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A particle finite element method (PFEM) based model is proposed to analyze droplet dynamics problems, particularly
droplet spreading on solid substrates (wetting). The model uses an updated Lagrangian framework to formulate the
governing equations of the liquid. Curvature of the liquid surface is tracked accurately using a deforming boundary
mesh. In order to predict the spreading rate of the droplet on the solid substrate and track the corresponding contact
angle evolution, dissipative forces at the contact line are included in the formulation in addition to the Navier-slip
boundary conditions at the solid-liquid interface. The inclusion of these boundary conditions makes it possible to
account for the induced Young’s stress at the contact line and for the viscous dissipation along the solid-liquid interfacial
region. These are found to be essential to obtain a mesh-independent physical solution. The temporal evolution of the
contact angle and contact line velocity of the proposed model are compared with spreading droplets and micro sessile-
droplet injection experiments, and are shown to be in good agreement.
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I. INTRODUCTION

Droplet dynamics modeling is an active area of research
in the computational fluid dynamics (CFD) community due
to the vast number of associated practical applications, such
as inkjet printing1,2, cooling towers3, and water transport in
fuel cell porous media4–8 and gas channels9,10. In these appli-
cations, characterized by dominant capillary forces, the liq-
uid phase is found in contact with solid substrates that can
be hydrophobic, hydrophilic, or chemically heterogeneous11.
Droplet dynamics models typically encounter several chal-
lenges when studying these phenomena: a) tracking of the
free liquid surface12–14, b) identifying the interaction forces
between liquids and substrates15–18, and hence tracking the
transition between inertial and viscoelastic regimes19,20, and
c) obtaining mesh-dependent solutions21–24.

For sessile droplet problems involving contact between a
liquid and a solid substrate, Young’s stress is induced at the
contact line as the droplet spreads22. This leads to a spe-
cial slip regime where the contact line velocity evolves pro-
portionally to the dynamic contact angle15. The classical
Navier-Stokes equation alone does not account for the contact
line motion of the liquid on a no-slip substrate and therefore
cannot relieve the moving contact line singularity25, which
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leads to nonphysical velocity evolution and energy dissipation
known as “Huh and Scriven’s paradox”22,26–29. For droplets
and thin films on hydrophilic surfaces, lubrication approxima-
tion theory can be used as a valid simplified and cost-efficient
numerical model to regularize the contact line singularity25.
However, this theory is not valid for hydrophobic surfaces and
pinned contact line analysis. Thus, more sophisticated models
are needed for analyzing droplet dynamics (droplet deforma-
tion, pinning, and spreading) in the case of hydrophobic and
chemically heterogeneous substrates. For such cases, the con-
tact line singularity can be relieved by introducing i) a slip
zone at the contact line, that accounts for the normal and tan-
gential stresses, and the capillary effect due to the contact line
motion, and ii) a slip zone away from the contact line, that
accounts for shear and viscous stresses acting inside the solid-
liquid interfacial region14,15,22,30.

The simplest attempt to resolve the singularity at the contact
line consists in applying a static contact angle condition where
the direction of the vector normal to the liquid-air surface at
the contact line is constant and equal to the value of the equi-
librium contact angle for the considered substrate31–33. How-
ever, this approach cannot account for droplet pinning, and
therefore, cannot predict the dynamics of spreading droplets.
A dynamic contact angle condition is needed to account for
this phenomenon9,34. The most basic dynamic contact line
condition imposes a slip boundary condition, i.e., contact line
velocity normal to wall surface is zero, when a critical con-
tact angle is reached16. This condition implies that no energy
is dissipated as the contact line moves on the solid substrate,
and that the velocity of the contact line is not restricted, which
contradicts experimental observations35.

In order to achieve a physically relevant contact line veloc-
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ity, several authors proposed a contact line boundary condition
that depends on a dissipative force term. Spelt36 proposed
a linearly dependent contact angle condition that is a func-
tion of the sign of the contact line velocity. Manservisi and
Scardovelli30 added a dissipative, resistive force applied to the
contact line as a function of the capillary number. Buscaglia
and Ausas22 presented a variational formulation of a surface
tension model that included a dissipative force acting on the
contact line that was proportional to the velocity of the con-
tact line; however, their model did not account for contact line
pinning, which often takes place on rough substrates. In addi-
tion to the dissipative force condition, Ren and E15 observed
that the normal stress inside the solid-liquid interface exhibits
a large jump across the contact line, which varies linearly with
its velocity, and hence should be balanced and considered as
an additional boundary condition. Moreover, Venkatesan et
al.16 observed that the tangential stress at the contact line is
proportional to its tangential velocity, which was included as
an additional term in their numerical formulation.

Obtaining a mesh-independent solution is an additional
modeling challenge. Several authors have studied the depen-
dence of the numerical solution of wetting phenomena on the
mesh size. In reference30, Manservisi and Scardovelli studied
the spreading behavior of droplets by utilizing the Lagrangian
front tracking approach, and concluded that adding the dissi-
pative energy term reduces the spreading rate until a nearly
no-slip condition is achieved. Afkhami et al.21 conducted a
numerical study using the Volume-of-fluid (VOF) method to
analyze the dependence of the dynamic contact angle evolu-
tion on the mesh size. They observed that this dependence
could be reduced by relating the dynamic contact angle to
the capillary number and to the mesh size. More recently,
Buscaglia and Ausas22 introduced a variational formulation
and analyzed the effect of adding dissipative forces as con-
stant values on the mesh dependency of the solution. They
concluded that increasing the dissipative force term leads to a
less mesh-dependent solution. In addition, Venkatesan et al.16

used an Arbitrary Lagrangian-Eulerian (ALE) finite element
formulation and introduced a slip coefficient in the Navier-
slip term that is a function of the mesh size, Weber number,
and Reynolds number. They managed to alleviate the spurious
mesh dependency. However, they observed that the proposed
relation did not work properly for hydrophobic surfaces.

