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Autonomic control of pancreatic polypeptide and glucagon 
secretion during neuroglucopenia and hypoglycemia in mice 

PETER J. HAVEL, JONES 0. AKPAN, DONALD L. CURRY, 
JUDITH S. STERN, RONALD L. GINGERICH, AND BO AHREN 
Department of Physiological Sciences, School of Veterinary Medicine and Departments of Nutrition 
and Internal Medicine, University of California, Davis, California 95616; Department of Pediatrics, 
Washington University School of Medicine, St. Louis, Missouri 63110; and Department of Surgery, 
University of Lund, Lund S-22362, Sweden 

Havel, Peter J., Jones 0. Akpan, Donald L. Curry, 
Judith S. Stern, Ronald L. Gingerich, and Bo Ahren. 
Autonomic control of pancreatic polypeptide and glucagon se- 
cretion during neuroglucopenia and hypoglycemia in mice. Am. 
J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34): 
R246-R254, 1993.-Neural control of pancreatic polypeptide 
(PP) release has not been previously investigated in the mouse. 
In addition, it is not known to what extent increased glucagon 
secretion during hypoglycemia in mice is neurally mediated vs. 
an effect of hypoglycemia to directly stimulate glucagon secre- 
tion at the level of the islet. Feeding or the cholinergic agonist 
carbachol increased plasma PP levels in conscious mice (+74 t 
18 pg/ml vs. fasted mice and +141 t 17 pg/ml vs. control, 
respectively). Neuroglucopenia induced by 2-deoxy-D-glucose or 
insulin-induced hypoglycemia also increased plasma PP (+79 & 
18 and +89 t 11 pg/ml vs. control, respectively). These in- 
creases were abolished by hexamethonium and reduced by at- 
ropine methylnitrate (atropine) . Hypoglycemia-induced hyper- 
glucagonemia (+1,243 2 275 pg/ml) was reduced to 31 t 7% of 
control by atropine (+382 t 85 pg/ml), to 48 t 9% of control by 
combined adrenergic blockade (+601 k 112 pg/ml), and nearly 
abolished by atropine plus combined blockade (+I43 t 41 pg/ 
ml; 11 t 3% of control) or hexamethonium (+151 t 38 pg/ml; 
12 & 3% of control). We conclude the following in the mouse. 1) 
Feeding or choline@ agonists increase plasma PP. 2) During 
neuroglucopenia or hypoglycemia, plasma PP is increased via 
nicotinic and muscarinic mechanisms. 3) The glucagon re- 
sponse to hypoglycemia is predominantly the result of auto- 
nomic activation and is mediated by both muscarinic and ad- 
renergic mechanisms. 
carbachol; 2-deoxy-D-glucose; insulin-induced hypoglycemia; 
atropine; hexamethonium; propranolol; phentolamine; para- 
sympathetic nervous system; sympathetic nervous system 

THE EXPERIMENTS reported in this paper were conduct- 
ed to address two fundamental questions. The first was 
to investigate the neural regulation of the islet hormone, 
pancreatic polypeptide (PP), to determine whether 
plasma PP levels reflect choline@, parasympathetic 
input to the pancreas in the mouse and might therefore 
be useful to assess the activation of parasympathetic 
input to the pancreas during neuroglucopenia in exper- 
iments performed on mice. 

The secretion of PP in several species is predominantly 
controlled by the vagal input to the pancreas and involves 
both nicotinic and muscarinic receptors (for review, see 
Refs. 24 and 48). For example, electrical stimulation of 
the vagus nerves or the administration of choline@ 
agonists markedly increases PP secretion via an atro- 
pine-sensitive mechanism (5,50). Choline@ control of 
PP release is also mediated by autonomic neurotrans- 
mission between pre- and postganglionic parasympa- 
thetic nerves because nicotinic receptor antagonists that 

block ganglionic transmission abolish the PP response 
to vagal nerve stimulation (5). Another stimulus for PP 
release is neuroglucopenic stress produced by either in- 
sulin-induced hypoglycemia or by administration of 
2-deoxy-D-glucose (20DG). Neuroglucopenia-induced 
PP secretion has been demonstrated to be mediated by 
vagal, muscarinic activation in several species (1,28,47, 
50). Thus measurements of plasma PP and PP re- 
sponses to neuroglucopenia have been used as an index 
of the parasympathetic input to both the endocrine and 
exocrine pancreas (8, 9, 21, 35). 

