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Abstract

Evaluating and Optimizing Distributed Energy Resources

by

Utkarsha Agwan

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Co-chair

Professor Kameshwar Poolla, Co-chair

Climate change is one of the most urgent problems faced by humanity, and rising sea levels,
extreme weather events and desertification pose a severe threat to human life as we know
it. Greenhouse gas emissions resulting from human activities have caused long-term global
warming, and are primarily caused by the burning of fossil fuels to generate energy, e.g., for
electricity, heat or transport. It is essential that we move to cleaner sources of energy across
the board to prevent further greenhouse gas emissions, and this move is driven by three main
trends.

First, the rise of distributed energy resources through rooftop solar, backup batteries and
electric vehicles has led to the creation of a new class of consumers which have electricity
production capability. These resources tend to be variable, and are owned and operated in-
dependently. Second, the move to variable clean energy production will lead to power system
operators having an increased need for demand side flexibility in order to accommodate the
supply-side variability. Flexible consumers can bid in their flexibility into markets for profit,
or use it to reduce their emissions impact. Third, the increasing share of electric vehicles
will led to an intersection of the transportation and power networks, where electric vehicles
will be able to use their batteries as ‘mobile’ storage in the power network.

This dissertation addresses some key challenges associated with each of these trends, and
proposes solutions for them.
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Chapter 1

Introduction

Climate change is an existential threat to life as we know it, and remains one of the most
pressing problems faced by humanity today. The increase in the Earth’s temperature due
to greenhouse gas emissions related to human activities has caused multiple changes in
the climate, all of which pose an imminent risk to human life. Rising sea levels have the
potential to displace millions of people worldwide, particularly those living in coastal and
low-lying island regions. Extreme weather events such as hurricanes, heatwaves and droughts
are projected to occur with increasing frequency and intensity. Large swathes of land are
expected to become uninhabitable deserts. These changes will have an immense impact on
humanity, and can be attributed to long-term global warming caused by greenhouse gas
(GHG) emissions resulting from human activity. GHG emissions can be broken down by
economic sector as shown in Fig. 1.1.

More than half of these greenhouse gas emissions result from the burning of conventional
fossil fuels for the production of electricity in the power sector, and for energy in internal
combustion engines in the transportation sector. A reduction in emissions tied to these two
sectors can be achieved through:

1. Energy efficiency measures: technological progress and regulations have made most
energy consumption more efficient over the years;

2. Clean electricity: using energy sources which do not result in emissions, such as solar
or wind production; and

3. Electrification: shifting energy consumption from fossil fuels in industrial and trans-
portation sectors to clean electricity.

Technological progress and high volume production have driven down the cost of clean energy
generation dramatically, to the point where the levelized cost of energy from solar and wind
is cheaper than alternatives. There are three main factors that affect the transition to a
lower-emissions grid, and we will now discuss each of them.
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Figure 1.1: Share of greenhouse gas (GHG) emissions by economic sector in the US in 2021
[3]. The majority of GHG emissions from each sector (except agriculture) result from the
burning of fossil fuels to produce energy, e.g., fossil fuels burned for heat & lighting in the
commercial, residential and industrial sector, and for electricity in the electric power sector.

The rise of distributed energy resources (DERs)

Market forces have led to a steady decline in the cost of solar, wind, lithium-ion batteries
and electric vehicles. These trends are aided by policies such as the Inflation Reduction
Act (IRA) which facilitate significant investments in clean energy resources, tax and rebate
programs across the world which incentivize solar and storage, and incentives for electric
vehicles both by the federal government and by individual states in the US. The declining
supply-side cost trends have been accompanied and driven by a steady rise in demand-side
adoption - more and more people are getting solar for their rooftops, purchasing electric
vehicles and heat pumps, and installing backup batteries. Commercial consumers are also
increasingly capitalizing on their rooftop space for onsite generation. This has led to a new
and growing category of resources, called distributed energy resources (DERs). These are
characterized by being connected to the distribution network in the power grid, and being
distributed geographically. This is in contrast to the traditional model of the power grid
where centralized generation was used to supply distributed consumers, with a unidirec-
tional power flow. The rise of DERs means that resources on the distribution network are
increasingly feeding power back into the grid, and there are two characteristics that make
this a notable trend:

1. Renewable distributed energy resources tend to be variable, i.e., they are intermittent,
uncertain and uncontrollable.

2. Many renewable resources are distributed geographically, and are owned and operated
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independently.

These new resources are also known as prosumers, i.e., consumers which have electricity
production capability.

The need for demand side flexibility

Clean energy generation sources tend to be inherently uncertain and uncontrollable. For ex-
ample, the power production from a wind farm depends on uncertain weather variables such
as wind speed, and can not be increased on command. Power system operators are increas-
ingly turning to demand-side resources to accommodate this variability in power production,
both due to the potential for low-cost flexibility, and due to regulatory mandates.

Load flexibility is a broad term that can refer to any action taken by a consumer to
modulate their energy consumption based on external incentives such as payments, penalties
for peak loads, or dynamic rate structures. Utilities and system operators have historically
used demand side flexibility for peak grid events, such as when a generator unexpectedly
fails, or during seasonal peak loads when the system demand exceeds the peak generation
capacity. An example of this is the September 2022 heat wave in California, when the power
system operator sent out urgent notifications to consumers across the state asking them to
reduce their energy consumption in order to avoid blackouts. There are existing programs
run by utilities (e.g., PG&E’s Automated Demand Response Program) and system operators
(e.g., CAISO Demand Response Auction Mechanism) to facilitate the participation of flexible
loads. In particular, FERC Order 2222 has mandated that wholesale power markets across
the US facilitate the participation of demand-side flexible loads.

As we move to an increasingly decarbonized grid, the production side will have increas-
ingly variable output. In that situation, it is important for demand side flexibility to accom-
modate the increasing variability on the supply side. The advent of newly electrified loads
such as electric vehicles and heat pumps means that an increasing number of consumers will
be able to change their consumption schedules, either to provide valuable services to the
power grid, or to reduce their carbon footprint.

The intersection of the transportation and power network

An increasingly decarbonized power grid will also require a large amount of storage, both
seasonal and short term. There are a variety of new and existing technologies to fulfill this
need, and examples include pumped hydro storage, flow batteries, thermal batteries and
lithium ion (Li-ion) batteries. According to the McKinsey report on the state of Li-ion
battery production, the vast majority of Li-ion batteries being produced in the world are
going into the mobility sector instead of into the stationary storage sector [18]. This means
that most of the Li-ion battery capacity in the world will be embedded inside cars, buses
and trucks, and it is essential that the power network tap into this new resource. Electric
vehicles will constitute a huge new load for the power grid, with some estimates saying that
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the US power system will need to increase the electricity generation capacity by 50% by 2050
in order to meet the increased demand due to electrification of transportation [50]. Utilities
are already facing challenges in building the infrastructure needed to support EV charging.

Alongside being a load for the power network, electric vehicle batteries can also be
harnessed as mobile storage for the power grid. This constitutes an intersection of the
transportation and the power network, where electric vehicles will not only move around
passengers and freight, but can also move energy across both space and time.

Thesis outline

This thesis is divided into three parts, and in each part I will go over some challenges
associated with each of these trends. The first part focuses on demand side flexibility (Ch.
2, Ch. 3) - how to optimize it, form aggregations, and the potential for impact on emissions.
The second part focuses on the intersection of the transportation and power networks, and
how EV batteries can act as mobile storage in the power network (Ch. 4, Ch. 5). The third
part considers prosumers, how optimal aggregations can be set up and how reinforcement
learning can be used for pricing within these aggregations (Ch. 6, Ch. 7).

1. Part 1: Demand Side Flexibility

• In Chapter 2, I will discuss how the rise of clean energy resources creates the need
for demand side flexibility, and how this flexible load can be optimized. This work
was published in [11].

• In Chapter 3, I will discuss the potential impact of demand side flexibility on CO2

emissions. This work was published in [5].

2. Part 2: Electrified Transportation and the Power Network

• In Chapter 4, I will discuss the value of mobile batteries for the power system
operator, based on work presented in [8].

• In Chapter 5, I will discuss the payoffs for EV owners when they participate in
a mobile storage sharing scheme and their equilibrium behavior, based on work
presented in [7].

3. Part 3: Aggregations of Energy Prosumers

• In Chapter 6, I will discuss the rise of prosumers, and how prosumer aggregations
can be set up optimally, based on work presented in [6].

• In Chapter 7, I will present an RL controller which can be used to set prices for
a prosumer aggregation, based on work presented in [10].
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Part I

Demand Side Flexibility
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Chapter 2

Optimizing Demand Response
Participation for Flexible Consumers

2.1 Introduction to Demand Response

Demand response (DR) programs are tools to modulate the demand for electricity in a wide
variety of situations. For example, at certain times such as mid afternoons on hot summer
days, the procurement of additional electricity to meet demand peaks is expensive. At these
times, it is more cost effective for the utility to cajole a reduction in demand through financial
incentives than to procure an increase of supply to maintain power balance [61]. Another
scenario is a grid with significant renewable generation assets. Here DR promises to be a
superior balancing resource when compared with conventional gas turbines in the metrics
of cost and emissions. In a similar vein, FERC Order 745 mandates that DR assets be
compensated for load reduction on par with generation [24].

Participation in DR programs requires assets to accurately estimate their curtailable
load and decide on the curtailment they will provide based on their expected net profit. The
curtailable load is random and depends on the operating status of the asset at the time of
the DR event. This makes it difficult for the asset to determine the optimal load reduction
that it can deliver reliably. Asset aggregations can benefit participants by spreading the
risk of default on the promised curtailment, and forming aggregations optimally can offer a
significant marginal benefit to the aggregation participants.

Demand response programs

There are two flavors of DR programs: direct load control, where utilities can modulate
loads at will subject to certain contractual limits, and indirect load control, where agents are
incentivized to yield their discretionary electricity consumption [61]. This work focuses on
the latter.

We explore the situation where the utility enters into bilateral contracts with a collection
of agents. These agents might be buildings with flexible electricity demand, or aggregators
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that manage a collection of DR assets. An agent which enters into a contract of size C
kWh receives a payment of πrC from the utility for their obligated reduction in demand,
where πr is the incentive rate set by the utility. In the event the agent is unable to deliver
the contractual demand reduction C, it pays a penalty proportional to the shortfall. There
are often contractual riders that limit the frequency with which DR assets are called on in
response to a DR event. The results in this chapter were published in [11], [12].

Notation

C Size of contract signed by the asset (kWh)
q Curtailment capability (random variable) (kWh)

f(q) Probability density function of q
F (q) Cumulative distribution function of q
πe Retail tariff paid by the building for energy consumed ($/kWh)
p Ex-ante probability of DR event (h−1)
πr Incentive paid by utility to participate in DR program,

per unit of curtailment contracted ($/kWh)
πp Penalty imposed on shortfall in curtailment during a demand response

event ($/kWh)

2.2 Problem Formulation

Consider a forward window for the delivery of demand response services, e.g., Tuesday 3-4
pm next week. The retail price of electricity during this window is πe. Let p denote the
probability of a DR event in this window which can be estimated ex ante using historical
data and exogenous forecasts of temperature and demand, and utilities often publish this
information on public-facing dashboards [23]. An agent with DR assets (ex: a building
with flexible load) can provide demand reduction during this window. The agent’s available
demand reduction q in this forward window is a random variable with density function
f(·) and cumulative distribution function F (·). This reduction q depends on realizations of
underlying random processes such as temperature, total load, occupancy and other variables
which determine the functions f(·), F (·). The agent promises to reduce its demand by C
kWh to the utility codified through a bilateral contract which may have additional riders,
and the utility pays the agent πrC in advance for this promise. The reward price πr can
depend on the delivery window, and is set by the utility and published ex ante. Because the
available demand reduction q is a random variable, the agent may not be able to meet its
demand reduction promise of C kWh. The utility imposes an ex post penalty πp(C− q)+ on
the shortfall (C − q)+ = max(0, C − q), to be paid by the agent.
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Agent decisions

During the DR event, the agent has no incentive to curtail its demand beyond the contracted
value C, as it receives no additional payment for doing so. The realized curtailment is

x = min(C, q), (2.1)

where q is the agent’s available demand reduction capability over the DR window. The profit
of the DR agent is a random variable, and depends on whether a DR event occurs. If a DR
event is called, the realized profit is

πrC − πp(C − x) + πex, (2.2)

and the realized profit in the absence of a DR event is

πrC. (2.3)

Note that the agent receives a payment for its contract C irrespective of whether or not a DR
event occurs. The three components of the agent profit are a payment πrC for the contract,
a penalty πp(C − x) on the shortfall, and a surplus πex from avoided electricity use. The
agent’s profit is a random variable, and it will seek to maximize its expected profit

Ja = πrC − pπp

C∫
0

(C − q)f(q)dx+ pπe

[
C∫
0

qf(q)dq +
∞∫
C

Cf(q)dq

]
. (2.4)

In reducing their electricity consumption during a DR event, the agent will suffer some
loss of utility. For example, the occupants of a building that reduces its electricity consump-
tion from baseline may suffer the inconvenience of elevated temperatures. Building managers
may not be able to assign a monetary value to this loss of utility. A simple approach is to
regard the agent’s available demand reduction as yielding their discretionary electricity con-
sumption. We can therefore simply bound the contract size by Cmax to reflect the maximum
available discretionary electricity consumption, i.e.

q ≤ C ≤ Cmax. (2.5)

Another approach is to explicitly introduce a disutility term. Agents will cede some of
their baseline consumption only if the marginal disutility is lower than the marginal profit.
While these can be readily incorporated into our formulation, we will not do so to keep our
exposition simple.

Agents providing DR may be risk averse. For example, flexible buildings may wish to
maximize their expected profit while bounding their worst case loss. Risk aversion can be
handled through metrics such as CVaR, which is a quantification of the tail risk.

CVaR = πrC +
p

1− ĉ

F−1(1−ĉ)∫
0

[πeq − πp(C − q)] f(q)dq (2.6)
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The risk averse agent will then optimize a combination of its expected profit and the risk
assessment measure, weighted by a risk aversion factor α as:

max
C

Ja + αCVaR(C)

s.t. C ≤ Cmax
(2.7)

Demand response contracts

Utilities are mandated to reliably procure electricity to meet the random needs of their
customers, and they conduct demand forecasts to drive their purchase decisions in the day-
ahead market. They subsequently purchase additional electricity in the real time market
for a fine balance of supply and demand, at prices that may vary widely. Utilities absorb
the price volatility in these two settlement markets, and resell procured electricity to their
customers at a retail tariff πe which may be fixed or have time of use structure. At times
when the aggregate demand is high such that it strains the generation resources, the price
of electricity will be large enough that it will be in the utility’s financial interest to displace
additional procurement with demand reduction through DR programs [61]. The utility might
seek demand reduction for other reasons, such as environmental concerns around scheduling
high emissions peaker plants, available capacity, and transmission constraints. There are
two reasons why a utility could choose an incentive based program instead of a real time DR
market:

1. Price risk. FERC regulations dictate that DR assets be compensated for their cur-
tailment on par with market rates. Contracts insulate the utility from high real time
prices by committing DR assets to ex ante compensation.

2. Quantity risk. The curtailment realized from DR assets is uncertain. Contract mech-
anisms can reduce this uncertainty through a well designed penalty structure. This is
more effective than relying on very accurate curtailment forecasts which is necessary
in organized markets.

2.3 Optimal Agent Decisions

Recall that the expected profit of the DR agent is given in (2.4), and the agent’s CVaR risk
aversion metric is given in (2.6). We consider optimal agent decisions in a single DR window.
Assume πr − pπp < 0.

Result 1. Optimal Contract and Profitability

1. The optimal contract size that maximizes the agent’s risk averse expected profit (see
Equation 2.7) is given by

C∗ = F−1

[
πr + pπe + α(πr − pπp)

p(πp + πe)

]
(2.8)
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2. The corresponding expected profit is

Ja∗ = p(πp + πe)

∫ C∗

0

qf(q)dq − α(πr − pπp)C
∗ (2.9)

3. Risk aversion, i.e. increasing α decreases the expected profit and the optimal contract
size, but reduces worst case losses.

Proof. The agent’s optimization objective (2.7) is concave in the contract size C, which can
be proven with the second derivative test. Then the optimal contract C∗ can be calculated
from the zero of the second derivative of the objective and clipping it to [0, Cmax]. The
expression for profit can be calculated by substituting C∗ in (2.4).

The value of this result hinges on being able to calculate the quantile in (2.8). While
the distribution of curtailment capability at any time may not be readily available, it can be
estimated using a combination of historical data, operational information and forecasts of
causal variables like weather. The expected profitability of participating in the DR program
without any underlying curtailment capability, i.e., without any physical asset is (πr − pπp).
The utility will set reward and penalty such that πr − pπp < 0; otherwise, it will encourage
unwanted behavior, such as bidding without any DR asset capability.

The optimal contract C∗ and corresponding profit depend intimately on the distribution
of curtailment capability f(·). The standard deviation σ of the curtailment distribution is
a measure of the uncertainty in its estimation. A smaller σ signifies a tighter estimate of
future capability, and reduces the risk of shortfall. Under a mild symmetry assumption on
f , we have

Result 2. Effect of Uncertainty in Future DR Capability

1. Contract: Suppose f is symmetric about the mean µ, with standard deviation σ, then

C∗ = µ+ γσ (2.10)

where γ is a function of p, πr, πp, πe, α derived from the expression for optimal contract
(2.8). If γ < 0, i.e. contract is lower than µ, then decreasing σ leads to a higher
contract. If γ > 0, decreasing σ leads to lower contract. A decrease in σ pushes the
contract size closer to µ.

2. Profit: The coefficient of σ is negative up until a certain positive γ value, i.e. until
γ = γ̂, and positive after that. For γ < γ̂, an increase in uncertainty (i.e., increase in
σ) causes a decrease in expected profit.

The symmetry assumption is reasonable, particularly where the curtailment capability
has a ‘base’ value with some error due to operational variability. This is consistent with
outputs from a linear regression based prediction model, which assumes that errors are
normally distributed.
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Result 2 could be useful in evaluating the benefits of lowering uncertainty. For example:
paying for more accurate weather forecasts, or paying to install submetering equipment in
buildings could add value by leading to tighter estimations of future DR capability. Knowing
the value of reduced uncertainty (i.e., lower σ) in terms of increased DR profit can help in
making a decision on the cost-benefit tradeoff. Also, as the DR event window approaches,
the estimation of DR capability might improve (e.g. predicting DR capability one month
in advance vs. a few hours in advance). Our results will be useful for these near-term
predictions as well, which might have lower uncertainty.

2.4 Optimizing Demand Response Aggregations

DR assets can be aggregated to provide DR as a single entity, sharing the burden of curtailing
load and reducing their individual risk. We will not explore how DR assets can be induced
to form such aggregations; instead, we focus on optimal decisions of the aggregation as a
joint entity.

For the results presented in this section, we make the following assumption: DR agent
curtailments are similarly distributed (i.e. from the same family of probability distributions),
but with different mean and variance parameters µ, σ. Further, the sum of agent curtailments
is distributed similarly as well (ex: normal distribution), and the distribution fk(·) of the
curtailment capability of asset k is completely characterized by its mean and variance. From
Result 2, the optimal contract for asset k is

C∗
k = µk + γσk (2.11)

where γ is completely determined by utility and DR program rates. The aggregate DR asset
curtailment capability is

qag =
∑
k

qk (2.12)

The optimal contract for the aggregation differs from the sum of contracts for the individual
participants due to the different variance.

C∗
ag = µag + γσag =

∑
k

µk + γσag∑
k

C∗
k =

∑
k

µk + γ
∑
k

σk

(2.13)

Result 3. Aggregation Contract Size and Profitability

1. The optimal contract for the aggregation is

C∗
ag = F−1

ag

[
πr + pπe + αag(πr − pπp)

p(πp + πe)

]
(2.14)
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where αag is the risk aversion factor for the aggregation, and Fag(·) is the cumulative
density function for the aggregation’s curtailment capability qag.

2. The relation between the aggregation’s contract size and the aggregate contract of indi-
vidual participants is

C∗
ag :


<

∑
b

C∗
b if γ > 0

>
∑
b

C∗
b if γ < 0

(2.15)

3. At the optimal contract, total increase in profit for an aggregation of assets with com-
mon α is

∆Ja = −α(πr − pπp)(Cag −
∑
k

Ck)

+ p(πp + πe)

[
Cag∫
0

qf(q)dq −
∑

k

Ck∫
0

qkfk(qk)dqk

] (2.16)

We examine the profit differential for assets whose curtailments are normally distributed,
i.e. qk ∼ N (µk, σk); C

∗
k = µk +γσk. For a normal distribution, the quantile function is given

by

F−1(p) = µ+ σ[
√
2erf−1(2p− 1)] = µ+ σγ

which gives us the expression

∆Ja = −p(πp + πe)(Nk − 1)
1

2

[
erf

(
γ√
2

)
+ 1

]
+(

∑
k σk − σag)

{
p(πp + πe)

e−
γ2

2√
2π

+ α(πr − pπp)γ

} (2.17)

We define an optimal aggregation as one which maximizes the increase in social welfare,
i.e., leads to the greatest increase in profit for its participants. In the expression for profit
increase (2.17), we can see that the mean of the distributions of curtailment capability does
not affect the marginal benefit, rather the variability does. If the random variables qk (the
DR capability) of two assets are highly correlated, they will have a lower marginal benefit
in aggregating as compared to two uncorrelated assets. The intuition is that uncorrelated
variability de-risks the contract commitment and reduces the total variability of the sum of
curtailment capacities.

Definition 1. Complementarity Test
To evaluate DR assets k ∈ N that aim to form an aggregation, the metric

∆σ =
∑
k∈N

σk − σag (2.18)
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is an indicator of the marginal increase in profitability upon aggregation. Here σk is the
standard deviation of the distribution of curtailment capability for asset k, and σag is the
standard deviation of the distribution of the sum of curtailment capabilities for all assets
k ∈ N .

Note that σag is lower than the sum of individual σk, as it exploits the low correlations
across different assets. The lower the correlation of two assets, the higher this difference, (and
consequently the marginal increase in profit) will be. This test can be useful for third-party
DR aggregators that want to optimally package or aggregate assets while signing curtailment
contracts. While it may seem that the information needed to calculate this metric is difficult
to obtain, it might be readily available to entities such as smart thermostat aggregators or
battery management companies.

2.5 Discussion

In this chapter, we presented a framework for optimizing DR asset participation in incen-
tive based demand response programs. We modeled the DR capability of assets as a random
variable, and developed analytical expressions for optimal contract size and profit for a profit
maximizing asset. We also explored the effect of variability in capability estimates and risk
aversion on both contract size and profit. We then explored the marginal benefit of aggre-
gation for such assets, and devised a test for asset complementarity under the assumption
that DR curtailment follows a normal distribution.

