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On the relationship between individual and group decisions

Joel Sobel
Department of Economics, University of California, San Diego

Each member of a group receives a signal about the unknown state of the world
and decides on a utility-maximizing recommendation on the basis of that signal.
The individuals have identical preferences. The group makes a decision that max-
imizes the common utility function assuming perfect pooling of the information
in individual signals. An action profile is a group action and a recommendation
from each individual. A collection of action profiles is rational if there exists an
information structure under which all elements in the collection arise with posi-
tive probability. With no restrictions on the information structure, essentially all
action profiles are rational. In fact, given any distribution over action profiles, it
is possible to find an information structure that approximates the distribution. In
a monotone environment in which individuals receive conditionally independent
signals, essentially any single action profile is rational, although some collections
of action profiles are not.

Keywords. Statistical decision problem, group polarization, behavioral eco-
nomics, psychology, forecasting.

JEL classification. A12, D01.

1. Introduction

A decision maker asks several informed experts for advice prior to making a decision.
Each expert recommends an action to the decision maker. The recommended action
maximizes the decision maker’s utility given the information available to the expert. The
decision maker selects an action. Suppose that the decision maker appears to ignore the
recommendations of the experts—say by taking an action that is not in the convex hull of
these recommendations. Can we conclude that the decision maker is irrational? More
generally, can an observer examine the experts’ recommendations and form a useful
estimate of the decision maker’s rational action?
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A scientist has access to several independent forecasts of the weather. Is there any re-
lationship between these forecasts and the optimal aggregate forecast based on all avail-
able information? Is the optimal aggregate forecast bounded by the individual forecasts?

Individuals receive information about the facts in a lawsuit. They are asked in iso-
lation to recommend punitive damage awards. Later, these individuals meet together
as a jury, deliberate, and make a collective decision on punitive damages. How does a
rational jury’s decision depend on the expressed recommendations of individual jury
members prior to deliberation?

This paper studies a simple model of information aggregation designed to give an-
swers to these questions. Individuals have common preferences but different informa-
tion. Each individual observes a signal and, using that signal, makes a recommendation.
The recommendation maximizes the individual’s utility given the signal. The group then
pools all of the individual signals and makes a decision based on the pooled information.
There is no conflict of interest between group members and the group perfectly aggre-
gates the information of its members. In this setting, I investigate the extent to which
group’s optimal decision is constrained by the recommendations of the individuals.

I model differences in information by assuming that there is an underlying state of
the world and that individuals receive private signals that convey information about the
state. The information structure describes the relationship between states of the world
and signals. Asking individuals to make recommendations separately and then as a
group generates an action profile (consisting of a recommendation from each individual
and a separate group decision). A collection of action profiles is rational if there exists
an information structure under which all elements in the collection arise with positive
probability.

Section 2 demonstrates in different ways that individual recommendations do not
constrain the group action. In particular, I show that for fixed preferences, essentially
any finite collection of action profiles is rational. Hence, essentially no finite data set
consisting of individual recommendations and group actions is inconsistent with ratio-
nal decision making. When preferences are not fixed, a much stronger result is possible.
Here for any given probability distribution over action profiles, there exists a specifica-
tion of preferences and information that generates a probability distribution over action
profiles arbitrarily close to the given distribution. These results say that there is no con-
nection between individual recommendations and the group’s optimal decision.

In Section 3, I assume that the information structure is monotone. The state of na-
ture, signals, and action are real numbers. Higher signals are stochastically associated
with higher states of the world. I further assume that preferences are restricted so that
higher beliefs about the state induce higher actions. In this environment, individual
recommendations do constrain group actions. If all individuals recommend a strictly
higher action, then the corresponding group action must be higher. This cross-profile
restriction need not hold in nonmonotone problems. Alternatively, even in monotone
models, the group’s optimal action is not restricted by the individual recommendations.

Suppose (as in Section 3) actions are elements of the real line. Here there is a natural,
weak notion of moderation. The group’s decision is moderate if it is bounded by the
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lowest and highest recommendations. Group decisions would be moderate if they were
weighted averages of the individual recommendations. The results in Sections 2 and 3
demonstrate that moderate problems are special. In Section 4, while still assuming a
monotone structure, I identify a (restrictive) condition that is necessary and sufficient
for moderation.

An example illustrates why group decisions are unlikely to be moderate and provides
intuition for other results in the paper.1 Suppose that the state of the world is normally
distributed with a known mean and variance, and that each individual receives a signal
that is equal to the true state plus noise. The noise is normally distributed with mean
zero and individual signals are conditionally independent given the state. The common
objective is to minimize the distance between the recommendation and the state of the
world, so that recommendations equal the expected value of the state given available
information. Suppose an individual’s signal is higher than the prior mean. Her recom-
mendation will be a weighted average of the signal and the prior mean. If every member
of the group makes the same recommendation, then the group is more confident in the
information content of the signal than any individual. The group’s action is, therefore,
greater than the individual recommendations. This follows because the aggregate sig-
nal is more informative than an individual signal and, hence, the group places relatively
less weight on the prior mean than an individual. It is not surprising that a group of
individuals with similar biases makes decisions that are more extreme than the recom-
mendations of individual group members.

Research on “expert resolution” (Winkler 1986) studies rules one might use to aggre-
gate the opinions of experts. A typical rule is a function from individual opinions to an
aggregate opinion. This literature contains examples that show linear aggregation rules
need not be optimal. The literature on combining forecasts (starting from Bates and
Granger 1969) also looks at ways in which to aggregate estimates from different sources.
This literature is more in the tradition of classical (rather than Bayesian) statistics, so it
is not directly comparable to the approach of this paper, but like the research on expert
resolution, focuses on identifying aggregation rules that are optimal within a parametric
family. These models assume that individual expert opinions or forecasts are available
to the modeler. The literature asks for optimal ways to aggregate the recommendations
of experts. My results indicate that there is no reason to expect aggregation rules in a
parametric class to perform well. In particular, it may be rational for a decision maker
who receives identical recommendations from several reliable but partially informed
experts to ignore the common recommendation and make another decision. Hence,
rules that generate an aggregate decision by taking a convex combination of individual
recommendations may not perform well.

There is a large literature in social psychology on “group polarization.”2 Group po-
larization refers to the tendency of groups to make decisions that are more extreme than
some central tendency of the individual positions of the members of the group. The
phenomenon, first observed in experiments reported by Stoner (1968), has been widely

1Roux and Sobel (2012) discuss the example in more detail.
2Brown (1986) devotes a long chapter to the topic. Isenberg (1986) provides a review.
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replicated. Experiments typically elicit recommendations from individuals, and then
put individuals in groups and record a decision made by the group. Hence, the experi-
ments record individual recommendations and group decisions. The structure of these
experiments justifies my modeling approach. The experiments observe individual rec-
ommendations and a group decision. I assume the modeler observes these data. The
experiments also provide opportunities for individuals to arrive at the group decision.
Neither the experiments nor I model the deliberation process explicitly. I assume that
somehow individuals use all available information optimally.3

The experiments on group decision making performed by Schkade et al. (2000) pro-
vide a concrete example of the third motivating example. Individual subjects receive in-
formation relevant to a hypothetical court case. They each record a punitive verdict and
a damage verdict. Subjects then are randomly placed into groups of six; these groups de-
liberate and decide on punitive and damage verdicts. In this setting, the experimenter
observes the individual recommendations about verdict and damage, and the group
opinion about these quantities. The experimenter does not observe detailed informa-
tion about these quantities. My model assumes that the deliberation process aggregates
this information. When pre-deliberation juror judgments favor a high punishment rat-
ing, deliberation tends to increase the rating of the group relative to the median individ-
ual rating. When pre-deliberation juror judgments favor a low punishment rating, delib-
eration tends to decrease the rating of the group relative to the median individual rating.
Hence, both group punishment and damage awards are more extreme than individual
awards. These results suggest a systematic relationship between the group’s action and
the individual recommendations (group polarization). In particular, the group does not
moderate individual recommendations. This paper presents a framework that explains
why moderation is not a general property of information aggregation.

