Lawrence Berkeley National Laboratory

Recent Work

Title

CRYSTAL STRUCTURE OF VANADYL BISACETYL-ACETONATE. GEOMETRY OF VANADIUM IN FIVE-FOLD COORDINATION

Permalink https://escholarship.org/uc/item/8207m5n9

Authors Dodge, Richard P. Templeton, David H. Zalkin, Allan.

Publication Date 1960-11-01

eScholarship.org

UCRL -8225 Rev.

UNIVERSITY OF CALIFORNIA

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UCRL-8225 Rev.

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

CRYSTAL STRUCTURE OF VANADYL BISACETYLACETONATE. GEOMETRY OF VANADIUM IN FIVE-FOLD COORDINATION

Richard P. Dodge, David H. Templeton, and Allan Zalkin

CRYSTAL STRUCTURE OF VANADYL BISACETYLACETONATE. GEOMETRY OF VANADIUM IN FIVE-FOLD COORDINATION

Richard P. Dodge, David H. Templeton, and Allan Zalkin Department of Chemistry and Lawrence Radiation Laboratory University of California, Berkeley, California

November, 1960

ABSTRACT

The structure of vanadyl bisacetylacetonate has been determined from three-dimensional x-ray diffraction data. The crystals are triclinic, space group \underline{PI} , with $\underline{a} = 7.53 \pm 0.02$ Å, $\underline{b} = 8.23 \pm 0.03$ Å, $\underline{c} = 11.24 \pm 0.04$ Å, $\alpha = 73.0^{\circ}$, $\beta = 71.3^{\circ}$, $\gamma = 66.6^{\circ}$, $\underline{Z} = 2$. The structure consists of discrete molecules of $VO(C_{5}H_{7}O_{2})_{2}$. Each vanadium atom has five oxygen neighbors at the corners of a rectangular (nearly square) pyramid, with vanadium near its center of gravity. The vanadium-oxygen distances are 1.56 Å to the apex atom (vanadyl oxygen) and 1.96, 1.96, 1.97, and 1.98 Å to the others. Other bond distances average 1.28 Å for C_{-0} , 1.40 Å for $C_{--}C$ (ring), and 1.52 Å for $C_{--}C$ (methyl). Standard deviations are 0.01 Å for V--0 bonds and 0.02 Å. for $C_{--}O$ and $C_{--}C$ bonds, Each acetylacetone skeleton is planar, and this plane makes an angle of 163° with the plane of the other acetylacetone skeleton of the same molecule. CRYSTAL STRUCTURE OF VANADYL BISACETYLACETONATE. GEOMETRY OF VANADIUM IN FIVE-FOLD COORDINATION[#]

Richard P. Dodge, David H. Templeton, and Allan Zalkin Department of Chemistry and Lawrence Radiation Laboratory

University of California, Berkeley, California

November, 1960

INTRODUCTION

The crystal structure of vanadyl bisacetylacetonate,

has been determined to establish the geometry of the bonds about fivecoordinated vanadium (IV). In his discussion of this compound and its reactions, Jones¹ assumed a square planar arrangement of four oxygen atoms about the vanadium atom, with the bond of the fifth oxygen presumably perpendicular to the plane of the other four. From the chemical avidence, it was impossible to rule out the trigonal bipyramidal arrangement of the five bonds. The work of Feltham² on the electron spin-resonance spectra of the compound indicates that the bipyramidal structure is improbable. The geometry of these five bonds can be expected to be similar in such compounds as vanadyl tetraphenylporphine.³ The present work shows that the five oxygen atoms are at the corners of an approximately square pyramid, but that vanadium is near the center of gravity of this pyramid rather than at the center of its base.

This work was supported by the U.S. Atomic Energy Commission.

EXPERIMENTAL

Single crystals of vanadyl bisacetylacetonate were provided by Dr. Rue L. Belford. The crystals were blue-green in color, and those selected for study averaged 0.1 mm in thickness. Their shape corresponded to class I with only three forms appearing. These forms correspond to (100), (010), and (001) as we have chosen the axes.

The parameters of the reciprocal cell were obtained from quartzcalibrated zero-level Weissenberg photographs (rotation about <u>a</u> and <u>b</u>) and zero-level precession photographs (precession about <u>a</u>, <u>b</u>, and <u>c</u>). Intensities were evaluated by visual comparison with a set of standard intensities for 1165 independent reflections on multiple-film Weissenberg photographs with rotation about <u>a</u>. About 230 other reflections were recorded as too weak to be observed. Similar observations made with rotation about <u>b</u> were used to scale the intensities of the first set. All these photographs were made with CuKM radiation.

UNIT CELL AND SPACE GROUP

The diffraction symmetry confirms that the crystals are triclinic. The parameters found for the reciprocal cell are:

$$\underline{a}^{*} = 0.1459 \qquad \underline{b}^{*} = 0.1349 \qquad \underline{c}^{*} = 0.0957 \\ \alpha^{*} = 101.0^{\circ} \qquad \beta^{*} = 103.5^{\circ} \qquad \gamma^{*} = 109.5^{\circ}$$

By the transformation formulas, the direct cell parameters are:

<u>A</u>	-	7.53 ±	0.02Å		α	m	73.0°	
b	8	8.23 ±	0.03Å	_	β	100	71.3°	
C	8	11.24	± 0.04	Å	γ		66.6°	

The density found by suspension in a liquid of equal density is 1.49, which corresponds to 2.01 molecules in the unit cell. This value suggests that the space group is P $\overline{1}$, and the agreement with the intensity data which was achieved confirms this choice. All atoms occur in the general two-fold positions, \pm (xyz).

DETERMINATION OF THE STRUCTURE

Preliminary attempts to solve the structure by projections failed because of lack of resolution and certain blunders. A three-dimensional Patterson function located the vanadium atom unambiguously. Starting with signs based on vanadium only, the [100] projection quickly refined to a point where six carbon atoms and one oxygen atom were shown as resolved peaks and the other carbon and oxygen atoms were shown as four unresolved double peaks. The [010] projection still failed to resolve atoms, but indicated that the chelate rings were nearly coplanar and approximately parallel with <u>b</u>. This knowledge and assumptions of reasonable bond distances led to a trial structure in three dimensions. An electron density calculation in three dimensions then revealed all the carbon and oxygen atoms. In the meantime, about half of the oxygen and carbon atoms had been located independently by a study of the smaller peaks of the three-dimensional Patterson function. For this structure the "unreliability factor" $\underline{R} = \Sigma ||\underline{F}_0| - |\underline{F}_0||\Sigma|\underline{F}_0|$ was 0.207.

