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SUMMARY

The distribution of recombination events along large cereal chromosomes is uneven and is generally restricted

to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericen-

tromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) culti-

vars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared

variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diver-

sity both within and between chromosomes and germplasm groups. Dramatically reduced diversity was found

in the pericentromeres of both cultivars and landraces when compared with wild barley. We observed a mixture

of completely and partially differentiated single-nucleotide polymorphisms (SNPs) between domesticated and

wild gene pools, suggesting that domesticated gene pools were derived from multiple wild ancestors. Patterns

of genome-wide linkage disequilibrium, haplotype block size and number, and variant frequency within blocks

showed clear contrasts among individual chromosomes and between cultivars and wild barleys. Although most

cultivar chromosomes shared a single major pericentromeric haplotype, chromosome 7H clearly differentiated

the two-row and six-row types associated with different geographical origins. Within the pericentromeric

regions we identified 22 387 non-synonymous SNPs, 92 of which were fixed for alternative alleles in cultivar ver-

sus wild accessions. Surprisingly, only 29 SNPs found exclusively in the cultivars were predicted to be ‘highly

deleterious’. Overall, our data reveal an unconventional pericentromeric genetic landscape among distinct barley

gene pools, with different evolutionary processes driving domestication and diversification.

Keywords: evolution, diversity, domestication, Hordeum vulgare, pericentromeric regions, SNPs.

INTRODUCTION

Continued improvements in crop productivity are critically

founded upon the ability of breeders to identify new geno-

types that outperform existing varieties when measured

against an evolving set of agricultural challenges

(Thomas, 2003). Recombination during meiosis is the pro-

cess that has traditionally driven this, providing a mecha-

nism by which existing parental alleles are shuffled in

progeny into new and better combinations that are

selected through phenotypic and genotypic screening. Mei-

otic recombination is typically unevenly distributed across

chromosomes, being frequent in telomeric regions and

suppressed in pericentromeric areas, which are character-

ized by high levels of linkage disequilibrium (LD) (Choulet

et al., 2014; Gore et al., 2009; Higgins et al., 2014; Wu

et al., 2003). In an extreme cereal crop example, all
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crossovers were observed to occur within the distal 13% of

the physical length of chromosome 3B of Triticum aes-

tivum (bread wheat) (Choulet et al., 2014). For plant breed-

ing efforts, extended chromosomal regions with minimal

recombination reduce the efficacy of selection (Hill &

Robertson 1966), making it more difficult to remove delete-

rious mutations (Felsenstein, 1974), inhibiting the shuffling

of alleles into favourable combinations (Baker et al., 2014)

and reducing genetic diversity as a result of background

selection (Charlesworth et al., 1993). Given the practical

constraints that high levels of LD in pericentromeric areas

can impose on crop improvement, much research effort

has focused on molecularly dissecting the recombination

machinery and using the resulting information to try to

develop strategies to modify where and how frequently

recombination occurs. In contrast, the evolutionary

impacts of the lack of recombination have received only

limited research attention, and interactions with other

genetic processes, such as domestication, crop diversifica-

tion and adaptation, remain largely unaddressed.

Here, to explore how a lack of regional recombination

affects cereal crop genome evolution, we have performed

an exhaustive genetic analysis of pericentromeric and non-

pericentromeric regions in the primarily self-fertilizing crop

plant Hordeum vulgare ssp. vulgare (barley), and its wild

progenitor, Hordeum vulgare ssp. spontaneum. We chose

barley as our model because extensive sequence analysis

of formally bred homozygous genotypes (i.e. genotypes

that are the end product of selection from directed bi- or

multi-parental crosses, hereafter referred to as ‘cultivars’)

sampled from across the globe has identified vast tracts of

the genome with limited genetic diversity (Mascher

et al., 2017; Beier et al., 2017; Bustos-Korts et al., 2019;

Kono et al., 2019). In addition, parallel sequence analysis

of extensive collections of wild barley sampled from its

natural habitat in the Fertile Crescent and of landraces

from across the eco-geographical expansion range of the

crop has been undertaken (Feuillet et al., 2008; Morrell

et al., 2014). The assembled knowledge of patterns of

genotypic diversity, alongside evidence collected on the

founding lineages of the barley crop that suggest a com-

plex history with gene flow and introgression during the

expansion of cultivation, provides an informed starting

point for our analysis (Morrell & Clegg, 2007; Pankin

et al., 2018; Poets et al., 2015; Russell et al., 2016; Saisho

& Purugganan, 2007).

Estimates indicate that the low-recombining pericen-

tromeric portion of barley chromosomes is among the lar-

gest of the cereal crops, covering around 48% of the

physical genome (International Barley Genome Sequenc-

ing Consortium et al., 2012; Baker et al., 2014; Beier et al.,

2017). During the evolution of the barley crop these peri-

centromeric regions will have, to a large extent, remained

‘locked’, with limited genetic exchange. We argue that

these recombinationally inert expanses provide opportuni-

ties to explore the early domestication and diversification

history of the crop. Of relevance to our analyses, previous

studies of mutational load have not identified a greater

proportion of deleterious variants in the pericentromeric

regions of the barley chromosome, in contrast to other

selfing crops such as Oryza sativa (rice) and Glycine max

(soybean). The pericentromeric chromosomal regions of

barley may therefore harbour unique features that are par-

ticularly worthy of exploration (Kono et al., 2016, 2019; Liu

et al., 2017). As defined in the reference genome assem-

bled previously by Mascher et al. (2017), each of the seven

chromosomes has been spatially organized into distal

(zone 1), interstitial (zone 2) and proximal (zone 3) com-

partments, based upon the frequencies of repetitive DNA

(20 mers) and gene structure.