However, this potentially useful index of parasympa- 
thetic input to the endocrine pancreas has not been 
widely used for studies in rodents because of a scarcity of 
radioimmunoassays for measuring plasma PP in ro- 
dents. The primary structure of PP in rodents differs 
from that of several other mammalian species by eight 
amino acids (36). Therefore, radioimmunoassays used to 
measure plasma PP in other species are not always ef- 
fective for measuring plasma PP in rodents. A new ra- 
dioimmunoassay that is both sensitive and specific has 
recently been developed and validated for the measure- 
ment of PP in rat and mouse plasma (7). A recent study 
of autonomic control of PP secretion in rats, which used 
this new assay, found that the majority of the PP re- 
sponse to insulin-induced hypoglycemia in this species 
is mediated by choline@, muscarinic activation (28). 
However, this study also suggested that adrenergic ac- 
tivation may make a minor contribution to this re- 
sponse. In the present study, we examined plasma PP 
levels after feeding or administration of a cholinergic 
agonist and during 2-DG-induced neuroglucopenia or 
insulin-induced hypoglycemia and evaluated the role of 
nicotinic neurotransmission and muscarinic, choline@ 
receptors in the regulation of PP release in the mouse. 

The second major question addressed in these exper- 
iments was to determine the contribution of autonomic 
nervous system activation vs. the role of low glucose 
levels acting at the level of the islet in mediating in- 
creases in plasma glucagon during insulin-induced hy- 
poglycemia in the mouse. It is well-known that glucagon 
secretion increases during insulin-induced hypoglyce- 
mia and that this increased secretion is the primary 
factor responsible for the recovery of plasma glucose 
levels from acute hypoglycemia (20), as well as a major 
determinant of the glucose nadir after insulin adminis- 
tration (25). However, hypoglycemia is also known to 
activate the autonomic nervous system, increasing the 
level of circulating epinephrine (12, 18) and activating 
the parasympathetic nerves to the islet, as reflected by 
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increased secretion of PP (28, 47). In addition, it has 
been demonstrated that the direct sympathetic innerva- 
tion to the pancreas can be activated during glucopenic 
stress (23, 29). Activation of each of these autonomic 
inputs to the pancreas has the potential to increase glu- 
cagon secretion (4, 6, 19) and therefore to mediate the 
glucagon response to hypoglycemia. However, a number 
of experiments performed to test this question have 
shown that interfering with one portion of the auto- 
nomic activation, or blocking its effects with classical 
receptor antagonists, has little or no influence on the 
glucagon response to hypoglycemia (17, 39, 40, 41, 44, 
45, 54). These results, and the demonstration that low- 
ering the perfusate glucose level can stimulate glucagon 
secretion from isolated islets (38) and from the isolated, 
perfused pancreas, (56) have led to the view that the 
increase in glucagon secretion during insulin-induced 
hypoglycemia is due to a direct effect of low glucose at 
the level of the islet. However, recent studies have dem- 
onstrated that the autonomic nervous system can make 
a major contribution to increased pancreatic glucagon 
secretion during hypoglycemia in dogs (9,26), and there 
is additional evidence from studies in other species (10, 
27, 42). 

Therefore, to determine the contribution of auto- 
nomic neural activation to the glucagon response to in- 
sulin-induced hypoglycemia in mice, we administered 
insulin to conscious mice pretreated with either saline or 
the ganglionic blocking agent hexamethonium, which 
impairs both parasympathetic and sympathoadrenal 
activation during hypoglycemia (51)) and compared 
plasma glucagon levels during insulin-induced hypogly- 
cemia. To determine the relative contributions of cho- 
linergic vs. adrenergic mechanisms to the glucagon re- 
sponse, hypoglycemia was induced in mice pretreated 
with either saline, atropine methylnitrate (atropine), cy- 
and P-adrenergic antagonists, or the combination of at- 
ropine and adrenergic antagonists. 

MATERIALS AND METHODS 

Animals. Female mice of the NMRI strain (ALAB, Stock- 
holm, Sweden) weighing 25-30 g were used. The animals were 
fed a standard pellet diet (Astra-Ewos, Sodertalje, Sweden) and 
tap water ad libitum. Animals used for the carbachol experi- 
ments had access to food before and throughout the experi- 
ments. Animals used for the 2-DG and insulin hypoglycemia 
experiments were fasted overnight before the experiments. All 
experiments were conducted in conscious mice. 