REFINEMENT OF THE STRUCTURE

The structure was refined by the method of least squares, neglecting hydrogen atoms. Atomic scattering factors were taken from Freeman⁵ for V⁺² and neutral C and from Berghuis, et al.,⁶ for neutral O. Individual isotropic temperature factors were used throughout. First we used the IBM-650 computer and the largely diagonal "LS-II" program of Senko and Templeton⁷ modified for space group PI. The weighting and treatment of undetected reflections was done as described elsewhere.⁸ Five cycles of refinement reduced <u>R</u> to 0.114 (observed reflections only). The resulting structure is described by Dodge.⁹

Examination of the records of these refinement cycles suggested that the best fit had not been achieved. Four additional cycles of refinement were carried out with the IBM-704 computer and the full-matrix program of Busing and Levy.¹⁰ Observed reflections were given unit weight. Unobserved reflections were given zero weight unless \underline{F}_c exceeded 7.3, a value about

-5-

1.5 times the average limit of detection; in the latter case F was taken as zero and given unit weight. Before the final two cycles, six reflections with especially large discrepancies were removed from the data; these consisted of 153, 152, and 242 which were erroneously recorded as absent when actually they fell off the films and Oll, 202, and 212 which were observed very strong, but not as strong as calculated. After the last cycle, further checking revealed that 157, 228, and 344 had been recorded as absent by errors of transcription, that 229 actually was absent but had been assigned the intensity of 228, and that 368 had been assigned an incorrect intensity. After correction, these five reflections were in excellent agreement with calculation. There remain eight absent reflec. tions with structure factors calculated greater than 7.3, but none exceeding 8.4. This is considered to be satisfactory agreement, since hydrogen atoms are excluded from the calculation. The observed and calculated structure factors from the final cycle are listed in Table V (with the five corrections mentioned before); the corresponding R is 0.092 (observed reflections only).

The final atomic parameters are listed in Table I. The results confirm that the earlier refinement⁹ had not adequately converged and that one full-matrix cycle achieved results that would have required several diagonal cycles. Of 48 atomic coordinates, 29 changed by more than one standard deviation; two changed by more than 5 standard deviations. The largest change in a bond distance was that of the V--O₆ bond which was 1.59 Å after the diagonal refinement and 1.56 Å in the final structure. These differences are attributed more to lack of convergence than to the presence of the defective data in the earlier cycles.

DISCUSSION OF THE STRUCTURE

The structure consists of discrete molecules, arranged in the unit cell as indicated in Fig. 1. There are just two orientations of molecules, and one is the inverse of the other. This crystal may have application, because of this alignment, in the observation of directionally-dependent spectroscopic properties.

The bond distances and angles are listed in Tables II and III. The molecule has no crystallographic symmetry, but chemically equivalent bond distances are equal to the experimental accuracy. Chemically equivalent angles are nearly equal. If these quantities were exactly equal, the molecule (with the possible exception of the hydrogen atoms) would have symmetry <u>mm2</u> (\underline{C}_{2v}). The molecular shape is shown in Fig. 2 with average values of equivalent distances and angles. The bond distance of the vanadyl ion, 1.56 Å, is of special interest because we know of no other measurement of this bond. The C--C and C--O bond distances are in accord with values for analogous structures.¹¹⁻¹⁶

The five neighbors of vanadium are at the corners of a rectangular (nearly square) pyramid, with vanadium approximately at its center of gravity. This geometry can be considered to be derived from the square planar configuration discussed in the Introduction by bending the two chelate rings away from the fifth oxygen. This bending lengthens four oxygen-oxygen distances, which otherwise would have been the shortest, and at the same time makes two others shorter. The distances in the actual structure are listed in Table IV. It is plausible that the distances $0_2 - 0_4$ and $0_3 - 0_5$ would be shorter than the distances to 0_6 , but we find the difference unexpectedly large.

The structure of V_2O_5 also has vanadium in five-fold coordination, though in a different valence state.¹⁷ In that case there is one close neighbor, at 1.54 Å, and four others at 1.77, 1.88, 1.88, and 2.02 Å. The coordination goemetry is said to consist of "distorted trigonal bipyramids."¹⁷ However, the distortion is so great that the coordination also can be described as a distortion of a square pyramid, with the close neighbor again at the apex. The fact that the distances are mostly slightly shorter than in our structure is consistent with the higher formal valence state.

-7-

Each acetylacetone skeleton is accurately planar as expected, but not quite coplanar with the other acetylacetone skeleton of the same molecule. The planes of these two parts of the molecule meet an angle of 163° . It is interesting that these planes are a compromise between those that would contain the vanadium atom and those that would be coplanar, assuming no change in the oxygen and vanadium positions. We interpret this fact as evidence for conjugation effects between the two rings.

.- 8 -

The individual temperature parameters of the atoms are superimposed on an outline of the molecule in Fig. 3. There is a definite trend for the terminal atoms of the skeleton to have greater thermal motion than the atoms of the rings.

ACKNOWLEDGMENTS

We thank Dr. R.L. Belford for providing the crystals and Mrs. Helena W. Ruben, Dr. M.E. Senko, and Dr. R.E. Jones for their help.

REFERENCES

1. M.M. Jones, J. Amer. Chem. Soc. 76, 5995 (1954).

2. R.D. Feltham, Ph D Dissertation, University of California, Berkeley, 1957.

5. K. Ueno and A. Martell, J. Phys. Chem. 60, 934 (1956).

4. A. Pabst, Am. Mineral. 42, 664 (1957).

5. A.J. Freeman, Acta Cryst. 12, 261 (1959).

6. J. Berghuis, IJ.M. Haanappel, M. Potters, B.O. Loopstra, C.H. MacGillavry, and A.L. Veenendaal, Acta Cryst. 8, 478 (1955).

