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Qin, Sankeerth Rao, Ananda Theertha Suresh, Yu Xiang, Eitan Yaakobi, and Jun Zhou

for making UCSD a home away from home. I would like to thank all IPG friends

in Lausanne—Mine Alsan, Marc Desgroseilliers, Rafah El-Khatib, Hamed S. Hassani,

Mohammad Karzand, Wei Liu, Marco Mondelli, and Rajai Nasser—for making EPFL

my second home. I would particularly like to thank Weina Wang and Yuhua Chen for

participating in my joys and sorrows ever since we met ten years ago in Tsinghua.

Most importantly, for trying to understand my research purely out of their love

for me, for attempting to learn English purely out of their care for my life, and for

backing my journey regardless of the peaks and valleys, I thank my parents. It is to

them I dedicate this dissertation.

xiii



Chapter 2 and Appendix A are, in part, a reprint of the material in the pa-
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Lele Wang, Eren Şaşoğlu, and Young-Han Kim, “Sliding-window superposition coding for
interference networks,” to be submitted to IEEE Transactions on Information Theory.

Chen Chi, Yu Zhang, and Lele Wang, “Joint power control and FEC unequal error pro-
tection for scalable H.264 video transmission over wireless fading channels,” Proceedings
of the 28th IEEE GLOBECOM, Honolulu, Hawaii, December 2009.

Lele Wang and Young-Han Kim, “Sum-capacity of multiple-write noisy memory,” Pro-
ceedings of the IEEE International Symposium on Information Theory, Saint Petersburg,
Russia, August 2011.

Lele Wang and Mohammad Naghshvar, “On the capacity of the noncausal relay chan-
nel,” Proceedings of the IEEE International Symposium on Information Theory, Saint
Petersburg, Russia, August 2011.

Yu Xiang, Lele Wang, and Young-Han Kim, “Information flooding,” Proceedings of
the 49th Annual Allerton Conference on Communication, Control, and Computation,
Monticello, Illinois, September 2011.

Lele Wang, Minghai Qin, Eitan Yaakobi, Young-Han Kim, and Paul H. Siegel, “WOM
with retained messages,” Proceedings of the IEEE International Symposium on Informa-
tion Theory, Cambridge, MA, July 2012.
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Lele Wang, Eren Şaşoğlu, and Young-Han Kim, “Sliding-window superposition coding
for interference networks,” Proceedings of the IEEE International Symposium on Infor-
mation Theory, Honolulu, HI, July 2014.

Hosung Park, Young-Han Kim, and Lele Wang, “Interference management via sliding-
window superposition coding,” Proceedings of IEEE GLOBECOM, Austin, TX, Decem-
ber 2014.

Lele Wang, “Polar coding for relay channels,” Proceedings of the IEEE International
Symposium on Information Theory, Hong Kong, China, June 2015.

Lele Wang and Young-Han Kim, “Linear code duality between channel coding and
Slepian–Wolf coding,” Proceedings of the 53th Annual Allerton Conference on Com-
munication, Control, and Computation, Monticello, Illinois, September 2015.

xvi



ABSTRACT OF THE DISSERTATION

Channel Coding Techniques for Network Communication

by

Lele Wang

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2015

Professor Young-Han Kim, Chair

Next-generation wireless networks aim to enable order-of-magnitude increases in

connectivity, capacity, and speed. Such a goal can be achieved in part by utilizing larger

frequency bandwidth or by deploying denser base stations. As the number of wireless

devices is exploding, however, it is inevitable that multiple devices communicate over

the same time and same spectrum. Consequently, improving the spectral efficiency in

wireless networks with multiple senders and receivers becomes the key challenge. This dis-

sertation investigates low-complexity channel coding techniques that implement canon-

ical random coding schemes in network information theory, such as universal channel

coding, superposition coding, rate-splitting, successive cancellation, simultaneous decod-
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ing, decode-forward relaying, compress-forward relaying, and Slepian–Wolf coding. In

representative communication scenarios, such as compound channels, interference chan-

nels, broadcast channels, and relay channels, the proposed channel coding techniques

achieve the best known information theoretic performance, some utilizing the recently

invented polar codes and some making use of the commercial off-the shelf codes, e.g.,

turbo and LDPC codes. These techniques have a potential to become important build-

ing blocks towards a general theory of channel coding techniques for the next-generation

high-spectral-efficiency, low-power, broad-coverage wireless communication.

xviii



Chapter 1

Introduction

In a network communication system, multiple senders and multiple receivers

communicate over shared noisy medium. Each sender wishes to transmit a message

reliably to its desired receiver(s) by mapping the message into an input sequence. Each

receiver recovers its either the whole or the part of the desired message(s) by mapping

the output sequence to the message estimate(s). The goal for channel coding is to design

encoding and decoding mappings such that the rates of the messages are high and the

probability of error is small. For practical purposes, it is desired that the two mappings

can be computed at low complexity.

Ever since Shannon’s ground-breaking 1948 paper [69] that established the funda-

mental limit on reliable communication between one sender and one receiver, finding low-

complexity capacity-achieving channel coding techniques has been the theme of coding

theory. In the past sixty years, the point-to-point channel coding techniques evolved from

algebraic codes (such as Hamming, Golay, Reed–Muller, Bose–Chaudhuri–Hocquenghem,

and Reed–Solomon codes) to probabilistic codes (such as low-density parity-check, turbo,

and fountain codes). In 2001, the capacity of the additive white Gaussian noise channel

was shown to be achieved within 0.0045dB by low-density parity-check codes [20]. Most

recently, the capacity of the binary input symmetric output channel was shown to be

1



2

achieved by polar codes [7] in 2009 and spatially coupled codes [47] in 2012. In other

words, existing channel coding techniques have approached the capacity of point-to-point

communication both in theory and in practice.

Unlike in the point-to-point case, existing low-complexity channel coding tech-

niques are far from sufficient for network communication systems. Straightforward exten-

sions of point-to-point coding techniques typically result in a large gap to the theoretically

guaranteed performance, except for a few special cases such as successive cancellation

in multiple access channels and superposition coding in single antenna Gaussian broad-

cast channels. When multiple messages are involved in communication, more advanced

encoding and decoding schemes, which typically result in much higher computational

complexity, are needed to achieve the best known theoretical performance.

Meanwhile, from the 2.4 kbps analog voice phone in 1980 to the 100,000 kbps

fast mobile broadband in 2010, the mobile industry made a leap every ten years in the

past four decades. In the next five to ten years (around 2020), the mobile industry aims

to connect everything and to have a networked society. This fundamental overhaul in

communication technology and infrastructure calls for order-of-magnitude increases in

connectivity, speed, and mobile data volume. While part of the goal can be accomplished

by exploiting broader frequency band or deploying smaller cells, there are limitations in

scaling in the two directions. The key challenge in boosting the performance in the next

generation communication systems lies in achieving higher spectral efficiency.

As a result of the theoretical curiosity and the practical need from the mobile

industry, this dissertation investigates low-complexity channel coding techniques that

implement canonical random coding schemes in network information theory, such as

universal channel coding, superposition coding, rate-splitting, successive cancellation,

simultaneous decoding, decode-forward relaying, compress-forward relaying, and Slepian–

Wolf coding.

We first study the universality of code design, which requires a single code to

perform reliably over multiple heterogeneous channels. Despite all the nice properties
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such as achieving capacity, low encoding/decoding/construction complexities, no error

floor, among others, the original polar code design by Arıkan does not have universality.

In Chapter 2, we develop a low-complexity polar coding technique that has universality.

Our construction is independent of underlying channel statistics and achieves the optimal

rate in compound channels.

As the ever-growing number of wireless devices is driving a denser and denser

network deployment, efficient interference management among multiple parties commu-

nicating over the same spectrum becomes the key challenge for future communication

networks. Existing interference management techniques either avoid interference by coor-

dinating among the senders to transmit in orthogonal time/frequency/space dimensions,

or ignore interference by treating it as part of the noise. However, the theoretically opti-

mal approach is simultaneous decoding, which exploits the digital structures of both the

desired and interfering signals. Due to its high computational complexity, simultaneous

decoding has never been implemented in practice. In Chapters 3 and 4, we proposed two

solutions to implement simultaneous decoding at low complexity, first with polar codes

in Chapter 3 and then with commercial off-the-shelf (COTS) codes in Chapter 4. Using

4G LTE turbo codes, our simulation shows that the proposed scheme outperforms the

existing scheme that treats interference as noise in both strong and weak interference

regimes.

Superposition coding is one of the canonical coding schemes for broadcasting.

There are two variants of superposition coding schemes. Cover’s original superposition

coding scheme [22] has code clouds of the identical shape, while Bergmans’s superposi-

tion coding scheme [10] has code clouds of independently generated shapes. These two

schemes yield identical achievable rate regions in several scenarios, such as the capacity

region for degraded broadcast channels. In Chapter 5 we show that under the optimal

maximum likelihood decoding, these two superposition coding schemes can result in dif-

ferent rate regions. In particular, it is shown that for the two-receiver broadcast channel,

Cover’s superposition coding scheme can achieve rates strictly larger than Bergmans’s
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scheme. Based on this fact, we then propose a polar coding scheme that achieves the

rate region given by Cover’s superposition coding.

Decode–forward and compress–forward are the two fundamental coding schemes

for the relay channels. However, existing techniques in current wireless systems only

allow multi-hop relaying that performs far worse than the decode–forward and compress–

forward lower bounds. Chapter 6 investigates the low-complexity implementation of

decode–forward and compress–forward with polar codes. Using the universal polarization

technique in Chapter 2, the proposed scheme strictly improves upon existing methods

and achieves the best known theoretical performance.

As a long term goal, we hope to develop a low-complexity version of any random

coding scheme in network information theory. Instead of evaluating one particular code

and its encoder and decoder at a time, we hope to develop a universal scheme that

translates the performance of the COTS codes that are well studied and simulated in

one communication scenario into the performance of codes for another communication

scenario. Chapter 7 takes a first step in this direction and establishes the linear code

duality between channel coding and Slepian–Wolf coding.

Chapter 8 makes concluding remarks and comments on future directions.



Chapter 2

Universal Channel Coding

A method to polarize channels universally is introduced. The method is based

on combining channels of unequal capacities in each polarization step, as opposed to

the standard method of combining identical channels. The locations of the good and

bad channels that emerge upon polarization are only a function of the polar transform

chosen, and are otherwise independent of the channel being polarized. This yields a

simple method to design universal polar codes for discrete memoryless channels. It is

also shown that the less noisy ordering of channels is preserved under polarization, and

thus a good polar code for a given channel will perform well over a less noisy one.

2.1 Introduction

The compound channel models communication without perfect knowledge of the

physical channel. The channel is assumed to belong to a certain class, and a code

needs to be designed to perform well over all members of this class. The problem is

relevant from a practical standpoint since one can rarely estimate the channel perfectly,

and it is undesirable for small variations in the channel to impair the code performance

dramatically.

Let W be a set of binary-input memoryless channels W : {0, 1} → Y. A rate

5
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R is said to be achievable over W if there exists a sequence of encoder–decoder pairs

whose encoding rate converges to R and whose decoding error probability vanishes for

all W ∈ W. The highest achievable rate C(W) is called the compound capacity, and is

given by [11]

C(W) = sup
Q

inf
W∈W

I(W,Q).

Here, I(W,Q) denotes the mutual information across channel W with input distrubtion

Q. In this chapter, we are interested in the symmetric compound capacity I(W), which

is the highest achievable rate over W by codebooks with an equal frequency of zeros and

ones. Letting I(W ) denote the mutual information across W with uniform inputs, we

have

I(W) = inf
W∈W

I(W ).

We say that a code sequence of rate R achieves symmetric capacity universally if its

error probability vanishes over all channels in the class {W : I(W ) > R}.

In this chapter, we show that universal codes can be constructed by Arıkan’s

polarization methods [7]. We consider the setting where the channel is unknown only to

the transmitter. This is an idealized version of the practical scenario where the receiver

may estimate the channel prior to data transmission, for example through the use of

training symbols. Polar coding for this setting was first considered by Hassani et al. [37],

who concluded that Arıkan’s original codes are not universal under successive cancellation

(SC) decoding. It is worth noting, however, that under maximum likelihood decoding,

any good code for the binary symmetric channel (BSC) is also good (up to a linear

factor in its error probability) for any channel with the same capacity, and therefore a

capacity-achieving polar code sequence for the BSC is in fact universal [65, pp. 87–89].

Unfortunately, no subexponential algorithm is known for maximum likelihood decoding

of polar codes over arbitrary channels. It thus remains an open question whether one can

construct polar codes that are universal under low-complexity decoders. This chapter

answers this question in the affirmative.
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In recent work, Kudekar, Richardson, and Urbanke [47] showed that spatially-

coupled LDPC codes universally achieve the capacity of symmetric channels under low-

complexity message-passing decoders, making them the first known class of codes to

do so. Here, we show the same result for polar codes and for general channels (i.e.,

without symmetry assumptions). Hassani and Urbanke [36] have independently arrived

at conclusions similar to the result in this chapter, and we compare the two approaches

briefly in Section 6.4.

There are cases in which designing a polar code for multiple channels is easy. The

most prominent of these is the degraded case: A polar code tailored to a given channel

will also perform well over all upgraded versions of that channel [7], [43]. In Appendix A,

we see that a similar statement holds for the more general class of less noisy comparable

channels. In Appendix B, we will derive a sufficient condition to check the less noisy

ordering for the class of binary-input symmetric output channels.

2.2 Method

Our aim here is to show a method to polarize channels universally. We will

first discuss how to achieve rate 1/2, and in Section 2.3 show constructions that achieve

arbitrary rates. As in Arıkan’s original method, we will polarize channels recursively.

The construction will consist of two stages, which we will call the slow polarization and

the fast polarization stages. Slow polarization will create only two types of channels

after each recursion. Almost half of the polarized channels will be of the first type and

become increasingly good, the other half will become increasingly bad. The indices of

the good channels will be independent of the underlying channel, and thus universality

will be attained at this stage. We will see, however, that this type of polarization is too

slow to enable reliable SC decoding. In order to improve reliability, we will switch to the

standard (fast) polarization method once sufficient universality is achieved.

Given two binary-input memoryless channels W : {0, 1} → Y and V : {0, 1} → Z,
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define the binary-input channels

(W,V )−(y, z | x) =
∑

u∈{0,1}

1
2W (y | u+ x)V (z | u)

and

(W,V )+(y, z, u | x) = 1
2W (y | u+ x)V (z | x).

Note that if W ≡ V , then these are equivalent to the standard polarized channels W−

and W+ in [7]. We will let Ln and Rn denote the two channels that will emerge in the

nth level of slow polarization. These are defined recursively through

L0 = R0 =W

Ln+1 = (Rn, Ln)
−

Rn+1 = (Rn, Ln)
+

n = 0, 1, . . . (2.1)

Observe that each recursion except the first combines two different channels to produce

the channels of the next level. This is in contrast with the original polarization method,

which combines identical channels to create 2n polarized channels at the nth recursion,

W s− = (W s,W s)−

W s+ = (W s,W s)+
, s ∈ {−,+}n−1.

It is readily seen that for all n we have

I(Ln) + I(Rn) = 2I(W ).

Standard arguments also show that I(Ln) is decreasing and I(Rn) is increasing:

I(Ln+1) ≤ I(Ln) ≤ I(Rn) ≤ I(Rn+1).
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Since both I(Ln) and I(Rn) are monotone and bounded by 0 and 1, they have [0, 1]-

valued limits, which we respectively call I(L∞) and I(R∞). Further, it follows from [65,

Lemma 2.1] that the inequalities above are strict for n ≥ 1 unless I(Ln) ∈ {0, 1} or

I(Rn) ∈ {0, 1}. This implies the following polarization result.

Proposition 2.2.1.

(i) If I(W ) ≥ 1/2, then

I(L∞) = 2I(W )− 1, I(R∞) = 1.

(ii) If I(W ) ≤ 1/2, then

I(L∞) = 0, I(R∞) = 2I(W ).

We now describe a transform that recursively produces the channels Ln and Rn.

This is best done graphically; the claims will be evident from the figures. Note first that

L1 and R1 are identical toW
− andW+, and thus can be obtained in the standard manner

(Figure 2.1). In order to create L2 and R2 from these, one can take two independent

(L1, R1) pairs, and combine an L1 from one pair with an R1 from the other, as in

Figure 2.2. Following the notation of the figure, it can be easily checked that the channel

U1 → Y 4
1 is equivalent to L1, channel U2 → Y 4

1 U1 is equivalent to L2, channel U3 →

Y 4
1 U

2
1 is equivalent to R2, and channel U4 → Y 4

1 U
3
1 is equivalent to R1. Inspecting the

figure, one may be tempted to combine U1 and U4 to create another (L2, R2) pair, but

some thought reveals that this would instead create channels with more complicated

descriptions.

Instead, more (L2, R2) pairs can be obtained by combining more than two

(L1, R1) pairs in a chain. This is shown in Figure 2.3, where four (L1, R1) pairs are

chained. The resulting transform creates three (L2, R2) pairs. One can more generally
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Y1

Y2

X1

X2

U1

U2

W

W

Figure 2.1. When X1 and X2 are uniform and independent, the channel U1 → Y 2
1 is

equivalent to L1 =W− and U2 → Y 2
1 U1 is equivalent to R1 =W+.

Y1

Y2

Y3

Y4

U1

U2

U3

U4

(L1)

(L2)

(R2)

(R1)
level 1

Figure 2.2. The channels Ui → Y 4
1 U

i−1
1 are equivalent to those inside the parentheses.

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

U1

U2

U3

U4

U5

U6

U7

U8

(L1)

(L2)

(R2)

(L2)

(R2)

(L2)

(R2)

(R1)

level 1

Figure 2.3. Four pairs of level-1 channels are chained to create six level-2 and two level-1
channels. The channels Ui → Y 8

1 U
i−1

1 are equivalent to the ones on the left.

chain K channel pairs (L1, R1) to produce K − 1 channel pairs (L2, R2). Thus, the

fraction of (L2, R2) pairs can be made as close to 1 as desired by taking K sufficiently

large. Observe also that the channels Ui → Y 2K
1 U i−1

1 obtained by such a chain are

equivalent to Ui → Y i+2
i−2 U

i−1
i−2 . That is, not all channel outputs are relevant to Ui.