The usefulness of our work hinges on the ability to estimate probability distributions
for DR capability. Our complementarity test depends on the goodness-of-fit of a normal
distribution to the observed data-driven distribution, which may not always be an accurate
distribution model for different DR assets. However, there are a few reasons that a normal
distribution could be a good fit. In the case of an aggregation, if the flexibilities of the
constituent assets are independently and identically distributed, the flexibility of the aggre-
gation as a whole will be approximately normally distributed per the central limit theorem.
Even for an individual asset, if the uncertainty in flexibility is due to a linear combination
of random causal factors, the asset’s flexibility will be approximately normally distributed.
Constructing probabilistic forecasts for flexible load capacity is an active area of research, and
these forecasts are essential to appropriately model and account for the inherent uncertainty
in demand response.
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Chapter 3

Emissions Impact of Flexible Loads

In Chapter 2, we explored how flexible consumers can optimize their participation in pro-
grams designed to compensate them monetarily for their flexibility. However, there are
consumers who may wish to use their load flexibility to reduce their emissions impact. The
analysis in this chapter was published in [5].

3.1 Problem Formulation

Climate-conscious consumers can reduce their carbon footprint by implementing load reduc-
tion and load shift measures to minimize the emissions caused by their energy consumption.
Retail consumers are usually served by utilities who procure energy from various sources
while minimizing cost. The emissions impact of reduced energy consumption is through the
marginal resource, which is often the most expensive generation source [74].

The marginal emissions intensity of energy generation can be defined as the carbon
emissions (lbs. CO2) produced per unit of energy generated (measured in MWh). It varies
significantly across time of day and year, which then affects the emissions impact of reduced
energy consumption [82]. Researchers have studied the aggregate impact of repeated load
shift measures using marginal emissions intensity data [17], and found that load flexibility
can help reduce emissions significantly.

However, load shift/shed measures are expensive- they cause discomfort to building oc-
cupants, and require either manual intervention or investment in automated equipment. For
loads which can not be shifted or shed repeatedly, we need to prioritize interventions which
can achieve the highest emissions reduction by understanding the time-varying nature of
marginal emissions intensity.

In order to prioritize load shift/shed interventions, it is necessary to evaluate whether a
few time periods in the year have an outsize potential to reduce emissions.
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3.2 Methods

We use data on the emissions intensity of electricity consumption from WattTime [75], and
data on electricity consumption of residential consumers using simulated end-use load profiles
from a study by NREL [27].

Marginal emissions intensity

Marginal emissions intensity is characterized by the Marginal Operating Emissions Rate
(MOER), and is measured in lbs. of CO2 emitted per MWh of energy generated. We use
the WattTime API [75] to access historical MOER for the Northern Californian grid for
2018-2021, reported at 5-min intervals and calculated using empirical modeling of the power
system. MOER values typically range between 800− 1200 lbs. CO2 per MWh.

The MOER also exhibits spikes, and shifting and shedding load around these times can
be particularly effective for reducing emissions. A quantity of interest for us is the MOER
differential, i.e., the maximum MOER decrease possible within ±1 hour of the time period
under consideration, which can be interpreted as the emissions reduction possible if one unit
of energy consumption can be shifted to any time up to one hour before or after the time
period under consideration.

We analyze time periods when either the MOER or MOER differential is particularly
high, in order to increase the effectiveness of load shed or shift actions. We rank time
periods based on these parameters, and pick the top 1000 (approximately 1%) 5-minute
periods to study. This translates to studying the impact of load shift or load shed for the
most impactful 1% of the year.

Energy consumption data

We use residential electricity consumption data from simulated end-use load profiles gener-
ated in the ResStock analysis tool by NREL [27]. We constrain our analysis to Alameda
County in California, and use data simulated using the actual meteorological measurements
in 2018. Table 3.1 illustrates the average 15 minute energy consumption for major end-use
loads for winter and non-winter months. Plug loads are the largest end-use category, and
seasonal variations in temperature cause the shift in heating and cooling loads.

Time Plug Loads Lighting Refrigerator Heating Cooling Misc

Non-Winter Months 36.7 14.2 10.8 3.2 7.1 22.8
Winter Months 41.6 17.5 8.6 14.3 1.9 24.8

Table 3.1: Average 15-min load (MWh) for residential end-uses in Alameda County, 2018.
Winter months include January, February, November, and December.
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3.3 Findings

We analyze four years (2018 - 2021) of MOER data, and find similar seasonal and daily
variations across years, with the exception of higher MOER peaks in 2021. High MOER
values occur largely in the winter, and high MOER differential values occur throughout the
year, but typically in the afternoon. Consistent patterns in MOER and MOER differentials
suggest that planned load shift and load shed actions could reliably reduce emissions. We find
that plug loads and heating are the biggest end-use loads active during peak MOER periods,
which makes them good candidates for load shed actions. Plug loads and refrigeration are
the biggest shiftable end-use loads active during peak MOER differential periods, and will
be good candidates for load shift. Some plug loads can be shifted, e.g., dishwashers and
washing machines, while others such as desk lamps and computers are not shiftable.

MOER exhibits seasonality, with wide intra-day variation

MOER has a consistent seasonal pattern across seasons, with the lowest MOER in the
summer months. There can be high intra-day MOER variation, and the spread of MOER
values includes a cluster around 0 lbs. CO2/MWh as seen in Figure 3.1, caused by the
marginal resource being a zero-carbon resource. This is caused by high solar penetration
on the Californian grid, which can result in solar being curtailed, making it the marginal
resource.

Figure 3.1: Scatter plot of mean MOER by day across 2018, overlaid on a histogram showing
the spread of all MOER values in 2018 measured at 5-minute intervals
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Winter months have the highest marginal emissions

We analyze peak MOER periods, i.e., the 1000 time periods (top ∼ 1% MOER of 5-minute
time periods in a year) with the highest MOER values over 2018. Figure 3.2 illustrates the
MOER over the course of 2018, alongside a count of the number of peak MOER periods in
each month. The winter and spring months (December through April) account for most of
them, which has implications for load shed: shedding loads during the winter months can
have the highest impact on emissions.

Figure 3.2: Scatter plot of MOER values across 2018 highlighting the peak MOER periods,
overlaid by a bar plot indicating the number of peak MOER periods in each month.

Some time periods have a sharp drop-off in marginal emissions
intensity within an hour

The MOER differential characterizes the emissions reduction possible if one unit of energy
consumption can be shifted, i.e., consumed at another time up to one hour before or after
its original consumption time. Figure 3.3 illustrates how prioritizing load shift actions at
peak MOER differential times will have a much higher impact on emissions than at other
time periods. MOER differentials exhibit a trend by time of day, and most of the high
MOER differential time periods lie between 6 am - 6 pm. This has implications for load
shift: shifting loads that are active during this window will lead to the highest emissions
reductions. The short drop-off period in MOER indicates that it is critical to accurately
forecast MOER, since even a small window of error could result in shifting load to a high
MOER period.
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Figure 3.3: On the left, the spread of MOER differentials over the course of 2018 arranged in
descending order, overlaid by a plot of potential emissions reduction if load is shifted for an
increasing share of time periods over the year. On the right, the MOER differential values
by hour of day, with the top 1% highlighted in orange.

End-use loads that are active during high emissions periods

The largest end-use loads active during peak MOER periods (ref. Table 3.2) are plug loads
and heating, which makes them a good target for load shed measures. Of the shiftable end-
use loads, the largest ones active during peak MOER differential periods are plug loads and
refrigeration (ref. Table 3.2), which makes them a good target for load shift measures. Since
load only needs to be shifted over a few time periods, fast discharge batteries can be good
candidates to enable this load shift.

Time Plug Loads Lights Refrig. Heating Cooling Misc

Top 1000 MOER Values 38.6 12.9 8.5 16.0 1.1 18.3
Top 1000 MOER Differential 42.2 21.9 10.1 5.5 5.2 23.8

Yearly Average 38.3 15.3 10.1 6.8 5.4 23.6

Table 3.2: Average 15-min consumption (MWh) for different residential end use loads during
peak MOER and MOER differential periods, compared to the yearly average in 2018 in
Alameda County
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3.4 Discussion

Our analysis shows that in order to reduce CO2 emissions associated with energy consump-
tion, there are time periods in the year when it is particularly effective to modify consump-
tion. It is important to note that this analysis is specialized to the Northern Californian
grid, and that results may vary based on the particular geography and resource mix under
consideration.

The true value of these time periods can be estimated by simulating load shift and
load shed using flexible load estimates. A possible source of loaf flexibility estimates is the
California Demand Response Potential Study [29], which details load shift and shed capacity
by end-use. These estimates can be paired with energy consumption data to get a sense of
emissions reductions possible at scale.

In order to capitalize on these high impact time periods, it is important to have accurate
forecasts of emissions intensity, as well as communications and control infrastructure that
can enable consumers to act on this information.
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Part II

Electrified Transportation and the
Power Network
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Chapter 4

Marginal Value of Mobile Storage in
the Power Network

In the previous two chapters, we studied how flexible consumers can optimize their participa-
tion in demand response contracts, and the potential impact of flexible energy consumption
on emissions. With increasing electrification of transportation, the batteries in electric vehi-
cles can fulfill an important function as mobile storage for the power grid. In this chapter,
we discuss the value of this mobile storage resource for the power system. The results in this
chapter were published in [8].

4.1 Introduction

The share of variable renewable energy resources in the power grid is accelerating worldwide,
and we will require a large amount of energy storage to be connected to the grid to balance
the variability of these resources. This is driven by profound technological and economic
trends including the dramatic reduction in cost of battery systems and the advance of power
electronics for programmable inverters. Meanwhile, mandates and goals for storage deploy-
ment have been proposed in many states including California and Massachusetts. As a result,
new storage capacity is being connected to the grid at a record pace [76]. On the other hand,
transportation electrification and more generally the trend to “electrify everything”[65] are
expected to significantly increase the peak load for power systems. When the peak load is
constrained by transmission or distribution capacity, the conventional wisdom is to install
more wires or reinforce existing ones [28]. However, such wire-based solutions have high
capital costs, are usually time-consuming to implement, and can face public opposition [47].
Therefore, non-wire alternatives that can avoid or delay the need for capacity expansion are
highly valued by system operators and utility companies.

Mobile energy storage can simultaneously serve the role of energy storage and wires as
it can help balance the supply and demand in both time and space. There are many forms
of mobile energy storage. Truck-mounted mobile energy storage units have been tested by
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Con Edison [79] for utility-scale applications. Electric vehicles and electric trucks together
with bidirectional chargers can be used as mobile energy storage [64]. Internet data centers
whose load can be shifted across space (among data centers located at different geographical
areas) and time [43] behave as a form of virtual mobile storage. Understanding the value of
mobile storage, particularly with respect to the value of stationary storage and wires is an
essential first step in assessing the potential of this technology for future power systems.

Contribution and chapter organization

In this chapter, we analyze the value of mobile storage from the point of view of a power
system operator through a stylized formulation for joint operation of the power network
and a fleet of mobile storage units. It is known that the clearing price of electricity in
wholesale markets depends on location, and these prices are called locational marginal prices
(LMPs). Given the relocation pattern of mobile storage, we show that the marginal value of
mobile storage can be computed analytically using LMPs. Using this analytical expression,
we compare the marginal value of mobile storage with that of corresponding stationary
storage and wires. Examples/conditions where the marginal value of mobile storage is strictly
higher, lower, or equal to the sum of the marginal values of stationary storage and wires are
presented, which offer insights on when mobile storage is preferred over stationary storage.
We then propose efficient algorithms for the optimal storage relocation problem based on
analytical expressions for the marginal value of mobile storage.

This chapter is organized as follows: Section 6.2 describes our model for the power
network, mobile storage and transport. Section 4.3 introduces the problem of multi-period
economic dispatch with storage, and formulates the optimal relocation problem for mobile
storage. Section 4.4 studies the rapid mobile storage case, where storage can relocate and
charge rapidly. Section 4.5 treats the general mobile storage case. Section 4.7 concludes the
chapter.

Related literature

Several papers address the question of quantifying the marginal value of stationary stor-
age. Bose and Bitar [15] develop an expression for locational marginal value of storage in
a stochastic setting, i.e. when the system operator has to meet uncertain demand by dis-
patching generation and storage, and the marginal value is determined to be a function of
the expected LMPs. Qin et al. [52] derive an expression for the marginal locational value
of stationary storage in terms of locational marginal prices (LMPs) determined by the eco-
nomic dispatch problem, and propose a discrete optimization framework for optimal siting
from the system operator perspective. Bitar et al. [14] explore the economic value of storage
colocated with a wind producer. Each of these papers adds a level of complexity to the
problem of valuing stationary storage, but considers an ideal storage model with no power
constraints. Our results in Section 4.5 generalize the storage model by incorporating power
constraints.



CHAPTER 4. MARGINAL VALUE OF MOBILE STORAGE IN THE POWER
NETWORK 23

In contrast to stationary storage, mobile storage can add extra value by relocating across
the power network. There is a growing literature that addresses this. Qin et al.[54] propose
using EV batteries to reduce demand charges, and justify this value proposition through a
numerical case study. Rossi et al. [57] model the coupling between transportation and power
networks for on-demand transport services, and develop a joint optimization problem for the
combined network. The economic value of truck mounted mobile storage is evaluated using
numerical simulations in [31].

4.2 Modeling Grid, Storage, and Transportation

Notation

For any natural number n, let [n] := {1, . . . , n}. We use 1 to denote all-one vectors of
appropriate dimensions, ei ∈ Rn to denote the i-th elementary vector whose i-th element is
one and all other elements are zeros. For any time dependent vector x(t) ∈ Rn with t ∈ [T ]
and T ∈ N, we use xi ∈ RT to denote [xi(1), . . . , xi(T )]

⊤.

Power network

We consider the operation of a power network with n buses and m lines over a finite horizon
of length T . For each time slot t ∈ [T ], we denote the power generation and inelastic load
over different buses in the power network by g(t) ∈ Rn and ℓ(t) ∈ Rn, respectively. The
generation cost function for generator at bus i is denoted by Ci(·) and so the total generation
cost in time period t is

C(g(t)) =
n∑

i=1

Ci(gi(t)), t ∈ [T ]. (4.1)

For simplicity, we assume Ci(·) is convex quadratic. This assumption can be relaxed with
other conditions that ensure differentiability of the optimal value function.

Denote the net power injection vector in time period t by p(t) ∈ Rn. The net power
injection vector needs to satisfy the linearized AC power flow constraints:

1⊤p(t) = 0, t ∈ [T ], (4.2a)

Hp(t) ≤ f , t ∈ [T ], (4.2b)

where 1 denotes the all-one vector, H ∈ R2m×n refers to the shift-factor matrix of the power
network, and f ∈ R2m models the thermal constraints of the lines (cf. [52] for a derivation
of this version of the linearized AC power constraints).

Mobile energy storage

Consider a fleet of K mobile energy storage units. We denote the charging and discharging
operation of storage unit k in time period t by uk(t), with the convention that uk(t) > 0
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models charging and uk(t) < 0 models discharging. We assume that each storage unit is fully
discharged at the beginning of the decision horizon, so the state of charge (SoC) of storage
k at the beginning of time period t+ 1 is

t∑
τ=1

uk(τ), k ∈ [K], t ∈ [T ]. (4.3)

The SoC of each storage unit must satisfy the energy capacity constraint. In particular,
denote the energy capacity of storage k by sk. Then we have

0 ≤
t∑

τ=1

uk(τ) ≤ sk, k ∈ [K], t ∈ [T ]. (4.4)

Denote the vector of charging and discharging operation of storage k by uk ∈ RT . Then
constraint (4.4) can be written as

0 ≤ Luk ≤ sk1, k ∈ [K], (4.5)

where L is a lower triangular matrix defined as

Lij =

{
1, if i ≥ j,

0, otherwise.
(4.6)

In addition to the energy capacity constraint, storage units often have a power capacity
rating which limits the amount of energy that can be charged or discharged for each unit
of time. Denote the power rating of storage k by uk. In general, when we vary the energy
capacity of a storage units (e.g. by adding more battery packs), the power rating will also
vary. Thus we write uk = uk(sk) when we want to highlight this dependence, where uk(·) is
continuously differentiable.

The energy transfer into/out of a storage unit in a time period also depends on the time
that is available for storage operation. Denote the length of each time period in our discrete
time model by ∆. Since it takes time for mobile storage units to move between different
buses in the power network, the time that is available for storage k to charge or discharge
in time period t, denoted by ∆S

k(t), satisfies 0 ≤ ∆S
k(t) ≤ ∆. As a result, the power capacity

leads to the following constraint

−∆S
k(t)uk ≤ uk(t) ≤ ∆S

k(t)uk, k ∈ [K], t ∈ [T ]. (4.7)

Denote the bus at which storage k is located at the beginning of time period t by ik(t),
and define matrix E(t) ∈ Rn×K as

E(t) =
[
ei1(t) . . . eiK(t)

]
, t ∈ [T ], (4.8)
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where ei is the i-th elementary vector with a one at the i-th element and zeros elsewhere.
Note that the sequence {ik(t)}t∈[T ] characterizes the relocation process (i.e., the trajectory)
of storage k, while E(t) provides a snapshot of the locations of all mobile storage units in the
power network in time period t. For convenience, we denote the collections of trajectories
and snapshots by

I = {Ik}t∈[T ] := {ik(t)}k∈[K],t∈[T ], E := {E(t)}t∈[T ], (4.9)

respectively, where we use Ik to denote the trajectory of mobile storage k. Since (4.8) defines
a one-to-one mapping between I and E, we will use them interchangeably.

Transportation model

The system operator can determine whether to relocate storage k in each time period. If
storage k is relocated in time period t, a portion of time period t is used to move the storage
from one bus to another. Let D ∈ Rn×n be a matrix whose (i, j)-th element is the travel
time from bus i to bus j. We assume that the length of the time intervals ∆ is selected so
that Di,j ≤ ∆ for all i, j. Denote the time needed for moving storage k in time period t by
∆M

k (t). Since storage k is moved from bus ik(t) to bus ik(t+ 1) in time t, we have

∆M
k (t) = e⊤ik(t)Deik(t+1), k ∈ [K], t ∈ [T ]. (4.10)

Thus the time left for storage to charge or discharge in time period t is

∆S
k(t) = ∆−∆M

k (t), k ∈ [K], t ∈ [T ]. (4.11)

We adopt the convention that if a storage k is moved in time period t, it will first use ∆S
k(t)

time to charge/discharge at bus ik(t) and then use ∆M
k (t) time to relocate to bus ik(t+ 1).

Transporting energy storage between buses is costly. For example, truck mounted mobile
storage consumes fuel to travel between buses. Denote the relocation cost per unit of travel
time by κ. Then the total cost for relocation is

JR(I) := JR
k (Ik) := κ

K∑
k=1

T∑
t=1

e⊤ik(t)Deik(t+1), (4.12)

where JR
k (Ik) is the relocation cost for the k-th mobile storage unit.

4.3 Optimal Dispatch and Relocation

In a centralized optimization setting, the system operator controls both the power grid and
the mobile storage fleet. Given the locations of the mobile storage units E, the operation of
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the grid and the charging/discharging of the storage units can be formulated as the following
optimization problem:

min
p,u

T∑
t=1

Ct(p(t)) (4.13a)

s.t. 1⊤(p(t)− d(t)− E(t)u(t)) = 0, t ∈ [T ], (4.13b)

H(p(t)− d(t)− E(t)u(t)) ≤ f , t ∈ [T ], (4.13c)

0 ≤ Luk ≤ sk1, k ∈ [K], (4.13d)

− uk(sk)∆
S
k ≤ uk ≤ uk(sk)∆

S
k, k ∈ [K]. (4.13e)

where {∆S
k}k∈[K] is calculated via (4.10) and (4.11), and the locations of mobile storage units

summarized by E(t) are given. We refer to this problem as multi-period economic dispatch
problem with storage (MPED-S). The optimal value of this problem characterizes the total
generation cost of meeting the loads when generators and storage charging/discharging are
optimized. Denote the optimal value as a function of the storage locations and storage
capacities by JED(E, s).

Note that it is possible to incorporate stationary storage into our model by disallowing
relocation of a subset of mobile storage units. In other words, if storage unit k̃ is a stationary
storage, we require ik̃(t) or the k̃-th row of matrix E(t) to stay constant over time. Alter-
natively, stationary storage can be modeled using a separate set of variables and constraints
in the MPED-S problem (cf. [52]).

The problem of optimizing the movements of the mobile storage fleet is then

min
I

JED(E(I), s) + JR(I), (4.14)

where the initial locations of the mobile storage units {ik(1)}k∈[K] are given, and the decision
variable I := {ik(t)}k∈[K],t∈[T ] is optimized such that each ik(t) ∈ IS

k ⊆ [n] and IS
k is the set

of buses with which mobile storage unit k can be connected.
Note that unlike the multi-period economic dispatch problem (4.13) which is a convex

program, the optimal storage relocation problem (4.14) is a combinatorial optimization prob-
lem.

4.4 Rapid Mobile Storage

We first consider storage that can both charge/discharge and move instantaneously: it does
not require any time to move between buses, and the power limit for charging and discharging
is large enough that the power constraints (4.13e) are never binding. This analysis serves
two purposes: (a) it provides a theoretical account of the problem focusing on the relocation
aspect while omitting the complexity associated with travel times (which is addressed in
Section 4.5), and (b) it offers a good model for virtual mobile storage, including storage
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capabilities offered by flexible loads that are geographically shiftable such as a collection of
Internet data centers.

Given the locations of the mobile storage units E, the MPED-S problem is given by (4.13)
without the power constraint (4.13e):

min
p,u

T∑
t=1

Ct(p(t)) (4.15a)

s.t. 1⊤(p(t)− d(t)− E(t)u(t)) = 0, t ∈ [T ], (4.15b)

H(p(t)− d(t)− E(t)u(t)) ≤ f , t ∈ [T ], (4.15c)

0 ≤ Luk ≤ sk1, k ∈ [K]. (4.15d)

While we do not model travel times for storage relocation for power constraints in this case,
we can still capture the cost of moving storage from one bus to another. In particular, we use
κDij to model the cost of relocating from bus i to bus j. For the example of Internet data
centers, this cost may model the loss of quality of service from moving energy consuming
data-processing loads from one data center to another. With relocation cost defined as
(4.12), the optimal relocation problem still takes the form of (4.14).