7. M.E. Senko, Acta Cryst. 10, 385 (1957).

8. G.L. Hardgrove and D.H. Templeton, Acta Cryst. 12, 29 (1959).

9. R.P. Dodge, Ph D Dissertation, University of California, Berkeley, 1958.

10. W.R. Busing and H.A. Levy, ORNL Central Files Memorandum 59-4-37 (April 1959).

- 11. H. Koyama, Y. Saito, and H. Kuroya, J. Inst. Polytech. Osaka City Univ., Ser. C. 4, 43 (1953).
- 12. R.B. Roof, Acta Cryst. 2, 781 (1956).
- 13. S. Shibata, Bull. Chem. Soc. Japan <u>30</u>, 753 (1957).
- 14. V.M. Padmanabhan, Proc. Indian Acad. Sci. 47, 329 (1958).
- 15. L.M. Shkolnikova and E.A. Shugam, Kristellografiya 5, 32 (1960).
- 16. V. Amirthalingam, V.M. Padmanabhan, and J. Shankar, Acta Cryst. 13, 201 (1960).
- 17. A. Byström, K.A. Wilhelmi, O. Brotzen; Acta Chem. Scand., 4, 1119 (1950).

n ne vez ne zeri ne interne ni ne el tra ne presenta esta de la serie de la serie de la serie de la serie de l Columbio y contra contra fonda ne el tra n		,	Final par	ameters			
Atom	×	X	2	σ(<u>x</u>)	σ(χ)	σ(<u>ε</u>)	<u>B</u> , Å ²
Vanadium 1	0.1436	0.2902	0.2231	0.0004	0.0003	0.0002	2.4
Oxygen 2	0.9404	0.4142	0.3592	0.0014	0.0011	8000.0	3.0
Oxygen 3	0.9978	0.1214	0.2689	0.0014	0.0011	0.0008	2.8
Oxygen 4	0.1472	0.5359	0.1367	0.0014	0.0010	0.0007	2.6
Oxygen 5	0.2200	0.2302	0.0532	0.0014	0.0010	0.0007	2.6
Oxygen 6	0.3316	0.1887	0.2793	0.0016	0.0012	0.0009	3.8
Carbon 7	0.2753	0.5372	0.4396	0.0026	0.0020	0.0014	4.4
Carbon 8	0.8224	0.3521	0.4561	0.0022	0.0016	0.0012	2.8
Carbon 9	0.7836	0.1965	0.4661	0.0022	0.0017	0.0012	3.1
Carbon 10	0.8672	0.0924	0.3700	0.0022	0.0016	0.0011	2.8
Carbon 11	0.7900	0.9408	0.3825	0.0023	0.0017	0.0012	3.4
Carbon 12	0.7765	0.2166	0.0125	0.0024	0.0017	0.0013	3.5
Cerbon 13	0.2215	0.5917	0.0195	0.0022	0.0016	0.0011	2.9
Carbon 14	0.7039	0.5090	0.0751	0.0022	0.0017	0.0012	3.1
Carbon 15	0.7070	0.6861	0.0565	0.0021	0.0015	0.0011	2.6
Carbon 16	0.6307	0.7855	0.1659	0.0024	0.0018	0.0013	3.8

-10-

	Bond distances in vanadyl b	oisacetylacetona	ite.
Atoms	Distance, ^a A	Atoms	Distance, a Å
v06	1.56	c ₇ c ₈	1.51
х		C10C11	1.53
V0 ₂	1.97	^C 12 ^C 13	1.52
V03	1.96	^C 15 ^C 16	1.51
V04	1.98		
V05	1.96	°6°-°6	1.39
		°10	1.40
0 ₂ C ₈	1.29	°13 ⁻⁰ 14	1.38
o3c ¹⁰	1.28	^C 15 ^C 16	1.42
04C13	1.28		
05C15	1.29		

TABLE II

a Standard deviations are 0.01 Å for V--O bonds and 0.02 Å for C--O and C--C bonds. Chemically equivalent bonds are grouped together.

TABLE	III

Atoms	Angle ^a	Atoms	Angle
D2V03	87.2°	°2°8°7	114.9°
) ₁ V0 ₅	87.9°	°3 ^C 10 ^C 11	117.2
-		04C13C15	115.4 ⁰
)2 ^{V0} 4	83.8 ⁰	⁰ 5 ^C 15 ^C 16	115.9 ⁰
) ₃ ∀0 ₅	83.5°		
		0 ₂ C ₈ C ₉	123.6°
205	149.8°	93C10C9	124.20
3V0	145.5°	04C13C14	124.60
		05C15C14	122.50
206	104.5°		
306	106.3 ⁰	C7+-C8-+C9	121.5°
406	108.2°	C9C10C11	118.5°
5V06	105.6	C ₁₂ C ₁₃ C ₁₄	119.90
•		C ₁₄ C ₁₅ C ₁₆	121.5°
0 ₂ C ₈	128.6°		
0 ₃ 0 ₁₀	129.4°	с ₈ с ₉ с ₁₀	123.30
04C13	128.7 ⁰	°13 [°] 14 [°] 15	124.4°
0 ₅ C ₁₅	129.5°		

^a Standard deviations are about 1^o or less. Chemically equivalent angles are grouped together.

Oxygen-oxygen distances.					
Atoms	Distance, Å	Atoms	Distance, A		
0 ₂ 0 ₃	2.71	0 ₂ 0 ₆	2.80		
0405	2.73	0306	2.82		
		0406	2.87		
0 ₂ 0 ₄	2.64	°5 ⁰ 6	2.81		
°3°5	2.61		· ·		
`3[`] 5	6.UL	· · · · · · · · · · · · · · · · · · ·			

-13-

TABLE V.

Observed and calculated structure factors, \underline{F}_{0} and \underline{F}_{c} , each multiplied by 10. An asterisk (*) denotes that the reflection was too weak to be detected.