Here, by analysing genome-wide zonally partitioned

variant data derived from exome sequences of a compre-

hensive panel of cultivar, landrace and wild barleys, we

were able to trace the varied evolutionary histories of the

pericentromeric regions for all seven barley chromosomes.

We found that genetic bottlenecks and limited recombina-

tion underlie the unconventional pericentromeric genetic

landscape observed in the barley gene pool, with different

evolutionary processes in individual chromosomes and

sub-chromosomal zones providing new evidence concern-

ing founder events during domestication and diversifica-

tion. By characterizing these genome-scale evolutionary

patterns, our data provide an opportunity to comprehen-

sively assess the extent to which the lack of recombination

has been (and continues to be) a constraint on barley

breeding, while lending further support to the potential

value of exploiting barley genetic resources for future crop

improvement.

RESULTS AND DISCUSSION

We assembled and analysed a collection of new and exist-

ing whole-exome capture sequence data from an initial

panel of 879 accessions of cultivar, landrace and wild bar-

leys sampled from across their eco-geographical ranges,

identifying 93 849 112 variants (Figure S1; Table S1)

(Bustos-Korts et al., 2019; H€ubner et al., 2009; Russell

et al., 2016; Steffenson et al., 2007). Following variant fil-

tering and the removal of wrongly assigned accessions

(Figures S2 and S3), a final data set was generated that

comprised 3 082 873 high-quality single-nucleotide poly-

morphisms (SNPs), most of which had a minor allele fre-

quency (MAF) of <0.05 (n = 2 742 309), from a stringently

curated and comprehensive set of 815 accessions (163 cul-

tivars, 388 landraces and 264 wild barleys) (Table S2). For

an initial check of the overall genetic relationship between

these accessions, we conducted principal coordinate analy-

sis (PCO) and inferred admixture using a randomly chosen

genome-wide set of SNPs (Figure 1). A clear division
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between wild and domesticated barleys was observed (Fig-

ure 1a), as had been expected from our prior work on

smaller barley panels (e.g. Russell et al., 2016), with seven

‘subpopulations’ identified (Figure 1b) with designations

corresponding to the groupings observed in the PCO. As

expected from this earlier work, cultivar germplasm

appeared to be derived from subsets of landraces, and a

split was observed between two-rowed and six-rowed

accessions.

We then explored different portions of the seven chro-

mosomes of the barley genome. For this purpose, we par-

titioned each chromosome into three discrete zones using

the physical positions reported by Mascher et al. (2017)

(Table S4) that were reminiscent of the three compart-

ments applied in an earlier analysis of bread wheat chro-

mosome 3B (Choulet et al., 2014). Zone 1 covers the distal

portions of each chromosome, characterized by high gene

content and frequent recombination, zone 2 covers the

interstitial regions with intermediate gene content and

zone 3 approximates the pericentromeric regions, enriched

in housekeeping genes with little or no recombination (Kel-

ler & Krattinger, 2017). We then generated a range of indi-

vidual SNP- and chromosome-based diversity-related

analyses for our barley germplasm groups (Figure 2). A

clear genomic partitioning pattern between the zones (as

defined in Figure 2) was observed, with the pericen-

tromeric regions generally showing reduced genetic diver-

sity (Figure 2a). In particular, the pericentromeric regions

of domesticated accessions (cultivars and landraces) in

our collection showed dramatically reduced diversity on

chromosomes 1H, 2H and 4H, where the genetic diversity

(p) values ‘flat-lined’ (more distal regions not only have

higher diversity but the profiles revealed are ‘noisier’).

Examining profiles of per-SNP differentiation (FST)

between pairs of barley groups (Figure 2b–d), we observed

distinctive patterns, sometimes including fixed differences,

for pericentromeric regions. Intriguingly, FST values within

zone 3 aligned into multiple horizontal ‘tracks’ that com-

prised long stretches of SNPs with shared FST values that

sometimes extended in both directions into zone 2. The

longest track, of approximately 200 Mbp, was located on

chromosome 4H. Moreover, multiple ‘break points’ within

tracks (creating multiple tracks with different FST values)

were also observed. Zone-3 tracks with high FST values

(0.8–1.0) were most noticeable in the cultivar–wild barley

comparison (Figure 2b) for chromosomes 1H, 2H, 4H, 5H

and 6H, indicating the close to complete, and sometimes

complete, fixation of different allelic states between the

two gene pools. Some of these large values may be associ-

ated with structural variants, as observed in previous stud-

ies in Zea mays (maize) and barley (Fang et al., 2012; Fang

et al., 2014; Lei et al., 2019), but this was not explicitly

tested here. Consistent with their similar p profiles, tracks

of high FST appeared absent from the cultivar–wild barley

comparison of zone-3 areas for chromosomes 3H and 7H.