Marginal value of rapid mobile storage

Tackling the optimal relocation problem requires a good understanding of the optimal value
of MPED-S problem (4.15), which in turn depends on the spatial and temporal distribution
of storage capacities. One way to characterize such dependence is through analyzing the
marginal value of mobile storage with fixed relocation pattern E.

Definition 2 (Marginal value of mobile storage). Given storage relocation pattern E, the
marginal value of mobile storage k is defined as

MVms
k (E, s) = −∂JED(E, s)

∂sk
, k ∈ [K]. (4.16)

The quantity MVms
k (E, s) characterizes the reduction in the operation cost of the grid

when we marginally increase the storage capacity of mobile storage k, given the relocation
pattern E. As the objective function of (4.15) is convex quadratic, it is easy to check that
the partial derivatives in (4.16) indeed exist.

It turns out that we can obtain an explicit and intuitive characterization ofMVms
k (E, s) via

the dual variables of (4.15). Denote the (optimal) dual variables associated with constraints
(4.15b), (4.15c), and (4.15d) by γ(t) ∈ R, β(t) ∈ R2m, and (νk,µk) ∈ RT ×RT , respectively,
where νk is associated with the lower bound in (4.15d) and µk is associated with the upper
bound. We can also calculate the locational marginal prices (LMPs), denoted by λi(t), for
each bus i and time period t using these dual variables (cf. [52]):

λ(t) = γ(t)1−H⊤β(t), t ∈ [T ]. (4.17)
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Notice that the dual variables and LMPs depend implicitly on the relocation pattern E and
storage capacities s.

Theorem 4 (Marginal value of mobile storage). The marginal value of mobile storage k
with relocation pattern E is

MVms
k (E, s) = 1⊤µk =

T∑
t=1

(
λik(t+1)(t+ 1)− λik(t)(t)

)
+
, (4.18)

where λ(T + 1) := 0.

Proof. From the Lagrangian of the economic dispatch problem in (4.15), we get that

MVms
k (E, s) = 1⊤µk.

Further, from the stationarity KKT condition with respect to uk(t), we get

L⊤
t (µk − νk) = −γ(t) + Ek(t)

⊤H⊤β(t),

where L⊤
t is the tth column of L⊤, and Ek(t) is the kth column of E(t). At any time, only

one of the pair of constraints in (4.15d) will be binding. Hence, either µk(t) = 0 or νk(t) = 0.
Using the definition of λ(t) from (4.17), we get the expression in (4.18).

We can see that the marginal value of mobile storage can be directly obtained by sum-
ming up the dual variables associated with the upper bound in storage capacity constraints
(4.15d). Indeed, the dual variable µk upper bounds the improvement in the objective func-
tion (generation costs) per unit relaxation of the constraint, i.e. per unit increase in the
storage capacity. Finally, the marginal value of mobile storage k can be calculated from the
sum of (non-negative) increases in LMPs along the relocation path of the mobile storage
unit.

Comparison to stationary storage and wires

Theorem 4 not only provides a way to relate the marginal value of a mobile storage unit
to its relocation path, but also offers insights for understanding the value of mobile storage
through well-understood quantities in electricity markets. In particular, we can compare
the marginal value of a mobile storage to the marginal value of wires and stationary energy
storage. To this end, we denote the marginal value of the capacity associated with e-th
line capacity constraint by MVw

e , and denote the marginal value of stationary energy storage
located at bus i by MVss

i . These quantities are related to the dual variables as follows [52,
68]:

MVw
e =

T∑
t=1

βe(t), MVss
i =

T∑
t=1

(
λi(t+ 1)− λi(t)

)
+
. (4.19)
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For convenience, we also define the marginal values for each time period as

MVw
e (t) = βe(t), MVss

i (t) =
(
λi(t+ 1)− λi(t)

)
+
, (4.20)

MVms
k (t) = µk(t) =

(
λik(t+1)(t+ 1)− λik(t)(t)

)
+
, (4.21)

for each t ∈ [T ], e ∈ [2m], i ∈ [n] and k ∈ [K], where we have omitted the dependence on E
and s as they are fixed in this subsection.

We provide three illustrative examples highlighting the role of mobile storage with dif-
ferent power network topologies and congestion patterns.

Example 1: mobile storage = storage + wire

Consider a two-bus network operated across two time periods. This is illustrated in Fig. 4.1
using a time-extended graph of the network. Here each node in time period t represents a
bus in the power network, black solid lines represent electric wires, the blue solid line and the
blue dashed line represent the “power flow links” created by a mobile storage unit moving
from bus 1 to bus 2 and a stationary storage unit located at bus 2, respectively.

1

2

Period 1

1

2

Period 2

Figure 4.1: Time-extended graph for Example 1: mobile storage = storage + wire

Suppose for this network we have λ2(2) > λ2(1) > λ1(1). Then we can obtain (see
e.g. [68] for the relation between LMPs and dual variables associated with transmission
constraints for a radial network) that MVw(1) = λ2(1)−λ1(1), MVss(1) = λ2(2)−λ2(1), and
MVms(1) = λ2(2) − λ1(1), where we have omitted the subscripts for the marginal values as
they are clear from the context. As a result,

MVms(1) = MVw(1) +MVss(1), (4.22)

in this case. This is intuitive as both flow paths (i = 1, t = 1) → (i = 2, t = 2) and
(i = 1, t = 1) → (i = 2, t = 1) → (i = 2, t = 2) enable sending energy from (i = 1, t = 1) to
(i = 2, t = 2).
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In fact, we can show this holds for any radial network:

Lemma 5 (Radial network). For a mobile storage unit moving from bus i to bus j in time
period t, its marginal value for time period t is the same as the sum of marginal values of
wires on the path from bus i to bus j on the power network for period t and the marginal
value of a stationary storage unit located at bus j for period t.

Proof. For a two node network with a single edge, we can obtain from (4.17) that λ2−λ1 = βe

at any time. A radial network has a single unique path between any two nodes, and the
difference in LMPs of any two nodes can be decomposed similarly as a sum of βe along the
edges in the path.

Example 2: mobile storage > storage + wire

Now we consider the operation of a three bus network across 2 periods as depicted in Fig. 4.2.
The mobile storage unit moves from bus 3 to bus 1. Suppose that λ1(2) > λ1(1) > λ3(1),
and the line 3 → 1 and another line in the loop (i.e., 3 → 2 or 2 → 1 in power network) are
congested in period 1. In this case, we have β3→1(1) < λ1(1) − λ1(3), where β3→1(1) is the
dual variable associated with the line capacity constraint for the flow from bus 3 to bus 1 in
time period 1. Appendix A provides the data for a problem instance where this holds.

1

2

Period 1

3

1

2 3

Period 2

Figure 4.2: Time-extended graph for Example 2 and 3: mobile storage ̸= storage + wire

In this case, we have MVms(1) = λ1(2)− λ3(1), MVss(1) = λ1(2)− λ1(1), and MVw(1) =
β3→1(1) < λ1(1)− λ1(3). Therefore, it is clear that

MVms(1) > MVw(1) +MVss(1), (4.23)

where MVw(1) denotes the marginal value of the line connecting bus 3 and bus 1 in time
period 1. The gap stems from the fact that the flow paths (i = 3, t = 1) → (i = 1, t = 2)
and (i = 3, t = 1) → (i = 1, t = 1) → (i = 1, t = 2) are not equivalent. This is because
for a power network with loops the flow on a line in the loop cannot be freely determined
due to Kirchhoff’s voltage law. When another line in the loop is also congested, increasing
the capacity of link 3 → 1 in the power network by one unit does not mean that we can
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increase the flow on the link by one unit due to the binding capacity constraint of the other
congested line. This effect is referred to as loop externality [78].

Example 3: mobile storage < storage + wire

Consider the same network and storage configuration in Example 2 (Fig. 4.2). Now we
require that λ1(2) > λ1(1) > λ2(1) > λ3(1), and the line 3 → 1 is the only line congested in
period 1. In this case, increasing the capacity of line 3 → 1 can increase not only the flow
on the link 3 → 1, but also allow the flow along the links 3 → 2 → 1 to be increased. As a
result, we can have β3→1 > λ1(1)− λ3(1). It follows that in this case, we have

MVms(1) < MVw(1) +MVss(1), (4.24)

where MVw(1) denotes the marginal value of the line connecting bus 3 and bus 1 in time
period 1. Appendix A provides a numerical example where this holds.

Optimal relocation of small mobile storage

Solving the optimal relocation problem for rapid mobile storage using brute-force methods
is computationally intractable because the computation time scales with the problem size as
O(nKT ). However, in practice, we can simplify the optimal relocation problem for a mobile
storage fleet because we expect that the storage capacities of such fleets will be relatively
small in the near future. This is motivated by the fact that the total storage capacity is
still a tiny fraction of the total power load. To get a sense, the estimated total capacity of
storage deployed in 2020 is about 0.296% of the estimated load in the same year [76]. We
formalize this concept in the following assumption:

Assumption 3 (Small storage). We assume that the storage capacities s are small so that

argminI{JED(E(I), s) + JR(I)} = argminI{ĴED(E(I), s) + JR(I)}, where ĴED(E, s) is the
first order Taylor approximation of JED(E, s):

ĴED(E, s) = JED(E,0)−
K∑
k=1

MVms
k (E,0)sk. (4.25)

Note that Assumption 1 does not rule out the possibility that there is a significant amount
of stationary storage connected to the system. These stationary storage units can be modeled
using a separate set of variables and constraints in the MPED-S problem.

Under the small storage assumption, the optimal relocation problem for the fleet de-
couples. In other words, solving the optimal relocation problem for a fleet is equivalent to
solving K optimal relocation problems for individual units:

max
Ik

MVms
k (E,0)sk − JR

k (Ik), k ∈ [K], (4.26)



CHAPTER 4. MARGINAL VALUE OF MOBILE STORAGE IN THE POWER
NETWORK 32

where the initial locations of the mobile storage units {ik(1)}k∈[K] are given, and the decision
variable Ik = {ik(t)}t∈[T ] is optimized such that each ik(t) ∈ IS

k ⊆ [n] and IS
k is the set

of buses with which mobile storage unit k can be connected. The optimal trajectory for
different storage units may be different because they have different storage capacities and
initial locations.

The optimal relocation problem (4.26) can be converted into a shortest path problem and
thus solved efficiently in polynomial time (O(n2T )) with a range of algorithms including the
Bellman-Ford algorithm and linear programming. Indeed, we can construct a time-extended
graph G(V , E). The set of nodes V includes T copies of all the nodes in the power network
[n], and a dummy sink node. The set of edges E includes directed edges from every node i
in t-th copy to every node j in the (t+ 1)-th copy, with edge weight

wij(t) = κDij − sk(λj(t+ 1)− λi(t))+, t ∈ [T − 1], (4.27)

and directed edges from every node in the T -th copy to the dummy sink node, with edge
weight 0. Here the LMPs are calculated using dual variables for (4.15) with s = 0. By
solving the shortest path problem from source node ik(1) to the dummy sink node in the
time extended graph, we can identify the optimal trajectory {ik(t)}t∈[T ] for storage k.

Fig. 4.3 provides an example of the graph on which we are solving the shortest path
problem for determining the optimal relocation of mobile storage k.

1
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Figure 4.3: Example of the time extended graph on which the shortest path problem is
defined. In this example, n = 3, T = 3, and the initial location for storage k is ik(1) = 2.

4.5 General Mobile Storage

In practice, the time needed for relocating mobile storage units is not negligible, and both
energy limits and power limits should be considered for mobile storage operation. In this
case, we need to solve the general version of the MPED-S problem (4.13) and the optimal
relocation problem (4.14).
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Marginal value of mobile storage

As in Section 4.4, we quantify the marginal value of mobile storage for a fixed relocation
pattern E. Denote the (optimal) dual variables associated with constraints (4.13b) and
(4.13c) by γ(t) ∈ R and β(t) ∈ R2m. νk and µk are associated with the lower bound and
upper bound in (4.13d), and ωk and ϕk are associated with the lower bound and upper
bound in (4.13e), respectively. We define the LMPs λ(t) as in (4.17).

When the power limits depend on the energy limits (i.e., ūk is a function of s̄k), it is
necessary for us to keep track of which constraints (energy or power) are binding at each
time step. For simplicity, we introduce the following standard assumption for the MPED-S
problem under consideration.

Assumption 4 (LICQ). Given any relocation pattern E, the constraints binding at the
solution of the MPED-S problem (4.13) are linearly independent.

When optimizing the movement of mobile storage in a power network, we may be able
to forecast the LMPs ahead of time. These prices will not be affected by the movement
of mobile storage under the small storage assumption (Assumption 3). Meanwhile, we can
identify the set of binding storage constraints for each storage k using a simpler optimization
involving LMPs and the parameters for the storage unit.

Lemma 6. Suppose that for each storage k, the price arbitrage problem given by

max
uk

−
T∑
t=1

λik(t)(t)uk(t)

s.t. 0 ≤ Luk ≤ sk1;−uk(sk)∆
S
k ≤ uk ≤ uk(sk)∆

S
k.

(4.28)

has a unique solution. Then the optimal operation uk for storage k in a solution of the
MPED-S problem (4.13) is the same as the solution of the price arbitrage problem (4.28).

Corollary 7. Since the optimal operation of storage k in the MPED-S problem (4.13) co-
incides with the solution of the price arbitrage problem (4.28), they will lead to the same
collection of binding constraints for storage k.

Under Assumption 4, the binding constraints in (4.28) can then be used to partition [T ]
into two disjoint sets:

T e
k (E) = {ter}r∈[T e

k ]
, T p

k (E) = {tps}s∈[Tp
k ]

where T e
k (E) and T p

k (E) represent the times when energy capacity and power capacity con-
straints are binding, and T e

k and T p
k are the number of time periods within T e

k (E), T
p
k (E),

respectively. Henceforth we omit the dependence on E and k to simplify the notation. Let
σ : T p 7→ T e denote the mapping from each power capacity constrained time to the next
energy capacity constrained time, i.e., σ(tp) = infτ{τ ∈ T e : τ > tp}. Fig. 4.4 provides an
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tp1 tp2 te1 tp3 te2 Time

Figure 4.4: σ operator

illustration of σ. The σ mapping is defined for all tp ∈ T p when T ∈ T e. This is the case
when we have nonnegative LMPs since the optimal state of charge (SoC) in the terminal
time period T will be empty.

Theorem 8 (Marginal value of mobile storage). The marginal value of mobile storage k
with relocation E is

MVms
k (E, s̄) = 1⊤µk + ū′

k(s̄k)(∆
S
k)

⊤(ωk + ϕk), (4.29)

where for each ter ∈ T e,

µk(t
e
r) =

(
λik(t

e
r+1)

(ter+1)− λik(ter)(t
e
r)
)
+
, (4.30)

ωk(t
e
r) + ϕk(t

e
r) = 0, (4.31)

for each tps ∈ T p,

µk(t
p
s) = 0, (4.32)

ωk(t
p
s) + ϕk(t

p
s) =

∣∣λik(σ(t
p
s ))(σ(t

p
s))− λik(t

p
s )(t

p
s)
∣∣ , (4.33)

and we define teT e+1 := T + 1 and λ(T + 1) := 0.

Similar to the rapid storage case (4.18), the marginal value of mobile storage is non-
negative, i.e., increasing the storage capacity s̄k will weakly decrease the optimal cost for the
dispatch problem. The marginal value is obtained by summing the dual variable associated
with the upper bound in the storage capacity constraint (4.13d), and the dual variables
associated with the power constraints (4.13e) weighted by the time available to charge ∆S

k

and the dependence of power capacity on storage capacity ū′
k(s̄k). The dual variable ωk

characterizes the value of increasing the discharging power capacity, and the dual variable
ϕk characterizes the value of increasing the charging power capacity. Comparing the marginal
value expression in (4.29) to that of rapid mobile storage (4.18), we observe that the new
expression uses LMP increases across consecutive energy capacity-constrained time periods
as well as LMP differences across power constrained and energy constrained time periods.
The price arbitrage across ter ∈ T e is not a complete measure of the marginal value, as
charge/discharge also occurs at intermediate time steps (tpr ∈ T p).
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Corollary 9. In the case that power constraints have no dependence on sk, i.e. u
′
k(sk) = 0,

the marginal value is

MVms
k (E, s̄) = 1⊤µk (4.34)

with µk(t) defined as in Theorem 8.

This is similar to the case in Theorem 4, as any increase in storage capacity will not
alleviate power constraints. However, the expression for µk here is different from that in
Theorem 4 due to the storage power constraints. Stationary storage can also be viewed as a
special case of mobile storage where the battery is located at a single bus at all times.

Corollary 10 (Marginal value of stationary storage). The marginal value of stationary
storage k located at bus i, i.e., ik(t) = i for all t, is

MVss
k (̄s) = 1⊤µk + ū′

k(s̄k)∆1⊤(ωk + ϕk) (4.35)

where for each ter ∈ T e,

µk(t
e
r) =

(
λi(t

e
r+1)− λi(t

e
r)
)
+
, ωk(t

e
r) + ϕk(t

e
r) = 0, (4.36)

for each tps ∈ T p,

µk(t
p
s) = 0, ωk(t

p
s) + ϕk(t

p
s) = |λi(σ(t

p
s))− λi(t

p
s)| , (4.37)

and we define teT e+1 := T + 1 and λ(T + 1) := 0.

This result generalizes existing results on the locational marginal value of stationary
storage [15, 52] by incorporating storage power constraints.

Comparison to stationary storage and wires

Since the rapid mobile storage model discussed in Section 4.4 is a special case of the general
mobile storage model, the examples discussed in Section 4.4 remain valid for the general mo-
bile storage model. However, Lemma 5 does not generalize to the general mobile storage case
as the storage power constraints and time taken to travel can impact the marginal value of
mobile storage. Intuitively, with a nonzero travel time, the time available for mobile storage
to charge/discharge is strictly less than that for stationary storage. As a result, in scenarios
where the storage power constraints are binding and the reduced charging/discharging time
matters, the marginal value of mobile storage can be strictly less than the sum of marginal
values of the corresponding stationary storage unit and wires even if the network does not
have loops.
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Optimal relocation of small mobile storage

Under Assumption 3, the optimal relocation problem for the mobile storage fleet decouples
as in the case of rapid mobile storage, and we can use LMPs for s = 0 in the marginal value
calculation. However, the marginal value of general mobile storage depends on the order of
binding constraints. When the constraint binding pattern (T e, T p) is given, we can identify
the optimal relocation associated with (T e, T p) by solving a shortest path problem referred
to as SP-E(T e, T p) over all energy constrained time periods. We construct a time-extended
graph G(V , E) where the set of nodes V includes T e copies of all the nodes in the power
network [n], and a dummy sink node. The set of edges E includes directed edges from every
node i in the copy corresponding to ter to every node j in the copy corresponding to ter+1,
with an edge weight

wij(t
e
r) =

{
−sk

(
λj(t

e
r+1)− λi(t

e
r)
)
+
+ κDij, if ter+1 = ter + 1,

−sk
(
λj(t

e
r+1)− λi(t

e
r)
)
+
+ JSP-P

ij (ter), otherwise,

and directed edges from every node in the T e-th copy to the dummy sink node, with edge
weight 0. If ter+1 ̸= ter +1, there are power constrained time periods between ter and ter+1, and
the edge weight will depend on the cost of traveling along an optimal path for all intermediate
power constrained time periods tps ∈ {ter + 1, . . . , ter+1 − 1} denoted by JSP-P

ij (ter).

Calculating JSP-P
ij (ter)

The optimal path for the power constrained time periods between ter and ter+1 can be found
by formulating a shortest path problem referred to as SP-Pij(t

e
r). For each i, j ∈ [n], ter ∈ T e,

we construct a shortest path problem on a time-extended graph G̃(Ṽ , Ẽ) where we omit

the dependence on i, j and ter to simplify notation. The set of nodes Ṽ include a source
node (representing node i in time ter), a sink node (representing node j in time ter+1), and
a copy of all the nodes in the power network [n] for each tps ∈ {ter + 1, . . . , ter+1 − 1}. The

set of edges Ẽ includes (a) a directed edge from the source node i to every node j̃ ∈ [n]
in the first copy (which corresponds to tps = ter + 1), with weight wi j̃ = κDi j̃, (b) if |{ter +
1, . . . , ter+1 − 1}| > 1, a directed edge from every node ĩ ∈ [n] in the copy corresponding to

each tps ∈ {ter +1, . . . , ter+1 − 2} to every node j̃ ∈ [n] in the copy corresponding to tps+1, with
weight

w ĩ j̃(t
p
s) = κD ĩ j̃ − sku

′
k(sk)∆

S
ĩ j̃
|λj(t

e
r+1)− λ ĩ(t

p
s)|, (4.38)

and (c) a directed edge from each node ĩ ∈ [n] in the last copy (corresponding to tps = ter+1−1)
to the sink node j, with weight defined in (4.38). We overload the notation ∆S

ij to represent
the time available for battery operation if it travels from node i to j in that time period.
JSP-P
ij (ter) is the cost of traveling along the shortest path in this extended graph.
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Solving SP-E(T e, T p)

In order to solve SP-E(T e, T p), we first solve JSP-P
ij (ter) for each i, j ∈ [n], ter ∈ T e and

determine the edge weights of the time-extended graph G(V , E). We then solve the shortest
path problem SP-E(T e, T p) using the edge weights determined by (4.38).

Identifying optimal relocation E

First, from the solution of SP-E(T e, T p), we obtain the sequence of nodes where mobile
storage is located at each time in T e. We use this to obtain the nodes (i, j) at which the
mobile storage is located for each pair of non-consecutive energy constrained time periods
(ter, t

e
r+1 such that ter+1 ̸= ter+1), and the solution to SP-Pij(t

e
r) provides the relocation pattern

for the storage during the power constrained time periods between ter and ter+1. Piecing
together the locations of the storage in energy constrained times and power constrained
times results in the optimal relocation pattern E(T e, T p) given (T e, T p).

In practice, we do not know the constraint binding patterns (T e, T p) without knowing
the optimal relocation, as moving along different relocation paths will change the optimal
storage operation. One approach is to enumerate all possible constraint binding patterns
(T e, T p) and solve SP-E(T e, T p) for each constraint binding pattern. This will result in an
optimal relocation pattern E(T e, T p), whose consistency with the assumed constraint binding
pattern needs to be checked by computing the actual constraint binding pattern under this
relocation pattern and comparing with the assumed (T e, T p). If they are the same, this
relocation pattern is an admissible solution. After going through all O(2T ) possibilities, we
can find the optimal relocation pattern by finding the admissible solution with the lowest
cost. Since for small storage either energy or power constraint is binding at every time step,
this amounts to solving the shortest path problem described above O(2T ) times. As our
model focuses on daily operation with every time period long enough for mobile storage to
relocate, T is usually relatively small (e.g., T = 12 for 2 hour time periods). Algorithm 1
summarizes the steps to generate an optimal relocation path for general mobile storage.

