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CROSSING OF AN INCOHERENT INTEGRAL RESONANCE -
IN THE ELECTRON RING ACCELERATOR

Claudio P@llegriniTland’Andrew M. Sessler
o Léwrenée}Radiation Lab¢ratory
T ' "University of California

' Berkeley, California
Janvary 26, 1970
 ABSTRACT

In one mo&e of operation of an electron ring accelerator (ERA),
at the end of compression rings are slowly moved through the radial
integral‘ﬁététron resonance Q. = 1. Although the coherent radial
voscillation frequency of the ring as a whole reméiné beléw unity, the
oscillation frequencies o} indiﬁidual electron are (incoherently)
caused td'pass through the resonance because of the additional focusing
from ions trapped in the ring. ' In this paper the effect of field errors
on riﬁé majbr and minor radii is evaluated—-theoreticallyf-for the cases
in which the.spreéd in,the square of ﬁﬁe eiectron oscillation frequency
(A?) is (a)lmuch larger an@ (b)'ﬁuch'smaller than the contribution to
tﬁe square of the oscillation frequency from the ions (Ag). It is
shown that for the ERA, where case (b) applies, the increase in ring
minorkdimensions, forvgiven field errors and rate of resonance crossing,
is légs than-iﬂ case (a) by a factor of (zyh)g. Numerical examples
show that the degradation of ring quality in case (v) should, with
suitable attention to the aesién and construction of the FRA apparatus,

be acceptably small.



-2~ ‘ : ‘ UCRL-19462

1. INTRODUCTION

In the electron ring?accelerators (ERA) now being studied at
Dubna, Berkeley, Karlsruhe, and Garching;ﬁ an electron ring is
compressed in a magnetic fieid having field index n = - % %% such
that 0 < n < 1. At the end of compression positive ions are captured
in the riég, which is subseqﬁently extracted from the.éompressor and
brought into an accelerating‘column having a constant magnetic field
and hence ln‘= 0.

During the compression proceés the radial betatron frequency
qE.= Q 8, wherg 2 1is the révolution frequency ana Q is.approximately
given by (1 - n)l/g, stays below 9 or, equivalently, @Q stays below
unity. The capture of ions in the eléctron ring introduces an additional
focusing force on thé electrdn, which hés the effect of increasing Q.
During the extraction procesé n :goes to zero, so that, in the absence
of ions or other additional forces, - Q' would become equal to unity.

As a result of both effects Q crosses the value @ = 1.

As is well known, whén Q = 1 an integer resonanée is excited.
This can produce a large displagement of the electron orbits and hence
a beam loss. Moreover, even if the beam‘is not lost>it is possible that
the crossing of the.resonance couid produce a large incréase in beam
dimepsion and a corresponding decreése in fhe electric field thatvkeebs
the ions inside the ring. As a consequence, the external electric
field ﬁhich is applied so as to accelerate thevring would have to be
lowered to an uninterestingly small value.

'Thé'increase in qscillation amplitude of a single particle[

crossing an integral resonance at a rate r = d@}e/dt is given

apprroximately by
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x, = (sz"_'r) R Q —E—i , (1-1)

where R 1s the beam radius, & the revolution frequency, and (ﬁB/B)
the magnetic field perturbation driving the resonzauncee—5 .

Formula (I-1) shows, using typical ERA parameters, that in order
to maintain the increase in amplitude within reasonable.limits, the
requirements on the magnetic field are very strong; for instance,
assuming X, = 6.1lcmy, R=3cm and Q = lO)+ sec-l, one has |
(AB/B) < 10-5. Various possibilities have been suggested for reducing
Q, so as to avoid crossing the resonance: The use of image forces
ebﬁained by surrounding the eleetron ring with a dielectric cylinderE?
of‘e slotted metallic cylinder7), or keeping Q > 1 throughout
compression and acceleration of the ring by using the azimuthal magnetic
field generated by a current along the ax1s of the ring,)

The use of image forces seems to provide a practical way to
a#oid the resonance crossing when there are only few ions in. the -ring,
but not when the ring is charged with more ions then of the order of.

l% of.the.electrons. The use of an azimuthal magnetic field to keep
Q always ebove unity requires currents in the conducfor on the axie
of the order of 105 A --an inconvenient, but possible, design require- .
ment,