Extending this comparison, in the landrace–wild barley FST
graph (Figure 2c) the horizontal track patterns within

zone 3 were maintained, but generally with lower FST

Figure 1. Population structure of 815 barley acces-

sions. (a) Principle coordinate analysis (PCO) based

on 9845 randomly selected single-nucleotide poly-

morphisms (SNPs). Samples are colour coded

based on domestication status and row type. The

proportion of variance explained by the PCOs are

labelled beside the axes. The figure was produced

with CURLYWHIRLY (https://ics.hutton.ac.uk/curlywhirly/).

(b) Genetic admixture proportion inferred from

FASTSTRUCTURE based on the same 9845 SNPs for the

PCO analysis. Colour blocks represent different esti-

mated ancestral populations (K = 7). Samples were

grouped based on domestication status and row

type, as indicated at the black bars below. The fig-

ure was produced using STRUCTURE PLOT (Ramasamy

et al., 2014).
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values and with no regions with complete differentiation

(FST = 1). For the cultivar–landrace comparison (Figure 2d),

features of the same pattern were retained, but less obvi-

ously and with even lower FST values.

In the case of the cultivar–wild type comparison, the dif-

ferent FST tracks are illustrated schematically for explana-

tion purposes in Figure 3(a–d). The simple case of fixed

alternate SNP states in cultivars and wild barleys is shown

in Figure 3(a), which could represent an example where an

early post-domestication allele is driven to fixation over

the last 10 000 years of cultivation and expansion. Figure 3

(b) represents a common run of shared states between the

two barley categories (where the shared state in wild bar-

ley may indicate its progenitor status). In most of the peri-

centromeric regions, however, there are a mixture of

completely and partly differentiated SNPs, presumably

through the presence of multiple ancestral wild haplo-

types, resulting in the ‘overlapping’ horizontal tracks of FST

Figure 2. Extensive genetic differentiation in the pericentromeric regions among Hordeum vulgare (barley) groups, showing all single-nucleotide polymor-

phisms (SNPs) without minor allele frequency (MAF) filtering. The top track shows the chromosome diagrams, with the gradient of blue colours representing

zone 1 (light blue), zone 2 (medium blue) and zone 3 (dark blue) regions, and the red bars representing the centromere, using the coordinates reported by

Mascher et al. (2017) and physical distance. (a) Genetic diversity (p): red, wild barleys; orange, landraces; blue, cultivars. (b) Fixation index (FST) between culti-

vars and wild barleys. (c) FST between landraces and wild barleys. (d) FST between cultivars and landraces. In (b) and (c), sites with FST ≥ 0.8 were coloured red

(with no such sites in panel d).

Figure 3. Diagram of how different wild founder haplotypes give rise to horizontal FST patterns. (a) In the simplest case, single-nucleotide polymorphisms

(SNPs) in cultivars and wild barleys are fixed completely at two different states and a track of FST = 1 is formed. (b) Horizontal track with a lower FST value is

formed when some wild barleys share the fixed cultivated allele. (c) ‘Overlapping’ horizontal tracks of FST formed when different wild barley alleles have varying

degrees of differentiation from the cultivars. (d) ‘Break point’ variable horizontal tracks of FST formed that represent rare recombination between two wild barley

founder haplotypes. (e) Real exome sequence genotype data from a segment of barley chromosome 4H, zone 3, showing at least three wild barley founder hap-

lotypes, separated by white space, in this region: the ancestors of the cultivars and one possible double crossover event between different wild founders (as-

terisk).

� 2022 The Authors.
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of Figure 3(c). Figure 3(d) shows the situation where a rare

recombination event happens between wild barleys, caus-

ing a shift of allele frequencies at a chromosomal scale

and forming the break points observed, as highlighted for

the actual case of barley chromosome 4H in Figure 3(e).

We next analysed genome-wide linkage disequilibrium

of cultivar, landrace and wild barley groups. Initial exami-

nation of genome-wide average R2 estimates showed that

LD decay in the cultivars was around 1.59 slower overall

than in the wild barleys, and about 1.29 slower than in the

landraces (Figure S4). Further examination of LD revealed

contrasting haplotype block structures between the differ-

ent germplasm categories (Table 1). The average block

size in cultivars was 158 637 kbp, compared with only

26 284 kbp in wild barleys. Although blocks covered over

90% of chromosomes in cultivars, the value was only 50%

for the wild barley group, although the wild barley blocks

still contained many more SNP variants (almost double,

with an average of 46 597 compared with 28 453). Levels

of LD and block structure also varied between chromo-

somes, with 3H and 7H having markedly smaller block

sizes in cultivars (80 843 and 89 407 kbp, respectively) than

the average, for example. For all germplasm categories,

chromosome 4H had comparatively few blocks and the

greatest chromosome block coverage (94%).