Algorithm 1: Optimal relocation for general mobile storage

for each possible (T e, T p) do
for ter ∈ T e, i, j ∈ [n] do

Compute JSP-P
ij (ter) by solving SP-Pij(t

e
r);

Compute weights in SP-E(T e, T p) with (4.38);
end
Compute E(T e, T p) by solving SP-E(T e, T p); if E(T e, T p) is admissible then

Store E(T e, T p)
end

end
return E⋆ with the minimum cost among all the stored E(T e, T p)
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Figure 4.5: Average LMP of the selected nodes in May 2021

4.6 Illustrations

We consider a subset of price nodes in Maryland within PJM territory, shown in Fig. 4.5,
which are intended to be representative of LMP zones. The LMPs for nodes are obtained from
the PJM DataMiner [1] for the month of May 2021. LMP node names are used to identify
locations on a map, and we model the entirety of an LMP zone as a single interconnection
point. The travel time between nodes is modeled using the straight line distance and a
speed of 50 miles per hour, and travel cost is taken to be 4 cents/mile from the US DoE
estimate [2] for passenger EVs, and 16 cents/mile for an electric truck. We consider a time
horizon of 24 hours, with a time step of 1 hour. We model two mobile storage units: a Tesla
Model 3 with a 50 kWh battery and a maximum power throughput of 11 kW (level 2 AC
charging power), and a Tesla Semi with a 500kWh battery and maximum power throughput
of 100 kW. The selected nodes exhibit spatial price differences, illustrated by variation in
the average LMP in Fig. 4.5. They also exhibit temporal price variation, i.e., the LMP at a
single node varies over the course of the day. In Fig. 4.6 we show the spread of prices over
two days in the month of May. At each hour, the LMPs across all nodes are used to make a
boxplot to illustrate how the LMPs are spread out. A longer boxplot height indicates that
there is high spatial variance in LMP at that hour, which is the case on 4 May 2021 at 4
pm. A shorter boxplot indicates that the LMP across nodes is largely similar, which is the
case on 8 May 2021. The spatial variation in prices can change significantly from one day
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Figure 4.6: Range of LMPs across nodes on two dates

to the next, depending on the grid constraints in force on either day. A mobile storage unit,
e.g., an EV can capitalize on these differences as discussed previously. We use Algorithm 1
to optimize the movement and operation of an EV over the price nodes in Fig. 4.5 on 4 May
2021, a day of high spatial LMP variation.

We start by modeling a Tesla Model 3, which is initially charged to 40%, and starts the
day at the LANHAM node. Fig. 4.7 illustrates the movement of the EV over the course of
4 May 2021. The arrows indicate the optimized movement of the EV over time, and the
circles indicate the change in state-of-charge (SoC) at each node with a radius proportional
to the magnitude of the net energy charge or discharge at that node. Red circles indicate
discharging and green circles indicate charging. The EV starts at 40% charge from a node
in the bottom-right corner of the figure, and continues to move across nodes over the course
of the day, ending the day at a node in the top-left corner with 0% charge. The value gained
from arbitrage is $7.12, and the travel costs work out to $0.78, making the net profit $6.34
for 4 May 2021. Most of the value is captured by discharging at BELLSMIL node at 5 pm and
6 pm. This indicates that there are a few high-value hours when we can prioritize dispatch.

We now consider a Tesla Semi that moves across the power network to maximize its
price arbitrage value. A Tesla Semi has a significantly higher battery capacity, and can
consequently generate more value. The optimal movement for a truck starting at 40%
capacity is illustrated in Fig. 4.8, and the value gained from arbitrage is 69.8$. The travel
costs work out to 3.23$ over the course of the day. The net profit from operating this EV
on 4 May 2021 is 66.56$, and most of the value is generated by discharging during 5-7 pm,
i.e., there are a few high-value hours when we can prioritize dispatch.

While putting these numerical results in perspective, we need to consider that all days
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Figure 4.7: Movement of an EV over the course of 4 May 2021 with charging/discharging
operations

Figure 4.8: Movement of a Tesla Semi truck over the course of 4 May 2021 with charg-
ing/discharging operations.

will not look the same for an EV conducting price arbitrage. We chose a date which had
high inter-node price variability which led to higher revenue from spatial price arbitrage.
We also modeled an EV that could be controlled completely, i.e., could be moved around
and charged/discharged at will. In reality, operators will likely not be able to control EV
movement without giving monetary incentives, and may have to work with existing EV
movement patterns (e.g., people driving their EVs to work and back). They will also not
be able to charge/discharge the full battery capacity, and will have to reserve a portion of
the battery to move the EV itself. Charging and discharging the battery will accelerate its
degradation, and there will be associated costs that the operator will have to incur.

At the same time, there are a number of ways that mobile storage could provide value to
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the grid while also garnering enough compensation to incentivize the driver. As discussed,
most of the day’s value is captured in a few hours, and mobile storage operators could be
strategically incentivized to capture arbitrage value in those few hours. There are also a few
high value nodes within the network which have a larger difference in LMPs across the day
as compared to other nodes. If mobile storage is initially located near those nodes, it will be
able to generate more value. EV batteries can also potentially provide high value services,
such as peak shaving for commercial buildings [54] or ancillary services. The optimal service
and market model through which mobile storage participates in the power network will de-
pend on the availability of bidirectional charging infrastructure and the market participation
programs in place.

These simulations are an important step in modeling the value of mobile storage. How-
ever, they represent only one side of the picture, and in order to fully evaluate this new
resource we also need to model the cost of mobile storage. For example, the cost of travel is
not just the cost of the electrical energy needed to move the vehicle, but also the amortized
cost of the full vehicle, which is why the IRS allows 65.5 cents/mile as a business expense
[70]. The cost of travel will also include wages for the driver, which will vary by region. The
effective cost of the mobile storage resource will also vary by the technology being consid-
ered - Li-ion batteries in electric vehicles vs. moving electricity consumption in data centers
across locations. Developing cost models for mobile storage is a critical task that we leave
for future work.

4.7 Discussion

This chapter formalizes the marginal value of mobile storage from a system operator’s per-
spective and develops analytical expressions for two storage models: a simplified rapid storage
model and a general storage model that incorporates travel time and power constraints. We
developed illustrative examples to demonstrate the value of mobile storage as compared to
stationary storage and wires. Efficient algorithms to compute the optimal relocation path
are then proposed based on analytical expressions for the marginal value of mobile storage.

In practice, the mobile storage resource will likely be owned and operated independently,
e.g., by EV owners. It is important to consider their response to the incentives provided
(i.e., to being compensated at wholesale market prices), and to characterize their equilibrium
operation. We discuss the EV operator perspective in Chapter 5.
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Chapter 5

Electric Vehicle Battery Sharing
Game: Mobile Storage Service
Provision in Power Networks

In the previous chapter, we developed analytical expressions for the marginal value of rapid
and general mobile storage from a system operator’s perspective, and devised algorithms to
optimally relocate mobile storage. In this chapter, we examine the mobile storage sharing
game, where an EV operator can choose to use their EV battery to participate as mobile
storage in the power system. The work in this chapter was presented in [7].

5.1 Introduction

Transportation causes 29% of global CO2 emissions[69], and electrifying transport is an
important step in any climate change mitigation plan. Some transportation sectors such as
long-haul trucking, shipping and aviation are difficult to electrify due to the requirement for
larger batteries with higher energy density, critical battery safety concerns, and the need for
high-power charging. In contrast, the passenger vehicle sector has seen rapid electrification
in the last 10 years with 9% of global car sales being electric vehicles (EVs) in 2021 [34].
EVs are equipped with batteries which can also be used to function as mobile energy storage
in the power network with the help of bidirectional chargers, by charging at the origin of a
route and discharging at the destination, thus moving energy across both space and time.
Such mobile energy storage in the form of EV batteries can help avoid time consuming and
expensive transmission line upgrades, and also serve as energy storage on the grid [8].

In contrast with utility scale battery projects that can be dispatched by the power system
operator, EVs are owned and operated by individual drivers. EV drivers will make indepen-
dent decisions on whether to provide mobile storage service based on their individual costs
and the value they create, which will be determined by the operation of the power network
and on how much mobile storage capacity is available in the grid. They may have different
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motivations: some EV drivers may function as commuters, i.e. travel along fixed routes,
and some EV drivers could be available on-demand to travel along specific routes to provide
mobile storage service. A fundamental question arises: will the market equilibrium lead to a
socially desirable level of mobile storage capacity?

This chapter examines this question in three contexts: (a) when there are a number of
commuter EVs traveling along fixed routes in the power network which can provide mobile
storage service along those routes, (b) when there are a number of on-demand EV drivers
which can provide mobile storage service along any route, and (c) when there is a mix of
commuter EVs and on-demand EVs in the network. The mobile storage service is provided in
a wholesale market, and a transmission-constrained two-period economic dispatch problem
is solved to determine the operation of the grid and mobile storage. This also determines the
locational marginal prices, which are used to compensate mobile storage service providers.
We make the following research contributions: (a) we develop novel game theoretic models
in the context of sharing EV batteries as mobile energy storage, which incorporate both
operation constraints of the power network and incentives for the EV drivers; (b) we explicitly
characterize the Nash Equilibrium (NE) of the proposed EV battery sharing games together
with several benchmarks, and establish that NE support social welfare for all our settings.

Our work is built upon two lines of recent research. The first is game theoretic analysis
of storage sharing. Among many papers in this area, the closest related works include: [37],
which studies the storage sharing and investment decisions of a collection of firms without
considering network constraints, and [53], which analyzes the distributed storage investment
game in power networks. [16] formulates a cooperative game for sharing energy storage
within a residential microgrid, [80] formulates a Stackelberg game to model the sharing of
cloud energy storage, and [81] studies a two-stage problem of a central storage owner sharing
virtualized sections of the storage capacity with multiple users. The second line of research
is the growing literature on utilizing EVs as mobile energy storage to provide grid services.
See [54] for the cost-benefit analysis of the business model of sharing EVs to help commercial
and industrial electricity users to reduce demand charges, [8] for the joint optimization of
power network and a fleet of mobile storage units, and [31] for a simulation study of the
value of truck based mobile storage units in the California power grid.

5.2 Model

Consider a setting where EVs can provide mobile storage service in the power network. The
power network model is the same as in Chapter 4.

EVs as mobile storage

An EV can function as a mobile storage unit by charging at one bus, moving to another bus
and then discharging. In a power network with n buses, there are a total of n2 routes that
the EV can take, which include the “route” where the EV stays at the same location.
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Consider an aggregate mobile storage capacity Si,j moving from bus i at t = 1 to bus j
at t = 2, which comprises of all of the EVs moving along that route and providing mobile
energy storage service. The charging/discharging operation vector along route i → j is given

by ui,j ∈ R2, where positive values of u
(t)
i,j indicate charging and negative values indicate

discharging. We assume that each EV starts with an empty battery at t = 1, which means
that the aggregate state-of-charge at the end of time period t ∈ T is given by

∑t
τ=1 u

(τ)
i,j ,

which is the sum of charging/discharging operations until that time. The state of charge
must satisfy the energy capacity constraint of the aggregate storage capacity, i.e.

0 ≤
t∑

τ=1

u
(τ)
i,j ≤ Si,j, t ∈ T . (5.1)

Alternatively, we can write the constraint as

0 ≤ Lui,j ≤ Si,j1, (5.2)

where L ∈ R2×2 is a lower triangular matrix with Lt,t′ = 1 for all t ≥ t′. The vector of mobile
storage capacities on all routes in the network is given by S ∈ Rn2

, and has an element Si,j

corresponding to each route in the network. The power injection at each bus is the sum of
generation and aggregate storage operation minus the demand, i.e.

p
(1)
i = g

(1)
i − d

(1)
i −

n∑
j=1

u
(1)
i,j , p

(2)
i = g

(2)
i − d

(2)
i −

n∑
i=1

u
(2)
i,j . (5.3)

In the first time period, the storage operation u
(1)
i,j occurs at the route origin, i.e. bus i, while

in the second time period the operation u
(2)
i,j occurs at the route destination, i.e. bus j. This

explains the asymmetrical definition of power injection.
The LMP at a load bus determines the payment made by loads, and the LMP at a

generation bus is the price at which generators are compensated. Mobile storage must pay
for the electricity it consumes through charging at the LMP, and is also compensated at
the LMP for discharging. The LMP depends on the mobile storage capacity available, i.e.
it is a function of S which is the vector of mobile storage capacities along each route in
the network. We denote the LMPs by λ(t)(S) to emphasize this dependence, but omit it in
places for notational convenience.

Commuter EV drivers with fixed routes

Consider an EV driven by a commuter who regularly moves along one of the n2 possible
routes in the network. The route choice for individual drivers in this case is exogenous. The
EV driver has the choice to use the EV battery as mobile storage along that route by charging
at the origin and discharging at the destination. Each EV constitutes an infinitesimally small
amount of storage traveling along a route, and we model the individual EVs as a continuum
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indexed by k ∈ Ki,j = [0, 1]. In providing this service, the EV driver buys electric energy
at the locational marginal price (LMP) at the origin in the off-peak period, and sells that
energy at the destination LMP in the peak period, thus capitalizing on the spatial-temporal
LMP difference along the route. The value gained by an EV driver moving along the route
i → j by providing mobile storage service per unit of storage capacity is

λ
(2)
j (S)− λ

(1)
i (S), (5.4)

where λ
(2)
j (S) is the LMP at the destination node at time 2 and λ

(1)
i (S) is the LMP at the

origin node at time 1.
In order to provide this service, the driver has to cycle through the EV battery capacity,

thus causing some battery degradation. We model this battery degradation as a cost κ
of providing the service, which is incurred by the EV driver and is uniform across EV
drivers. Further, the driver may have to park at a specialized charging station or wait longer
than originally planned, and undergo some amount of inconvenience. For a driver k ∈ Ki,j

traveling along the route i → j, we model this inconvenience as a cost θk. The collection
of drivers Ki,j have a range of inconvenience costs, which can be modeled as a continuous
range of θk values. Since the commuter EV moves along the route in any case, the travel
cost does not factor into the decision to provide mobile storage service.

Each EV driver makes a decision on whether to provide the mobile storage service by
comparing the value, i.e. the LMP difference in (5.4), with the sum of battery degradation
and inconvenience costs. We model this decision with a binary variable sk, which is 1 when
the driver k provides mobile storage service, and 0 when she does not. The payoff for driver
k ∈ Ki,j is

πk(sk,S) =
[
λ
(2)
j (S)− λ

(1)
i (S)− θk − κ

]
sk (5.5)

per unit of storage capacity. The only difference in payoffs for drivers on the same route
i → j is the inconvenience cost, which is different for each driver. Thus we can denote
the decision to provide mobile storage service for each driver as a route-specific function
σi,j : R → {0, 1} of the inconvenience cost, i.e.,

sk = σi,j(θk), k ∈ Ki,j, i, j ∈ N . (5.6)

The proportion of EVs that provide service is given by

Si,j = Eσi,j(θk) =

∫
k∈Ki,j

σi,j(θk) dFi,j(θk) ≤ 1, (5.7)

where Fi,j(·) is the cumulative distribution of inconvenience costs of the drivers on route
i → j.

We can re-scale the actual storage capacity (in kWh), and generation across the network
such that the total mobile storage capacity available on each route (

∫
k∈Ki,j

dF (θk)) is nor-

malized to 1. For routes with a lower number of EVs, we can add ‘dummy’ EVs with infinite
inconvenience cost to obtain the same nominal number of EVs along each route. Non-linear
coefficients of generation and load will need to be scaled appropriately.
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On-demand EV drivers with flexible routes

Consider an EV which is signed up with a transportation network company (TNC) and can
be requisitioned to provide mobile storage service along any of the n2 possible routes in the
network. Each EV driver has the choice to use the EV battery as mobile energy storage by
charging and then discharging along any of the possible routes, or to not provide the service
at all. In a large fleet of EVs, each EV is an infinitesimally small amount of storage and we
model the individual EVs as a continuum indexed by ℓ ∈ L = [0, 1].

The value for the EV driver moving along i → j is the same as that for an EV driver
with a fixed route, given in (5.4), and is dependent on the amount of mobile storage capacity
in the network. However, the EV driver has to travel along i → j to provide this service,
which she would not have otherwise since the sole purpose of the trip is providing mobile
storage service. By providing this service, the EV battery will undergo some amount of
degradation. The travel and battery degradation costs are modeled as a non-negative route-
specific cost κi,j, and are the same for each EV traveling on this route. Further, the EV
driver has to spend time and effort in traveling and providing mobile storage service and will
need to be compensated for the inconvenience caused. This inconvenience can be modeled
as a non-negative cost θℓ which is specific to driver ℓ but is route-independent.

Each EV driver compares the value and cost of providing mobile storage service to make
their decision. An EV driver signed up with a TNC has n2+1 possible choices: providing the
service at any of the n2 routes, or not providing the service at all. We denote the decision to
provide service on route i → j with sℓ; i,j ∈ {0, 1}, and note that

∑
i,j sℓ; i,j ≤ 1. The payoff

for the on demand EV driver ℓ ∈ L is

πℓ(sℓ,S) =
∑
i,j

(
λ
(2)
j (S)− λ

(1)
i (S)− θℓ − κi,j

)
sℓ; i,j (5.8)

per unit of storage capacity, where sℓ = {sℓ; i,j}i,j∈N ∈ Rn2
. The only difference in payoffs for

different EVs is their inconvenience cost, which in turn determines their route choice. We can
then denote the optimal service provision choice by sℓ = δ(θℓ), ℓ ∈ L, where δ : R 7→ {0, 1}n2 .
We also define sℓ = 1⊤sℓ =

∑
i,j sℓ;i,j ∈ {0, 1} which denotes whether the EV provides service

along any route in the network. If sℓ = 0, EV ℓ does not provide service along any route.
We define Si,j as the amount of mobile storage available on i → j. We have

Si,j =

∫
ℓ∈L

δ(θℓ)i,j dF (θℓ) ≤ 1, (5.9)

where δ(θℓ)i,j = sℓ; i,j is the decision to provide service on route i → j, and F (·) is the cumu-
lative distribution of the inconvenience costs of the on-demand EVs. Note that

∑
i,j Si,j ≤ 1

as well.

Solution concepts

Both commuter and on-demand EVs can be operated by a variety of centralized operators
and decentralized agents with different objectives. We begin by considering two benchmark



CHAPTER 5. ELECTRIC VEHICLE BATTERY SHARING GAME: MOBILE
STORAGE SERVICE PROVISION IN POWER NETWORKS 47

solution concepts:

1. Myopic EV drivers: EVs act in a decentralized manner and maximize their own indi-
vidual payoffs without considering the effect of mobile storage service on the LMPs.
They optimize their operation under the assumption that S = 0.

2. Social welfare maximizing operator: A central operator optimizes the mobile storage
service provision of all the EVs to maximize social welfare, which is defined as the
surplus received by both the EVs and the electricity market participants, including the
generators and load.

The precise mathematical description of these benchmarks depends on the type of EV drivers
under consideration (commuters or on-demand drivers), and will be provided in subsequent
sections.

We then consider the operation of EVs which operate in a decentralized manner to
optimize their individual payoffs, thus participating in an EV battery sharing game. We
define three game settings:

1. Commuter EVs only: The set of players is ∪i,j∈NKi,j, where each player has a decision
of whether to provide mobile storage service or not. The payoff of player k ∈ Ki,j is
defined as (5.5).

2. On-demand EVs only: The set of players is L, where each player chooses from n2

routes to provide the mobile storage service or not to provide the service. The payoff
of player ℓ ∈ L is defined as (5.8).

3. Both commuter and on-demand EVs: In this case, both types of players coexist, with
their decisions and payoff functions defined as before.

We utilize Nash Equilibrium (NE) as the solution concept, under which no player has an
incentive to unilaterally change its decision. As we are considering an aggregate game, i.e.,
each player’s action only impact others’ payoffs via the aggregate storage capacities, we will
refer to the aggregate storage capacities induced by a NE as NE storage capacities. For each
setting, we will compare the NE to the benchmarks discussed previously.

5.3 Commuter EVs: Fixed Routes

We now consider the setting where there are only commuter EVs providing mobile storage
services to the grid, and characterize the market driven equilibrium outcome for the EV
battery sharing game. Each route in the power network has a population of EV drivers
k ∈ Ki,j characterized by their inconvenience cost θk, which are otherwise interchangeable.
In order to define the optimal mobile storage service for each of the solution concepts, we
partition the population of EVs on route i → j into K+

i,j and K−
i,j for each situation, where

EVs in K+
i,j provide mobile storage service, and EVs in K−

i,j do not. We posit that the EVs
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in K+
i,j necessarily have a lower inconvenience cost than the EVs in K−

i,j for each solution
concept discussed in section 5.2 (which will be mathematically defined subsequently), i.e.,

Proposition 11. For each solution concept discussed in this paper, there exists a threshold
θi,j such that

K+
i,j = {k ∈ Ki,j : θk ≤ θi,j}, i, j ∈ N , (5.10a)

K−
i,j = {k ∈ Ki,j : θk > θi,j}, i, j ∈ N . (5.10b)

Proof. We split the discussion into two cases:

1. Independent decisions by EVs: Each EV makes a decision to provide mobile storage
service based only on its payoff. The payoffs, and consequently the service decisions for
two different EVs are only differentiated by their inconvenience cost θk. An EV with
a higher θk will necessarily have a lower payoff (5.5), and if this EV decides to provide
service, then any EV with a higher payoff (i.e., lower θk) will also provide service.

2. Centrally controlled EVs: From the perspective of the power system operator, EVs
are undifferentiated except by their inconvenience costs. The system operator will
preferentially choose EVs with lower inconvenience costs instead of those with higher
inconvenience costs in order to minimize total social cost.

In both cases, there will be a marginal EV on route i → j with inconvenience cost θi,j such
that all EVs on that route with lower θ will provide service, and those with higher θ will
not.

Benchmarks

We now characterize the operation in the benchmarks discussed in Section 5.2 when there
are only commuters.

Myopic EV drivers

Each myopic EV owner traveling along i → j maximizes πk(sk,0). The optimal decision
would be to set

smyop
k =

{
1, if λ

(2)
j (0)− λ

(1)
i (0)− θk − κ ≥ 0,

0, otherwise,
(5.11)

which gives us threshold inconvenience cost for each route

θ
myop

i,j = λ
(2)
j (0)− λ

(1)
i (0)− κ, (5.12)

and the mobile storage proportion Smyop
i,j = Fi,j(θ

myop

i,j ).