 $F_0 F_c$ k I F_o F_c F_o F_c k I F_o F_c k | F_o F_c k | F_o F_c F_o F_c k k E k i 6 0 * -48 7 -3 121-104 2 52 -41 1 9 200-198 2 -8 210 207 3 10 164 177 4 11 120-114 0 1 -9 * -45 7 4 128 142 3 93 90 2 10 74 67 3-10 117-101 4-11 66 -63 6 1 140 145 0 2-10 + -54 * 4 269 273 1 8 247 229 3-11 120-109 4 13 65 57 6 -1 144-141 7 -4 - 38 0 7 5 * 49 1 -8 141-138 6 2 * 11 5 200 205 2 11 114 92 3 12 153-121 5 0 140-136 0 7 -5 78 83 1-10 110 100 2-11 99 73 0 6 161-149 4 0 93 175 5 1 * 5 6 -2 * -1 * -33 7 161-151 1-11 120 92 2-12 91 69 5 -1 75 -62 3 328-350 7 6 0 4 1 105 59 5 7 113-105 1-12 * -37 0 -9 * 51 3 0 234-135 5 2 212 196 6 -3 121 123 7 4 -1 363 370 7 9 132 119 5 -2 243 244 0 8 70 78 1-13 83 -73 3 1 111 118 4 2 194-197 5 4 83 -67 2 0 383-370 5 3 215 192 6 -4 134 117 7 8 * 74 0 10 120 -98 3 -1 237-207 4 -2 157 159 * -13 2 1 315-256 * 67 7 10 * -26 3 2 128 144 4 3 * 20 5 -3 6 5 85 -76 0-11 7 11 111-106 6 -5 73 -90 0 12 108 -93 2 -1 251-196 3 -2 335-319 4 -3 275-285 5 4 145-138 2 2 171 152 5 -4 * -2 6 6 105 110 8 0 * -68 0 13 86 72 3 3 55 -97 4 4 315 328 5 5 124-123 2 -2 278 279 4 -4 169-181 6 -6 149-148 8 1 79 -86 1 0 313-329 3 - 3 * -16 1 -1 375 388 2 3 62 39 3 4 + 1 4 5 * 37 5 -5 * -38 5 7 * =70 8 -1 106 110 1 2 67 -54 2 -3 167 164 6 -7 109 99 8 2 * -21 3 -4 168 171 4 -5 106 89 5 6 * 14 * -11 1 -2 371-387 2 4 785-808 3 5 472 513 9 8 -2 71 73 4 6 106-118 5 -6 266 258 6 1 3 468 515 2 -4 228-217 3 -5 * -35 4 -6 * 5 5 7 133 158 6 8 132-155 8 3 111 104 1 -3 168-178 2 5 278-280 3 6 * 58 4 7 * 5 -7 140 125 6 10 8 4 67 67 * + 33 62 1 4 109 118 2 -5 * -30 3 -6 153-147 6 11 * 5 * -36 4 -7 134-112 5 9 85 -62 22 8 1 -4 46 5 2 6 207 259 3 7 207-221 5 -9 75 -66 7 0 ¥ 6 ٠ 4 9 * 53 45 8 -40 5 417-430 3 -7 177-177 7 * 7 75 2 -6 * -55 5 8 * 42 85 1 4 -9 * 42 1 58 8 3 9 140 137 5 -8 * -53 7 -1 67 1 -5 329 333 2 7 140 124 4 8 * 61 * =26 9 1 75 2 -7 153 160 * -44 7 2 164-173 9 2 ٠ 54 1 6 159-159 3 -9 109 96 4 -8 130-121 5 10 2 9 103-104 7 -2 156-160 * -13 1 -6 132 120 3 8 * -56 5 11 105 101 9 3 4 10 144-146 1 7 138 115 2 -9 * -41 3 -8 * 44 4-10 108 104 5 12 79 58 7 3 * 55 9 4 59 -70 1 -7 * -14 2 8 153-139