We then extended our analysis to explore genes and

gene haplotype features by chromosome and chromosome

zone (Figure 4; Table S3). The greatest number of haplo-

types per gene, accounting for different group sample size,

was identified for wild barley (Figure 4a), with the median

value of approximately 50 being about five times that of

the cultivar group, which had the fewest number of haplo-

types per gene. When we compared haplotype richness

(randomly selecting 100 accessions for each of the three

groups, then calculating the number of haplotypes for

these, and repeating this analysis 100 times to generate

averages) (Figure 4b), we found that zone 3 always had

the lowest values and zone 1 had the highest values, con-

sistent with earlier diversity profiles (Figure 2). Comparing

wild and cultivar categories, zone 3 in wild barley had a

much higher richness than zone 1 in the cultivar (about

double). The frequencies of the major haplotype were

higher for cultivars (approx. 60% median value for the

major haplotype as a proportion of all haplotypes at each

gene) than for landraces and wild barleys (50 and 25%,

respectively) (Figure 4c). Corresponding with haplotype

richness estimates by chromosome zone (Figure 4b), the

dominance of a single haplotype was most prominent in

zone 3 of each barley group (Figure 4d). In the cultivars the

median frequency value for the major haplotype was over

80% in the zone-3 area. Data on block sizes (Figure 4e)

were consistent with the patterns recorded in Table 1. The

difference in block sizes between chromosome zones is

much larger for cultivars than for wild barley, with

Table 1 Linkage disequilibrium (LD) haplotype block structure for each group

Group Chr.
Chr. length
(bp)

No.
blocks

Block
coverage (kb)

Chr. block
coverage (%)

Largest
block (kb)

No. SNPs
in blocks

Cultivars 1H 558 535 432 932 505 269 90 161 870 22 405
(n = 163) 2H 768 075 024 1418 707 970 92 184 043 33 234

3H 699 711 114 1161 635 706 91 80 843 31 218
4H 647 060 158 691 610 364 94 258 652 20 001
5H 670 030 160 1351 615 478 92 186 594 36 651
6H 583 380 513 1041 542 069 93 149 053 26 062
7H 657 224 000 1221 597 940 91 89 407 29 601

Average 1116 602 114 92 158 637 28 453
Landraces 1H 558 535 432 1843 485 605 87 74 708 31 909
(n = 388) 2H 768 075 024 2746 667 275 87 125 158 49 418

3H 699 711 114 2613 611 705 87 134 606 49 199
4H 647 060 158 1476 602 320 93 185 970 34 126
5H 670 030 160 2457 591 257 88 185 621 50 045
6H 583 380 513 2170 508 486 87 130 284 40 095
7H 657 224 000 2501 572 238 87 76 166 46 584

Average 2258 576 984 88 130 359 43 054
Wild barleys 1H 558 535 432 5769 275 005 49 4476 41 438
(n = 264) 2H 768 075 024 6835 373 400 49 6847 52 893

3H 699 711 114 6686 364 791 52 81 241 49 423
4H 647 060 158 5153 392 599 61 10 417 45 920
5H 670 030 160 6684 326 365 49 55 927 49 417
6H 583 380 513 4588 316 772 54 17 857 35 907
7H 657 224 000 6932 306 958 47 7225 51 179

Average 6092 336 556 51 26 284 46 597
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landraces having intermediate differences (Figure 4f). To

put these data into a practical context relevant for breed-

ing, the block size observed in the most variable chromo-

somal region of the cultivars (zone 1) did not significantly

differ statistically from that of the least diverse chromoso-

mal region of wild barleys (zone 3) (Table S4).

These pericentromeric haplotype analyses provided indi-

cations of how evolutionary histories have varied among

barley chromosomes. To evaluate further the factors

involved, for each chromosome we studied the selection

signals, structure and gene content of zone 3, compared

with other zones. First, we used the l statistic, which is a

composite measure based on site variation, site frequency

spectrum and LD profile (Alachiotis & Pavlidis, 2018), to

identify potential signals of selective sweeps (Figure 5).

For each barley group, we highlighted variants where l
scores were above our 95th percentile threshold, taken to

suggest the presence of a selective sweep (Figure 5a). The

calculated l thresholds were 4.56 9 10�5, 1.93 9 10�5 and

1.26 9 10�6 for cultivar, landrace and wild barleys, respec-

tively. Analysis revealed the strongest evidence of selective

sweeps in domesticated barleys on chromosome 4H

(Figure 5a), although there was no significant difference in

average l scores between chromosomes for any barley

group (Figure 5b). For each of the germplasm groups,

zone-3 regions cumulatively showed the highest l scores

and zone-1 regions the lowest (Figure 5c), suggesting that,

overall, pericentromeric regions are subjected to greater

positive selection. An unusual feature, however, was the

high l scores found for a non-pericentromeric region of

chromosome 6H in wild barleys (Figure 5a,b). Based on l
values in cultivars, even for zone 1 (lowest average score

among zones), the evidence for selective sweeps is many

orders of magnitude greater than for zone 3 in wild barleys

(highest average score among zones).

We next assessed the structure of pericentromeric

regions by exploring intraspecific relationships among

samples for zone-3 SNPs in each barley chromosome and

comparing the results with zone-1 and -2 SNPs combined.

The zone-3-specific profiles showed the clustering of culti-

vars and landraces into one to three ‘monophyletic’ clades,

separated by clusters of wild barley accessions, and con-

trasting pictures between chromosome zones and chromo-

somes (Figure 6a,b, examples of chromosomes 4H and 7H;

Figure 4. Gene haplotype analysis for different barley chromosome zones. Haplotypes of 32 222 genes with variants covered by exome sequencing were char-

acterized. (a) Gene haplotype count by chromosome. (b) Gene haplotype count by chromosome zone. (c) Major haplotype frequency by chromosome. (d) Major

haplotype frequency by chromosome zone. (e) Block size (bp) by chromosome. (f) Block size (bp) by chromosome zone. Key: blue, cultivars; orange, landraces;

red, wild barleys.
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for the remainder of the chromosomes, see Figure S5).