Even though a substantial effort has been invested in de-
veloping robust and efficient numerical models for contact
line dynamics of sessile droplets, a physically accurate and
mesh-independent model does not currently exist to the best
of our knowledge. In addition, most of the aforementioned
models were applied to fixed-mesh methods. Our previous
work has shown that a moving-grid particle finite element
method (PFEM)-based model is well suited to droplet mod-
eling9,10,34,37. Application of a PFEM model has proven to be
particularly advantageous when dealing with surface tension
dominated problems, as it allows to accurately track the evo-
lution of the liquid domain boundary and to account for sur-
face tension, without introducing enrichment shape functions
or smearing the surface tension via continuous force approach
38,39. However, neither a dissipative force term on the contact

FIG. 1. Schematic representation of the considered Lagrangian do-
main at the continuum level.

line nor a viscous dissipation term on the solid-liquid inter-
face has been implemented and tested in PFEM-based droplet
models. The objective of this article is to identify an appropri-
ate dynamic contact line condition for the PFEM-based fluid
flow solver proposed in34,37 and to verify that it provides a
mesh-independent solution. In the present work, our proposed
droplet dynamic model is equipped with i) an effective slip
contact angle boundary condition that balances the induced
Young’s stress, and ii) a solid-liquid slip boundary condition,
away from the contact line, that accounts for the viscous dis-
sipation along the solid-liquid interface15,22.

The article is organized as follows. Section II includes a
description of the moving grid model for droplet dynamics.
Special emphasis is given to the boundary conditions applied
at the solid-liquid interface including the contact line. Numer-
ical results are shown in Section III, including a detailed anal-
ysis of the manner in which dissipative forces can produce a
less mesh-dependent solution. The model is validated by com-
paring numerical results for droplet spreading on hydrophilic
and hydrophobic surfaces with experimental data. We per-
formed further experimental validation with a droplet injec-
tion setup, which includes two different smooth substrates.

II. PHYSICAL MODEL

A. Governing equations

Let us consider a domain Ω which represents a liquid
droplet in contact with a solid substrate, as shown in Fig. 1.
The boundary of the domain is split into three regions ∂Ω =
ΓI ∪ΓS∪∂Γ. The part of the domain boundary corresponding
to the liquid in contact with a substrate, excluding the con-
tact line, is designated as ΓS. The contact line is denoted by
∂Γ. The rest of the boundary of the liquid phase is denoted
by ΓI , which corresponds to the droplet free surface. For two-
dimensional problems, the contact line reduces to two triple
points. The droplet is assumed to be surrounded by its sat-
urated liquid-vapor phase40. It is assumed that the velocity
of the vapor is negligible, i.e., it exerts no mechanical action
upon the droplet and thus the droplet can be analyzed as an
isolated entity.
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The governing equations for the liquid phase are the mo-
mentum and mass conservation equations41,42. The fluid is
considered incompressible, viscous, and Newtonian. Thus,
the governing equations read12,34:

ρ

(
∂v
∂ t

+(c ·∇)v
)
−∇ · (2µDv− pI) = ρg on Ω (1)

∇ · v = 0 on Ω (2)

where ρ is the fluid density, v is velocity, t is time, µ is the
fluid dynamic viscosity, Dv = (∇v+∇T v)/2 is the strain rate
tensor, p is pressure, I is the identity tensor, and g is the grav-
itational acceleration. The convective velocity is the relative
velocity between the material and the mesh, c = v−vm, where
vm is the mesh velocity. In the present model the convec-
tive velocity is zero because the Lagrangian reference frame
is adopted43, and therefore the fluid and mesh velocities are
the same.

At the interface ΓI , a Cauchy stress boundary condition in
the normal direction of the stress is applied corresponding to
the surface tension force:

fΓI
= σ ·n = γκn at ΓI (3)

where fΓI
is the surface tension force, σ is the Cauchy stress

tensor, n is the outer unit normal to ΓI , γ is the surface tension
coefficient, and κ is the curvature of the interface. According
to Eq. (3), the normal stress is balanced by the surface tension
force10,12,37.

At the solid-liquid interface excluding the contact line,
ΓS, the applied boundary condition corresponds to the shear
stresses in order to account for viscous dissipation. It is ob-
tained by projecting the Cauchy stress tensor on the normal
direction of ΓS

15,22:

fΓS
= σ ·n =−βΓs v at ΓS (4)

where fΓS
and βΓs are the dissipative force and the slip coef-

ficient applied at the solid-liquid interface, respectively, and
v is the slip velocity of the fluid on the solid-liquid interface.
A variety of models have been proposed in the literature for
the slip coefficient, βΓs , at the solid-liquid interface such as,
Navier-slip condition (βs)14–16,44, prescribed slip profile con-
dition15, and a constant slip coefficient that depends on the
grid size22. The Navier-slip model is considered in this work,
as it accounts for the shear rates and viscous dissipation along
the solid-liquid interface during droplets deformation14–16,21.

At the contact line, an effective slip boundary condition is
applied corresponding to the total dissipative force, includ-
ing the contribution of i) the capillary effect (ζ ), ii) normal
stress coefficient (βn), and iii) Navier-slip coefficient (βs), and
is proportional to the velocity of the contact line14–16,22:

f∂Γ =−β∂Γv at ∂Γ (5)

where f∂Γ is the dissipative force applied at the contact line,
β∂Γ is the effective slip coefficient at the contact line, and v is
the slip velocity of the fluid at the contact line.

The details on the dissipative forces applied at the contact
line and the solid-liquid interface are presented next.

FIG. 2. Schematic representation of the forces acting on a contact
line of a sessile droplet.

B. Forces acting at the contact line, ∂Γ

Let us consider a steady droplet in contact with a flat sur-
face forming a static contact angle θs (Fig. 2). Under this con-
dition, the equilibrium is expressed as the balance of the liquid
surface tension (γlv, or simply denoted by γ), solid surface en-
ergy (γsv), and interfacial tension (γsl). When normalized to
a unit length, these forces are the interfacial tensions between
the three phases (solid/liquid/vapor). By projecting the equi-
librium forces on the solid plane, one obtains the well known
Young’s equation45,46:

γlv cosθs = γsv− γsl (6)

The contact line velocity that corresponds to this equilib-
rium state is v = 0. In this case, the boundary condition ap-
plied to the contact line is the following: if the contact angle is
within a given range of values, i.e., θ ∈ [θmin,θmax], the con-
tact line is fixed. A fixed contact line is usually referred to as
a pinned contact line. The values of minimum and maximum
contact angle to achieve contact line pinning, which depend
on both the liquid and the substrate, are determined experi-
mentally9,11.

