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Blood-based protein mediators of senility with
replications across biofluids and cohorts

Donald R. Royall1,2,3,4, Raymond F. Palmer3and The Alzheimer’s Disease Neuroimaging
Initiative*

*The ADNI investigators are listed in the Appendix.

Dementia severity can be quantitatively described by the latent dementia phenotype ‘d’ and its various composite ‘homologues’.

We have explored d’s blood-based protein biomarkers in the Texas Alzheimer’s Research and Care Consortium. However, it

would be convenient to replicate them in the Alzheimer’s Disease Neuroimaging Initiative. To that end, we have engineered a d

homologue from the observed cognitive performance measures common to both projects [i.e. ‘d:Texas Alzheimer’s Research and

Care Consortium to Alzheimer’s Disease Neuroimaging Initiative’ (dT2A)]. In this analysis, we confirm 13/22 serum proteins as

partial mediators of age’s effect on dementia severity as measured by dT2A in the Texas Alzheimer’s Research and Care

Consortium and then replicate 4/13 in the Alzheimer’s Disease Neuroimaging Initiative’s plasma data. The replicated mediators of

age-specific effects on dementia severity are adiponectin, follicle-stimulating hormone, pancreatic polypeptide and resistin. In their

aggregate, the 13 confirmed age-specific mediators suggest that ‘cognitive frailty’ pays a role in dementia severity as measured by d.

We provide both discriminant and concordant support for that hypothesis. Weight, calculated low-density lipoprotein and body

mass index are partial mediators of age’s effect in the Texas Alzheimer’s Research and Care Consortium. Biomarkers related to

other disease processes (e.g. cerebrospinal fluid Alzheimer’s disease-specific biomarkers in the Alzheimer’s Disease Neuroimaging

Initiative) are not. It now appears that dementia severity is the sum of multiple independent processes impacting d. Each may have

a unique set of mediating biomarkers. Age’s unique effect appears to be at least partially mediated through proteins related to

frailty. Age-specific mediation effects can be replicated across cohorts and biofluids. These proteins may offer targets for the re-

mediation of age-specific cognitive decline (aka ‘senility’), help distinguish it from other determinants of dementia severity and/or

provide clues to the biology of Aging Proper.
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Abbreviations: ADNI¼Alzheimer’s Disease Neuroimaging Initiative; APN¼ adiponectin; APOE¼ apolipoprotein E; BMI¼ body

mass index; CSF¼ cerebrospinal fluid; GDS¼ geriatric depression scale; IGF-1¼ insulin-like growth factor-1; LDD¼ least detect-
able dose; MCI¼mild cognitive impairment; MIMIC¼Multiple Indicators Multiple Causes; MRI¼magnetic resonance imaging;

NC¼normal controls; NHW¼non-Hispanic white; PET¼ positron emission tomography; PPP¼ pancreatic polypeptide; RBM¼
Rules-Based Medicine; SAP¼ serum amyloid protein; TARCC¼Texas Alzheimer’s Research and Care Consortium

Introduction
Dementia’s essential feature is a disruption of the ‘cogni-

tive correlates of functional status’ (Royall et al., 2007).

The assessment of those correlates can be approached by

confirmatory factor analysis in a structural equation

model framework (Royall et al., 2012). Functional status

appears to be linked to cognitive performance through

Spearman’s general intelligence factor g rather than

through domain-specific cognitive abilities (Spearman,

1904; Royall and Palmer, 2014). Using bifactor confirma-

tory factor analysis we can parse g into two orthogonal

(unrelated) fractions: (i) the psychometric correlates of

functional status (i.e. ‘d’, for ‘dementia’) and (ii) g’, i.e.

residual variance in g that is empirically unrelated to in-

strumental activities of daily living. This approach divor-

ces functionally salient cognitive impairment from

cognitive impairment per se.

The latent variable d can be reified as a composite ‘d-

score’ and applied to individuals as an omnibus dementia

severity metric, i.e. a dementia-specific phenotype. As g is

thought to contribute to all cognitive measures, it has

proven feasible to construct d from a wide range of

measures/batteries. So many batteries are available that

we distinguish each embodiment as a d ‘homologue’. In

genetics, a homologue is a gene descended from an ances-

tral gene in the same species and preserves the original’s

function.

All validated d homologues exhibit strong associations

with dementia severity (e.g. as measured by the Clinical

Dementia Rating Scale ‘Sum of Boxes’; Hughes et al.,

1982) and achieve high areas under the receiver operating

characteristic curve (ROC) for the discrimination of vari-

ous dementias from normal controls (NC). Moreover, d
appears to be agnostic to dementia’s aetiology. Although

it has a high area under the receiver operating character-

istic curve to discriminate all-cause dementia from NC

and cases of mild cognitive impairment (MCI) (Gavett

et al., 2015), d cannot distinguish any two dementing

conditions (John et al., 2016).

We have been studying d homologues and their bio-

markers in the Texas Alzheimer’s Research and Care

Consortium (TARCC). TARCC is a large (N ffi 3500),

well-characterized, ethnically diverse convenience sample

with annual longitudinal follow-up (Waring et al.,

2008). Age, APOE e4 and depressive symptoms are inde-

pendently associated with d and may exert their dement-

ing effects through it. Each of their associations is

partially mediated by largely nonoverlapping panels of

serum protein biomarkers suggesting that they reflect
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independent dementing processes (Royall et al., 2016,

2017a, b).

Age’s effect was mediated by 22 proteins (Royall et al.,

2016). Several were ‘somatomedins’ including insulin-like

growth factor 1 (IGF-1) and IGF-binding protein 2 (IGF-

BP2), which had the largest effect. In their aggregate,

they implicate ‘cognitive frailty’ as the cause of age-spe-

cific functionally salient cognitive impairment (i.e. ‘senil-

ity’). Frailty has traditionally been conceived as a strictly

physical problem (Fried et al., 2001). Its cognitive aspects

are largely unexplored. However, we have been able to

show that a frailty index, comprising physical indicators,

mediates the majority (51%) of age’s effect on d in a

population-based cohort of elderly Mexican-Americans

(Palmer and Royall, 2019). Thus, cognitive frailty may be

a dementing condition.

Although each risk factor’s association with d is statis-

tically weak to moderate, five proteins rationally selected

by our method fully attenuate their 9-fold aggregate 5-

year MCI conversion risk (Royall and Palmer, 2019a).

This suggests first that the protein mediators selected by

our methods may offer treatment targets for individual

dementia risks (i.e. by a personalized treatment approach)

but second that these risk factors are independent demen-

tia-specific processes and do not contribute to a single

dementing illness (e.g. Alzheimer’s disease) by any final

common pathway.

Regardless, our findings await confirmation in other

cohorts. To that end, we have developed the ability to

replicate TARCC’s biomarker findings in the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). ADNI is a se-

cond large, well-characterized convenience sample created

to test biomarker findings of relevance to Alzheimer’s dis-

ease. As it happens, TARCC’s methods were largely pre-

dicated on ADNI’s. Both studies share a common subset

of cognitive measures and a panel of ffi100 blood-based

biomarkers by a common vendor.

The ‘TARCC to ADNI’ d homologue (dT2A) was engi-

neered from a common set of cognitive performance

measures (Royall et al., 2019). In TARCC, dT2A has

been reported (i) to have excellent fit, (ii) to exhibit fac-

tor equivalence across random subsets of the sample, (iii)

to be strongly correlated with dementia severity as meas-

ured by the Clinical Dementia Rating Scale and (iv) to

exhibit an area under the receiver operating characteristic

curve of 0.981 (0.976–0.985) for the discrimination be-

tween Alzheimer’s disease (AD) and NC. In ADNI, dT2A

also had excellent fit, correlated (r¼ 0.96) with Clinical

Dementia Rating Scale ‘Sum of Boxes’ (P< 0.001) and

achieved an area under the receiver operating characteris-

tic curve of 1.0 (0.995–1.00) for the discrimination of

Alzheimer’s disease from NC.