There are several ways to continue this construction in order to polarize the

channel beyond two levels. We describe here perhaps the simplest one, where chaining

as in Figure 2.3 is used only at the second polarization level, as in the paragraph above.

Each subsequent recursion combines only two blocks. The third level of this construction

with K = 4 is shown in Figure 2.4. Here, only the level-2 channels L2 and R2 are
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Y1

Y8

Y9

Y16

L1

L2

R2

L2

R2

L2

R2

R1

L1

L2

R2

L2

R2

L2

R2

R1

S1

S2

S3

S4

S5

S6

S7

S8

T1

T2

T3

T4

T5

T6

T7

T8

U1

U3

U4

U7

U8

U11

U12

U15

U2

U5

U6

U9

U10

U13

U14

U16

(L1)

(L2)

(L3)

(R3)

(L3)

(R3)

(L3)

(R1)

(L1)

(R3)

(L3)

(R3)

(L3)

(R3)

(R2)

(R1)

Figure 2.4. A 3-level transform with K = 4.

combined in the third recursion, L1 and R1 are not. Further, the first L2 in the first

block and the last R2 in the second are also left unconnected, in order to ensure that

the remaining channels polarize to the third level to produce L3 and R3. This idea is

easily extended to further levels: To obtain Ln+1 and Rn+1 in the (n + 1)-th recursion,

one only combines the Lns from the first block with the Rns from the second, and vice

versa. The first Ln from the first block and the last Rn from the second block are

left unconnected. This is shown in Figure 2.5. Each of the two blocks represents the

transform in Figure 2.3. The channels written inside the respective blocks correspond

to Si → Y 8
1 S

i−1
1 and Ti → Y 16

9 T i−1
1 . If one labels U1 to U16 as above, then the channels

Ui → Y 16
1 U i−1

1 are equivalent to the ones on the left.

Recall that our initial goal was to ensure that all channels after the nth recursion

become either Ln or Rn, but the procedure described above leaves some channels in

lower levels of polarization. The number of these less polarized channels in fact increases
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Y1

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

YN

YN+1

Y2N

L1

Ln−1

Ln

Rn

Ln

Ln

Rn

Rn−1

R1

U2ℓ+2

U2ℓ+5

U2ℓ+3

U2ℓ+4

S1

Sℓ

SN

T1

Tℓ

TN

L1

Ln−1

Ln

Rn

Ln

Rn

Rn

Rn−1

R1

b

b

b

b

Figure 2.5. The (n+ 1)-level construction. Here, ℓ = 2n−1 − 1.

with each recursion, but the loss is limited. One can indeed check that the blocklength

is N = 2n−1K after the nth recursion, and the number of channels (Li, Ri) at level

i = 1, . . . , n− 1 is 2n−i. Therefore the fraction of level-n channels can be lower bounded

as

1−
∑n−1

i=1 2n−i

2n−1K
≥ 1− 2n

2n−1K
= 1− 2

K
,

which can be made arbitrarily close to 1 by picking a large K.

Observe that the construction described above is universal: The positions of the

good channels, that is, Rns, after the transformation is independent of the underlying

channel W . One may therefore hope to use these channels to achieve rate 1/2 over any
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W with I(W ) ≥ 1/2. Unfortunately, however, the speed of polarization is too slow for

an SC decoder to succeed. This is most easily seen by noting that the Bhattacharyya

parameter of Rn+1 is given by

Z(Rn+1) = Z(Rn)Z(Ln).

Since Z(Ln) approaches a non-zero constant (in particular it approaches 1 if I(W ) = 1/2)

as n grows, the multiplicative improvement in Z(Rn) gradually slows down (to a halt if

I(W ) = 1/2). This is in constrast with the squaring of the Bhattacharyya parameters in

each ‘+’ transform in Arıkan’s standard method, which is necessary for the exponential

decay of the error probability.

We now derive simple bounds on the speed of universal polarization using the

extremal properties of the binary erasure channel (BEC) and the BSC under polarization.

For this purpose, let h : [0, 1/2] → [0, 1] denote the binary entropy function, and let

a ∗ b = a(1− b) + b(1− a) denote binary convolution. Define the functions

f(x, y) = x(2y − x)

g(x, y) = 2y − h
(
h−1(x) ∗ h−1(2y − x)

)
,

over y ∈ [0, 1] and x ∈ [max{0, 2y − 1}, y], and the functions

F0(y) = G0(y) = y

Fn(y) = f(Fn−1(y), y)

Gn(y) = g(Gn−1(y), y)

, n = 1, 2, . . . .

Finally, let H(W ) = 1− I(W ) denote the entropy of the input to W given the output.

Proposition 2.2.2. Fn(H(W )) ≤ H(Rn) ≤ Gn(H(W )).

Proof. The claim holds trivially for n = 0. Suppose now that it holds for some n ≥ 1.
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Recall that among all pairs of channels V and W with given entropies H(V ) = h1

and H(W ) = h2, the entropy H((V,W )+) is minimized when V and W are both bi-

nary erasure channels (BECs) and maximized when both are binary symmetric channels

(BSCs) [65, Lemma 2.1]. This implies that

f(H(Rn),H(W )) ≤ H(Rn+1) ≤ g(H(Rn),H(W )). (2.2)

On the other hand, f(x, y) and g(x, y) are increasing in x. To see the latter, note that h(x)

is increasing for x ∈ [0, 1/2], and thus it suffices to show that kx(t) = h−1(t)∗h−1(2x− t)

is decreasing in t. Defining f = h−1, some algebra yields

d

dt
kx(t) = f ′(t)[1 − 2f(2x− t)]− f ′(2x− t)[1− 2f(t)].

The right-hand-side of the above is at most zero, since f ′(t) ≤ f ′(2x − t) and f(t) ≤

f(2x− t) ≤ 1/2, which in turn are due to f being convex, increasing, and [0, 1/2]-valued.

Thus, it follows from (2.2) that

Fn+1(H(W )) = f(Fn(H(W )),H(W ))

≤ f(H(Rn),H(W ))

and

g(H(Rn),H(W )) ≤ g(Gn(H(W )),H(W ))

= Gn+1(H(W )).

Combining these with (2.2) implies the claim for n+ 1, concluding the proof.

Observe that the above upper bound on I(Rn) is obtained by replacing Rn and Ln

with BECs with symmetric capacities I(Rn) and I(Ln) respectively before each polariza-

tion step. Similarly, the lower bound is obtained by replacing these channels with BSCs.
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Recall that both descendants of a BEC are also BECs during polarization, whereas only

one of BSCs descendant is a BSCs. This implies that while the upper bound is achieved

by the BEC, the lower bound is loose. Tables 2.1 and 2.2 list the bounds for I(W ) = 0.5

and I(W ) = 0.8.

n lower bound upper bound

0 0.5 0.5
1 0.713 0.750
2 0.771 0.812
3 0.805 0.847
4 0.829 0.870
5 0.846 0.887
10 0.895 0.931
20 0.932 0.960
30 0.949 0.972
40 0.958 0.978

Table 2.1. Bounds on I(Rn) for I(W ) = 0.5.

n lower bound upper bound

0 0.8 0.8
1 0.928 0.960
2 0.957 0.986
3 0.972 0.994
4 0.981 0.997
5 0.986 0.999
10 0.996 0.999991
15 0.9990 0.99999991
20 0.9996 0.9999999991

Table 2.2. Bounds on I(Rn) for I(W ) = 0.8.

2.2.1 Universal polar coding

To obtain a good code, we can append Arıkan’s fast (but not universal) polariza-

tion transform to the universal (but slow) polarization transform described above. That

is, once n is sufficiently large so that I(Rn) > 1− ǫ for all W , we may start polarizing Rn

fast. The simplest way to do so is to take M = 2m copies of the slow polarization trans-

form, and pass the M copies of each Rn through a length-M fast polarization transform.
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Inputs to the remaining channels are frozen and the resulting code blocks are decoded

in succession.

One may tailor the polar codes in the fast polarization stage to the channel that is

least degraded with respect to all channels with I(W ) ≥ 1−ǫ. How to find such channels

is shown in [51]. A computationally simpler alternative is to find a universal upper

bound Z(Rn) ≤ δ (as in Proposition 2.2.2) and tailor the code in the fast polarization

stage to a BEC with erasure probability δ. This method is motivated by the fact that

among all channels with a fixed Z(W ), the BEC’s polarized descendants have the highest

Bhattacharyya parameters, and the latter can be computed in linear time [7].

2.2.2 Rate

Since I(Rn) is close to 1, both approaches mentioned in the previous paragraph

will induce a negligible rate loss in the fast polarization stage. Recall also that the loss

in the slow polarization stage is O(1/K). Hence the rate of the code can be made as

close to 1/2 as desired.

2.2.3 Error probability

Recall that the reliabilities of the good channels after fast polarization is o(2−Mβ
)

for all β < 1/2 [6], and thus the block error probability of this code of length NM is

upper bounded all W ∈ W(1/2) by

No(2−Mβ

),

which for fixed N vanishes as M grows.

2.2.4 Complexity

To estimate the decoding complexity, it is useful to explain the decoding scheme

in some detail:
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The decoder can be thought of as SC decoders for the slow and fast polarization

transforms operating in tandem. In each decoding stage, the SC decoders for all slow

polarization blocks compute the likelihood ratio for the next bit-channel. If the latter is

a frozen channel (i.e., any channel other than Rn), then the decoders simply declare the

frozen bit values. Otherwise, they pass the likelihood ratios to the corresponding SC de-

coder for the fast polarization stage, which uses these likelihood ratios for decoding, and

passes the decoded bit values to back to the slow polarization decoder. A straightforward

computation shows that the total complexity of this decoder is

O(N)κf (M) +Mκs(N),

where κf (M) and κs(N) respectively are the decoding complexities of the fast polariza-

tion transform of lengthM and a slow polarization transform of length N . It is known [7]

that κf (M) = O(M logM). Now, observe that the slow polarization transform is almost

identical to the fast one; it only differs in the chaining operation in the second level and

in the combination of non-identical channels at each step. It is easy to see that neither

of these differences affects the complexity of computing the likelihood ratios of the po-

larized channels. That is, κs(N) = O(N logN). This implies that the total decoding

complexity at blocklength MN is O(MN logMN), as in standard polar codes. Similar

arguments show that the encoding complexity is also O(MN logMN). Note also that

the chain length K affects encoding/decoding complexities only insofar as it appears as

a linear factor in the blocklength.

2.3 Codes with Arbitrary Rates

We now discuss how to obtain universal polar codes with rates other than 1/2.

Recall that in the previous section we fixed the rate of the code by using only the

universally good channel Rn for coding. When I(W) is greater than 1/2, the code rate

can be increased by considering coding over Ln also, since Proposition 2.2.1 then implies
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Figure 2.6. A one-level transform that combines b + g = 6 channels with g = 2 and b = 4.
Only the labels of the channels at the corresponding locations are shown.

I(Ln) > 0. For example, once I(Rn) is sufficiently close to 1, one may obtain more

universally good channels by slow-polarizing Ln alone. When I(W) is less than 1/2, the

same method can be used by slow-polarizing Rn further once I(Rn) becomes sufficiently

close to 2I(W). Each stage of this polarization method turns half of the remaining

nonextremal channels to extremal ones. The resulting good channels can then be fast-

polarized for coding. However, the blocklengths of such constructions can be very large,

since, as we have seen in Tables 2.1 and 2.2, even a single stage of slow polarization

requires a large number of recursions.

Instead, here we construct codes with rates g/(b + g) for given positive integers

g and b by generalizing the ideas in Section 2.2. Following the reasoning there, this can

be done if one can (i) combine b+ g channels at a time to create only b+ g channel types

after each level of slow polarization, and (ii) ensure that g of these become better in each

step and the remaining b become worse. Once the good channels become nearly perfect,

one can boost their reliabilities through fast polarization.

It thus suffices to describe a construction that has properties (i) and (ii). Again,

the simplest description is through figures. Figure 2.6 shows an example of the type

of transforms we will consider. In particular, the transform circuit consists of b + g

horizontal wires, each of which has a single modulo-2 addition that connects it to the

wire below. Starting at the second wire from the top, one can place this connection to

the right or to the left of the connection above.

The channels Ui → Y b+g
1 U i−1

1 produced by the transform are defined as usual,
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Figure 2.7. A rate-2/6 transform (left) and a rate-4/6 transform (right). Channels enter
both transforms on the right-hand-side and produce the channels on the left-hand-side.

where the inputs and outputs are numbered in increasing order from top to bottom. We

label the channels as follows (see Figure 2.6): If a wire’s connection to the bottom is

on the left side of its connection to the top, then the corresponding channel is called a

type-L channel. The ith such channel from the top is called L
(i)
1 . Similarly, a channel

whose connection to the bottom is on the right side of its connection to the top is called

a type-R channel. In addition, the top channel is a type-L channel and the bottom

channel is a type-R channel. Observe that the fraction of type-L and type-R channels

can be adjusted to arbitrary non-zero values by an appropriate choice of transform.

We will restrict our attention to two classes of transforms for which the claims

will be easy to verify. For g ≤ b (that is, when the target rate is less than 1/2), we will

use the transform that produces the two channel types in the order

LL . . . L
︸ ︷︷ ︸

b−g

LRLR . . . LR
︸ ︷︷ ︸

g pairs

(2.3)

That is, the top b − g channels will be type-L, followed by an alternating sequence of

type-L and type-R channels. In order to define a recursion, we need to specify the order

in which the transform combines these b+ g in each level. In the present case, the input

order is obtained by cyclically down-shifting (2.3) by one:

RLL . . . L
︸ ︷︷ ︸

b−g+1

RL . . . RL
︸ ︷︷ ︸

g−1 pairs

(2.4)

When g ≥ b, the top channels produced by the transform will be of alternating
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types, followed by a sequence of type-R channels:

LRLR . . . LR
︸ ︷︷ ︸

b pairs

RR . . . R
︸ ︷︷ ︸

g−b

(2.5)

These channels will be combined in the each recursion after up-shifting the order (2.5)

by one:

RL . . . RL
︸ ︷︷ ︸

b−1 pairs

RR . . . R
︸ ︷︷ ︸

g−b+1

L (2.6)

Examples of both recursions are shown in Figure 2.7. We will label the channels produced

by these recursions as in the previous section: If g ≤ b, then the channels L
(1)
n , . . . , L

(b)
n

and R
(1)
n . . . R

(g)
n after the nth recursion are transformed through (2.3) and (2.4) to

produce L
(1)
n+1, . . . , L

(b)
n+1 and R

(1)
n+1 . . . R

(g)
n+1. The first recursion takes b+ g copies of W

as input. For the case g ≥ b, the recursions are defined through (2.5) and (2.6).

The reason for the labeling above is the analogy between type-L (respectively,

type-R) channels and the channel L1 (respectively, R1) of Section 2.2. Indeed, suppose

that we combine b + g copies of W through a transform that produces the channels

L
(1)
1 , . . . , L

(b)
1 and R

(1)
1 , . . . , R

(g)
1 . We clearly have

b∑

i=1

I(L(i)
n ) +

g
∑

i=1

I(R(i)
n ) = (b+ g)I(W ).

Moreover, type-L channels are worse than W and type-R channels are better:

Proposition 2.3.1. For all i = 1, . . . , b and j = 1, . . . , g we have

I(L
(i)
1 ) ≤ I(W ) ≤ I(R

(j)
1 ).

Both inequalities are strict unless I(W ) ∈ {0, 1}.

Proof. We prove the statement for the case g ≤ b. The case g > b can be proved similarly.
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By construction, we have from top to bottom the following sequence of channels

L
(1)
1 , . . . , L

(b−g)
1

︸ ︷︷ ︸

b−g

, L
(b−g+1)
1 , R

(1)
1 , . . . , L

(b)
1 , R

(g)
1

︸ ︷︷ ︸

g pairs

.

Define Q1 = W and Qi+1 = (Qi,W )+ for i = 1, 2, . . . If g = 1, we have L
(i)
1 = (Qi,W )−

for 1 ≤ i ≤ b and R
(1)
1 = (Qb,W )+. If g > 1, we have

L
(i)
1 =







(Qi,W )− 1 ≤ i ≤ b− g

(Qb+g−1,W
−)− i = b− g + 1

(W+,W−)− b− g + 1 < i < b

(W+,W )− i = b

and

R
(j)
1 =







(Qb−g+1,W
−)+ j = 1

(W+,W−)+ 1 < j < g

(W+,W )+ j = g

.

The claim then follows by noting that

I((W,V )−) ≤ min{I(W ), I(V )}

≤ max{I(W ), I(V )}

≤ I((W,V )+)

for any two channelsW and V . Strict inequalities follow again from [65, Lemma 2.1].

Having created b bad and g good channels out of W , we wish to enhance po-

larization by making the bad channels worse and the good channels better. The main

result of this section is that these recursions indeed polarize channels universally:

Proposition 2.3.2.
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Figure 2.8. An example of polarization.

(i) If I(W ) ≥ g/(b + g), then for all 1 ≤ i ≤ g

lim
n→∞

I(R(i)
n ) = 1.

(ii) If I(W ) ≤ g/(b + g), then for all 1 ≤ i ≤ b

lim
n→∞

I(L(i)
n ) = 0.

Proof. We prove (i) for the case g ≤ b. The arguments for the remaining three cases are

similar. Recall the recursions (2.3) and (2.4). Define Q1 = R
(g)
n and Qi+1 = (Qi, L

(i)
n )+

for 1 ≤ i ≤ b− g. If g = 1, we have

L
(i)
n+1 = (Qi, L

(i)
n )− for 1 ≤ i ≤ b

and

R
(1)
n+1 = (Qb, L

(b)
n )+.