Polytomy, often observed only for cultivar and landrace

zone-3 SNPs, indicated an inability to distinguish these

accessions, whereas zone-3 SNPs on chromosome 7H split

domesticated barley into two major clusters associated

with different sets of wild barleys (Figure 6b) in a pattern

not observed for 4H (other chromosomes except 3H

showed a similar pattern to 4H, Figure S5).

To capture the variation characteristics of zone-3 ‘phylo-

genies’ visually, we assigned individuals to simplified ‘hap-

lotype groups’ (haplogroups), which allowed the

identification of subgroups of related haplotypes, where

the genetic distance between accessions within groups

was set at a maximum value of 0.045 according to the

methods of Balaban et al. (2019). On this basis, we identi-

fied between nine and 21 haplogroups for the zone-3

region of each chromosome (Figures S6–S12; Table S5).

By tracing the haplogroup identity of each accession, par-

allel plots revealed differences in the sample-wide diversity

profiles of zone 3 between chromosomes for the different

groups (Figure 7, each run of connected lines represents a

summary of haplotype positions for a barley accession).

These profiles show that the vast majority of cultivars

share a single zone-3 haplogroup for each chromosome,

except for 7H, with two major groups, one that represented

primarily two-rowed types and the other that represented

primarily six-rowed types (Figure 7b). This split for 7H was

mirrored for two-rowed and six-rowed landraces (Fig-

ure 7c; evident also in Figure 6b). Of the 113 zone-3 hap-

logroups identified across all chromosomes and barley

categories, 110 were present in wild barleys, with only 34

and 23 present in landraces and cultivars, respectively (Fig-

ures S6–S12). Several relatively common haplogroups in

wild barley (e.g. 2H, 5H, 6H; Figures S7, S10 and S11,

respectively) appeared to show a gradient of frequency

occurrence across barley categories where landraces had

intermediate frequencies higher than cultivars, possibly

representing trails of founder events in the development of

the modern crop. Summarized counts of haplogroups for

cultivars and landraces showed the predominance of sin-

gle haplogroups for most barley chromosome zone-3

regions, with this predominance being less pronounced for

landraces than for cultivars (Figures S6–S12). Comparing

these predominant domesticated zone-3 haplogroups with

wild barley, only in two chromosomes (1H and 4H) were

the same haplogroups the most common, whereas for

other chromosomes the predominant domesticated hap-

logroup occurred in less than 10% of wild barleys. In the

Figure 5. Signatures of positive selection in barley differentiated by chromosome and zone. (a) Selective sweep signal (l) of barley genomes. Red colours repre-

sent genomic regions with l values above the 95th percentile. The top track shows the chromosome diagrams, with the gradient of blue colours representing

zone 1 (light blue), zone 2 (medium blue) and zone 3 (dark blue) regions, and the red bars representing the centromere, using the coordinates reported by

Mascher et al. (2017). (b) Distribution of l values by chromosome for different barley groups. (c) l values by zone (data from all seven chromosomes combined)

for different barley groups.
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case of chromosome 7H that showed row-type-related

zone-3 haplogroups for domesticated barleys (Figure 7b,c),

the two-row- and six-row-related haplogroups occurred in

20 and 13% of wild accessions (all wild types are two-row

type), respectively (Figure S12). To explore this further, we

plotted the geographical position of the common cultivar

haplogroups that were present in wild barley, based on

known collection coordinates (Figures S6–S12), observing
considerable variation in distribution, depending on chro-

mosome. For both chromosomes 1H and 4H, where all

barley categories shared the same most common zone-3

haplogroup, these were observed across the geographic

range of wild barley (Figures S6 and S9). Where the domi-

nant domesticated haplogroup for a zone-3 region only

occurred at low frequency in wild barley, however, geo-

graphic distributions – representing the putative ancestral

origins of the crop – varied in wild barley by chromosome

(Figures S7, S8, S10, S11 and S12). On chromosome 2H,

for example, the most common domesticated haplogroup

was present in only six wild barleys restricted to Israel and

Jordan (Figure S7), whereas on chromosome 5H the most

common domesticated haplogroup was again present in

Figure 6. Maximum-likelihood (ML) trees for barley constructed using single-nucleotide polymorphisms (SNPs) from zones 1 and 2, compared with ML tree

constructed using zone-3 SNPs. (a) Chromosome 4H. (b) Chromosome 7H.

� 2022 The Authors.
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only six wild barleys but, in this case, these were dis-

tributed across the Fertile Crescent (Figure S10). The row-

related zone-3 haplogroups observed in domesticated bar-

ley for chromosome 7H showed an interesting geographic

distribution in wild barley, with the two-row-associated

haplogroup restricted to the Fertile Crescent and the six-

row-associated haplogroup distributed throughout the

range (Figure S12).