Both datasets have limitations that may hinder replica-

tions. All d homologues ‘target’ a measure of instrumen-

tal activities of daily living. TARCC used Lawton and

Brody’s instrumental activities of daily living index

(IADL) (Lawton and Brody, 1969), but ADNI uses the

Functional Assessment Questionnaire (FAQ) (Pfeffer

et al., 1982). While their biomarker panels were obtained

from a common vendor, TARCC measures them in

serum, while ADNI measures them in plasma. Some pro-

teins on each study’s panel are not available on the

other’s, and technical problems prevent the analysis of

certain proteins in either sample.

On the other hand, each study has unique strengths.

ADNI provides access to both structural neuroimaging

and functional neuroimaging and so-called Alzheimer’s

disease-specific cerebrospinal fluid (CSF) biomarkers [e.g.

amyloid beta 1–42 (Ab1–42), total tau (t-tau) and phos-

phorylated tau (p-tau18)]. TARCC is an ethnically di-

verse cohort. Thirty-six percent of its participants are

Mexican-Americans (MA).

We propose to replicate the previously reported medi-

ation effects of 22 age-related serum proteins in ADNI.

This will involve confirmations within TARCC across

two d homologues with minimally overlapping cognitive

batteries and replications across studies and two bio-

fluids. We will also test several new mediators to provide

both discriminant and concordant support for the hy-

pothesis that age’s unique effect on dementia severity as

measured by d is mediated via frailty and not by plaus-

ible alternative aetiologies (e.g. diabetes mellitus or

Alzheimer’s disease). We predict that weight and body

mass index (BMI) will mediate age’s effect, but neither

haemoglobin A1c (HgbA1c) nor Alzheimer’s disease-spe-

cific CSF biomarkers (in ADNI) (etc.). We also predict

that treatment with acetylcholinesterase inhibitors will

mediate age’s effect, as it has been reported to lower

serum resistin levels (Satapathy et al., 2011), which have

in turn been found to be elevated in Alzheimer’s disease

patients (Kizilarslano�glu et al., 2015), confirmed to show

a dose-dependent association with clinical diagnoses in

TARCC (Royall and Palmer, 2019b) and have been iden-

tified by us as a mediator of both age’s and depression’s

independent effects on d (in mutually adjusted models;

Royall et al., 2016, 2017b).

Materials and methods

Subjects

This is a secondary analysis of data collected by TARCC

and ADNI. Informed consent was obtained from all par-

ticipants (or their legally authorized proxies) before data

collection, and both studies were approved by their re-

spective Institutional Review Boards. Because ADNI has

few Hispanic subjects, and because ethnicity moderates

the association between multiple serum proteins and d in

TARCC (Royall and Palmer, 2015, 2016), we restricted

this analysis to non-Hispanic whites (NHW).
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Texas Alzheimer’s Research and
Care Consortium

TARCC is a longitudinally followed convenience sample

of elderly volunteers recruited from five Texas medical

schools (Waring et al., 2008). Each participant underwent

a standardized annual examination that included a medic-

al evaluation, neuropsychological testing and clinical

interview. Categorical clinical diagnoses of ‘Alzheimer’s

disease’, ‘MCI’ and ‘NC’ were established through con-

sensus. The diagnosis of Alzheimer’s disease was based

on National Institute for Neurological Communicative

Disorders and Stroke-Alzheimer’s Disease and Related

Disorders Association criteria (McKhann et al., 1984).

Consensus-based clinical diagnoses of ‘MCI’ were based

on all available clinical data. Although TARCC is an eth-

nically diverse cohort, only NHW participants (N¼ 2551)

were included in this analysis.

Alzheimer’s Disease Neuroimaging
Initiative

ADNI data were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a

public–private partnership, led by Principal Investigator

Michael W. Weiner, MD (Weiner and Veitch, 2015). The

primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers and clinical

and neuropsychological assessment can be combined to

measure the progression of MCI and early Alzheimer’s

disease.

The initial 5-year study, ADNI-1, enrolled cognitively

normal, MCI and Alzheimer’s disease cases. Subsequent

studies (ADNI-GO and ADNI-2) added early- and late-

MCI cohorts. ADNI has provided a framework for simi-

lar initiatives worldwide, including TARCC. Only

ADNI’s NHW participants were included (N¼ 1668).

Clinical variables

dT2A

dT2A’s construction and validation have been recently

reported (Royall et al., 2019). Its cognitive indicators

were limited to observed measures that are common to

both TARCC and ADNI, including the Boston Naming

Test (BNT) (Kaplan et al., 1983), Category Fluency

(Animals) (Morris et al., 1989), Logical Memory I and II

(Wechsler, 1997), the Mini–Mental State Examination

(Folstein et al., 1975), and Trail-Making Test Part B

(Reitan, 1958).

dT2A’s target indicators.ó In TARCC, we used informant-

rated instrumental activities of daily living (Lawton and

Brody, 1969) as dT2A‘s target indicator. The Functional

Assessment Questionnaire (Pfeffer et al., 1982) was used

in ADNI. It is commonly used in dementia evaluations

(Juva et al., 1997; Teng et al., 2010). Other investigators

have employed Functional Assessment Questionnaire as

the target of a d homologue (Gavett et al., 2015; John

et al., 2016).

Observed clinical measures

Observed clinical measures are often used as covariates

or to provide external validation. The following measures

are available in both TARCC and ADNI.

Self (informant)-reported age and gender are self-ex-

planatory. Education was coded as a continuous measure

of subject/informant reported years of formal education.

The Clinical Dementia Rating Scale ‘Sum of Boxes’

(Hughes et al., 1982): the Clinical Dementia Rating Scale

is used to evaluate dementia severity. The rating assesses

the patient’s cognitive ability to function in six

domains—memory, orientation, judgement and problem

solving, community affairs, home and hobbies and per-

sonal care. Information is collected during an interview

with the patient and their caregiver (15 min).

Geriatric depression scale (GDS): depressive symptoms

were assessed in both studies by the GDS (Sheikh and

Yesavage, 1986; Maixner et al., 1995). GDS scores range

from 0 to 30. Higher scores are worse. The GDS is valid

in demented persons (Burke et al., 1989).

Apolipoprotein E genotyping

APOEe4 burden was coded zero—two, based on the

number of e4 alleles. TARCC’s APOE genotyping was

conducted by the Ballantyne Lab at the Baylor College of

Medicine in Houston Texas using standard polymerase

chain reaction methods (Koch et al., 2002). ADNI’s

APOE genotyping was performed on DNA extracted

from peripheral blood cells and processed by the

University of Pennsylvania AD Biofluid Bank Laboratory,

as previously described (Saykin et al., 2010).

Mediating variables

Blood-based protein biomarkers from both studies were

tested as mediators of age’s association with dT2A. Both

studies obtained a highly reduplicative panel of blood-

based protein biomarkers (N¼ 120) via a multiplexed

immunoassay (i.e. the human multi-analyte profile) proc-

essed in by a common vendor [i.e. Rules-Based Medicine

(RBM) of Austin, TX, USA]. A complete listing of the

biomarkers offered by the human multi-analyte profile

panel is available at http://www.myriadrbm.com/products-

services/humanmap-services/humanmap/ (4 December

2019, date last accessed).

Blood-based biomarker methods

All RBM analyses were run in duplicate, and data were

discarded when the duplicate values differed by >5%. All

values recorded by RBM as ‘LOW’ were recorded and

analysed. If >50% of the samples for a given analyte

were recorded as ‘LOW’, all readings for that analyte
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were dropped. If <50% of the analytes were recorded as

‘LOW’, the LOW values were recorded as the least de-

tectable dose divided by two. Some proteins in the

human multi-analyte profile panel are not available to

TARCC, ADNI or both.