The psychology literature often interprets polarization as a sign that group interac-
tions lead to nonoptimal decisions and introduces behavioral explanations for the ex-
perimental results.4 This paper demonstrates that polarization is consistent with ratio-
nal decision making of both groups and individuals. The experimental literature finds
that polarization arises systematically in a wide range of settings. This observation leads
to the question of whether there are environments in which polarization is not only
possible, but likely. A companion paper, Roux and Sobel (2012), gives conditions un-
der which one might expect the polarization found in the experiments of Schkade et al.
(2000) and Stoner (1968).

Eliaz et al. (2006) present the first, and to my knowledge only other, decision-
theoretical model of choice shifts.5 Groups must decide between a safe and a risky

3In some examples, there is a one-to-one relationship between individual recommendations and in-
dividual information. In these cases, individual recommendations are sufficient statistics for individual
information.

4Brown (1986) surveys the results and the psychological theories.
5Dixit and Weibull (2007) demonstrate that when individuals have heterogeneous priors, the arrival of

new information may cause their posteriors to diverge. In this way, information may lead to polarization of
beliefs. Dixit and Weibull do not compare group beliefs (or actions) to those of the individuals within the
group.
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choice. The paper summarizes group decision making by a pair of probabilities: the
probability that an individual’s choice will be pivotal (determine the group’s decision)
and the probability distribution over outcomes in the event that the individual is not
pivotal. In this framework, choice shifts arise if an individual would select a different
recommendation alone than as part of a group. If individual preferences could be rep-
resented by von Neumann–Morgenstern utility functions, then choice shifts would not
arise. Eliaz et al. (2006) prove that systematic choice shifts do arise if individuals have
rank-dependent preferences consistent with observed violations of the Allais paradox.
Moreover, the choice shifts they identify are consistent with experimental results.6 As-
suming that an individual is indifferent between the safe and the risky action in isola-
tion, she will choose the safe action when a pivotal member of the group does if and only
if the probability that the group would otherwise choose the safe action is sufficiently
high. Unlike my approach, this model does not rely on information aggregation. Eliaz
et al. (2006) concentrate on how preferences revealed within groups may differ from
preferences revealed individually, but it is not designed to study how deliberations may
influence individual recommendations. An appealing aspect of the Eliaz et al. (2006)
approach is the connection it makes between systematic shifts in group decisions and
systematic violations of the expected utility hypothesis.

There is an experimental literature on group decision making that focuses on topics
traditionally studied by economists. A fundamental question is whether groups make
better decisions than individuals. My model assumes perfect information aggregation,
common interests, and optimization. Consequently, the group’s recommendation must
be better (ex ante) than any individual recommendation and at least as good as any
function of individual recommendations. In practice, groups may not perform better
than individuals, but for reasons not captured in my model.

2. A benchmark model

There are I > 1 individuals. Individual i has a utility function that depends on an action7

a ∈ A and the state of the world θ ∈ �. Denote the utility function by u. Each individual
receives a private signal s ∈ S about the state of the world. I assume in this section that �,
A, and S are finite. Let π(θ) be the prior probability of state θ. Assume that π(θ) > 0 for
all θ ∈�. Let P(θ; s) be the joint probability that the state is θ and the profile of signals is
s = (s1� � � � � sI), and let p(θ|I) be the conditional probability that the state is θ given the
information I .8 Note that π(θ) = ∑

s P(θ; s) and that it is straightforward to represent
p(·) in terms of P(·) and π(·). I refer to (��S�π�p�P) as the information structure and
to (S�P�u) as the decision problem.

I compare two situations. When individuals act privately, they each select a∗
i (si) to

maximize
∑

θ∈� u(a�θ)p(θ|si). When individuals act collectively, they select a∗
0(s). In

general, a∗
0(s) depends on the institution by which agents share information. When

6Because the set of actions is binary, Eliaz, Ray, and Razin cannot explain situations in which group
actions are strictly more extreme than individual actions.

7I refer to action choices of individuals as recommendations and to action choices of groups as decisions.
8Information I is one signal s or a profile s.
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preferences differ, it is not clear how the group should decide on its collective decision.
Even when preferences coincide, psychological or strategic considerations may prevent
the group decision from being optimal given available information.

I focus on the benchmark case in which the interests of the individuals are the same
and in which a∗

0(s) is chosen optimally so that a∗
0(s) solves

max
a∈A

∑
θ∈�

u(a�θ)p(θ|s)�

Since u(·) is independent of i, a∗
i (·) is also independent of i for i > 0. The group deci-

sion a∗
0(·) is a different function because it depends on signal profiles not on individual

signals.
Assume that individual recommendations are chosen optimally. An observer knows

the actions taken at the group and individual levels (but not the information structure).
Is it possible for the observer to conclude that a collective decision is not optimal? If
so, then observing that action is evidence that the group decision was incorrect. If not,
then the argument that polarization (or any other tendency of the group decision) is
irrational must be reexamined.

This section contains a series of results that suggest that individual recommenda-
tions do not constrain the group’s action. Propositions 1 and 2 show that given essen-
tially any distribution of action profiles, there is an information structure under which
these action profiles arise with positive probability. These results make no restrictions
on preferences. While they show that any combination of individual recommendations
and group actions is possible, they do not rule out the possibility that one can make
inferences about the action of the group from the individual recommendations. Propo-
sition 3 demonstrates that the distribution of group beliefs does place restrictions on in-
dividual beliefs and characterizes these restrictions. Proposition 4 states that there are
preferences and an information structure consistent with essentially any pattern of indi-
vidual recommendations and group decisions. Finally, Proposition 6 shows that similar
results are possible even when individuals receive conditionally independent signals.

Proposition 1 describes a property of aggregate beliefs obtained from information
aggregation. Suppose the observer manages to elicit the beliefs of the group before and
after information aggregation in a finite number of situations. Further suppose that all
of the beliefs elicited place positive probability on all of the states. The proposition as-
serts that there is an information structure that is consistent with these observations in
the sense that there are signal profiles that induce all of the observed beliefs. Hence,
individual beliefs place no constraints on group beliefs.

To state the proposition, define a belief profile to be a vector q = (q0;q1� � � � � qI) such
that each qi is a probability distribution on �. The belief profile q is interior if qi(θ) > 0
for all i and θ.