Domestication bottlenecks and the effects of selection

predict reductions in genetic diversity and the accumula-

tion of deleterious alleles in a finite domesticated gene

pool (Comeron et al., 2008; Lu et al., 2006; Makino

et al., 2018). We were interested to explore whether poten-

tial deleterious alleles had, as a result of evident bottle-

necks and a lack of recombination, become fixed in the

barley crop gene pool. Based on SnpEff annotation (Cin-

golani et al., 2012), we located 22 387 non-synonymous

SNPs within the zone-3 region across all tested barley

accessions. Zone 3 of chromosome 4H had the highest

count of non-synonymous SNPs, likely linked with being

the physically largest such zone as well as the least diverse

chromosome in domesticated barley (Table S6). The non-

synonymous zone-3 SNPs were then filtered based on FST
values of >0.8 in both cultivar–wild barley and landrace–
wild barley comparisons (see Figure 2b,c). After filtering,

92 SNPs remained and most were located on chromo-

somes 2H and 4H, with none in the zone-3 regions of chro-

mosomes 3H and 7H, probably because chromosomes 3H

and 7H have major splits in the pericentromeric hap-

logroups. The PROVEAN (Choi et al., 2012) scores of the 92

SNPs indicated that 29 cultivar alleles had values that were

lower than the predefined threshold of �2.5, suggesting a

deleterious effect (Table 2). Twenty-eight of the 29 were

missense variants, with a single stop-loss variant on chro-

mosome 6H. At least three genes that harboured ‘fixed’

deleterious alleles were of potential agricultural interest

and are highlighted in Table 2. On chromosome 1H the

affected gene was a galactosyltransferase, which could be

related to the biosynthesis of arabinoxylan, a cell wall

component and a main contributor of dietary fibre (Hassan

et al., 2017); on chromosome 2H, the gene annotated as

the E3 ubiquitin protein ligase NEURL1B is a candidate

associated with grain weight in maize (Zhao & Su, 2019);

and on chromosome 6H, an Xaa-Pro peptidase could relate

to the mobilization of barley storage proteins during ger-

mination (Davy et al., 2000). The functional implication of

these predicted deleterious alleles will require further veri-

fication.

Finally, we examined the function of genes within zone 3

to determine any over-representation of Gene Ontology

(GO) terms (Table S7, with known agriculturally important

genes highlighted). When analysis was performed on com-

bined zone-3 gene sets compared with all genes (for all

seven chromosomes), GO terms with housekeeping func-

tions were enriched, such as nucleic acid binding, DNA

integration and RNA-dependent DNA biosynthetic pro-

cesses (Figure S13), as had previously been observed by

Mascher et al. (2017). When our analysis was performed

individually for chromosome zone-3 genes, varying GO

terms were enriched (Figures S13 and S14). For example,

pollen wall development was only found to be enriched for

zone 3 of chromosome 1H, whereas root developmental

genes (root morphogenesis and root hair tip) were over-

represented for zone-3 regions of chromosomes 2H and

3H. For chromosomes 4H and 5H, zone-3 regions were

enriched with plastid-related GO terms, including chloro-

plast organization, chloroplast fission and plastid transla-

tion. Zone 3 of chromosome 4H, which showed distinctive

selective sweep signals in cultivars, also had translation-

related terms over-represented, such as translational termi-

nation, translation release factor and mRNA splicing. It

would be reasonable to speculate that human selection

Figure 7. Pericentromeric genetic diversity in Hor-

deum vulgare (barley) visualized as haplogroups.

Horizontal lines connecting through each chromo-

some represent barley accessions (colour coded by

domestication status and row type). The vertical

position of the line at any given chromosome repre-

sents the haplogroup number identified for that

accession, based on the order presented in

Table S5. The four panels show the diversity profile

of: (a) all 815 accessions; (b) cultivars; (c) landraces;

and (d) wild barleys.
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has been imposed on the variation that influences some of

these biological processes. Still, more study is required to

identify any beneficial alleles that are under selection. In

the case of chloroplast-related genes, it may be that the

nuclear chloroplast gene-related allelic composition has

led to the selection or stochastic sampling of distinct

chloroplast lineages during crop domestication and diver-

sification (Molina-Cano et al., 2005).

CONCLUSION

Apart from revealing further details about the complex his-

tory of domesticated barley, our pericentromeric versus

non-pericentromeric chromosomal comparisons have

important practical applications. Modern, resilient barley

production that ensures sustainable future harvests, in

the light of challenges such as climate change (Dawson

et al., 2015) and the need for greater resource-use effi-

ciency (Cope et al., 2020), requires the recovery and

exploitation of lost subsistence farming-derived (landrace)

and naturally evolved (wild) traits through broad genomic

access (Bailey-Serres et al., 2019). This is, however,

restricted in the low-recombining pericentromeric regions

of barley and other large genome cereals. Novel methods

are being developed to alter the frequency and distribution

of recombination and speed up the breeding process

through the CRISPR/Cas9 manipulation of pro- and anti-

crossover (CO) genes, site-directed nucleases and/or epige-

netic modifiers, among others (Taagen et al., 2020). How-

ever, their overall effectiveness in the context of crop

improvement, including their potential for introducing

deleterious unintended effects (e.g. increased mutation fre-

quency or genome instability), remains to be assessed.

Here, by using a large panel of cultivar, landrace and wild

barleys, and chromosome zone-specific DNA sequence

information, we have revealed in detail the extent to which

the lack of recombination in pericentromeric regions has,

and will likely continue to, constrain progress in barley

breeding. Based on the measure of haplotype block size,

we show that even the most recombination-accessible

region of the cultivated barley genome (zone 1) has only

around the same accessibility as the least recombination-

accessible part of the wild barley genome (zone 3).