As the droplet starts to spread, Eq. (6) does not hold any
longer and therefore a slip boundary condition is applied for
the velocity at the contact line ∂Γ9,47:

v ·n = 0 (7)

This condition, however, results in an unrealistic contact
angle evolution because the velocity of the contact line is
not restricted by the physical viscous dissipation at the solid-
liquid interface, leading to a non-physical spreading of the
moving contact line. Instead, according to 15,22, the velocity
of the contact line can be related to the Young’s stress acting
on it:

u ∝ γ (cosθs− cosθ) (8)

where u is the tangential component of the velocity vector at
the contact line, i.e., u = v · t, and θ is the dynamic contact an-
gle. The proportionality coefficient between the contact line
velocity and Young’s stress is the effective slip boundary con-
dition defined as follows15:

β∂Γu = γ(cosθs− cosθ) (9)
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where β∂Γ is the effective slip coefficient, and is defined
as14–16,21,22,26,30,45,48:

β∂Γ = ζ +βs +βn (10)

where ζ is the dynamic capillary effect coefficient, βs is the
Navier-slip coefficient, and βn is the normal stress coefficient.

The capillary effect coefficient is expressed as follows22,30:

ζ =
γ

u
R(Ca) (11)

where R(Ca) is a function of the capillary number calculated
from the contact line velocity30. In several experimental stud-
ies, expressions for R(Ca) were obtained by fitting empirical
data. Among these studies, the models proposed by Jiang49,
Bracke50, and Seeberg are commonly used51. The numeri-
cal and dynamic contact angle simulations in reference52 con-
cluded that Jiang’s model was able to predict higher capil-
lary flow velocities among these three empirical models. For
capillary-driven spreading droplet, the contact line velocity is
of the order of an impact velocity of a droplet35,53; therefore,
Jiang’s expression is used in this work, i.e.,49:

R(Ca) = (cosθs +1) tanh
(
4.96Ca0.702) (12)

where θs is the static contact angle, and Ca = uµ/γ is the cap-
illary number calculated using the contact line velocity. Thus,
the coefficient ζ in Eq. (11) is expressed as follows:

ζ =
γ

u
(cosθs +1) tanh

(
4.96Ca0.702) (13)

The Navier-slip coefficient, βs in Eq. (10), is a function of
the shear stress, and it is calculated using14–16,21:

βs =
1
u

µ∇(v · t) ·n (14)

In addition, larger jump in normal stresses is introduced
across the contact line as its velocity increases15. The normal
stress jump across the contact line is balanced by including
the coefficient βn, which is expressed as follows15:

βn =
1
u

µ∇(v · t) · t (15)

where u is the tangential component of the velocity vector at
the contact line, i.e., u = v · t.

After considering the contributions of the capillary effects,
the Navier-slip as well as the normal stresses in Eq. (10), the
coefficient β∂Γ is used to obtain the total dissipative force and
to apply the boundary condition defined by Eq. (5).

C. Forces acting at the solid-liquid interface away from the
contact line, ΓS

When a viscous fluid is in contact with a solid substrate, the
velocity of the fluid at the fluid-solid interface is equal to the

velocity of the solid. If the solid is at rest, a no-slip boundary
condition is applied in this region. In wetting problems, how-
ever, the no-slip condition contradicts the physical dissipation
phenomena on the solid-liquid interfacial zone. It has been
observed that introducing a Navier-slip boundary condition
on droplet spreading problem partially resolves this contradic-
tion, and also reduces the mesh-dependency of the numerical
solution14–16,21,22. Therefore, at the solid-liquid interface, ΓS,
the Navier-slip boundary condition is applied in the present
work, according to Eq. (4). Accordingly, the slip coefficient
βΓs at the solid-liquid interface ΓS is expressed as follows:

βΓs = βs =
1
u

µ∇(v · t) ·n (16)

where u is the tangential component of the velocity vector at
the solid-liquid interface. Eq. (16) is used in combination with
Eq. (4) to apply the boundary condition at the solid-liquid in-
terface.

D. Mesh size and time step criteria

As the droplet spreads, capillary waves are generated at the
contact line and move toward the free surface, i.e., from ∂Γ to-
wards ΓI

54,55. For a spreading droplet, the maximum spread-
ing velocity is of the order of the droplet impact velocity35,56.
At this velocity, Yuriko et al.57 concluded that the capillary
wave is observed when We > 1, where the Weber number de-
fined as:

We =
ρRu2

max

γ
(17)

where ρ is the liquid density, R is the droplet radius, and umax
is the maximum value of the tangential component of the ve-
locity vector at the contact line. The latter value, umax, can be
estimated experimentally, and it is known to depend on both
the fluid and the substrate35,56–58. In this article, different val-
ues of umax are used based on the experimental scenarios il-
lustrated in Section III.

Yuriko et al.57 also observed that the capillary wavelength,
λ , corresponding to the contact line capillary propagation is
estimated by:

λ =
γ

ρu2
max

(18)

Numerically, the mesh size at the contact line is restricted
by the wavelength of the capillary wave propagation, and its
maximum value h can be estimated to be59:

h =
λ

2
(19)

Substituting Eq. (18) into Eq. (19) yields:

h =
γ

2ρu2
max

(20)
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Moreover, the wave velocity corresponding to the dominant
capillary wavelength is calculated as58,60:

c =

√
2πγ

ρλ
(21)

where c is the wave velocity. The critical time step corre-
sponding to this capillary wave, ∆tcap, can also be estimated
as59:

∆tcap =
1

2 f
≤ h

c
(22)

where f is the maximum frequency in s−1 corresponding to
the capillary wave propagation at the contact line. Substituting
Eq. (21) and Eq. (20) into Eq. (22) yields:

∆tcap ≤
√

2
π

γ

4ρ|u3
max|

(23)

Ryzhakov et al.61,62 suggested the time step to be used for
the PFEM approach should scale to half of the critical time
step in order to avoid element degradation or inversion, which
yields:

∆t ≤
√

2
π

γ

8ρ|u3
max|

(24)

E. Discretized governing equations

The particle finite element method (PFEM)38,43,63–67 is
used in the present work to discretize Eqs. (1) and (2) in space.
The PFEM adopts the updated Lagrangian description of the
governing equations. The fluid domain is discretized by a
standard finite element mesh. The nodes can be interpreted as
immaterial particles that move according to their convective
velocity. At each solution step the domain deforms. Thus,
in order to avoid excessive mesh degradation re-meshing is
performed at each time step using Delaunay triangulation.
For droplet dynamics problems re-meshing procedure ensures
that the domain boundaries are preserved. Linear interpola-
tion functions for both velocity and pressure are used over
3-noded triangles in 2D. In the present implementation the
discretization in time is performed using the Newark-Bossak
scheme. However, in the present section, it is illustrated us-
ing the Backward-Euler scheme for sake of simplicity43. A
more complete algorithm for a two-phase flow model can be
found in34,37. The problem statement is the following: given
a known velocity and pressure v̄n and p̄n at time tn, find the
values of these variables at the next time step tn+1 (v̄n+1 and
p̄n+1) by solving:

