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Abstract
Aims It has been well demonstrated that several
interacting endogenous and exogenous factors influence
decomposition. However, teasing apart the direct and
indirect effects of these factors to predict decomposition
patterns in heterogenous landscapes remains a key
challenge.
Methods At 157 locations in a temperate forest, we
measured decomposition of a standard substrate (filter
paper) over two years, the landscape context in which
decomposition took place, and the functional composi-
tion of the woody species that contributed leaf litter to
the forest floor where litter bags were placed. We tested
for direct and indirect effects of landscape context and
direct effects of forest functional composition on decay
using structural equation modelling.
Results We found that landscape context had direct
effects on decay and indirect effects on decay via its
influence on the functional composition of the surround-
ing forest. Forest functional composition also had direct

effects on decay, but these effects decreased or disap-
peared completely over time. Moreover, community
weighted mean trait values were better predictors of
decay than functional dispersion of leaf traits, and leaf
nitrogen content and carbon content were better predic-
tors of decay than leaf dry matter content or leaf
toughness.
Conclusions Our results highlight the importance of an
integrative approach that examines the direct and indi-
rect effects of multiple factors for understanding and
predicting decomposition patterns across heterogenous
landscapes.

Keywords Decomposition . Functional diversity. Plant
functionaltraits .Litterbags .Massloss .Ozarkoak-Hickory
forest . Tyson research center plot

Introduction

Decomposition is a key ecosystem function that influ-
ences nutrient cycling and soil organic matter formation
(Bardgett and Shine 1999; Meier and Bowman 2008a;
Wardle et al. 2004) and it is clear that a host of
interacting endogenous and exogenous factors influence
decomposition (i.e., Bardgett and Shine 1999; Cornwell
et al. 2008; Gessner et al. 2010; Hattenschwiler et al.
2005; Hobbie 2005; Melillo et al. 1982; Vitousek 1998;
Zanne et al. 2015). For example, litter decomposition is
influenced by endogenous factors such as the diversity
of chemical (Meier and Bowman 2008a; Stoler et al.
2016; Talbot and Treseder 2012) and morphological
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traits in the litter (Cornwell et al. 2008; Santiago 2007)
as well as exogenous factors such as broad-scale climate
(Aerts 1997; Fierer et al. 2005; Hobbie 1996) and local-
scale topographic position and landscape context
(Dwyer and Merriam 1981; Olear and Seastedt 1994;
Zanne et al. 2015). For all the progress enumerating the
many exogenous and endogenous factors that influence
decomposition, predicting litter decomposition across
heterogeneous landscapes has still proven challenging
(Zanne et al. 2015).

Part of the challenging in predicting decomposition,
is that it is increasingly being demonstrated that multiple
direct and indirect drivers interact to influence decom-
position (Bradford et al. 2014; Cornwell and Ackerly
2009; Zanne et al. 2015). For example, soil fertility may
have direct effects on decomposition, where decompo-
sition is accelerated in more fertile soils (Bardgett and
Wardle 2010; Hobbie 2005). Concurrently, soil fertility
may also have indirect effects on decomposition where
more fertile soils result in plants with higher tissue
nitrogen content or lower leaf dry mater content
(LDMC) (Cornwell and Ackerly 2009; Reich et al.
1997; Spasojevic and Suding 2012; Westoby et al.
2002), which decompose more rapidly due to varia-
tion in these chemical and morphological traits
(Cornwell et al. 2008; Santiago 2007). While some
experimental studies are beginning to jointly test the
relative importance of exogenous and endogenous
factors (i.e., Midgley et al. 2015; Szefer et al.
2017; Zanne et al. 2015), these studies generally
do not address indirect effects.

Here, we examined landscape scale variation in de-
composition of a standard substrate (filter paper) in a
temperate deciduous Oak-Hickory forest to better un-
derstand the multiple direct and indirect drivers of de-
composition. Specifically, we asked how landscape con-
text (soil fertility and topographic position) directly
influenced decomposition, and how landscape context
indirectly influenced decomposition via its effect on
forest functional composition. We focus on forest func-
tional composition (the functional traits of the living
trees in the forest) rather than the functional traits of
the leaf litter on the forest floor as a secondary objective
to test how well plant functional traits predict decompo-
sition. While decomposition experiments are often lo-
gistically challenging – as deploying, monitoring and
harvesting litterbags can be resource intensive – there
has been a proliferation of available leaf trait data
(Kattge et al. 2011; Maitner et al. 2018) and plant

functional traits associated with the leaf economics
spectrum have been found to be correlated with leaf
litter decomposition at local (Bakker et al. 2011;
Jackrel and Wootton 2015; Santiago 2007) and global
scales (Cornwell et al. 2008; Pietsch et al. 2014), sug-
gesting that these functional traits have Bafter-life^ ef-
fects on decomposition (Freschet et al. 2012; Jackrel and
Wootton 2015; Zukswert and Prescott 2017).