Calculations of selective sweeps further indicate the conse-

quences of linkage drag in cultivars, with the most

accessible part of the barley cultivar genome having, over-

all, significantly higher selection scores than the least

accessible genomic region of wild barley.

EXPERIMENTAL PROCEDURES

Sample selection, library preparation and exome

sequencing

The germplasm chosen for this study is described in Table S1.
Data on the majority of cultivars (163) and landraces (259) in theT
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starting panel were sourced from the European project Wheat and
Barley Legacy for Breeding Improvement (WHEALBI), with the
domestication status of accessions as described by Bustos-Korts
et al. (2019). Other landraces (129) included in our initial panel
were described by Russell et al. (2016) (known as ‘EXCAP’ acces-
sions). Data on wild barley accessions were obtained from several
sources: for 98 accessions from EXCAP (Russell et al., 2016); for
75 accessions from Barley B1K (H€ubner et al., 2009); for 32 acces-
sions from WHEALBI; for parents of a nested association mapping
(NAM) population from Herzig et al. (2019); and for 61 accessions
from the Wild Barley Diversity Collection (WBDC) (Steffenson
et al., 2007). Library preparation and exome sequencing were
described previously by Bustos-Korts et al. (2019) and Russell
et al. (2016).

Reads mapping and variant calling, filtering and

annotation

All sequence data were from paired-end Illumina sequencing
(https://emea.illumina.com). Sequence lengths varied between 100
and 125 bp, depending on the source data set. Quality control of
the raw data was carried out using FASTQC (Andrews, 2010). We fol-
lowed the Genome Analysis Toolkit (GATK) Best Practices (Van der
Auwera et al., 2013) for read mapping, BAM file pre-processing
and variant calling. For the latter two steps, GATK 3.4.0 was used.
The GATK Best Practices guidelines recommend the mapping of
raw reads to enable the accurate deduplication of paired-end read
mappings. Consequently, no read trimming was carried out prior
to mapping. In this scenario, read errors and adapter sequences
are flagged up by the mapping tool through soft-clipping and are
disregarded during downstream analysis.

BWA-MEM (Li, 2013) was used to separately map the raw reads
from each barley line to the Morex 2017 reference genome
(Mascher et al., 2017), with a comparatively strict mismatch rate
of 4% applied to minimize the mis-mapping of reads to location
and the consequent calling of false-positive variants (Ribeiro
et al., 2015). In accordance with GATK Best Practices, the primary
read mappings were then deduplicated using SAMTOOLS RMDUP (Li &
Durbin, 2009) to remove both optical and PCR duplicates. In the
next step, indel realignment was carried out with the GATK INDELRE-

ALIGNER tool and the resulting BAM file was used to produce an ini-
tial set of variants with the HAPLOTYPECALLER tool. These variants were
then filtered (QUAL > 20) with VCFLIB (https://github.com/vcflib/
vcflib) and used as known sites for the base quality score recalibra-
tion. A second run of the HAPLOTYPECALLER was used to produce a final
GVCF file for each barley line, and this was the basis for joint geno-
type calling. Individual GVCF files were batched into cohorts of size
20 or fewer using the GATK COMBINEGVCFS tool. Cohort files were then
processed using the GATK GENOTYPEGVCFS tool to produce the final
variant calls. Mappings and variants were visually spot-checked
using the TABLET assembly viewer tool (Milne et al., 2013).

To produce a robust set of variants for downstream analysis,
we filtered the initial set of variants using custom JAVA code. The
objective was to create a set of variants with a minimum of miss-
ing genotype calls and a minimum of false-positive variant calls,
but with sufficient coverage of the genome. For a variant to be
retained it had to pass the following filtering criteria.

• Read depth of ≥8 in at least 50% of the samples (removes vari-
ants with low read depth)

• <5% of samples with missing genotype calls (maximizes sample
representation)

• At least one homozygous sample with the minor allele as its
genotype (removes variants based on one or more heterozy-
gous samples only)

• SNP QUAL score of >30 (removes low-confidence variants)
• <2% of samples being heterozygous (removes false-positive
variants caused by mis-mapping)

• Number of alleles = 2
• Variant type is not insertion or deletion or multi-nucleotide poly-
morphism

The variants were then functionally annotated using SNPEFF (Cin-
golani et al., 2012), using the barley reference transcript data set
BART 1.0 (Rapazote-Flores et al., 2019) as the basis for predic-
tions.

Comparison of on/off-target variants and rare/non-rare

variants

To allow a comparative analysis of variants that were on/off target
with regards to the exome capture probes, the exome capture
design file was obtained from the Nimblegen website (https://sftp.
rch.cm/diagnostics/sequencing/nimblegen_annotations/ez_barley_
exome/barley_exome.zip) and the capture probe sequences were
mapped to the Morex 2017 reference genome using BLASTN

(Altschul et al., 1990; Camacho et al., 2009), with an e-value cut-
off of 1e-10 and a minimum percentage identity of >90. The BED-

TOOLS intersect method (Quinlan & Hall, 2010) was then used to
compute the overlap between the filtered variants and the map-
ping positions of the exome capture probes, and variants overlap-
ping the probes were classified as on target, whereas the
remainder were classified as off target. Read depth and variant
quality scores were then extracted from the VCF file using VCFTOOLS

(Danecek et al., 2011).