Protocols. Plasma glucose and pancreatic hormone levels were 

Table 1. Comparison of plusma glucose and pancreatic 
hormone levels in fed vs. overnight-fasted mice 

Concentration 

Treatment n Glucose, 
w/d 

pp, 
PEW 

IRG, 
P&l 

IRI, 
dJ/ml 

Fasted 18 
Fed 24 

78k2* 117t9’ 338k20” 3*1* 
97a4t 191&18t 276k24.f 46&6f 

Values are means * SE. PP, pancreatic polypeptide; IRG, immu- 
noreactive glucagon; IRI, immunoreactive insulin; n, no. of animals. 
Values in same column with different superscripts are significantly 
different by at least P < 0.05. 

compared between fed and fasted mice (Table 1). For each phar- 
macological experiment animals were randomly divided into 
four groups with 8-16 animals per group. In experiment 1 (car- 
bachol t atropine; Table 2) one group received two intraperi- 
toneal injections of saline and served as controls for the groups 
that were administered drugs. The other groups received either 
atropine (2.5 mg/kg ip) or saline and then, 15 min later, received 
an intraperitoneal injection of an equal volume of saline or 
carbachol (750 pg/kg). Atropine methylnitrate was chosen 
rather than atropine sulfate because atropine methylnitrate 
does not readily cross the blood-brain barrier (55) and therefore 
should not impair muscarinic neurotransmission in the central 
nervous system. 

Experiments 2 and 3 (2-DG t atropine or hexamethonium; 
Table 3) were similar to experiment 1, except that the animals 
received intraperitoneal injections of saline, atropine (2.5 mg/ 
kg), or hexamethonium (30 mg/kg) 15 min before the adminis- 
tration of saline or 2-DG (500 mg/kg ip). In experiment 4 (in- 
sulin t hexamethonium; Table 4), saline or insulin (l-2 U/kg 
ip) was administered 15 min after pretreatment with hexame- 
thonium (30 mg/kg). Less insulin (1 U/kg) was administered to 
the hexamethonium-treated mice because we had previously 
observed that smaller doses of insulin were necessary to produce 
equal or lower glucose nadirs in mice treated with hexametho- 
nium vs. saline-treated control mice. 

In experiment 5 (insulin t atropine, adrenergic blockade, or 
atropine + adrenergic blockade; Table 5) mice were divided into 
eight groups of 15 or 16 animals per group. These mice received 
either saline or insulin after pretreatment with atropine (2.5 
mg/kg), combined cy- and @-adrenergic blockade with phentola- 
mine (10 mg/kg ip) and propranolol (2.5 mg/kg ip), or both 
atropine and phentolamine + propranolol. To obtain plasma for 
hormone assay, a single blood sample was obtained from the 
intraorbital sinus with a heparinized glass pipette, 2 min after 
carbachol or saline injection (experiment 1 ), 15 min after 2-DG 
or saline injection (experiments 2 and 3), and 45 min after 
insulin or saline injection (experiments 4 and 5). Tables l-5 
outline the protocols for the specific treatments and the number 
of animals used in each experiment. Plasma was separated and 
frozen at -20°C until the assays were performed. The drug 
dosages and sampling times were selected based on previous 
studies of the regulation of insulin and glucagon secretion in 
mice (2, 3). 

Assays. Plasma glucose was determined by the glucose oxi- 
dase method (11). Plasma samples for PP determination were 
lyophilized and shipped from Lund, Sweden, to St. Louis, MO. 
The samples were stored at -20°C until they were reconstituted 
to the original volume with distilled H20. PP concentration was 
determined with a new radioimmunoassay (Linco Research, St. 
Louis, MO) that is able to detect rodent PP but does not cross- 
react with neuropeptide Y or peptide YY (7). Plasma levels of 
immunoreactive insulin were determined by radioimmunoassay 

Table 2. Experiment 1 

Concentration 
Treatment 

Glucose, 
w/d 

PP, 
P&w 

IRG, 
pg/~l 

IRI. 
/d/m1 

Saline/saline 102t4* 221&28* 281&29* 38*13* 
Saline/carbachol 78k4t 362k17t 2,044*275t lOOk6t 
Atropine/saline 91G’ 191t40* 232t22’ 34*11* 
Atropine/carbachol 109t6* 184*35* 248*21* 48*8* 

Values are means t SE indicating plasma glucose and pancreatic 
hormone levels in fed mice treated with saline or atropine methylnitrate 
(atropine; 2.5 mg/kg) 2 min after carbachol(750 pg/kg) or saline. Values 
in same column with different superscripts are significantly different by 
at least P < 0.05; n = 8 in each group. 
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Table 3. Experiments 2 and 3 