Importantly, functional composition has the potential
to influence decomposition via two processes: niche
complementarity and mass-ratio effects (Grime 1998;
Hooper et al. 2005; Tilman 1997; Tilman et al. 2014).
The niche-complementarity hypothesis suggests that in-
creasing species richness increases resource-use efficien-
cy due to niche differentiation, which consequently en-
hances ecosystem function (Tilman 1997; Tilman et al.
2014). Numerous studies have now established that
functional diversity metrics outperform taxonomic indi-
ces in predicting ecosystem function (Diaz et al. 2004;
Garnier et al. 2004; Lavorel and Garnier 2002; Suding
and Goldstein 2008), and thus, under niche-complemen-
tarity, communities with higher functional diversity
should have greater decomposition as compared to com-
munities with low functional diversity (Garcia-Palacios
et al. 2017; Handa et al. 2014; Kuebbing et al. 2018). In
contrast, the mass-ratio hypothesis posits that ecosystem
function is controlled by the dominant species in a
community (Grime 1998) and thus, the functional iden-
tity of the dominant species will have the largest effect
on decomposition (i.e., Garcia-Palacios et al. 2017; Lin
and Zeng 2018; Tardif et al. 2014). Importantly, these
two processes are not mutually exclusive (Chiang et al.
2016; Garcia-Palacios et al. 2017; Mokany et al. 2008)
and are likely influenced by the landscape context in
which they occur (Brose and Hillebrand 2016; Mori
et al. 2018; Tylianakis et al. 2008).

To address our questions, we used structural equation
modeling to examine how decay was influenced by the
direct and indirect effects of landscape context and by
the direct effects of the forest functional composition. To
describe the landscape context, we quantified 14 soil
and 5 topographic variables over an area of 12 ha – this
spatial scale includes a representative range of habitat
types found in typical oak-hickory forests (e.g., east-
facing slopes, north-facing slopes, ridges, southwest-
facing slopes, west-facing slopes, valleys). We quanti-
fied the functional composition of the forest where each
litter bag was placed using functional dispersion (FDis)
and community weighted mean trait values (CWM) of
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leaf dry matter content (LDMC), leaf toughness, leaf N
content, and leaf carbon (C).

Methods

Study site This study was conducted at Washington
University in St. Louis’ Tyson Research Center, located
25 miles (40 km) southwest of Saint Louis, Missouri
(38° 31’N, 90°33’W; mean annual temperature 13.5°C;
mean annual precipitation 957 mm). The research center
is situated on the northeastern edge of the Ozark
ecoregion in a temperate deciduous forest dominated
by oak and hickory species. This site has been relatively
undisturbed for 80+ years, with tree cores indicating
120–160 year old trees in the early 1980’s (Hampe
1984). The soil at this site includes silty loams and silty
clays that develop from shale limestone, limestone,
cherty limestone and chert formations (Zimmerman
and Wagner 1979).

Our study site was located within a 25-ha (500 ×
500 m), stem-mapped, forest-dynamics plot (the Tyson
Research Center Plot), that is part of a global network of
forest-ecology plots coordinated through the
Smithsonian Center for Tropical Forest Science-Forest
Global Earth Observatory (CTFS-ForestGEO)
(Anderson-Teixeira et al. 2015). This site includes
strong edaphic and topographic gradients characteristic
of oak-hickory forests in the Ozark region. Elevation at
our study site ranges from 172 to 233 m (mean = 206 m)
and slope ranges from 0.8–26.9° (mean = 13.8°) at the
20 × 20 m scale.

Litter bags In this ecosystem, decomposition is relative-
ly slow (Kucera 1959; Li et al. 2009) and leaf litter
accumulates on the forest floor (Rochow 1974). Since
litter on the forest floor can influence the decomposition
of litter bags through mixing effects (e.g., Chadwick
et al. 1998; Gartner and Cardon 2004; Nilsson et al.
1999), we used a standard substrate (filter paper) to
examine landscape-level variation in mass loss and de-
cay among habitat types while minimizing the impact of
litter mixing effects. To determine how decomposition
rates varied across this landscape, we placed litterbags at
157 locations within a 12-ha subsection of the TRCP
(Figure S1) which included each of the key habitat types
found in typical oak-hickory forests. Locations were
chosen based on their proximity to established seedling
plots and seed traps where soil resources and plant

functional traits have been previously measured
(Spasojevic et al. 2016; Spasojevic et al. 2014). Each
litter bag location was in a separate 10x10m quadrat of
the forest plot.