CHAPTER 5. ELECTRIC VEHICLE BATTERY SHARING GAME: MOBILE
STORAGE SERVICE PROVISION IN POWER NETWORKS 49

Social welfare maximizing operator

A social welfare maximizing operator solves the following problem:

min
S,θ

J(S) +
∑
i,j

∫
θk≤θi,j

(θk + κ) dF (θk), (5.13a)

s.t. Si,j = Fi,j(θi,j), i, j ∈ N , (5.13b)

where J(S) is the optimal solution of the economic dispatch problem in (4.13). The social
cost is taken to be the sum of generation cost, inconvenience and battery degradation costs
for the EVs, minus the value of supplying electricity to loads. Then we have

Lemma 12. The inconvenience cost threshold θ
sw

i,j and the corresponding aggregate storage
capacity Ssw

i,j , i, j ∈ N , for the socially optimal operation is given by the solution of

θ
sw

i,j = λ
(2)
j (Ssw)− λ

(1)
i (Ssw)− κ, i, j ∈ N . (5.14a)

Ssw
i,j = Fi,j(θ

sw

i,j), i, j ∈ N . (5.14b)

Proof. We can eliminate one variable in (5.13) by enforcing the equality constraint (5.13b).
We set the gradient of the objective in the unconstrained problem to zero, i.e.

Ssw
i,j : ∇Si,j

J(S)|Ssw + (θ
sw

i,j + κ) = 0. (5.15)

From [8], we know that

∇Si,j
J(S) = −(λ

(2)
j (S)− λ

(1)
i (S))+, (5.16)

and we can ignore the positive part operator since a non-zero Ssw
i,j will necessitate a non-

negative θ
sw

i,j , which ensures that λ
(2)
j (S)−λ

(1)
i (S) ≥ 0, and κ is necessarily non-negative.

Upon increasing mobile storage along route i → j, the marginal increase in social welfare
is given by the decrease in power system cost less the inconvenience and battery degradation
costs incurred by the commuter EV, i.e.,

(λ
(2)
j (S)− λ

(1)
i (S))+ − θi,j − κ. (5.17)

Nash equilibrium

Consider a situation where all the EVs are owned and operated by distributed entities,
e.g., the case where they are all personal vehicles used for transport, and each EV driver
participates in the EV battery sharing game independently. We can classify EVs into two
groups: those which are providing mobile storage service at equilibrium and those which are
not. At the equilibrium, no EV will be better off switching from one group to another.

At the NE, given the aggregate storage capacities, each EV maximizes its payoff, i.e.,

max
sk

πk(sk,S). (5.18)
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If each EV has a small storage capacity, then the operational decision of one EV does not
impact the LMPs, and

sNE
k = σNE

i,j (θk) =

{
1, if πk(1,S

NE) ≥ 0,

0, otherwise,
(5.19)

for k ∈ Ki,j. In other words, any EV which can obtain a non-negative payoff decides to
provide mobile storage service.

Lemma 13. The Nash equilibrium inconvenience cost threshold θ
NE

i,j and the corresponding
aggregate storage capacity SNE

i,j , i, j ∈ N are given by the solution of

θ
NE

i,j = λ
(2)
j (SNE)− λ

(1)
i (SNE)− κ, i, j ∈ N . (5.20a)

SNE
i,j = Fi,j(θ

NE

i,j ), i, j ∈ N . (5.20b)

Proof. Consider an EV with θ > θ
NE

i,j . We posit that at equilibrium, this EV does not provide
mobile storage service. The payoff for this EV is given by

λ
(2)
j (SNE)− λ

(1)
i (SNE)− κ− θ

< λ
(2)
j (SNE)− λ

(1)
i (SNE)− κ− θ

NE

i,j = 0,

i.e., the payoff is negative, and the EV has no incentive to deviate from the equilibrium
decision and start to provide mobile storage service.

Next, consider the complementary case, i.e., an EV with θ ≤ θ
NE

i,j . We posit that at
equilibrium, this EV will provide mobile storage service. The payoff for this EV is given by

λ
(2)
j (SNE)− λ

(1)
i (SNE)− κ− θ

≥ λ
(2)
j (SNE)− λ

(1)
i (SNE)− κ− θ

NE

i,j = 0,

i.e., is non-negative, and the EV has no incentive to deviate from the equilibrium decision
and stop providing service.

We can relate the equilibrium mobile storage service with the socially optimal solution
as:

Theorem 14. Any aggregate storage capacity corresponding to the Nash equilibrium for
commuter EVs supports the social welfare.

Proof. There is a one-to-one correspondence of the socially optimal aggregate storage capac-
ity given in (5.14) and the Nash equilibrium aggregate storage given in (5.20).
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Figure 5.1: Two bus network

Example

Our results on the social welfare maximizing solution and NE depend on solving a system of
nonlinear equations. To gain explicit analytical insight, we consider a simple example with
two period and two buses shown in Fig. 5.1. For the network, bus 2 has a load at t = 2, and
bus 1 has a generator. There is some mobile storage capacity (S1,2) which moves from bus 1
at t = 1 to bus 2 at t = 2. The generation cost is given by Ct(g) = ag2 + bg, t ∈ {1, 2} and
the value of supplying load is given by Bt(d) = cd, t ∈ {1, 2}. The LMPs for this network
are given by

λ
(1)
1 = 2amin

{
S1,2,

c− b

2a

}
+ b, λ

(2)
2 = c. (5.21)

The optimal mobile storage levels for each of the benchmarks for this network is given by

1. Myopic EV drivers: The LMPs when S = 0 are λ
(1)
1 = b, λ

(2)
2 = c, and we have

Smyop
1,2 = F1,2(θ

myop

1,2 ) = F1,2(c− b− κ). (5.22)

2. Social welfare maximizing operator: The optimal decision is given by the solution of
the fixed point equation

Ssw
1,2 = F1,2(c− 2aSsw

1,2 − b− κ), (5.23)

On comparing these values, we find

Smyop
1,2 ≥ Ssw

1,2 = SNE
1,2 . (5.24)

The intuition behind this is that myopic EV drivers tend to over-commit to providing mobile
storage service, since they do not factor the reduction of the LMP difference into their
decision.
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5.4 On-Demand EVs: Flexible Routes

We now consider the setting where there are only on-demand EVs providing mobile storage
services to the grid, and characterize the market driven equilibrium outcome for the EV
battery sharing game. The network has a population of on-demand EVs ℓ ∈ L, which are
characterized by their inconvenience cost θℓ, and are otherwise indistinguishable. In order to
define the optimal storage service, we partition the network-wide population of EVs into L+

and L− for each of the solution concepts, where EVs in L+ provide mobile storage service
on any one route in the power network and EVs in L− do not provide mobile storage on any
route. We can extend Proposition 11 and define a network-wide inconvenience cost threshold
θ for each solution concept, such that

L+ = {l ∈ L : θℓ ≤ θ}, (5.25a)

L− = {l ∈ L : θℓ > θ}. (5.25b)

Benchmarks

We now characterize the operation of on-demand EVs in some of the benchmarks discussed
in Section 5.2.

Myopic EV drivers

The myopic EV driver indexed by ℓ ∈ L chooses sℓ to maximize πℓ(sℓ,0). Since the only
difference in payoffs for EVs is the inconvenience cost θℓ, the route with the maximum
potential payoff will attract all the myopic EV drivers. Let this route be i∗ → j∗, where

(i∗, j∗) = argmax
i,j

λ
(2)
j (0)− λ

(1)
i (0)− κi,j. (5.26)

Then the decision of driver ℓ ∈ L to provide service is

smyop
ℓ;i∗,j∗ =

{
1, if λ

(2)
j∗ (0)− λ

(1)
i∗ (0)− κi∗,j∗ ≥ θℓ,

0, otherwise,
(5.27)

and with smyop
ℓ; i,j = 0 for (i, j) ̸= (i∗, j∗). This gives us the inconvenience cost threshold

θ
myop

= λ
(2)
j∗ (0)− λ

(1)
i∗ (0)− κi∗,j∗ , (5.28)

where i∗, j∗ are defined as in (5.26). The total storage capacity for route (i∗, j∗) is given by
Smyop
i∗,j∗ = F (θ

myop
), and Smyop

i,j = 0 for all other routes.
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Social welfare maximizing operator

A central operator that maximizes social welfare (or equivalently minimizing the social cost)
solves the following problem:

min
S,θ

J(S) +
∑
i,j

κi,jSi,j +

∫
θℓ≤θ

θℓ dF (θℓ) (5.29a)

s.t. S ≥ 0, 1⊤S = F (θ), (5.29b)

where J(S) is the optimal cost of the economic dispatch problem in (4.13). The social cost
is the sum of generation cost, inconvenience, travel and battery degradation costs for the
EVs, minus the value of supplying electricity to loads.

We can define the storage capacity on each route by Ssw
i,j , and we know that

∑
i,j S

sw
i,j =

F (θ̄sw), where θ̄sw is the network-wide threshold of inconvenience costs determined by solving
(5.29). From [8] we know that the value of increasing mobile storage capacity is given by

−∇Si,j
J(S) = (λ

(2)
j (S)− λ

(1)
i (S))+, (5.30)

which is the LMP increase along the route. However, increasing storage capacity along a
route also increases the travel and inconvenience costs that need to be paid. The operator
will add mobile storage capacity which maximizes the increase in social welfare(

(λ
(2)
j (S)− λ

(1)
i (S))+ − θℓ − κi,j

)
+
. (5.31)

We can ignore the inner positive part operator in this equation when we formulate our storage
operation decision, since the LMP difference will necessarily be non-negative for the entire
expression to be non-negative. The socially optimal storage operation of on-demand EVs
can be formulated as a route choice

(i∗, j∗) = argmax
i,j

λ
(2)
j (Ssw)− λ

(1)
i (Ssw)− κi,j, (5.32)

with a mobile storage service provision choice given by

sswℓ; i,j =0, if (i, j) ̸=(i∗, j∗), (5.33a)

sswℓ;i∗,j∗ =

{
1, ifλ

(2)
j∗ (S

sw)−λ
(1)
i∗ (Ssw)−θℓ−κi∗,j∗ ≥ 0,

0, otherwise.
(5.33b)

This ensures that storage is only added if it increases the social welfare.

Lemma 15. The network-wide inconvenience cost threshold for socially optimal operation
of on-demand EVs is the solution of

θ
sw

= λ
(2)
j∗ (S

sw)− λ
(1)
i∗ (Ssw)− κi∗,j∗ , (5.34a)

1⊤Ssw = F (θ
sw
), (5.34b)

where i∗, j∗ are defined as in (5.32).
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Proof. 1. First, consider L− is non-empty, i.e., there are some EVs which do not provide
mobile storage along any route at the socially optimal solution. This means that the
marginal increase in social welfare on adding an EV to any route in the network is
non-positive, since otherwise the unutilized mobile storage would be dispatched along
some route in the network. There are two types of routes in the network:

a) Route i → j has some non-zero mobile storage capacity, i.e., Ssw
i,j > 0. The marginal

increase in social welfare on adding an additional EV to this route is zero, and

λ
(2)
j (Ssw)− λ

(1)
i (Ssw)− θ

sw − κi,j = 0. (5.35)

We can ignore the positive part operator in (5.31) since θ
sw
, κi,j are necessarily

non-negative.

b) Route i′ → j′ has zero mobile storage capacity, i.e., Ssw
i′,j′ = 0. Adding an EV to

this route causes a decline in social welfare, i.e.

λ
(2)
j′ (S

sw)− λ
(1)
i′ (Ssw)− θ

sw − κi′,j′ ≤ 0. (5.36)

2. Second, consider L− is empty, then
∑

i,j S
sw
i,j = 1⊤Ssw = 1 and all EVs are deployed

along one of the routes in the network. The network wide inconvenience cost threshold
is θ

sw ≥ maxl {θl}, and at least one route has a non-negative payoff, i.e.,

λ
(2)
j (Ssw)−λ

(1)
i (Ssw)−θ

sw−κi,j ≥ 0 for some i, j. (5.37)

This indicates that if there were more EVs available with an inconvenience cost θ
sw
, it

would be beneficial for them to provide mobile storage service.

Nash equilibrium

Consider a situation where all EVs are owned and operated by distributed agents, e.g., when
they are owned by individuals who sign up on TNC platforms to earn money for providing
mobile storage service. Each EV driver participates in an EV battery sharing game, and
makes an independent decision on whether to provide mobile storage service and which route
to provide it on based on the payoff πℓ(sℓ,S). At the equilibrium, EVs will provide service
in a manner where no EV has an incentive to deviate from its chosen route and operation.

At the NE, given the aggregate storage capacities, each EV maximizes its own payoff,
i.e., chooses a route and operational decision according to

max
sℓ

πℓ(sℓ,S) (5.38a)

s.t. 1⊤sℓ ≤ 1, (5.38b)
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where sℓ is the decision vector of sℓ; i,j for all routes on the network for driver ℓ. If each
individual EV has a small storage capacity, then its operation decision will not impact
LMPs and we can denote the optimal route choice of the marginal EV by

(i∗, j∗) = argmax
i,j

λ
(2)
j (SNE)− λ

(1)
i (SNE)− κi,j, (5.39)

and the mobile storage service provision by

sNE
ℓ; i,j=0, if (i, j) ̸=(i∗, j∗), (5.40a)

sNE
ℓ;i∗,j∗ =

{
1, ifλ

(2)
j∗ (S

NE)−λ
(1)
i∗ (SNE)−θℓ−κi∗,j∗ ≥0,

0, otherwise.
(5.40b)

For the equilibrium mobile storage SNE, there are two dimensions: each EV which provides
mobile storage service on route i → j at equilibrium will be no better off if (a) it decides to
stop providing the service, or (b) if it switches to a different route. Additionally, each EV
which does not provide mobile storage service will be no better off if it does so on any route
in the network.

Lemma 16. The network-wide inconvenience cost threshold at equilibrium θ
NE

and the cor-
responding aggregate storage capacity are given by the solution of

θ
NE

= λ
(2)
j∗ (S

NE)− λ
(1)
i∗ (SNE)− κi∗,j∗ , (5.41a)

1⊤SNE = F (θ
NE

), (5.41b)

where i∗, j∗ are defined as in (5.39).

The Nash equilibrium operation of on-demand EVs providing mobile storage service is
characterized through the following exhaustive list of cases, which can also serve as a proof
of Lemma 16 by utilizing arguments similar to the ones in the proof for Lemma 13:

1. First, consider the case where L− is not empty, i.e. there are some EVs which do not
provide mobile storage service. Then, the marginal payoff for an additional EV on any
route should be non-positive. There are two types of routes in the network:

a) Route i → j has some non-zero mobile storage capacity, i.e. Si,j > 0. At equilib-
rium, this route provides zero payoff and there is no incentive for an EV ℓ ∈ L−

to provide service on this route, and

θ
NE

= λ
(2)
j (SNE)− λ

(1)
i (SNE)− κi,j. (5.42)

b) Route i′ → j′ has zero mobile storage capacity, i.e. Si′,j′ = 0. This route has a
non-positive payoff, which is why no EV chooses to provide service on that route,
and

λ
(2)
j′ (S

NE)− λ
(1)
i′ (SNE)− θ

NE − κi′,j′ < 0. (5.43)
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2. Second, consider the case where L− is empty, i.e. all the EVs available provide mobile
storage service on one route or the other. Then we have

θ
NE

= λ
(2)
j1
(SNE)− λ

(1)
i1
(SNE)− κi1,j1 (5.44a)

= λ
(2)
j2
(SNE)− λ

(1)
i2
(SNE)− κi2,j2 (5.44b)

≥ λ
(2)
j3
(SNE)− λ

(1)
i3
(SNE)− κi3,j3 (5.44c)

for all i1, j1, i2, j2, i3, j3 ∈ N where SNE
i1,j1

> 0, SNE
i2,j2

> 0 and SNE
i3,j3

= 0, i.e., the marginal
payoff for routes with non-zero mobile storage capacity is the same throughout the
network, and is higher than the marginal payoff for routes with zero mobile storage
capacity at equilibrium. This indicates that if there were more EVs available with

an inconvenience cost θ
NE

, it would be profitable for them to provide mobile storage
service.

We can relate the equilibrium mobile storage service to the socially optimal solution as:

Theorem 17. Any inconvenience cost threshold θ corresponding to the Nash equilibrium for
on-demand EVs supports the social welfare.

Proof. There is a one-to-one correspondence of the equilibrium inconvenience cost threshold
in (5.41) and the socially optimal inconvenience cost threshold in (5.34).

5.5 Hybrid: Commuter and On-Demand EVs

We now consider the setting where there is a mix of commuter and on-demand EVs providing
mobile storage services to the grid, and characterize the market driven equilibrium outcome
as an EV battery sharing game. There is a population of commuter EVs on each route
characterized by their inconvenience costs θk, k ∈ Ki,j, and a network-wide population of
on-demand EVs characterized by their inconvenience costs θℓ, ℓ ∈ L. We denote the mobile
storage capacity provided by commuter EVs with fixed routes by Sfix, and the capacity
provided by on-demand EVs with flexible routes by Sflex. The total mobile storage capacity
on all routes is represented by S, and includes storage capacity from commuter and on-
demand EVs. The two types of EVs provide the same service and are interchangeable in
terms of value generated, but have different inconvenience, travel and battery degradation
costs. In order to define the optimal storage service for each of the solution concepts, we
partition the population of commuter EVs on each route into two sets: those which provide
service (K+

i,j) and those which don’t (K−
i,j). These sets are determined by a route specific

inconvenience cost threshold θi,j. We also partition the network wide population of on-
demand EVs into those which provide service on any route (L+) and those which don’t
(L−). These sets are determined by a network-wide inconvenience cost threshold θ.
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Benchmark: social welfare maximizing operator

To maximize the social welfare, a central operator solves the following problem:

min
Sfix,Sflex,

θ
fix

,θ
flex

J(S) +
∑
i,j

∫
θk≤θ

fix
i,j

(θk + κ) dFi,j(θk) +

∫
θℓ≤θ

flex
θℓ dF (θℓ) +

∑
i,j

κi,jS
flex
i,j (5.45a)

s.t. Sflex ≥ 0, 1⊤Sflex = F (θ
flex

), (5.45b)

Sfix
i,j = Fi,j(θ

fix

i,j), i, j ∈ N , (5.45c)

where S = Sfix + Sflex. From the perspective of the power system operator, it does not matter
whether mobile storage capacity comes from commuter EVs (Sfix) or on-demand EVs (Sflex),
and we can use the aggregate mobile storage capacity for our modeling. From [8], we know
that the marginal value of adding mobile storage on a route is

∇Sfix
i,j
J(S) = ∇Sflex

i,j
J(S) = −(λ

(2)
j (S)− λ

(1)
i (S))+, (5.46)

which is the same for both commuter and on-demand EVs. The operator will add mobile
storage capacity to maximize social welfare, i.e. will increase mobile storage capacity on a
route as long as the marginal value is greater than or equal to the cost for either type of EV,
i.e.

λ
(2)
j (S)− λ

(1)
i (S) ≥ θ

fix

i,j + κ (5.47a)

λ
(2)
j (S)− λ

(1)
i (S) ≥ θ

flex
+ κi,j. (5.47b)

The operator will prioritize dispatching on-demand EVs to the route with the greatest
marginal increase in social welfare. We can ignore the positive part operator in this ex-
pression, since the sum of costs on the right hand side is non-negative by definition.

Lemma 18. The inconvenience cost thresholds for the socially optimal storage operation of
commuter and on-demand EVs are given by the joint solution of (5.14) and (5.34), where
i∗, j∗ are defined as in (5.32) and prices are determined by the aggregate mobile storage
capacity:

Ssw = Sfix, sw + Sflex, sw (5.48a)

1⊤Sflex, sw = F (θ
flex, sw

), (5.48b)

Sfix, sw
i,j = Fi,j(θ

fix, sw

i,j ), i, j ∈ N , (5.48c)

θ
flex, sw

= λ
(2)
j∗ (S

sw)− λ
(1)
i∗ (Ssw)− κi∗,j∗ , (5.48d)

θ
fix, sw

i,j = λ
(2)
j (Ssw)− λ

(1)
i (Ssw)− κ, i, j ∈ N . (5.48e)

Proof. The marginal increase in social welfare upon adding commuter EVs is given by (5.17),
and the operator will add mobile storage using commuter EVs along route i → j as long as
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the marginal value is positive. Similarly, the socially optimal decision for on-demand EVs
is to add mobile storage as long as the marginal value is positive as discussed in the proof
for Lemma 15. Commuter EVs and on-demand EVs interact with each other through their
effect on the electricity prices λ. The marginal increases in social welfare on adding mobile
storage through commuter EVs (5.17) or on-demand EVs (5.31) are only related through
prices which depend on aggregate mobile storage capacity, and jointly solving the set of
equations in Lemma 18 will resolve the interdependencies and give us the socially optimal
solution.

Joint Nash equilibrium

Consider the situation where all of the EVs are operated independently irrespective of their
type. Each EV driver participates in an EV battery sharing game, and makes an indepen-
dent decision to provide mobile storage service and chose a route (for on-demand EVs) in
order to maximize πk(sk,S) or πℓ(sℓ,S) as appropriate. At the equilibrium, there will be a
combination of commuter and on-demand mobile storage on each route. No commuter EV

should be better off if it switches from K+
i,j to K−

i,j or vice versa (characterized by θ
fix, NE

i,j ).
Similarly, no on-demand EV should be better off switching from L+ to L− or vice versa

(characterized by θ
flex, NE

), or by switching routes. Note that we model each type of EV as
a distinct type of resource, and a commuter EV can not switch to being an on-demand EV,
or vice versa. The ‘joint’ aspect of the equilibrium is that both types of EVs make decisions
that place them at an NE. The storage capacities at equilibrium are given by

1⊤Sflex, NE = F flex(θ
flex, NE

), (5.49)

Sfix
i,j = F fix

i,j (θ
fix, NE

i,j ), i, j ∈ N , (5.50)

where F flex(·), F fix
i,j (·) are the cumulative distributions of inconvenience costs of on-demand

and commuter EVs on that route respectively. The equilibrium decision by a commuter EV
is given by

sfix, NE
k;i,j =

{
1, if λ

(2)
j (SNE)− λ

(1)
i (SNE)− θk − κ ≥ 0

0, otherwise.
(5.51)

The equilibrium decision by an on-demand EV is given by the route choice

(i∗, j∗) = argmax
i,j

λ
(2)
j (SNE)− λ

(1)
i (SNE)− κi,j, (5.52)

and the mobile storage service provision by

sflex, NE
ℓ;i,j =0, if (i,j) ̸=(i∗,j∗), (5.53a)

sflex, NE
ℓ;i∗,j∗ =

{
1, ifλ

(2)
j∗ (S

NE)−λ
(1)
i∗ (SNE)−θℓ−κi∗,j∗ ≥0,

0,otherwise.
(5.53b)

We can characterize the Nash equilibrium by considering the exhaustive list of cases:
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1. For a route i → j, consider K−
i,j and L− are not empty, i.e., there are some commuter

and on-demand EVs not providing mobile storage service. Then the marginal payoff
for either type of EV is non-positive.

a) Sfix
i,j ̸= 0 and Sflex

i,j ̸= 0; then the marginal payoff for both type of EVs on that route
should be zero, i.e.