Concentration 

Treatment n 
Glucose, pp, IRG, 

w/d P&w Pdml 

Saline/saline 16 
Saline/2-DG 16 
Hex/saline 16 
Hex/2-DG 16 

Saline/saline 
Saline/2-DG 
Atropine/saline 
Atropine/tZ-DG 

10 
10 
10 
10 

Experiment 2 
71t3” 106t4’ 

X1&8$ 153klot 
52+2t 108&5* 
92+4§ 84&4$ 

Experiment 3 
81+3* 105t8’ 

141+3t 184+18t 
79*3* 108k9’ 

108*6* 108*6* 

298t14” 
1,095&141t 

247t21” 
344k26’ 

295t23’ 
986k125t 
258*16* 
512d168’ 

Values are means * SE indicating plasma glucose, PP, and IRG 
levels in fasted mice treated with saline, hexamethonium (Hex; 30 mg/ 
kg), or atropine (2.5 mg/kg), 15 min after 2-deoxy-D-glucose (2-DG; 500 
mg/kg) or saline. Experiment 2, n = 16; Experiment 3, n = 10 animals. 
Values in same column with different superscripts are significantly 
different by at least P < 0.05. 

Table 4. Experiment 4 

Concentration 

Treatment n 
Glucose, -9 IRG, 

Pdml Ptw 

Saline/saline 12 
Saline/insulin 15 
Hex/saline 15 
Hex/insulin 14 

80*6* 91t4’ 359k27” 
3O*lt 180+11t 1,856+202t 
51*2$ 102&3* 373t31” 
18&2§ 103t4” 524t27’ 

Values are means it SE indicating plasma glucose, PP, and IRG 
levels in fasted mice treated with saline or Hex (30 mg/kg), 45 min after 
insulin (l-2 U/kg) or saline; n, no. of animals. Values in same column 
with different superscripts are significantly different by at least P < 
0.05. 

Table 5. Experiment 5 

Concentration 

Treatment n 
Glucose, pp, IRG, 

m6dd.l P6w Pdml 

Saline/saline 16 88k4’ 
Saline/insulin 15 34+3t 
Atropine/saline 16 87t3’ 
Atropine/insulin 15 23+2t 
Adr Bl/saline 15 63k3$ 
Adr Bl/insulin 15 33k2-t 
Both/saline 16 58k3$ 
Both/insulin 16 26k2-l 

6727’ 507t48’ 
118+5t 1,750+275t 

71t6’ 397k38’ 
8627’ 779t85’ 

104+9t 673t87’ 
130+11t 1,274&112$ 

70t5” 428252’ 
85t6* 571k41’ 

Values are means t SE indicating plasma glucose, PP, and IRG 
levels in fasted mice treated with saline, atropine (2.5 mg/kg), phento- 
lamine (2.5 mg/kg) + propranolol (10 mg/kg) [adrenergic blockade (Adr 
Bl)], or atropine + combined adrenergic blockade (Both) 45 min after 
insulin (2 U/kg) or saline. Values in same column with different super- 
scripts are significantly different by at least P < 0.05. 

(30). Plasma immunoreactive glucagon was determined in un- 
extracted plasma with a radioimmunoassay that is specific for 
pancreatic glucagon (3 1). 

Sources. Hexamethonium bromide and 2-DG were obtained 
from Sigma Chemical, St. Louis, MO. Atropine methylnitrate 
was obtained from Vitrum, Stockholm, Sweden. Carbachol was 
obtained from British Drug Houses, Poole, UK, and regular 
porcine insulin was obtained from NOVO, Bagsvaerd, Denmark. 
Phentolamine methanesulfonate was from Ciba-Geigy, Basel, 

Switzerland, and L-propranolol was from ICI, Macclesfield, UK. 
Data analysis. Data are presented as means $- SE. Statistical 

comparisons of means of two groups were made with a two- 
sample t test. Statistical comparisons of means from more than 
two groups were made by analysis of variance with a Dunnett’s 
post-test. The data in Figs. l-4 are calculated as PP, glucagon, 
or insulin concentrations in each individual animal divided by 
the mean hormone concentration in the control (saline/saline) 
group. The glucagon responses in Fig. 5 are calculated as the 
concentration of glucagon in each animal in the experimental 
groups (saline/insulin, hexamethonium/insulin, atropine/ 
insulin, adrenergic blockade/insulin, or atropine + adrenergic 
blockade/insulin) minus the mean level in their respective con- 
trol groups (saline/saline, hexamethonium/saline, atropine/ 
saline, adrenergic blockade/saline, or atropine + adrenergic 
blockade/saline) divided by the mean response in control ani- 
mals (saline/insulin - saline/saline). A P value 50.05 was con- 
sidered statistically significant. 