h = 0

-15-

h		
- n	-	

k I F _o F _c	k I F _o F _c	k I F _o F _c	k I F _o F _c			
0 2 516-542	-1 3 71 -46	-2 -2 * 84	-3 3 180 184	-4 4 138 124	6 0 7 0	7 5 107 -93
0 3 553 529	-1 -3 66 87	-2 3 110 -86	-3 -3 269-235	-4 -4 111 97	6 1 167 153	7 -5 65 81
0 -3 371-399	-1 -4 563 510	-2 -3 405 368	-3 4 216 199	-4 5 199 207	6 -1 72 -71	7 9 76 65
0 4 168 145	-1 5 87 82	-2 4 168-146	-3 -4 240-229	-4 -5 169 162	6 7 * 47	7 8 130 128
0 5 97 -63		-2 -4 476-444	-3 5 119 -95	-4 7 107-121	6 -2 98 -96	7 11 84 -80
0 -5 350 327	-1 -1 -1	-2 -5 263-282	-3 6 141-154	-4 -7 91 -95	A 3 224-225	-7 0 127 120
0 6 123-115	-1 7 233-223	-2 7 135 115	-3 -6 211 210	-4 9 127 113	6 -3 * ·	-7 1 103-102
0 7 77 -63	-1 -7 130-114	-2 -7 391 393	-3 8 125 130	-4 -9 203 195	6 4 254	-7 -1 174 177
0 -7 212-194	-1 -9 188-176	-2 9 160-167	-3 -8 167-172	-4 11 86 -88	6 -4 131 144	-7 2 101-113
0 9 122 109	-1 8 160-162	-2 -9 107-106	-3 10 66 -58	-4-11 176-159	6 5 332 344	-7 -2 118-139
0 -9 92 81	-1 10 106 104	-2 11 96 95	-3-10 228 204	5 0 222-213	6 -5 116-112	-7 4 106 109
0 8 153 157	-1-10 104 -90	-2-11 95 94	-3-11 65 72	5 1 116 103	6 6 74 64	-7'-5 72 94
0 -8 115 100	-1-11 151-127	-2-13 30 -32	-3 12 92 102	5 -1 110-100	6 -6 104 -95	-7 6 59 -57
0 10 223-235	-1 12 72 -51	3 0 655 603	-3-12 90 -64	5 2 300 299	6 7 107 -85	-7 -7 110-115
0-10 164 140	-1-13 43 41	3 1 137 107	4 0 433-372	5 -2 176 172	6 9 133 136	-7 -9 48 63
0 11 64 -49	2 0 162-119	3 -1 182 136	4 1 309-283	5 3 .* -30	6 8 92 -93	8 0 87 -98
0-12 114 -89	2 1 425 371	3 2 114 -56	4 -1 374 349	5 4 443-454	6 10 103 81	8 -1 61 57
0 13 78 72	2 -1 243-283	3 -2 413-373	4 2 15 0- 106	5-4 73 61	6 11 61 -60	8 2 65 67
1 2 452 456	2 2 215-167	3 3 * 12	4 -2 111 71	5 5 92 -93	5 12 51 -46	8 - 2 57 62
	2 -2 92 27	3 -3 227-199	4 3 149 150	5 -5 76 -85	-6 0 145-145	8 3 74 80
1 3 300 332	2 3 246-220	3 4 111 137	4 -3 197-171	5 6 60 71	-5 1 135-130	8 - 3 62 79
1 -3 -21	2 -3 248 230	3 -4 193 180	4 4 106 94	5 -6 150 129	-5 -1 111 115	8 -5 64 -66
	2 4 * -75	3 5 287 257	4 -4 184-169	5 7 103 93	-6 2 107 131	8 9 175-155
1 -4 45 10	2 -4 223-171	3 -5 146 130	4 5 332-341	5 -7 122 98	-6 -2 + -26	
1 -5 108 49	2 5,132 136	3 6 213-215		5 9 * 24	-6 3 125 130	
1 4 # -1	2 -5 189-180	3 -6 + -14	4 0 4 -04	5 6 106-115	-6 -3 205-201	-8 -2 78 -64
1 =6 262 234	2 6 4/3 497	3 7 127-146	4 / 145 156		-6 4 65 -68	-8 3 93-113
1 7 224 240	2 •0 323=263	3 -7 186-186	4 9 100-109 / 9 1 / 7	5 11 94 84	-6 -4 181-174	
1 -7 218 205		3 9 104 111	4 0 4 42	5 12 77 - 57	-5 -6 34 38	-9 -7 67 62
1 -9 66 -59	2 -7	3 -9 87 95	4 -6 155=155	-5 0 114 -99	-6 7 163 180	-8 -8 78 84
1 8 184 188	2 8 226 -224	3 8 + 67	4-10 106 88	-5 1 85 81	-6 -9 87 -84	9 1 95 87
1 -8 91 -82	2 = 8 212 211	3 -8 92 -90	4 12 149 116	-5 -1 152-150	-6 -8 77 -59	9 -1 65 -80
1 11 233 215	2-10 77 -61	3-10 64 -57	4 12 149 110	-5 -2 170 159	-6-11 45 42	9 3 107 -96
1-11 109 93	2 12 101 -88	3-11 132-108	=4 0 228 216	-5 3 103 -89	7 0 99 77	9 4 68 -61
1 12 81 74	2-12 78 74	3 12 120+102	-4 1 134 103	-5 -3 219 225		9 8 79 -79
-1 0 257 225	2 13 110 -88	-3 1 331-315	-4 -1 134 126	-5 4 205-236	7 2 140-131	-9 -2 66 71
-1 1 763 827	-2 0 99 67	-3 1 219-210	-4 2 89 58	-5 -4 160 153	7 7 74 - 14	-9 -3 95 109
-1 -1 373-291	-2 1 138 126	-3 -1 123 -92	-4 -2 115-109	-5 8 167-158	7 5 70 700	10 2 43 -59
-1 2 558-476	-2 -1 350-307	-3 2 266-263	-4 3 228-227	-5 -8 91 91	1 -3 131-122	10 3 55 52
-1 -2 427-398	-2 2 197 192	-3 -2 370 339	-4 -3 62 -46	-5 10 56 62	/ 4 100 184	10 4 78 66

-16-

UCRL-8225 Rev.

· . • •

.

h=2

. .