Proposition 1. Let Q be a finite set of interior belief profiles. There exist a sig-
nal set S and a joint probability distribution P(θ; s1� � � � � sI) such that for every q =
(q0;q1� � � � � qI) ∈ Q, there exists a signal profile s = (s1� � � � � sI) with P(θ; s) > 0 such that
q0(θ) = p(θ|s) and qi(θ) = p(θ|si) for all i = 1� � � � � I.
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The existence of a signal profile s that satisfies the conclusion of the proposition
is, mathematically, the statement that there exists an information structure for which
a family of linear inequalities has a solution. The proof of Proposition 1 constructs an
information structure with the appropriate characteristics.9 There is a signal sk for each
belief profile qk ∈ Q and one distinct residual signal. When an individual receives the
signal sk, her updated belief is qki . When all individuals receive the signal sk, the group’s
posterior is qk. Such a signaling technology satisfies the conditions of the proposition
and is not difficult to construct.

A simple consequence of Proposition 1 is that individual recommendations place
no constraints on the group’s decision. Let a = (a0;a1� � � � � aI) ∈ AI+1 denote an action
profile. Interpret a0 as the joint action and interpret each ai, i = 1� � � � � I, as an action
of individual i. Call an action a ∈ A undominated if there exists qi ∈ int(�) such that
a solves maxa∈A

∑
θ∈� u(a�θ)qi(θ).10 The signal profile s = (s1� � � � � sI) induces a if a0 =

a∗
0(s) and ai = a∗

i (si) for all i = 1� � � � � I. The action profile a is possible if there exists a
signal profile s that induces a.

Proposition 2. Let A be a finite set of profiles of undominated actions. There exists a
signal set S and a joint probability distribution P(θ; s1� � � � � sI) such that for every a =
(a0;a1� � � � � aI) ∈ A, there exists a signal profile s = (s1� � � � � sI) with P(θ; s) > 0 such that s
induces a.11

Proposition 2 states that any undominated action profile is possible. Dominated ac-
tion profiles are not possible, so observing a dominated action is evidence that someone
failed to optimize. The proposition demonstrates that there need not be any connection
between individually optimal and collectively optimal actions. In particular, the propo-
sition implies that group decisions that are “extreme” relative to individual choices need
not be a sign of irrationality. In particular, if A is ordered, then nothing prevents a0 from
being greater than all of the other components of a. Therefore, it is premature to assume
that the group decision is not optimal even when collective decisions differ systemati-
cally from individual recommendations.

Proposition 2 is an immediate consequence of Proposition 1. Since A is finite, only
a finite number of distinct action profiles exist. If a is one of these profiles, then there
exists a belief profile q such that ai is a best response to qi for each i = 0�1� � � � � I.

The conclusion that no group decision is inconsistent with individual recommen-
dations does not depend on the assumption that agents select a recommendation that
maximizes expected utility. The result continues to hold provided that beliefs deter-
mine actions (so the preferences can be described by a nonexpected utility functional
or a behavioral rule of thumb).

There is a possible extension to Propositions 1 and 2. One could ask, “Does there
exist an information structure that gives rise to any joint distribution over belief and

9The Appendix contains the proof of Proposition 1 and of all subsequent results that require proof.
10The definition rules out degenerate cases in which action a maximizes the expected payoff only if one

or more states is assigned probability 0.
11I am grateful to Hamid Sabourian for pointing out that I misstated this proposition in earlier versions

of this manuscript.
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action profiles?” An affirmative answer to this question would be the strongest possible
“anything goes” result. It would say that it is possible to rationalize not only any finite set
of observations (as in Proposition 2), but also any distribution over observations. The
next two results investigate constraints placed on distributions over belief and action
profiles.

The information structure (��S�π�p�P) induces a probability distribution over be-
lief profiles in a natural way. Each s determines a belief profile and P determines the
probability of each s. Proposition 1 demonstrates that for any given family of interior
belief profiles, there is an information structure for which each member of the fam-
ily arises with positive probability. The information structure may induce other belief
profiles and Proposition 1 says nothing about the induced probability distribution over
belief profiles. For example, the information structure constructed in Proposition 1 may
induce the belief profiles in Q with arbitrarily small probability. Proposition 3 character-
izes the set of distributions over belief profiles that can be generated by an information
structure.

Proposition 3. Given a positive integer K and k ∈ {1� � � � �K}, fix a finite family of belief
profiles Q = {(qk0 ;qk1 � � � � � qkI )}Kk=1 and positive numbers rk such that

∑K
k=1 rk = 1. If, for

all k, the information structure (��S�π�p�P) induces belief profile qk = (qk0 ;qk1 � � � � � qkI )
with probability rk, then the following statements hold:

(i) For all i = 1� � � � � I,
∑K

k=1 q
k
i rk = ∑K

k=1 q
k
0 rk.

(ii) There exists λki (j), i = 1� � � � � I and j�k = 1� � � � �K, such that for all i, j, and k,

λki (j) ≥ 0, and, for all i and j,
∑K

k=1 λ
k
i (j) = 1 and q

j
i = ∑K

k=1 λ
k
i (j)q

k
0 .

Conversely, if (i) and (ii) hold, then for any ε > 0, there exist a signal set S, a joint prob-
ability distribution P(θ; s1� � � � � sI), and, for k = 1� � � � �K, belief profiles q̃k and positive
numbers r̃k with

∑K
k=1 r̃k = 1, such that the information structure (��S�π�p�P) induces

the belief profile q̃k with probability r̃k for k= 1� � � � �K, and

|qk − q̃k| < ε and |rk − r̃k| < ε�

An implication of Proposition 3 is that not all distributions over belief profiles can
be generated by an information structure. The necessary conditions in the proposition
are intuitive and follow directly from Bayes’s rule. Condition (i) states that the average
belief of each individual is equal to the average belief of the group. Condition (ii) states
that any belief that arises with positive probability for individual i is in the convex hull
of group beliefs. Since individual i knows the information structure, she can compute
{qk0 }; λki (j) is the conditional probability that individual i believes that the group’s belief

will be qk0 given that the belief she forms based on her own information is q
j
i . Given (ii)

it is straightforward to verify that (i) holds if and only if
∑K

j=1 rjλ
k
i (j) = rk.

Conditions (i) and (ii) are approximately sufficient. Given a probability distribution
over belief profiles and a positive ε, there is an information structure that leads to a
distribution over (approximately) these belief profiles within ε of the given distribution.
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I cannot rule out the possibility that certain distributions of action profiles are not
consistent with the basic model, but the next proposition demonstrates that there is a
decision problem that gives rise to a distribution on action profiles that is arbitrarily
close to any given joint distribution. To see why some distributions could be incon-
sistent with the model, imagine a distribution over action profiles in which the group
action is constant. In this case, it is a best response for all individuals to recommend the
group’s action with probability 1, since an individual can infer that the group—acting
with better information—will always take this action. Consequently, if the information
structure generates unique best responses to all signals, the only individual recommen-
dations consistent with a family of action profiles in which the group’s decision is con-
stant must also involve individuals always recommending the same action.12

Recall that an action profile is an element a = (a0;a1� � � � � aI) ∈ AI+1. A distribution
on action profiles is a probability distribution on AI+1. A decision problem (S�P�u)

induces a distribution on action profiles. The probability of a = (a0;a1� � � � � aI) ∈AI+1 is
the probability of

{s ∈ SI :a∗
i (si) = ai� i = 1� � � � � I;a∗

0(s) = a0}�
Proposition 4. Given any ε > 0 and any joint distribution on action profiles ρ, there
exists a decision problem (S�P�u) such that the distribution of action profiles induced by
(S�P�u) is within ε of ρ.