Raw biomarker data from both studies were inspected

to ascertain their normality. Data points beyond 3.0

standard deviations about the mean were labelled as ‘out-

liers’ and deleted. Logarithmic transformation was used

to normalize highly skewed distributions. The data were

then standardized, within each dataset, to a mean of zero

and unit variance.

Other mediators

Other variables of interest were tested as potential media-

tors of age’s association with dT2A. Some (e.g. BMI)

were chosen to provide construct validity for the hypoth-

esis that age’s effect on dementia severity is mediated

through cognitive ‘frailty’. Others (e.g. HgbA1c) were

chosen to provide discriminant validity. Some variables

were selected from TARCC while others were available

only in ADNI.

Texas Alzheimer’s Research and
Care Consortium mediators

Serum cholesterol, C-peptide, homocysteine, HgbA1c,

high-density lipoprotein, low-density lipoprotein (calcu-

lated), lipoprotein-associated phospholipase A2 and trigly-

cerides were obtained from the Ballantyne Lab. HgbA1c

was measured in whole blood by the turbidimetric inhib-

ition immunoassay. Homocysteine was measured in

serum using the recombinant enzymatic cycling assay (i.e.

Roche Hitachi 911).

Height and weight were obtained at all TARCC sites,

and BMI was calculated from those variables. The pres-

ence of diabetes mellitus, hyperlipidaemia and/or hyper-

tension were obtained from the subject or their informant

and coded dichotomously. The duration of smoking ex-

posure was obtained from the subject or their informant

and coded continuously.

Alzheimer’s Disease Neuroimaging
Initiative mediators

CNS structural and functional neuroimaging biomarkers

and certain ‘Alzheimer’s disease-specific’ biomarkers

measured in CSF were tested as potential mediators of

age’s association with dT2A in ADNI.

Imaging biomarkers

Magnetic resonance imaging data

The participants underwent a standardized 1.5-T MRI

protocol (www.loni.ucla.edu/ADNI/Research/Cores/index.

shtml (4 December 2019, date last accessed)), which

included 2 T1-weighted MRI scans using a sagittal volu-

metric magnetization prepared rapid gradient echo se-

quence with the following acquisition parameters: echo

time 4 ms, repetition time 9 ms, flip angle 8� and acquisi-

tion matrix size 256� 256� 166 in the x-, y- and z-

dimensions with a nominal voxel size of 0.94� 0.94� 1.2

mm3. Only one of the magnetization prepared rapid gra-

dient echo sets was used for the analysis. The ADNI

MRI quality control centre at the Mayo Clinic selected

the magnetization prepared rapid gradient echo image

with higher quality and corrected for system-specific

image artefacts, as described in Jack et al. (2008).

Further details are described in Wyman et al. (2013).

18F-Fluorodeoxyglucose positron emission

tomography imaging data

All fluorodeoxyglucose PET scans were acquired using

ADNI’s standardized fluorodeoxyglucose PET acquisition

protocols. Raw PET data were uploaded to the

University of Michigan for preprocessing to correct for

differences in the PET scanners used across ADNI sites.

During preprocessing, each of the 5-min emission frames

acquired in every scan were co-registered and then aver-

aged to the first frame. The image was then reoriented

such that the anterior–posterior axis of the subject ran

parallel to the anterior commissure–posterior commissure

line and interpolated onto a uniform 60� 160� 96 voxel

image grid, with 1.5-mm cubic voxels (http://adni.loni.

usc.edu/methods/pet-analysis/pre-processing (4 December

2019, date last accessed)). Finally, a subject-specific mask

was applied for intensity normalization (where average in

the mask was one). Further details are described in

Jagust et al. (2010).

Cerebrospinal fluid biomarkers

CSF was collected from the lower spine by lumbar punc-

ture after an overnight fast as described in the ADNI

procedures manual (www.adni-info.org). In brief, CSF

was transferred in polypropylene tubes on dry ice within

1 h after collection and shipped overnight to the ADNI

Biomarker Core laboratory at the University of

Pennsylvania Medical Center. Ab1–42, t-tau and p-tau18

were measured in each aliquot using the multiplex xMAP

Luminex platform (Luminex Corp, Austin, TX, USA)

with Innogenetics (INNO-BIA AlzBio3; Ghent, Belgium)

immunoassay kit-based reagents. Full details of ADNI

baseline CSF biomarker measurements are provided by

Shaw et al. (2009).

Statistical analyses

These analyses were conducted in the NHW subset of

TARCC’s most recent dataset (N¼ 2551) and in a com-

bined sample of ADNI-1, ADNI-2 and ADNI-GO data

(N¼ 1668).
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The analysis was performed using Analysis of Moment

Structures software (Arbuckle, 2006). The maximum like-

lihood estimator was chosen for these models.

Covariances between the residuals were allowed to be

estimated if they were significant and improved model fit.

Analysis sequence

We used the ‘TARCC to ADNI’ d homologue (dT2A) as

previously described (Royall et al., 2019). dT2A was con-

structed from baseline data using unadjusted indicators.

First, we constructed Multiple Indicators Multiple

Causes (MIMIC) models (Muthén, 1979) of age’s effect

on cognitive performance. By that approach, the latent

dT2A construct acted as a mediator of age’s direct effects

on dT2A’s observed indicators. The MIMIC model there-

by distinguishes age’s direct effects on individual cognitive

measures from its d-specific indirect effects on all of

them. Only age’s d-related effects are likely to be dis-

abling and therefore potentially ‘dementing’.

Next, we converted age’s association with dT2A in the

MIMIC model into the ‘direct’ effect (i.e. ‘path a’) of a

mediation model by introducing an observed biomarker

(Fig. 1). Path ‘a’ represents age’s direct association with

dT2A. Path ‘b’ represents the proposed mediator’s inde-

pendent effect on dT2A. Because these models were hy-

pothesis driven, no Bonferroni correction was applied.

Path ‘c’ represents age’s effect on the proposed mediator.

When both paths b and c are significant, the mediator’s

effect on age’s direct association can be calculated by

MacKinnon’s method (MacKinnon, 1994).

Age’s effect by path a and indirect effect via paths c–b

were adjusted for APOE e4 burden, education, gender

and depressive symptoms (i.e. variables previously shown

to exert age-independent effects on d). We restricted this

analysis to NHW only. Gender had no significant effect

on d in TARCC’s NHW, and so it was omitted from

TARCC’s model (to improve fit).

TARCC’s RBM biomarkers are known to exhibit sig-

nificant batch effects. In the past, we have adjusted each

TARCC biomarker with dichotomous dummy variables

coding batch. However, in this analysis, batch effects

were assumed to be a source of ‘systematic’ error and

were adjusted by the introduction of a latent ‘BIAS’ vari-

able, indicated by the proposed mediator and multiple

other proteins (i.e. cluster of differentiation 40, fibrino-

gen, ferritin, human C–C motif chemokine-4, immuno-

globulin E, macrophage inflammatory protein 1a,

macrophage inflammatory protein 1b and prostatic acid

phosphatase). The latter biomarkers were chosen for their

lack of associations with either age or d in TARCC

(when measured in serum; Royall et al., 2016). The same

proteins, measured in plasma, were used as indicators of

a BIAS construct in ADNI. The BIAS variable should

also account for biofluid-specific measurement bias across

studies, as that too is a systematic source of variance

across all protein biomarkers. The BIAS construct and its

indicators were dropped from models that tested non-pro-

tein mediators.

Missing data

We used full information maximum likelihood methods

to address missing data. Full information maximum likeli-

hood uses the entire observed data matrix to estimate

parameters with missing data. In contrast to listwise or

Figure 1 Fully adjusted MIMIC mediation model of serum

resistin as a mediator of age’s unique association with the

latent dT2A homologue in TARCC. Age’s association with the

bifactor dT2A d homologue is being partially mediated by serum

resistin in TARCC’s NHW sample (N ¼ 2251) independently of

age’s direct effects on individual cognitive performance measures.