It has, however, been pointed out by Van der Meerﬁa,.on the.
basis of qualitative arguments, that the application to the ERA of tﬁe |
formulaufor the single-particle increase of amplitude dufing the |

: resonanceicrossing may be incorrect. In this paper we study the effect
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of resonance crossing in detail. 1In particular we consider thé-casé
when Q wouid stay below unity in the'absence of ions (i.e., the
coherent integral resonanc; is not crossed), but is éhifted above unity
by the ion fbcﬁsing force (i.e., the incoherent.integral resonance is
crossed). We find that in this case the formula (I-1) is not valid and
that the behavior of the beam in crossingvthg incoherent resonance
depends on the ratio of the spread in the square of the frequency in
the electron ring, 4?, to the shift in the square-of the frequency,

, | .

A2, induced by the ions.

The results described by (I-1) applies only when the condition

£

S > 1, (1-2)
A A

since in this case each electron behaves as a siﬁgle electron having a

frequency 032 + A2)1/2

s where o is the frequency dué to the external
magnetic field and image forces, and A is the shift in fréquency
caused by the.ions. Thus resonance crossing leads to an increase in
beam minor dimensions, buf no change in the beam center of mass.

On the contrary, in the case more often ehcéuntered in the ERA,

when

£

> << 1, o (@3)

=

thefe is a (small) change in the local beam center of mass, but the

beam minor dimeﬁsion increase is smaller, by a factor of (K?/A?), than
that expected oﬁ the basis of (I-1). Hence the limit on the toleréble
magnetic field imperfections, AB/B (whiéh is set by the strong réquire-

ment of small minor dimensions of the ring), is lowered and can more
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easily be satisfied. Thus our detailed analysis oupports the general
oonclusiohs of Van der Meerband.is in qualitative agreement with '.
observationlp . | _ :

That the simple formula (I-1) does not apply to circular
electron oeaMS portially or totall& neutralized by.ions is of importance,
also, for;electron storage rings. In this.case, too; due to the long-
beam lifeﬁime, a. large number of ions are captured by.the beam, when

.clearing Field electrodes are not used. Once again, the frequency shift
1ntroducod:by the ions can cause a crossing of an integer resonance.
Both the conditionsrthat Q reméin below the nearest integer during the
ion 1oadihg process and condition (I-3) are well éatisfied in storage
rings. However, in this paper we have.consideréd only azimuthaily
uniform beams,.while the electron beam of a storage'ring is buhched.
Hence, Wercannot directly apply our results to storage rings. Notwith-
standing, we think that,'at least to a first approximation, the results
of thils work indicate that algodin the case of the storage ring the
crossiog“of°thé'fesooéncé;prodﬁcéo onlyaaobeam*widening, and +that® this

- widening is not too dangerous because of the strong réduction introduced

by the factor A?/A2 . This conclﬁéion is in agreement with the experi-

mental observations performed on electron storage rings.

&

2. FORMULATION OF THE FROBLEM | | o ~
We assume that the electrons move on a circular orbit with a
constanﬁ angular velocity & , and that they oscillate in a direcfion
-orthogonal to this orbit under the action of the focusing forces due
to the external magnetic field and to the ions.'vThe ions are assumed

to havé.zero angular velocity and to oscillate in the same direction as
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the electrons under the action &f the focusing forée due to the electro-
"static field of the electrons. We ignore ion-ion forces, since in
practice the ion density is sufficiently low that these terms are
negligible.

' Let us call x 8, and gj, Wj the transverse and the

X Tk
azimuthal coordinates of the kth electron and jth ion. The equations

of motion can be written as

E(0) + a2 wx(6) + AP (4) - Fls, 0]

_ '+ Aie)e(t)[xk(t) i E(t,ek)] = a cos(n®, +‘¢) ,
ek} - ot 4+ Q.
,v’e'j(t)-+ Mftgj(t) -E(t,wj)] = q,-*
vy = éonst,E I N . (11-1)

where w%?xk, is the focusing force due to the magnetic field, the

(

2 ,
Ake) term describes the force:of electron on electrons,

i)2 — o

Al ,_ - |

X [Xk g(t,ek)] and Mj [gj x(t,wj)] are the forces between
ions and electrons and @& cos(H@k + é) is the pertﬁrbation in the

guide magnetic field.  Note that we consideernly field bump errors
and do not include gradient error terms as they areQ-in practice--~

LW - .
negligible }. We consider only the n-Fourier component in the magnetic

= dk .