θ
flex, NE

= λ
(2)
j (SNE)− λ

(1)
i (SNE)− κi,j, (5.54a)

θ
fix, NE

i,j = λ
(2)
j (SNE)− λ

(1)
i (SNE)− κ. (5.54b)

b) Sfix
i,j = 0, which means

λ
(2)
j (SNE)− λ

(1)
i (SNE)− κ < mink θk;i,j.

c) Sflex = 0, which means

λ
(2)
j (SNE)− λ

(1)
i (SNE)− κi,j < θ

flex, NE
.

2. For a route i → j, consider K−
i,j is empty, i.e., all commuter EVs provide mobile storage

service. Then Sfix, NE
i,j = 1, and

λ
(2)
j (SNE)− λ

(1)
i (SNE)− θ

fix, NE

i,j − κ ≥ 0. (5.55)

3. Consider L− is empty, i.e., all on-demand EVs are providing mobile storage service.
Then

∑
i,j S

flex, NE
i,j = 1, and

λ
(2)
j (SNE)− λ

(1)
i (SNE)− θ

flex, NE − κi,j ≥ 0 (5.56)

for at least one route i → j in the network.

Except for the first situation, we cannot explicitly relate the equilibrium service by commuter
and on-demand EVs.

Lemma 19. The inconvenience cost thresholds for the equilibrium operation of commuter
and on-demand EVs are given by the joint solution of (5.20) and (5.41), where i∗, j∗ are
defined as in (5.39) and prices are determined by the aggregate mobile storage capacity SNE =
Sfix, NE + Sflex, NE.

Proof. Commuter EVs and on-demand EVs interact with each other through their effect on
the electricity prices λ. The payoff for either type of EV depends only on the aggregate
mobile storage capacity, and jointly solving the set of equations in (5.20) and (5.41) will
resolve the interdependencies and give us the equilibrium operation.

Theorem 20. Any inconvenience cost thresholds for commuter and on-demand EVs corre-
sponding to a joint Nash equilibrium also support the social welfare.

Proof. There is a one-to-one correspondence between the equations which determine incon-
venience cost thresholds for the socially optimal solution and the Nash equilibrium.
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5.6 Discussion

We have formulated and analyzed a network EV battery sharing game, where distributed
EVs provide mobile energy storage service to the grid. We modeled two different EV be-
haviors: commuter EVs which travel on fixed routes, and on-demand EVs which can travel
on any route in the power network. Our results suggest that the NE will support social
welfare in settings where each EV driver is an infinitesimally small entity (and has no mar-
ket power), and when only two time periods are considered. These results are robust across
any combination of the different EV types. In future work, we plan to study the impact of
market power for a collection of EVs, when they are coordinated by an EV aggregator or a
transportation network company. We are also interested in extending our work to settings
with multiple time periods. Since it is known that storage devices across the network may
complement instead of substitute each other [52], our positive results for competitive EV-
based mobile storage may only hold under certain network congestion patterns when more
than two time slots are considered.
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Part III

Aggregations of Energy Prosumers
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Chapter 6

Optimal Composition of Prosumer
Aggregations

In previous chapters, we discussed how flexible consumers and EV battery operators can
interact with wholesale power markets and utility programs. Distributed resources can also
bypass the utility and participate in local energy aggregations. In this chapter, we introduce
the concept of prosumers and discuss the setup of a prosumer aggregation. The results
presented here were published in [4], [6].

6.1 Introduction

A prosumer is an entity that is capable of producing energy alongside being a consumer
through the presence of local generation and energy storage devices. An example of this
are smart buildings, who often invest in energy resources in the form of local generation
(photovoltaic arrays, diesel generators) and energy storage (batteries) which can be used to
offset loads, reduce demand charges and optimize grid consumption. They can profit from
these resources, e.g. by charging their batteries during low price hours and selling generation
to the utility during peak price hours, thus demonstrating their prosumer behavior. However,
local generation and storage is not always a profitable proposition: buildings have to invest
in over-capacity generation and storage to accommodate the variability in their loads due to
fluctuating occupancy and weather conditions. Additionally, as net-metering programs are
phased out, utilities typically buy energy from distributed resources at a lower price [32].
These underutilized energy resources can become profitable when prosumers trade their
surplus energy with other buildings rather than selling to the utility. Prosumer aggregations
are coalitions set up to facilitate such energy sharing and trading.

In this chapter, we consider a central aggregator which facilitates energy trades within
the aggregation and presents the net deficit/surplus to the utility as a single customer. The
aggregation’s total cost is the cost of trading the deficit/surplus with the utility. Each
individual prosumer has to pay for its internal energy trades as well as its share of the utility
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Figure 6.1: Social net metering in a prosumer aggregation

procurement. This model of aggregation does not require setting up new infrastructure,
and is illustrated in Fig. 6.1. Similar contracts for virtual net-metering exist in the United
States [60], and power flow occurs only between the utility and prosumers. The aggregator
and prosumers share information to settle trades and manage payments, and the aggregator
does not need to balance power flow or own physical infrastructure. Such aggregations can
be designed with a variety of motives: cooperative cost savings for participants, increasing
local renewable consumption, improving utilization of resources, or to maximize the profit
of private investors.

There are two important questions we must address for aggregation design: (a) which
prosumers would form the most beneficial aggregation, and (b) what value would additional
prosumers add to an existing aggregation? Estimating the value of additional participants
is a complex proposition due to the inter-dependencies between members of an aggregation.
Prosumers share energy with each other, and an additional participant will affect all aggre-
gation members. In this chapter, we focus on providing results on the optimal composition
of aggregations and validating them with transactive control mechanisms borrowed from
literature.

Related work

The dynamics of a prosumer aggregation can be estimated empirically, and agent based
models have been recognized as an important tool for such simulations. In [19], prosumer
agents are modeled by function and interact with each other in a peer to peer fashion to
trade energy. In [22], agents are modeled for generation, consumption, market clearing and
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coordination functions in an aggregation. These modeling techniques can be used to simulate
setups with different participant and resource combinations, and the difference in costs can
be used to evaluate individual prosumers. However, these methods require the knowledge of
load and energy resources owned by each prosumer for accurate modeling.

Theoretical frameworks for designing optimal aggregations are also an active area of work.
In [58], prosumers are optimally aggregated in a cooperative microgrid using coalitional game
theory. The optimal sizing of energy resources in a microgrid is calculated using mixed-
integer linear programming in [77]. In [55], the microgrid resource planning problem is cast
as the upper level of a bilevel program which aims to optimize investment costs along with
system reliability. Research in this area mainly focuses on optimizing resource investments,
and the problem of evaluating a new prosumer using numerical metrics is not as widely
studied.

The problem of controlling prosumer aggregations has also been investigated, like in [59]
where a pricing method (VCG mechanism) is developed for demand side management with
the aim of maximizing social welfare. A variety of papers develop price based controls: [38]
develops a price to minimize load variation, and [42] develops a price based on supply-demand
ratio to incentivize energy sharing.

Contributions

We develop a metric to estimate the degree of complementarity for a centrally controlled
aggregation, i.e. we develop an expression which can be used to estimate the value of adding
a prosumer or energy resource which would otherwise have operated independently outside
the aggregation. This metric can be used to evaluate investments in new resources, or to
prioritize the addition of certain prosumers. We also test the metric using simulations in an
agent based aggregation model with market mechanisms from literature and real data.

The chapter is organized as follows: Section 6.2 introduces the prosumer and aggregator
models, Section 6.3 lays out the main results, Section 6.4 validates the results through
numerical simulations, and Section 6.5 concludes the chapter.

6.2 Model

We now set up the optimization problems that define the prosumer and aggregator. A
prosumer is modeled as a cost-minimizing rational agent, while an aggregator can have a
variety of objectives as discussed earlier.

Prosumer model

In any time period t, the prosumer has energy demand d(t), local generation g(t), and storage
operation u(t). The building’s net load at time t is given by

z(t) = d(t) − g(t) + u(t) (6.1)
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where charging storage is a net load, i.e. a positive u(t).
Define πb to be the time-of-use rate at which prosumers buy energy, and πs as the rate

at which they sell surplus energy. Utilities typically have different buy and sell prices [32], as
they move towards phasing out net-metering programs and incorporating distributed energy
resources in wholesale markets. A prosumer can modify its energy consumption over the
course of the day to minimize its energy bill, e.g. by storing energy in the battery during low
price/surplus generation time periods, and discharging during peak price hours. However,
battery life is affected by the number of charge/discharge cycles it goes through, and any
usage of the battery costs money which can be modeled as a per cycle amortized battery
cost. The optimization problem solved by the prosumer is

min
u

JP (πb,πs)=
T∑
t=1

[
π
(t)
b z

(t)
+ +π

(t)
s z

(t)
− +πbat|u(t)|

]
(6.2a)

=π⊤
b z++π⊤

s z−+πbat1
⊤ |u| (6.2b)

s.t. 0≤Lu≤c (6.2c)

where u represents the vector of battery charged/discharged energy over time with positive
values denoting battery charging, πb,πs represent the time vectors of utility buy and sell
prices, z+,z− represent the time vectors for positive and negative net demand curves respec-
tively, and negative demand corresponds to generation. The optimization objective (6.2a)

incorporates the cost of procuring net demand z
(t)
+ at the buy price, the revenue from selling

net generation z
(t)
− at the sell price, and the cost of battery degradation evaluated with πbat.

The battery constraints (6.2c) are on the state of charge and charging speed, and incorporate
the one way battery efficiency η. A detailed explanation of the model can be found in [4].

If the utility had a net metering program (πb=πs), the optimization problem in (6.2)
reduces to a linear program. Without net metering, the objective (6.2a) is a piece-wise linear
function (and convex, under the assumption that πb≥πs), and the optimization problem
(6.2) is a convex program. Any uncertainty in load and generation can be incorporated
in the objective through a stochastic optimization problem, however we do not do so for
simplicity of exposition.

Aggregator model

We now develop a model for the prosumer aggregator which coordinates energy usage across
prosumer participants.

Centrally controlled aggregation

From the perspective of coordination complexity, the simplest model is a centrally controlled
aggregation where the aggregator has direct control over the storage and flexibility resources
of all the prosumer participants. Such a setup could potentially exist when the aggregator
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is designed to maximize the social welfare of the aggregation as a whole, i.e. minimize the
utility bill and battery operation costs. We can model this problem as

min
ui,i∈S

JS=π⊤
b (

∑
i∈S

zi)++π⊤
s (

∑
i∈S

zi)−+πbat1
⊤
∣∣∣∣∑
i∈S

ui

∣∣∣∣ (6.3a)

s.t. 0≤Lui≤ci1∀i∈S (6.3b)

where the objective (6.3a) represents the utility bill and battery operation costs of the ag-
gregation as a whole, and the constraint (6.3b) represents the battery operation constraints.
There are a few reasons why centralized control schemes may not be implementable: pro-
sumers may be unwilling to cede control of privately owned resources to an external author-
ity, and may be interested in minimizing their own costs rather than contributing to social
welfare.

Aggregator as a market maker

We consider a setup where the aggregator trades energy with prosumers by operating a
centralized clearing-house. The aggregator sets a price that reflects market dynamics, then
sells energy to net consumers and buys energy from net generators at that price. It balances
the net deficit/surplus by trading with the utility at the utility buy/sell price. Pricing
schemes for aggregators have been explored in literature [36], [38], and the market-maker
problem can be formalized as

min
pb,ps

∣∣∣∣∑
i

(
p⊤
b zi++p⊤

s zi−
)
−π⊤

b (
∑
i

zi)+−π⊤
s (

∑
i

zi)−

∣∣∣∣ (6.4a)

s.t. zi=di−gi+u∗
i ∀i∈S (6.4b)

u∗
i =argminuJP (pb,ps) ∀i∈S (6.4c)

where pb,ps are the buy and sell prices set by the aggregator which the prosumers respond
to by optimizing operation as in (6.2). The aggregator aims to minimize the difference in
revenue from prosumer trades and the cost of utility procurement, i.e. set a price that reflects
the market equilibrium accurately.

Agent Based Modeling for Aggregations: Pricing energy in prosumer aggregations is made
complex by the fact that prices that depend on prosumers’ operation will in turn modify
prosumers’ optimal storage operation. This results in two-way dependencies between price
and storage operation, which are modeled as a bilevel optimization problem in (6.4). The
actions of one prosumer affect not only its own cost, but also the costs of other participants.
While there are methods to solve bilevel problems efficiently [51], the actual interdependen-
cies can not be explicitly formulated. Agent based models can be used to resolve the effects
of each prosumer’s actions through Monte Carlo simulations. Table 6.1 defines the elements
in an agent based model of a prosumer aggregation.
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Table 6.1: General elements of an agent based modeling scheme and its analogues in the
prosumer aggregation model

General Element Analogue in Prosumer Aggregation

Agent Building, Aggregator

Decision Making Heuristic Cost minimization

Adaptive Response Response to changing electricity prices

Interaction Topology Interactions with aggregator as in Figure 6.1

Environment Utility policies, actions of other buildings in the aggregation

6.3 Results

In this section, we develop our main results on the optimal composition of prosumer aggre-
gations. We start by making some observations on the value proposition of aggregations.

1) The value of an aggregation derives from a difference in utility buy and sell prices,
i.e. πb − πs, and the marginal value increases with the price difference. Prosumers trading
energy with each other essentially perform price arbitrage over the utility price differential,
and its value exists only when the differential is non-zero.

2) The minimum social (total) cost is achieved in a centrally controlled aggregation. That
cost is a lower bound for the total cost that can be achieved through any other control policy.
The central authority that aims to maximize social welfare solves the optimization problem
in (6.3) which has as its objective the total cost (6.3a), and only has the physical constraints
on battery operation (6.3b) which would exist in any other control mechanism as well. It
is the least constrained problem possible with this objective, and hence achieves the lowest
possible total cost. This does not mean that each prosumer is at its individual optimum,
as battery operation is optimized for social welfare which might not coincide with each
prosumer’s objectives.

Note: In this work, we do not consider the problem of mechanism design and instead
focus on theoretical guarantees for costs for centrally controlled aggregations. Any market
mechanism will achieve higher costs than these bounds, but the results will guide us in
aggregation design.

We conduct the rest of our analysis for an aggregation which aims to minimize total
cost. We realize that this does not capture the self interested nature of the participating
prosumers, and while validating our results we will use mechanisms that use price signals
to coerce socially beneficial actions from participants that are modeled as rational economic
agents. Having laid down the basis of our analysis, we now set out to answer the question:
what is an optimal aggregation, i.e. given a set of buildings, which ones should cooperate
and decide to form an aggregation?

3) Aggregations are superadditive, i.e. larger aggregations result in higher social welfare.
The largest possible aggregation achieves the lowest total cost, and adding a participant
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to an aggregation will always benefit the aggregation as a whole as well as the additional
participant. However, other factors may constrain the expansion of a prosumer aggregation:
communication infrastructure required, willingness of participants to share information and
cede control of their storage resources, and regulatory restrictions on how large social net
metering aggregations can be. In that case, an existing aggregation may have to prioritize
admitting some participants, and will need to identify which prosumers are good additions to
the aggregation. We now state our main result which devises a metric to evaluate prosumers.

Result 21. In order to maximize social welfare, an aggregation should preferentially add a
participant k that maximizes the degree of complementarity to the existing participants
S, i.e. has an optimally complementary consumption curve. A lower bound on the degree of
complementarity can be calculated as

π⊤
b − π⊤

s

2

(∣∣∣∣∑
i∈S

z∗i

∣∣∣∣+ |z∗k| −
∣∣∣∣∑
i∈S

z∗i + z∗k

∣∣∣∣) (6.5)

where z∗i ,z
∗
k are the optimal consumption curves for prosumers in the existing aggregation S

and the new entrant k respectively.

Proof. The optimal social cost for a prosumer aggregation S and joint aggregation S ∪ {k}
is obtained by solving (6.3), and the optimal cost for the isolated prosumer is obtained from
problem (6.2). The marginal increase in social welfare from admitting a participant k is
given by the decrease in social cost

J∗
S + J∗

k (πb,πs)− J∗
S∪{k} (6.6)

The constraints on the enlarged aggregation are the same as the constraints on the original
aggregation S and the prosumer k. Using the triangle inequality and the fact that the
enlarged aggregation’s objective is the sum of the objectives for aggregation S and prosumer
k, the objective in (6.3a) can be lower bounded by the expression in (6.5).

The gap between the actual marginal value of aggregation (6.6) and the lower value
estimated by the degree of complementarity (6.5) arises from the joint optimization of the
new entrant and existing aggregation. Initially, the participants are operating storage in
order to maximize their own individual value, and their cooperative behavior on forming a
joint aggregation improves the social welfare.

From the above, it follows that an aggregation should preferentially invest in generation
resources that maximize the degree of complementarity to the existing participants, which is
lower bounded by

π⊤
b − π⊤

s

2

(∣∣∣∣∑
i∈S

z∗i

∣∣∣∣+ |g| −
∣∣∣∣∑
i∈S

z∗i + g

∣∣∣∣) (6.7)

where z∗i is defined in Result 21, and g is the generation curve. It also follows that an aggre-
gation should preferentially incentivize prosumers to shift loads which result in a consumption
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curve change that maximizes the degree of complementarity to the existing participants, which
is lower bounded by

π⊤
b − π⊤

s

2

(∣∣∣∣∑
i∈S

z∗i

∣∣∣∣+ |∆dk| −
∣∣∣∣∑
i∈S

z∗i +∆dk

∣∣∣∣) (6.8)

where z∗i is defined in Result 21, and ∆dk is the load shift.
An aggregation may have to make an initial evaluation of prosumers based on data

that can be shared without privacy concerns. Empirical agent based methods require the
knowledge of energy resources owned by each prosumer, which could be considered private
information. Our result only uses metered consumption data, i.e. the energy exchanges with
the utility (zk). The expression in (6.5) can be evaluated with the current net consumption
curves of the aggregation and the new prosumer, and can predict which prosumers would be
the most profitable partners to admit into the aggregation. This lower bound only holds for
centrally controlled aggregations, and other control mechanisms may deviate from this.

The marginal reduction in cost (6.6) will be distributed within the aggregation, and a
larger reduction does not necessarily mean that each individual prosumer will be better off-
it just means that there is more on the table to be distributed. The metric in (6.5) depends
on both the magnitude and timing of the net demand curves, and a test for complementarity
can be devised that accounts for profit sharing.

6.4 Simulations

While the results in Section 6.3 are only applicable to a centrally controlled aggregation,
research has been undertaken to devise transactive control schemes and market mechanisms
that can influence prosumer behavior to achieve close-to-optimal social welfare. We use
a transactive control scheme to verify our results, namely the supply-demand ratio (SDR)
driven price proposed in [42] where the ratio of supply and demand determines the buy
and sell prices within the aggregation. These prices depend on the aggregation’s operating
status, and in turn influence prosumer operation which creates the need to set them in
an iterative manner to manage the mutual inter-dependencies. We design an agent based
model in Python that includes the elements in Table 6.1 and can implement iterative pricing
schemes.

Model Details: The prosumer behavior is modeled to optimize (6.2), and two aggregator
models are considered: a market maker that solves (6.4), and a central controller that solves
(6.3). The bilevel problem in (6.4) is solved in an iterative manner, where the aggregator
determines a price based on the supply-demand ratio that minimizes the upper level objective
and conveys it to the prosumer participants who then optimize their storage operation and
convey a net consumption curve back to the aggregator. In the central controller aggregator
model, the aggregator directly optimizes and controls battery operation.

Data Sources: ToU pricing is obtained from [48] and battery costs are estimated from
[20]. Battery one-way efficiency is taken to be 95%. Prosumers are modeled using load data
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Figure 6.2: Comparison of costs for an aggregation before and after adding a new prosumer.
We compare the sum of costs of the disjoint prosumer and original aggregation before the
new prosumer is added (red bar) with the social cost after the new prosumer is added, i.e.
when the joint cost is co-optimized (green bar). Adding a prosumer is always beneficial,
but the value of each prosumer is different. Prosumer B is the most valuable entrant as its
addition leads to the greatest decrease in cost (difference between red and green bars).

taken from [46] with demand of the order of 10− 200 kW, and the simulations use varying
levels of battery installations and PV array sizes for each of the prosumers. PV energy
output is estimated using [41]. To build a robust cost estimate, Monte Carlo simulations are
done spanning a set of 100 days across the year to incorporate seasonal variations.

We consider an aggregation of 5 office buildings (Original aggregation in Fig 6.2) and
evaluate three new potential participants: A, B and C. A and C are net producers, with A
having a lower (negative) cost than C. B is a net consumer with a positive cost. Fig 6.2
compares the sum of costs of the new entrant and original aggregation with the cost for the
joint aggregation, i.e. after the new prosumer is added to the aggregation and their costs are
jointly optimized. As a validation of our remarks in Section 6.3, the cost of the combined
aggregation is always lower than the sum of costs of the constituents. Further, prosumer
B is the most valuable addition to the aggregation as it results in the greatest decrease in
cost (difference between the red and green bars in Fig 6.2), even though it is a net consumer
and has a positive individual cost. This indicates that estimating complementarity is not a
trivial problem, and validates the importance of our result.

In Fig 6.3 we compare the marginal value (6.6) with the degree of complementarity (6.5)
for two different control schemes in order to validate our main result. Result 21 aims to
develop a lower bound for the marginal value for centrally controlled aggregations, and our
simulations validate that. The central control paradigm is consistently able to achieve the
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Figure 6.3: Comparison of the marginal benefit of forming a joint aggregation with a new
prosumer (6.6) with the degree of complementarity of that prosumer (6.5). We compare
the actual cost reduction with the estimate developed in (6.5) under two control paradigms:
central and SDR price control.

highest value of aggregation, validating our remarks in Section 6.3.
The simulation results presented here are intended to serve as a validation of our theoret-

ical results, and larger case studies might be needed to experimentally quantify the benefit
of these results for a wider building population.

6.5 Discussion

In this chapter, we developed ideas around the optimal composition of aggregations and
quantified the value added by new members or additional resources. Specifically, we devel-
oped a metric for the degree of complementarity of a prosumer with an existing aggregation,
and extended this result to generation and load shift resources. We also validated our results
with simulations in an agent based modeling framework with transactive control schemes and
real building data.