Gender had no significant independent association with dT2A and

was omitted from the model. AGE is correlated to EDUC, APOE4,

GENDER and GDS (paths not shown). EDUC is also correlated

with e8. Statistically significant structural paths of interest are in

bold. Animals ¼ animal naming; BNT ¼ Boston Naming Test; CHI

SQ ¼ chi square; CD40 ¼ cluster of differentiation 40; CFI ¼
comparative fit index; EDUC ¼ education (years); FIB ¼ fibrinogen;

FRTN ¼ ferritin; HCC4 ¼ human C–C motif chemokine-4; IADL ¼
instrumental activities of daily living; IgE ¼ immunoglobulin E; LMI

¼Wechsler Logical Memory immediate recall; LMII ¼Wechsler

Logical Memory delayed recall; MIP-1a ¼ macrophage inflammatory

protein 1 alpha; MIP-1b ¼ macrophage inflammatory protein 1

beta; MMSE ¼ Mini–Mental State Examination; PAP ¼ prostatic acid

phosphatase; RMSEA ¼ root-mean-square evaluative assessment;

Trails B ¼ Trail-Making Test Part B.
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pairwise deletion, full information maximum likelihood

yields unbiased parameter estimates and preserves the

overall power of the analysis (Schafer and Graham,

2002; Graham, 2009).

Fit indices

The validity of structural models was assessed using two

common test statistics. A non-significant chi square signi-

fies that the data are consistent with the model (Bollen

and Long, 1993). The ratio of the chi square to the

degrees of freedom in the model is also of interest. A chi

square/degrees of freedom ratio of <5.0 suggests an ad-

equate fit to the data (Wheaton et al., 1977). The com-

parative fit index, with values ranging from 0 to 1,

compares the specified model with a model of no change

(Bentler, 1990). Comparative fit index values <0.95 sug-

gest model misspecification. Values �0.95 indicate ad-

equate to excellent fit. A root-mean-square error of

approximation of �0.05 indicates a close fit to the data,

with models <0.05 considering as ‘good’ fit and models

up to 0.08 considering as ‘acceptable’ (Browne and

Cudeck, 1993). All three fit statistics should be simultan-

eously considered to assess the adequacy of the models to

the data.

Data availability

The data underlying the results presented in the study are

available from TARCC and ADNI. Requests for TARCC

data should be made to http://www.txalzresearch.org/re

search/ (4 December 2019, date last accessed). Requests

for ADNI data should be made to adni.loni.usc.edu.

Results
Descriptive statistics is presented for two cohorts in

Table 1 and by diagnoses in Table 2 (TARCC) and

Table 3 (ADNI). The cohorts differed significantly on all

measures. ADNI has a relatively high fraction of MCI

cases, which were recruited explicitly into ADNI-2 and

ADNI-GO. TARCC has a much higher prevalence of

Mexican-American participants.

Technical issues precluded the testing of 6/22 proteins

in ADNI. We can assume that >50% of those analytes’

samples were reported to be ‘LOW’ by RBM. We had no

access to the unprocessed biomarker data and could not

determine how many samples were removed from each

cohort because their duplicate values differed by >5%,

or because they were assessed as ‘outliers’ prior to ana-

lysis. However, an upper bound for these issues can be

estimated by the number of cases with missing data when

biomarker data were available and cannot have been

more than 123/886¼ 13.9% (i.e. for the unconfirmed

biomarker glutathione S-transferase in TARCC). No data

were missing in ADNI’s (N¼ 566) samples. The eight dis-

cordant confirmed biomarkers, i.e. angiopoetin-2N,

creatinine kinase-MB, epidermal growth factor receptor 1,

FAS, plasminogen activator inhibitor type 1, serum amyl-

oid protein (SAP), thyroxine-binding globulin, and von

Willebrand factor had no more than 15/886¼ 1.7% miss-

ing values (i.e. for creatinine kinase-MB) in TARCC.

Age was significantly associated with dT2A in both

cohorts (TARCC: r¼ 0.36, P< 0.001); ADNI: r¼ 0.16,

P< 0.001) (by unadjusted path a). All mediation models

had acceptable fit (e.g. resistin; Figs 1 and 2). Significant

mediation effects were found for 13/22 of TARCC’s serum

proteins (Table 4). Of the 16 potential mediators available

in ADNI, significant mediation effects were found for four

including adiponectin (APN; Z¼ 2.32, P¼ 0.02; 12.0%),

FSH (FHS; Z¼ 2.21, P¼ 0.03; 8.2%), pancreatic polypep-

tide (PPP; Z¼ 2.00, P¼ 0.05; 14.2%) and resistin

(Z¼ 2.01, P¼ 0.04; 8.3%). All mediation effects in both

cohorts were partial, ranging from 3.3% (creatinine kin-

ase-MB in TARCC) to 32.8% (IGF-binding protein 2 in

TARCC). Near significant mediation effects were observed

for plasma complement 3 (Z ¼ �1.82, P¼ 0.07) and thy-

roxine-binding globulin (Z ¼ �1.83, P¼ 0.07) in ADNI.

ADNI also confirmed that 6/22 proteins were not likely

to be mediators of senile cognitive decline in TARCC, at

least in NHW. In every case, both models agreed which

path (b or c) remained significant and which did not. In

half of the cases (3/6), the proposed mediator was related

to age but not to d (in NHW) (i.e. complement 3, gluta-

thione S-transferase and thyroxine-binding globulin). IGF-

1, myoglobin and von Willebrand factor were related to

Table 1 Descriptive statistics by sample (raw scores ex-

cept where indicated)

TARCC NHW

(N 5 2251)

ADNI NHW

(N 5 1668)

Alzheimer’s disease

cases, n (%)

1100 (49.7) 342 (19.7)

MCI cases, n (%) 395 (17.8) 978 (56.3)

NC, n (%) 718 (32.4) 417 (24.8)

Gender, female, n (%) 1288 (57.2) 919 (55.1)

Mean (SD) Mean (SD/d1)

Age 73.1 (8.96) 73.8 (7.2/0.09**)

Education 15.1(2.78) 15.9 (2.9/0.28**)

MMSE 25.2 (5.04) 27.2 (2.7/0.49**)

Animals 14.4 (6.04) 17.2 (5.9/0.47**)

BNTa 9.2 (4.19) 26.1 (4.51/b)

CDR-SB 3.1 (3.59) 1.6 (1.8/0.53**)

GDS 4.9 (4.10) 1.4 (1.4/1.14**)

LMI 7.7 (4.43) 9.3 (4.8/0.35**)

LMII 7.5 (4.75) 7.1 (5.3/0.08**)

Trails B 8.0 (4.08) 122.2 (75.8/c)

d1 ¼ Cohen’s d versus TARCC. Animals ¼ animal naming; BNT ¼ Boston Naming

Test; CDR-SB ¼ Clinical Dementia Rating scale ‘Sum of Boxes’; LMI ¼Wechsler

Logical Memory immediate recall; LMII ¼Wechsler Logical Memory delayed recall;

MA ¼ Mexican-American; MMSE ¼ Mini–Mental State Examination; SD ¼ standard

deviation; Trails B ¼ Trail-Making Test Part B.
aScaled scores.
bTARCC uses 30-item BNT, and ADNI uses 60-item BNT.
cTARCC uses scale scores, and ADNI uses in seconds.

**P< 0.001.
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d but not age (in NHW). Thus, the TARCC and ADNI

models agreed with regard to 8/16 testable proteins.