M
v̄n+1− v̄n

∆t
+µLv̄n+1 +Gp̄n+1 = F̄+ F̄st + F̄∂Γ + F̄ΓS

(25)

Dv̄n+1 = 0 (26)

where M is the mass matrix, ∆t is the time step, L is the Lapla-
cian matrix, G is the gradient matrix, F̄ is the vector of ex-
ternal forces, F̄st is the surface tension force vector, F̄∂Γ is
the dissipative force vector acting at the contact line, F̄ΓS is
the dissipative force vector acting at the solid-liquid interface
away from the contact line, and D is the divergence matrix.
Local cell matrices and vectors are defined in Appendix A.

The dependence on the unknown configuration, Xn+1, in-
troduces a geometrical nonlinearity that is solved using a
Newton method. The governing equations are first written in
their residual form:

r̄m = F̄+ F̄st + F̄∂Γ + F̄ΓS −
(

M
v̄n+1− v̄n

∆t
+µLv̄n+1 +Gp̄n+1

)
(27)

r̄c = Dv̄n+1 (28)

Eqs. (27) and (28) are then linearized, and the system is solved
iteratively. The resulting linearized system of governing equa-
tions reads:(

M 1
∆t +µL+Hst G

D 0

)(
δ v̄
δ p̄

)
=

(
r̄m
r̄c

)
(29)

where Hst originates from the linearization of the surface ten-
sion force term, F̄st . This term is responsible for the implicit
treatment of the surface tension, and it allows for using large
time steps. The derivation of this term, as well as the stabi-
lization terms which have been omitted for sake of simplicity,
can be found in reference34. The linear velocity-pressure ele-
ments used in our model do not fulfill the compatibility condi-
tion68 and therefore pressure must be stabilized. In this work,
the algebraic sub-grid scales (ASGS)69–71 stabilization tech-
nique is implemented (see reference34 for details). Once the
system in Eq. (29) has been solved for δ v̄ and δ p̄, the pri-
mary variables are updated according to v̄k+1

n+1 = v̄k
n+1+δ v̄ and

p̄k+1
n+1 = p̄k

n+1 + δ p̄, where k is the nonlinear iteration index,
until convergence is achieved. As a final step, the nodal posi-
tion in the moving mesh is updated according to the employed
time integration scheme. In case of Backward Euler integra-
tion this yields Xk+1

n+1 = Xn +∆t v̄k+1
n+1. Solution algorithm and

implementation methodology are further illustrated in Appen-
dices B and C, respectively.

III. RESULTS AND DISCUSSION

A. Mesh dependence study

This example illustrates the effects of enriching the droplet
model by including the dissipative forces at both the solid-
liquid interface and at the contact line. The impact of this
enrichment upon droplet spreading, contact angle evolution,
and of the mesh dependency of the solution is analyzed.

Following the experimental settings of Buscaglia and
Ausas22, the geometry considered here is a sessile droplet with
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FIG. 3. Initial and steady-state configuration for a sessile droplet
starting with an initial contact angle angle of 90°, and evolving with
a spreading displacement of r.

an initial radius of 0.125 mm, an initial contact angle of 90°,
and a static contact angle of θs = 45° (see Fig. 3). The driv-
ing forces acting on the droplet are due to surface tension and
gravity. Fluid density, viscosity and surface tension coeffi-
cient are set to ρ = 1000 kg m−3, µ = 8.90× 10−4 kg m−1

s−1, γ = 0.072 N m−1, respectively, in order to represent a
water droplet. Initial pressure in the liquid is set to p0 = 0 Pa.

For this study, the maximum spreading velocity at the ini-
tial stage, i.e., t < 0.25 ms, is assumed, based on experimen-
tal analysis, to be umax ∼ 2.5 m· s−1. This data corresponds
to a water droplet of ∼ 2× 10−4 m radius spreading on Tri-
ethoxysilybutraldehyde with a static concoct angle of 43°53.
Therefore, this gives the estimations of λ ∼ 1.165×10−5 m,
c ∼ 6.27 m· s−1, h ∼ 5.8× 10−6 m, and ∆t = 4.6× 10−7 s
from Eq. (18), Eq. (21), Eq. (20), and Eq. (24).

Six cases are analyzed to illustrate the effect of the slip co-
efficient parameters at the contact line and at the solid-liquid
interface excluding the contact line, β∂Γ and βΓS , as shown in
table I:

TABLE I. Analyzing different slip coefficient parameters at the con-
tact line and at the solid-liquid interface excluding the contact line,
β∂Γ and βΓS .

Case number β∂Γ βΓS

Case 0 0 0
Case 1 0 1×10−5 Pa·s
Case 2 0 1×10−3 Pa·s
Case 3 1×10−3 Pa·s 1×10−3 Pa·s
Case 4 0 βs, using Eq. (16)
Case 5 ζ , using Eq. (13) 0
Case 6 ζ +βs +βn, using Eqs. (13)–(15) βs using Eq. (16),

Figure 4 shows the predicted spreading displacement de-
fined as r in Fig. 3, and contact angle evolution when no dis-
sipative forces are applied. To compare the general spread-
ing behavior with Buscaglia and Ausas22, a time step of ∆t =
2× 10−7 s is used. Four different mesh sizes were adopted
in order to study the solution sensitivity to mesh size, prior
to adding the proposed boundary conditions (i.e., Eq. (4) and
Eq. (5)), as follows: i) h = 1.25×10−5 m with 340 elements,
ii) h = 9.6× 10−6 m with 598 elements, iii) h = 6.8× 10−6

m with 1205 elements, and iv) h = 5×10−6 m with 2206 ele-
ments. Parameter h represents the minimum distance between
the nodes of a triangular mesh. As observed by Buscaglia and
Ausas22, when no dissipative force boundary conditions are
applied, the solution is mesh-dependent, and the contact an-
gle evolution is highly oscillatory.

(a)

(b)

FIG. 4. Evolution of (a) spreading displacement and (b) contact an-
gle, for β∂Γ = 0 and βΓS = 0; case 0 in table I, using different mesh
sizes.