Proposition 4 states that it is not possible to refute the hypothesis that the group
is rational without making a priori restrictions on the information structure or prefer-
ences. The difference between Proposition 2 and Proposition 4 is that the first result
fixes preferences and then shows that any action profile is possible, while the second
result provides a stronger conclusion (rationalizing any distribution over actions) but
requires a possibly different specification of preferences for every distribution.

Proposition 2 indicates that for general information structures, individual choices
place no constraints on the optimal decision of the group. It is possible that these results
rely on “strange” information structures. Propositions 1–4 depend on the assumption
that signals can be correlated. A more restrictive assumption is that individuals receive
signals that are conditionally independent. Henceforth, I assume that the information
structure can be described by functions αi :S ×�→ [0�1], where αi(s|θ) is the probabil-
ity that individual i receives signal s given that the state is θ (so that

∑
s αi(s|θ)= 1 for all

θ and i).
This environment is considerably more restrictive than the general framework.

Proposition 1 asserts that essentially any collection of individual and group posteriors is
consistent with some information structure. To the contrary, if individuals receive con-
ditionally independent signals, then the group posterior is determined by the individual
posteriors.

12This argument does not rule out the existence of an information structure and a utility function that
gives rise to a distribution of action profiles in which the group’s decision is constant and individual recom-
mendations vary. Constructing such an environment would require individuals to be indifferent between
the constant group decision and the alternative individual decision. In the proof of Proposition 4, individ-
uals always have a unique best response to their signal.
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Proposition 5. If the individual signals are conditionally independent, then the group
posterior distribution is completely determined given individual conditional beliefs. In
particular, if individual i has beliefs qi, then the group’s beliefs are

π(θ)
∏I

i=1(qi(θ)/π(θ))∑
ωπ(ω)

∏I
i=1(qi(ω)/π(ω))

�

Proposition 5 follows directly from Bayes’s rule and the independence assumption.
Although Proposition 5 rules out the strong conclusions of Propositions 1 and 2, Ex-

ample 1 demonstrates that it still may be difficult to draw inferences about group deci-
sions from individual recommendations.

Example 1. Suppose that θ = (θ1� � � � � θI), individual i observes si = θi (that is, individ-
ual i observes the ith component of θ without error), each component of θ is indepen-
dently and uniformly distributed on {−1�1}, and u(a�θ) = −(a−∏I

i=1 θi)
2. An individual

sets a∗
i (si) = 0 for all si. The group sets a∗

0(s) = ∏I
i=1 si for all s.

Information obtained by an individual (or, in fact, any proper subset of the group)
is useless—it conveys no information that improves making decisions—while the entire
group’s information perfectly reveals the state. Individual recommendations, therefore,
do not depend on private information, whereas the group decision does. Knowing ev-
erything about individual recommendations provides no information about the group’s
preferred action. ♦

Unlike the construction in Example 1, the construction in Proposition 2 does per-
mit an observer to draw inferences from individual recommendations. The example
differs from the construction because it requires a particular specification of the utility
function.

It is possible to generalize the logic of the example.

Proposition 6. There exists a decision problem (S�P�u) such that all action profiles are
possible and the distribution of the group action a∗

0(s) is independent of si for each i.

Proposition 6 provides conditions under which individual recommendations convey
no information about the group decision. To prove Proposition 6, I generalize the exam-
ple by exhibiting preferences and an information structure under which no individual
signal conveys information about the optimal action. The information structure exhibits
a strong form of complementarity in that no useful inferences can be drawn from any
proper subset of the signals.13 If the prior is such that individuals are indifferent over all
actions ex ante, then the individuals continue to be indifferent after they receive their
private signals. Hence, observing their individual recommendations conveys no infor-
mation about the optimal group action. In this setting, not only are arbitrary action
profiles possible, there need be no relationship between the distribution of individual
recommendations and the group recommendations.

Example 1 and Proposition 6 are perverse because information from any proper sub-
set of the agents does not lead to better decisions than the decision a single individual

13See Börgers et al. (2013) for a useful analysis of complementarity of signals.
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would make. In the next section, I make further restrictions on the information structure
and preferences. I then revisit the basic question in a standard, but restrictive, economic
environment.

3. Monotone problems

The previous section shows that with minimal restrictions on the information structure,
there need not be any connection between the group’s decision and individual recom-
mendations. In this section, I make strong restrictions on the information structure and
investigate the extent to which the results in Section 2 continue to hold. Proposition 7
demonstrates that there are restrictions across problems: if the action profile a is pos-
sible, then some other action profiles are ruled out. This result contrasts with those of
Section 2 and indicates that, within the class of decision problems that I consider in this
section, individual recommendations place testable restrictions on the behavior of the
group when there are several observations. Alternatively, Propositions 8 and 9 demon-
strate that when one observes only one action profile, the optimal group decision is only
weakly constrained by individual recommendations.

This section studies monotone information structures, which satisfy the following
conditions. The set A is the unit interval. The conditional probability of a signal s given
the state θ, αi(s|θ), is independent of i so that signals are identically (as well as indepen-
dently) distributed. To avoid trivial cases, I assume that S has more than one element
and that signals are distinct in the sense that if s′ �= s, then p(·|s) �= p(·|s′). The informa-
tion structure and the utility function have a monotone structure: I assume that both
� and S are linearly ordered, and that the signals satisfy the monotone-likelihood ratio
property, so that α(s|θ)/α(s′|θ) is decreasing in θ for all s′ > s,14 and that for all a′ > a,
the function v(θ;a�a′) = u(a′� θ)− u(a�θ) is either increasing in θ (supermodular incre-
mental utility) or there exists θ0 such that v(θ) < 0 for θ < θ0 and v(θ) > 0 for θ > θ0
(single-crossing incremental utility). These conditions guarantee that optimal actions
are increasing in signals, meaning that a∗

i (s
′) ≥ a∗

i (s) whenever s′ > s.15 I refer to these
cases as the supermodular and single-crossing models, respectively.

Proposition 2 cannot hold for this restricted class of problems because the mono-
tonicity condition imposes a restriction across problems. If one observes two action
profiles a and a′ such that a′

−0 > a−0, then a′
0 > a0. Hence, there does not exist a single

monotonic information structure that makes all undominated action profiles possible.

Proposition 7. For a fixed monotonic information structure, if a and a′ are possible and
a′
i > ai for all i = 1� � � � � I, then a′

0 ≥ a0.

A variation of Proposition 7 holds under a mild technical condition. A monotone
information structure is strictly increasing if s′i > si implies that ai(s′i) > ai(si).

14This condition implies that the posterior distribution of θ given s is increasing in s (in the sense of
first-order stochastic dominance).