The electron-ion forces are written, in the linear approximation,

field perturbation, where n &

as proportional to the distance of the kth particle from the local

center of mass of the particles of the other species, x(t,8) and
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t(t,¥). The local center of mass can be defined, with the help of the

step function s(e), as

xk(t) s(e - e) s(e + de - @ )

%(t,8) = ——=— ‘ ,

21» S(ek - 8) s(e +ae - 8)

k

Zgj(t) 8(¥; - ¥) s(v +av - ¥,)
Et,v) = :
. stj - %) S(v+dﬂ;-wj)

J - - (11-2)

Thevnonlinearities of this force, as well as the nonlinearities in the
external focusing force, are taken into account approximaﬁely by

A(e)2, and A(l)2 on some of the

allowing a dépendence af a?, M?,
parameters of the particles such as oscillation amplitude or energy.
Newtgnlgﬂthird law 1mp11es a sub51d1ary condltlonnamongstlthe Aﬁl)
and M 3 We need not 1nvoke thls relatlon, as well be seen below.
e The quantlties o M 52 A(e), and Aé 1) are functions of
timé, because of the changes in the external magnetic field and in the
.numbeb Qf’ibns with time. 3Both these variations are assuied to be

: &eryvélaﬁ'cp@pafed~w1th the electron and“ion oscillation peried. 

'We are only interested in studying thelclosed-orbit pertUrbatioga
 due to tﬁe'magnetic field: imperfections, i.e., the‘particﬁlar solution

of the nonhomogenous (11-1).

We will first consider the case in whlch @, Aée), Mk; and
1)

"

are- constant in time. Since the dr1v1ng farce, a cos(ne + b),
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is periodic with respect to © , we look for a sdlﬁtion'haVing the same

periodicity. Let us assume

\
A cos(n 6, + 9) ,

cx, (¢)

il

£, (t) = B, cos@ij). | (11-3)

The local centers of mass are then given by
o : i

x(t, 8)

Il

A cps(ﬁé + 9),

cos(ny + B) . (IT-4)

|
os}

E(t,v) =

The amplitudes E; B are given, in the case of & beam containing

N electron and Ni ions uniformly distributed along the circumference,
and assuming that the distribution pf the Ak’ Bk is independent of
the azimuthal position, by ! |

N
e
K = (ﬁ]‘-) Ak’
€ k=1
N,
i 1
' o= (1%_) By - o (11.5)
i ' .
J=1

Substituting (II-3) and (II-L) into (II-1), we obtain
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By.uéé of (II-5), the system of (II-6) can be reduced to.

22\ (i)

ol + AR SR A

(IIV-.7)

The first of (11-6), together with (II-5), shows simply_that, under the

action of the external perturbation, the local ion centef of mass

undergoes £he same displaéement as the local electron center of mass.
This result is also valid for slow changes of &, Mk Ak

and Aéi), so that in general we can reduce the eqpatlons of (II-1) to

an equation for the electrons only, namely

%+ (6 + A6, - K] = a cos(me, + B), (11-8)
ﬁheré we have set ’Ak? = Aée)2 + Aii)e . When @ and A are

constant in time this clearly reduces to (II-T).

3. NORMAL MODE ANALYSIS

fﬁé_héve reduced the'pfoblem'toosolving (11-8), which task is
acébmplishédvin'this and the next two sections. We can limit ourselves
to the case in which the variation in tiﬁe of @ vand Ak is small
compared_ﬁith nR. It is thenApossible to perfofm a powef-series
expansiqﬁiof,thése quantities, ana’to céﬁéidef only term§ipp ?o first

ordef,:namely, to write

!

4 = g (e + (- g)

M- A2 s reev) . (e

We also assume that r .and .r' are different from zero only in a time
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I
|

interval to - tl during which the resonance.is crossed, andlfhat the.
initial and final values of a&? and uk? + Ak? are respectively well
below and well above the resonant ﬁalue 5?92. Notice, also, that wé
have assumed r and r' to be equal for all particles.  This is a
good approximation when the frequency spreads for both @ and A are

small compared with nf.

