Details of parameters are in 

the supplemental parameter workflow file and below. Raw data collected by LC-MS/MS 

and converted to mzML format with peakPicking for MS levels 1 and 2 using MSConvert 

(ProteoWizard release 3.0.20287) (94) were searched using FragPipe GUI v16.0 with 

MSFragger (version 3.3), Philosopher (version 4.0.0) and IonQuant (version 1.7.5) 

enabled (28,29,30,34). Precursor and fragment mass tolerance was set as 20 ppm. 

Missed cleavages were allowed up to 2. Peptide length was set 7 - 50 and peptide mass 

range was set 500 - 5000. Cysteine residues were searched with variable modifications 

at cysteine residues for carboxyamidomethylation (+57.02146), IPIAA-L (+463.2366), and 
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IPIAA-H (+467.2529) labeling allowing for 3 max occurrences and all mods used in first 

search checked. Peptide and protein level FDR were set to 1%. Permissive IonQuant 

parameters allowed minimum scan/isotope numbers set to 1. PTMProphet information 

was obtained from psm.tsv using ‘heavy’ and ‘light’ localizations scores.  

  

FragPipe v15.0. peptide identification and quantitation Raw data collected by LC-

MS/MS and converted to mzML format with peakPicking for MS levels 1 and 2 using 

MSConvert (ProteoWizard release 3.0.20287) were searched using FragPipe GUI v15.0 

with MSFragger (version 3.2) Philosopher (version 3.4.13) and IonQuant (version 1.5.5) 

enabled. Precursor and fragment mass tolerance was set as 20 ppm. Missed cleavages 

were allowed up to 2. Peptide length was set 7 - 50 and peptide mass range was set 500 

- 5000. Cysteine residues were searched with variable modifications at cysteine residues 

for carboxyamidomethylation (+57.02146), IPIAA-L (+463.2366), and IPIAA-H 

(+467.2529) labeling allowing for 2 max occurrences.  

  

Skyline quantitation. Details below (44). Data was imported into Skyline with a 

probability threshold corresponding to the 1% peptide-ion level FDR in the dataset. 

following the standard DDA analysis workflow for isotopically labeled dataset with the 

following modifications. As Skyline automatically places a heavy isotopic label on all 

modified cysteines, including carbamidomethylated residues and those modified by the 

IPIAA-H regent, quantification fails for peptides containing two or more modified cysteines 

(e.g. one carbamidomethyl residue and   one IPIAA-residue). A custom plugin was 

generated to remove the heavy mass from all carbamidomethylated residues.  
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The MS search results have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (93) with 

the dataset identifiers PXD029500 and PXD031647.  

  

Data Analysis and Statistics. Custom R scripts were implemented to compile 

peptide_label_quant.tsv outputs from FragPipe to count unique quantified cysteines. 

Unique cysteines and unique peptide-spectrum matches (PSMs) were quantified for each 

dataset using unique identifiers consisting of a UniProt protein ID and the amino acid 

number of the modified cysteine and an additional parameter specifying single or double 

isotopic labeling (heavy and/or light). Unique proteins were established based on UniProt 

protein IDs. Residue numbers were found by aligning the peptide sequence to the 

corresponding UniProt ID protein sequence specified by FragPipe outputs. Figure S3 

data is aggregated from peptide.tsv by counting unique modified and unmodified 

cysteines containing peptides. All violin plots, Figure 3B, and Figure 3D data of FragPipe 

and Skyline quantitative outputs were generated by taking the median H:L ratio among 

all tryptic peptides for unique cysteines in replicate datasets  

(peptide_label_quant.tsv); mean ratio values were calculated across replicate datasets; 

quantified cysteines appearing in at least two replicates with ratio SD < 1 were kept. 

Skyline ratio values were converted to log2(H/L) format to match FragPipe output prior to 

SD-filtering in Figure 3B and Figure 3D, and duplicated ratios assigned to multiple 

proteins were aggregated in cysteine counts in Figure S5. For Figure 3C, single and 

multi-cys analysis counts were aggregated from each replicate and reported as mean + 
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SD. Figure 3E data is generated from heavy localization scores in psm.tsv for all multi-

cysteine containing peptides. The following formula was used to convert unlogged, 

average H:L ratios (R) to % oxidation: (R/(1+R))*100.  Figure 4C and Figure 5B data is 

aggregated as described by calculating the median of output log2 ratio values within 

replicates. Means of reported logged ratio values for each condition (+/-GSNO or 

unstimulated/stimulated T cells) were calculated for all replicates per condition, and the 

difference of the log2 mean values were reported. Variances were calculated for each 

sample-condition pairing and a corresponding two-sample T-test was performed on the 

raw ratios to generate p-values for scatter plots (n=4 for +/- GSNO and resting/stimulated 

T cells); p-values were adjusted for multiple comparisons using Benjamini-Hochberg 

procedure.  
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1H-NMR (4)  
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13C-NMR (4)  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 85 
 
 
 

  

 

1H-NMR (5)  
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13C-NMR (5)  
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MSFragger search parameters  

  

  

  

  

Variable Modifications  
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IonQuant parameters 

  

  

PTM-prophet parameters 
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Skyline-based Quantification of MSFragger searches  

1. Search with mzML or raw files using FragPipe  

Write calibrated mgf and set deisotoping to 0 or use uncalibrated.mgf 

output.  

2. For non FAIMS data, use either (A) mzML files, interact.pepxml files and 

protein.fas files or (B) raw files, mgf files, interact.pepxml files, and protein.fas files. 

FAIMS data are processed with B only.  

3. Make sure all above files are in the same root folder.  

4. Download the latest version of Skyline:  

https://skyline.ms/wiki/home/software/Skyline/page.view?name=SkylineInstall_64_21-1  

5.  Download the latest version of AddLabelType:   

https://proteome.gs.washington.edu/~nicksh/kbackus/AddLabelType/setup.exe   

6. Open Skyline and select ‘Import DDA peptide search’. Save the resulting file in 

the designated folder.  

7. Once the new document is saved, go to ‘Add Files’ and navigate to the 

‘interactpep.xml’ file for the search results you want to import.  

8. Specify the peptide probability threshold that corresponds to 1% ion FDR as the 

‘Cut-off score’. (This can be found in the FragPipe log or .log file, a cut-off of 

0.9024 would be used in this example: INFO[15:56:25] Converged to 1.00 % FDR 

with 57143 Ions decoy=576 threshold=0.9024 total=57719)   

https://skyline.ms/wiki/home/software/Skyline/page.view?name=SkylineInstall_64_21-1
https://skyline.ms/wiki/home/software/Skyline/page.view?name=SkylineInstall_64_21-1
https://skyline.ms/wiki/home/software/Skyline/page.view?name=SkylineInstall_64_21-1
https://urldefense.com/v3/__https:/proteome.gs.washington.edu/*nicksh/kbackus/AddLabelType/setup.exe__;fg!!F9wkZZsI-LA!Sex78_GUjneE4pAqe1JAYFWCIWRzcTEkmE1pB3ucgxdLC79T3dsUwWRsWGH48pWARpx3$
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9. Once a cut-off score has been set, press ‘Next’, prompting Skyline to build the 

spectral library from these peptide search results.  
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10. Check all the modifications found by the program and add the unknown 

modifications:  
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Add heavy as 4.0163 (mass difference between heavy and light).  

  

  

11. Set precursor to 2,3,4,5 and 0.4 retention time filtering (as used by IonQuant)  
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12. Navigate to the protein.fas file for the search and include in Optional ‘Add Fasta’ 

tab with 2 miscleavages and continue with ‘Keep All’.  

  

13. Under Settings>Peptide Settings in the Modifications tab set the IA modification to 

‘variable’ by selecting the modification and clicking ‘edit’.  
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14. Set the internal standard to ‘none’ in the Peptide Settings>Modifications tab at the 

bottom instead of ‘heavy’  

  

15. Under Digestion tab settings, select ‘add background proteome’ and navigate to 

the reference database without reverse sequences. Set the max missed cleavages 

to 2  
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16. In Settings>Transition settings dropdown, in the first tab, set ion charges to 1,2,3.  

17. In the ‘View’ dropdown, select Spectral Libraries and select associate all proteins, 

OK, ‘add all’ and wait for proteins to load.  

18. Save the Skyline document and exit.  

19. Open ‘Add Label Type Program’.  
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20. Save the document, overwriting the previous version.  
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21. Reopen the file and select Refine > Advanced and click the "Add" checkbox next 

to "Remove Label Type" and tell Skyline to add the Heavy label type.  

  

   

22. Reimport your file.    

Press Ctrl+R.   

Reimport and select the file.  

Click 'OK'   

23. If non-FAIMS data, STOP HERE: Under ‘File’ dropdown, select Export> 

Report.  
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Create a report and select desired columns: Protein Name, Protein Gene, Peptide  

Sequence, Ratio LightToHeavy,Quantification,Peptide Modified Sequence. You 

may have to go several layers in the tabs  
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24. If FAIMS data: Turn on Ion mobility and do the following:   

   

   

Current settings display peaks as shown below:  
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25. Navigate to Settings > Transition Settings > Prediction. Hit ‘Add’ and ‘OK’. This will 

only display the peak for a peptide from the 'best CV'   
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26. Peptides should be listed as shown.  
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27. Set resolving power to 500.    

 

28. Reimport the data again (Ctrl+R)  
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29. Export data as described above.  
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Abstract 
 
Cancer genomes are rife with genetic variants; one key outcome of this variation is gain-

of-cysteine, which is the most frequently acquired amino acid due to missense variants in 

COSMIC. Acquired cysteines are both driver mutations and sites targeted by precision 

therapies. However, despite their ubiquity, nearly all acquired cysteines remain 

uncharacterized. Here, we pair cysteine chemoproteomics—a technique that enables 

proteome-wide pinpointing of functional, redox sensitive, and potentially druggable 

residues—with genomics to reveal the hidden landscape of cysteine acquisition. For both 

cancer and healthy genomes, we find that cysteine acquisition is a ubiquitous 

consequence of genetic variation that is further elevated in the context of decreased DNA 

repair. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, 

and RNA-seq data, with a customized 2-stage false discovery rate (FDR) error controlled 

proteomic search, further enhanced with a user-friendly FragPipe interface. Integration of 

CADD predictions of deleteriousness revealed marked enrichment for likely damaging 

variants that result in acquisition of cysteine. By deploying chemoproteogenomics across 

eleven cell lines, we identify 116 gain-of-cysteines, of which 10 were liganded by 

electrophilic druglike molecules. Reference cysteines proximal to missense variants were 

also found to be pervasive, 791 in total, supporting heretofore untapped opportunities for 

proteoform-specific chemical probe development campaigns. As chemoproteogenomics 

is further distinguished by sample-matched combinatorial variant databases and 

compatible with redox proteomics and small molecule screening, we expect widespread 

utility in guiding proteoform-specific biology and therapeutic discovery. 
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Introduction 

The average human genome is rife with sequence variation and differs from the 

reference at roughly 3.5 million sites1. This profound genetic variation gives rise to human 

diversity and disease. While the fraction of single nucleotide variants (SNVs) that occur 

in protein-coding make up a small fraction of all known variants, most known disease-

causing mutations are found in protein coding sequences. Nearly all (>98%) of 

nonsynonymous protein-coding SNVs are missense variants that result in the substitution 

of single amino acids2. There are over 2 million coding mutations that have been identified 

in human cancers (Catalogue of Somatic Mutations [COSMIC] database), of which >90% 

are missense variants3,4. However, only a tiny fraction of these genetic variants (~3,400) 

have been identified as putative missense driver mutations5 that confer selective growth 

advantages to cancer cells with the remaining mutations acting as “passengers.”  

Quite surprisingly given the relative rarity of cysteine (2.3% of all residues in a 

human reference proteome)6, cysteine is the most commonly acquired amino acid due to 

somatic mutations in human cancers7. Given the unique chemistry of the cysteine thiol, 

including its nucleophilicity and sensitivity to oxidative stress, a subset of these residues 

almost unquestionably have a substantial impact on protein function. Exemplifying this 

paradigm, a number of driver mutations are gained cysteines, including Gly12Cys KRAS  

Tyr279Cys SHP2, Ser249Cys FGFR, and Arg132Cys IDH18–12. A likely reason for the 

ubiquity of cysteine acquisition is the comparative instability of CpG motifs; C-T transitions 

are nearly ten times more common than other missense mutations in cancer13, and these 

transitions should favor gain-of-cysteine codons. 
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 Due to its nucleophilicity and sensitivity to alkylation, cysteine residues have 

emerged as attractive sites to target with chemical probes. Covalent compounds can 

access small and poorly defined binding sites and can efficiently block high-affinity 

interactions (e.g. protein-protein interactions) or compete with high concentrations of 

endogenous biomolecules (e.g. ATP). There are numerous examples of cysteine-reactive 

clinical candidates and drugs, including the blockbuster covalent kinase inhibitors (e g. 

Afatinib and Ibrutinib14–16 ) and covalent compound that react with the Gly12Cys mutated 

oncogenic form of the GTPase KRAS (e.g. ARS-1620 and sotorasib9,17–19), a protein 

previously thought to be undruggable.  

Mass spectrometry-based chemical proteomic methods, including those 

developed by our lab, have begun to unlock the therapeutic potential of the cysteinome. 

By capturing and enriching cysteines using highly reactive chemical probes, such as 

iodoacetamide alkyne (IAA) and iodoacetamide desthiobiotin, the studies have assayed 

the ligandability of upwards of 25% of all cysteines in the human proteome20–29. Cysteine 

chemoproteomics has even enabled the discovery of new lead molecules that target 

specific cysteines, including JAK30, SARM131,  PPP2R1A32, XRCC533, NRB0134, and pro-

CASP829. Several new strategies have made substantial inroads into stratifying cysteine 

functionality to achieve function-first readouts of the likelihood of a covalent modification 

altering the labeled protein, including quantifying intrinsic cysteine nucleophilicity25, by 

pairing of chemoproteomics with CRISPR-base editing35, by performing proteomic 

stratification of covalent-modification induced altered protein complexes36, and our own 

work combining computational predictions of genetic pathogenicity with cysteine 

chemoproteomics27.    
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Single amino acid variants (SAAVs) encoded by missense mutations, including 

those that result in acquisition of cysteine, are almost universally missed by 

chemoproteomic studies. A key reason for this gap is that most genetic variants are not 

found in reference protein sequence databases used to identify peptides from acquired 

tandem mass spectrometry (MS/MS) data20–29. Understanding whether a genetic variant 

is translated into protein is a critical step for characterizing the functional impact and 

therapeutic relevance of genomic variation. Proteogenomic studies that implement 

custom variant-containing sequence databases for search have enabled proteome-wide 

detection of protein coding variants, including SAAVs and splice variants37–43. When 

compared to variant calling at the genomic level, the coverage of these studies remains 

comparatively small, spanning tens to hundreds of peptides, with the exception of recent 

studies employing ultra deep fractionation44,45 resulting in  thousands of identified 

variants. These studies all share general data processing pipelines. Variant calling is 

performed on next-gen sequencing (NGS) data, then customized databases featuring 

both canonical protein sequences and sequences encoding SAAV-, insertion/deletions 

(indels)-, or splice variant-proteins are generated, using customized tools, such as 

Spritz46, CustomProDB47, Galaxy-P48, and sapFinder49. While targeted proteomics 

methods, such as parallel reaction monitoring (PRM) have enabled focused monitoring 

of high value variant-containing peptides50, including encoding driver mutations, the 

broader landscape of translated SAAVs remains to be fully explored. 

There are two central complexities to these pipelines that have only recently begun 

to be addressed. The first challenge is that, by relying on exome-only sequencing and 

short read sequencing, the relative proximity of two or more variants in the same gene 
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(whether they are on the same or opposite chromosomes) is not typically apparent. A 

notable exception is the recent integration of long read sequencing for de-novo database 

construction with sample-specific proteomics to characterize novel protein isoforms51. 

Consequently, multi-variant peptides are typically not detected by most proteogenomics 

workflows that rely on databases featuring either single-each or all-in-one SAAV-

containing proteins. Such search strategies also introduce higher chances of false 

positive identification52. All possible cancer-derived aberrant peptide sequences, 

reflecting increased genetic complexity of tumor genomes, increases the size of the 

custom databases and thus search spaces. One solution to the false discovery rate (FDR) 

challenge is to calculate a class-specific FDR (separating the FDR calculations for the 

variant-containing peptides and reference peptides)52. An alternative strategy to ensure 

class-specific FDR control is to perform a 2-stage database search53. In this strategy, the 

first first search of acquired MS/MS spectra is performed against a reference database of 

canonical protein sequences. Subsequently, peptide to spectrum (PSM) matches 

identified with a certain high level of confidence (e.g. passing 1% FDR) are removed, and 

the remaining spectra are then searched against a variant-containing database. While 

implementation of such strategies in prior proteogenomic studies highlights the 

importance of rigorous statistical validation of identified variant-containing peptides53–55, 

the requirement for customized pipelines has so far limited widespread adoption.  