(a) (b)

FIG. 5. Initial configuration of a sessile droplet with a starting con-
tact angle of 90°: a) coarse mesh of 1.25×10−5 m and b) fine mesh
of 5×10−6 m.

The coarsest and the finest meshes, i.e., h = 1.25× 10−5

m and h = 5× 10−6 m, are considered for further study.
These are displayed in Fig.5. For each mesh size, the six
above-mentioned sets of dissipative forces and slip conditions
were included.

Fig. 6 shows spreading displacement and contact angle evo-
lution for coarse mesh simulations. The absence of the dissi-
pative term (ζ ), normal stress coefficient (βn), or the Navier-
slip coefficient (βs) causes an oscillatory spreading behavior
and contact angle evolution (Fig. 6(a), Fig. 6(c)). Exper-
imental results35,53,56 do not show this oscillatory behavior
for a fluid on hydrophilic substrates. Therefore, these spu-
rious oscillations are hypothesized to be due to the numeri-
cal scheme22,30. The initial non-physical spreading evolution
causes the contact line to exceed its equilibrium contact an-
gle, i.e., θd < 45°. Hence, the contact line retracts toward its
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(a)

(b)

(c)

(d)

FIG. 6. Evolution of spreading displacement for constant β∂Γ and
βΓS (a) and using Eq. (10) and (16) (b). Contact angle evolution for
constant β∂Γ and βΓS (c), and using Eq. (10) and (16) (d), see table I.
Mesh size of h = 1.25×10−5 m (coarse mesh).

equilibrium state again. The contact line spreads back and for-
ward in a manner proportional to the induced Young’s stress
(Eq. (8)) until its effect vanishes and the droplet reaches its
equilibrium condition.

The first two cases show that increasing the constant value
of the Navier-slip coefficient at the solid-liquid interface, βΓS ,
does not guarantee a physical spreading evolution. Adding a
constant slip coefficient at the contact line, i.e., case 3, reduces
the contact angle and spreading rate oscillatory behavior, and
increases the convergence rate. Yet, these constant values do
not produce physical contact angle and spreading evolution
rates.

Adding the Navier-slip condition on ΓS (Eq. (16), case 4)
reduces the contact line singularity and enhances the conver-
gence rate towards the equilibrium condition (Fig. 6(b) and
Fig. 6(d)). However, the contact angle continues to behave
in a non-physical manner due to the absence of the dynamic
capillary term (ζ ).

Adding the dynamic capillary term alone, case 5, at the con-
tact line (Eq. (13)) results in unstable contact angle evolution
and spreading rate (Fig. 6(b) and Fig. 6(d)). This is interpreted
by the absence of the physical viscous dissipation and stress
balance terms acting on the solid-liquid interface, including
the contact line.

Adding the dissipative force terms at the contact line
and at the solid-liquid interface (β∂Γ and βΓS , respectively)
using Eq. (10), and (16) enhances the overall behavior of
both contact angle and contact line evolution (Fig. 6(b) and
Fig. 6(d)). The contact line reaches its equilibrium state
after 0.0006 s, i.e ≈ 85% faster than without resorting to the
proposed boundary conditions; the non-physical oscillatory
spreading behavior vanishes. Furthermore, case 6 in Fig. 6(b)
shows two physical zones. The first zone is the inertial zone,
0 < t < 4×10−4 s, where the droplet spreads at a rate propor-
tional to the induced Young’s stress. The second zone is the
viscous zone, t > 4× 10−4 s, where the viscous dissipation
is dominating as the droplet reaches its equilibrium contact
angle19,35,53,56.

The proposed boundary conditions at the solid-liquid in-
terface are critical to achieving physically relevant droplet
spreading solutions with the use of coarse meshes. Results
for the refined mesh, i.e., h = 5× 10−6 m, are displayed in
Fig. 7. In the absence of the dissipative term, normal stress
coefficient, and Navier-slip coefficient, a smoother spreading
displacement evolution is achieved, compared to the coarser
mesh (Fig. 7(a) and Fig. 6(a)). Furthermore, the equilibrium
state is reached after 0.0012 s. However, a non-physical oscil-
latory contact angle temporal evolution with low amplitudes
is observed in Fig. 7(c). A more refined mesh leads to a lower
nodal velocity and slip length coefficient, lβ , at the vicinity of
the contact line compared to a coarse mesh16,72. Accordingly,
a higher slip coefficient, βs, is imposed in the Navier-slip for-
mulation, such that21,22:

βs =
µ

lβ
(30)
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(a)

(b)

(c)

(d)

FIG. 7. Evolution of spreading displacement for constant β∂Γ and
βΓS (a) and using Eq. (10) and (16) (b). Contact angle evolution for
constant β∂Γ and βΓS (c), and using Eq. (10) and (16) (d), see table I.
Mesh size of h = 5×10−6 m (fine mesh).

where µ is the fluid dynamic viscosity. On the one hand,
the use of more refined mesh results in a smoother contact
angle evolution and spreading behavior. On the other hand,
the oscillatory behavior of the contact angle evolution is due
to the missing dissipative force term that controls the contact
angle evolution as a function of the dynamic capillary effect.
Adding the capillary effect, ζ , at contact line, case 5 and case
6, results in smooth physical transition between the inertial
and viscous regions for both spreading displacement and
contact angle evolution.

The contact angle evolution and spreading rate for both
mesh sizes are compared before and after applying the com-
plete set of proposed boundary conditions at the solid-liquid
interface and contact line are shown in Fig. 8. Results ob-
tained without imposing the dissipative force boundary con-
ditions are grid dependent and disply large, non-physical os-
cillations. In contrast, the results obtained with the numerical
solver with the proposed boundary conditions are grid inde-
pendent and nearly free of oscillations with a smooth physical
transition between both the inertial regime, 0< t < 2×10−4 s,
and the viscous regime, t > 5×10−4 s. These results demon-
strate that the proposed boundary conditions enhance the sta-
bility of the contact line motion and achieve a mesh indepen-
dent solution with larger element sizes.

B. Comparison with experimental data

In order to assess the validity of the proposed numerical
model, we compare in this section experimental and numerical
results of several studies involving spreading of fluids on flat
smooth surfaces with varying contact angles. Specifically, the
following cases are studied:

1. Spreading of a water droplet on a hydrophobic sub-
strate, i.e., Triethoxysilane, (with equilibrium contact
angle of 117.0°)53.