Table 5 presents additional mediation effects. In

TARCC, age’s association with dT2A was not mediated

by serum cholesterol, C-peptide, diabetes mellitus, homo-

cysteine, HgbA1c, hyperlipidaemia, hypertension, lipopro-

tein-associated phospholipase A2, serum triglycerides or

years of smoking history. It was partially mediated by

high-density lipoprotein C (Z¼ 2.38, P¼ 0.02; 3.5%),

low-density lipoprotein (calculated) (Z ¼ �2.24,

P¼ 0.03; 3.4%), weight (Z¼ 3.62, P< 0.001; 5.1%) and

BMI (Z¼ 4.28, P< 0.001; 5.4%). Age’s effect was also

partially mediated by both treatment by galantamine

(Z¼ 2.51, P¼ 0.01; 1.0%), which has been associated

with change in resistin levels (Satapathy et al., 2011),

and treatment by any acetylcholinesterase inhibitors

(Z¼ 7.76, P< 0.001; 8.5%).

Age’s association with dT2A in ADNI was not medi-

ated by CSF t-tau, p-tau18, Ab1–42 or the t-tau/Ab1–42

ratio but was severely attenuated by whole brain atrophy

(Z¼ 10.39, P< 0.001; 66.0%), hippocampal atrophy,

ventricular size (Z¼ 8.88, P< 0.001; 70.5%), fluorodeox-

yglucose (Z¼ 4.83, P< 0.001; 47.4%) and AV45 PET

(Z¼ 7.12, P< 0.001; 55.8%). SAP mediated age’s effect

in serum (TARCC; Z¼ 3.35, P< 0.001; 12.3%) but not

in plasma (ADNI; Z ¼ �0.86, P¼ 0.39).

Discussion
We have replicated age-specific mediation effects (or the

lack thereof) for eight blood-based biomarkers across two

independent cohorts representing convenience samples

with differing case mixes. Our analysis also produced

confirmations of 13/22 mediation effects in TARCC

across two d homologues with few common indicators.

Finally, the present analysis replicates the mediation

effects of four protein biomarkers across biofluids.

In TARCC, we confirm 13 of the 22 previously

reported mediation effects. Our original reports were

Table 2 Descriptive statistics by diagnosis (TARCC)

TARCC total NHW sample

(N 5 2251), mean (SD)

TARCC NHW Alzheimer’s

disease (N 5 1100), mean (SD)

TARCC NHW MCI

(N 5 395), mean (SD)

TARCC NHW controls

(N 5 718), mean (SD)

Gender, female (%) 57.2 54.8 51.9 63.9

Age 73.1 (8.97) 75.46 (8.51) 72.4 (8.54) 69.8 (8.81)

Education 15.1 (2.79) 14.75 (2.95) 14.9 (2.59) 15.6 (2.54)

MMSE 25.2 (5.04) 21.68 (4.87) 27.5 (2.15) 29.3 (0.97)

Animals 14.3 (6.05) 10.40 (4.28) 15.8 (5.52) 19.6 (3.90)

BNTa 9.2 (4.19) 6.88 (3.55) 10.0 (3.43) 12.4 (3.11)

CDR-SB 3.1 (3.59) 5.82 (3.29) 1.3 (0.98) 0.0 (0.08)

GDS30 4.9 (4.08) 5.59 (4.20) 5.6 (4.43) 3.3 (3.21)

LMI 7.7 (4.43 ) 4.42 (2.65) 8.3 (3.01) 12.3 (2.68)

LMII 7.5 (4.75) 3.88 (2.53) 8.2 (3.21) 12.6 (2.71)

Trails B (s) 8.0 (4.08) 5.34 (3.37) 9.1 (3.03) 11.3 (2.53)

Animals ¼ animal naming; BNT ¼ Boston Naming Test; CDR-SB ¼ Clinical Dementia Rating scale ‘Sum of Boxes’; LMI ¼Wechsler Logical Memory immediate recall; LMII ¼
Wechsler Logical Memory delayed recall; MA ¼ Mexican-American; MMSE ¼ Mini–Mental State Examination; SD ¼ standard deviation; Trails B ¼ Trail-Making Test Part B.
aTARCC uses 30-item BNT.

Table 3 Descriptive statistics by diagnosis (ADNI)

ADNI total NHW sample

(N 5 1668), mean (SD)

ADNI NHW Alzheimer’s disease

(N 5 342), mean (SD)

ADNI NHW MCIa

(N 5 978), mean (SD)

ADNI NHW controls

(N 5 417), mean (SD)

Gender, female (%) 55.1 44.7 42.8 49.9

Age 73.8 (7.19) 75.03 (7.79) 72.91 (7.42) 74.76 (5.73)

Education 15.91 (2.86) 15.18 (2.99) 16.00 (2.82) 16.28 (2.73)

MMSE 27.17(2.67) 23.22 (2.07) 27.75 (1.81) 29.07 (1.12)

Animals 17.15 (5.93) 12.25 (4.98) 17.39 (5.22) 20.60 (5.50)

BNTb 25.97 (4.51) 22.24 (6.05) 26.43 (3.68) 27.94 (2.66)

CDR-SB 1.64 (1.79) 4.39 (1.67) 1.36 (0.95 0.03 (0.13)

GDS30 1.42 (1.40) 1.65 (1.44) 1.63 (1.41) 0.75 (1.12)

LMI 9.28 (4.83) 4.08 (2.80) 9.10 (3.91) 13.98 (3.25)

LMII 7.07 (5.33) 1.37 (1.89) 6.46 (4.10) 13.18 (3.33)

Trails B (s) 122.23 (75.78) 191.46 (89.69) 113.61 (65.42) 85.68 (43.18)

Animals ¼ animal naming; BNT ¼ Boston Naming Test; CDR-SB ¼ Clinical Dementia Rating scale ‘Sum of Boxes’; LMI ¼Wechsler Logical Memory immediate recall; LMII ¼
Wechsler Logical Memory delayed recall; MA ¼ Mexican-American; MMSE ¼ Mini–Mental State Examination; SCI ¼ subjective cognitive impairment; SD ¼ standard deviation;

Trails B ¼ Trail-Making Test Part B.
aAll subtypes and SCI.
bADNI uses 60-item BNT.
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exploratory analyses of an ad hoc panel in Bonferroni

corrected models. The current replications are now hy-

pothesis driven and relate to a second d homologue.

Moreover, the MIMIC model better distinguishes age’s d-

specific effect on cognitive performance from its other

effects on individual measures. Age’s d-independent effects

on animal naming, Boston Naming Test and Trail-

Making Test Part B were also confirmed. However, only

age’s d-specific effect is likely to be functionally salient

and it is precisely that effect, which is being mediated by

the biomarkers.

As in our earlier report, all 13 confirmed proteins were

partial mediators of age’s effect on d. Once again, IGF-

binding protein 2 emerged with the strongest effect.

Unfortunately, technical issues prevented a test of that

biomarker in ADNI. However, the effect of IGF-1 could

be neither confirmed in TARCC nor replicated in ADNI.

IGF-1 was associated with age by path c in both cohorts

but with d in neither. This does not preclude age-specific

effects on other organs or on less functionally salient cog-

nitive domains and/or measures.

There was considerable concordance across the cohorts.

We replicated 8/16 testable effects (or the lack thereof).

In 8/8 discordant cases, we replicated at least one of the

intervening paths (e.g. paths b or c). All the discordant

dyads included a confirmed mediation effect in TARCC.

No protein measured in plasma was found to be a medi-

ator in ADNI but not in TARCC. In every case where

mediation was not confirmed in TARCC, the ADNI

model was concordant. Moreover, both models agreed

on which paths were significant and which were not. The

2/8 discordant dyads involved near significant plasma

effects in ADNI. These findings lend credibility to

TARCC’s serum findings and suggest that the measure-

ment of these proteins in serum may be more clinically

meaningful and generalizable than their measurement in

plasma.