15When incremental utility is supermodular, optimal actions are increasing in signals whenever poste-
riors are ordered by first-order stochastic dominance. When incremental utility is single crossing, optimal
actions are increasing in signals when signals satisfy the monotone-likelihood ratio property. See Athey and
Levin (2001).
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Corollary 1. For a fixed strictly increasing information structure, if a and a′ are possible
and a′

i ≥ ai for all i = 1� � � � � I, then a′
0 ≥ a0.

Proposition 7 is a special case of Theorem 5 in Milgrom and Weber (1982). It is
a straightforward implication of the monotone information structure. If an individual
makes a strictly higher recommendation, then she must have received a strictly higher
signal. If all signals are higher, then the group decision must also be higher. Corollary 1
follows for essentially the same reason. If the information structure is strictly increasing,
then if a′

i ≥ ai, then it must be that s′i ≥ si for all i.
To make the subsequent discussion concrete, consider two leading special cases.

A monotone model is an urn model if u(a�θ) = −(a− f (θ))2 for some strictly increasing
function f (·).16 Here v(θ;a′� a) is increasing in θ whenever a′ > a, so the urn model is a
supermodular model. In the urn model, θ represents the number of balls in an urn and
f (θ) represents a target determined by the number of balls. The agents want to make
the best estimate of the target f (θ).

A monotone model is a portfolio model if u(a�θ) = U(aθ + (1 − a)θ0), where U(·)
is a concave function defined over monetary outcomes. A portfolio model is a single-
crossing model. The problem is to determine the share of wealth to allocate over a safe
asset, which yields θ0, and a risky asset, which yields θ. Individuals must pick the frac-
tion a of the portfolio to invest in the risky asset. Risk-averse agents typically select a < 1,
even when their information suggests that the mean of θ exceeds θ0. Alternatively, if
sufficiently many agents receive independent information that suggests that the mean
return of the risky asset is high, this induces higher investments in the risky asset when
information is pooled.

The next results demonstrate that even in monotone models, it is difficult to draw
inferences about the group decision merely by observing individual recommendations.
In light of Proposition 5, such results are not possible if the utility function is completely
arbitrary. To see this concretely, suppose that the prior is uniform and the utility func-
tion is such that an individual recommends a ≤ a if and only if the probability of state θ

is greater than �5. It follows from Proposition 5 that if all individuals make recommen-
dations less than a, then the group posterior places probability of more than �5 on the
event that θ = θ. Consequently, the group’s decision is also less than a. It follows that re-
strictions on preferences combined with a monotone information structure may cause
individual recommendations to constrain the group’s decision. Proposition 8 shows that
the link between individual recommendations and group decisions does not exist with-
out restrictions on preferences.

Proposition 8. For all a = (a0;a1� � � � � aI) with ai ∈ [0�1], there exist both an urn model
and a portfolio model such that there exists s such that s induces a.

Proposition 8 states that an observer who knows the recommendations of all of the
individuals and who knows that a monotone decision problem is either an urn problem

16Strictly increasing transformations of the state space � do not change the underlying decision prob-
lem, so including f (·) in the specification of u(·) is just a relabeling of the states.
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or a portfolio problem (but not the specific form of the utility function) still cannot con-
clude that the group has made an irrational decision. This result is weaker than Proposi-
tion 2 for three reasons. First, Proposition 2 constructs one information structure that is
compatible with any given (finite) set of recommendation profiles. Proposition 8 instead
constructs a different information structure for each profile. Proposition 7 explains why
the stronger result is not possible in a monotone environment. Second, Proposition 2
holds even if the observer knows the utility function. In Proposition 8, the utility func-
tion is selected to support observed behavior. The utility function is not arbitrary, how-
ever. It is always possible to find a suitable utility function from the class of urn models
and portfolio models that is consistent with the action profile.17 Finally, the construc-
tion requires that there be more than one signal that leads to the same action in some
circumstances. To understand and relax this restriction, it is useful to explain the proof
of Proposition 8.

To prove Proposition 8, I construct an information structure with the property that
if all but two agents receive the lowest possible signal and two others receive the next
lower signal, the group posterior is higher than the posterior of individuals who receive
the second lowest signal. For this to be possible, the individual who receives the second
lowest signal must place high probability that everyone else will receive the lowest sig-
nal. When she learns that this is not true, she (and, hence, the group) revises her prior
strongly upward. Under the assumptions of Proposition 8, it is possible that many sig-
nals induce the lowest action. Therefore, even if all individuals wish to take the lowest
action, they may not have received the lowest signal, and the group may prefer a higher
decision. If the optimal action is a strictly increasing function of the signal, however, the
conclusion of the proposition must be weakened.

To make a precise statement, let Ok(a−0) be the kth largest member of the set a−0 =
{a1� � � � � aI} (so that O1(a−0)= maxi=1�����I ai, O2(a−0) is the second highest, and so on).

Proposition 9. If a = (a0;a1� � � � � aI) with O2(a−0) > 0 and OI−1(a−0) < 1, then there
exists both an urn model and a portfolio model with the property that a∗

i (s) is strictly
increasing for all i such that a is possible.

The assumptions in Proposition 9 rule out the possibility that individual information
leads all but one agent to make the same extreme recommendation (either the highest
or the lowest). Provided these assumptions hold, it can be rational for the group to make
any decision. For monotone problems in which optimal actions are strictly increasing
in the signal, the conditions are necessary. To see this, suppose that all but individual
i wish to make the lowest recommendation, so O2(a−0) = 0. In this case, the optimal
group decision a0 must be no greater than ai, since learning that all other agents wish
to make the lowest recommendation must be “bad news,” which makes the group’s de-
cision weakly lower than individual’s i optimal recommendation. Hence, an observer
can place bounds on the possible group decision, assuming that all but one individual
wants to take the lowest recommendation. Proposition 9 demonstrates that no further

17In the proof of Proposition 8, U(x) can be taken to be of the form U(x) = xβ for β ∈ (0�1). That is, it is
possible to satisfy the conclusion of Proposition 8 using a narrow class of utility functions.
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restrictions are possible. In particular, the proposition states that it is possible for the
group to want to make a more extreme decision than any individual in the group.

4. Invariance

The results in Section 3 imply that even in monotone problems, it is premature to
conclude that any group decision is irrational given the decisions of individual group
members. While staying within the framework of monotone problems, I now identify
conditions under which group decisions are well behaved in the sense that they are
guaranteed to be bounded by the individual recommendations.

Intuition suggests that for a suitable range of information structures, the group guess
in the urn model should be bounded by individual guesses. If everyone thinks that there
are between 100 and 300 balls in the urn, then it would be surprising if the group’s guess
were outside that range.

This section makes the intuition rigorous. To motivate the basic idea, contrast the
problem of information aggregation with the problem of preference aggregation. When
aggregating preferences, it is standard (and usually not controversial) to assume a vari-
ation on Arrow’s (1963) Pareto principle. If every member of the group ranks choice X

higher than choice Y , then the group should do so as well. In problems of informa-
tion aggregation, this property is quite strong and likely to be inappropriate in realistic
settings. Consider the portfolio problem. It could be the case that risk-averse individ-
uals prefer to invest a substantial fraction of their portfolio in the safe asset even when
informed that the mean of θ is greater than θ0. Alternatively, a large enough number
of independent signals that θ > θ0 is sufficient to convince the group to take a more
extreme position.18

This observation suggests a critical difference between the urn and the portfolio
models, and motivates the following definition.