RESULTS 

Comparison of plasma glucose and pancreatic hormone 
levels in fasted vs. fed mice. Plasma glucose (+19 mg/dl), 
PP (+74 pg/ml), and immunoreactive insulin (+43 pU/ 
ml) were all significantly higher in fed mice compared 
with mice that were fasted overnight. Plasma immunore- 
active glucagon was modestly, but significantly, lower 
(-62 pg/ml) in fed mice compared with overnight-fasted 
mice (Table 1). 

Experiment 1: plasma glucose and pancreatic hormones 
in fed mice 2 min after carbadwl with or without atropine 
pretreatment. Plasma glucose was significantly decreased 
in mice that received carbachol (-24 mg/dl) (Table 2). 
Plasma PP (+141 pg/ml), glucagon (+1,763 pg/ml), and 
insulin (+62 pU/ml) were all significantly increased by 
carbachol administration. These increases were pre- 
vented by the prior administration of atropine (Fig. 1 A, 
B, and C; Table 2). 

Experiments 2 and 3: plasma glucose, PP, and glucagon 
levels in fasted mice 15 min after 2-DG with or without 
hexamethonium or atropine pretreatment. Plasma glucose 
was significantly decreased by hexamethonium adminis- 
tration (-19 mg/dl) (Table 3). Measured plasma glucose 
was approximately doubled in mice that received 2-DG 
(+60-80 mg/dl). The increases in plasma glucose were 
partially reduced by hexamethonium (-40 mg/dl) or at- 
ropine (-29 mg/dl) pretreatment, with the effect of hex- 
amethonium being somewhat more pronounced (Table 
3). Plasma PP levels were significantly increased by 2-DG 
(+47-79 pg/ml), and these increases were absent in mice 
treated with hexamethonium (-24 pg/ml) or atropine (0 
pg/ml) pretreatment (Fig. 2, A and B; Table 3). Similarly, 
2 -DG administration increased plasma glucagon levels 
(+691-797 pg/ml), and this increase was largely pre- 
vented by pretreatment with hexamethonium (+97 pg/ 
ml) or atropine (+254 pg/ml), with the effect of hexam- 
ethonium again being more pronounced (Fig. 3, A and B; 
Table 3). 

Experiment 4: plasma glucose, PP, and glucagon in 
fasted mice 45 min after insulin with or without hexame- 
thnium. In this experiment, hexamethonium adminis- 
tration alone also significantly lowered plasma glucose 
levels (-29 mg/dl) (Table 4). Insulin injection lowered 
plasma glucose in both saline- (-50 mg/dl) and hexame- 
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Fig. 1. Plasma pancreatic polypeptide (PP) (A), immunoreactive gluca- 
gon (IRG) (B), and immunoreactive insulin (IRI) (C) levels as % of 
mean control levels [saline/saline (sal/sal)] in fed mice 2 min after 
injection of saline or carbachol. Atr/sal, atropine methylnitrate 
(atropine)/saline; sal/carb, saline/carbachol; atr/carb, atropine/car- 
bachol; n = 8 animals/group. Absolute plasma PP, IRG, and IRI con- 
centrations are provided in Table 2. 

thonium-treated mice (-33 mg/dl). The plasma glucose 
level after insulin was lower in hexamethonium-treated 
than in saline-treated mice (18 +- 2 vs. 30 + 1 mg/dl) 

SAL/SAL HEX/SAL SAL/Z-DG HEX/2-DG 

” SAL/SAL ATR/SAL SAL/P-DG ATRI2-DG 

Fig. 2. Plasma PP levels as % of mean control levels (Sal/Sal) in fasted 
mice 15 min after injection of saline or 2-deoxy-D-glucose (2-DG). A: n 
= 16 animals/group; hex, hexamethonium. B: n = 10 animals/group. 
Absolute plasma PP concentrations are provided in Table 3. 

(Table 4). Plasma PP levels were increased (+89 pg/ml) 
during insulin-induced hypoglycemia, and the increase 
was prevented by hexamethonium (+l pg/ml) (Fig. 4A; 
Table 4). Likewise, insulin-induced hypoglycemia mark- 
edly increased plasma glucagon levels (+1,497 pg/ml) , and 
this increase was largely (90%) prevented by pretreat- 
ment with hexamethonium (+151 pg/ml) (Fig. 5; Table 
4). 