Therefore, I(L
(i)
n ) is decreasing while I(R

(1)
n ) is increasing. If g > 1, define

P+
i = (L(b−g+i)

n , R(i)
n )+

P−
i = (L(b−g+i)

n , R(i)
n )−
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for 1 ≤ i < g. One can check that the order of inputs to the recursion implies (see

Figure 2.7 for reference)

L
(i)
n+1 =







(Qi, L
(i)
n )− 1 ≤ i ≤ b− g

(Qb−g+1, P
−
1 )− i = b− g + 1

(P+
g−b+i−1, P

−
g−b+i)

− b− g + 1 < i < b

(P+
g−1, L

(b)
n )− i = b

.

Note that I(P−
g−b+i) = I((L

(i)
n , R

(g−b+i)
n )−) ≤ I(L

(i)
n ) for b− g+1 ≤ i < b. It follows that

I(L
(i)
n+1) ≤ I(L

(i)
n ) for all 1 ≤ i ≤ b. Similarly, one can check that

R
(j)
n+1 =







(Qb−g+1, P
−
1 )+ j = 1

(P+
j−1, P

−
j )+ 1 < j < g

(P+
g−1, L

(b)
n )+ j = g

.

Note that I(Qb−g+1) ≥ I(R
(g)
n ) and I(P+

j−1) = I((L
(b−g+j−1)
n , R

(j−1)
n )+) ≥ I(R

(j−1)
n ) for

1 < j ≤ g. It then follows that I(R
(1)
n+1) ≥ I(R

(g)
n ) and I(R

(j)
n+1) ≥ I(R

(j−1)
n ) for 1 < j ≤ g.

That is, type-R channels at level n+ 1 are better than the ones at level n, with a shift

in indices.

To show that the improvement in I(R
(i)
n ) is strict unless all the type-R channels

are perfect, one needs to rule out the following possibility: If at some point in the

polarization process some, but not all, type-R channels become perfect, then the perfect

channels entering subsequent recursions may stall the polarization of the non-perfect

ones. We now argue that the structure of the channel combinations does not allow this.

Suppose that all but one type-R channels polarize to perfect ones. Then, there must be

at least one unpolarized type-L channel, since otherwise the inequality I(W ) ≥ g/(b+ g)

would be violated. Suppose that there is only one such type-L channel L(k) and all others

are polarized to useless ones. One can then check that either the unpolarized type-L
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and type-R channels will be combined in the next recursion (which will further polarize

the type-R channel), or their positions will change. In particular, the type-L channel

index k will remain unchanged after each recursion, while the type-R channel index will

be cyclically shifted by one. If 1 ≤ k ≤ b − g + 1, then L(k) will be combined with the

unpolarized type-R channel when the type-R channel index is shifted to g. On the other

hand, if b − g + 1 < k ≤ b, then L(k) will be combined with the unpolarized type-R

channel when the type-R channel index is shifted to neighboring positions k − b+ g − 1

or k − b + g. Therefore, regardless of the unpolarized type-R channel’s position, strict

polarization will take place in at most g recursions. Figure 2.8 is an example of strict

polarization of period two over the rate-2/6 recursion. Suppose that at some point in time

the channels are polarized as in the graph on the right. Here, 0 denotes a completely

noisy channel, 1 is a perfect channel, and R and L are the mediocre R- and type-L

channels. Channels enter the recursion from the right. After the first step, the channels

change positions, but no polarization takes place. Nevertheless, the new positions of

R and L ensure that they are combined in the next step (left). One can check that

mediocre channels are always combined eventually, regardless of their initial positions.

Therefore, the type-R channel will polarize further, eventually becoming perfect. The

same reasoning can be used when there is more than one unpolarized type-R channel

and type-L channel.

2.3.1 Polar coding

Fix a transform of rate g/(b+g). The code construction is identical to the one in

Section 2.2: In the first level, channels are combined in the usual fashion. This is followed

by a single step of chainingK transforms that combines channels of different types. Then,

each subsequent step combines b+g transform blocks in the same fashion. Once sufficient

universal polarization is attained, the good channels R
(i)
n are fast-polarized further using

the Arıkan transform.
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2.3.2 Rate

As in the rate-1/2 case, the slow polarization transform involves leaving some

channels in lower levels of polarization. Similar arguments to those in Section 2.2 show

that the fraction of such channels is upper bounded by

(g + b)2

K
,

which can be made as small as desired by picking a large K.

2.3.3 Error probability

Since the reliability of the good channels are determined essentially by the fast

polarization stage, the error probability of the SC decoder can again be upper bounded

for all W ∈ W(g/b + g) by

No(2−Mβ

),

where N and M respectively are the lengths of the slow and the fast polarization stages.

2.3.4 Complexity

The present construction differs from the one in Section 2.2 only in the size b+g of

the one-level transform, and it is easily seen that the transforms discussed in this section

can be encoded and decoded in linear time. Hence, b + g does not affect the encoding

and decoding complexities, which are both O(MN logMN) for a blocklength-MN code.

2.4 Discussion

In independent work [36], Hassani and Urbanke propose two polarization-based

methods to construct universal codes. On close inspection, one of these methods and

the one presented here are seen to be complementary. In particular, the method here

guarantees universality in the first stage and reliability in the second, whereas the con-



26

struction in [36] reverses this order by combining identical channels in the first stage (i.e.,

fast polarization) and distinct channels in the second (i.e., slow polarization). It is evi-

dent from both works that many other variations are possible for constructing universal

polar codes, such as interleaving the fast and slow polarization stages. Such alternatives

may help reduce the impractically large blocklengths that the present chapter’s methods

require (see Table 2.1) to simultaneously achieve universality and reliability. For this

purpose one may also consider using larger (b + g)-type constructions for simple frac-

tional rates such as 1/2, or mixing the unconnected channels into the process to increase

the speed of slow polarization. The investigation of these are left for future study.

In addition to providing robustness to point-to-point channel coding, universal

polarization is also of interest from a theoretical perspective. Recall that one of the

many appeals of polarization methods is the ease with which they have been extended

to other communication settings. Polar codes’ optimality have already been established

for multiple-access channels [5], degraded wiretap channels [52], lossless [4], lossy [44],

distributed source coding [5], and some special cases of broadcast channels [31]. However,

standard polarization methods are difficult to extend to settings with two or more re-

ceivers, and the main bottleneck appears to be the incompatibility of polar code designs

for different receivers. Since the appearance of [36] and [64] on arXiv.org, universal polar

coding techniques have been shown to achieve the best known inner bounds in various

network communication settings, such as general broadcast channels [56], interference

channels [74,76] (see Chapter 3), relay channels [75] (see Chapter 6), and general wiretap

channels [19,33,78].

It is worth mentioning that the methods discussed here also yield universal source

codes, and can be extended to non-binary alphabets using standard arguments [65, Chap-

ter 3].
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Chapter 3

Interference Channels: Polar

Codes

In the following two chapters, we will investigate an important random coding

scheme, simultaneous decoding, in interference channels. Two low-complexity channel

coding schemes will be proposed, both of which achieve desired theoretical performance.

In this chapter, we present the first solution using polar codes. It achieves the Han–

Kobayashi inner bound for two-user interference channels and generalizes to interference

networks.

3.1 Introduction

Consider an interference channel p(y1, y2|x1, x2) as depicted in Figure 3.1, in

which sender i ∈ {1, 2} wishes to communicate an independent message reliably to its

respective receiver i.

A (2nR1 , 2nR2 , n) code for the interference channel consists of

• two message sets [1 : 2nR1 ] and [1 : 2nR2 ],

• two encoders, where encoder i ∈ {1, 2} assigns a codeword xni (mi) to each message

28
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Figure 3.1. Two-user interference channel.

mi ∈ [1 : 2nRi ], and

• two decoders, where decoder i ∈ {1, 2} assigns an estimate m̂i or an error message

e to each received sequence yni .

We assume that the message pair (M1,M2) is uniformly distributed over [1 : 2nR1 ]× [1 :

2nR2 ]. The average probability of error is defined as P
(n)
e = P

{
(M̂1, M̂2) 6= (M1,M2)

}
.

A rate pair (R1, R2) is said to be achievable if there exists a sequence of (2nR1 , 2nR2 , n)

codes such that limn→∞ P
(n)
e = 0. The capacity region is the closure of the set of

achievable rate pairs (R1, R2).

One important decoding scheme for interference channels is simultaneous decod-

ing. It is a key component in the Han–Kobayashi coding scheme [34], whereby each

receiver, instead of treating interference as noise, decodes for the intended message as

well as part of the interfering message. Recently, Bandemer, El Gamal, and Kim showed

that simultaneous nonunique decoding is rate-optimal for random code ensembles with

superposition coding and time sharing [8].

Unfortunately, simultaneous decoding uses multiuser sequence detection at the

core of its operation and it is not known how this can be implemented in low complexity.

Consequently, several heuristic approaches have been developed that attempt to achieve

“similar” performance; see, for example, [48, 82].

In Chapters 3 and 4, we address this problem from a different angle and ask

the following questions. Is simultaneous decoding really needed? Is there an alternative

coding scheme that achieves the same performance at low complexity?

Treating interference as noise and successive cancellation decoding (with no rate-

splitting) are the two main decoding schemes used in practice, both of which achieve
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strictly smaller rate regions than simultaneous decoding. Recently, Zhao, Tan, Aves-

timehr, Diggavi, and Pottie [83] studied successive cancellation decoding for more than

two layers of Gaussian superposition codes, as an application of the rate-splitting scheme

by Rimoldi and Urbanke [60] and Grant, Rimoldi, Urbanke, and Whiting [32] to inter-

ference channels. In Section 3.2, we investigate this application in full generality by

considering arbitrary code distributions for superposition coding, which is sometimes

necessary as pointed out in [80]. We show that regardless of the number of layers and

the code distribution of each layer, the standard single-block rate-splitting scheme fails

to achieve the simultaneous decoding inner bound in interference channels.

In the following sections, we present a polar coding solution that achieves the

simultaneous decoding performance. The method is built on two techniques developed

recently by Hassani and Urbanke [36], and Arıkan [5]. We explain these two building

blocks in Sections 3.4, and show how they can be combined and applied to achieve the

simultaneous decoding performance in Section 3.5. In Section 3.6, we extend the result

to general interference networks, which includes the Han–Kobayashi inner bound as an

important special case.

3.2 Insufficiency of Single-Block Rate-Splitting

In this section, we consider the symmetric Gaussian interference channels. We

show a corner point of the simultaneous decoding inner bound is not achievable using

rate-splitting with successive cancellation decoding. We assume average power constraint

P . The channel outputs at the receivers for inputs X1 and X2 are

Y1 = X1 + gX2 + Z1,

Y2 = gX1 +X2 + Z2,

where g is a fixed constant and Z1, Z2 ∼ N(0, 1) are additive Gaussian noise components,

independent of (X1,X2). We define the received signal-to-noise ratio as S = P and the
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received interference-to-noise ratio as I = g2P .

Z1

Z2

X1

X2

Y1

Y2

g

g

1

1

Figure 3.2. Symmetric Gaussian interference channel.

The (s, t, d1, d2, F ) rate-splitting scheme and its achievable rate region are defined

as follows.

Rate splitting. We represent the message M1 by s independent parts M11,M12,

. . . ,M1s at rates R11, R12, . . . , R1s, respectively, and the message M2 by t independent

parts M21,M22, . . . ,M2t at rates R21, R22, . . . , R2t, respectively.

Codebook generation. We use superposition coding. Fix a cdf F = F (q)F (us|q)

F (vt|q) such that Q is finite, E[(Us)
2] ≤ P , and E[(Vt)

2] ≤ P . Randomly and inde-

pendently generate qn according to
∏n

k=1 F (qk). Randomly and conditionally indepen-

dently generate 2nR11 sequences un1 (m11), m11 ∈ [1 : 2nR11 ], each according to a product

cdf of F (u1|q). For j ∈ [2 : s], for each mj−1
1 , randomly and conditionally indepen-

dently generate 2nR1j sequences unj (m1j |mj−1
1 ), m1j ∈ [1 : 2nR1j ], each according to a

product cdf of F (uj |uj−1, q). Randomly and conditionally independently generate 2nR21

sequences vn1 (m21), m21 ∈ [1 : 2nR21 ], each according to a product cdf of F (v1|q). For

j ∈ [2 : t], for each mj−1
2 , randomly and conditionally independently generate 2nR2j se-

quences vnj (m2j |mj−1
2 ), m2j ∈ [1 : 2nR2j ], each according to a product cdf of F (vj |vj−1, q).

Encoding. To send message pair (m1,m2) = (ms
1,m

t
2), encoder 1 transmits

xn1 (m
s
1) = uns (m1s|ms−1

1 ) and encoder 2 transmits xn2 (m
t
2) = vnt (m2t|mt−1

2 ).

Decoding. We use successive cancellation decoding. Define the decoding order d1

at decoder 1 as an ordering of elements in {U s, VA} and d2 at decoder 2 as an ordering

of elements in {UB, V
t}, where A ⊆ [1 : t] and B ⊆ [1 : s].
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As an example, suppose that message M1 is split into two parts while message

M2 is not split. The decoding orders are

d1 : U → X2 → X1,

d2 : U → X1 → X2,

where in case of a single split, we write (U,X1) = (U1, U2) and X2 = V1. This means

that decoder 1 recovers M11,M2, and M12 successively and decoder 2 recovers M11,M12

and M2 successively. More precisely, upon receiving yn1 at decoder 1, decoding proceeds

in three steps:

1. Decoder 1 finds the unique message m̂11 such that

(un(m̂11), y
n
1 , q

n) ∈ T (n)
ǫ .

2. If m̂11 is found, decoder 1 finds the unique m̂2 such that

(un(m̂11), x
n
2 (m̂2), y

n
1 , q

n) ∈ T (n)
ǫ .

3. If (m̂11, m̂2) is found, find the unique m̂12 such that

(un(m̂11), x
n
2 (m̂2), x

n
1 (m̂11, m̂12), y

n
1 , q

n) ∈ T (n)
ǫ .

Similarly, upon receiving yn2 , decoding proceeds in three steps:

1. Decoder 2 finds the unique message m̂11 such that

(un(m̂11), y
n
2 , q

n) ∈ T (n)
ǫ .
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2. If m̂11 is found, decoder 2 finds the unique m̂12 such that

(un(m̂11), x
n
1 (m̂11, m̂12), y

n
2 , q

n) ∈ T (n)
ǫ .

3. If (m̂11, m̂12) is found, find the unique m̂2 such that

(un(m̂11), x
n
1 (m̂11, m̂12), x

n
2 (m̂2), y

n
2 , q

n) ∈ T (n)
ǫ .

Following the standard analysis of the error probability [27, Sec. 4.5.1], P
(n)
e tends to

zero as n→ ∞ if

R11 < I(U ;Y1 |Q)− δ(ǫ), (3.1a)

R2 < I(X2;Y1 |U,Q)− δ(ǫ), (3.1b)

R12 < I(X1;Y1 |U,X2, Q)− δ(ǫ), (3.1c)

R11 < I(U ;Y2 |Q)− δ(ǫ), (3.1d)

R12 < I(X1;Y2 |U,Q)− δ(ǫ), (3.1e)

R2 < I(X2;Y2 |X1, Q)− δ(ǫ). (3.1f)

By Fourier–Motzkin elimination, (R1, R2) is achievable if

R1 < min{I(U ;Y1 |Q), I(U ;Y2 |Q)}+min{I(X1;Y1 |U,X2, Q), I(X1;Y2 |U,Q)}, (3.2)

R2 < min{I(X2;Y1 |U,Q), I(X2;Y2 |X1, Q)}.

We note some common misconception in the literature (see [28] and the references therein)

that the bounds on R11 and R12 in (3.1) simplify to

R1 < min{I(U ;Y1 |Q) + I(X1;Y1 |U,X2, Q), I(X1;Y2 |Q)},

which leads to an incorrect conclusion that the Han–Kobayashi inner bound can be
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achieved by rate-splitting and successive cancellation. As pointed out in [28], successive

decoding requires individual rate constraints (3.1d) and (3.1e) instead of the sum-rate

constraint R1 < I(X1;Y2|Q). Moreover, a proper application of the Fourier–Motzkin

elimination procedure requires taking the minimum for four cases of sum-rates, which

leads to (3.2).

For more layers of splitting and general decoding orders, decoding can be per-

formed in a similar fashion. Thus, an (s, t, d1, d2, F ) rate-splitting scheme is specified

by

• the numbers s and t of independent parts in messages M1 = (M11, . . . ,M1s) and

M2 = (M21, . . . ,M2t),

• the cdf F = F (q)F (us|q)F (vt|q), and

• the decoding orders d1 and d2.

Let R(s, t, d1, d2, F ) denote the achievable rate region of the (s, t, d1, d2, F ) rate-splitting

scheme. Let R∗(s, t, d1, d2) be the closure of ∪FR(s, t, d1, d2, F ). Let C(x) :=
1
2 log(1+x)

and define

R∗
1(s, t, d1, d2) = max{R1 : (R1,C(S)) ∈ R

∗(s, t, d1, d2)}

as the maximal achievable rate R1 such that R2 is at individual capacity.

Now we are ready to state the main result of this section. Assume that the

symmetric Gaussian interference channel has strong but not very strong interference, i.e.,

S < I < S(S + 1). The capacity region is the set of rate pairs (R1, R2) such that

R1 ≤ C(S),

R2 ≤ C(S),

R1 +R2 ≤ C(I + S),

which is achieved by simultaneous decoding with X1,X2 ∼ N(0, P ) and Q = ∅ [34, 67].
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Theorem 3.2.1 states that the corner point of this region is not achievable using any

(s, t, d1, d2, F ) rate-splitting scheme.

Theorem 3.2.1. For the symmetric Gaussian interference channel with S < I < S(S +

1),

R∗
1(s, t, d1, d2) < C

( I

1 + S

)

for any finite s, t and decoding orders d1, d2.

Remark 3.2.1. The idea of the standard rate-splitting scheme for the multiple access

channel is to represent each message by multiple parts and encode them into superim-

posed layers. Combined with successive cancellation decoding, this superposition coding

scheme transforms the multiple access channel into a sequence of point-to-point channels.