2. Spreading of a squalane (C30H62) droplet on a silica
substrate (with equilibrium contact angle of 38.8°)35.

3. Spreading of water on Teflon (hydrophobic) and kap-
ton (hydrophillic) substrates (with equilibrium contact
angles of 108°73 and 75°74, respectively).

The first two studies are based on published experimen-
tal studies, while the third case is based on experiments per-
formed by the authors.

1. Hydrophobic substrate

The proposed model is used to simulate the sessile water
droplet deposition experiments performed by Bird et al.53. In
this study, a drop was placed on the Triethoxysilane substrate
through a needle. The drop contacts the substrate at a diameter
of 1 mm, and was allowed to spread spontaneously over the
substrate until equilibrium was reached, i.e., until the value
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(a)

(b)

(c)

FIG. 8. Less mesh-dependent results for (a) spreading displacement
evolution, (b) contact angle temporal evolution, and (c) contact line
velocity evolution, using our proposed boundary conditions and for
two different triangular mesh sizes of h = 1.25× 10−5 m (coarse
mesh) and h = 5×10−6 m (fine mesh).

θ = θs = 117° is reached. Spreading displacement (r) was
measured over time during the initial time of wetting.

In order to reproduce this experiment, a droplet is placed
on the substrate with an initial radius R = 5×10−4 m, contact
angle of 180°, and liquid pressure of p0 = 0 Pa (Fig. 9). Then,
the droplet is allowed to deform until equilibrium is achieved,
i.e., θs = 117°. Fluid density, viscosity and surface tension
coefficient are set to ρ = 1000 kg m−3, µ = 8.90× 10−4 kg
m−1 s−1, γ = 0.072 N m−1, respectively. Assuming that the
capillary waves at the contact line are dominants and umax of
the order ∼ 1 m s−153, two simulations were performed using
the boundary conditions of Eq. (10) and (16), two element
sizes, i.e., h = 4× 10−5 m with 1085 elements, and h = 8×
10−5 m with 282 elements, as displayed in Fig. 10, and a time-
step size of 10−7 s.

FIG. 9. Initial and steady-state configuration for the sessile droplet
starting with an initial contact angle ≈ 180°, and evolving with a
spreading displacement of r.

FIG. 10. Two different mesh sizes, h = 8×10−5 m and h = 4×10−5

m, representing the initial-stage of 0.001 m diameter droplet.

Fig. 11 shows the spreading profile within the first millisec-
ond when the initial capillary wave propagation is dominating
at the contact line and moving toward the free surface. The
profile obtained numerically are in good agreement with the
experimental profile53. Fig. 12 shows the spreading displace-
ment, and spreading rate evolution observed experimentally
and predicted numerically using the two meshes. Experimen-
tal and numerical results are in very good agreement, and the
two meshes provide very similar results, i.e., the numerical
results are mesh independent. The initial contact line veloc-
ity reaches 1 m s−1, which corresponds to the predicted ve-
locity regime for an impact or spreading droplet starting from
rest35,56. Fig. 12 and Fig. 11(a) show that the numerical model
is able to capture the early spreading regime, t < 0.1 ms where
the spreading rate is independent of the wettability of the sub-
strate53,75,76. Furthermore, the inertial regime characterized
by the capillary waves19,77 is captured numerically. This can
be verified based on the transition time interval, Tt , formula
between the inertial dominated regime, Ti, and the viscous
dominated regime, Tv, i.e., Ti < Tt < Tv, such that19,76,78:

(
ρR3

γ

)0.5

< Tt <

(
ρR3

γ

)0.5(
ργR
µ2

)0.125

(31)

where Tt is the transition time interval between the inertial
and the viscous regimes, ρ is the fluid density, R is the initial
droplet radius, γ is the surface tension coefficient, and µ is the
dynamic viscosity. Eq. (31) implies that the inertial regime for
a water droplet of radius 0.5 mm is in the range of Ti < 1.3 ms,
after which the transition regime takes place. Finally, Fig.11
shows that the spreading regime depends on the initial droplet
radius, i.e., the smaller the droplet initial radius the faster the
transition from inertial to viscous regimes, in agreement with
Eq. (31).
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(a) Water droplet of a radius 0.82 ± 0.01 mm53.

(b) Water droplet of a radius 0.5 mm.

FIG. 11. Water droplet spreading on Triethoxysilane, for
0 < t ≤ 1.2 ms, with a dominant capillary wave propagation
at the contact line (a) experimentally, (reproduced with per-
mission from J. Phys. Rev. Lett. 100, 234501 (2008),
https://doi.org/10.1103/PhysRevLett.100.234501. Copyright 2008
American Physical Society), and (b) numerically.

2. Hydrophilic substrate

In this section, the numerical model is used to reproduce
the experimental results obtained by Seveno et al.35 where
squalane is allowed to spread over a silica substrate. The static
contact angle of squalane on silica is 38.8°.

To reproduce this experiment the same initial and bound-
ary conditions are used as in the previous case, as shown in
Fig. 9. The initial droplet diameter is 0.0018 m and the physi-
cal properties of the fluid are ρ = 810 kg m−3, µ = 0.0314 kg
m−1 s−1, and γ = 0.0311 N m−1. The expected spreading rate
is of the order 10−1 m35. Assuming umax = 0.5 m s−1, the cap-
illary wavelength and corresponding mesh sizes are obtained
by Eq. (18) and Eq. (20) as λ = 1.5×10−4 m and h= 7.510−5

m with 1014 elements, respectively. Also, since We > 1 as per
Eq. (17), the capillary wave propagation should be expected
from numerical model. The time step is chosen as ∆t = 10−7

s, according to Eq. (24) covering the range of contact line ve-
locities of the order 10−1 m s−1.

Fig. 13 shows the contact angle evolution versus the con-
tact line velocity, followed by the contact angle evolution ver-
sus time. The numerically predicted contact line velocity evo-
lution is in agreement with measured experimental data (see
Fig. 13(a)) and is proportional to the temporal evolution of the
contact angle (Fig. 13(b)). Furthermore, the initial squalane
droplet velocity on silica is of the order of ∼ 0.1 m s−1

(a)

(b)

FIG. 12. Water droplet spreading rate on Triethoxysilane: (a) spread-
ing displacement evolution (numerically vs. experimentally) and (b)
contact line velocity evolution (numerically vs. experimentally).