Here we develop and deploy chemoproteogenomics as an integrated platform 

tailored to capture the missense variant cysteinome. Chemoproteogenomics unites a 

missense-variant focused proteogenomic pipeline with mass spectrometry-based 

cysteine chemoproteomics. By mining publically available datasets, including COSMIC, 
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dbSNP, and ClinVar, we reveal that gain-of-cysteine variants are a ubiquitous 

consequence of genetic variation. We further reveal that DNA repair deficient cell lines 

are particularly enriched for acquired cysteines, together with a general high burden of 

rare and predicted deleterious variants. Guided by these discoveries, we generate 

combinatorial cell-specific custom databases built from whole exome and RNA-Seq data 

for eleven cell lines. Chemoproteogenomic analysis with a user-friendly FragPipe 

computational platform, extended to support  2-stage database search and FDR 

estimation, identified >1,400 total unique variants, including 629 chemoproteomic 

enriched variant-proximal cysteines and 103 gain-of-cysteines. Chemoproteogenomics 

also robustly identifies ligandable SAAVs that alter cysteine oxidation state and 

outperforms bulk proteogenomic analysis for capture of SAAVs with lower variant allele 

frequency. The utility of  chemoproteogenomics is further showcased through our 

identification of  iodoacetamide-labeled Cys67 (Cys91) in the highly variable peptide 

binding-groove of HLA-B. In sum, chemoproteogenomics sets the stage for enhanced 

global understanding of the functional and therapeutic relevance of the missense variant 

proteome.  

 

Results 

High missense burden cancer cell lines are rich in acquired cysteines, including in 

census genes.  Our first step to realize variant-directed chemoproteomics was to mine 

existing publicly available missense repositories to assess the scope of acquired 

cysteines present in cancer genomes (COSMIC)  and healthy genomes (dbSNP) (Figure 

1A). By doing so, we sought to achieve three goals: (1) validate prior reports of high 
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cysteine acquisition in cancer 7,56,57 (2) determine whether cysteine acquisition is a 

privileged feature of cancer genomes, and (3) establish a panel of variant rich cell lines. 

We analyzed publicly available sequencing data of 1,020 cell lines, found in the Catalogue 

of Somatic Mutations in Cancer Cell Lines Project database58,59 (COSMIC-CLP, release 

v96), to establish a panel of high mutational burden tumor cell lines; our hypothesis was 

high missense burden cell lines would be enriched for acquired cysteine SAAVs, including 

those found in Census genes60 and residues that are driver mutations. The top 15 cell 

lines with the highest mutational burden (Figure 1B, S1A, Table S1) encode 77,693 total 

unique missense variants, which represents ~18% of all unique missense variants in 

COSMIC-CLP. 

 We next evaluated whether these identified missense-rich cell line genomes were 

similarly enriched for gained cysteine SAAVs. We calculated the net gain amino acid 

changes (total gained minus total lost) encoded by all coding missense variants in this 

cell line panel (Figure S2), which revealed a marked enrichment for acquired histidines 

and cysteines together with loss of arginine, both for the aggregate cell line panel and for 

individually analyzed cell line datasets (Figure S3). As calculations of net gain can fail to 

distinguish high versus low missense burden cell lines, we also further stratified these cell 

lines based on total gained and total lost amino acids (Figure S1B, S4, S5), which further 

substantiated the enrichment for gain-of-cysteine across all of the top 15 missense variant 

burden cell lines analyzed (Figure 1C, S1B). This marked cysteine enrichment in cancer 

cell line genomes is consistent with previously reported aggregate analysis, not stratified 

by cell line, of all available COSMIC missense data7,56,57. Our own analysis of all 

COSMIC-CLP mutations shows cysteine as the second most gained residue (Figure 1D). 
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The genomes of the top 15 missense cell lines encoded 4,725 total gained cysteines, 

found in 3,688 genes. Showcasing the potential therapeutic relevance of this set, <10% 

of these identified genes have been targeted by FDA approved drugs20,61 (Figure 1E). 

Notably,  219/738 Census genes (v98) were found to harbor one or more gained 

cysteines, including NRAS (G12C), which is found in the Molt-4 cell line;  TP53 (R273C) 

found in the KARPAS-45 cell line; GNAS (R218C) in the CW-2, SNU-175, and HT-115 

cell lines; FBXW7 (R505C) in Jurkat and KARPAS-45 cell line; ASXL1 (W796C) found in 

HCT-15 cell line, and KEAP1 (Y33C) found in the Hec-1 cell line (Table S1).  

 

dMMR cell lines are enriched for SAAVs, including acquired cysteines. Cancer 

genomes display characteristic patterns of mutations, or signatures, that have developed 

from biological processes specific to the course of the cancer62,63. Endogenous and 

exogenous sources of DNA damage, left uncorrected due to faulty repair pathways, often 

lead to high tumor mutational burdens. Microsatellite instability (MSI) is a hypermutable 

phenotype caused by deficiency in mismatch repair (dMMR). High MSI tumors have 

higher mutational burdens; the converse is not true as high mutational burden tumors do 

not always display MSI64. Eight out of fifteen of the top missense burden cell lines reported 

in COSMIC were observed to be derived from colorectal carcinoma (CRC) (Figure 1B, 

S3). As ~15% of CRCs are reported to have elevated MSI65–67, this high CRC missense 

burden is to be expected64,68. While Jurkat, Molt-4 and Hec-1B cells are not CRC, both 

have previously been reported as dMMR with mutations in mismatch repair 

machinery69,70. Unexpectedly, MeWo cells, which are derived from metastasized 

melanoma and reported to be microsatellite stable (MSS)71, also exhibited a high burden 
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of missense mutations. The majority of  missense rich cell lines, including the dMMR lines 

were observed to encode between 200 and 500 acquired cysteine SAAVs (Figure S1B). 

However, a significant depletion of gained cysteines relative to total variant burden was 

observed for MeWo and SW684 (Figure 1C).   

 

Acquired cysteines are ubiquitous in both healthy and diseased genomes. We next 

asked whether this marked enrichment for gained cysteines was specific to cancer 

genomes or a more universal consequence of human genetic variation, with the 

overarching goal of facilitating efforts to pinpointing acquired cysteines with therapeutic 

relevance. Complicating matters, gain-of-cysteine missense variants are also expected 

to be ubiquitous in healthy genomes, due to the comparative instability of CpG–a key 

consequence of this instability is the frequent loss of arginine codons (4/6 CG 

dinucleotides)72. We aggregated and quantified the amino acid changes resulting from 

common missense variants reported by dbSNP73, a repository of single nucleotide 

polymorphisms and ClinVar74, a repository of variants with reported pathogenicity. We 

find that cysteine acquisition is the third most common consequence of missense variants 

identified in dbSNP (Figure 1D, Table S1) for common variants—common variants are 

defined by NCBI as of germline origin and/or with a minor allele frequency (MAF) of 

>=0.01 in at least one major population, with at least two unrelated individuals having the 

minor allele. Analogous stratification of variants reported by ClinVar also revealed a 

preponderance of gained cysteines compared with lost cysteines, albeit to a more modest 

degree than that observed for cancer genomes (Figure S6 and Table S1). For the 

https://www.ncbi.nlm.nih.gov/variation/docs/glossary/#germline
https://www.ncbi.nlm.nih.gov/variation/docs/glossary_populations#major_population


 128 
 
 
 

pathogenic variant subset of ClinVar, both gain- and loss-of-cysteine and gain-of-proline 

were frequently observed (Figure S6). 

 

An expanded cell line panel incorporates high value acquired cysteines. Across the 

>2 million missense variants reported in COSMIC, 52 acquired cysteines are reported as 

putative driver mutations (dN/dS values)75 in the Cancer Mutation Census (Table S1). 

Consequently, nearly all acquired cysteine SAAVs are of uncertain functional significance 

for tumor cell growth and survival. Given that one of our key objectives is to enable rapid 

proteomic identification and subsequent electrophilic compound screening of functional 

variants, we next stratified the top missense variant cell lines based on known driver 

mutations and damaging variants. We find that top missense cell lines that are readily 

available for purchase encode NRAS G12C, KRAS G12D, PIK3CA E545K, and TP53 

R248Q variants among other known driver mutations (Table S1). Given the considerable 

interest in targeting G12C KRAS, we opted to add several KRAS mutated cell lines to our 

panel (MIA-PACA-2, H2122, and H358) in order to favor detection of the G12C peptide. 

Notably, the smoking-associated mutational signature is C→A/G→T76, which should 

favor gain-of-cysteines. Therefore, we additionally sought to test whether smoking 

associated NSCLC-derived H2122 and H1437 adenocarcinoma cell lines would be 

enriched for acquired cysteines when compared to other proficient mismatch repair 

(pMMR) cell lines, including lung cancer cell lines (H358 NSCLC and H661 metastatic 

large cell undifferentiated carcinoma (LCUC) lung cancer cell lines). Lastly, we opted to 

include CACO-2 cells, an MSS CRC cell line, to test the feasibility of capturing driver 

mutations located proximal to chemoproteomics detectable cysteines—Caco-2 cells 
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express mutant SMAD4 (D351H), a variant implicated in blocking SMAD homo- and 

hetero-oligomerization77 and located proximal to two previously chemoproteomics 

detected cysteines (C345 and C363)21,22. Our prioritized cell line panel features 11 cells 

lines in total (2 female and 9 male) spanning 6 tumor types and encoding 22,559 somatic 

variants and 1,296 somatic acquired cysteines, as annotated by COSMIC-CLP (Figure 

1F, Table S1-S2), with aggregate enrichment for gained cysteines observed for the entire 

panel (Figure S7, S8). Of the proteins that harbor gained cysteines, 486 are Census 

genes and 5% are targeted by FDA approved drugs (Table S1).  
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Figure 1. Acquired cysteines are prevalent across cancer genomes, particularly for high missense 

burden cell lines. A) The full scope of acquired cysteines in the COSMIC Cell Lines Project (COSMIC-

CLP, cancer.sanger.ac.uk/cell_lines) (v96)58,59 and dbSNP (4-23-18)73 were analyzed. B) 1,020 cell lines 

stratified by number of gained cysteines and total missense mutations; color indicates cancer type for top 

15 highest missense count cell lines. C) Top 15 cell lines with highest missense burden from panel B; linear 

regression and 95% confidence interval shaded in gray. D) Net missense mutations (gained-lost) from 

COSMIC-CLP (v96) and common SNPs (dbSNP 4-23-18). E) Overlap of genes with acquired cysteines in 

top 15 subset from panel B with Census genes and targets of FDA approved drugs. F) Panel of cell lines 

used in this study with MMR status (dMMR= deficient mismatch repair, pMMR=proficient mismatch repair). 

Data found in Table S1. 
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dMMR cell lines are enriched for rare predicted missense changes, including 

acquired cysteines. Given the preponderance of acquired cysteine SAAVs observed 

across COSMIC, ClinVar, and dbSNP, we postulated that cancer genomes would be 

enriched for both rare and common gain-of-cysteine mutations. To both test this 

hypothesis and enable the building of sequence databases for proteogenomics search, 

we sequenced exomes and RNA of our cell lines and subjected NGS reads to variant-

calling (Figure 2A, Figure S9). For all 11 cell lines sequenced, we identified on average 

82% of the variants reported in COSMIC-CLP and 70% of missense mutations reported 

by Cancer Cell Line Encyclopedia (CCLE)71 databases (Table S2). Driver mutations 

(CMC significant, dN/dS q-values) identified include KRAS G12C for MIA-PACA-2, H358, 

and H2122 cell lines, PIK3CA E545K in HCT-15, and FBXW7 R505C in Jurkat cells 

(Table S2). 9,190 total rare variants were identified that had been not previously reported 

in COSMIC-CLP, including 435 variants encoding acquired cysteines (Table S2).  

As with our analysis COSMIC-CLP (Figure 1B), we detected a high missense 

burden for the dMMR cell lines compared to the pMMR cell lines. MeWo cells were an 

exception, with a missense burden comparable to that of the dMMR cell lines (Figure 

2B). Analysis of DNA damage repair-associated genes revealed specific mutations 

(Table S2), including DDB2 R313* in MeWo cells, which provide an explanation for the 

previously unreported high missense burden—inactivating mutations in DDB2 are 

implicated in deficient nucleotide excision repair78.  

 We next subsetted the data into rare and common variant categories, using dbSNP 

common variants (04-23-2018 00-common_all.vcf.gz) (Table S2)73. The dMMR cell lines, 

together with the MeWo cells, have proportionally more rare variants compared to 
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common variants (Figure 2B), irrespective of sequencing coverage (Figure S10). Further 

SAAV analysis revealed net gain of histidine, isoleucine, and cysteine as the most 

frequent amino acids gained across the common and rare subsets (Figure 2C). We find 

that cysteine acquisition is a more frequent consequence of common variants detected in 

pMMR cell lines (Figure 2D). 

In contrast with the common variants, the net gained SAAV signatures encoded by 

rare variants differed markedly between dMMR and pMMR cell lines (Figure 2D, S11-

13). No significant difference between the number of gained cysteines was observed for 

the smoking-associated lung cancer cell lines (Figure S14).  By contrast, in the dMMR 

cell lines, we detected a sizable increase, when compared to the pMMR cell lines, of 

acquired rare SNVs encoding Cys, along with His, Ile, Asn, Tyr, and Tryp (Figure 2D, 

Figure S11). Beyond cysteine acquisition, the SAAV signature for MeWo cells was 

observed to be distinct, with pronounced gain-of rare Phe and Lys detected (Figure S11-

13), consistent with UV radiation induced pyrimidine dimers, which result in gain-of F and 

K (Figure S15, Table S2). These findings together with our analysis of the top missense 

cell lines in COSMIC-CLP indicate that previously reported widespread cysteine 

acquisition in cancer genomes is predominated by mismatch repair deficient cell lines. 

 

Rare gained cysteines in dMMR cell lines are enriched for high CADD scores.  With 

the overarching goal of facilitating identification of likely functional variants, we next 

stratified  the predicted deleteriousness of the identified missense variants (Figure 2E, 

Table S2). We focused on the Combined Annotation Dependent Depletion (CADD) score, 

due to its high reported specificity and sensitivity79 and our prior findings that showed 
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strong association between cysteine functionality and high CADD score27. Unsurprisingly, 

our analysis revealed higher CADD scores for rare variants compared to common 

variants, across the cell line panel (Figure 2E, Table S2). More unexpectedly, we 

observed a more marked increase in the predicted pathogenicity of the rare variants 

detected in dMMR cell lines compared with pMMR cell lines (the top 1% most predicted 

deleterious mutations have CADD phred-scaled scores > 20)  (Figure 2F-G, S16-17). 

This enrichment for high CADD score rare variants held true for the MeWo cells. Further 

stratification by specific gained or lost amino acids (Figure 2H, Figure S18-21), revealed 

that gained cysteine missense are the most significantly enriched for high predicted 

deleterious scores across all pMMR and dMMR cell lines (Figure S19, Table S2)—a 

notable exception are the MeWo cell line variants for which gain-of  Phe, Lys, and Leu 

codons are the most high CADD scoring variants (Figure S22). 