For the interference channel, which consists of two underlying multiple access channels

p(yi|x1, x2), i = 1, 2, however, this idea no longer works. Here rate-splitting induces two

sequences of point-to-point channels that have different qualities in general. To ensure

reliable communication, the messages have to be loaded at the rate of the worse channel

on each layer, which in general incurs a total rate loss. Theorem 3.2.1 essentially states

that there is no split of the messages that “equalizes” the qualities of the two point-to-

point channels on each layer, even when the decoding orders of the layers are optimized.

Rate-splitting is alternatively viewed as mapping a boundary point of one multiple access

rate region to a corner point of another multiple access rate region in a higher dimen-

sional space [32,60]. Theorem 3.2.1 shows that there is no such mapping in general under

which the corresponding corner points for the two multiple access channels coincide.

3.3 Proof of Theorem 3.2.1

For the simplicity of notation, we prove the claim for Q = ∅. The case for general

Q follows the same logic. First, we show the special property of the (s, t, d1, d2, F ) rate-

splitting scheme that achieves R∗
1(s, t, d1, d2).
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Lemma 3.3.1. For any (s, t, d1, d2, F ) rate-splitting scheme that achieves R∗
1(s, t, d1, d2),

we can assume without loss of generality that s = t and the decoding orders are

d∗1 : U1 → V1 → · · · → Us−1 → Vs−1 → Us → Vs,

d∗2 : U1 → U2 → · · · → Us → V1 → V2 → · · · → Vs.

Proof. First, we specify the optimal decoding order at decoder 2. Fix any (s, t, d1, d2, F )

rate-splitting scheme that guarantees R2 = C(S). Suppose that some part Vj of the

message M2 is decoded earlier than Uk of the message M1 at decoder 2, that is,

d2 : d21 → Vj → Uk → d22.

Now flip the decoding order of Vj and Uk in d̃2 as

d̃2 : d21 → Uk → Vj → d22

and construct (s, t, d1, d̃2, F ) rate-splitting scheme, where the message splitting, the un-

derlying distribution, and decoding order d1 remain the same. Let R̃ij be the rate of

message mij in the (s, t, d1, d̃2, F ) rate-splitting scheme. Then we have all the rates

remain the same except

R2j = I(Vj ;Y2 |V j−1, Uk−1),

R̃2j = I(Vj ;Y2 |V j−1, Uk),

R1k = I(Uk;Y2 |V j , Uk−1),

R̃1k = I(Uk;Y2 |V j−1, Uk−1).

Note that R2j ≤ R̃2j since U
k is independent of V j. On the other hand, since R2j already
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results in full rate at R2, we must have R̃2j = R2j . It follows that

I(Uk;Vj |Y2, V j−1, Uk−1) = 0

and therefore R1j = R̃1j . Thus, without loss of generality, d2 can be of the form U1 →

U2 → . . .→ Us → V1 → V2 → . . . → Vt.

Next, we show merging two consecutive parts of the same message in both de-

coding orders improves the rates in general. Consider an (s, t, d1, d2, F ) rate-splitting

scheme with decoding order

d1 : d11 → Uk → Uk+1 → d12,

d2 : d21 → Uk → Uk+1 → d21,

where dij , i, j ∈ {1, 2}, are parts of the decoding order pair (d1, d2) that are not explicitly

specified. Construct a (s− 1, t, d′1, d
′
2, F

′) rate-splitting scheme, where

U ′
j =







Uj if j ∈ [1 : k − 1]

(Uk, Uk+1) if j = k

Uj+1 if i ∈ [k + 1 : s− 1],

V ′
j = Vj for j ∈ [1 : t], and decoding orders are

d′1 : d11 → U ′
k → d12 and d′2 : d21 → U ′

k → d22.

Let Rij be the rate of mij in the (s, t, d1, d2, F ) superposition coding scheme and R′
ij

be the rate of mij in the (s − 1, t, d′1, d
′
2, F

′) rate-splitting scheme. Following standard
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analysis of error probability, we have

R′
1j =







R1j if j ∈ [1 : k − 1]

R1,j+1 if j ∈ [k + 1 : s− 1]

and R′
1k ≥ R1k + R1,k+1, which follows since min{a1 + a2, b1 + b2} ≥ min{a1, b1} +

min{a2, b2}. Moreover, we have R′
2j = R2j for j ∈ [1 : t]. By Fourier–Motzkin elimination,

we have

R(s, t, d1, d2, F ) ⊆ R(s− 1, t, d′1, d
′
2, F

′).

A similar conclusion holds for two consecutive parts (Vk, Vk+1) of message M2.

Finally, combining the merge operation and the optimal decoding order d∗2, we

can assume without loss of generality that the message parts from M1 and M2 are

decoded alternately at decoder 1. Therefore, the class of rate-splitting schemes can be

narrowed down to (s, s, d∗1, d
∗
2, F ) rate-splitting scheme with

d∗1 : U1 → V1 → · · · → Us−1 → Vs−1 → Us → Vs.

Note that by setting U1 = ∅, this coding scheme recovers the case when V1 of message

M2 is decoded first at the decoder 1. By setting Vs = ∅, this coding scheme recovers the

case when the whole message M2 is decoded at decoder 1. Therefore, there is no loss of

generality in assuming the (s, s, d∗1, d
∗
2, F ) rate-splitting scheme.

The following Lemma 3.3.2 that provides a necessary condition for achieving the

corner point of the capacity region.

Lemma 3.3.2. A necessary condition for (2, 2, d∗1, d
∗
2, F ) rate-splitting scheme to attain
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the corner point is that the distribution F is such that

X1 ∼ N(0, P ) and X2 ∼ N(0, P ).

Proof of Lemma 3.3.2. Suppose the (2, 2, d∗1, d
∗
2, F ) rate-splitting scheme attains the cor-

ner point (C(I/(1 + S)),C(S)). Let U = U1 and V = V1 Then, for R2 we have

C(S) = min{I(V ;Y1 |U), I(V ;Y2 |X1)}

+ I(X2;Y2 |X1, V )

≤ I(X2;Y2 |X1)

≤ C(S). (3.3)

Given X1, the channel from X2 to Y2 is a Gaussian channel with SNR S. Therefore the

condition X2 ∼ N(0, P ) is necessary for (3.3) to hold with equality. At the corner point,

R1 must satisfy the following

C(I/(1 + S)) = min{I(U ;Y1), I(U ;Y2)}

+min{I(X1;Y1 |U, V ), I(X1;Y2 |U)}

≤ I(U ;Y2) + I(X1;Y2 |U)

= I(X1;Y2)

≤ C(I/(1 + S)). (3.4)

Given X2 ∼ N(0, P ), the channel fromX1 to Y2 is a Gaussian channel with SNR I/(1+S).

Therefore, the condition X1 ∼ N(0, P ) is necessary for (3.4) to hold with equality.

We also need the following technical lemma.

Lemma 3.3.3. Let F (u, x) be any distribution such that X ∼ N(0, P ) and I(U ;Y ) = 0,

where Y = X + Z with Z ∼ N(0, 1) independent of X. Then, I(U ;X) = 0.
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Proof. For every u ∈ U , we have

I(X;Y |U = u) = h(Y |U = u)− h(Y |X,U = u)

(a)
= h(Y )− h(Y |X)

= C(P ),

where (a) follows since Y is independent of U and U → X → Y form a Markov chain.

Suppose for some u, E(X2|U = u) < P , i.e., the effective channel SNR is strictly less

than P . Then I(X;Y |U = u) < P . As a result, we must have E(X2|U = u) ≥ P for all

u ∈ U . On the other hand,

P ≤
∫

E(X2 |U = u)dF (u)

= E(X2)

= P,

which forces E(X2|U = u) = P for almost all u. Since Gaussian input N(0, P ) is the

unique distribution that attains the rate C(P ) in the Gaussian channel with SNR P , the

distribution F (x|u) must be N(0, P ) for almost all u. Therefore I(U ;X) = 0.

Now we are ready to establish the suboptimality of the rate-splitting scheme.

It is straightforward to check for the case s = 1. For s = 2, we prove by

contradiction. Let U = U1 and V = V1. The achievable rate region of the (2, 2, d∗1, d
∗
2, F )

rate-splitting scheme is the set of rate pairs (R1, R2) such that

R1 < min{I(U ;Y1), I(U ;Y2)}

+min{I(X1;Y1 |U, V ), I(X1;Y2 |U)} := I1,

R2 < min{I(V ;Y1 |U), I(V ;Y2 |X1)}

+ I(X2;Y2 |X1, V ) := I2.
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Assume that the corner point of the capacity region is achieved by the (2, 2, d∗1, d
∗
2, F )

rate-splitting scheme, that is,

I1 = C(I/(1 + S)), (3.5)

I2 = C(S). (3.6)

Then, by Lemma 3.3.2, we must have X1 ∼ N(0, P ) and X2 ∼ N(0, P ). Consider

I1 = min{I(U ;Y1), I(U ;Y2)}

+min{I(X1;Y1 |U, V ), I(X1;Y2 |U)},

≤ I(U ;Y1) + I(X1;Y2 |U) (3.7)

= h(Y1)− h(Y1 |U) + h(Y ′
2 |U)− h(Y ′

2 |X1), (3.8)

where Y ′
2 = Y2/g = X1 + (X2 + Z2)/g. Since

1

2
log(2πe(S + 1)/g2) = h(Y ′

2 |X1)

≤ h(Y ′
2 |U1)

≤ h(Y ′
2)

=
1

2
log(2πe(I + S + 1)/g2),

there exists an α ∈ [0, 1] such that h(Y ′
2 |U) = (1/2) log(2πe (αI + S +1)/g2). Moreover,

since X2 ∼ N(0, P ) and I < S(1 + S), the channel X1 → Y1 is a degraded version of the

channel X1 → Y ′
2 , i.e., Y1 = Y ′

2 +Z ′, where Z ′ ∼ N(0, I +1− (S +1)/g2) is independent

of X1 and X2. By the entropy power inequality,

22h(Y1|U) ≥ 22h(Y
′
2 |U) + 22h(Z

′|U)

= 2πe(αS + I + 1).
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Therefore, it follows from (3.8) that

I1 ≤ h(Y1)− h(Y1 |U) + h(Y ′
2 |U)− h(Y ′

2 |X1)

≤ 1

2
log

(
(I + S + 1)(αI + S + 1)

(αS + I + 1)(1 + S)

)

(a)

≤ C(I/(1 + S)),

where (a) follows since S < I. To match the standing assumption in (3.5), we must have

equality in (a), which forces α = 1 and h(Y ′
2 |U) = (1/2) log(2πe(I + S + 1)/g2) = h(Y ′

2),

i.e., I(U ;Y ′
2) = 0. Note that X1,X2 ∼ N(0, P ) and the channel from X1 to Y ′

2 is a

Gaussian channel. Applying Lemma 3.3.3 yields

I(U ;X1) = 0. (3.9)

Now, I2 can be simplified to

I2 = min{I(V ;Y1 |U), I(V ;Y2 |X1)}+ I(X2;Y2 |X1, V ) (3.10)

(b)
= min{I(V ;Y1), I(V ;Y2 |X1)}+ I(X2;Y2 |X1, V )

≤ I(V ;Y1) + I(X2;Y2 |X1, V )

= h(Ỹ1)− h(Ỹ1 |V ) + h(Ỹ2 |V )− h(Y2 |X1,X2), (3.11)

where (b) follows since I(U ;Y1|V ) ≤ I(U ;Y1|X2) = I(U ;X1+Z1) ≤ I(U ;X1) = 0, which

implies I(V ;Y1|U) = I(V ;Y1). In (3.11), we denote Ỹ1 = Y1/g = X2 + (X1 + Z1)/g and

Ỹ2 = X2 + Z2. Since

1

2
log(2πe) = h(Ỹ2 |X2)

≤ h(Ỹ2 |V )

≤ h(Ỹ2)
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=
1

2
log(2πe(1 + S)),

there exists a β ∈ [0, 1] such that h(Ỹ2|V ) = (1/2) log(2πe (1 + βS)). Moreover, since

X1 ∼ N(0, P ) and I < S(1 + S), Ỹ1 is a degraded version of Ỹ2, i.e., Ỹ1 = Ỹ2 + Z̃, where

Z̃ ∼ N(0, (1 + s)/g2 − 1) is independent of X1 and X2. Applying the entropy power

inequality, we have

22h(Ỹ1|V ) ≥ 22h(Ỹ2|V ) + 22h(Z̃|V )

= 2πe(βS + (1 + S)/g2).

Therefore, it follows from (3.11) that

I2 ≤ h(Ỹ1)− h(Ỹ1 |V ) + h(Ỹ2 |V )− h(Y2 |X1,X2)

≤ 1

2
log

(
(I + S + 1)(1 + βS)

g2(βS + (1 + S)/g2)

)

(c)

≤ C(S),

where (c) follows from the channel condition I < (1 + S)S. To match the standing

assumption in (3.6), we must have equality in (c), which forces β = 1 and h(Ỹ2|V ) =

(1/2) log(2πe(1+S)) = h(Ỹ2), i.e., I(V ; Ỹ2) = 0. Note that X2 ∼ N(0, P ) and the channel

from X2 to Ỹ2 is a Gaussian channel. Applying Lemma 3.3.3 yields

I(V ;X2) = 0. (3.12)

However, conditions (3.9) and (3.12) implies

I(X1;Y1 |U, V ) = I(U, V,X1;Y1)− I(U, V ;Y1)

= I(X1;Y1) + I(V ;Y1 |X1)

− I(U ;Y1)− I(V ;Y1 |U)
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(d)
= I(X1;Y1),

where (d) follows since I(U ;Y1) ≤ I(U ;X1) = 0 and I(V ;Y1|U) ≤ I(V ;Y1|X1) ≤

I(V ;X2) = 0. Therefore,

I1 = min{I(X1;Y1), I(X1;Y2)}

= I(X1;Y1)

= C(S/(1 + I))

< C(I/(1 + S)),

which contradicts (3.5) and completes the proof for s = 2.

Finally, to show the suboptimality of the (s, s, d∗1, d
∗
2, F ) superposition coding

scheme for s > 2, denote the achievable rate region as the set of rate pairs (R1, R2) such

that R1 < I1 and R2 < I2. Then

I1 = min{I(U1;Y1), I(U1;Y2)}

+
s∑

j=2

min{I(Uj ;Y1 |U j−1, V j−1), I(Uj ;Y2 |U j−1)}

≤ I(U1;Y1) +

s∑

j=2

I(Uj ;Y2 |U j−1)

= I(U1;Y1) + I(U s
2 ;Y2 |U1)

(a)
= I(U1;Y1) + I(X1;Y2 |U1), (3.13)

where (a) follows since U s → X1 → Y1 form a Markov chain. Similarly, we have

I2 =

s−1∑

j=1

min{I(Vj , Y1 |U j−1, V j−1), I(Vj ;Y2 |X1, V
j−1)}

+ I(Vs;Y2 |X1, V
s−1)

≤ min{I(V1, Y1 |U1), I(V1;Y2 |X1)}
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+

s∑

j=2

I(Vj ;Y2 |X1, V
j−1)

= min{I(V1, Y1 |U1), I(V1;Y2 |X1)}

+ I(X2;Y2 |X1, V1). (3.14)

Note that (3.13) and (3.14) are of the same form as (3.7) and (3.10), respectively. There-

fore, the suboptimality follows from the same arguments as when s = 2. This completes

the proof.

3.4 Polar Coding Preliminaries

In this section, we present a coding scheme that achieves the simultaneous decod-

ing inner bound using the recently invented polar codes [7]. We start by reviewing two

techniques by Hassani and Urbanke [38] and by Arıkan [5] that serve as building blocks

for our design.

3.4.1 Aligning Polarized Indices

Consider two binary-input memoryless channels P : X → Y and Q : X → Z

with equal symmetric capacities I(P ) = I(Q). Recall that the symmetric capacity is the

mutual information between the input and the output of the channel when the input

is distributed uniformly. Suppose we wish to design a polar code that performs well

over both of these channels. For n = 2k, define Un = XnGn, where Gn =
[ 1,0
1,1

]⊗k
Bn

is the standard polar transformation. Here, ⊗k denotes the kth Kronecker power and

Bn is the ‘bit-reversal’ permutation. Assume that Xn is uniform. Define the channels
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Pi : Ui → Y nU i−1 and Qi : Ui → ZnU i−1 and sets

GY = {i ∈ [1 : n] : I(Pi) > 1− 2−nβ},

GZ = {i ∈ [1 : n] : I(Qi) > 1− 2−nβ},

BY = {i ∈ [1 : n] : I(Pi) < 2−nβ},

BZ = {i ∈ [1 : n] : I(Qi) < 2−nβ}.

(3.15)

for some β < 1/2. Standard polarization results imply that |GY |/n ≈ I(P ) = I(Q) ≈

|GZ |/n for large n, and thus almost all bit indices belong to one of the following four

sets:

AI = GY ∩ GZ ,

AII = GY ∩ BZ ,

AIII = BY ∩ GZ ,

AIV = BY ∩ BZ .

To understand the performance of standard polar codes on channels P and Q, it suffices

to consider the bit indices of the above four types, and assume that the remaining bit

values are fixed and revealed to all receivers. Note that type-I indices, i.e., those in AI,

see clean channels under both P and Q and thus can carry information. Similarly, type-

IV indices are bad under both P and Q and must be fixed. Type-II and III indices are

incompatible, i.e., they are good under one channel and under the other. Moreover, the

fraction (|AII| + |AIII|)/n of incompatible indices is non-negligible in general [37], and

therefore standard polar coding does not achieve the compound capacity of arbitrary

channels P and Q.