Litter bags were constructed from 1-mm nylon mesh
and filled with four pieces (~ 4 g) of Qualitative Grade
Plain Filter Paper Circles (Fisher Scientific), sealed with
rustproof staples and weighed prior to deployment. We
deployed 10 replicate litter bags at each of the 157
locations for a total of 1570 litter bags. Prior to deploy-
ment pairs of bags were attached together with a ~0 .5m
string of fishing line, resulting in 5 pairs of bags. Each
group was attached to a stake in the field 1 m apart from
each other and placed on the surface. All bags were
deployed on 09 November 2013 at the end of the grow-
ing season. At each location, one pair of samples (two
litter bags) were collected after 0 days to account for any
mass loss due to transport to the field. Subsequent
collections were conducted after 154 days (12 April
2014) at the beginning of the next growing season, after
350 days (25 October 2014) at the end of that growing
season, after 532 days (24 April 2015) at the beginning
of the second growing season, and finally after 706 days
(15 October 2015) at the end of the second growing
season. Upon collection all litter bags were oven dried at
60 °C for four days and weighed to ±0. 01 g to deter-
mine mass loss. Observed mass loss was determined
by subtracting the fill weight at each collection time
from the initial fill mass, corrected for loss from
transport (mass loss on the 09 November 2013 col-
lection). Some litter bags were lost in the field
resulting in variable samples sizes at the four-time
points: 154 days, n = 281; 350 days, n = 305;
532 days, n = 269; and 706 days, n = 298.

Landscape context To describe variation in environ-
mental conditions that may influence decomposition,
we conducted a principal components analysis (PCA)
of 14 soil and 5 topographic variables measured in the
TRCP including: available nitrogen (N), N mineraliza-
tion rates, base saturation, effective cation exchange
capacity (ECEC), exchangeable cations (Al, Ca, Fe, K,
Mg, Mn, Na), pH, plant-available phosphorous (P), total
exchangeable bases (TEB), aspect, convexity, mean el-
evation, and slope (see Spasojevic et al. 2014 for
details). Since aspect is a circular variable, we used
sin(aspect) and cosine(aspect) in our analyses
(Legendre et al. 2009). All variables were scaled prior
to PCA. Since our primary focus was to test the
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landscape-scale drivers of decomposition, rather than to
compare the importance of different environmental var-
iables, we focus on the first three axes of the PCA to
describe variation in soil-resource availability
(Figure S2). The first three PC axes together explained
71.7% of the variation in soil and topographic variables.
PC1 (50.1% of the explained variation) characterizes a
gradient ranging from low soil-resource availability
(e.g., higher Al, Fe, and lower Ca, K, Mg, Mn, P, K,
pH) and higher elevation, south-facing aspects to
high soil-resource availability (e.g., lower Al, Fe,
and higher Ca, K, Mg, Mn, P, K, pH) and lower
elevation north-facing aspects. PC2 (11.1%) charac-
terizes gradients in NO3, Total N, and convexity.
PC3 (10.4%) characterizes gradients in slope and
NH4. Together, these PCA axes provide a continu-
ous measure of habitat type in this forest.

Functional composition To describe variation in forest
functional composition that may be related to decompo-
sition, we calculated community weighted mean
(CWM) trait values and community functional dis-
persion (FDis) for each 10x10m quadrat (local forest
community) in which litter bags were placed. Here
we focus on four putatively important traits with the
potential to influence decomposition (Cornwell et al.
2008; Garcia-Palacios et al. 2016; Santiago 2007) –
two associated with leaf morphology (leaf dry mat-
ter content (LDMC) and leaf toughness), two asso-
ciated with leaf chemical composition (leaf nitrogen
(N) content, and leaf carbon (C) content). While
other traits (e.g., lignin, Ca, Mg) are often better
predictors of decay, our goal here was to assess the
predictive power of these four commonly measured
plant functional traits (Cornwell et al. 2008;
Freschet et al. 2012; Jackrel and Wootton 2015;
Santiago 2007; Zukswert and Prescott 2017).

Trait data were collected previously (see Spasojevic
et al. (2014) and Spasojevic et al. (2016) for details) on
795 individuals of the 40 forest tree and shrub species
located across the 12 ha plot. In brief we collected 3
leaves from the upper-crowns of each individual and the
number of individuals sampled per species ranged
from1–57 individuals based on the relative abundances
of each species within the 12 ha forest plot (i.e., the
species with only 1 individual sampled had only 1
individual tree in the 12 ha plot). We then calculated
community-weightedmean (CWM) trait values for each
quadrat as the abundance-weighted trait averages

(Garnier et al. 2004) of each trait. We calculated FDis
for each trait individually, as the mean distance of each
species in trait space to the centroid of all species using
the dbFD function in the FD package in R (Laliberte and
Legendre 2010). FDis is statistically independent of
species richness (Laliberte and Legendre 2010). In both
cases we used trait values for these quadrat level calcu-
lations that came from individuals measures within the
habitat type in which that quadrat is located. Here, we
focus on individual trait analyses because ecological
processes may be masked by multivariate trait indices
that integrate traits with potentially opposing influences
on our response variables (Spasojevic and Suding
2012). We additionally conducted the below described
structural equation model using all four traits together in
one model, but our data did not fit the proposed model.