As only a small fraction of the acquired cysteines are known driver mutations, we 

next restricted our analysis to include only the 388 total variants localized to hotspot 

mutations, as annotated by CCLE and The Cancer Genome Atlas (TCGA). We find that 

gain of cysteine within TCGA hotspot mutations is markedly enriched for high CADD 

score variants (Figure S21). Notable high CADD score hotspot acquired cysteines 

include the tumor suppressor FBXW7 R505C in Jurkat cells, the metalloprotease 

ADAMTS1 R604C in Molt-4 cells, and exrin-associated protein SCYL3 R61C in MeWo 

cells. 98% (50/51) of these cysteines are gained due to loss of arginine, which aligns with 

the observed parallel enrichment for high CADD scores at loss of arginine hotspot 

variants (Figure S23).  
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dMMR rare variants are enriched for proximity to known functional sites. To further 

broaden our understanding of the functional landscape of cysteine acquisition, we also 

analyzed proximity to known functional sites and sites of post translational modification 

(Table S2). We find that the dMMR rare variant set is enriched for known proximal active 

site/binding site residues (Figure 2I). Intriguingly, analysis of known PTM modified sites 

reported by Phosphosite80 revealed a significant association between arginine 

methylation sites and rare variants in dMMR cell lines (Figure 2I). These findings are 

consistent with loss of arginine as a frequent consequence of exonic CpG mutability72,81 

together with roles of MMR in protecting against CpG associated deamination82. As 60% 

of the gained cysteines in our data resulted from loss of arginine (Figure S24), we 

expected that many of these variants will result in altered PTM status (Figure 2J).   
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Figure 2. dMMR cell lines are enriched for rare, predicted deleterious gain-of-cysteine mutations. A) 

Sequencing portion of the ‘chemoproteogenomic’ workflow to identify chemoproteomic detected variants–

extracted genomic DNA or RNA from cell lines undergo sequencing followed by variant calling using 
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Platypus (v0.8.1)83 and GATK-Haplotype Caller (v4.1.8.1)84 for RNA and exomes respectively and predicted 

missense changes were computed. B) Total numbers of missense mutations identified from either RNA-

seq or WE-seq; stripe vs solid denotes common and rare variants, red text indicate dMMR cell lines. C) Net 

amino acid changes for all cell lines combined. D) Totals of gained and lost cysteine in each cell line 

separated by rare and common variants, dashed line indicates dMMR cell lines. E) Scheme of CADD score 

analysis for two dMMR and non-dMMR cell lines. F) Distribution of CADD scores for indicated variant 

grouping; statistical significance was calculated using Mann-Whitney U test, **** p < 0.0001. G) Empirical 

cumulative distributions (ECDF) were computed for CADD scores with indicated grouping; statistical 

significance was calculated using two-sample Kolmogorov-Smirnov test, **** p < 0.0001.  H) CADD score 

distributions for cysteine gained amino acid indicated separated by grouping; statistical significance 

between gained Cys values was calculated using Mann-Whitney U test, **** p < 0.0001. I) Proportion of 

variants belonging to the indicated sites; AS/BS = in or near active site/binding site as annotated by 

UniProtKB or Phosphosite; statistical significant calculated using two-sample test of proportions, *** p < 

0.001, **** p < 0.0001, ns p > 0.05.  J) Amino acid changes at protein methylation sites as identified by 

Phosphosite. Data found in Table S2. 

 

Variant peptide identification enabled by MSFragger 2-stage database search and 

false discovery rate (FDR) estimation. To enable chemoproteomic detection of 

acquired cysteine SAAV-containing peptides and SAAVs found in peptides with canonical 

cysteines, we next established a customized proteogenomics pipeline (Figure 3A, B). 

Motivated by the prior report38 that demonstrated proteogenomic sample searches 

performed with sample-specific databases both improved coverage (~45% more variants) 

and decreased rates of SAAV peptide false discovery, we generated cell line-specific 

variant peptide databases from HEK293T RNA-seq data (Figure 3A, Table S3). Next,  to 

afford a reduction to the likelihood that a variant peptide will be mismatched to wild-type 

spectra53, we established a 2-stage database search and FDR control scheme (Figure 

3B), usingMSFragger (v3.5)/Philosopher85,86 command line pipeline within FragPipe 

computational platform (detailed in Methods).   

We then subjected our chemoproteogenomics pipeline to benchmarking by 

generating a set of high coverage cysteine chemoproteomics datasets (Figure 3B) in 

which cell lysates labeled with iodoacetamide alkyne (IAA)25 and conjugated isotopically 

labeled ‘light’ (1H6) or’ heavy’ (2H6) biotin-azide reagents87 (+6 Da mass difference 
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between the reagents) were combined pairwise in biological triplicate at different H/L 

ratios (1:1,10:10, 1:4, 4:1, 1:10, and 10:1). By searching these datasets using our 2-stage 

search, we sought to validate the accuracy of variant identification. Peptide quantification 

using IonQuant88,89, following the workflow shown in Figure 3A, revealed MS1 intensity 

ratios for both canonical and variant peptide sequences that matched closely with the 

expected values (Figure 3C, Table S3). We also compared the retention times of the 

heavy- and light-peptides and observed an ~2-3 sec shift for the deuterated heavy 

sequences for both the variant and canonical peptide sequences (Figure 3D, Table S3). 

These retention time shifts are consistent with our previous study87 and with prior 

reports90,91. Analogous to studies that utilize isotopically enriched synthetic peptide 

standards to validate novel peptide sequences92–94, the observed co-elution of both heavy 

and light variant peptides provides further evidence to support the low FDR of our data 

processing pipeline. Lastly, the high concordance between observed and expected MS1 

ratios provides compelling support for the use of the heavy and light biotin azide reagents 

in competitive cysteine-reactive compound screens, in which elevated MS1 intensity 

ratios are indicative of a compound modified cysteine.  
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Figure 3. Variant peptide identification implementing an MSFragger-search pipeline A) 2-stage 

MSFragger-enabled variant searches–variant databases are generated from non-redundant reference 

protein sequences that are in-silico mutated to incorporate sequencing-derived missense variants followed 

by 2-stage MSFragger/PeptideProphet search to identify confident variant-containing peptides. First, raw 

spectra are searched against a normal reference protein database, confidently matched spectra (passing 

1% FDR) are removed and remainder spectra are searched with a variant tryptic database. B) 

Chemoproteomics workflow to validate heavy and light biotin87. HEK293T cell lysates were labeled with 

pan-reactive iodoacetamide alkyne (IAA) followed by ‘click’ conjugation onto heavy or light biotin azide 

enrichment handles in known ratios. Following neutravidin enrichment, samples are digested and subjected 

to MS/MS analysis. C) Heavy to light ratios (H:L) from triplicate datasets comparing identifications from 

reference and variant searches; mean ratio value indicated, dashed lines indicate ground-truth log2 ratio, 

statistical significance was calculated using Mann-Whitney U test, ** p < 0.01, ns p > 0.05. D) Retention 

time difference for heavy and light identified peptides for reference and variant-searches; mean value 

indicated, statistical significance was calculated using Mann-Whitney U test, ns p > 0.05. Data found in 

Table S3. 

 

Chemoproteomics with combinatorial databases improves coverage of acquired 

cysteines and proximal variants. We next set out to apply our validated search scheme 
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for chemoproteogenomic variant detection (Figure 4A). Inspired by the recent report95 of 

combinatorial databases to improve detection of proximal SAAVs—we expect such 

variants to be prevalent in heterogeneous cell populations, such as a mismatch repair 

deficient tumor cell line—we established an algorithm (Figure S27) to generate all 

combinations of SAAVs derived from both RNA/WE-seq data within 30 amino acids 

flanking the variant site. These combinations were then converted into a peptide FASTA 

database containing two tryptic sites flanking each variant site (Figure 4B). On average, 

>4,500 total multi-variant peptide sequences were generated per cell line. Our approach 

differs from most prior custom database generators, which offer ‘Single-Each’47,92,96,97 or 

‘All-in-One’ outputs98,99 for the former, all protein sequences harbor one SAAV each; for 

the latter, each protein harbors all SAAV detected. While establishing our combinatorial 

databases, we observed that a small number of highly polymorphic genes (Table S4) 

markedly increased database size—exemplifying this increased complexity, upwards of 

1 billion combinations (2^n -1) are possible for protein sequences with 30 or more SAAVs. 

To determine the practical limit for the number of SAAVs/protein, we performed test 

searches where we limited the numbers of variants to combine (Table S4). We find that 

nearly all variants are retained with databases that include combinations for proteins with 

up to 25 variants (Table S4). For the small set of highly polymorphic protein sequences 

(e.g.  HLA, MUC, and OBSCN,  (Table S4), Single-Each sequences were searched 

(Figure S27). 

Next, for all 11 sequenced cell lines (Table S2), we prepared and acquired a set 

of high coverage cysteine chemoproteomics datasets (Figure 4A). In aggregate, 32,638 

total canonical cysteines were identified on 7,233 total proteins, with 9,349 cysteines 
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unique to individual cell lines and 25,223 shared across the entire dataset (Figure S25, 

Table S4). 2,318 cysteines on 1,406 total proteins had not previously been reported in 

the CysDB database20 (Figure S26). 2-stage MSFragger search using our sample 

specific combinatorial databases identified a total of 59 gained cysteines and 302 SAAVs 

located proximal to 343 reference cysteines (Figure 4C, Table S4). 74 canonical 

sequence cysteines located proximal to variants and 60 acquired cysteines had not been 

previously reported in CysDB (Figure 4D)20. Notable examples of acquired cysteine 

variants not reported in CysDB include acquired cysteines KRAS G12C and PRKDC 

R2899C. Consistent with the aforementioned genomic data findings, we observe arginine 

as the most frequently lost out of detected Cys-proximal SAAVs (Figure 4E). We detect 

15 total cysteines in peptides that harbor gain/loss of arginine that were previously too 

long or too short to be identified (Figure 4F, Table S4). For the cysteine protease 

cathepsin B (CTSB), we identify Cys207 in HCT-15 cells which was not identified in 

CysDB–a K209E mutation that creates a longer tryptic peptide sequence compared to 

reference sequence (‘CSK’ to ‘CSEICEPGYSPTYKQDK’). In the well-studied Jurkat 

proteome, we detect stromal cell derived factor 2 SDF2, Cys88, which is also not reported 

in CysDB, is found in a peptide harboring a proximal R93Q mutation that creates a longer, 

detectable peptide sequence (‘CGQPIR’ to ‘CGQPIQLTHVNTGR’). Showcasing the utility 

of the combinatorial exome and RNA-seq SAAV databases, we identify six multi variant-

containing peptides (Table S4). One noteworthy example is the peptide L86P/F92C 

peptide from the mitochondrial enzyme HADH, which catalyzes beta-oxidation of fatty 

acyl-CoAs—two variants, one from RNA-seq and one from exome-seq were detected in 

this peptide. For the I105V, A114V peptide from enzyme GSTP1, the I105V variants were 
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flagged as bad quality reads from RNA-seq data but passed filters from the exome-seq 

data (Table S4). Of these combination variants, two are exome-seq only derived variants 

that span exon boundaries. 

 

Chemoproteomic identified variants are in diverse functional sites across protein 

families. We next asked whether the chemoproteogenomic-identified SAAVs might be of 

functional significance. By stratifying the the CADD scores of identified SAAVs, we find 

that the enrichment of high CADD score missense variants in the dMMR rare variant 

subset was maintained for SAAVs identified by chemoproteogenomics, including for gain-

of-cysteine SAAVs (Figure S28, S29).  

 As CADD scores only provide a prediction of deleteriousness, we also asked 

whether any of the identified variants are located in Census genes or have been reported 

in Clinvar. We identify 77 variants previously reported in ClinVar (Table S4), with nearly 

all annotated as benign. A total of 16 mutations and 7 putative driver mutations (dN/dS p-

values) were identified in Census genes. One prevalent driver was KRAS G12C, which 

was identified in several of the cell lines known to harbor this variant as a driver mutation 

(MIA-PACA-2 and H358 but not H2122). As KRAS expression is known to vary across 

cell lines71, this data suggests both H358 and MIA-PACA-2 cell lines are suitable for 

chemoproteogenomic target engagement analysis of G12C-directed compounds. 

However, as a cautionary example in mapping peptides, we identify several SAAV-

peptides that match to multiple protein sequences, including sequences in human 

leukocyte antigens (HLA) and POTE ankyrin domain family proteins (Figure 4G). Most 

notably, the RHOT2 R425C mitochondrial GTPase peptides in H358 cells have exact 
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sequence similarity to KRAS G12C peptides; these half-tryptic peptides are also identified 

in H1437 cells that do not harbor the KRAS G12C variant.  

Chemoproteogenomics failed to capture several key Census gene SAAVs that we 

detected on the genomic level (e.g. SMAD4 (D351H) in CaCo-2, FBXWY (R505C) in 

Jurkat and CDK6 (R220C) in Molt-4 cells). Several Census gene SAAVs did, however, 

stand out due both to their high CADD scores and proximity to known pathogenic mutation 

sites. These variants of interest include MLH1 R385C, RAD17 L557R (proximal 

Cys551/556), MSN R180C, HIF1A S790N (proximal Cys800) and CTCF R320C, a likely 

pathogenic position in this protein (CADD score = 29.4) (Figure 4H, Table S4).  

Exemplifying the utility of the chemoproteogenomics to uncover new variants, we 

find that 20 of the identified SAAVs have not been previously reported in COSMIC, CCLE 

or ClinVar (Table S4). One variant of unknown significance, not reported in ClinVar, is 

HMGB1 R110C labeled in the Molt-4 cell line (Figure 4I) (CADD score = 24.1). Adjacent 

Cys106 is a cysteine under highly controlled redox state that is responsible for inactivating 

the immunostimulatory state of HMGB1100. We also identify SARS R302H (proximal 

Cys300;CADD = 32), a mutation in the ATP binding site of serine-tRNA ligase, which is a 

tRNA ligase involved in negative regulation of VEGFA expression101.  

Given the comparatively limited set of variants at or proximal to known damaging 

sites, we next broadened our analysis to include SAAVs at or proximal to UniProtKB 

annotated active sites (AS) and binding sites (BS) (Figure 4J). We find that 27 SAAVs 

are located within the permissive range of 10 amino acids of a known functional residue, 

including 4 active sites and 24 binding sites. Specific examples of high value SAAVs 

include tRNA synthetase EPRS R1152 (proximal Cys1148; CADD = 33), a mutation 
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known to cause complete loss of tRNA glutamate-proline ligase activity102. Interestingly, 

EPRS has mTORC-mediated roles in regulating fat metabolism103. We also capture a 

variant proximal to the active site of BLM hydrolase I75T (proximal Cys73,78; CADD = 

27.6), a cysteine protease responsible for BLM anti-tumor drug resistance104. More 

broadly, analysis of SAAV location by protein domains, reveals no marked bias for 

variants located in specific domain types, with the ubiquitous P-loop NTPase domain as 

the most SAAV-rich domain (Figure S30, Table S4). 

As cysteines play critical roles in protein structure via disulfide bond formation 

together with additional cysteine oxidative modifications105, we asked whether identified 

loss of cysteine variants (10 in total) were annotated as involved in disulfides. Likely due 

to the comparatively small number of loss-of-cys variants, none were observed with 

disulfide annotations. To further pinpoint whether any variants are sensitive to oxidative 

modification, we subjected our previously reported Jurkat cell redox chemoproteomics 

datasets to reanalysis106. In total, our reanalysis quantified 7 acquired cysteines and 54 

variants proximal to acquired cysteines. For nearly all of the cysteines quantified both in 

our reference database searches and now also identified with proximal variants, we 

observed a high concordance between variant- and reference sequence oxidation 

(R2=0.77). One notable exception was the Mitochondrial-processing peptidase enzyme 

(PMPCA) Cys225, for which markedly different cysteine oxidation states were measured 

for the reference peptide Cys (~3% oxidation) and variant peptide Cys (~88% oxidation) 

(Figure 4K). These data provide evidence that the proximal P226S mutation profoundly 

impacts Cys225 sensitivity to oxidative modifiers. 
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Figure 4. Variant peptide identification on tumor cell lines A) Cell lysates were labeled with pan-reactive 

iodoacetamide alkyne (IAA) followed by ‘click’ conjugation onto biotin azide enrichment. Samples were 
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prepared and acquired using our SP3-FAIMS chemoproteomic platform22,23,107 using single pot solid phase 

sample preparation (SP3)108 sample cleanup, neutravidin enrichment, sequence specific proteolysis, and 

LC-MS/MS analysis with field asymmetric ion mobility (FAIMS) device109. Experimental spectra are 

searched using the custom fasta for variant identification. Sample set includes both reanalysis of previously 

reported datasets from Yan et al. (Molt-4, Jurkat, Hec-1B, HCT-15, H661, and H2122 cell line) with newly 

acquired datasets (H1437, H358, Caco-2, Mia-PaCa-2 and MeWo cell lines). B) Non-synonymous changes 

are incorporated into reference protein sequences and combinations of variants are generated for proteins 

with less than 25 variant sites to make customized fasta databases. Details in methods. C) Total numbers 

of unique missense variants identified from either RNA-seq or WE-seq or both after using 2-stage 

MSFragger search and philosopher validation from duplicate datasets; stripe vs solid denotes common and 

rare variants, red text indicate dMMR cell lines Indicated is sequencing source and type of variant. D) 

Overlap of identified cysteines from variant searches with cysteines in CysDB database20. E) Net amino 

acid changes for all cell lines combined F) Example of cysteies identified from loss of R/K peptides  G) 

Examples of multi-mapping variant sites. H) Crystal structure of CTCF indicating detected Cys320 (yellow) 

and DNA-binding site (PDB: 5T0U). I) Crystal structure of HMGB1 indicating detected Cys110 and nearby 

Cys106 (yellow) (PDB: 6CIL). J) Variants identified in or near active and binding sites with CADD score, 

common/rare, cell line dMMR/pMMR annotations. K) Re-analysis of SP3-Rox106 oxidation state data in 

Jurkat cells. Data found in Table S4. 