Several issues may have contributed to our failure to

achieve confirmations in some of the previously reported

effects. The current analysis involves a new d homologue

with a minimally overlapping set of indicators. We also

limited these analyses to NHW. This reduced our sample

size and may have undermined some replications. Our

use of the MIMIC model has narrowed the focus of this

analysis to age’s unique effect on d. Our use of the BIAS

variable or our selection of its indicators may have inad-

equately accounted for batch effects. Finally, our earlier

models targeted a d-composite. That may have intro-

duced a reification bias relative to the latent constructs

being targeted in the present work.

Regardless, we have replicated four of TARCC’s 13

confirmed mediation effects across cohorts and biofluids.

Such replications are difficult to achieve in the opinion of

many experts (Committee on the Review of Omics-Based

Tests for Predicting Patient Outcomes in Clinical Trials

et al., 2012; O’Bryant et al., 2015). However, we may

have been advantaged by our use of a latent variable ap-

proach, which has not been previously applied to blood-

based protein biomarkers.

The replicated proteins were APN, follicle-stimulating

hormone (FSH), PPP and resistin. APN and resistin are

so-called ‘apidokines’ associated with adipocytes and their

related secretome (Arai et al., 2019). We recently demon-

strated that APN’s effect on cognitive performance to be

fully mediated via d (in TARCC; Benavente et al., 2019).

In addition, APN, resistin and PPP have each been previ-

ously associated with ‘Alzheimer’s disease’ (Kiliaan et al.,

2014). However, 20% of so-called ‘Alzheimer’s disease’

Figure 2 Fully adjusted MIMIC mediation model of plasma

resistin as a mediator of age’s unique association with the

latent dT2A homologue in in ADNI. Age’s association with the

bifactor dT2A d homologue is being partially mediated by plasma

resistin in ADNI’s NHW sample (N ¼ 1668) independently of age’s

direct effects on individual cognitive performance measures. AGE is

correlated to EDUC, APOE4, GENDER and GDS (paths not

shown). EDUC is also correlated with e8. Statistically significant

structural paths of interest are in bold. Animals ¼ animal naming;

BNT ¼ Boston Naming Test; CHI SQ ¼ chi square; CD40 ¼
cluster of differentiation 40; CFI ¼ comparative fit index; EDUC ¼
education (years); FAQ ¼ Functional Abilities Questionnaire; FIB ¼
fibrinogen; FRTN ¼ ferritin; HCC4 ¼ human C–C motif

chemokine-4; IgE ¼ immunoglobulin E; LMI ¼Wechsler Logical

Memory immediate recall; LMII ¼Wechsler Logical Memory

delayed recall; MIP-1a ¼ macrophage inflammatory protein 1 alpha;

MIP-1b ¼ macrophage inflammatory protein 1 beta; MMSE ¼ Mini–

Mental State Examination; PAP ¼ prostatic acid phosphatase;

RMSEA ¼ root-mean-square evaluative assessment; Trails B ¼
Trail-Making Test Part B.
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cases do not exhibit amyloidosis by PET (Witte et al.,

2014; Degenhardt et al., 2016; Landau et al., 2016). It

cannot be assumed that APN’s, resistin’s and PPP’s asso-

ciations with d in the current analysis are mediated by

Alzheimer’s disease pathology. d is ‘agnostic’ to demen-

tia’s aetiology (Gavett et al., 2015; John et al., 2016).

Instead, APN resistin and PPP have been shown to be

mediators of age’s unique effect on dementia severity.

Alzheimer’s disease-specific CSF biomarkers were not.

The latter biomarkers impacted d independently of age’s

effect. This suggests that the replicated biomarkers’ asso-

ciations with clinical ‘Alzheimer’s disease’ in other studies

could have been attributable to age’s effect (i.e. senility)

rather than Alzheimer’s disease’s.

Resistin is associated with resistance to oral hypoglyce-

mics in diabetes mellitus (Acquarone et al., 2019).

However, we did not confirm either serum insulin

(Royall et al., 2016) or HgbA1c (in the present analysis)

as mediators of age’s effect. Resistin must be acting here

through other mechanisms.

Resistin levels have been shown to be elevated in

Alzheimer’s disease (Kizilarslano�glu et al., 2015) and to

rise progressively in MCI and Alzheimer’s disease relative

to NC (in TARCC; Royall and Palmer, 2019b).

However, resistin has been shown here to be a mediator

of age’s effect. Its association with clinical dementia in

other studies should not be attributed to Alzheimer’s dis-

ease in the absence of a formal test of mediation via an

Alzheimer’s disease-specific biomarker.

Ironically perhaps, serum resistin levels can be shown

to be modulated by treatment with acetylcholinesterase

inhibitors (Satapathy et al., 2011). This opens the door

to possibly modulation of d by acetylcholinesterase inhibi-

tors in demented persons with elevated resistin levels.

Our results suggest that these can be found among the

fraction of demented persons with advanced age and/or

depressive symptoms (Royall et al., 2017b). Serum resis-

tin levels fully attenuate the GDS’ nearly 3-fold prospect-

ive 5-year MCI conversion is risk in an age-adjusted

TARCC model (Royall and Palmer, 2019a). We have re-

cently proposed a method to select individuals who might

revert to non-demented states after the correction of any

Table 4 ADNI replication of age’s mediators on dT2A

in TARCC

Biomarker TARCC (serum) ADNI (plasma)

APN r ¼ 0.33 (P < 0.001) r ¼ 0.14 (P < 0.001)

Z ¼ 2.50 (P ¼ 0.01) Z ¼ 2.32 (P ¼ 0.02)

8.8% 12.0%

ANG-2 r ¼ 0.33 (P < 0.001) r ¼ 0.16 (P < 0.001)

Z ¼ 3.52 (P < 0.001) Z ¼ �1.01 (P ¼ 0.31)

9.6% c

C3 r ¼ 0.36 (P < 0.001) r ¼ 0.17 (P < 0.001)

Z ¼ �0.17 (P ¼ 0.87) Z ¼ �1.82 (P ¼ 0.07)

b b, c

CK-MB r ¼ 0.35 (P < 0.001) r ¼ 0.15 (P < 0.001)

Z ¼ 1.93 (P ¼ 0.05) Z ¼ 0.42 (P ¼ 0.68)

3.3% c

EGFR r ¼ 0.26 (P < 0.001) r ¼ 0.17 (P < 0.001)

Z ¼ 5.20 (P < 0.001) Z ¼ �1.09 (P ¼ 0.28)

26.9% C

FAS r ¼ 0.35 (P < 0.001) r ¼ 0.15 (P < 0.001)

Z ¼ 2.37 (P ¼ 0.02) Z ¼ 0.80 (P ¼ 0.42)

4.3% c

FSH r ¼ 0.34 (P < 0.001) r ¼ 0.14 (P < 0.001)

Z ¼ 2.77 (P ¼ 0.006) Z ¼ 2.21 (P ¼ 0.03)

7.1% 8.2%

GST r ¼ 0.37 (P < 0.001) r ¼ 0.15 (P < 0.001)

Z ¼ �0.38 (P ¼ 0.70) Z ¼ 1.40 (P ¼ 0.16)

b b

G-CSF – –

IGF-1 r ¼ 0.40 (P < 0.001) r ¼ 0.15 (P < 0.001)

Z ¼ 0.20 (P ¼ 0.84)

Z ¼ �1.35 (P ¼ 0.18)

c c

IGF-BP2 r ¼ 0.23 (P < 0.001) –

Z ¼ 5.80 (P < 0.001)

32.8%

IL-5 r ¼ 0.34 (P < 0.001) –

Z ¼ 1.59 (P ¼ 0.11)

b

MyG r ¼ 0.38 (P < 0.001) r ¼ 0.16 (P < 0.001)