Statistical analysis

To assess how decomposition varies across space and
time in this landscape, we first examined patterns of
mass loss across habitat types within each time point.
While not the primary focus of our analysis, we include
this analysis to show general pattern in mass loss to
provide a more complete picture of landscape scale
variation in decomposition (See Appendix 1). We ex-
amined differences in mean mass loss across habitat
types using general linear models and used Tukey
post-hoc comparisons to evaluate differences in means
among habitat types using JMP version 10 (SAS
Institute Inc., Cary, N.C.).

Next, we estimated exponential decay constants
from mass loss data for each time point as k =
−ln(dry mass at time t per initial dry mass) follow-
ing (Olson 1963). Replicates of litter bags at a given
location and time point (n = 2) were averaged. We
then analysed the univariate relationships among k,
FDis, CWM trait values, and landscape context (the
first three principal components of the above PCA)
to test for non-linear relationships among our vari-
ables and to aid in the interpretation of our results.
We tested for linear and quadratic relationships for
each response measure and selected the best fit
using Akaike Information Criteria (Burnham and
Anderson 2004). Prior to analysis, k was log-trans-
formed. We then used structural equation models to
investigate links among landscape context, FDis,
CWM trait values, and k.
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To test the relative influence of landscape context,
FDis, and CWM trait values on decay (k) we then built
an initial model (Fig. 1) that included the direct effects
of the landscape context, FDis, and CWM trait values on
k and the indirect effect of the landscape context via its
influence on FDis, and CWM trait values. In our model,
we only considered the bottom-up effect of soil re-
sources on FDis and CWM trait values even though
forest functional composition likely also influence the
soil resource availability. However, such an analysis is
beyond the scope of our study and would necessitate
more dynamic measurements of soil resource
availability.

For each of our models, we first assessed model fit
with three indices: chi-square (χ2) tests, root mean
square error of approximation (RMSEA) and
goodness-of-fit index (GFI); χ2 values associated with
a P value >0.05 (suggesting that observed and expected
covariance matrices are not different), RMSEA <0.05,
and GFI > 0.95 indicate a good model fit (Kline 2010).
After our initial model runs, we then used the
Bmodindices^ function to find paths whose elimination
from themodel would result in the greatest improvement
in the overall chi-square value until we found the best
fitting model (the model with the lowest Akaike infor-
mation criterion (AIC) score). Path analysis was con-
ducted using the Lavaan package (Rosseel 2012) imple-
mented in R (R Core Team 2017). In Figs. 3 and 4, non-
significant pathways (arrows) have been removed (as
compared to the initial model; Fig. 1) and marginally
significant pathways (0.10 < p < 0.05) are represented
by a dashed line. It is important to note that when
interpreting path analyses, consistency between our sta-
tistical model and data does not mean that our

interpretations are correct, only that the data are consis-
tent with our interpretations (McCune and Grace 2002).

Results

Mass loss Considerable variation in mass loss occurred
over time and across habitat types (Fig. 2; Appendix 1).
Mass loss significantly differed among habitat types at
all time points, but was generally found to be greater in

Fig. 1 General form of the
structural equation model used to
evaluate how landscape context
(PC1–3: the first three axes from a
principal components analysis),
community weighted mean
(CWM) trait values, and func-
tional dispersion (FDis) of tree
communities is related to decom-
position. k is the exponential de-
cay constant from mass loss data
for each time point calculated as
k = −ln(dry mass at time t per ini-
tial dry mass) following Olson
(1963)

Fig. 2 Mean (± SE) values for % mass loss across six habitat
types in an Ozark Oak-Hickory forest after 154 (n = 281 litter
bags), 350 (n = 305 litter bags), 532 (n = 269 litter bags), and
706 (n = 298 litter bags) days in the field. Data points have been
nudged around each time point to increase visibility
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Valleys, East slopes, and Ridges and lowest on
Southwest slopes and West slopes (see Appendix 1 for
details). While these categorical habitat classifications
are useful for understanding broad scale patterns of
decompositions, in the below analysis we use the first
three axes of the above described PCA, which better
describe the variation among habitat types.