Imagine a situation in which every member of the group receives the same sig-
nal. They would, consequently, make the same recommendation. Under what condi-
tions would the group decision be the same as the common recommendation of each
individual?

Call a monotone decision problem invariant if

a∗
i (si) = a∗

0(si� � � � � si) for all si� (1)

That is, a decision problem is invariant if the optimal group decision when all members
of the group independently observe the same signal realization is the same as the opti-
mal individual recommendation given one observation of that realization. While (1) is
easy to understand, it is a statement about endogenously determined quantities. Propo-
sition 11 provides conditions on the underlying data of the problem (the information
structure and the utility function) that guarantee that (1) holds.

Recall that in a strictly increasing decision problem, s′i > si implies that ai(s′i) > ai(si).

18In a non-Bayesian framework, Baurmann and Brennan (2005) give examples that illustrate potential
difficulties of the Pareto principle for problems that involve aggregation of beliefs.
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Proposition 10. (i) In a strictly increasing decision problem, if a is possible, then

a0 ∈
[

min
1≤i≤I

ai� max
1≤i≤I

ai

]
� (2)

(ii) Any monotone decision problem in which (2) holds whenever a is possible is
invariant.

Proposition 10(i) is a simple consequence of Proposition 7. It states that invariant
monotone problems are well behaved in the weak sense that the individual recommen-
dations form a bound for the group’s decision. To see Proposition 10(ii), notice that if
invariance fails, then there would exist an s such that (2) would fail if everyone in the
population received that signal.

When the sets of actions and states are small, it is not hard to construct invariant
problems. For example, if there are only two actions, {h� l}, and two states, {H�L}, and
it is uniquely optimal to take h (resp. l) if and only if the probability of H (resp. L) is
greater than �5, then any monotonic information structure in which, for every signal,
the posterior never gives probability �5 to both states is invariant.

The next example exhibits an invariant problem by describing a situation where (1)
holds.

Example 2. Assume that � = S = {0�1/K� � � � � (K − 1)/K�1}; π(·) is the uniform distri-
bution on � and u(a�θ) = −(a− θ)2 for a ∈ A= [0�1]. Let γ ∈ (0�1/2) and

α(s�θ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − γ/2 if s = θ ∈ {0�1/K�1 − 1/K�1}
1 − γ if s = θ ∈ {2/K� � � � � (K − 2)/K}
γ/2 if s = θ+ 1/K, θ ∈ {0�1/K}
γ/2 if s = θ− 1/K, θ ∈ {1 − 1/K�1}
γ/2 if s = θ± 1/K and θ ∈ {2/K� � � � � (K − 2)/K}
0 otherwise.

Individuals seek the best estimate of θ. The signal is the true state plus a symmetric
error. Individual i recommends ai(s) = a. If every member of the group receives the
same signal, the recommendation is the same (and the posterior places more weight on
s = θ). ♦

Clemen and Winkler (1990) say that a decision maker satisfies the unanimity princi-
ple if she accepts a forecast if both of her two advisors agree. Invariant problems with bi-
nary actions necessarily satisfy the unanimity principle. Clemen and Winkler show that
the principle fails in general when there are two states of the world, but they provide an
example under which the unanimity principle holds. They also discuss the compromise
principle, which is equivalent to invariance in their context.

One way to get a better understanding of invariance is to think about the condition
when I is large. If all I members of the population receive the signal s, then the group’s
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posterior distribution is given by

r(θ|s; I) = αI(s|θ)π(θ)∑
ω∈� αI(s|ω)π(ω)

�

Let �(s) = arg maxθ α(s|θ). It follows that the limiting posterior distribution,
r∗(θ; s) ≡ limI→∞ r(θ|s; I), is given by

r∗(θ; s) =
⎧⎨
⎩

π(θ)∑
ω∈�(s) π(ω)

if θ ∈�(s)

0 if θ /∈�(s).

In particular, if α(s|θ) has a unique maximum θ∗(s), then r∗(·; s) is the point mass on
θ∗(s). If a decision problem is invariant for all I, then the optimal response to signal s,
a∗
i (s), also maximizes

∑
θ∈� u(a�θ)r∗(θ|s).

It is unlikely that a decision problem is invariant for all I. When α(·) must be a con-
tinuous function on [0�1] × [0�1], invariance fails for a given utility function on a set of
information structures that is open and dense with respect to the sup norm.

Nevertheless, the conditions make sense in the urn model (provided that signals are
symmetric estimates of the true state).

It is possible to generalize Example 2. First, assume that the information technology
is nondegenerate: for each s, α(s|θ) has a unique maximizer, denoted by θ∗(s). It follows
that r∗(s|θ) is a point mass on θ∗(s) and (1) becomes

E{ua(a∗
i (s)� θ)|s} = ua(a

∗
i (s)� θ

∗(s))�

Second, assume that ∑
θ∈� α(s|θ)θπ(θ)∑
ω∈� α(s|ω)π(ω)

= θ∗(s) for all s� (3)

That is, the mean of θ given s is equal to θ∗(s) for all s. Call the information technol-
ogy uniformly neutral if (3) holds. The first assumption is mild. The second assumption
is restrictive. One would expect that the highest signal is “good news,” so that receiv-
ing multiple independent draws strictly increases the mean of the distribution. Indeed,
while there exist uniformly neutral information technologies (see Example 2), (3) re-
quires the extreme signals to completely reveal the extreme states.

The following result is immediate from the definitions.

Proposition 11. If u(a�θ) = −(a− θ)2, and the information structure is nondegenerate
and uniformly neutral, then the decision problem is invariant.

Propositions 10 and 11 combine to identify a class of decision problems in which
group decisions are bounded by individual recommendations.19

19Chambers and Healy (2012) study a related problem in which they characterize information structures
with the property that the posterior mean given a signal lies between the prior mean and the signal. When
preferences take the form u(a�θ) = −(a − θ)2 (so that recommendations are equal to posterior means)
and there exists an uninformative signal, invariant information structures must satisfy updating toward the
mean.
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The next example describes a natural situation under which the recommendation of
the most extreme individual becomes the recommendation of the group.

Example 3. Recall that the Pareto distribution with strictly positive parameters θ0 and
β has the probability density function

f (θ|θ0�β) =
⎧⎨
⎩

βθ
β
0

θβ+1 when θ > θ0

0 when θ ≤ θ0.

The following statement is a standard property of conjugate distributions (see
DeGroot 1970, p. 172).