Z ¼ �1.53 (P ¼ 0.13) Z ¼ �0.04 (P ¼ 0.99)

c c

PP r ¼ 0.32 (P < 0.001) r ¼ 0.13 (P < 0.001)

Z ¼ 2.96 (P ¼0.003) Z ¼ 2.00 (P ¼ 0.05)

10.2% 14.2%

PAI-1 r ¼ 0.32 (P < 0.001) r ¼ 0.16 (P < 0.001)

Z ¼ 3.64 (P < 0.001) Z ¼ �1.57 (P ¼ 0.12)

12.5% b

PDGF r ¼ 0.36 (P < 0.001) –

Z ¼ P 0.48 (P ¼ 0.63)

c

Progesterone r ¼ 0.36 (P < 0.001) –

Z ¼ 0.51 (P ¼ 0.61)

Resistin r ¼ 0.32 (P < 0.001) r ¼ 0.14 (P ¼ 0.001)

Z ¼ 4.02 (P < 0.001) Z ¼ 2.01 (P ¼ 0.04)

10.7% 8.3%

S100b r ¼ 0.37 (P < 0.001) –

Z ¼ �1.25 (P ¼ 0.21)

b

SAP r ¼ 0.32 (P < 0.001) r ¼ 0.16 (P < 0.001)

Z ¼ 3.35 (P < 0.001) Z ¼ �0.86 (P ¼ 0.39)

12.3% b

TBG r ¼ 0.34 (P < 0.001) r ¼ 0.17 (P < 0.001)

Z ¼ 2.22 (P ¼ 0.03) Z ¼ �1.83 (P ¼ 0.07)

5.4% b

(continued)

Table 4 Continued

Biomarker TARCC (serum) ADNI (plasma)

vWF r ¼ 0.34 (P < 0.001) r ¼ 0.16 (P < 0.001)

Z ¼ 1.82 (P ¼ 0.07) Z ¼ 0.10 (P ¼ 0.92)

6.3% c

b: path b (mediator to dT2A) is significant at P< 0.05; c: path c (age to mediator) is sig-

nificant at P< 0.05. ANG-2 ¼ angiopoetin-2N; C3 ¼ complement 3; CK-MB ¼ cre-

atinine kinase-MB; EGFR ¼ epidermal growth factor receptor 1; FSH ¼ follicle-

stimulating hormone; G-CSF ¼ granulocyte colony-stimulating factor; GST ¼ glutathi-

one S-transferase; IGF-BP2 ¼ IGF-binding protein 2; IL-5 ¼ interleukin 5; MyG ¼ myo-

globin; PAI-1 ¼ plasminogen activator inhibitor type 1; PDGF ¼ platelet-derived

growth factor; PP ¼ pancreatic polypeptide; S100b ¼ S100 calcium-binding protein B;

TBG ¼ thyroxine-binding globulin; vWF ¼ von Willebrand factor.
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prespecified d-related condition or risk factor (Royall and

Palmer, 2019b). Demented cases selected by that ap-

proach on the basis of their depressive symptoms have

demonstrably higher serum resistin levels, as we predict

similarly selected age-specific dementias would be.

Resistin, APN and PPP have been proposed as bio-

markers of weight loss and frailty in older persons

(Cardoso et al., 2018). We have confirmed weight and

BMI as mediators of age’s effect on d (in TARCC). In

contrast, alternative disease-specific conditions and bio-

markers did not mediate that effect, notably HgbA1c,

homocysteine and lipoprotein-associated phospholipase

A2 (an ischaemic vasculopathy-associated risk factor).

Alzheimer’s disease-specific CSF biomarkers were also

not found to be mediators of age’s effect. Given that CSF

concentrations of Ab1–42, t-tau and p-tau18 have been

shown to provide high sensitivity and specificity for diag-

nosing Alzheimer’s disease, predict conversion from MCI

to a diagnosis of probable Alzheimer’s disease and iden-

tify non-demented elderly persons likely to progress

(Blennow and Zetterberg, 2009), the failure of these ana-

lytes to exhibit mediation effects helps distinguish

Alzheimer’s disease from the dementing effects of Aging

Proper (i.e. senility) under consideration here. This is con-

sistent with the relative paucity of Alzheimer’s disease

neuropathology among centenarians and the oldest old

(von Guten et al., 2010).

Regardless, age’s association with d has been shown to

be fully attenuated by a latent variable indicated by

Alzheimer’s disease pathology in autopsy-proven

Alzheimer’s disease cases of the National Alzheimer’s

Coordinating Center’s Unified Dataset (at a mean age of

81.6 6 10.6 years; Gavett et al., 2016). However,

Alzheimer’s disease neuropathology was ‘inversely related

to age’ in that sample (r ¼ �0.49, P< 0.001), as was

NIA-Reagan AD staging (National Institute on Aging,

1997). Thus, it is more properly stated that the ‘lack of

AD pathology’ mediates age’s association with d in the

National Alzheimer’s Coordinating Center.

Although CSF Ab1–42, t-tau, p-tau18 and the t-tau:Ab1–42

ratio were related to d by path b, none were related to

Table 5 Other mediators of age’s effect in TARCC and

ADNI

Mediator TARCC ADNI

Hyperlipidaemia r ¼ 0.36 (P < 0.001)

Z ¼ �0.97 (P ¼ 0.33)

Hypertension r ¼ 0.37 (P < 0.001)

Z ¼ �1.29 (P ¼ 0.20)c

Diabetes mellitus r ¼ 0.36 (P < 0.001)

Z ¼ 0.87 (P ¼ 0.38)

Years smoked r ¼ 0.36 (P < 0.001)

Z ¼ 0.15 (P ¼ 0.88)

Cholesterol r ¼ 0.37 (P < 0.001)

Z ¼ �0.97 (P ¼ 0.33)c

Triglycerides r ¼ 0.36 (P < 0.001)

Z ¼ 0.17 (P ¼ 0.87)

HDL-c r ¼ 0.35 (P < 0.001)

Z ¼ 2.38 (P ¼ 0.02)

3.5%

LDL-c r ¼ 0.37 (P < 0.001)

Z ¼ �2.24 (P ¼ 0.03)

3.4%

LpPLA2 r ¼ 0.35 (P < 0.001)

Z ¼ 1.66 (P ¼ 0.10)

b, c

HCY r ¼ 0.35 (P < 0.001)

Z ¼ 1.58 (P ¼ 0.11)

c

C-peptide r ¼ 0.37 (P < 0.001)

Z ¼ �0.78 (P ¼ 0.44)

b

HgbA1c r ¼ 0.36 (P < 0.001)

Z ¼ �0.49 (P ¼ 0.62)

Weight r ¼ 0.34 (P < 0.001)

Z ¼ 3.62 (P < 0.001)

5.1%

BMI r ¼ 0.34 (P < 0.001)

Z ¼ 4.28 (P < 0.001)

5.4%

On galantamine r ¼ 0.36 (P < 0.001)

Z ¼ 2.51 (P ¼ 0.01)

1.0%

On any AChEI r ¼ 0.33 (P < 0.001)

Z ¼ 7.76 (P < 0.001)

8.5%

CSF Ab1–42 r ¼ 0.16 (P < 0.001)

Z ¼ �0.33 (P ¼ 0.74)

b

CSF t-tau r ¼ 0.14 (P < 0.001)

Z ¼ 0.92 (P ¼ 0.36)

b

CSF p-tau18 r ¼ 0.15 (P < 0.001)

Z ¼ 0.16 (P ¼ 0.88)

b

CSF t-tau/Ab1–42 r ¼ 0.17 (P < 0.001)

Z ¼ �1.00 (P ¼ 0.87)

b

AV45 PET r ¼ 0.06 (P ¼ 0.052)

Z ¼ 7.12 (P < 0.001)

55.8%

FDG PET r ¼ 0.08 (P ¼ 0.009)