We can now obtain a solution of (II-8), assuming x, to be of

k
the form :
. N ;
(5
5W©) = ) a0 eoliGe, « 1, (x11.2)
n=1

where the An(t) are unknown functions and the Ck(n) are a complete

orthonormal set of vectors defined as the eigenvectors of the linear

system of equations

\

i

[ 2(tg) + a, 206010, ™) - 2 Bee ) 8(0)

\. 2 n |
= P(n) C}(i ), n:l,...’ Ne, )
o ' ' (III-3)
vhere T) is gefined as
=(n) _ 1 (n)
.C . - Ne Ck 2

as follows from (II-2) and (III-2); and PE(n).is‘an eigenvalue.

Substituting (III-2) into (II-8) and using (III-1) and (11I-3), ve get
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N _ . N |
~ 2 (n)
o - . =22 n
: i T - ! -
2{: An +2inQA  + [ () ~ %% + (r +r')(% to)]An Cy
‘n=1 ' ' ' ,
~r'(t -t ) E (n) a . - (ITI-N4)
Using the orthonormallty rroperty of the - C Kn) s we obtain

‘A’n; + et A+ F2(n) B ()t - to)1A,

N
e

e -tan N A g® gl _ gy g,
: 07e [L. m e
m=1
- (II1-5)
We assume that An(t) is a functionvvarying slowly with respect to the
characteristic oscillation periods, so that it'is possible to neglect

the second derivative of A (t) in (III-5) end write it as

2iﬁh An-,+ ‘[P%n) - B+ (r +x7)(t - t5)]A

N
e

- r'(t - to)Né :E:l | Am_E(m) E(n) e N, gln)

m=1 g . ' ‘ (I11-6)

The problem is now reduced to finding the Cﬁn) and An(f), i.e., to
solving (III 3) and (ITI- 6)
The solution will depend on the ratlo A:/A s where 'K?. is

the width of the distribution of the frequencies @9 ,'and A02 is the

2
average'value of A (We assume that the w1dths of the dlstrlbutlon

k .
of ak and Ak are small compared w1th the average values. of wk and

Ak)
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\ .
In the remainder of this paper we will study only the two cases

|
2

>

< A
(8.) ) < 1,
0

and

o

2
KN .
(p) = >> 1,
A
for both of which solutions of (III-3) and (III-6) can be obtained.

We also noﬁice that we are interested in the determination of

the two quantities

x - 'Nl_e Z "k| - | ZAn(t) g | ()

k n
and
| o 1/ | 1/2
5 = (& 2 x, - X7 = N—LE!Aﬂ(t)lz- ol I
e e
-k : _ n v
e - : ' (111-8)

- which are the local center-of-mass amplitude and the root-mean-sqﬁare

(rms) beam size. Both x and 8?, as well as (111-6), depend-on the

Cié) only through the average values E(n) .

L. -DETERMINATION OF THE EIGENVECTORS
In this section we determine the eigenvectors and eigenvalues 
of (III-3) in the two cases: (a) .452/1\02 << 1, and (b) £?/h02 >> 1.

We consider case (a) first; case (b) is rather trivial and is discussed

-

at the end of this section. It is convenient to start by solving (III-3)

for the case of zero frequency spread. ' The eigenvectors Cin)o afé

given, for A =0, by -
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. 2nink, ,
c](&n)o - {/——l—p; e /N , (Iv-1)
glnlo (Iv-2)

Loy
Vi w0
where we have.emplpyed N as a notation for Ne' The corresponding

eigenvalues are

1—‘2 = 2 ¢ A e - O ) |
Notice that all the T%n)  are equal, with the exception of P%O) .
-For‘a small frequency spread, we .can use perturbation theory
to determine the cl({n). Let us rewrite Eq. (III-3) as
w(0) -, H(1)) c®). o 2 o) (TV-1)
where g(n) is a vector of components Cin) ’
2
. A<
(0) 2 2 o
= ' e} - e -
Ly @o +% ) 0% - W (1v-5)
2 2
- A
(l)=(2+/\2-w2-z\'2)8 _Ak 0
Ee “% k 0 0’/ “ks N ’
(Iv-6)
and mra .and I ‘ the avera 1t T 2 p° For
o 0 are. e average values of ® -, X
g(l) -0, g(n) is equal to g(n)o as given by (IV-1), and P?Zn) - 1&)0

as given by (IV-3)
To apply perturbation theory when g(l)'=# 0, one must remember

that the unperturbed solution is degenerate (all'eigenfunctions,

except Q(O)O, belong to the same eigenvalue), and use instead of
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the g(n)o's y for n # 0, a linear combination of these vectors such

that g(l) is diagonalized., Calling these new vectors ¢(n), one has

,é(o) - g(o)_q', R | (1v-1)
nd
é(n) = Z— B " g(t)o for nf o0, -~ (1v-8)
3 |
where. -
n 1 2xint/(N-1) _
By = T y (1v-9)