Fact 1. Suppose that each of the I agents receives a signal from a uniform distribution
on [0� θ], where θ itself is unknown. Suppose that the prior distribution of θ is the Pareto
distribution with parameters θ0 and β, θ0 and β> 0. The posterior distribution of θ given
that individual i receives the signal si is a Pareto distribution with parameters s̃ and β+I,
where

s̃ = max{θ0� s1� � � � � sI}�

Now assume that u(a�θ) = −(a − θ)2. An individual who receives the signal si be-
lieves that θ has a Pareto distribution with parameters s̃i = max{θ0� si} and, consequently,
because maximizing u(·) requires choosing a equal to the expected value of θ, selects
a∗
i (si) = (β+ 1)s̃i/β, while the collectively optimal choice is a∗

0(s) = (β+ I)s̃/(β+ I − 1).
In this example, the highest signal provides a lower bound on θ and, therefore, is a

sufficient statistic for all of the signals. That is, when the individuals pool their informa-
tion, only the signal of the most extreme individual determines the collective decision.
When individuals pool their information, two things happen: the variance of the distri-
bution of θ decreases20 and the lower bound of the distribution increases. Due to the
first effect, the collective decision is less than the choice of the individual who received
the greatest signal, but the ratio of the collectively rational decision to the maximum
individual recommendation converges to 1 as I grows. This problem is not invariant.
While the group decision is bounded above by the maximum individual recommenda-
tion, it is possible for the group decision to be lower than the recommendation of every
member of the group.

The specification is special, but could be appropriate for some contexts. For exam-
ple, imagine that the signal an individual receives indicates the minimum amount of
damage that could have been done to a plaintiff. When jurors pool their information, it
is only the highest signal that is relevant for estimating damages. Hence, efficient infor-
mation aggregation implies that the recommendation of the most extreme member of
the group determines the group decision. ♦

20This follows because the exponent in the Pareto distribution increases.
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5. Conclusion

This paper compares the decisions of individuals and groups for information aggrega-
tion problems. I show that generally there is no systematic relationship between recom-
mendations individuals make in isolation and the decision that the individuals make
as a group. I then identify restrictive situations in which individual recommendations
bound the decision of the group.

I establish my results in a narrow setting. I assume that groups have no problems
aggregating information and reaching a joint decision. Anyone who has ever served on
a committee knows that these assumptions are unrealistic.

The weight of academic and popular evidence convinces me that groups can often
make bad decisions for systematic reasons, that the reasons can be evaluated, and that
institutions can be created to ameliorate the problems. The decision-making environ-
ment at NASA has been blamed for several tragedies in the U.S. space program. Janis’s
(1982) discussion of “groupthink” among President Kennedy’s national security advi-
sors foreshadows the recent failures of United States intelligence agencies. My model
does not refute the existence of flawed group decision making, but it does point out that
apparent anomalies in group behavior are consistent with a simple, rational model of
information aggregation.

Appendix

Proof of Proposition 1. Given qk and Ck > 0, define λki (θ) by

λk0 (θ) =Ckq
k
0 (θ) (4)

and, for i = 1� � � � � I, by

λki (θ) =Ck(q
k
i (θ)− qk0 (θ))+ dkq

k
i (θ)� (5)

where dk = Ckq
k
0 (θ)/(mini>0 q

k
i (θ)). The choice of dk guarantees that λk(·) > 0.

Because qki (·) is a probability distribution, it follows from these definitions that

∑
θ∈�

λk0 (θ) =Ck (6)

and, for i > 0, ∑
θ∈�

λki (θ)= dk� (7)

It follows from (4) and (6) that

qk0 (θ)= λk0 (θ)∑
ω∈� λk0 (ω)

� (8)

Furthermore, it follows from (4) and (5) that

(dk +Ck)q
k
i (θ)= λk0 (θ)+ λki (θ)
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and so, by (6) and (7), that

qki (θ)= λk0 (θ)+ λki (θ)∑
ω∈�(λk0 (ω)+ λki (ω))

� (9)

Now consider a signaling technology in which there is a signal sk for each k and an
additional signal s̃. Let

P(θ; s) =

⎧⎪⎪⎨
⎪⎪⎩

λk0 (θ) if sj = sk for all j

λki (θ) if si = sk and sj = s̃ for all j �= i

π(θ)− (∑
k λ

k
0 (θ)+ ∑

i�k λ
k
i (θ)

)
if sj = s̃ for all j

0 otherwise.

By taking Ck sufficiently small, it is possible to make P(·) ≥ 0.
If the joint distribution of θ and s is given by P(·), then it follows from (8) that if the

group receives the signal profile s = (sk� � � � � sk) for some k, then the group posterior is
qk(·), whereas (9) implies that if individual i receives sk, then her posterior is qki (·). �

Proof of Proposition 3. Replace qk0 by a rational distribution q̃k0 , where q̃k0 (θ) =
mk(θ)/M (and

∑
θ mk(θ)= M) such that |qk0 (θ)− q̃k0 (θ)| < ε for all θ and k.

Create a set � by taking M copies of �. A typical element of � is (θ�m) for θ ∈ � and
m = 1� � � � �M . Assume that there is a uniform distribution on �. Consider a partition of
� into sets �k,

�k = {
(θ�Mk−1(θ)+ 1)� � � � � (θ�Mk(θ)) :θ ∈�

}
�

where Mk(θ)= ∑k
j=1 mj(θ) (and M0(θ) = 0 by convention).

Assuming a uniform distribution on �, learning the partition element �k induces
the belief q̃k0 because for each θ, �k has mk(θ) elements associated with θ.

Now form �. An element of � is of the form g = (g1� � � � � gI), where gi ∈ {1� � � � �G} and
G is sufficiently large so that there is a rational approximation to r = (r1� � � � � rK), r̃, with
r̃k = nk/G, and a rational approximation λ̃ki (j) to λki (j) such that λ̃ki (j) = Ilki (j)/G

I . The
approximation partitions � into sets �k such that the cardinality of �k is nk. Associate
every element in �k with �k.

Note that a subset H of � corresponds to a probability distribution over the �k (the
fraction of elements of H in �k is the probability of �k), which in turn can be viewed as
a probability distribution over � (because each �k corresponds to the distribution qk0 ).

I claim that one can induce the distribution over belief profiles in which q̃k arises
with probability r̃k. Associate with each g in �j subsets Hi(g) ⊂ � for each i. Subsets
Hi(g) = g ∪ Gi(j), where Gi(j) consists of lki (j) elements from �k for k �= j and l

j
i (j) − 1

elements from �j , and Gi(j) ∩ Gi′(j) = ∅ for i �= i′. It follows that
⋂I

i=1 Hi(g) = g. Al-
ternativelt, with the information in Hi(g), i believes that the probability that g is in �k

is λ̃ki (j). Using the natural association of elements in � to elements in � and to �k and

beliefs, this means that Hi(g) induces beliefs q̃ji , which completes the construction. �

Proof of Proposition 4. Given a distribution over action profiles ρ and ε > 0, let ρ̂
be a distribution over action profiles that assigns positive, rational probability to all ac-
tion profiles and is within ε of ρ. Denote the N elements of A by the integers 1� � � � �N .
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Without loss of generality, assume that the marginal probability of a0 is a uniform distri-
bution over {1� � � � �N} (if the probability that a0 = j is kj/K under ρ̂, create a new action
set in with

∑N
j=1 kj elements, replacing each state j by kj identical copies).