Decay (k) In general, we found that the effects of leaf
traits on decomposition were stronger in the initial time
periods and decreased or disappeared completely over
time while the effects of environmental conditions were
more stable and consistent over time. All models were
found to generally have a good fit to the data (Table 1),
but the amount of variation in decay (k) and the drivers
of decay varied both over time and among leaf traits
(Figs. 3 and 4, Tables 2 and 3).

We found that FDis of LDMC had no influence on
decay, but we found a significant effect of CWMLDMC
on decay in times 1 and 2 (Fig. 3, Table 2) where decay
was higher in communities where leaves had lower
LDMC. However, this effect of CWM was absent at
time 3 and only marginally significant by time 4 (Fig. 3,
Table 2). In contrast we found that PC3 (slope and NH4

concentrations) directly influenced decay at all four-
time points, PC2 (NO3, Total N, and convexity) directly
influenced decay at time 1 and 2 and had significant
indirect effects at time 1 and 2 via its effect on CWM
LDMC. PC1 (Al, Fe, Ca, K, Mg, Mn, P, K, pH) directly
influenced decay at times 3 and 4 and had a marginally
significant indirect effect at time 4 via its effect on
CWM LDMC. In general, PC1 and PC2 explained
between 73 and 74% of the variation in CWM LDMC.
The relative strength and directionality of the environ-
mental variables varied over time (Fig. 3, Table 2).

For leaf toughness, we found a significant negative
effect of FDis on decay at time 1 only, and marginally

Table 1 Goodness of fit measures - chi-square (χ2) tests, root mean square error of approximation (RMSEA) and goodness of fit index
(GFI) - for each of the 16 models

Trait Time period χ2 df P value RMSEA GFI k R2

LDMC 1 0.400 2 0.819 0.000 0.999 0.409

2 0.858 3 0.836 0.000 0.998 0.157

3 0.251 1 0.616 0.000 0.999 0.233

4 0.123 1 0.726 0.000 1.000 0.309

Leaf Toughness 1 0.914 1 0.339 0.000 0.998 0.441

2 1.352 1 0.245 0.048 0.997 0.147

3 1.154 1 0.219 0.060 0.997 0.245

4 3.760 2 0.153 0.076 0.992 0.294

Leaf N 1 0.896 2 0.639 0.000 0.998 0.439

2 1.141 2 0.565 0.000 0.998 0.191

3 0.983 2 0.612 0.000 0.998 0.229

4 0.125 1 0.680 0.000 0.999 0.333

Leaf C 1 2.785 2 0.249 0.050 0.994 0.450

2 0.198 1 0.656 0.000 0.999 0.166

3 0.196 1 0.658 0.000 0.999 0.243

4 0.119 1 0.730 0.000 1.000 0.310

χ2 values associated with a P value >0.05 (suggesting that observed and expected covariance matrices are not different), a RMSEA <0.05,
and a GFI > 0.95 indicate a goodmodel fit (Kline 2010). Traits include leaf dry matter content (LDMC), leaf toughness, leaf nitrogen content
(Leaf N), leaf carbon content (Leaf C). Time periods T1–4 indicate decay after 154, 350, 532, and 706 days in the field respectively. kR2 = r-
squared value for each model for decay (k)

�Fig. 3 Structural equation model testing the relative importance
of CWM traits values, FDis, and landscape context on
decomposition (k) for morphological leaf traits (leaf dry matter
content (LDMC) and leaf toughness) across four time periods (T1-
T4). CWM= community weighted mean trait values. PC1–3 =
landscape context based on the first three axes of a principal
components analysis of 14 soil and 5 topographic variables. Path
coefficients are standardized prediction coefficients (Grace and
Bollen 2005). Pathways not found to be influential (non-signifi-
cant P > 0.1) are removed and marginally significant pathways
(P < 0.1 and P > 0.05) are represented by dashed lines
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significant effects of CWM trait values at times 1 and 3,
suggesting overall week effects of leaf toughness on
decay. In the leaf toughness models, we found again
that PC3 (slopes and NH4 concentrations) significantly
influenced decay at all four time points (Fig. 3, Table 2).
The influence of PC1 and PC2 was more variable than
in the LDMCmodels and we found that PC2 influenced
decay at times 1, 2, and 4, while PC1 had a marginally
significant effect at time 1 and a significant effect at time
4 (Fig. 3, Table 2).PC1 and PC2 explained between 69
and 71% of the variation in CWM leaf toughness and

PC2 and PC3 explained between 5 and 7% of the
variation in FDis of LDMC.