It is easy to verify that

(@*(n) ﬁ(l) é(m)> . ri,m'»‘;l-'o ad nf o

: | (xv-10)
and SR |
| o N-1  N-1 -
(é*(n) ,I:,I(l) é(n)) _ ; ? 5 (wkﬁ’ + Ak2 - %2 - AOQ)
, | | o ST
- n k ‘
X (exp 2rid .[NI- T * ﬁj ;5 nfo,
- J | (Iv-11)
and that . |
. - N-1 N-1
O ) gy S @2 - o2)
i . N ' k 0
s k=0 t=1
X 1 /2 }'éxp 2rit (q—n_‘f + %; }l (zv-12)
(-2l s R T

1
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The solution of (IV-4) is now given by

( é(n) T Amn é(m)

) (1v-13)
m#n
.and, to first order in the perturbation, one hés
( * () (l) é(n)> |
IV-1h
2 =2 (x7-24)
(n) (m)o
2 (5 (n) (1) 4(n) > : .
T = T+ @ EV D) (1v-15)
;e e | 2 2 . |
Notice that with our choice of a,, AO one has also

( *(0) (1) é<0>)

so that there is no first-order correction to the coherent freguency
5 , _ | . ) | , .
P(O)”:. The quantities C(n) are now easily obtained, and, to first

order, one has

R E(O) = ifé: + first order term, - | (Tv-16)

*(0) 41) 4()

g L 2 ( ¢ ) (Tv-17) -
‘./ N / .
NA 2
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We can now>use these results tovsimplify_(III-6). In the case

| n = 0 the equation contains zero-order terms and first-order terms in
2 ) ' :

Le/Ao -+ Neglecting the first-order terms, one bhas

2400 Ao’ + [w02 -2 4 r(t - t,)l A, = aVT. (1V-18)

For n # 0 (III-6) contains firsﬁf and second-order terms in A?/AOQ .

Keeping only lowest~order terms, one has

2inR An + [“?02 + 'Aoe - Eeszog +(r+rt)(t - t5)] A
- (b - to)\/ v g®) A, - ano® (1v-19)

In case (b) the coupling between particles is negligible and

the eigenvalues are almost equal to the single particle frequencies, i.e.,

'7.F2(n) = ‘”ne + An2 4 'O[V(AOQ/A?)Q] T (TV-20)

.- The corresponding eigenfunctions are -

cl({n) =8y * o[('Aoe/Az)__) , (Iv-21)

and the E(n) are given, to lowest order, by

g % (1v-p2)

Equation (III-6) now becomes, neglecting the coupling between particles,

REI 2 2 o2 _
2inR A+ [wn +AT -0+ (r + 2")(¢ -to)]An = a . (Iv-23)
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In this section we solve (IV-18), (IV-19), (IV-23) for the

functions An(t).

5.1, Case b

We start from (IV-23), which we write in the form

A(e)-ig(e)a(e) - -i3, (v-1)
where
1l 2 a2 =2 \
gn(t) = = [ah + A < + (r +r')(t .vto)] , (v-2)
- a
a = —, (v-
2me 3)
The solution of (V-1), with the initial ‘condition A(t,) = O,
is
t t rt
‘ _ I
. - s . ' ' ¢ 3 " 3]
An(t) = -ia {expii | gn(t Jdt ) dat' exp 1dj gn(t‘)dt .
(v-4)
' Evaluating'the integrals, and using the notation
2 2 L2 -
= A -
D (@ +A° -n°Q Y/2n% ,
p = (r+r')/en2, (v-5)
one has: -
€ T
exp {-ilD (t' - t.) + 1 p(t' - % )2 ]/ at’
. 0 2 0
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where
h(x) = C(x)-1is8(x), o | (V-7)
and C(x), S(x) are fhe Fresnel integrais.

It 1s usually possible, when p is smé.ll and the inﬁegral

extends from well below to well above the resonance, to make the

approximation
‘ D
2 < -1,

p(t - t.) + D . _
0. B » 1, . (v-8)
Vﬂp ) T : .