(Fig. 13(a)) as indicated by Seveno et al.35. Both numerical
and experimental results show that the contact line spreading
is initially dominated by inertial effects, followed by a reduc-
tion of the contact line velocity, where viscous effects domi-
nate. This observation is in agreement with Eq. (31), where
the transition time interval between the inertial and the vis-
cous regimes is predicted as, 4.3 ×10−3 s < Tt < 6.4 ×10−3

s. In this time interval, the contact angle value varies be-
tween approximately 150°. and 125°. (Fig.13(b)). Therefore,
the numerical oscillatory behavior in this region, as shown in
Fig.13(a), is hypothesized to be due to the transition between
the inertial and the viscous regimes.

3. Droplet injection experiments

To further validate the proposed model, water injection ex-
periments on hydrophillic (Kapton, static contact angle of
75°74) and hydrophobic (PTFE, static contact angle of 108°73)
substrates were performed by the authors. In the experiment,
water was injected from a small hole of 6.0 mm diameter in
the substrate using a peristaltic pump at two constant flow
rates, i.e., 5 µL/s and 10 µL/s. Three experiments were per-
formed: i) water injection at a rate of Q = 5 µL/s on Kapton
surface, ii) water injection at a rate of Q = 5 µL/s on PTFE,
and iii) water injection at a rate of Q = 10 µL/s on PTFE.
The injection profile is displayed in Fig.17. Two cameras, po-
sitioned perpendicular to each other, were used to capture the
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(a)

(b)

FIG. 13. Squalane droplet on silica: (a) contact angle evolution vs.
contact line velocity (numerical vs. experimental), and (b) contact
angle revolution vs. time (numerical vs. experimental).

FIG. 14. Injection channel setup.

injection process as shown in Fig. 14. The spreading displace-
ment were extracted from the recorded videos using built-in
tracking feature of ImageJ79, where the spreading regimes
were identified by tracking the contact line every 0.2 second.
The contact angle measurements were extracted using the "B-
Spline Snake" feature of the drop-analysis plugin of ImageJ80.
"B-Spline Snake" feature measures the contact angle locally
following a concept of polynomial fit. Therefore, an error of
±2.5° was taken into account when measuring the contact an-
gle, as shown in Fig. 15(b) and Fig. 16(b).

In order to perform the numerical simulations, an initial
droplet configuration with a volume of ≈ 0.04 and ≈ 0.2
µL and initial contact angle of 75° and 108° for Kapton
and PTFE, respectively, are selected. Fluid density, viscos-
ity and surface tension coefficient are set to ρ = 1000 kg m−3,
µ = 8.90×10−4 kg m−1 s−1, γ = 0.072 N m−1. Initial pres-
sure in the liquid is set to p0 = 0 Pa. The injection rates were

of the order of micro seconds; hence, the average spreading
displacement for this experiment was of the order 10−3 m s−1,
as shown in Fig. 15(a) and Fig. 16(a), which yields We < 1.
Accordingly, the capillary effect at the moving contact line
is neglected compared to the dominant surface tension force.
The time step and mesh size used for these simulations are
chosen as ∆t = 3×10−3 s and h = 1.5×10−4 m, respectively.

Kapton

Fig. 15 shows the experimental and numerical results. Ex-
perimentally, the data was collected using videos instead of
high speed capturing cameras, therefore, the spreading rate
and contact angle evolution could not be tracked accurately at
the initial stage, i.e., for t < 0.1 s. Accordingly, a jump in the
spreading radius and contact angle evolution was observed ex-
perimentally at the initial stage. Similarly, the initial injection
rate causes an initial jump as well for the spreading radius for
t < 0.1 s.

It was observed experimentally and numerically that the
spreading rate decreased as the droplet volume increased. Fur-
thermore, the contact angle showed an average increase of
15°. This increase is interpreted in term of the work of ad-
hesion. In general, the work of adhesion increases as the hy-
drophobicity of the surface decreases81. Accordingly, higher
energy is required to detach or separate a liquid from hy-
drophilic surfaces due to the strong bonding between the liq-
uid and the substrate81. During the initial stage of the injection
process, this work of adhesion partially withstands the effect
of the induced Young’s stress as the droplet spreads towards
its equilibrium contact angle. Hence, the contact angle in-
creases as the injection process starts, i.e., from 75° to ∼90°,
as shown in Fig. 15(b). The maximum errors between the ex-
perimental data and the numerical results for both spreading
rate and contact angle temporal evolution are estimated to be
about 10%, as shown in Fig. 15(a).

PTFE

Figure 16 shows the spreading radius and contact angle evo-
lution as a function of time obtained experimentally and nu-
merically. Experimental and numerical droplet radius are in
excellent agreement at high injection flow rate, while at the
lower flow rate the numerical results underpredict the spread-
ing radius. The contact angle is nearly constant throughout
both the experiment and simulation, as opposed to the case
of kapton where there was a gradual increase in the contact
angle. The average maximum errors of both injection rates
was about 10%. The contact angle evolution for both injec-
tion rates were in good agreement as well, with a maximum
variation of 3°, i.e., about 2.5% (Fig. 16(b)).

As in the case of kapton, an initial jump was observed
experimentally and numerically for the spreading radius for
t < 20 ms. Moreover, it is observed that the spreading rate de-
creased as the droplet volume increased. However, in the case
of PTFE, the sessile droplet showed higher spreading rate at
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(a)

(b)

FIG. 15. Water-kapton injection analysis and comparison: (a),
spreading displacement evolution, and (b) contact angle evolution.

the initial stage due to the reduced work of adhesion between
the liquid and substrate (hydrophobic substrate).

Fig. 17 shows a comparison between the experimental and
simulated droplet profiles during injection. The model is ca-
pable of capturing the droplet profiles during the early stages
of the process. After the droplet has grown substantially, pre-
dicted profiles show some disagreement with the experimental
observations. It is hypothesized that the reason for the discrep-
ancy is the lack of three dimensional information. The current
2D model neglects out-of-plane forces, which may play a sig-
nificant role in determining the droplet shape and spreading
rate10.

IV. CONCLUSIONS

A PFEM-based model for the simulation of droplet spread-
ing on solid substrates was presented. Appropriate dynamic
boundary conditions at the solid-liquid interface and the con-
tact line were identified to provide physically meaningful re-
sults in droplet spreading simulations. A Navier-slip bound-
ary condition is applied at the liquid-solid interface excluding
the contact line. At the contact line, an effective slip coeffi-
cient was introduced as a function of capillary effects, and the
balance of stresses acting on the vicinity of the contact line.