Leaf chemical traits had more consistent effects on
ecosystem functioning than leaf morphological traits.
We found that CWM leaf N concentrations had a sig-
nificant effect on decay in all four-time periods, but that
the strength of that effect (path coefficients) generally
decreased over time (T1 = 0.47; T2 = 0.31; T3 = 0.27;
T4 = 0.29). PC1 and PC2 explained between 69 and
73% of the variation in CWM Leaf N. FDis of leaf N
only had a marginally significant effect at time 2 and
PC1 explained between 31 and 35% of the variation in
FDis of Leaf N. Environmental variables were less
variable in this model with PC3 (slopes and NH4 con-
centrations) significantly influencing decay at all four-
time points, PC2 having direct effects at times 1 and 2,
and both PC1 and PC2 having indirect effects at all four
times (Fig. 4, Table 3).

Lastly, leaf carbon content was unique in that it was
the only trait where FDis had a greater influence than
CWM trait values. We found a positive effect of FDis on
decay at all four times, though only marginally

�Fig. 4 Structural equation model testing the relative importance
of CWM traits values, FDis, and landscape context on
decomposition (k) for chemical leaf traits: Leaf N and Leaf C)
across four time periods (T1-T4). CWM= community weighted
mean trait values. PC1–3 = landscape context based on the first
three axes of a principal components analysis of 14 soil and 5
topographic variables. Path coefficients are standardized
prediction coefficients (Grace and Bollen 2005). Pathways not
found to be influential (non-significant P > 0.1) are removed and
marginally significant pathways (P < 0.1 and P > 0.05) are repre-
sented by dashed lines. Chemical leaf traits: Leaf N and Leaf C

Table 2 Direct, indirect and total standardized effects (based on structural equation modelling) of the five predictor variables on
decomposition for morphological leaf traits: leaf dry matter content (LDMC) and leaf toughness

Effect (pathway coefficient)

LDMC Leaf Toughness

Predictor Pathway to decomposition (k) T1 T2 T3 T4 T1 T2 T3 T4

FDis Direct NS NS NS NS −0.20 NS NS NS

CWM trait value Direct −0.36 −0.36 NS −0.36 −0.22 NS −0.25 NS

PC1 Direct NS NS 0.32 0.29 0.21 NS NS 0.41

Indirect through FDis NS NS NS NS NS NS NS NS

Indirect through CWM trait value 0.30 0.30 NS 0.30 0.18 NS 0.21 NS

Total effect 0.30 0.30 0.32 0.59 0.39 NS 0.21 0.41

PC2 Direct −0.51 0.18 NS NS −0.50 0.20 NS 0.15

Indirect through FDis NS NS NS NS 0.03 NS NS NS

Indirect through CWM trait value 0.06 0.06 NS 0.06 0.02 NS 0.03 NS

Total effect −0.45 0.24 NS 0.06 −0.44 0.20 0.03 0.15

PC3 Direct 0.20 −0.17 −0.22 −0.20 0.25 −0.15 −0.20 −0.20
Indirect through FDis NS NS NS NS −0.03 NS NS NS

Indirect through CWM trait value NS NS NS NS NS NS NS NS

Total effect 0.20 −0.17 −0.22 −0.20 0.22 −0.15 −0.20 −0.20

Effects (pathway coefficients) describe the relative strength of the relationship between a given predictor variable and ecosystem function.
Positive values indicate a positive relationship while negative values indicate a negative relationship and bold values indicated significant
pathways (P < 0.05) while italics represents marginally significant pathways (P < 0.10). FDis = functional dispersion. CWM= community
weighted mean trait values. PC1–3 = environmental conditions based on the first three axes of a principal components analysis of 14 soil and
5 topographic variables. NS = non-significant relationships. See Table 1 for trait abbreviations
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significant at times 3 and 4 (Fig. 4, Table 3). PC1 and
PC3 explained between 14 and 19% of the variation in
FDis of Leaf C. In contrast CWM leaf C content was
only significant at time 1. PC1 and PC2 explained
between 39 and 41% of the variation in CWM leaf C.
Again, PC3 (slope and NH4 concentrations) significant-
ly influenced decay at all four-time points, PC2 had
direct effects at times 1 and 2 (and marginally at time
4) and PC1 influenced decay at times 3 and 4 (and
marginally at time 1) (Fig. 4, Table 3). PC1 and PC2
had indirect effects via their influence on FDis at all four
times, and PC2 had an indirect effect via its influence on
CWM leaf C at time 1.