 

Assessing how differential expression impacts chemoproteogenomic detection. 

Our comparatively modest coverage of SAAVS achieved by chemoproteogenomics 

(particularly when compared to our genomics datasets) is on par with the coverage 

reported by most prior proteogenomics studies41,43,53. A notable exception is the recent 

study by Coon and colleagues that implemented ultra-deep fractionation to achieve more 

global coverage of variants44. Inspired by this work, we next sought to ask whether 

chemoproteogenomics, with its built in enrichment step, would enable sampling of 

variants not detectable by fractionation methods (Figure 5A). We subjected lysates from 

HCT-15 and Molt-4 cells, which were chosen based on high rare missense burden, to 

tryptic digest, off-line high pH fractionation, and LC-MS/MS analysis. In aggregate across 

both cell lines, we identified 8,435 proteins and 149,006 peptides, including 1,069 unique 

SAAVs found in 1,352 total peptides using our 2-stage MSFragger search (Figure 

5B,S31,Table S5). 26 peptides were identified that contained multiple variants, including 

peptides that would only be detected by our combinatorial databases (Figure 4B) as well 



 146 
 
 
 

as those readily detected by combined ‘Single-Each’ and ‘All-in-One’ database searches 

(Table S5).  

Comparison of this unenriched dataset to the chemoproteogenomic dataset for the 

matched HCT-15 and Molt-4 proteomes (145 total SAAVs identified by 

chemoproteogenomics for these two cell lines) revealed 70 SAAVs, including eight 

acquired cysteines, uniquely identified with chemoproteogenomics (Table S4-S5), 

(Figure 5C). Despite the lower numbers of total SAAVs in the chemoproteogenomics 

datasets, we find that chemoproteomic enrichment afforded a ~5-fold boost in the relative 

fraction of acquired cysteines captured (Figure 5D). Further stratification of the net 

detected amino acid changes (Figure S32-S33) revealed that, again, cysteine was a top 

gainer and arginine was the most lost amino acid for both enriched and unenriched 

datasets. 

We next asked whether protein or RNA abundance might rationalize the 

differences in SAAV coverage for each method. Comparison of normalized transcript 

counts for SAAV-matched genes identified either by chemoproteogenomics or in our bulk 

proteomic dataset, for HCT-15 cells analysis revealed no significant difference between 

measured transcript abundance between the sets (Figure 5E, Table S5). A notable 

subset of SAAVs (3,262 total, including PIK3CA E545K, TP53 S241F, SMARCA4 R885C 

TCGA hotspot mutations) with low abundance transcripts (less than 4000 normalized 

counts) were not detected in either the chemoproteogenomics or bulk proteogenomics. 

Providing further evidence that lower transcript abundance decreases the likelihood of 

detection, we find that an even more sizable fraction of cysteines found in reference 



 147 
 
 
 

protein sequences matched with low abundance genes are not detected, both for high-

pH fractionated samples and chemoproteomics enriched samples (Figure S34). 

Given the likely disconnect between transcript abundance and protein 

abundance110–112 for some SAAVs analyzed, we also extended these analyses to 

measures of protein abundance. Using label-free quantification (LFQ) analysis, we find 

that  for proteins with proteomic-detectable SAAV peptides, the quantified protein 

intensities  were significantly higher when compared to proteins for which the 

corresponding variants were only detected via genomic analysis. No difference was 

observed between the bulk fractionated samples and the chemoproteogenomic samples 

(Figure 5F, Table S5).  

As both the transcript and protein abundance analyses do not delineate reference 

from variant-specific transcript/protein sequences, we also compared the variant allele 

frequencies (VAF) for SAAVs detected by each method. We find that high-pH variant 

allele frequencies (VAF) were significantly higher than the chemoproteogenomic detected 

SAAVs, which were comparable to the aggregate bulk RNA-seq VAFs (Figure 5G, Table 

S5). This enrichment for lower VAF for the chemoproteogenomic detected SAAVs 

extended to the acquired cysteine subset (Figure S34). 

Given that cysteine chemoproteomics requires peptide derivatization, with a 

comparatively large (463 Da) biotin modification, we postulated that some differences in 

coverage might be ascribed to behavior of peptides during sample acquisition. Comparing 

the properties of the SAAV peptides detected by chemoproteogenomics versus 

proteogenomics we observed a more restricted charge state distribution for cysteine-

enriched samples and no appreciable differences in the amino acid content beyond 
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enrichment for cysteine (Figure S35). While we did not observe differences in the peptide 

lengths in our comparison of between the chemoproteomic-enriched and high pH 

detected SAAV peptides, a marked significant increase in SAAV peptide length (average 

5AA longer) was observed compared to reference peptides in both datasets (Figure 5H). 

This increased peptide length is consistent with the ubiquity of loss-of-arginine SAAVs in 

both datasets, which are favored in the longer length peptides (Figure S36).  

Protein families analysis revealed slight differences between the two datasets with 

enzymes making up a larger fraction of cys-enriched detected variant proteins. 

Significantly higher CADD scores were also observed for enrichment data (Figure S37). 

Notable high-CADD score variants identified only from enrichment include lysine 

demethylase KDM3B D1444Y, RNA polymerase POLRMT R805C, glycoprotein 

transporter LMAN2 R218C and Serine/threonine-protein phosphatase PP1-alpha 

catalytic subunit PPP1CA D203N (Figure 5C). Addition of the bulk proteomic analysis 

yielded coverage of 85 notable variants belonging to Census genes, including BRD4 

E451G and KRAS G13D, and 26 rare and common variants of uncertain significance in 

ClinVar, including rare gain-of-cysteines ubiquitin hydrolase USP8 Y1040C and LMNA 

R298C (Figure 5I, Table S5). 
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Figure 5. Comparison of variants identified from cysteine enrichment and bulk proteomics A) 

Workflow for high-pH fractionation of lysates. Cell lysates are treated with DTT and iodoacetamide followed 

by digestion, high-pH fractionation, and LC-MS/MS analysis. Triplicate high-pH sets for HCT-15 and Molt-

4 cells were used. B) Total numbers of unique missense variants identified from either RNA-seq or WE-seq 

or both after using 2-stage MSFragger search of high-pH datasets. C) Overlap of cysteine-containing 

peptide variants identified from bulk fractionation and cysteine enrichment datasets. D) Fold enrichment of 

amino acids as a ratio of the net amino acid frequency (gain minus loss) to the amino acid frequency in all 
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missense-containing proteins detected in high-pH and cys-enriched datasets. E) DE-seq normalized 

transcript counts for all RNA variants ‘All’, variants detected from cys-enrichment ‘C’, and variants detected 

from high-pH fractionation ‘H’ in HCT-15 cells; bar indicates mean value. F) Label free quantitation (LFQ) 

intensities for proteins matched to all RNA variants ‘All’, variants detected from cys-enrichment ‘C’, and 

variants detected from high-pH fractionation ‘H’ in HCT-15 cells; bar indicates mean value. G) Variant allele 

frequencies (VAF) (total reads/total coverage per site) for RNA-seq variants called in HCT-15 and Molt-4 

cells. E-G; bar indicates median, statistical significance was calculated using Kolmogorov-Smirnov test, **** 

p < 0.0001, ns p > 0.05.  H) Peptide lengths of reference and variant peptides identified in dataset types. I) 

High-pH detected variants stratified by CADD score and ClinVar clinical significance. Data found in Table 

S5. 

 

Chemoproteogenomics enables ligandability screening. As demonstrated by our 

previous studies, cysteine chemoproteomics platforms are capable of pinpointing small-

molecule targetable cysteine residues21,22,26,29. Therefore, we next paired our 2-stage 

search method with cysteine-reactive small molecule ligandability analysis to establish a 

chemoproteogenomic small molecule screening platform (Figure 6A). We first opted to 

use the widely employed scout fragment KB0229 (Figure 6B) to compare the ligandable 

variant proteomes for three high variant burden dMMR cell lines (HCT-15, Jurkat, and 

Molt-4). For KB02 treated samples, we identified 210 total variants. The high 

concordance for ratios detected for variant peptides with multiple alleles provides 

evidence of the robustness of our platform and hints that most cysteine proximal variants 

do not substantially alter cysteine ligandability (Figure 6C).  

We next subjected the HCT-15 proteome to more in depth analysis using a small 

panel of custom electrophilic fragments (Figure 6B). We observed 27 total liganded 

variant peptides in 27 proteins in the HCT-15 proteome, which are labeled by one or more 

compounds (Figure 6C). As with the KB02 cell line comparison, nearly all multi-allelic 

peptides showed comparable ratios (Figure 6E). Nucleotide analogue SO-105 was 

observed to be more promiscuously reactive (Figure 6F) when compared to the less 

elaborate fragments.  
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In aggregate across all ligandability datasets, we identified 259 total variants found 

in 232 total proteins (Figure 6D). Of these variants, 57 were acquired cysteines, in 55 

proteins; 22 were ligandable (Log2(HL) ratio > 2), variant-proximal cysteines and 10 were 

ligandable  gain-of-cysteines (Figure 6D). Notable liganded sites we identify include 

Cullin-associated NEDD8-dissociated protein 1 (CAND1) G1069C–a site which mutated 

in the Arabadopisis ortholog reduces auxin response113 and Tubulin beta 6 (TUBB6) 

G71C (Figure 6G). Some sites with differing reference and variant ratios include EPRS 

P1482T–the mutated proline nearby Cys 1480 may be requisite for labeling by 

electrophilic fragments. We also identify 3 ligandable variants of uncertain significance or 

conflicting pathogenicity that we show may be modulated for study with small molecules 

and could act as potential starting points for biological analyses (Figure 6C). As multi-

allelic acquired cysteine sites cannot be captured sans cysteine, no analogous ratio 

comparison could be performed for the 6 total quantified acquired cysteines (Figure 6G). 

To understand functionality of the ligandable variant sites in 3D protein space, we 

analyzed active site and binding sites within 10 angstrom distance of the ligandable Cys 

residues and Cys-proxial variant sites (Table S6). We find three ligandable cysteines near 

or in active/binding sites including previously identified HMGB1 Cys106 (R110C) (Figure 

4I), as well as Aldolase A ALDOA Cys178 (G196G) and HLA-B/C Cys125 

(V127L/S123Y). Intriguingly HLA-B/C Cys125 (C101 post signal peptide cleavage), near 

peptide binding region sites Y183 is liganded by KB02 in HCT-15 cells which harbor HLA-

B*08:01 and HLA-B*35:01 (Figure 6F). This conserved cysteine plays important roles in 

HLA structure114. Ligandability of this site is unexpected as this site is known to be 

disulfided with C188 in cell surface HLA115; however, we find in our sequencing that HCT-
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15 cells harbor truncated beta-2-microglobulin (β2m) protein (B2M Y30*) (Table S2). β2m 

is known to stabilize this specific disulfide115,116, facilitating protein folding and 

translocation to the cell surface117–119. In HLA-B27 allelic variants, Cys125 is known to be 

exposed without β2m120. 
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Figure 6. Assessing ligandability of variant proximal cysteines and gain-of-cysteines. A) Schematic 

of activity-based screening of Cys reactive compounds; cell lysates are labeled with compound or DMSO 

followed by chase with IAA and ‘click’ conjugation to heavy or light biotin click conjugation to our isotopically 

differentiated heavy and light biotin-azide reagents, tryptic digest, LC-MS/MS acquisition, and MSFragger 

analysis. B) Chloroacetamide compound library. C) Total quantified variants and total ligandable variants 
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(Log2 Ratio > 2) identified stratified by cell line (KB02 data) or compound (HCT-15 cell line). D) Correlation 

of high-confidence variant containing and reference cysteine ratio values from KB02 data. E) Correlation of 

high-confidence variant containing and reference cysteine ratio values from SO compound data.  F) Log2 

heavy to light ratio values for variant containing and reference cysteine peptides. G) Subset of gain of 

cysteine peptide variant log2 ratios. H) Crystal structure of HLA-B*08:01 protein liganded Cys125, disulfide 

Cys188, and binding site residue Y183 as well as variant sites V127 and S123 (PDB: 3X13). Data provided 

in Table S6. 

 

 

Expanding HLA cysteine peptide coverage and gel-based ABPP of HLA covalent 

labeling. Major Histocompatibility Complex (MHC) Class I molecules (known as HLA 

molecules in humans) present intracellularly derived protein fragments, either self-derived 

or from pathogens in the context of cross-presentation, on the cell surface for recognition 

by T cells and subsequent immune response; noncovalent assembly of a polymorphic 

heavy chain with a light chain (β2m) and peptide occurs in the endoplasmic reticulum 

(ER) followed by translocation via the Golgi to the cell surface121. Recent reports of allele-

specific HLA-binding compounds, most notably abacivir HIV drug122, together with efforts 

to develop covalent modulators of MHC Class I and II complexes123–125 prompted us to 

assess the impact of chemoproteogenomics on achieving improved coverage of highly 

polymorphic genes (Figure 7A). 15,000 HLA alleles have been reported in the human 

population126. Exemplifying this impact on proteomic sequence coverage, our panel of 

cell lines alone harbor >25 HLA-A, B and C alleles (Table S2), while most protein 

reference databases only contain one copy of each MHC Class I and Class II molecule. 

Through search of sample-specific databases of both chemoproteomics and high 

pH fractionated samples, we achieved ~50% more coverage of HLA-A sequence in 

comparison to reference searches (Figure 7B and Figure S39). A key finding of our 

analysis was detection of HLA-B Y91C (C67 post signal peptide cleavage), which lies in 

the extracellular peptide binding pocket of HLA-B and was identified as IAA-labeled in 
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MeWo cells (Figure 4J). The MeWo cell line HLA alleles (HLA-B*14:02 and HLA-B*38:01) 

both harbor this comparatively rare Cys (Figure 7C). Notably this cysteine is also a key 

feature of the pathogenic ankylosing spondylitis associated allele HLA-B*27127,128. To test 

whether this cysteine was amenable to gel-based ABPP analysis and to determine 

whether this IAA labeling extends to HLA-B*27:05, we co-expressed c-terminal FLAG 

tagged HLA-B*38:01, HLA-B*27:05, HLA-B*38:01 C91S, and HLA-B*27:05 C91S with 

beta-2-microglobulin (β2m) and subjected cells to in situ IAA labeling followed by lysis, 

FLAG immunoprecipitation to enhance the detectability of the HLA cysteine, and click 

conjugation to rhodamine azide (Figure 7D). Gratifyingly, we observed a Cys67-specific 

rhodamine signal (Figure 7E), showcasing the utility of gel-based ABPP in visualizing 

HLA small molecule interactions. Notably IAA labeling was also observed for HLA-

B27:05, although the presence of a strong co-migrating band in the HLA-B27:05 C67S 

immunoprecipitated sample complicates interpretation of the specificity of this labeling to 

Cys67. We were unable to observe comparable signal in lysate-based labeling studies, 

supporting enhanced accessibility of this cysteine to cell-based labeling (Figure S40). 
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Figure 7. Expanding HLA cysteine peptide coverage and gel-based ABPP of HLA covalent labeling. 

A) Schematic of highly variable HLA binding pocket containing cysteine with bound peptide. B) Coverage 

of HLA cysteines from this study and in CysDB; color indicates HLA type or multi-mapped cysteines. C) 

Crystal structure of HLA-B 14:02 (PDB: 3BXN) with highlighted Cys67 and Arg P2 position of bound peptide; 

alignments of Cys91 regions of three HLA-B alleles. D) Workflow to visualize HLA cysteine labeling; first 

cells were harvested and treated with IAA followed by lysis, FLAG immunoprecipitation, and click onto 

rhodamine-azide. E) Cys-dependent cell surface labeling of HLA-B alleles with IAA, band indicated with red 

arrow and non-specific band represented with asterisk (representative of 2 two biological replicates). Data 

provided in Table S7. 

 

FragPipe graphical user interface with improved 2-stage MSFragger search and 

FDR estimation. Motivated by the multi-faceted uses of the 2-stage search pipeline, 



 157 
 
 
 

including those reported here and future envisioned applications, we also sought to 

facilitate the utilization of the 2-stage search strategy by the scientific community. 

Therefore, we enhanced FragPipe by establishing semi-automated execution of these 

searches while also providing an option to run MSBooster and Percolator (instead of 

PeptideProphet)  to further improve the sensitivity of identification of variant peptides  

(Figure 8A).  