We now discuss the practical implications of our result. If a profit seeking entity such as
a commercial DER aggregator were to manage a prosumer aggregation, it would introduce
friction in the system. Some of the marginal value of the aggregation would go towards
profits, and any new participant would have to achieve a degree of complementarity above a
minimum threshold level to guarantee a certain profit margin. From the utility’s perspective,
a prosumer aggregation which profits off the utility buy-sell price difference is taking a share
of what would normally accrue to the utility. However, there are many reasons a utility
would still permit social/virtual net-metering as described in this chapter. First, prosumers
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do have some market power, as they could defect from the utility and form a microgrid
with additional investment. Second, regulatory mandates could force utilities to allow such
schemes, as the presence of aggregations incentivizes investments in distributed generation
as well as local consumption, leading to a reduction in carbon emissions.
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Chapter 7

Pricing in Prosumer Aggregations
using Reinforcement Learning

In the previous chapter, we discussed what an optimal prosumer aggregation would look like
by developing a metric for the degree of complementarity. In this chapter, we discuss how
a similar aggregation could be managed by using reinforcement learning to set prices for
energy sharing within the aggregation. The results presented in this chapter were published
in [10].

7.1 Introduction

Traditional consumers like buildings are increasingly investing in distributed energy resources
such as solar panels and battery backups, and electrifying loads like vehicles. These resources
can be used to supply the building’s own demand, shave the peak load to reduce demand
charges, or to increase resiliency in the face of grid failure or power shutoff and enable con-
sumers to become prosumers, i.e. be electricity producers as well. However, such resources
may remain underutilized, or be sized over-capacity to account for weather and load vari-
ability. Prosumers can profit from trading their surplus energy with other prosumers and
improving resource utilization. Utilities have typically accommodated distributed energy
resources (DERs) through net-metering programs that compensate producers at the retail
tariff. However, retail tariffs are much higher than wholesale energy market prices, and
utilities have begun to phase out net metering programs in favor of direct market partic-
ipation of DERs through aggregations. Prosumers can increase their profitability if they
trade energy with other prosumers using social net-metering schemes implemented by utili-
ties [32]. In these schemes, communities can share energy resources while presenting the net
consumption to the utility as a single entity.

In this chapter, we consider prosumer aggregations that facilitate trading between par-
ticipants in the aggregation, and then balance the net load by purchasing from or selling to
the utility. They can be formed with a variety of motives: private entities could manage
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Figure 7.1: Social net metering in a prosumer aggregation

aggregations for a fee or for a profit, and participants could form cooperative aggregations to
maximize social welfare. Each aggregation has control the energy consumption and produc-
tion of its participants, either through direct control or through some signal which can convey
operational information to the participants. Realistically, prosumers will have independent
cost minimization objectives, and will seek to optimize the operation of their resources for
their own profit. Coordinating independent entities which are separately owned and managed
is a difficult task, and transactive control is a strategy which uses the price of electricity
to influence the operation of prosumers. For a prosumer, responding to a day-ahead price
is easier than estimating load/ generation schedules required to participate in a market, or
responding to real time prices. The aggregator can communicate time-of-use rates a day
ahead to aggregation participants, who can then schedule their operation in response to en-
ergy prices similar to utility time-of-use rate plans. The aggregator has the task of designing
prices that achieve the aggregation’s objectives while dealing with an uncertain environment:
first, the response of prosumers to energy prices is not known to the aggregator, and second,
loads and generation are not perfectly predictable and have inherent occupancy and weather
driven uncertainty.

Pricing resources in an uncertain environment is a task well suited for a data driven
controller such as an RL algorithm, which motivates our work presented in this chapter.

Contributions: We propose the use of Reinforcement Learning (RL) for pricing in
local energy markets, and use it to develop a pricing mechanism that does not need explicit
participant models or any operational information about prosumers. The proposed RL
controller can replace iterative pricing methods commonly found in literature by learning
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to estimate market settlement and profit maximizing prices for the aggregator in a one-
shot manner using historical and forecast data, and motivates further research in RL based
methods for pricing.

7.2 Background

In this section, we build background for the two main themes of this chapter: prosumer
aggregations and RL.

Prosumer aggregations

Recent regulations have opened up multiple avenues for distributed energy resources (DERs)
to participate in energy markets. However, wholesale markets have minimum participation
sizes and may require DERs to construct demand and supply bids. Virtual microgrids
and DER aggregations offer a pathway for prosumers to trade energy locally instead of
participating in energy markets.

Researchers have worked on developing methods to control such aggregations. While
microgrids have traditionally controlled distributed resources through a central authority
dictating consumption/generation decisions, this can not be implemented in a situation
where self-interested prosumers want to aggregate without ceding control of their opera-
tional decisions. [38] considers a microgrid central controller trying to shape the load curves
of participants by employing participant differentiated real time pricing. [36] studies the
problem of minimizing deviation from day ahead estimates through pricing, and [73] models
a hierarchical optimization problem to solve the aggregation control problem. We model a
similar hierarchical optimization in Section 7.3.

Aggregations commonly employ iterative pricing methods: [72] models prosumer trades
as a Nash Bargaining problem, and solves it by decomposing it into two sequential problems
which are solved iteratively using alternating direction method of multipliers (ADMM). This
involves communicating price and energy consumption information back and forth between
the aggregator and participants. Similarly, [42] develops a pricing model for a prosumer
aggregation but settles on a price in an iterative manner. These methods have a couple
of disadvantages: first, they require the participants to communicate back-and-forth with
the aggregator which requires two-way communication infrastructure; second, prosumers
are required to develop demand forecasts, which can unnecessarily raise the computational
barrier for entry.

There is a need to devise methods to optimize the aggregator objective without rely-
ing on participant load/generation forecasts and without an iterative back and forth with
prosumers, and this is the gap we try to address in this work.
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Reinforcement learning

RL is a type of agent-based machine learning where a complex system is controlled through
actions that optimize the system in some manner [66]. The actions seek to optimize the
expected sum of rewards for actions (at) and states (st) in a policy parameterized by θ; i.e.,
J(θ)=E

∑
st,at∼pπ

[r(st,at)]. RL has been applied to a number of demand response situations
in prosumer microgrids, but almost all the work centers on agents that directly schedule
resources [71]. RL architectures can vary widely, for example [39] deploys a fuzzy Q-learning
multi-agent that learns to coordinate appliances to increase reliability. In another illustrative
example, [45] manages a battery directly using batch Q-learning. However, there are few
works where the RL controller is a price setter in a market. In [44] RL has been used to
estimate dynamic prices in a multi agent environment of demand response assets. To the
best of our knowledge, RL has not been used to preemptively solve for equilibrium price in
markets.

We propose the use of Soft Actor Critic, an RL architecture that tries to maximize the
entropy of its actions to better explore the search space [30]. Actor-Critic architectures are
composed of policy networks that suggest actions (actors) and value estimation networks that
estimate the expected reward of the next state (critics), thereby guiding the actor network’s
learning [40]. How an agent prioritizes exploration vs. exploitation can be influenced by the
inclusion of an entropy parameter e which is valued by an entropy maximizing framework,
i.e. J(θ) = E

∑
st,at∼pπ

[r(st,at) + wee], weighting e by some value we.

7.3 Methods

We model the prosumer and aggregator behavior as solutions to optimization problems, and
then introduce the RL controller that we use to estimate prices in a day ahead manner.

Prosumer model

A prosumer typically has a combination of loads (flexible and inflexible), local generation
and energy storage. We can denote the net energy consumption as z(t)=d(t)−g(t)+u(t) where
in any time period t, the prosumer has energy demand d(t), local generation g(t), and storage
operation u(t). The prosumer purchases its net load at a time-of-use rate πb(t), and sells back
any excess generation at πs(t). These prices are typically different [32], as utilities remove
or disincentivize net-metering programs. The prosumer optimization problem (P-OPT) can
be formulated as

P-OPT(πb,πs) : min
u

T∑
t=1

[
π
(t)
b z

(t)
+ + π

(t)
s z

(t)
− + πbat|u(t)|

]
(7.1a)

= π⊤
b z+ + π⊤

s z− + πbat1
⊤
T |u| (7.1b)

s.t. 0 ≤ Lu ≤ c (7.1c)
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where u represents the vector of battery charge/discharge over time with positive values
denoting battery charging, πb,πs represent the time vectors of buy and sell prices, and z+,z−
represent the time vectors for net positive demand and net negative demand (net generation)
respectively. The optimization objective (7.1a) incorporates the cost of procuring any net
demand z+ at the buy price, the revenue from selling any net surplus energy generation z− at
the sell price, as well as the cost of battery degradation evaluated with πbat. The constraint
(7.1c) encapsulates physical constraints on the state of charge for energy storage, charging
speed constraints, and the one way battery efficiency η. More details can be found in [4].

Aggregator model

Aggregators can be operated as central clearing houses where energy trades are balanced,
and the net consumption is procured from the utility which acts as the outside option.
All prosumers purchase their net energy needs from the aggregator at a price set by the
aggregator. The aggregator is constrained in its choice of prices: if it is worse then the
outside option (the utility), prosumers will have no incentive to trade with it. This constraint
is encapsulated as πs ≤ λs,λb ≤ πb, where λs,λb represent the aggregator-set sell and buy
prices respectively. Aggregations can be formed with multiple objectives, and we explore
two particular objectives: profit maximization and market balancing.

For-profit aggregator

Aggregators can aim to maximize the profit they earn for acting as a trade facilitator, and
in a situation with perfect information they would solve the following bilevel optimization
problem to set prices:

max
λb,λs

[
λ⊤

b

∑
(z∗+) + λ⊤

s

∑
(z∗−)

]
−
[
π⊤

b (
∑

z∗)+ + π⊤
s (

∑
z∗)−

]
(7.2a)

s.t. πs ≤ λs,λb ≤ πb (7.2b)

z∗ = d− g + u∗;u∗ = argmin
u

P-OPT(λb,λs) (7.2c)

where the objective in Eq. 7.2a represents the net profit for the aggregator, i.e. the revenue
from sales to the prosumers minus the cost of procuring the net energy demand from the
utility.

∑
(z∗+),

∑
(z∗−) are the sum of each prosumer’s demand and generation taken sepa-

rately, while (
∑

z∗)+,(
∑

z∗)− are the net demand and generation of the aggregation once all
internal trades have been balanced.

Market solving aggregator

The aggregation can be set up to operate a local energy market where prosumers negotiate
with each other and eventually trade at the market equilibrium price. Instead of requiring
prosumers to develop demand and supply bids and engage in negotiations, the aggregator
can set prices that reflect the market equilibrium in a day ahead manner. Such an aggregator
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Figure 7.2: Reinforcement Learning control flow

will aim to reduce the difference between day ahead estimated price and market settlement
price, which is equivalent to ensuring a net zero profit/loss situation for the aggregator. This
problem can be formulated as

min
λb,λs

∣∣[λ⊤
b

∑
(z∗+) + λ⊤

s

∑
(z∗−)

]
−
[
π⊤

b (
∑

z∗)+ + π⊤
s (

∑
z∗)−

]∣∣ (7.3a)

s.t. Eq. 7.2b, Eq. 7.2c (7.3b)

Note that the objective (Eq. 7.3a) is the absolute value of the objective for the for-profit
aggregator (Eq. 7.2a).

Transactive control using RL

The problems modeled in Section 7.3 are hierarchical optimization problems, and do not have
a closed-form solution without some form of information sharing between the aggregator and
prosumers. As discussed in other papers which use ADMM and iterative pricing methods
(Section 7.2), decentralized pricing methods require iterations to converge to a solution. We
develop an RL controller that relies on a day-ahead price set using historical price information
and generation forecasts. The transactive controller does not iterate over prices, and instead
learns to estimate future prices in a one-shot manner. Our search space of possible prices is
simple enough to be covered by an entropy maximizing agent, and we employ a Soft Actor-
Critic (SAC) architecture to do so. The reward for the for-profit aggregator is computed
as the objective expressed in Eq. 7.2a, and the reward for the market solving aggregator is
computed by the objective in Eq. 7.3a. We simulate the behavior of our controller under
uncertain generation forecasts and compare it to baseline iterative pricing algorithms in
Section 7.4.

7.4 Results

We will now describe our results for each of the two objectives: market solving and profit
maximization, prefaced by an explanation of our data, architecture and training process. We
model this problem after an environment to simulate demand response in office buildings
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[63]. Each step in the environment is a day where the RL controller broadcasts prices to the
prosumers, who modify their energy storage and consumption to minimize their costs, and
the controller uses their consumption data to calculate its reward.

Implementation We use the stable-baselines fork of OpenAI baselines [33], and our other
implementation choices are detailed in our Github repository [62]. The final run presented
here was distributed across 24 CPUs for 12 hours each. The Q-factor loss shown in Fig. 7.5
is one of many metrics that represents the neural network’s training. The market solving
controller’s reward (Eq. 7.3a) is always negative. For the simulations presented in this work,
the utility pricing is obtained from [48] and the prosumers considered are commercial office
buildings modeled using load data taken from [46] with additional details presented in [4].

Marginal benefit of aggregation

We compare the system costs in the presence and absence of a profit-maximizing aggregator
for two different levels of prosumer solar generation and battery capacity. As can be seen
in Fig. 7.3, the RL controller reduces the system costs and provides value which can be
distributed among the aggregator and prosumers.

Figure 7.3: Comparing system costs, i.e. sum of aggregator and prosumer costs with and
without a profit maximizing RL controller for two resource levels: a) Medium, and b) Small

Comparison with iterative pricing

We compare the market solving RL controller with an iterative pricing scheme that aims
to achieve market equilibrium through back and forth negotiations with prosumers [4]. In
this case, the objective is to drive the aggregator profit close to zero. The RL controller
has a smoother profit on average, i.e it exhibits lower deviations than the iterative pricing
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algorithm as can be seen in Fig. 7.4. We believe that expanding training and shaping the
observation space could potentially improve the performance of the RL controller.

Figure 7.4: Comparing aggregator profit for market solving prices with iterative pricing and
RL controller

Figure 7.5: Training curves for reward and Q-factor loss. The concave shape indicates an
approach to convergence

7.5 Discussion

RL controllers are particularly well suited for dynamic data driven environments with un-
known, complex, and time-varying system models, e.g., with changing prosumer resources.
The novelty of our proposition is in using RL to preemptively price energy in local mar-
kets, but is accompanied by many challenges that will need to be addressed for practical
applicability.

Safety: An RL controller might generate prices that result in infeasible operation. We
tackle this by using utility-set prices to enforce limits on the aggregator prices λs,λb∈[πs,πb].
An additional safety check would involve validating these prices through a single back-and-
forth communication with prosumers to ensure that their operation does not exceed system
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limits. Probabilistic guarantees for RL controllers can be used [13]. Additionally, supervised
RL can help guarantee safety at the outset [56].

Efficiency: While the large number of training iterations represent a greater computa-
tional burden than iterative pricing methods, the RL controller will reduce the computational
burden on each individual prosumer by eliminating the need to construct forecasts or de-
mand/supply bids. Further, each prosumer’s computations occur in parallel and adding new
prosumers to the aggregation does not increase the problem complexity.

Robustness: Adversarial training is a useful method to construct robust RL controllers
[49], and can be extended to our setup.

Optimality: Research has been done in bounding the sub-optimality of RL policies using
policy certificates [21], and research in this area can help provide guarantees for our RL
controller as well.

Practical Implementation: The training iterations needed are a barrier to use of an RL
controller in a prosumer aggregation in practice. However, there are numerous enhance-
ments we propose to address this. First, meta-learning: a large part of the training can
take place in a simulation environment which can use a rules-based heuristic as a starting
point, and use exogenous parameters to create a distribution of unique systems to train on
(i.e. domain randomization.) A technique like Model Agnostic Meta-Learning can train in
the different simulations to approximate a starting distribution for policy network weight
initializations [25]. However, the accuracy of the simulation model will determine how ef-
fective the RL controller is when it transitions to an actual aggregation. Second, planning :
a Dyna-like auxiliary model, either generative (i.e. GANs) or predictive (i.e. regression or
neural nets), could train with the agent and help augment data [67]. Third, offline learning
can incorporate data from other microgrids using techniques in the causal methods literature
to help adequately perform the data fusion necessary[26]. However, validating these ideas
will require more work.

In practice, either formulation of the aggregator could be implemented: a profit-seeking
entity could operate the controller, or a prosumer cooperative could aim to facilitate trades
between members. In this work, we model the utility as the outside alternative. As pro-
sumer aggregations grow larger, they may participate in wholesale energy markets instead
of purchasing energy from utilities, and will have to adapt to variable energy market prices
as well as having to generate estimates of their own consumption and production. RL al-
gorithms have been previously used to optimize market participation, and these would be
complementary to the model we present here. The use of reinforcement learning for pricing
continues to be an active area of research, with follow up studies conducted in [35].
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Chapter 8

Conclusion

8.1 Summary

This thesis summarizes a few key challenges associated with three main trends shaping the
transition to a low-emissions grid: the rise of distributed energy resources, the need for
demand side flexibility, and the intersection of the transportation and power network. Each
of the chapters in this thesis examines a specific challenge, and presents a potential solution.

The first part of the thesis focuses on challenges associated with harnessing demand side
flexibility, both for aggregators participating in electricity markets and for climate conscious
consumers. These challenges are particularly relevant due to the rise of clean electricity
generation, which is intermittent and uncontrollable. Power system operators will increas-
ingly rely on demand side flexibility to accommodate the variability on the supply side, and
flexible consumers can harness this resource both to earn money and to reduce their car-
bon footprint. In Chapter 2, we discussed problems related to optimizing demand response
participation for flexible consumers in utility contract programs, and presented a comple-
mentarity metric which can be used to form optimal aggregations of flexible consumers. In
Chapter 3, we discussed how flexible energy consumption can also have an impact on CO2

emissions by prioritizing the time periods at which consumers shift and shed loads.
The second part of this thesis focuses on electrified transportation and the intersection

of this new resource with the power network. The vast majority of new battery capacity will
be embedded in electric vehicles, and it is essential that power system operators harness this
mobile storage capacity optimally. In Chapter 4, we discussed how electric vehicle batteries
can participate in the power network as mobile storage. We considered this new resource
from the power system operator’s perspective, derived expressions for the marginal value of
the mobile storage resource, and developed algorithms for optimal relocation. In Chapter 5,
we considered an electric vehicle battery sharing game, where owners can choose to use their
batteries and participate as mobile storage in power networks. We modeled two different
types of EV behaviors, analyzed the equilibrium operation and put it in the context of the
social welfare.
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The third part of the thesis deals with prosumers, i.e., consumers that have production
capability through on-site generation and storage. Prosumers can increase the utilization
of their onsite resources by forming local energy markets (aggregations), where the setup
and operation of such aggregations is an open research question. In Chapter 6, we consid-
ered prosumer aggregations, how they can help incentivize greater investment in distributed
energy resources, and how prosumer aggregations can be set up in an optimal manner. In
Chapter 7, we turned to the problem of operating these prosumer aggregations, and de-
vised a reinforcement learning mechanism to set prices in prosumer aggregations in order to
maximize either aggregator profit or social welfare.

8.2 Open Challenges

This thesis touched on specific questions associated with each of the three trends affecting
the transition to a low-emissions grid. However, there remain open questions associated with
each of these trends.

Demand side flexibility

One big hurdle in utilizing demand side flexibility as a resource in the power grid is its low
reliability. Utility and power system operators do not have the confidence that consumers
will reliably and adequately curtail their energy consumption when called upon to do so.
Further, they do not have accurate estimates of what the load curtailment will be, even
in a probabilistic sense. Power system operators and utilities can only schedule resources
that they have a certain level of insight into, for example through forecasts or uncertainty
spreads. In order to make demand side flexibility a reliable resource for the power grid, it is
essential that forecasting models for flexible load capability are developed.

These forecasts are also useful for flexible consumers that are bidding into demand re-
sponse programs, as they can be used to improve the profits that consumers earn from their
participation in these programs. Additionally, flexibility forecasts are necessary in order to
optimize the emissions impact of flexible energy consumption, since the efficacy and optimal
timing of the load shift or load shed actions depends on the amount and type of flexible load
available at each time period.

Alongside improving forecasts, it is important to bring more flexible loads ‘online’, i.e.,
make them capable of providing demand side flexibility at short notice. There are multiple
technological challenges associated with unlocking new sources of demand side flexibility,
such as the need for advances in controls and communications infrastructure through which
we can make existing devices ‘smart’, i.e., capable of modulating their energy consumption
in response to an outside signal. Further, there are new flexible resources coming online each
day as loads such as vehicles and heat pumps are electrified, and they can act as additional
sources of demand side flexibility. These newly electrified loads will have different patterns
of energy consumption than existing loads in the power network, and it may be necessary
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to develop new market mechanisms in order to accommodate the specific kind of flexibility
that they can offer.

Electric vehicles and the power network

With the increase in the share of electric vehicles in the transportation network, electric
vehicle charging will be the fastest growing end-use load for the power system. Power system
operators and utilities are already struggling to accommodate this new load, particularly
in congested sections of the distribution grid. However, electric vehicles are not only an
additional load, but also a resource due to the embedded batteries which can be harnessed
by the power system operator. Utilities across the world are running pilots and testing
programs to figure out what the optimal model of engagement with electric vehicles should
be. Given that we are in the early stages of electric vehicle penetration, there is no clear
winner among the possible modes of engagement - whether it will be driven through third
party platforms that enable electric vehicles to participate in power markets, or through
special programs run by utilities and distribution system operators.

There are three main ways in which electric vehicles can interface with the power network.
The first is through their function as an electricity consumer, i.e., through their charging
operation. Accommodating this new load is an infrastructure problem, as both generation
and transmission/distribution capacity will need to be ramped up to get electricity to the
EV batteries that need it. Managed charging is increasingly being explored as a solution to
a myriad of problems - being able to shift the time of charging can enable electric vehicles
to use cleaner and cheaper electricity, and help system operators avoid expensive upgrades.
There are multiple models to encourage managed charging, like imposing dynamic/time-
varying retail tariffs for EVs, providing one-off incentives, and directly controlling charge
flow for centrally managed charging networks.

The second way for electric vehicles to participate in the power network is as stationary
storage. Bus and truck fleets have predictable schedules and downtimes, and the batteries
embedded in them can be used as grid connected storage when they’re parked. Car man-
ufacturers such as Ford have already rolled out car models whose batteries can be used as
stationary storage to power homes in case of grid outages. It remains to be seen whether
electric vehicle batteries will predominantly be used as backup or emergency batteries, or
whether they will actively engage in electricity markets as stationary storage.