Discussion

While a growing number of studies are demonstrating
that multiple processes simultaneously drive decompo-
sition (e.g., Zanne et al. 2015), we still lack a clear

picture of the importance of indirect effects in influenc-
ing decomposition. This is particularly important for
studies using live plant functional traits to study decom-
position (e.g., Cornwell et al. 2008; Santiago 2007;
Zukswert and Prescott 2017) as numerous studies have
demonstrated a clear link between landscape context
(soils, topography) and plant functional traits (e.g.,
Cornwell and Ackerly 2009; Reich et al. 1997;
Spasojevic and Suding 2012; Westoby et al. 2002).
Here we found that while both landscape context (soils,
topography) and functional composition directly influ-
ence decomposition of a standard substrate (filter pa-
per), landscape context also indirectly influenced de-
composition via its influence on plant functional traits.
Importantly, this suggest that the Bafter life^ effect of
plant functional traits on decomposition (Freschet et al.
2012; Jackrel andWootton 2015; Zukswert and Prescott
2017) is mediated by landscape context, and that we
should be careful when using live plant functional traits
to predict decomposition without considering the land-
scape context in which these traits were measured.

Table 3 Direct, indirect and total standardized effects (based on structural equation modelling) of the five predictor variables on
decomposition for chemical leaf traits: leaf nitrogen content (Leaf N) and leaf carbon content (Leaf C)

Effect (pathway coefficient)

Leaf N Leaf C

Predictor Pathway to decomposition (k) T1 T2 T3 T4 T1 T2 T3 T4

FDis Direct NS 0.15 NS NS 0.24 0.18 0.14 0.13

CWM trait value Direct 0.47 0.31 0.27 0.29 0.23 NS NS NS

PC1 Direct NS NS NS NS 0.16 NS 0.35 0.38

Indirect through FDis NS 0.08 NS NS 0.13 0.05 0.04 0.04

Indirect through CWM trait value 0.39 0.25 0.22 0.24 0.06 NS NS NS

Total effect 0.39 0.34 0.22 0.24 0.36 0.05 0.39 0.42

PC2 Direct −0.53 0.18 NS NS −0.52 0.19 NS 0.11

Indirect through FDis NS NS NS NS NS NS NS NS

Indirect through CWM trait value 0.08 0.06 0.05 0.05 0.06 NS NS NS

Total effect −0.45 0.24 0.05 0.05 −0.46 0.19 NS 0.11

PC3 Direct 0.22 −0.15 −0.20 −0.19 0.27 −0.13 −0.18 −0.17
Indirect through FDis NS NS NS NS −0.06 −0.04 −0.04 −0.03
Indirect through CWM trait value NS NS NS NS NS NS NS NS

Total effect 0.22 −0.15 −0.20 −0.19 0.21 −0.1714 −0.2164 −0.20

Effects (pathway coefficients) describe the relative strength of the relationship between a given predictor variable and ecosystem function.
Positive values indicate a positive relationship while negative values indicate a negative relationship and bold values indicated significant
pathways (P < 0.05) while italics represents marginally significant pathways (P < 0.10). FDis = functional dispersion. CWM= community
weighted mean trait values. PC1–3 = environmental conditions based on the first three axes of a principal components analysis of 14 soil and
5 topographic variables. NS = non-significant relationships. See Table 1 for trait abbreviations
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We found landscape context to be an important deter-
minant of decomposition. Previous work at this site has
shown that landscape position (ridge top vs. valley bot-
tom) only explained a modest amount of variation (4 to
6%) in wood decay where decomposition was slower on
Ridges than in Valleys (Zanne et al. 2015). In contrast, by
incorporating more detail of this heterogenous landscape
we found that landscape position highly influenced mass
loss (Fig. 2) of a standard substrate (filter paper).
Interestingly, the relative importance of different compo-
nents of the landscape changed over time. Total N, NO3

and convexity (PC2) were important in earlier stages of
decomposition, generally having a negative effect on
decay in time 1 and a positive effect in time 2. On the
other hand, micronutrients (PC1; Al, Fe, Ca, K, Mg,Mn,
P, K, pH) were more important in the later stages of
decomposition, times 3 and 4. Micronutrients have been
found to be important determinants of decomposition in
several cases (e.g., Kaspari et al. 2008; Powers and
Salute 2011) and the shift in the importance of N and
micronutrients over time points to an importance of
dynamics beyond Liebig’s Law of the Minimum, which
postulates the existence of a single primary limiting
nutrient underlying population and ecosystem processes
(Chapin et al. 2002). PC3 (slope and NH4) was the only
landscape variable that influenced decay across all four-
time periods. Interestingly we found that PC3 had a
positive effect in time 1 and a negative effect during
the other time periods (for all models), suggesting that
increased NH4 availability and slope may have initially
stimulated mass loss and then reduced mass loss later.
The variable influence of N availability on mass loss was
not surprising as a meta-analysis found that litter decay
responses to N additions ranged from a 38% inhibition to
64% stimulation (Knorr et al. 2005).