Hassani and Urbanke [36] propose a simple solution to the incompatibility prob-

lem, which aligns the good indices of the two channels. Given two binary-input memo-
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ryless channels P : X1 → Y1 and Q : X2 → Y2, define the binary-input channels

(P,Q)−(y1, y2 |u1) =
∑

u2

1
2P (y1 |u1 ⊕ u2)Q(y2 |u2),

(P,Q)+(y1, y2, u1 |u2) = 1
2P (y1 |u1 ⊕ u2)Q(y2 |u2),

and note that

I((P,Q)−) ≤ min{I(P ), I(Q)}

I((P,Q)+) ≥ max{I(P ), I(Q)}.
(3.16)

Now let i and j be a type-II and a type-III index, respectively. That is,

I(Pi) ≈ 1 and I(Pj) ≈ 0,

I(Qi) ≈ 0 and I(Qj) ≈ 1.

It then follows from (3.16) that

I((Pi, Pj)
−) ≈ 0 and I((Pi, Pj)

+) ≈ 1,

I((Qi, Qj)
−) ≈ 0 and I((Qi, Qj)

+) ≈ 1,

In words, combining two incompatible indices results in an almost perfect ‘plus’ channel

and almost useless ‘minus’ channel, regardless of the underlying channel. This ‘aligns’

the mutual informations for such indices. In particular, taking two blocks of Un, one

can combine almost all type-II indices from one block with type-III indices from the

other block, since |AII|/n ≈ |AIII|/n. More precisely, suppose AII = {c1, c2, . . . , cq1} and

AIII = {d1, d2, . . . , dq2}, where the elements are written in increasing order. Define Un =

XnGn and En = X2n
n+1Gn. Then, combining Ucj with Edj , j = 1, . . . , q = min{q1, q2},
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and leaving the remaining symbols uncombined yields the length-2n sequence

Ũ2n =
(
U c1−1, Ed1−1, Uc1 ⊕ Ed1 , Ed1 ,

· · ·

U
cq−1
cq−1+1, E

dq−1
dq−1+1, Ucq ⊕ Edq , Edq ,

Un
cq+1, E

n
dq+1

)
.

Then, the mutual informations of channels Ũi → Y 2nŨ i−1 and Ũi → Z2nŨ i−1 are aligned

for the combined indices Ũi = Ucj ⊕Edj and Ũi = Edj , and unchanged for the remaining

ones. Note again that the indices in AIII of the first block and AII of the second block

are not combined with each other and remain incompatible. This is to ensure that

the combined indices are polarized as desired. The fraction of incompatible indices is

thus halved by this alignment, to (|AII|+ |AIII|)/2n. Recursively aligning the indices m

times in this fashion then reduces this fraction to (|AII|+ |AIII|)/2rn, and thus the rate

I(P ) = I(Q) can be achieved on both channels by picking a large m.

Un

En

c

d

1

2

1

2

Un

En

c

d

1

2

1

2

e

f

(a) (b)

Figure 3.3. Alignment of the incompatible indices

In the following, we illustrate how to align incompatible indices through exam-

ples.

Example 3.4.1. Suppose that AII = {c} and AIII = {d}. We combine Uc from block 1
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with Ed from block 2 as in Figure 3.3 (a). The numbers on the arrow indicate the decoding

order. That is, variables along the ‘1’s are decoded before those along the ‘2’s.

Example 3.4.2. Suppose now that AII = {c, e} and AIII = {f, d}, with f < c, and that

one tries to align all indices in one recursion, as in Figure 3.3 (b). Here again, the order

of successive decoding is indicated by the numbered arrows. Observe, however, that in

order to decode Uc ⊕ Ed, one needs to know Ed−1, and in particular Ef . On the other

hand, the decoding of Ef involves Ue, which is not available before knowing Uc ⊕ Ed.

Successive decoding is therefore infeasible. This shows the necessity of sorting type II

and type III indices in increasing order and combining the j-th type II index from one

block with the j-th type III index from the other block.

3.4.2 ‘Polar Splitting’ for MACs

Consider a two-user MAC (X × W, P (y|x,w),Y), where sender 1 and sender 2

wish to communicate M1 and M2 to the receiver by respectively sending codewords

Xn(M1) and W
n(M2) over n uses of the channel. The capacity region of this channel is

given by

⋃

p

R(p), (3.17)

where the union is over all distributions of the form p = p(q)p(x|q)p(w|q)P (y|x,w), and

R(p) is the set of non-negative rate pairs (R1, R2) satisfying

R1 ≤ I(X;Y,W |Q),

R2 ≤ I(W ;Y,X |Q),

R1 +R2 ≤ I(X,W ;Y |Q).

(3.18)

The subset of R(p) satisfying R1 +R2 = I(X,W ;Y |Q) is called its dominant face, and

the two points (I(X;Y |Q), I(W ;Y,X|Q)) and (I(X;Y,W |Q), I(W ;Y |Q)) are called its
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corner points. We will first consider uniform X and W and constant Q; generalizations

to arbitrary distributions are discussed in Section 3.5.2.

In [5], Arıkan develops a polar coding method that achieves the entire dominant

face based on the following observations: Let Un = XnGn and V n = W nGn. Consider

the chain rules of the form
2n∑

i=1

I(Si;Y
n |Si−1),

where S2n = (S1, . . . , S2n) is a monotone permutation of UnV n, i.e., elements of both

Un and V n appear in increasing order in S2n. Let SU and SV respectively denote the

set of indices of S2n with Si = Uk and Si = Vl for some k, l ∈ [1 : n], and define the rates

R1 =
1

n

∑

i∈SU

I(Si;Y
n |Si−1),

R2 =
1

n

∑

i∈SV

I(Si;Y
n |Si−1).

(3.19)

The entire region R(p) can be achieved by polar coding if (R1, R2) can be set to arbitrary

values on the dominant face and if the mutual informations I(Si;Y
n|Si−1) are polarized.

It turns out that these requirements are satisfied by permutations of the form S2n =

(U i, V n, Un
i+1).

Proposition 3.4.1 ( [5]). For every ǫ > 0, β < 1/2, and rate pair (I1, I2) on the

dominant face of R(p), there exist an n and a permutation S2n = (U i, V n, Un
i+1) such

that

(i) |R1 − I1| < ǫ and |R2 − I2| < ǫ,

(ii)

|G(1)|
n

> R1 − ǫ and
|G(2)|
n

> R2 − ǫ,

where

G(1) = {i ∈ SU : I(Si;Y
n |Si−1) > 1− 2−nβ},
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G(2) = {i ∈ SV : I(Si;Y
n |Si−1) > 1− 2−nβ}.

3.5 Two-user Compound MAC

We are now ready to describe a polar coding scheme for the two-user compound

MAC consisting of two channels PY (y|x,w) and PZ(z|x,w). The channel is assumed to

be known at the receiver but not at the transmitter. A rate pair (R1, R2) is achievable

if there exists a sequence of codes with rates approaching (R1, R2) and vanishing error

probability on both MACs. The capacity region is described by

⋃

p

(
RY (p) ∩ RZ(p)

)
, (3.20)

where RY (p) is as in (3.18) and RZ(p) is the rate region obtained by replacing Y by Z

in (3.18). Recall that for the simple MAC, the time-sharing random variable Q in (3.18)

can be replaced by a convex hull operation on the union in (3.17). However, in the com-

pound case, Q is necessary since the rate region (3.20) is in general strictly larger than the

convex hull of
⋃

p

(
RY (p)∩RZ(p)

)
when p is of the form p(x)p(w)PY (y|x,w)PZ(z|x,w).

3.5.1 Uniform Independent Inputs

R1

R2

target point (I1, I2)

Figure 3.4. Two MAC regions with equal sum-rate.

Assume that X and W are uniform and independent, Q = ∅. The simplest

nontrivial case is when the two pentagons in (3.20) intersect as in Figure 3.4, where
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the sum-rates are equal and the two dominant faces have non-empty intersection. Let

(I1, I2) be a rate point on the dominant face of this intersection. Let Un = XnGn and

V n = W nGn. By Proposition 3.4.1, there exists an n and two monotone permutations

S2n and T 2n for which the mutual informations I(Si;Y
n|Si−1) and I(Ti;Z

n|T i−1) are

polarized, and the corresponding rate pairs in (3.19) are close to (I1, I2). However, as

in the point-to-point case, the two sets of mutual informations {I(Si;Y n|Si−1) : i ∈ SU}

and {I(Ti;Zn|T i−1) : i ∈ TU} may be incompatible. Similarly to the point-to-point case,

one can define the type of index Ui by comparing the mutual informations I(Sj ;Y
n|Sj−1)

and I(Tk;Z
n|T k−1) where Sj = Tk = Ui. The indices for V can be defined similarly.

U i

V n

Un
i+1

Un+i

n+1

V 2n
n+1

U2n
n+i+1

c

d

1

2

1

2

c

d

Un

U2n
n+1

Alignment Decoding order

V n

V 2n
n+1

Figure 3.5. First recursion.

We can now apply the technique in Section 3.4.1 to align the incompatible indices

of both U ’s and V ’s. Here, as in the point-to-point case, care must be taken to combine

the random variables in a way that guarantees successive decodability. This can be

done by aligning either the U ’s or V ’s, but not both, in any given recursion. As before,

only half of the incompatible indices of U ’s (or V ’s) will be aligned in a single recursion.
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U i

V n

Un

i+1

Un+i

n+1

V 2n
n+1

U2n
n+i+1

c

d

U2n+i

2n+1

V 3n
2n+1

U3n
2n+i+1

U3n+i

3n+1

V 4n
3n+1

U4n
3n+i+1

f

e

f ′

e′

1

1

3

3

4

4

1

1

2

2

3

3

Un

U2n
n+1

U3n
2n+1

U4n
3n+1

V n

V 2n
n+1

V 3n
2n+1

V 4n
3n+1

c′

d′

Alignment Decoding order

c

c′

d

d′

e

e′

f

f ′

Figure 3.6. Second recursion. Here, c′ = 2n+ c, d′ = 2n+ d, e′ = n+ e, and f ′ = n+ f .
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Aligning the two index sets alternately over 2m recursions, both fractions of incompatible

indices can be reduced to 1/2r times their original values.

As an example, consider two recursions of alignment, where incompatible U ’s are

aligned in the first recursion and incompatible V ’s are aligned in the second. Suppose

that {c} and {d} are the type II and type III incompatible indices for U respectively,

and {e} and {f} are the type II and type III incompatible indices for V respectively

(Figures 3.5 and 3.6).

In the first recursion, blocks Un and U2n
n+1 are aligned, while blocks V n and V 2n

n+1

are left uncombined (Figure 3.5, left). The decoding order at the each receiver can

be identified according to this alignment and the corresponding monotone permutation

(U i, V n, Un
i+1) (Figure 3.5, right), because the receiver knows the channel and thus which

i to pick for polar splitting. The overall decoding order over 4n variables is identified in

a similar fashion as in the point-to-point alignment (recall Figure 3.3): That is, variables

along the solid arrows are decoded before the variables along the dashed arrows.

In the second recursion, The two length-2n blocks (V n, V 2n
n+1) and (V 3n

2n+1, V
4n
3n+1)

are aligned while the two length-2n blocks (Un, U2n
n+1) and (U3n

2n+1, U
4n
3n+1) are left un-

combined (Figure 3.6, left). The decoding order at each receiver can be identified as

follows (Figure 3.6, right). Uncombined indices in each block are decoded until reaching

a pair of combined indices. Then the pair of combined indices are decoded. This pattern

is then repeated until all bits are decoded. More specifically, as depicted in Figure 3.6,

variables along arrows with smaller indices are decoded before those with bigger indices.

Note that since in each recursion, only incompatible indices for U ’s (or V ’s)

are combined appropriately, successive decodability is guaranteed as in the point-to-

point case. Moreover, the generic decoding order on the right of Figures 3.5 and 3.6

illustrates the general principle that works for both receivers. To identify the specific

orders, receiver 1 and 2 start from the monotone permutation S2n and T 2n, respectively,

and form the permutation S8n and T 8n, respectively, based on the above procedure. The
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corresponding rate pair (Rs
1, R

s
2) are defined as before

Rs
1 =

1

n

∑

i∈SU

I(Si;Y
4n |Si−1),

Rs
2 =

1

n

∑

i∈SV

I(Si;Y
4n |Si−1).

The rate pair (Rt
1, R

t
2) are defined similarly. Clearly, the fraction of incompatible indices

for U (and V ) is halved in the first (second) recursion.

R1

R2

(I ′1, I
′
2)

(I ′′1 , I
′′
2 )

(I1, I2)

Figure 3.7. Two MAC regions with unequal sum-rates.

To achieve a rate point (I1, I2) in the general case as in Figure 4.2, one can find

two monotone permutations, which respectively approximate rate pairs (I ′1, I
′
2) on the

dominant face of one pentagon and (I ′′1 , I
′′
2 ) on the dominant face of the other pentagon

such that

I1 ≤ min{I ′1, I ′′1 },

I2 ≤ min{I ′2, I ′′2 }.

Then, applying the approach above guarantees that Ij fraction of the bit channels are

good for both receivers to communicate Mj, j = 1, 2. Those bit channels that are good

for only one or none of the receivers are fed with frozen valued inputs.
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3.5.2 Arbitrary Inputs

Based on the polar coding scheme developed for uniform and independent X and

W , one can adapt the method in [66, Section III-D] to design a polar coding scheme for

independent nonuniform X and W . For correlated input distributions p(q)p(x|q)p(w|q),

there exist (X ′,W ′, Q) jointly independent such that X and W can be represented by

functions x(x′, q) and w(w′, q) (see, for example, [27, Appendix B]). Now consider a

new MAC with inputs X ′ and W ′, vector output (Y,Q), and conditional distribution

P ′(y, q|x′, w′) = p(q)P (y|x(x′, q), w(w′, q)), where Q is the common randomness shared

at the senders and the receiver. Then the achievable rate region for the new MAC is the

set of rate pairs (R1, R2) such that

R1 ≤ I(X ′;Y,Q,W ′) = I(X;Y,W |Q),

R2 ≤ I(W ′;Y,Q,X ′) = I(W ;Y,X |Q),

R1 +R2 ≤ I(X ′,W ′;Y,Q) = I(X,W ;Y |Q)

for distribution p′ = p(q)p(w′)p(x′)p(x|x′, q)p(w|w′, q) P (y|x(x′, q), w(w′, q)), where

p(x|x′, q) and p(w|w′, q) are {0, 1}-valued according to x(x′, q) and w(w′, q). This rate

region is identical to RY (p) as the mutual informations involved are only a function of

the joint distribution on (X,W,Y,Q) and
∑

x′,w′ p′(q, x′, w′, x, w, y) = p(q, x,w, y).

Similarly the rate region RY (p) ∩ RZ(p) can be described by considering the

compound MAC with inputs X ′ and W ′, vector output (Y,Z,Q), and conditional dis-

tribution P ′(y, z, q|x′, w′) = p(q)PY (y|x(x′, q), w(w′, q)) PZ(z|x(x′, q), w(w′, q)). One can

apply the method designed for independent inputs to achieve arbitrary points in the rate

region of the new compound MAC. To complete the argument, one only needs to show

the existence of a good common random sequence qn, which is shared at the senders and

the receiver before the transmission. But this is guaranteed since the average probability

of error over all possible choices of qn is small.
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3.5.3 Main Result

Sections 3.5.2 and 3.5.1 together established the following main result of this

chapter.

Theorem 3.5.1. For every ǫ > 0, β < 1/2, and rate pair (I1, I2) in the rate region

RY (p) ∩ RZ(p), there exist n,m = 2rn, and two monotone permutations S2m and T 2m

with associated rate pairs (Rs
1, R

s
2) and (Rt

1, R
t
2) such that for j = 1, 2,

(i)

|min{Rs
j , R

t
j} − Ij | < ǫ,

(ii)

|G(j)
Y ∩ G(j)

Z |
m

> min{Rs
j , R

t
j} − ǫ,

where

G(1)
Y = {i ∈ SU : I(Si;Y

m |Si−1) > 1− 2−nβ},

G(1)
Z = {i ∈ TU : I(Ti;Z

m |T i−1) > 1− 2−nβ},

G(2)
Y ,G(2)

Z are defined similarly by replacing U by V .

This polarization result readily implies the associated polar coding scheme. To

design a polar codes for rate pair (I1, I2) in the rate region RY (p) ∩ RZ(p), find two

permutations S2m and T 2m satisfying (i) and (ii) in the above theorem.

Encoding. Message M1 is carried by {Ui : i ∈ G(1)
Y ∩ G(1)

Z } and message M2 is

carried by {Vi : i ∈ G(2)
Y ∩G(2)

Z }. The remaining indices of U and V are fixed and revealed

to the senders and the receivers. Sender 1 transmitsXm = UmGm and sender 2 transmits

Wm = V mGm.

Decoding. Upon receiving ym, receiver 1 applies the standard successive cancella-

tion decoding following the decoding orders of S2m to recover both {Ûi : i ∈ G(1)
Y ∩ G(1)

Z }
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and {V̂i : i ∈ G(2)
Y ∩ G(2)

Z }. Similarly receiver 2 decodes the received sequence zm by

following the decoding order of T 2m.

Rates. The rate pair achieved by this code is

(

|G(1)
Y ∩ G(1)

Z |
m

,
|G(2)

Y ∩ G(2)
Z |

m

)

,

which, by Theorem 3.5.1, approaches (I1, I2) arbitrary closely for large m.

Average probability of error. Since the probability of error in the first ‘polar

splitting’ phase is bounded by O(2−nβ
) [5], the probability of error in the compound

setting is bounded by 2rO(2−nβ
), which, for fixed r, goes to zero as n tends to infinity.

Complexity. Combining the encoding and decoding complexities of the ‘polar

splitting’ phase [5] and the ‘alignment’ phase [36], the complexity in the compound

setting is bounded by O(m logm).

3.6 Interference Networks

Theorem 3.5.1 implies that arbitrary points in the capacity region of the two-user

compound MAC are achievable with the proposed polar coding scheme. In the two-user

strong interference channel, that is, when I(X;Y,W ) ≤ I(X;Z,W ) and I(W ;Z,X) ≤

I(W ;Y,X) for all p(x)p(w), decoding both messages at each receiver is optimal and

the two-user compound MAC region coincides with the capacity region of the interfer-

ence channel. Therefore, the same technique applies to the two-user strong interference

channels.