In the first stage pass, with the "write sub mzML" option enabled, FragPipe utilizes 

MSFragger85,129 for mass calibration, search parameter optimization, and database 

searching. Following this, FragPipe applies MSBooster130 to compute the deep-learning 

scores130, Percolator131 for PSM rescoring, ProteinProphet132 for protein inference, and 

Philosopher for FDR filtering. Subsequently, FragPipe generates new mzML files, which 

include the scans that did not pass the FDR filtering (default is 1%) and those with a 

probability higher than a predefined threshold (default is 0). 

In the second search, as the mass spectral files have already been calibrated and 

only scans that remained unidentified in the first search have been retained, the mass 

calibration should be disabled. Moreover, Percolator modeling might fail in the second 

pass due to a lack of sufficient number of high-scoring PSMs. Therefore, FragPipe lets 

Percolator reuse the model from the initial pass. FragPipe then generates a new workflow 

file containing optimized parameters, and a new manifest file with the new (subset) mzML 

files specified for the second-pass search. The user is merely required to load these two 

files without needing any further adjustments. 

Using the new GUI features, we observe comparable coverage for both the 

command-line and automated GUI implementations of the 2-stage search with a slight 
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increase in numbers of identifications observed for datasets processed with MSBooster 

and Percolator (Figure S41, Table S8). The ratio differences between variant and 

reference Cys peptide are comparable (Figure 8B). 

 

Figure 8. 2-stage search implemented into FragPipe GUI with Percolator rescoring A) 2-stage search 

incorporation into FragPipe GUI workflow. B) Heavy to light ratios (H:L) from triplicate datasets comparing 

identifications from reference and variant searches; mean ratio value indicated, dashed lines indicate 

ground-truth log2 ratio, statistical significance was calculated using Mann-Whitney U test, * p < 0.05, ** p < 

0.01, ns p > 0.05. Data provided in Table S8. 

 

Discussion 

SAAVs are a ubiquitous feature of human proteins, which remain under sampled 

in established proteomics pipelines. Here, we merged genomics with mass spectrometry-

based chemoproteomics to establish chemoproteogenomics as an integrated platform 

tailored to capture and functionally assess the missense variant cysteinome. Our 

chemoproteogenomics study is distinguished by a number of features including: (1) 
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genomic stratification of the predicted pathogenicity of acquired cysteine residues, (2) 

cell-line paired custom combinatorial search databases, (3) FragPipe enabled 2-stage 

database search platform ensuring class-specific FDR estimation, and (4) capacity to 

pinpoint both redox-sensitive and ligandable genetic variants proteome-wide. To facilitate 

widespread adoption of our approach, including for applications beyond the study of the 

variant cysteinome, the user-friendly GUI-based FragPipe platform now features a robust 

semi-automated version of our 2-stage search (Figure 8). 

To build chemoproteogenomics, we started by analyzing publically available 

datasets in Clinvar, COSMIC, and dbSNP, which revealed that cysteine acquisition is a 

ubiquitous feature of human genetic variation, which predominates in the context of DNA 

damage repair responses. The instability of CpG motifs is a key driver of bulk cysteine 

acquisition, which occurs largely hand-in-hand with bulk arginine depletion, across both 

cancer genomes and healthy genomes and rare and common variants. Many colon 

cancer cell lines and other MSI high cell lines are particularly enriched for cysteine 

acquisition—however, nearly all of the acquired residues in these lines are not driver 

mutations, which complicates their use as models for assessing the potentially 

druggability of variants with established clinical connections and highlights the value of 

future efforts to analyze additional missense variant rich cell lines and perform CRISPR-

Cas9 base editing to engineer variants of interest into endogenous loci35,133–136. 

Armed with a set of variant rich cell lines, we next generated combinatorial SAAV-

peptide databases for cell-line specific SAAVs as identified in cell-line matched whole 

exome and transcriptome datasets. In total, across 11 cell lines sequenced, we identified 

1,453 missense variants, of which 116 led to gain-of-cysteine. Looking towards future 
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iterations of chemoproteogenomics, we expect that the use of tumor-normal paired 

variant calling with tools such as MuTect2137 will further decrease the likelihood of false 

discovery introduced by factors such as cell heterogeneity and low read quality—for cell 

lines that lack matched normal controls, we expect that the pairing of publically available 

datasets (e.g. DepMap, https://depmap.org/) with custom sequencing data, will prove 

another useful strategy to further bolster the quality and accessibility of variant-containing 

databases. Such multi-pronged approaches will likely prove most useful when paired with 

combinatorial custom databases, such as the peptide-based databases reported here, 

which were designed to minimize increased search space complexity while also more 

fully accounting for cell heterogeneity. 

         By building upon prior reports describing 2-stage database searches for class-

specific FDR control53–55 as a rigorous search strategy that reduces the likelihood of a 

false positive variant peptide detection, here we deployed a 2-stage search  approach in 

FragPipe, first as a custom command-line workflow and subsequently as a user-friendly 

semi-automated workflow in the FragPipe GUI. Enabled by our previously reported 

isotopically enriched heavy- and light-biotin-azide capture reagents87, we provide 

compelling evidence to support the low rates of false discovery of variant peptides using 

the 2-stage search—spurious false discovery of variant peptides would easily be detected 

from MS1 precursor ion ratios that deviate from the expected spike-in values (Figure 3,8). 

Our isotopic labeling strategy also enabled the assessment of the ligandability and redox 

sensitivity of variant peptides. Our discovery of a cysteine in PMPCA that exhibits variant-

dependent changes in oxidation provides an intriguing anecdotal example that supports 

the future utility of chemoproteogenomics in more broadly characterizing the missense 
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variant redox proteome. Given the critical role that disulfides play in protein structure and 

folding and the causal roles for cysteine mutations in human disease, for example the 

NOTCH mutations that cause the neurodegenerative disorder CADASIL138, we expect a 

subset of these lost cysteines could be implicated in altered protein abundance or activity. 

Through cysteine chemoproteomic capture, we identified ligandable variant-proximal 

cysteines in Census genes such as RAD17, including one gain-of-cysteine of uncertain 

significance in LMNA (R298C). Other liganded cysteines proximal to variants of uncertain 

significance include TJP2 (A906R) and SRRT (R415Q). Demonstrating the utility of our 

approach, we identified a Cys91 (Cys67) as labeled by IAA both by proteomics and gel-

based ABPP. As this cysteine is shared with the pathogenic HLA-B27, it is exciting to 

speculate about the impact of covalent modification on HLA peptide presentation. Our 

application of chemoproteogenomics to screening of a focused library of electrophilic 

compounds, identified 32 ligandable variant-proximal Cys which demonstrates that 

cysteine ligandability can be assessed proteome-wide in a proteoform-specific manner.  

Looking beyond our current study, we anticipate multiple high value applications for 

chemoproteogenomics. Application to immunopeptidomics should uncover additional 

covalent neoantigen sites, analogous to the recent reports for Gly12Cys KRAS124,139. 

Pairing of chemoproteogenomics with ultra-deep offline fractionation should further 

increase coverage and allow delineation of variants that alter protein stability, including 

the numerous high CADD score acquired cysteines, which we find were 

underrepresented in our proteomics analysis when compared to genomic identification. 

Inclusion of genetic variants beyond SAAVs will allow for capture of additional 

therapeutically relevant targets that result from indels, alternative splicing39,140, 
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translocations, transversions, or even undiscovered open reading frames such as 

microproteins141,142. Thus chemoproteogenomics is poised to guide discovery of 

proteoform-directed therapeutics. 
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Chapter 3 Supporting Information:   

Multi-omic stratification of the missense variant cysteinome 

Supplementary Figures      

 
 

 
 
 

Figure S1. Missense counts in subsets of COSMIC Cell Lines A) Top 15 cell lines with 
highest missense burden in COSMIC-CLP (COSMIC Cell Lines Project release v96) color 
indicates availability of high mutational burden cell lines in American Type Culture 
Collection (ATTC) and German Collection of Microorganisms and Cell Cultures (Deutsche 
Sammlung von Mikroorganismen und Zellkulturen, DSMZ). B) Top 15 cell lines with 
highest gained cysteines showing net gain, total gained and total lost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. Aggregated net amino acid changes (gained counts - lost counts) in combined 
top 15 cell lines with highest missense burden in COSMIC-CLP (COSMIC Cell Lines 
Project release v96). 
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Figure S3. Net single amino acid mutation counts (gained counts - lost counts) in top 15 
cell lines with highest missense burden (COSMIC Cell Lines Project release v96). Several 
cell lines show marked depletion of alanine, for example SNU-175, KARPAS-45, Jurkat 
(A3 subclone) and MOLT-4 cell lines, which represent two colon cancer cell lines, and 
two T lymphoblast cell lines, respectively. In contrast, several cell lines showed marked 
net gain of alanine, including EN, Gp5d, and HCC2998 cells, which are an 
endometrial/uterine cancer lines and two colon cancer cell lines, respectively. 
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Figure S4. Total gain and loss missense mutation counts in the top 15 cell lines with 
highest missense burden (COSMIC CLP v96). 
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Figure S5. Cell lines with highest net gained cysteines (COSMIC CLP v96). 
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Figure S6. ClinVar amino acid changes A) Total gained and lost amino acids reported in 
all ClinVar data for unique gene name, protein position and amino acid change B) Total 
gained and lost amino acids for pathogenic missense variants in ClinVar. Red indicates 
gain amino acids and blue indicates lost amino acids 
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Figure S7. Net single amino acid mutation counts (gained counts - lost counts) in the 
panel of cell lines in this study (COSMIC CLP v96). C2BBe1 is a CaCo-2 cell line clone 
in COSMIC-CLP. 
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Figure S8. Total gain and loss missense mutation counts in a panel of cell lines in this 
study (COSMIC CLP v96). C2BBe1 is a CaCo-2 cell line clone in COSMIC-CLP. 
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Figure S9. Variant calling pipelines for RNA and whole-exome (WE) datasets. Details in 
methods. Raw reads submitted to Sequence Read Archive (SRA) as BioProject 
PRJNA997729. Color indicates commands under toolkit listed. 
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Figure S10. Number of mapped reads per cell line after BWA or STAR mapping and total 
unique SAAVs (single amino acid variants) identified per cell line. Color indicates 
sequencing batch 
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Figure S11. Gained amino acid counts identified in individual cell lines separated by 
common and rare. Dotted lines indicate dMMR cell lines 
 



 174 
 
 
 

 

 
 
Figure S12. Lost amino acid counts identified in individual cell lines separated by 
common and rare. Dotted lines indicate dMMR cell lines. 
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Figure S13. Net amino acid counts in identified individual cell lines separated by common 
and rare. Dotted lines indicate dMMR cell lines. 
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Figure S14. A) Gained cysteine missense mutations relative to total missense mutations 
from sequencing data fit to all COSMIC-CLP linear model from Figure 1B and 1C. B) Lung 
cancer lines subset with linear regression and 95% confidence interval shaded in gray–
suggests the comparatively modest impact of smoking on cysteine acquisition for the cell 
lines evaluated. 
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Figure S15. Unique codon changes in Jurkat, NCI-H1437, MOLT-4 and MeWo cell lines; 
RNA changes in red and exome changes in blue; analysis of rare variants. Tobacco-
smoke carcinogens, such as benzo[a]pyrene (B[a]P) diol epoxides, uniquely confer G→ 
T (C→ A) transversions that we see enriched only in our smoking LC line. dMMR and UV 
mutations are predominantly C→T (G→A) transitions, the flanking nucleotides differ as 
UV radiation induces pyrimidine dimers which largely result in CC→TT transitions (and 
counterpart GG→AA) which cause gain of F/K and loss of S/E. 
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Figure S16. Distribution of CADD (Combined Annotation Dependent Depletion) scores 
for indicated variant grouping from Figure 2E data, Statistical significance was 
calculated using Mann-Whitney U test, **** p < 0.0001.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S17. CADD-phred cumulative probabilities stratified by cell line. Pink lines 
indicate CADD-phred = 20 
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Figure S18: CADD-phred cumulative probabilities stratified by gained amino acid. Pink 
lines indicate CADD-phred = 20. One sided Mann Whitney U test p-values are in Table 
S2 (tab S16). 
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CADD score 
Figure S19. Distribution of CADD-phred scores for indicated amino-acid gained 
grouping. One sided Mann Whitney U test p-values are in Table S2 (tab S16). 
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Figure S20. CADD-phred cumulative probabilities stratified by lost amino acid. Pink 
lines indicate CADD-phred = 20. One sided Mann Whitney U test p-values are in Table 
S2 (tab S16). 
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CADD score 
Figure S21. Distribution of CADD-phred scores for indicated amino-acid loss grouping. 
One sided Mann Whitney U test p-values are in Table S2 (tab S16). 
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Figure S22. Distribution of CADD-phred scores for selected amino acid rare variants in 
MeWo, HCT-15, MOLT-4, and Jurkat cell lines  
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Figure S23. The Cancer Genome Atlas (TCGA) hotspot mutation distribution of CADD 
scores for indicated grouping. Highly deleterious gain of cysteines that are also TCGA 
hotspot mutations include FBXW7 R505C in Jurkat and ADAMTS1 R604C in MOLT-4, 
and SCYL3 R61C in MeWo. n=10, 6,16,21 for Cys ; n=25, 34, 31, 90 for Arg across from 
left. 
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Figure S24. Distribution of reference/lost amino acids of gained cysteines in Figure 2 
data (60% arginine).  
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Figure S25. Reference cysteines and proteins identified per cell line in Figure 4 for 
duplicate datasets. 
 
 
 
 
 
 

 
 
Figure S26. Figure 4 reference cysteines overlap with CysDB cysteines. Red indicates 
Cys DB dataset, blue indicates Figure 4 dataset. 
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Figure S27: Details of database generation. A) Pipeline of packages and inputs to obtain 
variant peptide databases–VariantAnnotation1 package is used to obtain predicted 
changes that replace reference sequence residues from Gencode by matching internal 
transcript IDs (TxID). Details in methods. Combinations are omitted from proteins with > 
25 or 15 variants. B) Variant database sizes calculated as the number of FASTA entries. 
The skipped proteins indicate the number of proteins that were omitted from combinations 
in Table S4 (tab S24). 
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Figure S28: Distribution of CADD-phred scores for indicated variant grouping from 
Figure 4 data. Statistical significance was calculated using Mann-Whitney U test, *** p < 
0.001. 
 

 
 
Figure S29: Distribution of CADD-phred scores for indicated gained cysteines vs all other 
from Figure 4 data. 
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Figure S30: Identified variants’ domain residence counts from Figure 4 data. 
 

 
      
Figure S31. Reference peptides and proteins identified per cell line in Figure 5 for 
triplicate sets of high pH fractionated samples per cell line. 
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Figure S32. Net counts of SAAVs identified in Figure 5. 
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Figure S33. Net counts of SAAVs stratified by amino acid and common vs rare identified 
in Figure 5. 
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Figure S34: A) Label free quantitation (LFQ) intensities comparisons and B) DE-seq 
normalized transcript comparisons from HCT-15 cell line reference database searches. 
C) Variant allele frequencies for gain-of-cysteines subset in HCT-15 and Molt-4 searches. 
D) Matched LFQ intensities and normalized transcript count correlation of variant 
containing proteins/transcripts; All=all proteins in LFQ search or all transcripts, C=proteins 
from cys-enrichment search, H=proteins form high-pH fractionation search.  
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Figure S35: Peptide properties of detected reference peptides from cys-enrichment and 
high-pH fractionation A) Charge states of detected reference peptides and variant 
peptides. B) Abundance of amino acids in detected reference and variant peptides. 
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Figure S36: High-pH identified variant peptide length and SAAV reference amino acid for 
top lost amino acids.  
 
 
 
 

 
 

 
 

 
Figure S37: A) CADD score comparison between cys-enriched and high-pH detected 
variants B) Protein classes of cys-enriched and high-pH detected variants. 
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Figure S38. Reference identifications in Figure 6 for for A) KB02 datasets or B) HCT-15 
datasets. 
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Figure S39. Sequence coverage of Uniprot references A) HLA-A*3:01 and B) HLA-
B*7:02 peptides from HCT-15 reference and variant searches in Figure 4-6 datasets; 
yellow indicates enriched cysteines and red are variant sites. 

 
Figure S40. Cysteine lysate labeling of overexpressed HLA-B alleles with iodoacetamide 
alkyne (IAA) (representative of 2 two biological replicates) conjugation by click chemistry 
to  a rhodamine-azide tag described in methods. 
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      Ratio Combination 
 
Figure S41. Coverage of FragPipe GUI implementing MSBooster with Percolator 
rescoring in comparison to PeptideProphet command line quantified cysteine 
identifications from validation datasets. 
 