· ·

k I F _o F _c						
0 0 617-681	-1 -1 60 62	-2 2 250 206	-3 3 270 263	k I F. F.	k I F. F.	k I F. F.
0 1 424-511	-1 2 135-119	-2 -2 236 226	-3 -3 254-225	0 6	0 0	0.6
0 -1 64 35	-1 -2 275-264	-2 3 228-207	-3 4 + 13	-4 -6 95 105	-5-10 87 -66	7 7 96 105
0 -2 184 187	-1 3 247-218	-2 -3 404 409	-3 -4 145-147	-4 7 * 10	6 0 141 140	7 9 * -77
0 3 248 219	-1 -3 183-187	-2 4 197-203	-3 5 184-192			7 8 82 81
0 -3 182-199	-1 4 412 408		-3 -5 87 -84			7 10 104-142
0 -4 275-268	-1 -4 243 242	-2 -5 - 20	-3 6 + 27	-4 8 135 147	6 -2 156-161	7 12 81 78
0 5 221-236	-1 -5 228 231	-2 6 253 274	-3 -6 122 116	-4 -8 + -47	6 3 74 -69	-7 0 + 50
0 -5 + 45	-1 6 173-215	-2 -6 124-137	-3 7 170 202	-4-10 114 98	6 -3 59 -56	-7 1 125-141
0 6 163-154	-1 -6 225-228	-2 7 102-112	-2 9 * -23	-4-11 72 -57	6 4 261 279	-7 -1 * 61
0 -6 211 203	-1 7 262-274	-2 -7 93 107	-3 -9 146-147	5 0 102 -81	6 -4 153 148	-7 2 * 40
0 7 80 69	-1 -7 * -19	-2 9 * -59	-3 8 * 14	5 1 274 282	6 5 375 407	-7 -2 * -4
0 -7 + -1	-1 9 181 188	-2 -9 * -8	-3 -8 153-162	5 -1 231-204	6 -5 + 10	-7 3 130 152
	-1 -9 152 127		-3-10 72 72	5 2 145 154		~7 ~3 + ~78
0 -9 * -42 A 9 194 194	-1 8 * 34		-3 11 41 52	5 3 320-333	0 -0 02 04 4 7 # 91	
0 -8 48 -23			-3-11 105 76	5 -3 160 164	A -7 98 -96	-7 -6 + 30
0 10 171-162	-1 10 * 19 e1-10 # 22	~2 11 # 0	4 0 691-652	5 4 264-264	6 9 132 139	-7 -7 64 -64
0-10 186 155	-1-10 - 22	-2-11 * 1	4 1 456-395	5 -4 192-195	6 8 83 93	-7 -8 63 -53
0 11 * 55	-1-11 126-111	-2 12 63 -74	4 -1 109 97	5 5 241 253	6 10 * 26	8 0 93 -86
0 11 * 55	2 0 316 319	-2-12 41 39	4 2 265 270	5 -5 160-159	6 11 95 -85	8 1 * -4
0-11 * 20	2 1 373 364	3 0 399 37 9	4 3 # 33	5 6 184 198	6 12 + 6	8 -1 72 -73
0 12 178 172	2 -1 108-144	3 1 433-430	4 -3 75 74	5 -6 * -67	6 13 66 57	8 2 122 129
0-12 73 -64	2 2 242-258	3 -1 506 489	4 4 205-211	5 7 141-146		8 - 2 + 5
	2 -2 286-269	3 2 254 124	4 -4 123-118		-6 1 - 14	8 3 * 3
	2 3 87 62	3 -2 132-123	4 5 183-195	5 8 93 -1 14		8 A 95-100
1 =3 62 A0	2 -3 * -1	3 - 2 224-214	4 - 5 * - 5	5 -8 96 79	-6 -2 108 120	8 -4 51 51
1 4 77 -92	2 = 322 310	3 4 111 -71	4 6 # 34	5 10 90 90	-6 3 * 3	8 5 * -48
1 -4 + -23	2 5 192 200	3 -4 * 27	4 6 76 34	5 11 * -21	-6 -3 152 163	8 -5 54 -54
1 5 134-124	2 -5 * 6	3 5 318-277	4 -6 118 131	5 12 1 00 -67	-6 4 150-155	8 6 * 24
1 -5 323-330	2 6 369 378	3 -5 272 294	4 7 102 114	5 13 58 -53	-6 -4 + -58	8 7 + 30
1 6 135 137	2 -6 329-330	3 6 274-285	4 9 94 +99	-5 0 * 32	-6 -5 + -31	8 9 119-117
1 -6 + 33	2 7 84 -70	3 -6 132 147	4 -8 54 -69	-5 1 129 122	-6 -6 + 42	8 8 61 -68
1 -7 220 225	2 -7 134-137	3 7 124-108	4 10 * 64	-5 -1 203-222		
1 = 7 237 237 1 0 124=117	2 9 * 59	3 -7 136-134	4 11 58 64		-6 -9 56 -54	-8 0 109 130
1 -9 150-133		5 7 62 64 2 -9 155 118	4 12 130 109	-5 3 108-103	7 0 96 96	-8 -2 74 -92
1 8 116-119	2 8 12(-163	3 8 129 131	4 14 75 -71	-5 -3 * 43	7 1 75 -83	-8 -3 51 -62
1 -6 + -7	2 10 118 114	3 -8 * -18		-5 4 83 -96	7 -1 128 122	-8 -4 48 58
1 10 * -4	2-10 76 -64	3 10 102-105	-4 1 211-202	-5 -4 102 103	7 2 * 32	9 2 1 06 -99
1-10 123 -85	2 11 * -51	3 11 116-121	-4 -1 213 203	-5 5 95 101	7 -2 108 103	9 - 2 89 - 84
1 11 200 205	2-11 60 -42	3 12 * -31	-4 3 70 -67	-5 -5 * -17	7 3 66 53	9 3 112 -94
1-11 80 63	2 12 122-101	3 13 106 90	-4 -3 144-176	-5 6 * -47	7 -3 * -16	9 - 3 42 - 40
1 12 * *43	2 13 * -17	-3 0 239-232	-4 4 163 170	-5 -6 108-115	7 4 75 74	y 4 ∓ 30 0 5 97 7∧
1 12 100 -05	2 14 73 75		-4 -4 63 -63	-5 (137-143 -5 -7 73 -83	· · · · · · · · · · · · · · · · · · ·	9 9 71 7A
-1 6 141 136		-3 2 219 222	-4 5 82 106	<u>-5 -9</u> + 27	7 -5 * 5	10 2 49 -53
-1 1 457 422	-2 1 332 342	-3 -2 216 233	-4 -5 73 86	-5 8 125-131	7 6 119-130	10 3 62 63
	2 -1 101-109		-4 6 + -43	-5 -8 87 72	7 -6 83 70	10 6 55 -51

-17-

• •

• •

UCRL-8225 Rev.