Experiment 5: plasma glucose, PP, and glucagon in 
fasted mice 45 min after insulin pretreatment with or 
without atropine, adrenergic blockade, or atropine + ad- 
renergic blockade. Baseline plasma glucose levels were 
lower in mice after adrenergic blockade (-25 mg/dl) or 
adrenergic blockade + atropine (-30 mg/dl) than in sa- 
line-treated control mice. Insulin administration pro- 
duced significant hypoglycemia in all groups of mice (Ta- 
ble 5). Plasma PP was increased by hypoglycemia in 
saline-pretreated mice (+51 pg/ml) , and this increase was 
significantly reduced by atropine (+15 pg/ml) (Fig. 4B; 
Table 5) or atropine + adrenergic blockade (+15 pg/ml) 
(Table 5). Plasma PP was elevated in mice with lowered 
plasma glucose levels resulting from administration of 
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Fig. 3. Plasma IRG levels as % of mean control levels (Sal/Sal) in fasted 
mice 15 min after injection of saline or 2-DG. A: n = 16 animals/group. 
B: n = 10 animals/group. Absolute plasma IRG concentrations are 
provided in Table 3. 

adrenergic antagonists (+37 pg/ml) but not in mice 
treated with atropine + adrenergic antagonists (+3 pg/ 
ml) (Table 5). Plasma glucagon was markedly increased 
by hypoglycemia in control mice (+1,243 pg/ml). The 
increase in plasma glucagon during insulin-induced hy- 
poglycemia was significantly smaller in mice pretreated 
with atropine (+382 pg/ml, 31 t 7% of control), adrener- 
gic antagonists (+601 pg/ml, 48 t 9% of control), or 
atropine + adrenergic blockers together (+143 pg/ml, 12 
t 3% of control) (Fig. 6; Table 5). 

DISCUSSION 

The purposes of the experiments conducted in this 
study were twofold: 1) to investigate the neural regula- 
tion of PP secretion in the mouse and 2) to determine the 
relative contribution of autonomic neural activation vs. 
direct islet effects of lowered plasma glucose concentra- 
tions in mediating increased glucagon secretion during 
insulin-induced hypoglycemia in mice. 

A new radioimmunoassay for measuring plasma PP in 
rodents has recently been developed and validated (7). 
This assay has now been employed to examine neural 

SAL/SAL HEX/SAL SAL/INS HEX/INS 

2 
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?I 
0 IOO- 

8 
9 0 

z 
n 50- 

Fig. 4. Plasma PP levels as % of mean control levels (Sal/Sal; n = 12) in 
fasted mice 45 min after injection of saline or insulin. Hex/sal, Sal/ins, 
atr/sal, and atr/ins groups: n = 15 animals/group. Hex/ins, n = 14. 
Sal/ins, n = 16. Absolute plasma PP concentrations are provided in 
Tables 4 and 5. 

control of PP secretion in rats (28). As in other species, 
PP secretion during hypoglycemia in the rat was found to 
be largely mediated by parasympathetic, muscarinic neu- 
ral activation. However, unlike other species, the results 
from this study suggested an additional minor adrenergic 
contribution to the PP response to hypoglycemia in this 
species. Investigations of neural regulation of PP release 
have not been previously reported in mice. 

In the present study, plasma PP levels were higher in 
fed vs. fasted mice, suggesting that nutrient absorption 
(46, 52) and/or neural activation associated with feeding 
(43,53) stimulate islet PP release. In addition, plasma PP 
levels were increased in mice that received the parasym- 
pathomimetic acetylcholine analogue carbachol, and this 
increase was prevented by atropine pretreatment. Carba- 
chol also increased plasma insulin and glucagon levels by 
an atropine-sensitive mechanism. These results are sim- 
ilar to those observed in other species (21,50) and suggest 
that, in the mouse, increased plasma levels of PP can 
reflect increased choline@ input to the islet and are 
associated with the secretion of insulin and glucagon. 