Methods 

Biology: 

 

Cell culture and preparation of cell lysates. Cell culture reagents including Dulbecco’s 

phosphate-buffered saline (DPBS), Dulbecco’s modified Eagle’s medium (DMEM)/high 

glucose media, Eagle's Minimum Essential Medium (EMEM), Roswell Park Memorial 

Institute (RPMI) media, trypsin-EDTA and penicillin/streptomycin (Pen/Strep), and Horse 

Serum, heat inactivated (26-050-070) was purchased from Fisher Scientific. Fetal Bovine 

Serum (FBS) was purchased from Avantor Seradigm (lot # 214B17). All cell lines were 

obtained from ATCC and were maintained at a low passage number (< 20 passages).  

HEK293T (ATCC: CRL-3216) cells were cultured in DMEM supplemented with 10% FBS 

and 1% antibiotics (Penn/Strep, 100 U/mL). MIA-PaCa-2 (ATCC: CRL-1420) cells were 

https://www.fishersci.com/shop/products/gibco-horse-serum-heat-inactivated-new-zealand-origin-2/26050070
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cultured in DMEM supplemented with 10% FBS, 1% antibiotics (Penn/Strep, 100 U/mL), 

and 2.5% horse serum. H661 (ATCC: HTB-183), H1437 (ATCC: CRL-5872), H358 

(ATCC: CRL-5807), HCT-15 (ATCC: CCL-225), Jurkat (ATCC: TIB-152), MOLT-4 

(ATCC: CRL-1582) and H2122 (ATCC: CRL-5985) cells were cultured in RPMI-1640 

supplemented with 10% FBS and 1% antibiotics (Penn/Strep, 100 U/mL). HEC-1-B 

(ATCC: HTB-113), MeWo (ATCC: HTB-65), CaCo-2 (ATCC: HTB-37) cells were cultured 

in EMEM supplemented with 10% FBS and 1% antibiotics (Penn/Strep, 100 U/mL). Cells 

were maintained in a humidified incubator at 37 °C with 5% CO2. Cells were harvested 

by centrifugation (4500g, 5 min, 4 °C) and washed twice with cold DPBS. Cell pellets 

were then lysed with sonication (amp=10, 10 x1 sec pulses). The lysates were then 

transferred to a new microcentrifuge tube. Protein concentrations were determined using 

a BioRad DC protein assay kit from Bio-Rad Life Science (5000113, 5000114) and the 

lysate diluted to the working concentrations indicated below. 

 

RNA-seq variant calling. Total RNA was extracted from cells using the Invitrogen 

Purelink RNeasy Plus Mini Kit (Qiagen, 166043750) or PureLink RNA mini kit 

(ThermoFisher, 12183018A) or Library preparation and RNA sequencing was carried out 

by the UCLA Technology Center for Genomics and Bioinformatics (TCGB). Libraries were 

prepared using the KAPA stranded mRNA kit.  Paired-end sequencing (2x150) was 

performed to a depth of 50-60x with an Illumina HiSeq3000 system. RNAFastq paired-

end reads for each cell line were aligned to Gencode reference genome hg38 

(GRCh38.p13) using STAR-2 PASS alignment (v2.7.3a)2. We ran STAR with default 

settings for paired-reads and the following additional parameters:–outSAMtype BAM 
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SortedByCoordinate, --outSAMunmapped Within, and --sjdbFileChrStartEnd in second 

alignment. Samtools (v1.7)3,4 calmd was used to add MD tags to sorted BAM files. 

Opposum (v0.2, 02-23-2017)5 was used to split reads and mark duplicates using default 

parameters and an additional parameter --SoftClipsExist True. Platypus (v0.8.1)6 was 

used to call variants and generate VCF files using default parameters. Samtools flagstat 

was used to obtain BAM file mapped read counts. Raw reads submitted to Sequence 

Read Archive (SRA) as BioProject PRJNA997729. 

 

WE-seq variant calling. Genomic DNA was extracted from cells using the Zymo Quick 

DNA Miniprep Plus Kit kit (Fisher Sci, 50-444-149). Library preparation and exome-

sequencing was carried out by the UCLA Technology Center for Genomics and 

Bioinformatics (TCGB). Libraries were prepared using the Nimblegen Capturing Kit. 

Paired-end sequencing (2x150) was performed to a depth of 50-60x with an Illumina 

HiSeq3000 system. Fastq paired-end reads for each cell line were aligned to Gencode 

reference genome hg38 (GRCh38.p13) using BWA-MEM alignment and default 

parameters for paired-reads. Output SAM files were converted to BAM files using 

Samtools (v1.7) and Picard (v2.21.4) (https://broadinstitute.github.io/picard/) was used to 

generate coordinate-sorted BAM files with read groups added. Samtools was used to 

index the files and duplicates were marked with Picard. GATK-HaplotypeCaller (v4.1.8.1)7 

was used to split reads. Since we do not have matched normal samples, we opted to use 

the germline caller GATK-HaplotypeCaller for exome data. Variants were called using 

default parameters with the exception of the ploidy option which was set to the value 

outlined in Table S2 (tab S11). GATK was used to index the VCF file and filter the variants 
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using the following parameters: -window 35 -cluster 3 --filter-name FS --filter-expression 

"FS > 30.0" --filter-name QD --filter-expression "QD < 2.0". Samtools flagstat was used to 

obtain BAM file mapped read counts. Raw reads submitted to Sequence Read Archive 

(SRA) as BioProject PRJNA997729. 

 

HCT-15 expression analysis. 5 biological replicates RNA extracts were sequenced as 

described and aligned to hg38 as described in RNA-seq variant calling. Kallisto (v0.46.1)8 

was used to estimate transcript counts with indexed Gencode v28 transcriptome 

(gencode.v28.transcripts.fa) and -b (bootstrap) set to 100. Abundance transcript files 

were normalized with DE-seq2 (v1.28.1)9. Counts table was subsetted to a curated set of 

nonredundant CCDS transcript ID’s (24,950) in Table S2 (tab S9) and mean counts were 

calculated for downstream analysis. Raw reads submitted to Sequence Read Archive 

(SRA) as PRJNA997729. 

 

Predicting amino acid changes: Table S2 (S9) (nonredundant CCDS transcript ID’s) 

was used to remove redundant proteins. VCFs from variant calling pipelines for both RNA 

and WES were processed using R package ‘Variant Annotation’1. First, a TxDB object 

was made using the Gencode v28 annotation GTF file. The ‘predictCoding’ function using 

genome hg38 (GRCh38.p13) was used to obtain protein level changes from the VCFs, 

and ‘nonsynonymous’ and ‘nonsense’ changes were extracted; the resulting table 

includes a set of internal transcript IDs labeled ‘TXID’. A database of common SNPs from 

NCBI (04-23-2018 00-common_all.vcf.gz) was used to annotate SNPs from rare 

mutations. The output missense table (Table S2 (tab S10)) lists reference/variant codons 



 207 
 
 
 

and amino acids. This table was filtered to contain matches to the CCDS set of 24,950 

Ensembl transcript IDs only and those that resulted in single amino acid variants (SAAVs), 

ignoring small indels and multi-nucleotide variants (48,552 variants). Variants passing 

variant-calling filters were used in Figures 1-2 (48,301 variants) and non-PASS variants 

are included in the proteomics analyses following. 

 

Generation of sample-specific custom databases with all combinations of variants. 

Several R packages were used in generating custom databases: VariantAnnotation1, 

GenomicFeatures10, biomaRt11 and BSgenome.Hsapiens.UCSC.hg38 (

10.18129/B9.bioc.BSgenome.Hsapiens.UCSC.hg38). A curated set of CCDS transcript 

ID’s (24,950) (Table S2) was used to subset the Gencode v28 protein coding translations 

FASTA file by Ensembl transcript IDs. These sequences consist of a non-redundant 

UniProtKB12 subset of cross‐referenced CCDS proteins. Using the previously generated 

TxDB object from ‘Predicting amino acid changes’, and the biomaRt select function, 

corresponding TXID headers for the protein FASTA file were obtained by selecting ‘TXID’ 

with Ensembl transcript ID keys (‘TXNAME’). Matching TXIDs from all SAAVs with new 

protein sequence TXIDs, positions in the corresponding wild-type protein sequences were 

replaced with the corresponding variant amino acid to generate a list of protein sequences 

containing only one variant per sequence. Protein sequences containing variants shared 

between RNA and exome-derived variants were grouped as one sequence. For proteins 

containing multiple variants, all possible combinations were generated for variants within 

30 amino acids windows for proteins with 25 (or 15, see SI tables) or fewer total variants. 

Output sequences were written to a FASTA file with headers containing corresponding 
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Uniprot-ID, Gene ID, Ensembl transcript ID, and missense changes as well as cell-line, 

and sequencing origin (RNA or WE). To limit the increased search space, the database 

variant protein sequences were in-silico digested. A custom python script was used to in-

silico digest the FASTA to generate tryptic peptides containing 2 misscleavages (two 

tryptic sites flanking amino acids surrounding the individual variant). Any duplicated 

peptide sequences were removed to leave unique sequences. For compatibility with 

MSFragger-based searches, simplified FASTA headers were used containing only the 

Uniprot ID. Result peptides are mapped back to detailed FASTA files for variant 

information. Scripts are available at 

https://github.com/hdesai17/chemoproteogenomics.git. 

 

Proteomic sample preparation for unenriched sample analysis. HCT-15 and MOLT-

4 lysates were incubated in 2 M urea/PBS at RT (final concentration = 2 mg/mL). DTT 

(10 μL of 200 mM stock in water, final concentration = 10 mM) was added into each 

sample and the sample was incubated at 65 °C for 15 min. To this, iodoacetamide (10 μL 

of 400 mM stock in water, final concentration = 20 mM) was added and the solutions were 

incubated for 30 min at 37 °C. Following addition of 3 μL trypsin solution (Worthington 

Biochemical, LS003740, 1 mg/mL in 666 μL of 50 mM acetic acid and 334 μL of 100 mM 

CaCl2, final weight = 2 ng),  digest was allowed to proceed overnight at 37 ºC with shaking. 

The next day, 90 μL from each digest was combined with 210 μL water and 0.3 μL TFA 

(final concentration  ~0.1% TFA and ~180 μg peptides). Samples were fractionated into 

low-bind eppendorf tubes using a high-pH reversed phase fractionation kit (Pierce, 

84868). Fractions were dried (Speed Vac) then reconstituted with 15 μL 5% acetonitrile 
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and 1% FA in MB water and analyzed by LC-MS/MS. Samples were fractionated in 

triplicates for a total of 48 samples. 

 

Proteomic sample preparation for cysteine-enrichment sample analysis. Proteome 

samples (200 μL of 1 mg/mL, prepared as described in preparation of cell lysates) 

Samples were then labeled with 2 mM IAA (2 μL of 200 mM stock solution in DMSO, final 

concentration = 2 mM) for 1h at RT (700rpm). CuAAC was performed with biotin azide 

(2) (4 μL of 200 mM stock in DMSO, final concentration = 4 mM), TCEP (4 μL of fresh 50 

mM stock in water, final concentration = 1 mM), TBTA (12 μL of 1.7 mM stock in 

DMSO/tbutanol 1:4, final concentration = 100 μM), and CuSO4 (4 μL of 50 mM stock in 

water, final concentration = 1 mM) for 1h at ambient temperature. After CuAAC, 10 µL of 

20% SDS was added to each sample. Samples were incubated with 0.5 μL benzonase 

(Fisher Scientific, 70-664-3) for 30 min at 37°C. The samples were then subjected to SP3 

sample loading, SP3 digest and elution, NeutrAvidin enrichment and LC MS/MS analysis, 

as described below. Experiments were conducted in duplicate for each cell line. 

 

Proteomic sample preparation for ligandability screening. HCT-15, MOLT-4, and 

MeWo proteome samples (200 μL of 2 mg/mL, prepared as described in preparation of 

cell lysates). Compound (500 μM) or DMSO vehicle was added to lysates for 1 hr (2 μL 

50 mM stocks or 2 μL DMSO). Samples were chased with 2 mM IAA (2 μL of 200 mM 

stock solution in DMSO, final concentration = 2 mM) for 1hr. CuAAC was performed with 

heavy biotin azide (DMSO samples) or light biotin azide (compound labeled samples) (4 

μL of 200 mM stock in DMSO, final concentration = 4 mM), TCEP (4 μL of fresh 50 mM 
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stock in water, final concentration = 1 mM), TBTA (12 μL of 1.7 mM stock in 

DMSO/tbutanol 1:4, final concentration = 100 μM), and CuSO4 (4 μL of 50 mM stock in 

water, final concentration = 1 mM) for 1h at ambient temperature. After CuAAC, 10 µL of 

20% SDS was added to each sample. Samples were incubated with 0.5 μL benzonase 

(Fisher Scientific, 70-664-3) for 30 min at 37 °C. The samples were then subjected to SP3 

sample loading using 80 μL total bead volumes, SP3 digest and elution, NeutrAvidin 

enrichment and LC MS/MS analysis, as described below. Experiments were conducted 

in triplicate for each compound per cell line. 

 

SP3 sample loading. SP3 sample cleanup was performed generally at a bead/protein 

ratio of 10:1 (wt/wt) (38). For each 200 μL sample, 20 μL (or 40 μL) Sera-Mag 

SpeedBeads Carboxyl Magnetic Beads, hydrophobic (GE Healthcare, 65152105050250, 

50 μg/μL, total 1 mg) and 20 μL (or 40 μL) Sera-Mag SpeedBeads Carboxyl Magnetic 

Beads, hydrophilic (GE Healthcare, 45152105050250, 50 μg/μL, total 1 mg) were 

aliquoted into a single microcentrifuge tube and gently mixed. Tubes were then placed on 

a magnetic rack until the beads settled to the tube wall, and the supernatants were 

removed. The beads were removed from the magnetic rack, reconstituted in 1 mL of MB 

water, and gently mixed. Tubes were then returned to the magnetic rack, beads allowed 

to settle, and the supernatants removed. Washes 20 were repeated for two more cycles, 

and then the beads were reconstituted in 40 μL MB water. The bead slurries were then 

transferred to the proteome samples, incubated for 10 min at RT with shaking (1000 rpm).  

 



 211 
 
 
 

SP3 digest and elution. Absolute ethanol (400 μL) was added to each sample, and the 

samples were incubated for 5 min at RT with shaking (1000 rpm). Beads were washed 

twice with 80% ethanol as described above. Beads were then resuspended in 200 μL 

0.5% SDS in PBS containing 2 M urea. DTT (10 μL of 200 mM stock in water, final 

concentration = 10 mM) was added into each sample and the sample was incubated at 

65 °C for 15 min. To this iodoacetamide (10 μL of 400 mM stock in water, final 

concentration = 20 mM) was added and the solution was incubated for 30 min at 37 °C 

with shaking. After that, absolute ethanol (400 μL) was added to each sample, and the 

samples were incubated for 5 min at RT with shaking (1000 rpm). Beads were then again 

washed three times with 80% ethanol in water (400 μL). Next, beads were resuspended 

in 150 μL PBS containing 2 M urea followed by addition of 3 μL trypsin solution 

(Worthington Biochemical, LS003740, 1 mg/mL in 666 μL of 50 mM acetic acid and 334 

μL of 100 mM CaCl2, final weight = 2 ng). Digest was allowed to proceed overnight at 37 

ºC with shaking. After digestion, ~ 4 mL acetonitrile (> 95% of the final volume) was added 

to each sample and the mixtures were incubated for 10 min at RT with shaking (1000 

rpm). Supernatants were then removed and discarded using the magnetic rack, and the 

beads were washed (3 × 1 mL acetonitrile). Peptides were then eluted from SP3 beads 

with 100 μL of 2% DMSO in MB water for 1 hour at 37 °C with shaking (1000 rpm). The 

elution was repeated again with 100 μL of 2% DMSO in MB water. Peptide concentration 

assay (Pierce, 23275) was performed to test the concentration of the peptide. The elution 

can be used for NeutrAvidin enrichment or analyzed by LC-MS/MS. 
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NeutrAvidin enrichment of labeled peptides. For each sample, 50 μL of NeutrAvidin® 

Agarose resin slurry (Pierce, 29200) was washed three times in 10 mL IAP 

(immunoaffinity purification) buffer (50 mM MOPS–NaOH (pH 7.2), 10 mM Na2HPO4, 50 

mM NaCl) and then resuspended in 500 μL IAP buffer. Peptide solutions eluted from SP3 

beads were then transferred to the NeutrAvidin® Agarose resin suspension, and the 

samples were then rotated for 2h at RT. After incubation, the beads were pelleted by 

centrifugation (21,000 g, 1 min) and washed by centrifugation (3 × 1 mL PBS, 6 × 1 mL 

water). Bound peptides were eluted with 60 μL of 80% acetonitrile in MB water containing 

0.1% FA (10 min at RT). The samples were then collected by centrifugation (21,000 g, 1 

min) and residual beads separated from supernatants using Micro BioSpin columns (Bio-

Rad). The remaining peptides were then eluted from pelleted beads with 60 μL of 80% 

acetonitrile in water containing 0.1% FA (10 min, 72 °C). Beads were then separated from 

the eluants using the same Bio-Spin column. Eluents were collected by centrifugation 

(21,000 g, 1 min) and dried (SpeedVac). The samples were then reconstituted with 5% 

acetonitrile and 1% FA in MB water and analyzed by LC-MS/MS. 