The third model of engagement for electric vehicles is by acting as mobile storage in
the power network. In Chapters 4 and 5, we talked about how the power system operator
and individual EV drivers will approach the mobile storage resource. However, simulations
conducted on a section of the power grid in the PJM territory show that a passenger EV
acting as mobile storage would not make much money [9]. Currently, the costs of using high
energy-density Li-ion batteries embedded in electric vehicles as mobile storage outweigh the
monetary value. However, with changing grid congestion conditions, mobile storage in the
form of moving EVs could become a valuable resource in certain parts of the grid at certain
times of the year, particularly as an alternative during critical emergencies. Additionally,
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shifting energy consumption across time and locations can also be thought of as mobile
storage. For example, if an EV driver chooses to charge their car at their workplace during
the afternoon instead of at home during the night, that action can be thought of as a ‘mobile
battery’: injecting power into the grid near the driver’s home at night, and then drawing
power from the grid near the driver’s workplace during the day. Such load shift actions
can be modeled using the mobile storage formulation in Chapter 4, and can be considerably
cheaper to implement.

Prosumers

One of the ways in which distributed energy resources will participate in the larger power
network is through local energy markets and aggregations. There are other market participa-
tion models, e.g., through direct market participation of a share of the resource. While there
have been many pilots and test beds for prosumer aggregations, there are few functioning
examples of such local energy markets in practice. Part of that is due to the regulatory envi-
ronment around such aggregations. Recently, there have been strides towards incorporating
virtual power plants, i.e., collections of distributed resources functioning as a power supplier
into the larger power grid. The profitability of such aggregations remains to be seen, and
will be impacted by the reliability and availability of the constituent resources.

The other aspect of prosumer aggregations is the control mechanism or pricing algorithm
that influences prosumers’ actions. We presented a reinforcement learning (RL) controller
to set prices in such an aggregation; however, the use of RL for pricing faces challenges in
implementation. Utilities are regulated on safety and reliability, and consumers are unlikely
to accept prices that are not interpretable, particularly if they come from a black box ma-
chine learning model. Further research on setting prices that are fair and have optimality
guarantees is necessary, and remains an active area of research.

8.3 The Big Picture

The move to clean energy sources is driving a transition in power systems across the world,
and distributed energy resources which are variable and operated independently will need
new market participation models to integrate with the power grid. These models include
direct participation in wholesale markets, as we discussed for mobile storage, or local energy
markets as we discussed for prosumers. Another form of participation can be through specific
contract mechanisms for a specialized service, as discussed for demand response. There is
work being done to figure out which new participation model will work best for each resource,
both in academic literature and through pilots run by power system stakeholders. As the
market matures, new technologies emerge and cost curves change, the participation model
for each kind of resource might change as well.

Another aspect of these resources is that they can serve as alternatives to traditional
infrastructure. In this role, they can enable a power system transition from a centrally
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controlled system with high inertia generators to a distributed, variable and intermittent
resource mix. For example, demand side flexibility and batteries can be used to maintain
the power balance on the grid, mobile storage can serve as an alternative to transmission line
capacity or other forms of storage, and setting up local energy markets can be an alternative
to expanding transmission and distribution infrastructure.

For each of these resources, the most valuable service that they can provide to the power
system and the optimal participation model to enable that service will depend on the grid
conditions: the renewables penetration, the system configuration and market regulations
that govern it. In the move to a clean power grid, the rise of distributed energy resources,
the need for demand side flexibility, and the participation of electric vehicles in the power
grid will enable a market transition with new participation models and market mechanisms.



87

Bibliography

[1] url: https://dataminer2.pjm.com/feed/da%5C_hrl%5C_lmps.

[2] url: https://afdc.energy.gov/fuels/electricity%5C_charging%5C_home.html.

[3] United States Environmental Protection Agency. EPA Greenhouse Gas Inventory Data
Explorer. url: https://cfpub.epa.gov/ghgdata/inventoryexplorer/#allsectors/
allsectors/allgas/econsect/current.

[4] Utkarsha Agwan. “Optimal Prosumer Aggregations: Design and Modeling”. In: (2020).

[5] Utkarsha Agwan, Samuel Bobick, Srinath Rangan, Kameshwar Poolla, and Costas J
Spanos. “Time Varying Marginal Emissions Intensity of Energy Consumption: Impli-
cations for Flexible Loads”. In: Findings (2023).

[6] Utkarsha Agwan, Kameshwar Poolla, and Costas J Spanos. “Optimal Composition
of Prosumer Aggregations”. In: 2021 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe). IEEE. 2021, pp. 1–5.

[7] Utkarsha Agwan, Junjie Qin, Kameshwar Poolla, and Pravin Varaiya. “Electric vehicle
battery sharing game for mobile energy storage provision in power networks”. In: 2022
IEEE 61st Conference on Decision and Control (CDC). IEEE. 2022, pp. 6364–6370.

[8] Utkarsha Agwan, Junjie Qin, Kameshwar Poolla, and Pravin Varaiya. “Marginal Value
of Mobile Energy Storage in Power Network”. In: 2021 60th IEEE Conference on
Decision and Control (CDC). IEEE. 2021, pp. 4936–4943.

[9] Utkarsha Agwan, Junjie Qin, Kameshwar Poolla, and Pravin Varaiya. “Mobile Energy
Storage in Power Network: Marginal Value and Optimal Operation”. In: arXiv preprint
arXiv:2303.09704 (2023).

[10] Utkarsha Agwan, Lucas Spangher, William Arnold, Tarang Srivastava, Kameshwar
Poolla, and Costas J Spanos. “Pricing in prosumer aggregations using reinforcement
learning”. In: Proceedings of the Twelfth ACM International Conference on Future
Energy Systems. 2021, pp. 220–224.

[11] Utkarsha Agwan, Costas J Spanos, and Kameshwar Poolla. “Asset Participation and
Aggregation in Incentive-Based Demand Response Programs”. In: 2021 IEEE Inter-
national Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm). IEEE. 2021, pp. 89–94.



BIBLIOGRAPHY 88

[12] Utkarsha Agwan, Costas J Spanos, and Kameshwar Poolla. “Optimizing participa-
tion of buildings and aggregations in incentive-based demand response programs”. In:
Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation. 2022, pp. 278–279.

[13] Edoardo Bacci and David Parker. “Probabilistic guarantees for safe deep reinforcement
learning”. In: International Conference on Formal Modeling and Analysis of Timed
Systems. Springer. 2020, pp. 231–248.

[14] Eilyan Bitar, Pramod Khargonekar, and Kameshwar Poolla. “On the marginal value
of electricity storage”. In: Systems & Control Letters 123 (2019), pp. 151–159.

[15] Subhonmesh Bose and Eilyan Bitar. “The marginal value of networked energy storage”.
In: arXiv preprint arXiv:1612.01646 (2016).

[16] Raffaele Carli, Mariagrazia Dotoli, and Vittorio Palmisano. “A distributed control ap-
proach based on game theory for the optimal energy scheduling of a residential micro-
grid with shared generation and storage”. In: 2019 IEEE 15th International Conference
on Automation Science and Engineering (CASE). IEEE. 2019, pp. 960–965.

[17] Cara Carmichael, James Mandel, Henry Richardson, Edie Taylor, and Connor Usry.
The Carbon Emissions Impact of Demand Flexibility. Tech. rep. RMI, 2021. url: rmi.
org/our-work/buildings/.

[18] McKinsey & Co. “Battery 2030: Resilient, sustainable, and circular”. In: (2023).

[19] Christopher M Colson and M Hashem Nehrir. “Algorithms for distributed decision-
making for multi-agent microgrid power management”. In: 2011 IEEE Power and
Energy Society General Meeting. IEEE. 2011, pp. 1–8.

[20] Claire Curry. Lithium-Ion Battery Costs and Market. 2017. url: data.bloomberglp.
com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-and-market.

pdf.

[21] Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. “Policy certificates: To-
wards accountable reinforcement learning”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 1507–1516.

[22] YS Foo Eddy, Hoay Beng Gooi, and Shuai Xun Chen. “Multi-agent system for dis-
tributed management of microgrids”. In: IEEE Transactions on power systems 30.1
(2014), pp. 24–34.

[23] Consolidated Edison. Commercial Demand Response Program Guidelines. 2021.

[24] FERC Order 745. https://www.ferc.gov/sites/default/files/2020-06/Order-745.pdf. 2011.

[25] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks”. In: CoRR abs/1703.03400 (2017). arXiv: 1703.
03400. url: http://arxiv.org/abs/1703.03400.



BIBLIOGRAPHY 89

[26] Andrew Forney and Elias Bareinboim. “Counterfactual Randomization: Rescuing Ex-
perimental Studies from Obscured Confounding”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence 33.01 (July 2019), pp. 2454–2461. doi: 10.1609/aaai.
v33i01.33012454. url: https://ojs.aaai.org/index.php/AAAI/article/view/
4090.

[27] Natalie Mims Frick, Eric Wilson, Janet Reyna, Andrew Parker, Elaina Present, Janghyun
Kim, Tianzhen Hong, Han Li, and Tom Eckman. “End-Use Load Profiles for the US
Building Stock: Market Needs, Use Cases, and Data Gaps”. In: (2019).

[28] L. Gacitua, P. Gallegos, R. Henriquez-Auba, A. Lorca, M. Negrete-Pincetic, D. Oli-
vares, A. Valenzuela, and G. Wenzel. “A comprehensive review on expansion planning:
Models and tools for energy policy analysis”. In: Renewable and Sustainable Energy
Reviews 98 (2018), pp. 346–360. issn: 1364-0321. doi: https://doi.org/10.1016/
j.rser.2018.08.043. url: https://www.sciencedirect.com/science/article/
pii/S1364032118306269.

[29] Brian Gerke, Giulia Gallo, Sarah Smith, Jingjing Liu, Peter Alstone, Shuba Raghavan,
Peter Schwartz, Mary Ann Piette, Rongxin Yin, and Sofia Stensson. “The California
demand response potential study, phase 3: final report on the shift resource through
2030”. In: (2020).

[30] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 1861–1870.

[31] Guannan He, Jeremy Michalek, Soummya Kar, Qixin Chen, Da Zhang, and Jay F
Whitacre. “Utility-Scale Portable Energy Storage Systems”. In: Joule 5.2 (2021), pp. 379–
392.

[32] Rodrigo Henriquez-Auba, Patricia Pauli, Dileep Kalathil, Duncan S Callaway, and
Kameshwar Poolla. “The Sharing Economy for Residential Solar Generation”. In: 2018
IEEE Conference on Decision and Control (CDC). IEEE. 2018, pp. 7322–7329.

[33] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable Base-
lines. https://github.com/hill-a/stable-baselines. 2018.

[34] International Energy Agency. Global EV Outlook 2021. Tech. rep. IEA Paris, Note =
https://www.iea.org/reports/global-ev-outlook-2021, year = 2021.

[35] Doseok Jang, Lucas Spangher, Tarang Srivistava, Manan Khattar, Utkarsha Agwan,
Selvaprabu Nadarajah, and Costas Spanos. “Offline-online reinforcement learning for
energy pricing in office demand response: lowering energy and data costs”. In: Pro-
ceedings of the 8th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation. 2021, pp. 131–139.



BIBLIOGRAPHY 90

[36] Liyan Jia, Qing Zhao, and Lang Tong. “Retail pricing for stochastic demand with
unknown parameters: An online machine learning approach”. In: 2013 51st Annual
Allerton Conference on Communication, Control, and Computing (Allerton). IEEE.
2013, pp. 1353–1358.

[37] Dileep Kalathil, Chenye Wu, Kameshwar Poolla, and Pravin Varaiya. “The sharing
economy for the electricity storage”. In: IEEE Transactions on Smart Grid (2017).

[38] Seung-Jun Kim and Geogios B Giannakis. “An online convex optimization approach
to real-time energy pricing for demand response”. In: IEEE Transactions on Smart
Grid 8.6 (2016), pp. 2784–2793.

[39] P. Kofinas, A.I. Dounis, and G.A. Vouros. “Fuzzy Q-Learning for multi-agent decen-
tralized energy management in microgrids”. In: Applied Energy 219 (2018), pp. 53–67.
issn: 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2018.03.017. url:
https://www.sciencedirect.com/science/article/pii/S0306261918303465.

[40] Vijay R Konda and John N Tsitsiklis. “Actor-critic algorithms”. In: Advances in neural
information processing systems. Citeseer. 2000, pp. 1008–1014.

[41] National Renewable Energy Laboratory. NREL PVWatts Calculator Tool. url: https:
//pvwatts.nrel.gov.

[42] Nian Liu, Xinghuo Yu, Cheng Wang, Chaojie Li, Li Ma, and Jinyong Lei. “Energy-
sharing model with price-based demand response for microgrids of peer-to-peer pro-
sumers”. In: IEEE Transactions on Power Systems 32.5 (2017), pp. 3569–3583.

[43] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan L.H. An-
drew. “Greening Geographical Load Balancing”. In: Proceedings of the ACM SIGMET-
RICS Joint International Conference on Measurement and Modeling of Computer Sys-
tems. SIGMETRICS ’11. San Jose, California, USA: Association for Computing Ma-
chinery, 2011, pp. 233–244. isbn: 9781450308144. doi: 10.1145/1993744.1993767.
url: https://doi.org/10.1145/1993744.1993767.

[44] Renzhi Lu, Seung Ho Hong, and Xiongfeng Zhang. “A dynamic pricing demand re-
sponse algorithm for smart grid: reinforcement learning approach”. In: Applied Energy
220 (2018), pp. 220–230.

[45] Brida V. Mbuwir, Frederik Ruelens, Fred Spiessens, and Geert Deconinck. “Battery
Energy Management in a Microgrid Using Batch Reinforcement Learning”. In: Energies
10.11 (2017). issn: 1996-1073. url: https://www.mdpi.com/1996-1073/10/11/1846.

[46] Clayton Miller and Forrest Meggers. “The Building Data Genome Project: An open,
public data set from non-residential building electrical meters”. In: Energy Procedia
122 (2017), pp. 439–444.

[47] National Regulatory Research Institute. Getting the signals straight: Modeling, plan-
ning, and implementing non-transmission alternatives. https://pubs.naruc.org/
pub/FA86CD02-A0F1-EADA-2240-D4932060892F. 2015.



BIBLIOGRAPHY 91

[48] OpenEI. Time of Use pricing. 2017. url: https://openei.org/apps/USURDB/rate/
view/5cbf78b25457a34e40671081#3__Energy (visited on 05/02/2017).

[49] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowd-
hary. “Robust deep reinforcement learning with adversarial attacks”. In: arXiv preprint
arXiv:1712.03632 (2017).

[50] Amol Phadke, Nikit Abhyankar, Jessica Kersey, Taylor McNair, Umed Paliwal, David
Wooley, Olivia Ashmoore, Robbie Orvis, Michael O’Boyle, Ric O’Connell, Utkarsha
Agwan, Priyanka Mohanty, Priya Sreedharan, and Deepak Rajagopal. 2035 Report
2.0: Plummeting Costs and Dramatic Improvements In Batteries Can Accelerate Our
Clean Transportation Future. Tech. rep. University of California, Berkeley, 2021. url:
https://www.2035report.com/transportation/.

[51] S Pineda, H Bylling, and JM Morales. “Efficiently solving linear bilevel programming
problems using off-the-shelf optimization software”. In: Optimization and Engineering
19.1 (2018), pp. 187–211.

[52] J. Qin, I. Yang, and R. Rajagopal. “Submodularity of Storage Placement Optimiza-
tion in Power Networks”. In: IEEE Transactions on Automatic Control 64.8 (2019),
pp. 3268–3283. doi: 10.1109/TAC.2018.2882489.

[53] Junjie Qin, Sen Li, Kameshwar Poolla, and Pravin Varaiya. “Distributed storage in-
vestment in power networks”. In: 2019 American Control Conference (ACC). IEEE.
2019, pp. 1579–1586.

[54] Junjie Qin, Kameshwar Poolla, and Pravin Varaiya. “Mobile storage for demand charge
reduction”. In: IEEE Transactions on Intelligent Transportation Systems (2021).

[55] Mike Quashie, Chris Marnay, François Bouffard, and Géza Joós. “Optimal planning
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Appendix A

Examples and Proofs for Ch. 4

A.1 Numerical Examples for Section 4.4

Numerical case for Example 2 Consider a two-period economic dispatch problem for
a three bus network, with nodes 1,2,3 as in Fig. 4.2. Assume the system is equipped with
a stationary battery of capacity 0.5 at node 1, and a mobile battery of capacity 0.5 which
is located at node 3 in the first period and at node 1 in the second period. Further, assume
each node has power generation with a quadratic cost function Ci(gi(t)) = gi(t)

2, and each
of the lines has an identical susceptance value and capacity of 0.5. The energy demand of
this system is concentrated at node 1, with a demand of 5 in the first period, and 10 in the
second period. In this situation, both line 2→ 1 and line 3→ 1 are congested in time period
1. The LMPs for the two periods are λ1(1) = 9,λ3(1) = 2,λ1(2) = 16, which means that
MVms(1)=λ1(2)−λ3(1)=14, MVss(1)=λ1(2)−λ1(1)=7. Meanwhile, MVw(1)=β3→1(1)=6,
and MVw(1) +MVss(1) = 13 < MVms(1).

Numerical case for Example 3 Consider the same setup as in a) but with a different
demand. The demand of the system in the first time period is 5 units each at node 1 and 2,
and 10 units at node 1 in the second period. In this situation, both line 3→1 and line 3→2 are
congested in time period 1. The LMPs for the two periods are λ1(1)=10,λ3(1)=3,λ1(2)=16,
which means that MVms(1) = λ1(2)− λ3(1) = 13, MVss(1) = λ1(2)− λ1(1) = 6. Meanwhile,
MVw(1) = β3→1(1) = 8, and MVw(1) +MVss(1) = 14 > MVms(1).

A.2 Proofs for Section 4.4

Proof for Theorem 4 From the Lagrangian of the economic dispatch problem in (4.15),
we get that MVms

k (E,s) = 1⊤µk. Further, from the stationarity KKT condition with respect
to uk(t), we get

L⊤
t (µk − νk) = −γ(t) + Ek(t)

⊤H⊤β(t),
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where L⊤
t is the tth column of L⊤, and Ek(t) is the kth column of E(t). At any time, only

one of the pair of constraints in (4.15d) will be binding. Hence, either µk(t) = 0 or νk(t) = 0.
Using the definition of λ(t) from (4.17), we get the expression in (4.18).

Proof for Lemma 5 A radial power network can be represented as a tree, and there is a
unique path between any two nodes. Consider two nodes i,j with a path i→k1→k2→...kp→j,
where k1,...kp are nodes in the power network. The LMP difference across i,j at any time
can be written as

λj − λi = (λj − λkp) + ...+ (λk2 − λk1) + (λk1 − λi),

i.e. the sum of LMP differences across nodes in the path between i,j. For any edge in the
power network, we will have two β values (one in each direction) out of which only one can
be non-zero - the β value corresponding to the direction of power flow, since the line can
only be congested in that direction. From [68] we have that βi,j(t)− βj,i(t) = λj(t)− λi(t),
and if the power flow is i → j, then

MVw
i→j(t) = βi,j(t) = λj(t)− λi(t) ≥ 0.

The value of stationary storage located at j at time t is

MVss
j (t) =

(
λj(t+ 1)− λj(t)

)
+
,

where λj(t + 1) − λj(t) ≥ 0 since the stationary storage would only transfer energy across
time if it had a positive value from doing so. The marginal value of mobile storage that
moves from node i at time t to node j at time t+ 1 can be expressed as

MVms =
(
λj(t+ 1)− λi(t)

)
+

(A.1)

=
(
λj(t+ 1)− λj(t) + λj(t)− λkp(t)+ (A.2)

...+ λk1(t)− λi(t)
)
+

(A.3)

= MVss
j (t) +MVw

kp→j + ...+MVw
i→k1

. (A.4)

A.3 Proofs for Section 4.5

Proof for Lemma 6

Consider the Lagrangian of the MPED-S problem, specifically the terms involving uk

L = f(p) +
∑
k

min
uk

∑
t

λik(t)(t)uk(t) + µ⊤
k (Luk − sk) (A.5)

− ν⊤
k Luk + ω⊤

k (−uk − uk(sk)∆
S
k) (A.6)

+ ϕ⊤
k (uk − uk(sk)∆

S
k). (A.7)
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The Lagrangian can be decomposed over uk, and each inner minimization problem over
uk is equivalent to the Lagrangian of (4.28), which proves that their optimal solutions will
coincide.

Proof for Theorem 8

From the Lagrangian of the economic dispatch problem in (4.13), we get that MVms
k (E,s̄) =

1⊤µk + ū′
k(s̄k)(∆

S
k)

⊤(ωk + ϕk). Further, from the stationarity KKT condition with respect
to uk(t), we get

L⊤(µk − νk) + ωk − ϕk = −λik .

Under Assumption 4, only one of the dual variables is non-zero at any given time. We can
construct a dummy variable zk=µk−νk+ωk−ϕk and T ×T dimensional diagonal matrices
A,B such that Azk = µk − νk;Bzk = ωk − ϕk. Matrix A has diagonal entries equal to 1
corresponding to times when the capacity constraint is active, and 0 otherwise. Similarly, B
has diagonal entries equal to 1 corresponding to times when the power constraint is active,
and 0 otherwise, i.e., A+B= I. As defined previously, L is a lower triangular matrix defined
as Lij=1 if i≥ j, and 0 otherwise. L⊤ then becomes an upper triangular matrix. The matrix
L⊤A has a 1 at indices (t1,t2) where t1≤t2 and At2t2=1, i.e., if the energy capacity constraint
is active at time t=t2. This ensures that L

⊤A has a rank equal to the rank of matrix A, since
it has non-zero linearly independent rows for all times when the energy capacity constraint
is active. Since B has linearly independent rows for power capacity constrained periods, we
can see that L⊤A + B is full rank with all the diagonal elements being 1, and the elements
at (t1,t2) being 1 if t1 ≤ t2 and At2t2 = 1. Then, we can obtain an expression for zk

zk = (L⊤A+B)−1(−λik).

It is easy to verify that the structure of matrix (L⊤A + B)−1 is such that the tp-th column
(corresponding to a power constrained time) is an elementary vector e⊤

tp , and the te-th

column (corresponding to an energy capacity constrained time) is [−1,...,−1,1,0,...,0]⊤ where
−1 appears te − 1 times, and the 1 is at the te-th location. We can use this equation to
obtain expressions for µk −νk,ωk −ϕk. Replacing these expressions into the marginal value
formulation leads us to the result in Theorem 8.