The increases in plasma PP during neuroglucopenia 
produced by 2-DG or insulin-induced hypoglycemia were 
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SAL/SAL HEX/SAL SAL/INS HEX/INS 

Fig. 5. Plasma IRG levels as % of mean control levels (sal/sal; n = 12) in 
mice 45 min after injection of saline or insulin. Hex/Sal and Sal/ins 
gTOUPS9 n = 15 animals/group; hex/ins, n = 14. Absolute plasma IRG 
concentrations are provided in Table 4. 

eliminated by pretreatment with the ganglionic blocker 
hexamethonium, suggesting that, as in other species (28), 
the PP response to this stimulus in mice is neurally me- 
diated via nicotinic transmission. Furthermore, the PP 
responses to 2-DG or hypoglycemia were markedly re- 
duced by atropine, suggesting major muscarinic, cholin- 
ergic mediation of the PP response to central neuroglu- 
copenia. There was no evidence for an adrenergic 
contribution to the PP response to insulin-induced hy- 
poglycemia in mice, as was suggested by the results of a 
previous study in rats (28); no further decrease in plasma 
PP levels was observed in mice treated with both atropine 
and adrenergic blockers vs. mice treated with atropine 
alone. These results suggest that under carefully con- 
trolled conditions plasma PP levels may be useful as an 
index of parasympathetic, choline@ input to the pan- 
creatic islets in mice. 

The second major goal of these studies was to investi- 
gate the role of the autonomic nervous system in medi- 
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Fig. 6. Plasma IRG responses to insulin-induced hypoglycemia as % of 
mean control responses (Sal/ins - sal/sal) in mice pretreated with saline 
[control (cant); n = 163; hex, n = 14; atr, n = 15; phentolamine + 
propranolol [adrenergic blockade (adr blk); n = 151, or atropine and 
adrenergic blockade together (both; n = 16). Absolute plasma IRG con- 
centrations are provided in Table 5. 

ating increased glucagon secretion during insulin-induced 
hypoglycemia. Central neuroglucopenia produced by hy- 
poglycemia can activate three different autonomic inputs 
to the pancreas. These inputs include parasympathetic 
neural activation (28, 47), adrenal medullary catechola- 
mine release (12, 18, 22), and activation of the direct 
sympathetic innervation of the pancreas (23, 29), all of 
which could potentially stimulate glucagon secretion (4, 
6, 19). Results from recent studies conducted in dogs (9, 
26) and other experiments in rats (27,42) and calves (10) 
suggest that activation of these autonomic inputs can 
make a major contribution to glucagon responses to hy- 
poglycemia in these species. 

In contrast, a number of other studies conducted pri- 
marily in human subjects, in which portions of the auto- 
nomic response to hypoglycemia were blocked or ablated, 
have not found a significant autonomic component to the 
glucagon response (17, 39, 40, 44, 54). Furthermore, re- 
sults from in vitro studies suggest that low glucose levels 
can stimulate glucagon secretion in the absence of neural 
activation (38,56). Together, these results have led to the 
view that the low plasma glucose level, rather than auto- 
nomic neural activation, is the major determinant of glu- 
cagon responses to hypoglycemia in vivo. In a recent re- 
view article (24), it was hypothesized that the glucagon 
response to hypoglycemia may be redundantly mediated 
by parasympathetic and sympathoadrenal activation and 
therefore under certain conditions, i.e., partial blockade 
or ablation, the autonomic contribution to this counter- 
regulatory response could be obscured by the redundantly 
functioning unblocked or unablated autonomic neural in- 
put to the pancreas. Thus it would be necessary to ablate 
or block all of the autonomic inputs to the pancreas to 
reveal the full contribution of the autonomic nervous sys- 
tem to hypoglycemia-induced glucagon release. In accord- 
ance with this hypothesis, one recent study in human 
subjects demonstrated a significant reduction in the glu- 
cagon response to insulin-induced hypoglycemia after the 
administration of a ganglionic blocking agent (14), which 
would be expected to impair the activation of all auto- 
nomic input to the pancreatic A-cell (24). 

To our knowledge, the autonomic contribution to hy- 
poglycemia-induced glucagon secretion has not been pre- 
viously investigated in the mouse. Therefore, in the 
present study, we examined the contribution of auto- 
nomic activation to the glucagon response by examining 
the effect of the ganglionic blocker, hexamethonium, on 
glucagon responses to insulin-induced hypoglycemia in 
conscious mice. Hexamethonium impairs the activation 
of all three autonomic inputs to the pancreas because all 
require nicotinic neurotransmission across autonomic 
ganglia (51). 

To determine the relative contributions of choline@, 
muscarinic, and adrenergic mechanisms and their poten- 
tial for redundancy in mediating hypoglycemia-induced 
glucagon responses, atropine, CY- and p-adrenergic antag- 
onists, or atropine and adrenergic antagonists together 
were administered to mice before the induction of hy- 
poglycemia. As expected, insulin-induced hypoglycemia 
resulted in a large (3.5- to &fold) increase in immunore- 
active plasma glucagon levels in saline-treated mice. 
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Hexamethonium pretreatment reduced the increase in 
plasma glucagon during hypoglycemia by -90%) reveal- 
ing a major neural contribution to this response. Pre- 
treatment with atropine reduced the glucagon response 
by ~70%. In both hexamethonium- and atropine-pre- 
treated animals, the PP response to hypoglycemia was 
also markedly reduced by atropine, suggesting that a sig- 
nificant level of nicotinic or muscarinic blockade was 
present. Pretreatment with combined CY- and ,8-adrener- 
gic blockers reduced the glucagon response by -50%. 