The mesh size dependency of the solution was studied.
First, the importance of the capillary wave propagation phe-
nomena, and its numerical consequences in choosing the mesh
size and time step were pointed out. Then, mesh-dependency

(a)

(b)

FIG. 16. Water-PTFE injection analysis and comparison: (a), spread-
ing displacement evolution, and (b) contact angle evolution.

(a)

(b) (c)

FIG. 17. Initial and final sessile droplet profiles for: (a) water in-
jected at flow rate of 5 µL/s on kapton substrate, (b) water injected at
flow rate of 5 µL/s on PTFE substrate, and (c) water injected at flow
rate of 10 µL/s on PTFE substrate.

studies were performed to show that the proposed dynamic
boundary conditions alleviate the mesh-dependency of the so-
lution.

The proposed droplet spreading model was validated by
comparison with experimental results for a variety of liq-
uids on hydrophobic and hydrophillic substrates. Spreading
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rates and contact angle temporal evolution obtained numeri-
cally were in good agreement with the experimental data. The
model was able to capture the early spreading regime and the
inertial to viscous transition regimes.

The model was compared with micro sessile-droplet injec-
tion experiments for water on hydrophilic and hydrophobic
substrates. The experimental and numerical results were again
in good agreement. A three-dimensional model must be de-
veloped in the future to account for out-of-plane geometric
and physical effects for the simulation of spreading, injection
and other interfacial dynamic phenomena.

DATA AVAILABILITY STATEMENTS

The data that support the findings of this study can be pro-
vided upon request.

ACKNOWLEDGMENTS

We are grateful to Drs. Howard Stone, James Bird, and
Shreyas Mandre for their permission to use Fig. 11(a) pub-
lished in reference53. We thank the Reviewers for their feed-
back and constructive comments. EM is thankful to Dr. Ajay
Prasad for the fruitful discussion about the effect of shear
stresses on droplet spreading phenomena.

Compliance with ethical standards Funding EM acknowledges
the financial support by Jubail University College and the Royal
Commission for Jubail and Yanbu of Saudi Arabia. MS and AJ ac-
knowledge financial support from the Natural Science and Engineer-
ing Research Council of Canada (NSERC) Collaborative Research
and Development grant: NSERC CRDPJ 445887-12 and NSERC
Discovery grant. PR was supported by AMADEUS project (refer-
ence: PGC2018-101655-B-I00) funded by the Spanish Ministry of
Science, Innovation and Universities. TC and AZW acknowledge fi-
nancial support by the Fuel Cell Performance and Durability Consor-
tium (FC-PAD), by the Fuel Cell Technologies Office (FCTO), Office
of Energy Efficiency and Renewable Energy (EERE), of the U.S. De-
partment of Energy under contract number DE-AC02-05CH11231.

Conflict of interest The authors declare that they have no conflict of
interest.

APPENDIX A: ELEMENTAL CONTRIBUTION TO MATRIX
ENTRIES

Eqs. 25 and 26 are assembled using the local matrices and vectors,
with components defined as:

Mab = ρ

∫
ΩX

NaNb dΩX = ρ

∫
Ω

NaNbJ(X) dΩ (A1)

Lab =
∫

ΩX

∂Na

∂Xi

∂Nb

∂Xi
ΩX =

∫
Ω

∂Na

∂xi

∂Nb

∂xi
J(X) dΩ (A2)

Gab
i =−

∫
ΩX

∂Na

∂Xi
NbdΩX =−

∫
Ω

∂Na

∂xi
NbJ(X) dΩ (A3)

f a
i = ρ

∫
ΩX

NagidΩX = ρ

∫
Ω

NagiJ(X) dΩ (A4)

Dab
i =

∫
ΩX

Na ∂Nb

∂Xi
dΩX =

∫
Ω

Na ∂Nb

∂xi
J(X) dΩ (A5)

f a
st,i =−

∫
ΓI,X

γκNanidΓX =−
∫

ΓI

γκNaniJΓ(X) dΓ (A6)

f a
∂Γ,i =−

∫
∂ΓX

β∂ΓuiNad∂ΓX =−
∫

∂Γ

β∂ΓuiNaJΓ(X) d∂Γ (A7)

f a
ΓS,i =−

∫
ΓS,X

βΓs uiNadΓX =−
∫

ΓS

βΓs uiNaJΓ(X) dΓ (A8)

where Na represents the standard finite element shape function at
node a, and the index i is used for the spatial components. The
present model is based on the updated Lagrangian formulation
(ULF), and therefore the integration domains in Eqs. (A1)-(A5), ΩX,
correspond to the updated configuration. The transformation be-
tween the reference configuration, Ω, and the updated one is per-
formed using the Jacobians J(X) and JΓ(X).

APPENDIX B: SOLUTION ALGORITHM

Given a known configuration Xn, velocity v̄n, and pressure p̄n, at
time tn, the procedure for obtaining the values of these variables at
the next time step tn+1 is summarized in Algorithm 1. A complete
general algorithm, including a two-phase flow model, can be found
in reference37.

Algorithm 1: Simulation algorithm of the liquid
phase problem using a PFEM formulation.

1 for t = tn+1 do
2 Current configuration is the known configuration, such

that: Xk
n+1 = Xn;

3 for nonlinear iteration k do
4 Obtain curvature at Xk

n+1;
5 Update discrete operators in Eqs. (A1)-(A5);
6 Compute f a

st,i, f a
∂Γ,i, and f a

ΓS,i using Eq. (A6),
Eq. (A7), and Eq. (A8), respectively;

7 Solve system of equations for liquid phase, Eq. (29);
8 Update both velocity and pressure, such that:

v̄k+1
n+1 = v̄k

n+1 +δ v̄ and p̄k+1
n+1 = p̄k

n+1 +δ p̄,
respectively;

9 Update configuration, such that:
Xk+1

n+1 = Xk
n+1 +∆t ·dv̄;

10 Remesh;
11 end
12 Xn+1 = Xn +∆t · v̄n+1;
13 end

APPENDIX C: IMPLEMENTATION

The numerical method was implemented within Kratos Multi-
Physics version 6, a C++ object oriented FE open-source frame-
work82. For droplet spreading, the experimental data found in ref-
erence35,53 was extracted using WebPlotDigitizer software83.
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