Since C(f o) = S(_:* o) = 1t % , one has in this case

-t

1 ' 2
4 L = LI '
exp 1[Dn(t _to.) + 3 p(t to) 1 aer

1/2 | -
% %?), expﬂ[+i(Dn2/2P)'v' /4. (V-9)

The val_ﬁe of An after crossing the'resonance is then given by

k-
®
1
H
9’]4
/_\
A

= -i; <g—j)l/2 exp /ri {' ple - to.)* Dn][ - ivt./h.
| ¥ | 1 i Ver 4 o

~ n (v-10)
The final amplitude after crossing the resonance is therefore

/2

| 1/2 - S
IAnly = a (En/p) = _a[yr/HS?.(? + ') ]l' , . (v-11)

a well-known res{llt. _

, . L - s
) P ‘Ll[Dn(t - tg) + g.(t - to)?]}exp[ﬂ(Dn /2p) - M/.h_] _
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5.2.. Case a

In this case the frequenéy spread é? is small compared with
the freguency shift' AOQ. The situation is described by (IV-18) and
(Iv-19), and is élearly more complicated than case (b).. The procedure

is to solve (IV-18) for Ay substitute the result in (IV-19), and

solve for 'An. The result will be different acchding to whether the

coherent freguency, Dy does or does not cross the resonance. We will

consider here only the case in which ab does not cross the resonance

(i.e., the coherent integral resonance is not crossed), since this is

the'situatiqn which usually confronts us in practice. Under this

assumption one can neglect the variation in time of the coherent .

frequency and of Ay and obtain from (Tv-18)

A, = all (v-12)
0 | wOE _ (;1- 52)2 ’ _

Substituting this. in (ITV-19) one obtains

1

‘ v o vv ) o —(ﬂ)
Ay - 1@+ (6 - t5))A, = -ianCLL +alt - tg)],
(v-13)
where = . _ | ’
woe + A02 - oo°
D = — R
2nsd
f + r'
p = T »
2n$
- a
a = = ,
2n8l
. o N _ -
q = =5 . S ' (v-14)
| 0’ . gfef e o |
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The solution can again be written, assuming An(to) =0, as

t

A(t) = -1aN c) el 1 D+ p(er - ty)last

t | | '
X | at'l1+qlt’ - t)lexp (-1 [ [D+ p(t" - ty)]at" ) .
t, | % | J
(v-15)

The integrals of (V-15) can be evaluated by using (V-6) and

t
at' (' - to)exp (~1[D(e'-ty) + B(e'-t)°)
%o ‘ S
=g-ei(D/2P) D hp(t-to)+D h(—D—>
P 2Vnp Vo oy Vip 7
o( > ° ]
: t -%.,)+D -~ B R
+ é]; " +'1i cos '2]25 J _ .-’ (V-lv6)

Assuming the conditions'(V-B) to be satisfied, one obtains an amplitﬁde,

after crossing the resonance,

. | ‘ - 5
o 1/2J' 1 | p(t-t,) + ﬂ
A-(t)'*‘-iaNC(n)<2ﬁ ‘1-9-1-)»- exp (i —_ - in/bY,
vn 3 L ﬂpJ . ]

| (v-17)

where negllglble contributions from the last term of (v-16) have ‘been

dropped. By use of (V-1k4), (V-17) can be written as




©
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| r ' . 2
. ~ TF(n) _ ‘ ' a A \\
A (L) v - g —2dr KO eIt SRS
\ - — T '
n . (ng(r + ! ))1/2 q\r + 0)02 _ 1—1‘29‘2

. , ' 5
> 2 2 , ,
X,exp{i [ab +.AO -n S+ (r+r )(t.- to)]

InQ(r + r')
(v-18)

6. EVALUATICH OF BEAM FCSITION AMD SIZE

We are now in a position to ewvaluate the local center-of-mass

displacement, x , and the rms beam width, ©, which were defined in

(111-7) ard (11148).