Now we generalize the result to K-sender L-receiver interference networks with

input alphabets X1, . . . ,XK , and output alphabets Y1, . . . ,YL, and conditional distribu-

tion P (yL|xK) as depicted in Figure 3.8. Each sender j ∈ [1 : K] communicates an

independent message Mj at rate Rj and each receiver l ∈ [1 : L] wishes to recover a

subset Dl ⊆ [1 :K] of the messages. A (2nR1 , . . . , 2nRK , n) code consists of
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Y n
1

M̂D1
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L

M̂DL

p(yL |xK)

Xn
1

Xn

K
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MK

Enc 1

Enc K

Dec 1

Dec L

Figure 3.8. K-sender L-receiver interference networks.

• K message sets [1 : 2nR1 ], . . . , [1 : 2nRK ],

• K encoders, where encoder k ∈ [1 :K] assigns a codeword xnk(mk) for each mk ∈

[1 : 2nRk ], and

• L decoders, where decoder l ∈ [1 : L] assigns estimates m̂kl, k ∈ Dl, or an error e

to each received sequence ynl .

We assume that the message tuple (M1, . . . ,MK) is uniformly distributed over [1 : 2nR1 ]×

· · · × [1 : 2nRK ]. The average probability of error is defined as

P (n)
e = {M̂kl 6=Mk for some l ∈ [1 :L], k ∈ Dl}.

A rate tuple (R1, . . . , RK) is achievable if there exists a sequence of (2nR1 , . . . , 2nRK , n)

codes with limn→∞ P
(n)
e = 0.

The optimal achievable rate region when the encoding is restricted to random cod-

ing ensembles [9] is the union over the distribution p and the decoding sets {(A1, . . . ,AL) :

Al ⊇ Dl, l ∈ [1 :L]} of the region

⋂

l∈[1:L]

RAl
(p), (3.21)

where the input distribution is of the form p =
(∏K

j=1 p(xj)
)
P (yL|xK) and RAl

(p) is
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the set of rate tuples (Rj : j ∈ Al) such that

R(J ) ≤ I(XJ ;Yl,XAl\J ) (3.22)

for all J ⊆ Al. Here we introduce notation

R(J ) :=
∑

j∈J

Rj (3.23)

and

XJ := (Xj : j ∈ J ) (3.24)

for an index set J . It is clear from (3.21) that this rate region is also a compound MAC

region.

To apply the proposed polar coding scheme to the interference networks, one

needs to (i) generalize Arıkan’s polar splitting result to K-user MAC and (ii) align more

than two incompatible polarization processes, each of which involves codes from K users.

We prove (i) in Section 3.6.1 and discuss (ii) in Section 3.6.2. We show the achievability

of the Han–Kobayashi inner bound in Section 4.4.

3.6.1 ‘Polar Splitting’ for K-User MAC

Consider a K-user MAC, where transmitter j, j ∈ [1 :K], wishes to communicate

a messageMj reliably to the receiver by sending a codewordXn
j (Mj) = (Xj1,Xj2, . . . ,Xjn)

over the memoryless channel P (y|xK). The receiver wishes to recover all the messages

M[1:K]. The capacity region of the K-user MAC is described by

⋃

p

R[1:K](p),

where the union is over all distributions of the form p = p(q)
(∏K

i=1 p(xi|q)
)
P (y|xK), and

R[1:K](p) is defined as in (3.22).
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Let Un
j = Xn

j Gn for j ∈ [1 :K]. Similar to the two-user MAC case, we have the

chain rule of the form
Kn∑

i=1

I(Si;Y
n |Si−1),

where SKn is a monotone permutation of (Un
1 , . . . , U

n
K), i.e., elements of Un

j appear

in increasing order in SKn for all j ∈ [1 : K]. Let Sj denote the index set {i : Si =

Ujk for some k}. Define the associated rate tuple (R1, . . . , RK) of the monotone permu-

tation as

Rj =
1

n

∑

i∈Sj

I(Si;Y
n |Si−1)

for j ∈ [1 :K]. We now generalize Arıkan’s polar-splitting result to K users.

Proposition 3.6.1. For every ǫ > 0, β < 1/2, and rate tuple (I1, . . . , IK) on the domi-

nant face of R[1:K](p), there exists an n and a monotone permutation SKn such that for

all j ∈ [1 :K],

(i)

|Rj − Ij | ≤ ǫ,

(ii)

|G(j)|
n

> Rj − ǫ,

where

G(j) = {i ∈ Sj : I(Si;Y
n |Si−1) > 1− 2−nβ}.

Proof. We prove statement (i) by induction. The case K = 2 holds by Proposition 3.4.1.

Suppose the statement holds for up to K − 1. We prove the statement for K.

Assume without loss of generality that we start by decoding U i0
1 for some i0 ∈

[1 : n]. We specify i0 by the following procedure. Let i increase from 0 to n and consider

the quantities

1
n
I(Un

J ;Y
n, U i

1) (3.25)
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for each J ⊆ [2 : n], where Un
J := (Un

j : j ∈ J ). Some observations follow:

1. As i increases, each mutual information term increases by at most 1/n in each step,

since the increment is I(U1i;U
n
J |Y n, U i−1

1 )/n ≤ 1/n.

2. There exists an i such that for at least one J ⊆ [2 :K], the following is violated

1
n
I(Un

J ;Y
n, U i

1) < I(J ), (3.26)

where I(J ) :=
∑

j∈J Ij .

To see 2), set U i
1 = ∅ and U i

1 = Un
1 respectively. We have

1
n
I(Un

J ;Y
n) ≤ I(J ) for J ⊂ [2 :K],

1
n
I(Un

[2:K];Y
n) ≤ I([2 :K]) ≤ I(Un

[2:K];Y
n, Un

1 ). (3.27)

As i increases, the mutual information terms in (3.25) increase steadily. In particular, the

second inequality in (3.27) guarantees that there exists an i such that (3.26) is violated

for some J ⊆ [2 :K] and J 6= ∅. Take the smallest such i as i0.

Suppose at i = i0, for index set J0 ⊆ [2 :K], the inequality in (3.26) is violated.

As the increment on the left-hand-side of (3.26) is bounded by 1/n, we have

1
n
I(Un

J0
;Y n, U i0

1 ) = I(J0) + δ, (3.28)

where 0 ≤ δ < 1/n. This divides the K-dimensional rate-approximation into two sub-

problems of smaller dimensions.

Problem 1: For J ⊆ J0, we have

1
n
I(Un

J ;Y
n, U i0

1 ) < I(J ) for all J ⊂ J0
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and

1
n
I(Un

J0
;Y n, U i0

1 ) = I(J0) + δ.

Treating (Y n, U i0
1 ) as the output of the MAC, This is a rate-approximation problem for

the rate tuple (Ij : j ∈ J0) on the dominant face of a |J0|-dimension polyhedron. Note

that ∅ 6= J0 ⊆ [2 : K], and thus 1 ≤ |J0| ≤ K − 1. We can therefore approximate the

rate tuple (Ij : j ∈ J0) within ǫ distance due to the induction hypothesis.

Problem 2: To handle the rate indices outside of J0∪{1}, consider for all J ⊇ J0,

and subtract (3.28) from (3.26). Let T = J \ J0, T0 = [2 : K] \ J0, and I ′1 = I1 −
1
n
I(U i0

1 ;Y n). This yields

1
n
I(Un

T ;Y
n, Un

J0
, U i0

1 ) ≤ I(T )− δ,

1
n
I(Un

T , U
n
1,i0+1;Y

n, Un
J0
, U i0

1 ) ≤ I(T ) + I ′1 − δ,

1
n
I(Un

T0 , U
n
1,i0+1;Y

n, Un
J0
, U i0

1 ) = I(T0) + I ′1 − δ.

Treating (Y n, U i0
1 , U

n
J0
) as the output of the MAC, this is a rate-approximation problem

for the rate tuple (I ′1, (Ij : j ∈ T0)) on the dominant face of a (K − |J0|)-dimensional

polyhedron. Note that 1 ≤ K − |J0| ≤ K − 1 and therefore we can again approximate

the rate tuple (I ′1, (Ij : j ∈ T0)) within ǫ distance by the induction hypothesis.

The cumulative approximation error is bounded by K(ǫ+δ) ≤ K(ǫ+1/n), which

can be made arbitrarily small by choosing a small ǫ and a large n. The final permutation

is obtained by cascading U i0
1 , S|J0|n (the solution from problem 1), and TKn−|J0|n−i0 (the

solution from problem 2).

The polarization result (ii) is obtained by the standard arguments as in [5]. This

concludes the proof.
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3.6.2 Aligning Polarized Indices for K Users

Suppose we have two monotone permutations for two K-user MACs. To align

the incompatible indices for all users, one can continue the method in Section 3.5.1 and

sequentially align the incompatible indices for each Un
j , j ∈ [1 : K]. After alternately

aligning K index sets over Km recursions, the fraction of the incompatible indices for

each user is reduced to 1/2r times the original fraction. The method for aligning L

monotone permutations can be done by recursively aligning two permutations as in [36].

3.6.3 Han–Kobayashi Inner Bound

As an important special case, we show how the scheme above can be used to

achieve the Han–Kobayashi inner bound, the best known inner bound for general two-

user interference channels P (y1, y2|x1, x2).

Y n
1 L̂1, L̂2, L̂3

Y n
2 L̂2, L̂3, L̂4

P (y2 |x2)

Xn
1

L1

L2

Xn
2

L3

L4

x1(v1, v2)

x2(v3, v4)

V n
1

V n
2

V n
3

V n
4

P (y2 |v4)

Figure 3.9. Han–Kobayashi coding scheme.

The Han–Kobayashi coding scheme is illustrated in Figure 4.9. Message M1 is

split into two independent parts (L1, L2) with rates (R′
1, R

′
2) and messageM2 is split into

two independent parts (L3, L4) with rates (R′
3, R

′
4). Message Lj, j ∈ [1 : 4], is carried by

codeword V n
j (Lj). Then the channel inputs Xn

1 and Xn
2 are formed using two symbol-

by-symbol mappings x1(v1, v2) and x2(v3, v4). Receiver 1 uniquely decodes (L̂1, L̂2, L̂3)

upon receiving Y n
1 , while receiver 2 uniquely decodes (L̂2, L̂3, L̂4) upon receiving Y n

2 .

For a fixed input distribution p, the Han–Kobayashi inner bound can be expressed with



65

auxiliary rate tuple (R′
1, R

′
2, R

′
3, R

′
4) as

R1(p) ∩ R2(p). (3.29)

Here the input distribution is of the form

p = p(q)
(

4∏

j=1

p(vj |q)
)
p(x1 |v1, v2, q)p(x2 |v3, v4, q)P (y1, y2 |x1, x2),

where p(x1|v1, v2, q) and p(x2|v3, v4, q) are {0, 1}-valued according to functions

x1(v1, v2, q) and x2(v3, v4, q). The rate region R1(p) is the set of rate triples (R
′
1, R

′
2, R

′
3)

such that

R′
J ≤ I(VJ ;Y

n
1 , V[1:3]\J |Q)

for all J ⊆ [1 : 3]. The rate region R2(p) is the set of rate triples (R′
2, R

′
3, R

′
4) such that

R′
J ≤ I(VJ ;Y

n
2 , V[2:4]\J |Q)

for all J ⊆ [2 : 4].

It is clear from the Han–Kobayashi coding scheme that for each pair of func-

tions x1(v1, v2) and x2(v3, v4), the message splitting transforms the original two-user

interference channel into a four-sender two-receiver interference network

P (y2 |v4) = P (y1, y2 |x1(v1, v2), x2(v3, v4)),

where sender j ∈ {1, 2, 3, 4} communicates an independent message Lj at rate R′
j , re-

ceiver 1 recovers the subset D1 = {1, 2, 3} of the four messages, and receiver 2 recovers

the subset D2 = {2, 3, 4} of the four messages.

Note from expression (4.17) that the auxiliary rate region (R′
1, R

′
2, R

′
3, R

′
4) is the

intersection of two 3-dimensional MAC regions, two dimensions of which are in common.
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Therefore, one just needs to find two monotone permutations that achieves any target

point in the two MACs respectively and sequentially align the two codes shared in

common using the method in Section 3.5.1.

3.7 Discussion

We have shown a polar coding method for general interference networks that

achieves the optimal rate region when the encoding is restricted to random coding en-

sembles with superposition coding and time sharing [9]. As special cases, the method

achieves the capacity region of the compound MAC and the Han–Kobayashi inner bound

for two-user interference channels.

One drawback of the current method is the long blocklength needed for large scale

networks. When there are L receivers in the network, one needs to do L− 1 alignments

to resolve the incompatible indices in L permutations, which makes the blocklength scale

with the network size.

One crucial component in the current method is Arıkan’s ‘polar splitting’ for

MAC. It would be interesting to compare it to regular rate splitting for MAC as in [32].

Both schemes achieve optimal performance in MAC. However, for interference channels,

the former, together with the alignment method, achieves the best known rate region

while the latter is strictly suboptimal information theoretically [77].

In the next chapter, a successive decoding based random coding scheme is pre-

sented, which also achieves Han–Kobayashi inner bound. Some similarities and connec-

tions can be found in the way the two schemes resolve the incompatibility of the two

MACs.
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Chapter 4

Interference Channels: COTS

Codes

In Chapter 3, we showed that single block rate-splitting is strictly suboptimal

in achieving the simultaneous decoding inner bound in interference channels. This fact

makes us wonder whether point-to-point coding techniques, which can achieve capacity

for multiple access and single-antenna Gaussian broadcast channels, are fundamentally

deficient for the interference channel. Interestingly, using polar codes, a channel coding

technique that was initially invented for the point-to-point coding, the simultaneous

decoding inner bound was shown to be achievable, even with a low-complexity successive

cancellation decoding algorithm. How does the polar coding solution circumvent the

incompatibility that is shown to be unresolvable in rate-splitting? Does the polar coding

solution introduce a fundamentally new technique for the network communication? Can

there be a “random coding equivalence” of the polar coding solution? These questions

motivate the sliding-window superposition coding (SWSC) scheme that will be presented

in this Chapter.

68



69

4.1 Sliding-Window Superposition Coding

In this section, we present the SWSC scheme for the two-user general discrete

memoryless interference channels. We first illustrate the simplest SWSC scheme in

Section 4.1.1, which is sufficient to achieve the corner point on the simultaneous decoding

inner bound with only two superposition layers at one user. In Section 4.1.2, we show

how to achieve an arbitrary rate point by having more superposition layers.

R1

R2

I(X2;Y2|X1) I(X2;Y1|X1)

I(X1;Y1|X2)

I(X1;Y2|X2)

I(X1;Y2)

Figure 4.1. The simultaneous decoding inner bound and the corner point (4.1) (the one with
the arrow) that will be illustrated to be achievable by SWSC.

4.1.1 Corner Point: The First Illustration

As the simplest illustration, we first describe how to achieve the corner point

(R1, R2) = (I(X1;Y2), I(X2;Y2 |X1)) (4.1)

of the simultaneous decoding inner bound when Q = ∅ and the sum-rates are equal, i.e.,

I(X1,X2;Y1) = I(X1,X2;Y2) (4.2)

as shown in Figure 4.1. For the symmetric Gaussian interference channel with S < I <

S(S+1), this is the exact same point that demonstrated the insufficiency of single-block

rate-splitting in Section 3.2.
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Theorem 4.1.1. A rate pair (R1, R2) is achievable with the SWSC scheme if

R1 < min{I(U ;Y1) + I(X1;Y1 |U,X2), I(X1;Y2)} := I1,

R2 < min{I(X2;Y1 |U), I(X2;Y2 |X1)} := I2

for some pmf p(u, x1)p(x2). In addition, there exists a pmf p(u, x1)p(x2) such that

(I1, I2) = (I(X1;Y2), I(X2;Y2|X1)); in other words, the corner point (4.1) is achievable.

block j 1 2 3 · · · b− 1 b

U 1 m1(1) m1(2) . . . . . . m1(b− 1)

X1 m1(1) m1(2) . . . . . . m1(b− 1) 1

X2 m2(1) m2(2) . . . . . . . . . m2(b)

Receiver 1
∅ m̂1(1) m̂1(2) . . . . . . m̂1(b− 1)

m̂2(1) m̂2(2) m̂2(3) . . . . . . m̂2(b)

Receiver 2
∅ m̂1(1) m̂1(2) . . . . . . m̂1(b− 1)

∅ m̂2(1) m̂2(2) . . . . . . m̂2(b− 1), m̂2(b)

Table 4.1. Sliding-window superposition coding scheme.

We now describe our coding scheme. Roughly speaking, instead of splitting

the message M1 into two parts and recovering the two parts separately, we send M1

without split over two consecutive blocks and recover it using sliding-window decoding.

A sequence of (b− 1) messages M1(j), j ∈ [1 : b− 1] and b messages M2(j), j ∈ [1 : b] are

transmitted over b blocks. The average achievable rate pair over b blocks is
(
b−1
b
R1, R2

)
,

which can be made as close to (R1, R2) as desired. Details are as follows.

Codebook generation. We use superposition coding. Fix the pmf p(u, x1)p(x2)

that attains the target rate pair. Randomly and independently generate a codebook for

each block. For notational convention, we assume m1(0) = m1(b) = 1. For j ∈ [1 : b],

randomly and independently generate 2nR1 sequences un(m1(j−1)),m1(j−1) ∈ [1 : 2nR1 ],

each according to a product of p(u). For each m1(j − 1), randomly and conditionally
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independently generate 2nR1 sequences xn1 (m1(j)|m1(j − 1)),m1(j) ∈ [1 : 2nR1 ], each

according to a product of p(x1|u). Randomly and independently generate 2nR2 sequences

xn2 (m2(j)),m2(j) ∈ [1 : 2nR2 ], each according to a product of p(x2). This defines the

codebook

Cj =
{
un(m1(j − 1)), xn1 (m1(j)|m1(j − 1)), xn2 (m2(j)) :

m1(j − 1),m1(j) ∈ [1 : 2nR1 ],m2(j) ∈ [1 : 2nR2 ]
}
, j ∈ [1 : b].