Z ¼ 4.83 (P < 0.001)

47.4%

Whole brain r ¼ 0.05 (P ¼ 0.14)

(continued)

Table 5 Continued

Z ¼ 10.39 (P < 0.001)

66.0%

Ventricular size r ¼ 0.05 (P ¼ 0.13)

Z ¼ 8.88 (P < 0.001)

70.5%

Hippocampal volume r ¼ �0.10 (P < 0.001)

Z ¼ 14.47 (P < 0.001)

100%

b: path b (mediator to dT2A) is significant at P< 0.05; c: path c (age to mediator) is sig-

nificant at P< 0.05. AChEI ¼ acetylcholine esterase inhibitors; FDG ¼ fluorodeoxyglu-

cose; LDL-c ¼ low-density lioprotein (calculated); LpPLA2¼ lipoprotein-associated

phospholipase A2; HCY ¼ homocysteine; HDL-c, high-density lipoprotein C.
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age by path c, and so they cannot mediate age’s effect on

dementia severity. These biomarkers may be sensitive to

clinical and pre-clinical Alzheimer’s disease and contribute

to its dementing effects, but Alzheimer’s disease may not

be entirely responsible for an individual’s d-score and,

therefore, for conversion risk (Ritchie et al., 2017). Age’s

independent effect on d might instead manifest as an ero-

sion of the ‘cognitive reserve’ that has been proposed to

explain the empirically weak relationships between many

Alzheimer’s disease-specific biomarkers (including autopsy

findings) and measures of dementia severity (Stern,

2012). Our structural equation model approach has the

potential to distinguish each compartment of d’s variance

and to identify its unique biomarker profile.

In contrast to the CSF biomarkers, CNS amyloidosis

by AV45 florbetapir PET was a strong mediator of age’s

association with d. PiB-PET was available in only a small

minority of ADNI participants and so could not be

tested. There are subtle differences in the distributions of

these radioligands. Florbetapir is more strongly associated

with Ab1–40 than with Ab1–42 (Beach et al., 2018).

Ab1–40 is associated with diffuse plaque while the latter is

more closely associated with NP. AV45’s mediation effect

in the absence of effects via CSF Alzheimer’s disease-spe-

cific biomarkers might be explained by an Ab1–40 amyl-

oidosis rather than Ab1–42 and NP formation.

In fact, extreme old age is associated with both a

diminished NP burden and a reduced distribution of

neurofibrillary tangles, limited largely to the mesiotempo-

ral region, i.e. ‘primary age-related tauopathy’ (Crary

et al., 2014). As a result, most primary age-related tauop-

athy cases present at lower Braak stages (Besser et al.,

2019). Such a restricted distribution is unlikely to impact

general cognition and hence g and d, suggesting that the

reserve of demented primary age-related tauopathy cases

may be eroded by some process other than primary age-

related tauopathy-related neurofibrillary tangle formation.

The age-specific AV45 signal might also be influenced

by CNS amylin deposition (Jackson et al., 2013). Amylin

(i.e. insular amyloid polypeptide) is secreted by the pan-

creas and contributes to the pancreatic amyloidosis of

type 2 diabetes. AV45 labels pancreatic amylin deposits

(Templin et al., 2018). A genome-wide association study

(GWAS) using AV45 as an endophenotype (presumably

of ‘Alzheimer’s disease’) found single-nucleotide polymor-

phisms in the insular amyloid polypeptide gene to be pre-

dictive ‘of CNS amyloisdosis’ (Roostaei et al., 2017).

Amylin deposits can be demonstrated in the brains of de-

mented persons with AODM, and even in the absence of

that condition (Fawver et al., 2014).

Plasma SAP levels are associated with Alzheimer’s dis-

ease in Han Chinese (Cheng et al., 2018). However, that

finding was age-adjusted and may not be relevant to

Aging Proper. However, elevated plasma SAP concentra-

tions are also associated with cognitive impairment in

centenarians (Nybo et al., 1998). SAP was associated

with d in both TARCC and ADNI but was found to be

a mediator of age’s effect in TARCC’s serum data only.

SAP is co-localized with a variety of amyloids, includ-

ing both Ab1–42 and amylin. It co-localizes with florbeta-

pir both in and outside the CNS (Wagner et al., 2018).

SAP is thought to accelerate Ab1–42 deposition in NP

(Hamazaki, 1995; Tennent et al., 1995). However, it

‘interferes’ with insular amyloid polypeptide deposition in

amylin deposits (Gao et al., 2015). In TARCC’s data,

SAP is associated with lower d-scores (a salutary effect).

Age’s adverse effect is mediated by ‘lower’ serum SAP

levels in advancing age but not higher levels.

Plasma PPP levels are also predictive of CNS amyloid-

osis, both by PiB-PET (Kiddle et al., 2012) and by AV45

(Voyle et al., 2015). PPP levels rise exponentially with

age (Brimnes et al., 1997) and are associated with ano-

rexia and weight loss in older persons (Moss et al.,
2012). High plasma PPP levels are associated with both

weight loss and MCI and moderate the association of

diabetes with that diagnosis (Roberts et al., 2015).

In summary, we cannot be certain that the CNS AV45

PET signal is specific to Ab1–42 and therefore that

AV45’s mediation effect involves that aggregate. Age’s ef-

fect on d could be mediated instead by Ab1–40 in the ab-

sence of NP formation or by CNS amylin deposition,

accelerated by falling SAP levels, in parallel with rising

PPP and in the presence of PPP-induced anorexia and

weight loss. Since we are addressing age-specific contribu-

tion to dementia severity, neither scenario would conflict

with AV45’s co-localization at autopsy with NP ‘in age-

adjusted’ models (Clark et al., 2012).

We also found important mediation effects by other

less Alzheimer’s disease-specific structural and functional

imaging modalities (e.g. fluorodeoxyglucose PET and

whole brain atrophy by voxel-based morphometry).

These were consistently stronger mediators than the

blood-based protein biomarkers. An earlier ADNI ana-

lysis has associated CSF Ab1–42 and t-tau concentrations

with the same structural features (Tosun et al., 2010).

However, as that analysis was age-adjusted, it cannot

speak to the effects of Aging Proper. Brain atrophy’s me-

diation of age’s unique effect on d is likely to be inde-

pendent of CSF Ab1–42 and t-tau concentrations, as they

were not themselves mediators.

Low high-density lipoprotein C and high low-density

lipoprotein (calculated) were found to be partial media-

tors of age’s effect on d. They might offer potentially

modifiable risk factors for age-specific cognitive decline

and frailty (Ramsay et al., 2015). Both were found to be

associated with clinical ‘Alzheimer’s disease’ in an early

TARCC report (Warren et al., 2012). However, those

effects were age-adjusted once again. The present results

suggest that high-density lipoprotein C and low-density

lipoprotein (calculated) may additionally affect d by an

‘age-specific’ mechanism. C-peptide, diabetes mellitus and

LpLA2 were not mediators, but they were associated

with dementia severity by path b, suggesting that
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they may be involved in ‘age-independent’ dementing

processes.

Finally, FSH is associated with frailty in older men par-

ticipating in the European Male Aging Study (Tajar

et al., 2011) and the Concord Health and Ageing in Men

Project (Travison et al., 2011). FSH’s unadjusted effect

on frailty in the Concord Health and Ageing in Men

Project is fully attenuated by adjustment for age.

In summary, several blood-based protein biomarkers

related to frailty have been shown to mediate age-specific

differences in dementia severity as measured by d. The 13

proteins have been confirmed by a second d homologue

in TARCC (serum). Four have been replicated across

cohorts and biofluids. These may offer targets for the re-

mediation of age-specific cognitive decline (aka ‘senility’),

help distinguish it from other determinants of dementia

severity and/or provide clues to the biology of Aging

Proper.
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