 

Liquid-chromatography tandem mass-spectrometry (LC-MS/MS) analysis. The 

samples were analyzed by liquid chromatography tandem mass spectrometry using a 

Thermo Scientific™ Orbitrap Eclipse™ Tribrid™ mass spectrometer coupled with a High 

Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Interface. Peptides were 

resuspended in 5% formic acid and fractionated online using a 18cm long, 100 μM inner 

diameter (ID) fused silica capillary packed in-house with bulk C18 reversed phase resin 

(particle size, 1.9 μm; pore size, 100 Å; Dr. Maisch GmbH). The 70-minute water 
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acetonitrile gradient was delivered using a Thermo Scientific™ EASY-nLC™ 1200 system 

at different flow rates (Buffer A: water with 3% DMSO and 0.1% formic acid and Buffer B: 

80% acetonitrile with 3% DMSO and 0.1% formic acid). The detailed gradient includes 0 

– 5 min from 3 % to 10 % at 300 nL/min, 5 – 64 min from 10 % to 50 % at 220 nL/min, 

and 64 – 70 min from 50 % to 95 % at 250 nL/min buffer B in buffer A. For bulk 

fractionation data, the detailed 80 min gradient includes 0 – 3 min from 1 % to 10 % at 

300 nL/min, 3 – 63 min from 10 % to 40 % at 220 nL/min, 63 – 73 min from 40 % to 50 % 

at 220 nL/min, and 73 – 80 min from 50 % to 95 % at 250 nL/min buffer B in buffer A. 

Data was collected with charge exclusion (1, 8,>8). Data was acquired using a Data-

Dependent Acquisition (DDA) method comprising a full MS1 scan (Resolution = 120,000) 

followed by sequential MS2 scans (Resolution = 15,000) to utilize the remainder of the 1 

second cycle time. Time between master scans was set 1 s and 3s for compound labeling 

datasets, validation datasets, and fractionation datasets. HCD collision energy of MS2 

fragmentation was 30 %. Raw file names used for figures are in Table S9. 

 

Command-line MSFragger-based variant peptide identification and quantitation. 

Raw data collected by LC-MS/MS were searched using a 2-stage search scheme 

implemented using custom bash scripts: MSFragger (version 3.5), Philosopher (version 

4.2.2) and IonQuant (version 1.8.0) enabled13–16. Precursor and fragment mass tolerance 

was set as 20 ppm. Missed cleavages were allowed up to 2. Peptide length was set 7 - 

50 and peptide mass range was set 500 - 5000. Cysteine residues were searched with 

variable modifications at cysteine residues for carboxyamidomethylation (+57.02146), 

biotin-azide (+463.2366), and heavy biotin-azide (+469.2742) added for quant searches 
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in Figure 5 datasets. Labeling was set allowing for 3 max occurrences and ‘all mods used 

in first search’ checked. Peptide and protein level FDR were set to 1%. For ligandability 

screening, permissive IonQuant parameters allowed minimum scan/isotope numbers set 

to 1. First, raw spectra are searched with normal reference protein sequences (CCDS 

set) and peptide to spectrum matches (PSM) are filtered to   1% FDR. Custom bash 

scripts were used to extract 1% FDR filtered PSM scan numbers from this first search. 

Prior to a second search using the same parameters and custom database, a text file of 

these scan numbers is generated with leading zeros removed and included as option 

‘excluded_scan_list_file’, allowing remaining scans to be searched with a a cell line-

specific custom database containing Uniprot identifiers and tryptic peptide sequences as 

described in Generation of sample-specific custom databases. PeptideProphet17 was 

used for rescoring for both searches. Bash scripts are available at 

https://github.com/hdesai17/chemoproteogenomics.git. 

 

FragPipe label-free quantitation of HCT-15 fractionation data. Raw data collected by 

LC-MS/MS were searched with the default LFQ-MBR workflow provided by FragPipe. 

With each experimental group corresponding to fractionation set for a total of three 

intensity values per protein in combined.protein.tsv output. Mean LFQ intensities were 

calculated and the non-redundant set of Uniprot IDs (Table S2 (tab S9)) was used in 

downstream analyses. 

 

The MS search results and fasta files have been deposited to the ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner 
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repository18 with the dataset identifiers PXD043879 for newly generated data, and 

PXD023059 and PXD029500 for re-analyzed data. 

 

FragPipe GUI with improved 2-stage search. FragPipe generates a "fragpipe-second-

pass.workflow" and a "fragpipe-files-second-pass.fp-manifest" after the first  search. The 

manifest file points to the calibrated mzML files generated from the first pass. The 

workflow file has mass calibration and optimization turned off. Thus, using those two files, 

the second-pass search skips the calibration and searches the calibrated data. See 

document on 2-stage searches for more details. 

 

Transient expression of HLA-B alleles. Expression plasmids (pTwist CMV) containing 

HLA-B*38:01, and HLA-B*27:05, HLA-B*38:01 C91S ,and HLA-B*27:05 C91S inserts 

with C-terminal FLAG-tags were obtained from Twist Bioscience. pDONR223_B2M_WT 

was a gift from Jesse Boehm & William Hahn & David Root (Addgene plasmid # 81810; 

http://n2t.net/addgene:81810; RRID:Addgene_81810) and subcloned using GateWay 

cloning into C-terminal FLAG destination vector generated from a pRK5 backbone vector, 

which was a kind gift from T Wucherpfennig. Plasmids were co-transfected into 60% 

confluent 6cm plated 293T cells using 14μL PEI, 140 μL serum-free DMEM, and 1 μg co-

transfections or 2 μg eGFP expression plasmid. Cells were harvested after 24 hour 

transfections 

 

FLAG-IP and Gel based-ABPP of HLA-B alleles: cell surface and lysate labeling. 

Cells were washed once with PBS and resuspended in 100μL serum-free DMEM. One-
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half of cells were rotated at RT in 200 μM IAA (1 μL of 10 mM IAA stock) for 1 hr for cell-

surface labeling. After spinning down at 1800 xg, the supernatant was removed. Cells 

were lysed in 30 μL 2% CHAPS/PBS for 30 min on ice. Remainder cells were lysed in 30 

μL 2% CHAPS/PBS. Dilute all samples to 300 μL with PBS and spin 1800 xg for 1 min. 

Samples were adjusted to 2 mg/mL using a Bio-Rad DC protein assay kit from Bio-Rad 

Life Science (Hercules, CA). 200 μL of unlabeled lysates were incubated with 200 μM 

IAA (2 μL of 20 mM IAA stock) for 1 hr RT. 50 μL EZred FLAG bead suspension per 

sample (Sigma, F2426) were washed with tris-buffered saline (TBS) buffer according to 

manufacturer recommendations. 50 μL washed beads were added to each sample and 

rotated for 2 hours at 4C. Beads were washed 3x with 500 μL TBS pelleted at 8200 xg 

and resuspended in 50μL PBS with 250 μg/mL 3x FLAG peptide (Sigma, F4799) and 

0.2% NP-40 alternative (Millipore Sigma, 492016) and rotated for 30 min at 4C. Beads 

were pelleted at 8200 xg to capture eluted proteins. Eluant was clicked on to rhodamine-

azide (Click Chemistry Tools, AZ109-5) (25 μM rhodamine-azide (1.25 mM stock), 1 mM 

Tris(2carboxyethyl)phosphine (TCEP) (SigmaAldrich) (50 mM stock), 100 μM Tris[(1-

benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) (Sigma-Aldrich) (1.7 mM stock), 1 mM 

CuSO4 (50 mM stock)) for 1 hour at RT. All samples were denatured (5 min, 95 °C) and 

loaded onto 4-12% CriterionTM XT Bis-Tris gels with XT MOPS running buffer from Bio-

Rad followed by semi-dry transfer to nitrocellulose membrane. 1:2000 dilution of anti-

FLAG rabbit antibody (14793, Cell Signaling) and  followed by 1:5000 IRDye® 800CW 

Goat anti-Rabbit IgG (102673-330, VWR) as well as 1:3000 GAPDH rabbit antibody 

(2118S, Cell Signaling) followed by 1:5000 IRDye® 680RD Goat anti-Rabbit IgG was 

used for visualization of loading and rho signal for IAA labeling. 
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Data processing for cys-enrichment and quantitative ratio peptide analysis. Custom 

R scripts were implemented to compile modified_peptide_label_quant.tsv (quant) outputs 

from command line MSFragger pipeline or FragPipe to count unique quantified cysteines. 

Unique cysteines were quantified for each dataset using unique identifiers consisting of 

a UniProt protein ID and the amino acid number of the modified cysteine and an additional 

parameter specifying single or double isotopic labeling (heavy and/or light). Unique 

proteins were established based on UniProt protein IDs. Residue numbers were found by 

aligning the peptide sequence to the corresponding UniProt ID protein sequence specified 

by FragPipe outputs. Variant residue sites were obtained by mapping peptide sequences 

to respective custom FASTA files containing variant info in the headers. For enriched 

samples, nonspecific non-Cys containing peptides were omitted from analysis. For ratios 

data, methionine oxidized peptides were omitted, unpaired heavy or light-identified 

peptides were kept by setting ratios to log2(20) or log2(1/20). Outputs were generated by 

taking the median H:L ratio among all tryptic peptides for unique cysteines in replicate 

datasets (modified_peptide_label_quant.tsv); mean ratio values were calculated across 

replicate datasets; quantified cysteines appearing in at least two replicates with ratio SD 

=< 1 were kept (Figure 6 and Figure 4 data) and no SD filter was applied for Figure 3 data 

to interpret ratio skew. For comparisons to CysDB cystines, unique UniprotID_CysPostion 

identifiers were used and FragPipe assigned Protein ID was used; for ClinVar variant 

matching, chromosome position and nucleotide changes of associated variants were 

used. The MS search results and FASTA files have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset 
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identifiers PXD043879 for newly generated data and FASTA files. R and Python scripts 

are available at https://github.com/hdesai17/chemoproteogenomics.git. 

 

Data processing for high-pH data analysis. Custom R scripts were implemented to 

compile peptide.tsv outputs from command line MSFragger pipelines. Unique proteins 

were established based on UniProt protein IDs. Variant residue sites were obtained by 

mapping peptide sequences to respective custom FASTA files containing variant info in 

the headers. Residue numbers were found by aligning the peptide sequence to the 

corresponding UniProt ID protein sequence specified by FragPipe outputs. For ClinVar 

variant matching, chromosome position and nucleotide changes of associated variants 

were used. 

 

Linear sequence and spatial site-analysis. For linear sequence analysis in Figure 2-5 

datasets, residues ‘in or near’ UniProtKB annotated active or binding sites, DisProt 

annotated sites19–21, or PhosphoSite annotated sites22 were within +/-10 amino acids in 

linear sequence. For Figure 6 datasets, residues ‘in or near’ UniProtKB annotated active 

or binding sites, disprot annotated sites, or phosphosite annotated sites were assessed 

using 3D Protein Data Bank (PDB) structures. PDB structures were parsed to find all 

neighboring residues within a 10 Angstrom distance of the liganded Cys (alpha carbon 

atom). PDB_UniProtKB identifiers were created for each cysteine and corresponding list 

of neighboring residues. If the UniProtKB annotated active or binding sites were resolved 

in an associated crystal structure and found within the 10 Angstroms net, it was classified 

as a cysteine proximal to a known active or binding site.  
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Data Analysis and Statistics: 

 

Fig 1B, C, S1-S5,: COSMIC Cell Lines Project Complete mutation data 

‘CosmicCLP_MutantExport.tsv.gz’ was downloaded (release v96, 31st May 2022). For 

each cell line, the ‘Substitution-Missense’ amino acid changes were totaled up; the gained 

counts (example Cys, X–>C) were subtracted from the lost counts (example Cys, C–>X) 

to obtain net counts for each amino acid. The analysis was limited to accession numbers 

matching a curated set of non-redundant Ensembl transcript IDs (24,950) to limit any 

over/under counting due to mutations in multi-transcript proteins. Fig S6: ClinVar (3-28-

23) data filtered for unique gene name,protein position, and amino acid change to 

calculate total gains and losses. Fig 1D: common SNPs from NCBI (04-23-2018 00-

common_all.vcf.gz) were filtered for missense mutations (645,395) and further filtered to 

include only variants in the non-redundant Ensembl transcript set. Net changes were 

calculated from unique ‘GeneID_amino acid change identifiers’.  

 

Fig 2B,C,D,S24: Missense table in Table S2 (tab S10) was filtered for unique 

‘CellLine_Protein_AAchange’ identifiers, removing transcripts IDs that result in the same 

amino acid changes per protein. Fig 2F,G,H,S11-S23: CADD-PHRED score distributions 

were obtained by filtering the missense table for only single nucleotide base substitutions 

and uploading them as a vcf (‘#CHROM’, ‘POS’, ‘ID’, ‘REF’, ‘ALT’) to the CADD query 

tool https://cadd.gs.washington.edu/score using GRCh38-v1.6. Distribution of CADD 

scores shown by indicated grouping, unique ‘CellLine_Protein-AAchange-CADD-score’ 
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identifiers were used to remove variants identified in both RNA and exomes. Fig 2I,2J: 

Active site/binding site analysis: We consider single variant residues in or within +/- 10 

amino acids in primary sequence from an annotated active/binding site range as 

annotated by Uniprot. 

 

Fig 3C (and Fig 8B): Quantitative output obtained as described in Data processing for 

cys-enrichment and quantitative ratio peptide analysis for triplicate datasets. Fig 3D: 

From combined_ion_label_quant.tsv outputs for reference and variant searches, apex 

light - apex heavy retention times per ion were calculated for each replicate set. Mean 

values were obtained for ions appearing in at least two of three replicates. 

 

Fig 4: Data was processed as described in methods for Data processing for cys-

enrichment for duplicate datasets. Figure S26: Interpro ascension numbers and interpro 

family/domain names were pulled for all identified variant genes using 

EnsDb.Hsapiens.v86 from the ensembldb package23 Fig 4F: The provided reference 

FASTA was in-silico digested to check for cysteines theoretically detectable using the 

FragPipe peptide length limits of 7-50 amino acids. Cysteine peptides with loss or gain of 

Arg/Lys were manually checked against theoretically detectable cysteines. Fig 4J: Site 

level analyses from Fig2. Fig 4K: SP3-Rox dataset were re-searched with 2-stage search 

and custom database; quantitative output obtained as described in data processing for 

triplicate datasets.  

 

Fig 5: Data was processed as described in methods for Data processing for high-pH data 
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analysis. Fig 5D: For each cell line, protein sequences from the subsetted Gencode 

FASTA provided in supplemental information (24,950 proteins) and as described in 

custom database generation were used to calculate individual amino acid frequencies (# 

amino acid/total # amino acids) for every protein that contained a missense mutation. The 

total gained AA (identified in proteomic data) was used to calculate the gained 

frequencies (# gained AA/total missense changes identified). The fold enrichment was 

calculated by taking the ratio of the gained frequency to the AA frequency. Fig 5E: 

Transcript counts and LFQ data for ‘high-ph’ and ‘all’ categories were restricted to those 

containing at least one cysteine residue. 

 

Fig 6: Quantitative output obtained as described in Data processing for cys-enrichment 

and quantitative ratio peptide analysis. Fig 6D: Ligandable cys residues were restricted 

to those appearing in more than one replicate, with Log2 ratios > 2, and with standard 

deviations of ratios across replicates <= 1. Fig 6C-G: Values are restricted to those that 

appear in more than one replicate and with standard deviations =<1 for both reference 

and variant Cys peptides.  