Let � = AI ×AI . Denote an element of � by (θ�b), where θ = (θ1� � � � � θI) ∈ AI and
b = (b1� � � � � bI) ∈ AI . S = A × A. States and signals are selected as follows. A uniform
distribution selects θ. The remainder of the state is selected so that the distribution
of (b0;b1� � � � � bI) is given by ρ̂, where b0 = σ(θ) = 1 + ∑I

i=1 θi(modN). In state (θ�b),
individual i receives the signal (θi� bi). Finally, define u(·) so that

u(a�θ�b) =
{

1 if a = σ(θ)

−c(a�σ(θ)�b) if a �= σ(θ)

and

c(a�σ(θ)�b)=
{
C if b = (b� � � � � b) and a �= b

0 otherwise.

The optimal decision for the group is to set a∗
0 = σ(θ). This earns payoff 1. All other

actions receive nonpositive payoffs. For sufficiently large C, the optimal action for in-
dividual i is to set a∗

i = bi. This action earns a positive payoff (equal to the probability
that a∗

i = σ(θ)). Any other decision earns a negative payoff for sufficiently large C (this
requires that ρ̂ assigns strictly positive probability to all action profiles). It follows that
the induced distribution of action profiles is equal to ρ̂. �

It may be useful to describe the construction in the proof of Proposition 4 in a bit
more detail. The objective of the group is to guess the target σ(θ). If it does so, then
its payoff is 1. Otherwise, the group may pay a cost. When it pools its information,
the group has enough information to compute the target exactly. Individuals do not.
Interpret b as a recommended action profile. If an individual follows the recommenda-
tion, then he does not pay a cost. If an individual ignores the recommendation, then
with positive probability he pays a cost. (To maintain symmetry across individuals, the
cost is paid only when each individual receives the same recommendation.) Individ-
uals, therefore, have a choice between following the recommendation and earning a
positive expected payoff or ignoring the recommendation and paying a cost with posi-
tive probability. By assumption, no individual has perfect information about the group’s
best action. Consequently, there is a positive probability that failure to follow the rec-
ommended action will trigger the cost. For sufficiently large C, it will be strictly optimal
for individuals to follow the recommendation.

Proof of Proposition 5. If individual i has belief qi(·) given the signal si, then it fol-
lows from Bayes’s rule that the probability individual i receives signal si given θ, αi(si|θ),
satisfies

αi(si|θ)= μi(si)
qi(θ)

π(θ)
� (10)

where μi(si) = ∑
ω αi(si|ω)π(ω) is the probability that individual i receives si. Conse-

quently, after any vector of signals s = (s1� � � � � sI) that gives rise to the belief profile
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{q1� � � � � qI}, the group’s posterior is

π(θ)
∏I

i=1 αi(si|θ)∑
ω π(ω)

∏I
i=1 αi(si|ω)

= π−(I−1)(θ)
∏I

i=1 qi(θ)∑
ω π−(I−1)(ω)

∏I
i=1 qi(ω)

�

where the equation follows from (10) (the normalization factors μi(·) cancel out). This
completes the proof. �

Proof of Proposition 6. Denote the N elements of A by the integers 1� � � � �N . Let
S =A, let �=AI , and let π(·) be the uniform distribution on �. For θ = (θ1� � � � � θI) ∈�,
let σ(θ)= 1 + ∑I

i=1 θi(modN) and let

u(a�θ)=
{

0 if a = σ(θ)

−1 if a �= σ(θ).

An individual who observes si = θi is indifferent over all a ∈ A, while the group sets
a∗

0(s) = σ(s). �

Proof of Proposition 8. Suppose actions a1 ≤ a2 < · · · ≤ aI are given. I will construct
a monotonic information structure with two equally likely states, θ and θ, I + 2 signals
s−1 < s0 < · · · < sI , action space A= [0�1], and numbers f (θ) and f (θ) such that a∗

i (si) =
ai for i = 1� � � � � I and a0(s) = 1.

For any �5 < p0 < pI < 1, there exists p−1 < p0 such that for any pi, i = 1� � � � � I − 1,
that satisfy 0 < p0 < p1 < · · · < pI , there exists α(·) such that for θ = θ and θ, α(si|θ) > 0
for i = 1� � � � � I − 1,

∑I
i=−1 α(si|θ)= �5, and

pi = α(si|θ)
α(si|θ)+ α(si|θ)

� (11)

There are many possible ways to select positive α(si|θ) to satisfy (11) for all i > −1
such that

∑I
i=0 α(si|θ) < �5. Let α(s−1|θ)= �5 − ∑I

i=0 α(si|θ). Provided that p0 > �5,

p−1 ≡ α(s−1|θ)
α(s−1|θ)+ α(s−1|θ)

will be less than �5 (and hence less than p0). By picking p0 sufficiently close to 1, it is
possible to satisfy

α(s−1|θ)I−2α(s0|θ)2

α(s−1|θ)I−2α(s0|θ)2 >
α(sI |θ)
α(sI |θ) � (12)

Let

pI+1 = α(s−1|θ)I−2α(s0|θ)2

α(s−1|θ)I−2α(s0|θ)2 + α(s−1|θ)I−2α(s0|θ)2
�

Select f (θ) and f (θ) to satisfy

(1 −pI+1)f (θ)+pI+1f (θ) = 1

(1 −p0)f (θ)+p0f (θ) = 0�
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and, for these values of f (θ) and f (θ), let pi satisfy

(1 −pi)f (θ)+pif (θ) = ai (13)

for i = 1� � � � � I. It is straightforward to verify that pi > pi−1 if and only if ai > ai−1, and
that if u(a�θ) = −(a− f (θ))2, then ai = a∗(si) and a∗

0(s1� � � � � sI) = 1. Furthermore, since
a∗(si) = 0 for i = −1�0�1, provided that at least two messages are greater than s−1 (12)
implies that a∗

0(s) = 1, so that it is possible for each individual to recommend the lowest
action while the group prefers the highest action.

Completing the proof requires several routine observations. The same type of con-
struction guarantees the existence of a monotone information structure in which the
group’s decision is 0 given any individual recommendation. It is then straightforward
to modify the argument to information structures that induce group decisions that
are inside the range of individual recommendations. To rationalize all actions when
u(a�θ) = (aθ+ (1 − a)θ0)

β, one selects pi to satisfy the first-order condition induced by
the alternate utility function (in place of (13)). It is straightforward to extend the infor-
mation structure to permit continuous signals and a continuous state space that satisfy
monotonicity properties. �

Proof of Proposition 9. Suppose that a0 = (a1� � � � � aI), with 0 ≤ a1 ≤ · · · ≤ aI and
aI−1 > 0. Proposition 8 implies the result unless a1 = 0. If a1 = 0, then set s−1 = s0 = s1,
but construct the information structure as in the proof of Proposition 8 so that a∗

i (si) = ai
and a∗

0(s) = 1 (which, provided aI−1 > 0, is still possible, since the posterior given s will
dominate the posterior given the signal associated with aI ). �

Proof of Proposition 10. Without loss of generality, let a1 = min1≤i≤I ai and aI =
max1≤i≤I ai. Let si satisfy a∗

i (si) = ai. By invariance, a1 = a∗
1(s1) = a0(s1� � � � � s1) and aI =

a∗
I (sI) = a0(sI� � � � � sI). Because the problem is strictly increasing, sI ≥ s1 and si ∈ [s1� sI]

for all i. It follows from Corollary 1 that a∗
0(s1� � � � � sI) ∈ [a1� aI]. �
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