‘Rare’ SNPs were defined as those with an MAF of <0.05. The
averaged genotype quality score (GQ) was extracted for rare
and non-rare SNPs from the VCF file using VCFTOOLS (Danecek
et al., 2011). To compare GQ between major and minor alleles,
the values for each called position were extracted across acces-
sions using VCFTOOLS and grouped into major and minor alleles
using a custom PYTHON script for distribution plot.

Genome-wide relatedness and ordination

A target of 10 000 SNPs (n = 9845) were randomly selected from
the filtered variant data set using SELECTVARIANTS in GATK for the
reconstruction of genome-wide relatedness and PCO. The PCO
was performed using PAST 3.25 (Hammer et al., 2001) and the
result visualized by CURLYWHIRLY 1.19.03 (https://ics.hutton.ac.uk/
curlywhirly/).

Barley genetic landscape

Genetic diversity (p) and pairwise FST values for SNPs were calcu-
lated using ‘-site-pi’ and ‘-weir-fst-pop’, respectively, in VCFTOOLS.
The p values were plotted using a moving average method with a
window size of 10 000 bp, whereas the FST values were plotted on
a per-site basis so that the fine-scale horizontal track patterns in
pericentromeric regions could be observed. The zone-3 genotype
heat map was visualized with FLAPJACK (Milne et al., 2010), with
SNPs having MAFs of <0.05 being excluded to reduce noise, with-
out altering the overall genetic variation pattern. The LD haplotype
blocks were estimated using the ‘-blocks’ function in PLINK 1.904
(Purcell et al., 2007), under default settings, following the block
definition method mentioned in Gabriel et al. (2002), except that
the limitation of block size was increased to allow large blocks that
could potentially cover whole chromosomes (the ‘-blocks-max-kb’
parameter was set to 800 000 kbp). A similar approach had been
used previously in wheat (Hao et al., 2017). The LD decay profiles
(R2 vs distance) were calculated based on a thinned SNP data set
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(thinned using the ‘-thin’ function in VCFTOOLS), to keep only SNPs
with at least a 10 000-bp interval distance. The thinned data were
used for LD estimation via the plink ‘-r2’ function, with options
applied to allow the calculation of R2 for all pairwise SNPs within
a given window size of 15 000 kbp (�ld-window 100 000 -ld-
window-kb 15 000), with R2 values above 0.05 being reported. Dis-
tance information used for the final visualization was taken from
the PLINK LD output file (BP_B – BP_A).

Haplotype counts for chromosomes and chromosome zones
were corrected estimates accounting for the different sample sizes
of cultivar, landrace and wild barley categories. For each category,
counts were based on randomly selected samples of 100
accessions. The randomization procedure was performed 100 times
and average values were used. We applied this sample size correc-
tion specifically to haplotype richness estimates because of the
potential high sensitivity of this parameter to sample size (when
there are a large number of different haplotype states), which is not
the case for individual SNP-based (i.e. biallelic) diversity estimates
such as p.

Signatures of selective sweeps were detected using RAISD 2.4
(Alachiotis & Pavlidis, 2018), with the option to impute missing
data (�M 1). The 95th percentile of l was calculated for each pop-
ulation and used as the threshold to highlight outlier SNPs. All
plotting was performed with R 3.6.0 and moving averages calcu-
lated using the ‘roll.apply’ function of ZOO 1.8-8 (Zeileis &
Grothendieck, 2005). The chromosome containing unmapped con-
tigs (chrUn) was excluded from all analyses.

Zone-3 evolution comparison

We followed the zone-3 coordinates reported in the Morex 2017
reference genome paper (Mascher et al., 2017) and separated
SNPs based on the coordinates for each chromosome. The ‘phylo-
genies’ and PCO analyses were performed as described in a previ-
ous section. For the intraspecific ‘phylogenetic’ relatedness
analysis, the VCF file was first converted to PHYLIP format using
VCF2PHYLIP.PY 2.0 (https://github.com/edgardomortiz/vcf2phylip). The
GTR + G4 model was then selected under the Akaike information
criterion (AIC) calculated via MODELTEST-NG 0.1.6 (Darriba et al.,
2020), and the unrooted ML tree was estimated using RAXML-NG

0.6.0 (Kozlov et al., 2019). Trees were visualized using the interac-
tive Tree Of Life (iTOL) web server (Letunic & Bork, 2019).

Identification of BaRTv.1 homologues in Morex v.3

BART1 homologues in the Morex v.3 reference assembly
(Mascher et al., 2021) were identified with BLASTP (Altschul
et al., 1990) using BART1 proteins as queries and Morex v.3 pro-
teins as subjects. Raw hits were sorted by percentage identity (de-
scending) and query coverage per high-scoring segment pair
(HSP) (descending) and then filtered by percentage identity
(≥98%). This leaves the best hit topmost but still retains multiple
transcripts for each query. We then removed duplicates by query
gene and subject gene to leave the best hit for a given query–sub-
ject gene combination, while still allowing for split/fused genes.
Some BART1 genes had no hits in Morex v.3 with the above
approach, whereas others had multiple hits, presumably with
genes having been fused or collapsed in BART1.
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