Encoding. Sender 1 transmits xn1 (m1(j)|m1(j − 1)) and sender 2 transmits

xn2 (m2(j)) in block j ∈ [1 : b].

Decoding. Decoder 1 successively recovers m̂2(1) → m̂1(1) → · · · → m̂2(b− 1) →

m̂1(b − 1) → m̂2(b) and decoder 2 successively recovers m̂1(1) → m̂2(1) → · · · →

m̂1(b−1) → m̂2(b−1) → m̂2(b), where the decoding of m̂1(j) is done by a sliding-window

decoding over blocks j and j + 1. Table 4.1 reveals the scheduling of the messages.

Let the received sequences in block j be yn1 (j) and y
n
2 (j), j ∈ [1 : b]. For receiver 1,

at the end of block 1, it finds the unique message m̂2(1) such that

(xn2 (m̂2(1)), y
n
1 (1), u

n(m1(0))) ∈ T (n)
ǫ .

At the end of block j + 1, j ∈ [1 : b− 1], it finds the unique message m̂1(j) such that

(un(m̂1(j − 1)), xn1 (m̂1(j)|m̂1(j − 1)), xn2 (m̂2(j)), y
n
1 (j)) ∈ T (n)

ǫ

and

(un(m̂1(j)), y
n
1 (j + 1)) ∈ T (n)

ǫ

simultaneously. Then it finds the unique m̂2(j + 1) such that

(xn2 (m̂2(j + 1)), yn1 (j + 1), un(m̂1(j))) ∈ T (n)
ǫ .
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If any of the typicality checks fails, it declares an error.

For receiver 2, at the end of block j + 1, j ∈ [1 : b− 1], it finds the unique m̂1(j)

such that

(un(m̂1(j − 1)), xn1 (m̂1(j)|m̂1(j − 1)), yn2 (j)) ∈ T (n)
ǫ

and

(un(m̂1(j)), y
n
2 (j + 1)) ∈ T (n)

ǫ

simultaneously. Then it finds the unique m̂2(j) such that

(xn2 (m̂2(j)), y
n
2 (j), u

n(m̂1(j − 1)), xn1 (m̂1(j)|m̂1(j − 1))) ∈ T (n)
ǫ .

In the end, receiver 2 finds the unique m̂2(b) such that

(xn2 (m̂2(b)), y
n
2 (b), u

n(m̂1(b− 1)), xn1 (1|m̂1(b− 1))) ∈ T (n)
ǫ .

If any of the typicality checks fails, it declares an error.

Analysis of the probability of error. We analyze the probability of decoding error

averaged over codebooks. Assume without loss of generality that M1(j) = M2(j) = 1.

First consider receiver 1. We divide the error events as follows

E11(j − 1) = {M̂1(j − 1) 6= 1},

E12(j) = {M̂2(j) 6= 1},

E13(j) = {(Un(M̂1(j − 1)),Xn
1 (1|M̂1(j − 1)),Xn

2 (M̂2(j)), Y
n
1 (j)) 6∈ T (n)

ǫ

or (Un(1), Y n
1 (j + 1)) 6∈ T (n)

ǫ },

E14(j) = {(Un(M̂1(j − 1)),Xn
1 (m1(j)|M̂1(j − 1)),Xn

2 (M̂2(j)), Y
n
1 (j)) ∈ T (n)

ǫ

and (Un(m1(j)), Y
n
1 (j + 1)) ∈ T (n)

ǫ for some m1(j) 6= 1},

E15(j + 1) = {(Xn
2 (1), Y

n
1 (j + 1), Un(M̂1(j))) 6∈ T (n)

ǫ },

E16(j + 1) = {(Xn
2 (m2(j + 1)), Y n

1 (j + 1), Un(M̂1(j))) ∈ T (n)
ǫ for some m2(j + 1) 6= 1}.
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We analyze by induction. By assumption E11(0) = ∅. Thus in block 1, the probability of

error is upper bounded as

P{M̂2(1) 6= 1} = P(E12(1))

≤ P(E15(1)) + P(E16(1)).

Now by the law of large numbers, P(E15(1)) → 0 as n → ∞. By the packing lemma,

P(E16(1)) → 0 as n → ∞ if R2 < I(X2;Y1|U) − δ(ǫ). Now assume that the probability

of error P(E11(j − 1) ∪ E12(j)) in block j tends to zero as n → ∞. In block j + 1, the

probability of error is upper bounded as

P{(M̂1(j), M̂2(j + 1)) 6= (1, 1)}

≤ P(E11(j − 1) ∪ E12(j) ∪ E11(j) ∪ E12(j + 1))

≤ P(E11(j − 1) ∪ E12(j)) + P(E11(j) ∩ Ec
11(j − 1) ∩ Ec

12(j)) + P(E12(j + 1) ∩ Ec
11(j))

≤ P(E11(j − 1) ∪ E12(j)) + P(E13(j) ∩ Ec
11(j − 1) ∩ Ec

12(j))

+ P(E14(j) ∩ Ec
11(j − 1) ∩ Ec

12(j)) + P(E15(j + 1) ∩ Ec
11(j)) + P(E16(j + 1) ∩ Ec

11(j)).

By the induction assumption, the first term tends to zero as n → ∞. By the indepen-

dence of the codebooks, the law of large numbers, and the packing lemma, the second,

fourth, and fifth terms tend to zero as n → ∞ if R2 < I(X2;Y1|U) − δ(ǫ). The third

term P(E14(j) ∩ Ec
11(j − 1) ∩ Ec

12(j)) requires a special care. We have

P(E14(j) ∩ Ec
11(j − 1) ∩ Ec

12(j))

= P{(Un(1),Xn
1 (m1(j)|1),Xn

2 (1), Y
n
1 (j) ∈ T (n)

ǫ and (Un(m1(j)), Y
n(j + 1)) ∈ T (n)

ǫ

for some m1(j) 6= 1}

=
∑

m1(j)6=1

P{(Un(1),Xn
1 (m1(j)|1),Xn

2 (1), Y
n
1 (j) ∈ T (n)

ǫ and

(Un(m1(j)), Y
n
1 (j + 1)) ∈ T (n)

ǫ }
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(a)
=

∑

m1(j)6=1

P{(Un(1),Xn
1 (m1(j)|1),Xn

2 (1), Y
n
1 (j) ∈ T (n)

ǫ }

· P{(Un(m1(j)), Y
n
1 (j + 1)) ∈ T (n)

ǫ }
(b)

≤ 2nR12−n(I(X1;Y1|X2,U)−δ(ǫ))2−n(I(U ;Y1)−δ(ǫ)),

which tends to zero if R1 < I(U ;Y1) + I(X1;Y1|X2, U) − 2δ(ǫ). Here (a) follows since,

by the independence of the codebooks, the events

{(Un(1),Xn
1 (m1(j)|1),Xn

2 (1), Y
n
1 (j)) ∈ T (n)

ǫ }

and

{(Un(m1(j)), Y
n
1 (j + 1)) ∈ T (n)

ǫ }

are independent for eachm1(j) 6= 1, and (b) follows by the independence of the codebooks

and the joint typicality lemma.

For receiver 2, we divide the error events as follows

E21(j) = {M̂1(j) 6= 1},

E22(j) = {M̂2(j) 6= 1},

E23(j) = {(Un(M̂1(j − 1)),Xn
1 (1|M̂1(j − 1)), Y n

2 (j)) 6∈ T (n)
ǫ

or (Un(1), Y n
2 (j + 1)) 6∈ T (n)

ǫ },

E24(j) = {(Un(M̂1(j − 1)),Xn
1 (m1(j)|M̂1(j − 1)), Y n

2 (j)) ∈ T (n)
ǫ and

(Un(m1(j)), Y
n
2 (j + 1)) ∈ T (n)

ǫ for some m1(j) 6= 1},

E25(j) = {(Xn
2 (1), Y

n
2 (j),Xn

1 (M̂1(j)|M̂1(j − 1)), Un(M̂1(j − 1))) 6∈ T (n)
ǫ },

E26(j) = {(Xn
2 (m2(j)), Y

n
2 (j),Xn

1 (M̂1(j)|M̂1(j − 1)), Un(M̂1(j − 1))) ∈ T (n)
ǫ

for some m2(j) 6= 1}.

We analyze by induction. In block 1, since E21(0) = ∅ by assumption, P{M̂1(0) 6=
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1} = 0. Now assume that in block j, the probability of error P{(M̂1(j− 1), M̂2(j− 1)) 6=

(1, 1)} = P(E21(j − 1)∪ E22(j − 1)) tends to zero as n→ ∞, then in block j +1, we have

P{(M̂1(j), M̂2(j)) 6= (1, 1)}

≤ P(E21(j − 1) ∪ E21(j) ∪ E22(j))

≤ P(E21(j − 1)) + P(Ec
21(j − 1) ∩ E21(j)) + P(Ec

21(j − 1) ∩ Ec
21(j) ∩ E22(j))

≤ P(E21(j − 1)) + P(Ec
21(j − 1) ∩ E23(j)) + P(Ec

21(j − 1) ∩ E24(j))

+ P(Ec
21(j − 1) ∩ Ec

21(j) ∩ E25(j)) + P(Ec
21(j − 1) ∩ Ec

21(j) ∩ E26(j)).

By the induction assumption, the first term P(E21(j − 1)) tends to zero as n → ∞.

By the law of large numbers, the second and fourth terms P(Ec
21(j − 1) ∩ E23(j)) and

P(Ec
21(j − 1) ∩ Ec

21(j) ∩ E25(j)) tend to zero as n → ∞. By the packing lemma, the last

term P(Ec
21(j − 1) ∩ Ec

21(j) ∩ E26(j)) tends to zero as n→ ∞ if R2 < I(X2;Y2|X1)− δ(ǫ).

The third term requires a special care. We have

P(Ec
21(j − 1) ∩ E24(j))

= P{(Un(1),Xn
1 (m1(j)|1), Y n

2 (j) ∈ T (n)
ǫ and (Un(m1(j)), Y

n
2 (j + 1)) ∈ T (n)

ǫ

for some m1(j) 6= 1}

=
∑

m1(j)6=1

P{(Un(1),Xn
1 (m1(j)|1), Y n

2 (j) ∈ T (n)
ǫ and (Un(m1(j)), Y

n
2 (j + 1)) ∈ T (n)

ǫ }

(a)
=

∑

m1(j)6=1

P{(Un(1),Xn
1 (m1(j)|1), Y n

2 (j) ∈ T (n)
ǫ } · P{(Un(m1(j)), Y

n
2 (j + 1)) ∈ T (n)

ǫ }

(b)

≤ 2nR12−n(I(X1;Y2|U)−δ(ǫ))2−n(I(U ;Y2)−δ(ǫ)),

where (a) follows since, by the independence of codebooks, the events

(Un(1),Xn
1 (m1(j)|1), Y n

2 (j)) ∈ T (n)
ǫ
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and

(Un(m1(j)), Y
n
2 (j + 1)) ∈ T (n)

ǫ

are independent for each m1(j) 6= 1, and (b) follows from the independence of the

codebooks and the joint typicality lemma. Therefore, the probability of error P(Ec
21(j −

1)∩E24(j)) tends to zero as n→ ∞ if R1 < I(X1;Y2|U)+ I(U ;Y2)− 2δ(ǫ) = I(X1;Y2)−

2δ(ǫ). In the last block b, P{M̂2(b) 6= 1} tends to zero as n→ ∞ if R2 < I(X2;Y2|X1)−

δ(ǫ).

Finally, note that I(X2;Y1) ≤ I(X2;Y2|X1) ≤ I(X2;Y1|X1), which guarantees

the existence of p(u|x1) such that I(X2;Y1|U) = I(X2;Y2|X1). Combined with (4.2), this

implies that I(X1;Y2) = I(U ;Y1)+I(V ;Y1|X2, U) and the corner point is achievable. For

the symmetric Gaussian interference channels with S < I < S(S + 1), the corner point

is achieved when U ∼ N(0, αP ),W ∼ N(0, (1−α)P ) and X1 = U +W , where U and W

are independent and α = (S2 + S − I)/S2. This completes the proof of Theorem 4.1.1

and establishes the achievability of the corner point (I(X1;Y2), I(X2;Y1|X1)).

4.1.2 General Rate Point: Single Dimensional SWSC

Now we relax the assumption that the two multiple access rate regions have the

same sum-rate and show how to achieve an arbitrary point (I1, I2) on the dominant face

of the simultaneous decoding inner bound. We split X1 into three parts and keep X2

unsplit. The following theory states the achievable rate region.

Theorem 4.1.2. A rate pair (R1, R2) is achievable with the SWSC scheme if

R1 < min{I(U1;Y1) + I(X1;Y1 |U1,X2), I(U1, U2;Y2) + I(X1;Y2 |U1, U2,X2)},

R2 < min{I(X2;Y1 |U1), I(X2;Y2 |U1, U2)}
(4.3)
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or

R1 < min{I(U1;Y2) + I(X1;Y2 |U1,X2), I(U1, U2;Y1) + I(X1;Y1 |U1, U2,X2)},

R2 < min{I(X2;Y2 |U1), I(X2;Y1 |U1, U2)}
(4.4)

for some pmf p(u1, u2, x1)p(x2). In particular, for any rate point (I1, I2) in the simul-

taneous decoding inner bound, there exists a pmf p(u1, u2, x1)p(x2) such that (I1, I2) is

achievable.

In the following, we show how to achieve the above rate pair via a SWSC scheme,

in which each message M1(j), j ∈ [1 : b − 2] is spread over three blocks and carried by

un1 (M1(j)) in block j + 2, un2 (M1(j)|M1(j − 1)) in block j + 1, and xn1 (M1(j)|M1(j −

1),M1(j − 2)) in block j. Two decoding rules will be considered, resulting in two achiev-

able rate regions. The receivers can choose which rule to follow before the communication

commences. Note that a sequence of (b−2) messages M1(j), j ∈ [1 : b−2] and b messages

M2(j), j ∈ [1 : b] are transmitted over b blocks. The average achievable rate pair over b

blocks is ( b−2
b
R1, R2), which can be made as close to (R1, R2) as desired. Details are as

follows.

Codebook Generation. We use superposition coding. Fix the pmf p(u1, u2, x1)

p(x2) that attains the target rate pair. For notational convention, we assume m1(−1) =

m1(0) = m1(b − 1) = m1(b) = 1. For j ∈ [1 : b], randomly and independently generate

2nR1 sequences un1 (m1(j − 2)),m1(j − 2) ∈ [1 : 2nR1 ], each according to a product of

p(u1). For each m1(j − 2), randomly and conditionally independently generate 2nR1

sequences un2 (m1(j− 1)|m1(j− 2)),m1(j− 1) ∈ [1 : 2nR1 ], each according to a product of

p(u2|u1). For each pair (m1(j−1),m1(j−2)), randomly and conditionally independently

generate 2nR1 sequences xn1 (m1(j)|m1(j−2),m1(j−1)),m1(j) ∈ [1 : 2nR1 ], each according

to a product of p(x1|u1, u2). Randomly and independently generate 2nR2 sequences

xn2 (m2(j)),m2(j) ∈ [1 : 2nR2 ], each according to a product of p(x2). This defines the
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codebook

Cj =
{
un1 (m1(j − 2)), un2 (m1(j − 1)|m1(j − 2)), xn1 (m1(j)|m1(j − 2),m1(j − 1)),

xn2 (m2(j)) : m1(j − 2),m1(j − 1),m1(j) ∈ [1 : 2nR1 ],m2(j) ∈ [1 : 2nR2 ]
}
, j ∈ [1 : b].

Encoding. Sender 1 transmits xn1 (m1(j)|m1(j−2),m1(j−1)) and sender 2 trans-

mits xn2 (m2(j)) in block j ∈ [1 : b].

block j 1 2 3 4 · · · b− 1 b

U1 1 1 m1(1) m1(2) . . . . . . m1(b− 2)

U2 1 m1(1) m1(2) . . . . . . m1(b− 2) 1

X1 m1(1) m1(2) . . . . . . m1(b− 2) 1 1

X2 m2(1) m2(2) . . . . . . . . . . . . m2(b)

Receiver 1
∅ ∅ m̂1(1) m̂1(2) . . . . . . m̂1(b− 2)

m̂2(1) m̂2(2) m̂2(3) m̂2(4) . . . . . . m̂2(b)

Receiver 2
∅ ∅ m̂1(1) m̂1(2) . . . . . . m̂1(b− 2)

∅ m̂2(1) m̂2(2) m̂2(3) . . . . . . m̂2(b − 1), m̂2(b)

Table 4.2. SWSC scheme with decoding rule 1.

Decoding rule 1. Let the received sequences at block j ∈ [1 : b] be yn1 (j) and y
n
2 (j).

We recover message M̂1(j) via sliding-window decoding over three blocks. Table 4.2

reveals the scheduling of the messages and decoding orders.

For receiver 1, at the end of block j = 1, 2, it finds the unique m̂2(j) such that

(xn2 (m̂2(j)), u
n
1 (m1(j − 2)), yn1 (j)) ∈ T (n)

ǫ .

At the end of block j + 2, j ∈ [1 : b− 2], receiver 1 first finds the unique m̂1(j) such that

(xn1 (m̂1(j)|m̂1(j − 2), m̂1(j − 1)), yn1 (j), x
n
2 (m̂2(j)), u

n
1 (m̂1(j − 2)),

un2 (m̂1(j − 1)|m̂1(j − 2))) ∈ T (n)
ǫ ,
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(un2 (m̂1(j)|m̂1(j − 1)), yn1 (j + 1), xn2 (m̂2(j + 1)), un1 (m̂1(j − 1))) ∈ T (n)
ǫ ,

(un1 (m̂1(j)), y
n
1 (j + 2)) ∈ T (n)

ǫ

simultaneously. Then it finds the unique m̂2(j + 2) such that

(xn2 (m̂2(j + 2)), un1 (m̂1(j)), y
n
1 (j + 2)) ∈ T (n)

ǫ .