6.1. Casea: &/8F << 1

Using (IV-16), (Iv-17),(V-12), and (V-18), and introducing the

guantities
. N__J;
b 1 o 2,2
» = ﬁ {a)k - a)o ) 3 (VI"l)
k=0
AL T 02 2 -2nik/N
At e e e ’ (v-2)

2 . : . . .
so that & 1is the ris spread in the sguare of the frequency shifi,

one obtzins
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. L N L S
X = oy - 18 — 1-————\ =3 /| -
wy - (n2) n(r +r')/ w(r +r') @y -né /J 5
. 2 . ):3
: [w02 + AO2 - 52522 + (r+r')(t-to)] x Z\lh :
X exp (1 — -igp{ =g, "
inQ(r + ') , Ay
o | ' (vi-3)
1 1/2 ¢ | 22\ 2
62 - a ___.._._].-.[_._..-— l - _l:'__.__<l _F.__é___.c.):é___z/
nQ(r + r') ‘ a(r + ') @y =09
,#2.
XANTE T TR R

—a e 1. r' 14+ Ao \'
: a)oe - noef ne(r +r') w(r + ') cu02 - 5992}_‘7

{ﬂh . [woe + AOQ - 7R 4 <r+r')(t-to)]2 ax l
>.<v2Re exp | i - | -1E-1§J.

t;:; n@(r + r')
(VI-4)
If
1/2 . ? |
(=] » ==, (VI-5) N
Q-R(r + r')) w02 - Bt T ' D

and
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o /2 b
—_ Ai << S (VI 6)
- ’ -
nf{r + r') X~H @2 - 5982
. 0 : 0
then (VI-3) and (VI-L4) become
;(-z Ea—QQ’ (VI'7)
w - n
0
| /2, - | A2
5 % af—2——} -%l—(r,)‘l+2o_92
nQ(r + r') A mr +r w. -~ ng&
‘ 0 o 0
(vi-8)

Equation-(VI-?) shows that, when the rate;of change of @ and
A and the frequency spread are such as to saﬁisfy-(VI-5) and (VI-6),
the local beam center of mass is essentially not influenced by the
resonance -crossing (but only by the preximity of’ﬁhe coherent integral
resonance). However, and under the same conditions, the crossing.of\
the resonance can lead to an increase of beam size, as shown by (VI-8).

It is interesting to compare these results with the increase in

amplltude of a single particle crossing the resonance. For a single

. particle the amplitude after crossing is given by

\1/ 2

.
x, = al = .
nir /}

Taking, for the sake of comparison, r' = 0 the increase in beam size,

5, is seen'to be equal to X multiplied by the factor A4 /A i.e.,

O 2
the ratlo of frequency spread to frequency shlft.
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"As a numerical example consider the case of an ERA with parameters

g = 10%° sec-l, R (ring radius) ® 3 cn, wy - QR2 X 1072

n

,

- -1
sec 3, r' =0, (/i/A) =~ 10 " ,

i

r = 2w, ‘(dfwo/dt) &2 %100

1

a -RSZQ(AB/B) r 3 x 1670 (8/B) sec-g, n=1. The quantity r
corresponds to a case such that /8% changes by 0.1 in 10 psec, a
value typical for the ERA, One sees that (VI-5) and (VI-5) are

satisfied for these parameters. From (VI-7) and (VI-8) one has

x = 30 (8/3) cn,

o

% 37.5 (£8/3) cm,

3

so that a velue of 22/B less than 1077 should suffice to keep the

effect of the resonznce crossing within folerable limits,

6.2. Case D: Ae/i\be > 1.,

From (V-10), (IV-21), and (Iv-22) and'f_rom (I -7) and (I1I-8),

we have

/e < -
- 1 . . . . 2
x = e,v gg(f:;‘;) -I\T Z—/exp /\Ll{ (Dk + p(u. - t0)> /2p}
= .
(vi-9)
and ’
: 2
2 2. jl--l- N\ exp{i D +p(t - t )
A + ') ‘L e LT Ve
.’ 2
D, + p(t - to)
-1 . (vi-10)

Yap
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Assuming, az:in, tha® condition (v-8) is satisfied, (VI-9) ard (VI-10)

become, to'za good epproxination,
¢ ' | |
x x 0, (vi-11)
) | R EYL:
I ) v‘ (VI-L?)

o
B {4
o]

n2(r + r')

- These last results are eguivalent to saying that each particle
benaves as & single particle, so that, because of the large freguency
dirfference between particles, their center of mass averages to zero

and one g2ts essecntially only a beam widening.-fBut the width increase

: . N .
- : 2 X
‘is laxgexr, ty a factor of K?/Ao , than that obtained in case (a).
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