 

Chemistry: 

 

General Methods. All solution-phase reactions were performed in dried glassware under 

an atmosphere of dry N2 except where water was used as a solvent. Silica gel P60 

(SiliCycle) was used for column chromatography. Plates were visualized by fluorescence 

quenching under UV light or by staining with iodine. Other reagents were purchased from 
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Sigma-Aldrich (St. Louis, MO), Alfa Aesar (Ward Hill, MA), EMD Millipore (Billerica, MA), 

Fisher Scientific (Hampton, NH), Oakwood Chemical (West Columbia, SC), Combi-blocks 

(San Diego, CA) and Cayman Chemical (Ann Arbor, MI) and used without further 

purification. 1H NMR and 13C NMR spectra for characterization of new compounds and 

monitoring reactions were collected in CDCl3, CD3OD, or DMSO-d6 (Cambridge Isotope 

Laboratories, Cambridge, MA) on a Bruker AV 400 MHz spectrometer in the Department 

of Chemistry & Biochemistry at The University of California, Los Angeles. All chemical 

shifts are reported in the standard notation of parts per million using the peak of residual 

proton signals of the deuterated solvent as an internal reference. Coupling constant units 

are in Hertz (Hz). Splitting patterns are indicated as follows: br, broad; s, singlet; d, 

doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; dt, doublet of triplets. 

Low-resolution mass spectroscopy was performed on an Agilent Technologies InfinityLab 

LC/MSD single quadrupole LC/MS (ESI source).  
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Scheme: 

 

 

 

 

Scheme S1. Synthetic routes to obtain (A) electrophilic fragments SO-67, SO-90, and 

SO-43, and (B) prototype kinase inhibitor SO-105. 
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Synthesis 

General Procedure 1:  

To a solution of the amine (1 equiv.) and triethylamine (1.5 equiv.) in dichloromethane (5 

mL), 2-chloroacetyl chloride (1.1 equiv.) was added dropwise and the reaction mixture 

was stirred at 0°C for 0.5 h then left to warm to room temperature (2 - 6h). The reaction 

progress was monitored via TLC. On reaction completion, the reaction mixture was 

poured slowly into distilled water (10ml). After separation of the phases, the organic layer 

was dried with anhydrous sodium sulfate, filtered and concentrated to obtain the crude 

product. This crude product was then coated on silica gel, then purified via flash 

chromatography (in 15-30% Ethyl acetate-hexanes) to yield the analytically pure product. 

Synthesis of N-(3-bromo-5-(trifluoromethyl)phenyl)-2-chloroacetamide (SO-67) 

Prepared according to general procedure 1  using 3-bromo-5-

(trifluoromethyl)aniline (200mg, 0.833 mmo) as the amine 

source. Product: white solid . Yield: 240 mg (91%) 

1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 8.03 (s, 1H), 7.76 (s, 1H), 7.57 (s, 1H), 4.21 (s, 

2H). 13C NMR (100 MHz, CDCl3) δ 164.09, 138.38, 133.17, 132.84, 132.51, 132.20, 

132.13, 125.93, 124.93, 123.23, 115.40, 42.73. 19F NMR (400 MHz, CDCl3) δ -62.94.  

HRMS (ESI-TOF) [M+H]+ =  C9H7BrClF3NO+ : calculated for 315.9305 ; Found 315.9352 

 

Synthesis of 2-chloro-1-(4-(2,3-dichlorophenyl)piperazin-1-yl)ethan-1-one (SO-43) 
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Prepared according to general procedure 1  using 1-(2,3-

Dichlorophenyl)piperazine.HCl (300 mg, 1.12 mmol) as the amine 

source. Product: off-white solid. Yield: 95% (326mg). 

1H NMR (400 MHz, CDCl3) δ 7.24 – 7.14 (m, 2H), 6.94 (dd, J = 7.8, 

1.7 Hz, 1H), 4.12 (s, 2H), 3.77 (dt, J = 43.0, 4.9 Hz, 4H), 3.16 – 3.00 (m, 4H). 13C NMR 

(101 MHz, CDCl3) δ 169.96, 165.55, 150.36, 134.26, 127.63, 125.43, 118.86, 51.47, 

50.92, 46.67, 42.47, 40.76.  

HRMS (ESI-TOF) [M+H]+ =  C12H14Cl3N2O+ : calculated for 307.0172 ; Found 307.0040 

Synthesis of N-([1,1'-biphenyl]-2-yl)-2-chloroacetamide (SO-90) 

Prepared according to general procedure 1  using [1,1'-biphenyl]-2-

amine (300 mg, 1.12 mmol) as the amine source. Product: off-white 

solid. Yield: 93% (410mg). 

1H NMR (400 MHz, CDCl3) δ  8.46 (s, 1H), 8.36 (d, J = 8.2 Hz, 1H), 7.53 – 7.47 (m, 2H), 

7.45 – 7.37 (m, 4H), 7.30 (dd, J = 7.6, 1.7 Hz, 1H), 7.24 (dd, J = 7.4, 1.2 Hz, 1H), 4.08 (s, 

2H). 13C NMR (101 MHz, CDCl3) δ 163.64 , 137.43 , 133.92 , 132.65 , 130.14 , 129.15 , 

128.22 , 124.98 , 120.64 , 43.03. 

HRMS (ESI-TOF) [M+H]+ =  C14H12ClNO+ : calculated for 246.0607 ; Found 246.0623 

Synthesis of N-(3-chloro-4-fluorophenyl)-7-methoxy-6-nitroquinazolin-4-amine 

(S01) 
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To the N-(3-chloro-4-fluorophenyl)-7-fluoro-6-nitroquinazolin-4-

amine (1 g, 2.97 mmol, 1 eqv.) in methanol (23.7 mL, 551 mmol, 

200 eqv.) was added sodium hydroxide pellets (1.2 g, 29.8 mmol, 

10 eqv.). The reaction was refluxed overnight and monitored by 

TLC. Next, the reaction mixture was taken off the heat source and allowed to cool to room 

temperature. Then, the mixture was poured into a saturated solution of sodium 

bicarbonate, and then filtered under vacuum. The resultant residue was washed with 

water (1x), then methanol (200 mL). Then the solid residue was dried under high vacuum 

to yield the target compound as yellowish solid.. Yield: 88% (0.91g). 

1H NMR (400 MHz, DMSO-d6) δ 9.09 (s, 1H), 8.51 (s, 1H), 8.05 (s, 1H), 7.71 – 7.64 (m, 

1H), 7.43 – 7.28 (m, 2H), 4.02 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 158.12, 154.93, 

154.15, 152.39, 138.63, 124.23, 123.18, 122.64, 119.22, 116.72, 109.59, 57.41.  

LC-MS (ESI) [M+H]+ =  C15H11ClFN4O3
+ : calculated for 348.04 ; Found 348.0 

 

Synthesis of N4-(3-chloro-4-fluorophenyl)-7-methoxyquinazoline-4,6-diamine (S02) 

Procedure: To a stirred mixture of N-(3-chloro-4-fluorophenyl)-7-methoxy-6-

nitroquinazolin-4-amine (800 mg, 0.435 mol) in ethanol (100 mL) and AcOH (5 mL) was 

added Fe (641 mg, 11.5 mmol) and the reaction was heated to reflux.  Further, more 

ethanol (50 mL) and AcOH (5 mL) were added, and reflux continued for 5 h, with reaction 

progress monitored by LC-MS. The reaction was cooled to room temperature, when 

deemed complete. Next, the crude solution was filtered by passing it through celite. The 

filtrate was then concentrated to about one-third its original volume. The resultant 

precipitate was isolated and dried under high vacuum to give the target compound as a 
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dark-brownish solid, (530mg, 73%) –  confirmed by LC/MS –  and 

this was used, as is, without further purification. 1H NMR (400 MHz, 

DMSO-d6) δ 9.38 (s, 1H), 8.28 (d, J = 76.7 Hz, 2H), 7.81 (d, J = 8.9 

Hz, 1H), 7.24 (d, J = 112.2 Hz, 3H), 5.37 (s, 2H), 3.96 (s, 3H).  13C 

NMR (101 MHz, DMSO-d6) δ 153.20 , 150.73 , 137.99 , 122.92 , 106.36 , 101.30 , 56.25. 

LC-MS (ESI) [M+H]+ =  C15H13ClFN4O+ : calculated for 318.01; Found 319.01 

Synthesis of 2-chloro-N-(4-((3-chloro-4-fluorophenyl)amino)-7-methoxyquinazolin-

6-yl) acetamide  (SO-105) 

Prepared according to general procedure 1  using N4-(3-chloro-

4-fluorophenyl)-7-methoxyquinazoline-4,6-diamine (500 mg, 

1.57 mmol) as the amine source. Product: pale-brownish solid. 

Yield: 80% (500mg).  

1H NMR (400 MHz, DMSO-d6) δ 9.99 (s, 1H), 8.94 (s, 1H), 8.63 (s, 1H), 8.06 (dd, J = 6.8, 

2.6 Hz, 1H), 7.75 (dd, J = 6.7, 2.3 Hz, 1H), 7.45 (s, 1H), 7.34 (s, 1H), 4.49 (s, 2H), 4.27 

(s, 1H), 4.04 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 169.04, 165.68, 157.83, 155.99, 

153.41, 152.99, 136.53, 127.56, 125.01, 123.77, 119.36, 116.89, 116.19, 108.83, 105.43, 

56.97, 43.78.  

HRMS (ESI-TOF) [M+H]+ =  C17H14Cl2FN4O2
+ : calculated for 395.0478 ; Found 395.0389 
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1H NMR of N-(3-bromo-5-(trifluoromethyl)phenyl)-2 -chloroacetamide, SO-67 in CDCl3 

 

 

13C NMR of N-(3-bromo-5-(trifluoromethyl)phenyl)-2 -chloroacetamide, SO-67 in CDCl3 
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19F NMR of N-(3-bromo-5-(trifluoromethyl)phenyl)-2 -chloroacetamide, SO-67 in CDCl3 

 

1H NMR of 2-chloro-1-(4-(2,3-dichlorophenyl)piperazin-1-yl)ethan-1-one, SO-43 in CDCl3 
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13C NMR of 2-chloro-1-(4-(2,3-dichlorophenyl)piperazin-1-yl)ethan-1-one, SO-43 in 
CDCl3 

 

1H NMR of N-([1,1'-biphenyl]-2-yl)-2-chloroacetamide , SO-90 in CDCl3 
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13C NMR of N-([1,1'-biphenyl]-2-yl)-2-chloroacetamide , SO-90 in CDCl3 

 
 

1H NMR of N-(3-chloro-4-fluorophenyl)-7-methoxy-6-nitroquinazolin-4-amine (S-01) in 
CDCl3 
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13C NMR of N-(3-chloro-4-fluorophenyl)-7-methoxy- 6-nitroquinazolin-4-amine (S-01) in 
CDCl3  

 
 

 

1H NMR of N4-(3-chloro-4-fluorophenyl)-7-methoxyquinazoline- 4,6-diamine (S-02) , in 
DMSO-d6  
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13C NMR of N4-(3-chloro-4-fluorophenyl)-7-methoxyquinazoline-4,6-diamine(S-02), in 
DMSO-d6 

 
1H NMR of 2-chloro-N-(4-((3-chloro-4-fluorophenyl)amino)-7-methoxyquinazolin-6-yl) 
acetamide, SO-105, in DMSO-d6  
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13C NMR of 2-chloro-N-(4-((3-chloro-4-fluorophenyl)amino)-7-methoxyquinazolin-6-yl) 
acetamide, SO-105, in DMSO 
 

 

Running 2-stage search with FragPipe v20+ 

Make sure the tools are up-to-date 

FragPipe v20.0+, MSFragger version 3.8+, Philosopher version 5.0.0+ 

1.  Set up a search as normally done with the normal reference database and with 

experiment specific parameters (Percolator rescoring recommended). 

2.  Select ‘Print decoys’ in the Validation tab 

3.  In the last "Run” tab, there is a checkbox called "write sub mzML": 
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Check this box and leave the threshold set to 0. 

When it is enabled, FragPipe runs the search, and writes new mzML files with 

"_sub.mzML" as the file name suffix, "fragpipe-second-pass.workflow", and "fragpipe-

files-second-pass.fp-manifest" files to the specified result folder. In the first-pass search, 

FragPipe will write decoy PSMs to psm.tsv if they pass 1% FDR. 

Both "fragpipe-second-pass.workflow" and "fragpipe-files-second-pass.fp-manifest" have 

adjusted parameters and mzML file paths that can be directly used in the second search. 

4.  Name the result folder to distinguish it from the reference search (“first_pass”, 

"reference”, “1”) and run the first search. 

5.  After the first search is finished, in your open FragPipe window, navigate to the 

workflow tab and load the “fragpipe-second-pass.workflow” located in your first results 

folder file by selecting the "custom" and clicking "load workflow". Select the fragpipe-

second-pass.workflow which should then be automatically loaded.
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Note: If using Percolator: Percolator weights saving and loading is automatic. FragPipe 

lets Percolator save the weight files during the first-pass search. And then, in the second-

pass, FragPipe gives Percolator the weight files if it can find it (the weight files are in the 

sub mzML files' folder) 

6.  Clear all the  .raw/mzML files you have loaded. Load the “fragpipe-files-second-

pass.fp-manifest” by selecting load manifest and navigating to it in your first results folder. 

This should re-add your files with the “_sub.mzML” suffix. 

  

Note: You should not remove/add any new modifications in the second search. The 

MSFragger parameters should be the same, just a new database and using _sub.mzML 

files 

7.  Go to the Database tab and navigate to the variant-containing database for your 

cell line. 

  

8.  Specify the reverse header (ex. “REV”). 

Note: For databases generated with 

https://github.com/hdesai17/chemoproteogenomics.git tool, header information 

containing variant info will appear as Protein/Protein-ID/Protein.Description; other 

database formats will depend on FragPipe compatibility. For FASTA databases lacking 
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header information such as simple Uniprot IDs (>PXXXX), additional processing/mapping 

is required to obtain variant IDs. 

9.  Make sure the MSFragger parameters are the same as the first search. 

10.   Navigate to the “Run” tab, uncheck the write sub mzML box, and specify a new 

results folder to distinguish variant search (“second_pass” or "variant”, “2”) and run the 

second search. 
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Chapter 4: Conclusion 

 

Collectively, our work has generated two novel chemoproteomic platforms that 

together combine SP3 chemoproteomics workflows with new sample preparation and 

data processing methods to improve proteome-wide identification of cysteines. 

 In Chapter 2, we establish SP3-Rox to improve our understanding of how cells are 

impacted by and respond to oxidative stressors. We first created heavy and light 

isotopically differentiated iodoacetamide probes to enable quantitation in our two-round 

labeling workflow. These reduced cost reagents streamline traditional redox workflows 

that require several decontamination steps. We validated our probes using an improved 

version of FragPipe that accurately quantifies cysteine labeling with and without the use 

of a FAIMS device comparably to Skyline. We also demonstrated PTM-prophet enabled 

site-of-labeling localization for multi-Cys containing peptides. We then generated SP3-

Rox for high-coverage Cys oxidation state quantitation of thousands of cysteines, 

identifying > 9,000 cysteines and > 2,000 oxidant sensing cysteines from lysates 

subjected to 1mM GSNO. We use SP3-Rox to identify cell-state dependent changes in 

cysteine oxidation. We found that a number of cysteines showed increased oxidation 

during cellular activation. We expect that a subset of the residues identified are likely 

functional regulators of cellular activation.   

In Chapter 3, we fused cysteine chemoproteomics with genomics to unveil hidden 

cysteines in the proteome. Chemoproteomics which is capable of proteome-wide 

assessment of functional, redox-sensitive or druggable residues, has historically been 

limited to reference proteome detection. In this work, we found that, for both cancer and 
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healthy genomes, cysteine acquisition is a ubiquitous result of spontaneous genetic 

variation that is increased in the context ofdecreased DNA mismatch repair. We find that 

CADD predictions of deleteriousness show an enrichment for likely damaging variants 

that result in acquisition of cysteine in cell lines with decreased mismatch repair. In this 

work, we create combinatorial databases from sample-matched NGS data–these 

databases include all combinations of variants. To address elevated false discovery rates 

from sample-specific database searches, we also established an MSFragger-based two-

stage search implemented into the FragPipe GUI. Chemoproteogenomics across 11 

cancer cell lines identified 116 gain-of-cysteines of which 10 were liganded by druglike 

molecules. In total we identified > 1,400 unique variants though chemoproteomics and 

bulkfractionation. We found 791 reference cysteines proximal to variants 

highlightingopportunities to develop proteoform-specific probes. We also found that 

chemoproteogenomics is compatible with redox and ligandibaility profiling, as evident by 

our re-analysis of SP3-Rox data, and small-molecule screening.  

We anticipate that chemoproteogenomics is capable of proteoform-specifc probe 

development or neoantigen discovery that is further enhanced when supplemented with 

information beyond missense mutations (e.g. alternative splicing, indels, 

translocations/transversions, new open reading frames). The SP3-Rox and 

chemoproteogenomics platforms together will provide relational insight, in addition to 

variant affects, on cysteine ligandability and redox-sensitivity. 
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