In addition to these direct effects of landscape con-
text, we also found direct effects of forest functional
composition on decay. Generally, we found a significant
relationship between CWM and FDis of live leaf traits
and decomposition, supporting the idea that two pro-
cesses by which functional diversity influences ecosys-
tem functioning (niche complementarity and mass-ratio
effects) are not mutually exclusive (e.g., Chiang et al.
2016; Mokany et al. 2008). In this Ozark Oak-Hickory
forest, we found that mass ratio effects (CWM trait
values) were more strongly related to decomposition
for three traits (LDMC, Leaf Toughness, and Leaf N)
and occurred over all four-time periods for one trait
(Leaf N). These results support several lines of research

suggesting that mass ratio effects may be key drivers of
decomposition (i.e., Garcia-Palacios et al. 2017; Lin and
Zeng 2018; Tardif et al. 2014) particularly for C loss (we
used filter paper derived of C). While many hypotheses
have been proposed for why mass ratio effects may be
important for diverse mixtures of litter (i.e., the idiosyn-
cratic annulment hypothesis (Tardif and Shipley 2013))
our results suggest that multiple mechanisms may oper-
ate simultaneously. Specifically, we found evidence for
niche complementarity for leaf C and in the first two-
time periods (Fig. 4). Carbon quality and quantity are
key determinants of decomposition (Aerts 1997; Meier
and Bowman 2008a; Talbot and Treseder 2012;
Vitousek 1998) and chemical traits have been previous-
ly found to be strong predictors of decay at this site
(Zanne et al. 2015). While we did not quantify variation
in the quality of C in the litter (i.e., lignin concentra-
tions), our results do suggest that there is a relationship
between the C content in the community in which
decomposition occurs that that Bafter life^ effect of live
leaves can predict decay rates. Future research, examin-
ing more details of C (i.e., lignin) or other leaf chemical
components (i.e., Ca, P, pH) may provide a better un-
derstanding of decay as nutrient concentrations can be
strong predictors of decay (Aerts 1997; Cornwell et al.
2008; Garcia-Palacios et al. 2017) and different decom-
posers specialize on different chemicals or fractions
(Meier and Bowman 2008b; Talbot and Treseder 2012).

Interestingly, we found that forest functional compo-
sition (both CWM trait values and FDis) was related to
decay at early time periods and that this relationship
weakened (as indicated by lower path coefficients) or
was no longer significant at later time points. Similarly,
Zukswert and Prescott (2017) found that early mass loss
(first 3 months) was correlated with plant functional
traits, but litter traits were better predictors after 3months
due to changes in the physical and chemical composition
of the leaves. Additionally, this temporal variation in
decay may also be a result of temporal variation in the
decomposer community where the litter bags were
placed. For example, Voriskova and Baldrian (2013)
found that although cellulose was available in litter
during all stages of decomposition, the community of
cellulolytic fungi changed substantially over time.
Similarly, Matulich et al. (2015) found that temporal
variation largely exceeded the response of leaf-litter
microbial communities to simulated global change in a
California annual grassland, suggesting that temporal
variation may play a stronger role in decomposition than
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exogenous factors. While we were not able to test for
these mechanism in our study, future research address-
ing temporal variation in the Bafter life^ effect of live
plant traits may help resolve the specific mechanisms.

Lastly, we found that environmental conditions indi-
rectly influenced decay via their effect on functional
composition (Table 2). In previous studies at this site
(Spasojevic et al. 2016; Spasojevic et al. 2014) we found
that the environment is a strong driver of variation in
functional trait diversity. Since leaf functional traits have
been demonstrated to influence decomposition
(Cornwell et al. 2008; Santiago 2007), it is not surpris-
ing that we find these indirect effects of the environment
on decay. Interestingly though, we find that the indirect
effects are somewhat context specific (Table 2). For
example, in our models for LDMC and Leaf N (Fig. 3)
the only effect of PC1 (at time points 1 and 2) is via its
indirect effect on LDMC or Leaf N – a results that only
emerged from using structural equation modeling (Fig.
1). Since functional traits are tightly correlated with
species’ responses to, and effects on, the environment
and ecosystem functioning (Cadotte et al. 2011; Lavorel
and Grigulis 2012; Suding et al. 2008) an integrative
approach that examines the direct and indirect effects of
multiple factors is critical for understanding decompo-
sition (i.e., Gessner et al. 2010; Grace et al. 2016; Zanne
et al. 2015), especially for approaches that seek to link
plant functional traits with decomposition.

Conclusions The joint evaluation of direct and indirect
effects is rare in the decomposition literature (Garcia-
Palacios et al. 2017). Our results highlight the impor-
tance of an integrative approach that examines the direct
and indirect effects of multiple factors for understanding
and predicting decomposition patterns across heteroge-
nous landscapes. Our results highlight that different
mechanisms operate simultaneously, and that different
processes (mass-ratio vs. niche complementarity) may
be contingent on the functional-traits and landscape
context examined.
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