h = 3

| k I F _o F _c |
|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| 0 0 228-271 | -1 -3 200-210 | -2 0 114 114 | 3 12 106 87 | -4 1 249-260 | -5 -2 182-223 | 7 -2 168 188 |
| 0 1 61 -83 | -1 4 516 537 | -2 1 227 234 | 3 13 72 62 | -4 -1 197 200 | -5 3 * -24 | 7 3 138 154 |
| 0 2 147-165 | -1 -4 62 73 | -2 -1 241-219 | -3 0 280-308 | -4 2 * -20 | -5 -3 133-143 | 7 - 3 * 35 |
| 0 -2 126 106 | -1 5 87 -80 | -2 2 117-125 | -3 1 246 261 | -4 -2 + 45 | -5 4 * 63 | 7 4 64 -72 |
| 0 3 326 331 | -1 -5 185 178 | -2 -2 62 56 | -3 -1 * -14 | -4 3 90 117 | -5 -4 46 55 | 7 -4 84 -77 |
| 0 -3 73 74 | -1 6 192-206 | -2 3 283-307 | -3 2 355 398 | -4 -3 131-141 | -5 5 81 73 | 7 5 * 41 |
| 0 4 86 30 | -1 -6 173 192 | -2 -3 180 183 | -3 -2 185 194 | -4 4 * -33 | -5 -5 109 123 | 7 -5 85 -84 |
| 0 -4 163-154 | -1 7 65 66 | -2 4 + 15 | -3 3 * 9 | -4 -4 102-102 | -5 -6 54 -56 | 76 * 50 |
| 0 5 435-405 | -1 -7 163 150 | -2 -4 211 232 | -3 -3 117 101 | -4 5 85 -71 | -5 -7 45 -57 | 7 -6 52 47 |
| 0 -5 138-125 | -1 9 93 109 | -2 5 268 313 | -3 4 121-109 | -4 -5 * 20 | -5 -9 60 63 | 7 7 161 160 |
| 0 7 223 237 | -1 -9 163 148 | -2 -5 177-174 | -3 -4 80 -82 | -4 6 84 -87 | -5 -8 55 46 | 7 9 97 -92 |
| 0 9 171-194 | -1 8 212 244 | -2 6 * -35 | -3 5 63 -78 | -4 -6 102 103 | 6 0 96 100 | 7 8 * -15 |
| 0 11 96 92 | -1 -8 75 -73 | -2 -6 79 -79 | -3 -5 102-132 | -4 -7 98 -92 | 6 1 152-137 | 7 11 82 78 |
| 0-11 120 102 | -1 10 69 -64 | -2 7 169-209 | -3 6 99 108 | -4 -8 109-115 | 6 -1 181 188 | 7 12 69 60 |
| 0 12 168 160 | -1-10 118 98 | -2 -7 120-102 | -3 -6 * 3 5 | -4 10 58 -70 | 6 2 74 -70 | -7 1 88-101 |
| 0 13 89 -87 | -1 11 64 -65 | -2 9 98 109 | -3 7 85 90 | -4-10 70 65 | 6 -2 65 -66 | -7 -2 96 107 |
| 1 -1 80 -89 | -1 12 67 52 | -2 -9 83 77 | -3 -7 113 105 | 5 0 205 190 | 6 3 122 123 | -7 3 55 87 |
| 1 -2 449-417 | -1 13 48 58 | -2 8 132-143 | -3 8 69 -86 | 5 1 153 169 | 6- 3 * 3 | -7 -4 64 -68 |
| 1 -3 82 75 | 2 0 206 218 | -2 -8 82 62 | 4 0 173-158 | 5 -1 250-242 | 6 4 47 38 | -7 -6 49 59 |
| 1 4 232-258 | 2 1 138-136 | -2-10 80 -62 | 4 1 115 99 | 5 2 181-174 | 6 - 4 * 37 | 8 0 * 12 |
| 1 -4 149 126 | 2 -1 180 147 | -2-11 44 -48 | 4 -1 292-267 | 5 -2 316-308 | 6 5 59 - 54 | 8 1 46 40 |
| 1 5 69 51 | 2 2 157-179 | 3 0 114-109 | 4 2 516 506 | 5 3 231-234 | 6 -5 125 117 | 8 -1 127-139 |
| 1 -5 267-267 | 2 -2 65 19 | 3 1 481-478 | 4 -2 246 248 | 5 3 * 57 | 6 6 370-404 | 8 2 46 57 |
| 1 6 208 207 | 2 3 70 85 | 3 -1 382 347 | 4 3 107 -98 | 5 4 * 4 | 6 -6 90 73 | 8 -2 83 -79 |
| 1 -6 185-186 | 2 -3 173-161 | 3 2 64 -5 3 | 4 -3 165 160 | 5 -4 109 -81 | 6 7 90 - 87 | 8 3 139-157 |
| 1 7 139 129 | 2 4 217 273 | 3 -2 207 217 | 4 4 180-167 | 5 5 267 2 79 | 6 -7 97 -81 | 8 - 3 77 76 |
| 1 -7 46 38 | 2 -4 366 316 | 3 3 190 188 | 4 -4 61 - 58 | 5 - 5 * - 15 | 69 * 0 | 8 4 80 -80 |
| 1 9 109-118 | 2 5 59 62 | 3 -3 116-115 | 4 5 102 108 | 5 6 210 204 | 6 8 131 134 | 8 -4 47 40 |
| 1 -9 49 -42 | 2 -5 275 281 | 3 4 245-232 | 4 -5 109-107 | 5 -6 142-136 | 6 -8 76 -75 | 8 5 88 83 |
| 1 8 234-225 | 2 6 136-147 | 3 -4 296-296 | 4 6 143 157 | 5 7 188-1 99 | 6 10 * -46 | 8 -5 26 -34 |
| 1 78 158 148 | 2 -6 164-173 | 3 5 150-153 | 4 -6 * 45 | 5 -7 82 -63 | 6 11 91 -81 | 8 6 70 72 |
| 1 10 60 22 | 2 7 178-178 | 3 -5 126 134 | 4 7 124 129 | 5 9 * 21 | 6 13 81 74 | 8 10 126 109 |
| | 2 -7 190-192 | 3 6 * -47 | 4 - 7 103 95 | 5 -9 54 47 | -6 1 88 88 | 8 11 83 69 |
| | 2 9 279 290 | 3 -6 266 272 | 4 9 9 0 - 85 | 5 8 63 62 | -6 -3 179 169 | 9 0 76 74 |
| 1 12 160-181 | 2 -9 101 77 | 3 7 * 15 | 4 -9 66 -52 | 5 -8 77 69 | -6 -5 67 -61 | 9 -1 40 47 |
| 1 13 109-111 | 2 8 109-108 | 3 -7 * -33 | 4 8 133-138 | 5 10 🕈 42 | -6 6 60 82 | 9 2 119-124 |
| | 2 -8 + 23 | 3 9 84 -67 | 4 -8 + -13 | 5 11 113-110 | -6 -7 76 78 | y ≈2 54° ≈48 |
| -1 1 199 cof | 2 10 99 104 | 3 8 183 199 | 4 10 92 97 | 5 14 66 57 | -6 -8 57 63 | 9 = 3 62 = 70 |
| -1 1 127 -90 | 2 11 70 -57 | 3 - 8 * 17 | 4 11 130 131 | -5 0 93 87 | 7 0 92 -92 | у 4 139 137 |
| | 2-11 67 -70 | 3 10 131-133 | 4 13 103 -70 | -5 1 * 27 | 7 1 46 -51 | 7 7 72 81
18 7 76 76 |
| | 2 12 + 2 | 3-10 66 58 | 4 14 73 -69 | -5 -1 * -64 | 7 -1 * 22 | 10 5 10 18 |
| -1 -2 243-231 | 2 13 1 00 96 | 3 11 * 8 | -4 0 98-101 | -5 2 125-137 | 7 2 82 90 | 10 5 13/-143 |
| -1 3 333-332 | 2 14 46 42 | | | | | |

-18-

UCRL-8225 Rev.