Atropine and combined adrenergic blockade together 
reduced the glucagon response by -90%. Thus there is 
~20-30% overlap, i.e., potential for redundancy, between 
cholinergic and adrenergic mechanisms in the autonomic 
mediation of the glucagon response to this degree of hy- 
poglycemia in the mouse. 

The 10% of the glucagon response that was not elimi- 
nated by hexamethonium or atropine and combined ad- 
renergic blockade together could be due to either inade- 
quate levels of the autonomic antagonists necessary to 
produce a complete blockade or to a direct effect of low 
plasma glucose levels on the islet. In addition, peptidergic 
neurotransmitters such as vasoactive intestinal polypep- 
tide and galanin have been demonstrated to stimulate 
glucagon secretion (15, 16, 37) and to be released during 
electrical stimulation of autonomic nerves (15, 16, 32) or 
insulin-induced hypoglycemia (29). The effects of these 
neuropeptides on glucagon release would be unlikely to be 
blocked by classical autonomic antagonists. However, 
there appears to be little potential role for these peptides 
in mediating the glucagon response to hypoglycemia in 
mice, because 90% of the response was eliminated by the 
pretreatment with classical cholinergic and adrenergic 
antagonists. 

The plasma glucose responses to 2-DG provide some 
insight into the mechanism of 2-DG-induced hyperglyce- 
mia. For example, hexamethonium abolished the gluca- 
gon response to intraperitoneal 2-DG administration in 
fasted mice and reduced the measured increase of plasma 
glucose by ~60%. Atropine was slightly less effective in 
inhibiting the glucagon response to 2-DG but inhibited 
2-DG-induced hyperglycemia by 50%. These results with 
intraperitoneal administration of 2-DG in fasted mice 
confirm those of previous studies, which demonstrated 
that hexamethonium or atropine inhibits the glucagon 
and hyperglycemic response to intravenous 2-DG in fed 
mice (33, 34), and further suggest that a significant por- 
tion of 2-DG-induced hyperglycemia is the result of va- 
gally mediated increases in glucagon secretion. 

The plasma glucose levels in mice pretreated with au- 
tonomic blockers alone reveal potential for an autonomic 
contribution to glucose homeostasis during prolonged 
fasting in mice. In the two experiments in which hexa- 
methonium was employed, hexamethonium injection by 
itself produced significant hypoglycemia in fasted mice, 
suggesting that plasma glucose may be supported by au- 
tonomic outflow in long-term fasted mice. Hexametho- 
nium treatment alone was not associated with significant 
decreases in baseline plasma glucagon levels. In addition, 
combined adrenergic blockade or adrenergic blockade and 
atropine together both produced similar hypoglycemia. In 

fact, the degree of hypoglycemia produced by combined 
adrenergic blockade was sufficient to induce a modest, yet 
significant, rise in baseline plasma PP, which was pre- 
vented by the addition of atropine. These data suggest 
that sympathoadrenal outflow may support plasma glu- 
cose in fasting mice via adrenergic receptor activation 
and are consistent with the known effects of catechola- 
mines to stimulate hepatic gluconeogenesis (13) and in- 
crease hepatic glucose output (49). However, it should be 
noted that a 24-h fast in mice is likely to be equivalent to 
a much longer period of food deprivation in larger animals. 
Thus these results do not provide evidence for autonomic 
support of plasma glucose during fasting of less prolonged 
duration, and this interpretation should not be extended 
to other species without additional experiments. 

In summary, we have demonstrated that plasma PP 
levels are increased by a choline@, muscarinic mecha- 
nism in the mouse. Therefore, under controlled condi- 
tions, plasma PP levels may be useful as an index of para- 
sympathetic input to the pancreas in this species. We have 
also found that the large majority of the plasma glucagon 
response to insulin-induced hypoglycemia in mice is the 
consequence of autonomic neural activation, rather than 
a direct effect of low plasma glucose at the level of the islet, 
and that this response is mediated partly by parasympa- 
thetic, muscarinic receptor activation and partly by sym- 
pathoadrenal, adrenergic receptor activation. 
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