h=4

• • •

k I F _o F _c	k I F _o F _c	k I F _o F _c	k I F _o F _c	k Fo Fc	k I F _o F _c	k I F _o F _c
0 0 104 -98	1 -8 165 137	2 - 9 36 32	3 -9 114 -94	<u>4 -8 101 89</u>	-5 -1 129 129	7 4 124-134
0 1 168 148	1 10 123 133	2 8 60 35	3 8 119 127	4 10 123 133	-5 2 56 -51	7 =4 * =26
0 -1 120-119	1-10 77 -73	2	3 -8 35 -30	4 11 * 25	-5 -2 * -31	7 5 106 108
0 2 503 577	1 11 93 -86	2 18 96 484	3 10 59 -61	4 12 175-173	-5 3 54 51	7 -5 91 -88
A -2 157 135	1 12 66 -73	2 10 90 -04	3 11 144 135	A 13 57 -51	-5 -3 104-110	7 6 167 165
0 3 231 262	-1 0 71 55	2 11 67 -65	3 12 89 80	-4 0 108-130	-5 4 78 80	7 7 123 121
A -3 196 196	-1 1 282-273	2 11 47 49	2 12 47 - 34	= 0.100 - 130	-5 -4 * 3	7 0 4 - 29
A 4 157 129	-1 -1 272 249	2 12 01 07	-3 0 84 -90		-5 -5 147 151	7 9 * - 49
A =4 82 =59	-1 2 + 16	-2 A 165 162	-3 1 206 249	-4 2 146 186	-5 -7 70 -70	7 0
	-1 -2 39 15		-3 -1 55 -55	-4 -2 163 180	6 0 112 -94	7 12 62 66
	-1 3 54 51		-3 -1 JJ JJ	-4 3 110 124	6 1 139-137	7 12 86 -80
0 - 5 102-108	-1 -3 163-168	-2 2 259-274		-4 -3 110 12- -4 -3 + 40	6 -1 138 142	-7 -2 62 60
	-1 4 103 97	-2 2 237-210	-3 3 226-278	-4 4 43 -57	6 2 48 53	8 0 155 144
0 -6 142-151	-1 -4 * 0	-2 -2 $287-510$	-3 -3 200 206	-4 -4 140+156	6 = 2 * 41	8 1 119 113
0 7 90 104	-1 5 149-150		-3 A 120-132		6 3 94 94	8 -1 95 -84
0 -7 119 99	-1 -5 * -44	-2 -3 -2 -20	-3 4 120-192		6-3 * -34	8 2 53 + 53
	m1 & 198m100		-3 5 63 64	-4 -5 84 -81	6 4 95 -68	0 2 JJ JJ
0 -9 91 -82	-1 -6 186 185		-3 -5 107-120		6 -4 222-191	8 2 102-109
$0 \ 8 \ 110 - 150$	-1 7 211 258				6 5 196-193	6 3 92-100 8 4 48 33
	-1 -7 + 14	-2 -3 - 32		-4 -8 97 -92 5 0 283 280	6 6 161-163	9 - 4 40 22
0 10 07 50	-1 9 48 -48			5 0 285 287	6 -6 96 85	9 5 107 106
0-10 36 -50	-1 8 172 170	-2 -5 - 2		5 1 95 82	6 7 141-132	
0 11 44 57		-2 -7 126 - 123		5 -1 + 26	6 9 123-132	8 7 74 - 70
0 13 02 -70	-1 16 91 -91	-2 0 100 120		5 2 239-219	6 8 154 148	
		-2 -0 74 50		5 -2 133 105	6 10 108-120	0 7 ~ /0 9 9 91 AO
1 1 27 46				5 3 * -13	6 11 + -24	9 12 90 -73
1 -1 40 30	2 0 91 98		4 1 297 307	5 -3 + -19	6 12 71 56	0 12 00 - 13
1 2 200-019	2 1 120-155	2 0 178-170	4 1 245-275	5 4 125 116	-6 0 39 33	
1 -2 237-214	2 -1 120-199	3 0 1/8-1/9	4 -1 200-270	5 -4 93 98	-6 -1 83 -85	
1 3 319-373	2 - 2 + -4	3 1 100-109	A = 2 70 - 79	5 5 157 131	-6 -2 89 -92	9 2 0 0 - 40
1 -3 120 103	2 - 2 =	3 2 40 -23		5 -5 195 165	-6 3 59 -63	7 5 77 72 0 4 166 161
1 4 100-225	2 3 41 30	3 72 197 102			-6 -4 65 82	9 4 100 101
1 = 4 1/(102)	2 -3 240-243	3 3 244 310			-6 6 32 64	9 9 9 9 9 9
1 5 224 251		j = j = = = = = = = = = = = = = = = = =	4 4 192-128	5 1 245-210	-6 -6 67 -90	9 9 72 - 26
	2 10	3 + 232 - 203		5 9 154 190	7 0 152-159	9 10 75 -42
1 0 30 -13	· · · · · · · · · · · · · · · · · · ·	5 -4 201-205			7 1 82 77	16 2 68 72
1 -0 10/-114	2 -9 219 281	5 5 91 -99			7 -1 170-140	18 2 50 40
1 / 1/1=204	2 6 289-340	5 -7 71 -8 5	4 0 107 2UI		7 2 40 -12	
1 7 58 -45	2 -6 63 54	3 8 213 249	4 -0 102 -92	5 12 107 782	7 - 2 - 81 - 85	10 5 185-142
1 9 7 5		5 TO 95 05	4 / * *2	-5 A 65 44	7 3 87 -81	10 5 105-105
1 -9 81 70		5 1 239 290	4 7 ~ JO 4 9 158-144		7 -3 106 89	10 7 70 77
1 2 20 - 86	2 7 72 96	3 9 140-1 53	9 0 100-104	J L 37 - 20		10 / /0 //

-19-

.

LEGENDS

Fig. 1. The crystal structure of vanadyl bisacetylacetonate, projected along [100]. One unit cell is outlined. The numbering of the atoms corresponds to the identification in the text and tables.

Fig. 2. Average bond distances and bond angles.

Fig. 3. Individual isotropic temperature parameters.

MU-22078

Fig. 1.

MU-22079

Fig. ..

١

MU-22080

Fig. 3.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.