Following standard analysis, the rate constraints for successful decoding are

R1 < I(U1;Y1) + I(X1;Y1 |U1,X2)− 3δ(ǫ)

R2 < I(X2;Y1 |U1)− δ(ǫ).

(4.5)

For receiver 2, at the end of block 2, it finds the unique message m̂2(1) such that

(xn2 (m̂2(1)), u
n
1 (m1(−1)), un2 (m1(0)|m1(−1)), yn2 (1)) ∈ T (n)

ǫ .

At the end of block j+2, j ∈ [1 : b− 2], it first finds the unique message m̂1(j) such that

(xn1 (m̂1(j)|m̂1(j − 2), m̂1(j − 1)), yn2 (j), x
n
2 (m̂2(j)), u

n
1 (m̂1(j − 2)),

un2 (m̂1(j − 1)|m̂1(j − 2))) ∈ T (n)
ǫ ,

(un2 (m̂1(j)|m̂1(j − 1)), yn2 (j + 1), un1 (m̂1(j − 1))) ∈ T (n)
ǫ ,

(un1 (m̂1(j)), y
n
2 (j + 2)) ∈ T (n)

ǫ

simultaneously. It then finds the unique message m̂2(j + 1) such that

(xn2 (m̂2(j + 1)), un1 (m̂1(j − 1)), un2 (m̂1(j)|m̂1(j − 1)), yn2 (j + 1)) ∈ T (n)
ǫ .

In the end, receiver 2 finds the unique message m̂2(b), such that

(xn2 (m̂2(b)), u
n
1 (m̂1(b− 2)), un2 (m1(b− 1)|m̂1(b− 2)), yn2 (b)) ∈ T (n)

ǫ .
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Following standard analysis, the rate constraints for successful decoding are

R1 < I(U1, U2;Y2) + I(X1;Y2 |U1, U2,X2)− 3δ(ǫ),

R2 < I(X2;Y2 |U1, U2)− δ(ǫ).

(4.6)

Combining (4.5) and (4.6) results in the rate region in (4.3).

Decoding rule 2. We swap the role of receiver 1 and 2 in decoding rule 1. In

particular, we swap receiver 1 with receiver 2, yn1 (j) with yn2 (j), and Y1 with Y2 in the

description of the decoding rule 1. This results in the rate region in (4.4).

R1

R2

(I ′1, I
′
2)

(I ′′1 , I
′′
2 )

target point (I1, I2)

Figure 4.2. Simultaneous decoding inner bound formed by two multiple access rate regions
with unequal sum-rates.

Finally, we show that the union of rate regions (4.3) and (4.4) covers arbitrary

rate point (I1, I2) in the simultaneous decoding inner bound. For a fixed (X1,X2) ∼

p(x1)p(x2), suppose the corresponding multiple access rate regions and the target rate

point (I1, I2) are as depicted in Figure 4.2. Since (I1, I2) lies in the intersection of the

two multiple access channel rate regions, we can find two points (I ′1, I
′
2) and (I ′′1 , I

′′
2 ), one

from the dominant face of each rate region, such that

I1 ≤ min{I ′1, I ′′1 },

I2 ≤ min{I ′2, I ′′2 }.

Figure 4.2 gives an example of such a choice. In certain cases, there can be multiple valid

choices. For the example in Figure 4.2, in the red-dashed rate region, any rate point on

the northeast of the target point can also be a valid choice for (I ′′1 , I
′′
2 ). Then we keep
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the marginal pmf on X1 as p(x1) and choose a joint pmf (U1, U2,X1) ∼ p(u1, u2, x1) such

that at least one of the following is true

I ′2 = I(X2;Y1 |U1),

I ′′2 = I(X2;Y2 |U1, U2)

(4.7)

or

I ′2 = I(X2;Y2 |U1),

I ′′2 = I(X2;Y1 |U1, U2).

(4.8)

Suppose that (4.7) is true. Since (I ′1, I
′
2) and (I ′′1 , I

′′
2 ) are chosen from the dominant face

of the corresponding multiple access rate regions, we have

I ′1 = I(U1;Y1) + I(X1;Y1 |U1,X2),

I ′′1 = I(U1, U2;Y2) + I(X1;Y2 |U1, U2,X2).

In this case, the above SWSC scheme with decoding rule 1 achieves the target rate point

(I1, I2). Suppose otherwise that (4.8) is true. Then the target rate point will be achieved

by following decoding rule 2. This completes the proof of Theorem 4.1.2.

4.2 Variations for Practical Purpose

4.2.1 Rate Loss

In the SWSC above, there is a K−1
b
R1 rate loss whenX1 is split intoK layers. For

example for K = 2, the loss comes since no message is scheduled for Un in block 1 and for

Xn
1 in block b. We can instead send some messages at a lower rate. For example, one can

always send a message at the treating-interference-as-noise rate min{I(U ;Y1), I(U ;Y2)}

for Un in block 1. For the coding scheme for Theorem 4.1.1, one can send a message

at rate min{I(X1;Y1|U,X2), I(X1;Y2|U)} for Xn
1 in block b. In general, one can the
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rate corresponding to the rate-splitting scheme for those unscheduled codewords at the

beginning and end of transmission. This reduces the rate loss from 1
b
R1 to 1

b
∆R1, where

∆R1 is the rate difference between the SWSC and the rate-splitting for the same decoding

order. In the running example,

∆R1 = min{I(U ;Y1) + I(X1;Y1 |U,X2), I(X1;Y2)}

− [min{I(U ;Y1), I(U ;Y2) + min{I(X1;Y1 |U,X2), I(X1;Y2 |U)] .

4.2.2 Homogeneous Superposition Coding

In the description of the sliding–window superposition coding scheme above, we

applied the heterogeneous superposition coding [10], in which the signal X1 is superim-

posed on top of U1 according to the conditional pmf p(x1|u1). For practical implementa-

tion purpose, it is sometimes easier to apply homogeneous superposition coding [22], in

which the two signal layers U1 and U2 are independent according to p(u1)p(u2) and are

superimposed to the physical channel input X1 through a symbol-by-symbol mapping

x1(u1, u2). (For a comparison of the two superposition coding schemes under optimal

decoding, see Chapter 5.)

For example, for Gaussian channels, a typical choice using homogeneous super-

position coding is U1 ∼ N(0, αP ), U2 ∼ N(0, (1 − α)P ) and X1 = U1 + U2. In practical

systems, when U1 and U2 are BPSK signals and distributed according to Unif{−1,+1},

one can form a 4-PAM channel input by choosing X1 =
√
αPU1 +

√

(1− α)PU2. In

particular, choosing α = 0.8 makes X1 a uniformly-spaced 4-PAM signal

X1 ∈ {−3
√
P/

√
5,−

√
P/

√
5,+

√
P/

√
5,+3

√
P/

√
5}.

4.2.3 Decoding Orders

To show the achievability of an arbitrary rate point in the simultaneous decoding

inner bound, it is sufficient to consider the union of rate regions (4.3) and (4.4) in
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Theorem 4.1.2. However, there can be other valid decoding rules for the given codebook

generation and encoding. Simply put, receiver i = 1, 2, can either choose from one of

the decoding orders {dik : k ∈ [1 : 4]}, or treat interference as noise.

For decoding order di1 : m̂1(1) → m̂2(1) → m̂1(2) → m̂2(2) → · · · → m̂1(b−2) →

m̂2(b−2) → m̂2(b−1) → m̂2(b), the achievable rate region Ri1(p) is the set of rate pairs

(R1, R2) such that

R1 < I(X1;Yi),

R2 < I(X2;Yi |X1).

For decoding order di2 : m̂2(1) → m̂1(1) → m̂2(2) → m̂1(2) → · · · → m̂2(b−2) →

m̂1(b−2) → m̂2(b−1) → m̂2(b), the achievable rate region Ri2(p) is the set of rate pairs

(R1, R2) such that

R1 < I(U1, U2;Yi) + I(X1;Yi |U1, U2,X2),

R2 < I(X2;Yi |U1, U2).

For decoding order di3 : m̂2(1) → m̂2(2) → m̂1(1) → m̂2(3) → m̂1(2) → m̂2(4) →

· · · → m̂1(b − 2) → m̂2(b), the achievable rate region Ri3(p) is the set of rate pairs

(R1, R2) such that

R1 < I(U1;Yi) + I(X1;Yi |U1,X2),

R2 < I(X2;Yi |U1).

For decoding order di4 : m̂2(1) → m̂2(2) → m̂2(3) → m̂1(1) → m̂2(4) → m̂1(2) →

· · · → m̂2(b) → m̂1(b − 2), the achievable rate region Ri4(p) is the set of rate pairs

(R1, R2) such that

R1 < I(X1;Yi |X2),
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R2 < I(X2;Yi).

We denote the achievable rate region for treating interference as noise at receiver i

as Ri0(p), which is the set of rate pairs (R1, R2) such that

Ri < I(Xi;Yi).

The combined achievable rate region given current encoding is

4⋃

k=0

4⋃

l=0

(
R1k(p) ∩ R2l(p)

)
.

As subsets, decoding rule 1 in the proof of Theorem 4.1.2 corresponds to R13(p)∩R22(p),

and decoding rule 2 corresponds to R12(p) ∩ R23(p).

4.2.4 Superposition Layers

For some applications, one might want to have a more symmetric encoding

scheme that splits each user’s channel input into two layers, i.e., (U,X1) for user 1

and (V,X2) for user 2. Encoding is illustrated in Table 4.3.

block j 1 2 3 · · · b− 1 b

U 1 m1(1) m1(2) . . . . . . m1(b− 1)

X1 m1(1) m1(2) . . . . . . m1(b− 1) 1

V 1 m2(1) m2(2) . . . . . . m2(b− 1)

X2 m2(1) m2(2) . . . . . . m2(b− 1) 1

Table 4.3. Sliding-window superposition encoding for (U,X1) and (V,X2).

As for decoding, one can similarly work out all valid decoding orders for the

given encoding. Here we introduce a more compact way of writing the corresponding

achievable rate regions. We define a layering order s : S1 → S2 → S3 → S4 as the

an ordering of the variables {U,X1, V,X2} such that the relative orders U → X1 and
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V → X2 are preserved. There are six different layering orders for the current split:

s1 : U → X1 → V → X2

s2 : U → V → X1 → X2

s3 : V → U → X2 → X1

s4 : V → X2 → U → X1

s5 : U → V → X2 → X1

s6 : V → U → X1 → X2.

(4.9)

For each layering order, we define the index sets I1 := {i : Si = U or X1} and I2 :=

{i : Si = V or X2}. For example, for layering order s2, I1 = {1, 3} and I2 = {2, 4}. Now,

for each layering order si, we associate a rate region Rji(p) defined as the set of rate

pairs (R1, R2) such that

R1 <
∑

i∈I1

I(Si;Yj |Si−1),

R2 <
∑

i∈I2

I(Si;Yj |Si−1).

(4.10)

We say a layering order is achievable if the associated rate region is achievable. We

further denote the treating interference as noise region Rj0(p), j = 1, 2, as the set of rate

pairs (R1, R2) such that

Rj < I(Xj ;Yj). (4.11)

It can be checked that the achievable rate region for the given encoding is

4⋃

j=0

4⋃

k=0

[
R1j(p) ∩ R2k(p)

]
. (4.12)

Remark 4.2.1. One might notice that the rate regions corresponding to layering orders

s5 and s6 are included in the above expression (4.12). Indeed, this is a limitation of the

single dimensional SWSC. We will introduce a two dimensional SWSC that achieves all
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possible layering orders in Section 4.4.

More generally, one can split X1 into K layers (U1, . . . , UK) and X2 into L layers

(V1, . . . , VL). Message M1(i), i ∈ [1 : b − K + 1], is sent through signal Uk in block

i + K − k for k ∈ [1 : K]. Message M2(i), i ∈ [1 : b − L + 1], is sent through signal Vl

in block i + L − l for l ∈ [1 : L]. Let us call such splitting and message scheduling as

a single dimensional K-L split. Similar to the case of the single dimensional 2-2 split

above, not every layering order is achievable. The layering orders achievable are of the

following form. It starts with a sequence of consecutive U ’s (or V ’s respectively). Then,

it alternates between one V (U) and one U (V ) until one of them is exhausted. It ends

with the rest unexhausted variables. For example, assumingK > L, theK+L achievable

alternating decoding orders are

s1 : U1 → · · · → UK → V1 → · · · → VL

s2 : U1 → · · · → UK−1 → V1 → UK → V2 → · · · → VL

s3 : U1 → · · · → UK−2 → V1 → UK−1 → V2 → UK → V3 → · · · → VL

...

sK : U1 → V1 → U2 → V2 → · · · → UL → VL → UL+1 → · · · → UK

sK+1 : V1 → U1 → V2 → U2 → · · · → VL → UL → · · · → UK

sK+2 : V1 → V2 → U1 → V3 → U2 → · · · → VL → UL−1 → · · · → UK

...

sK+L : V1 → · · · → VL → U1 → · · · → UK

The index sets I1 and I2 are similarly defined as follows

I1 = {i : Si = Uk for some k ∈ [1 :K]},

I2 = {i : Si = Vl for some l ∈ [1 :L]}.
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The rate region Rjk(p) corresponding to decoding order sk : S1 → · · · → SK+L is the set

of rate pairs (R1, R2) such that

R1 <
∑

i∈I1

I(Si;Y
n
j |Si−1),

R2 <
∑

i∈I2

I(Si;Y
n
j |Si−1).

Theorem 4.2.1. The achievable rate region for the above single dimensional K-L split

encoding for a two-user interference channel p(y1, y2|x1, x2) is given by

K+L⋃

k=0

K+L⋃

l=0

[
R1k(p) ∩ R2l(p)

]
.

4.3 Sliding-Window Coded Modulation

Now we combine the SWSC scheme with coded modulation and simulate its

performance using 4G LTE turbo codes in the two-user Gaussian interference channel.

Z1

Z2

X1

X2

Y1

Y2

g12

g21

g22

g11

Figure 4.3. The two-user Gaussian interference channel.

Consider the two-user Gaussian interference channel (Figure 4.3)

Y1 = g11X1 + g12X2 + Z1,

Y2 = g21X1 + g22X2 + Z2,

(4.13)

where Xi ∈ X , i = 1, 2, is the transmitted signal from sender i with average power

constraint Pi, Yi ∈ R is the received signal at receiver i, and Zi ∈ R ∼ N(0, 1) is the
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Gaussian noise, independent of Xi. We assume that each receiver i knows local channel

gain coefficients gij ∈ R, j = 1, 2, from both senders, which are constant during the

communication.

The original SWSC scheme allows for full flexibility in the number of superim-

posed layers, the number and structure of auxiliary random variables for superposition

coding, and the decoding order. Here, we limit our attention to two layers of BPSK

signals that form a 4-PAM signal by superposition and a fixed decoding order. In par-

ticular,

X1 =
√

P1
√
αU +

√

P1

√
1− αV,

X2 =
√

P2W,

(4.14)

where U , V , and W ∈ {−1,+1} are independent BPSK signals. The parameter α

determines the ratio of powers split into U and V . We choose α = 0.8, which makes X1 ∈

{−3
√
P1/

√
5,−√

P1/
√
5,+

√
P1/

√
5,+3

√
P1/

√
5} a uniformly-spaced 4-PAM signal. The

corresponding channel outputs are

Y1 = g11
√

P1

√
αU + g11

√

P1

√
1− αV + g12

√

P2W + Z1,

Y2 = g21
√

P1

√
αU + g21

√

P1

√
1− αV + g22

√

P2W + Z2.

4.3.1 Theoretical Performance Comparison

Given the current encoding and modulation scheme, we compare the theoretical

performance of treating interference as noise, simultaneous nonunique decoding, and

sliding-window coded modulation.

• Treating interference as noise.

The achievable rate region is the set of rate pairs (R1, R2) such that

R1 < I(X1;Y1),



89

R2 < I(X2;Y2),

where X1 ∼ Unif{−3
√
P1/

√
5,−√

P1/
√
5,+

√
P1/

√
5, +3

√
P1/

√
5} and

X2 ∼ Unif{−√
P2,+

√
P2}.

• Simultaneous nonunique decoding.

The achievable rate region is the set of rate pairs (R1, R2) such that

R1 < I(X1;Y1 |X2),

R2 < I(X2;Y2 |X1),

R1 +R2 < min{I(X1,X2;Y1), I(X1,X2;Y2)},

where X1 ∼ Unif{−3
√
P1/

√
5,−√

P1/
√
5,+

√
P1/

√
5, +3

√
P1/

√
5} and

X2 ∼ Unif{−√
P2,+

√
P2}.

• Sliding-window coded modulation.

The achievable rate region by sliding-window coded modulation is the set of rate

pairs (R1, R2) such that

R1 < min{I(U ;Y1) + I(V ;Y1 |W ) I(U, V ;Y2)},

R2 < min{I(W ;Y1 |U) I(W ;Y2 |U, V )}.

where U , V , and W are independent Unif{−1,+1} random variables,

X1 ∼ Unif{−3
√
P1/

√
5,−

√
P1/

√
5,+

√
P1/

√
5, +3

√
P1/

√
5}, and

X2 ∼ Unif{−√
P2,+

√
P2}.

4.3.2 Implementation With LTE Turbo Codes

For j = 1, . . . , b − 1, we use a binary linear code of length 2n and rate r1/2

to encode message m1(j) through vn(m1(j)) in the j-th block and un(m1(j)) in the

(j + 1)-st block. For j = 1, . . . , b, we use a binary linear code of length n and rate r2
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to encode message m2(j) through wn(m2(j)) in the j-th block. We adopt the turbo

codes used in the LTE standard [1], which allow flexibility in code rate and block length.

In particular, we start with the rate 1/3 mother code and adjust the rates and lengths

according to the rate matching algorithm in the standard. Note that for r1 < 2/3, some

code bits are repeated and for r1 > 2/3, some code bits are punctured. We set the block

length n = 2048 and the number of blocks b = 201 respectively. We use the LOG-MAP

algorithm for the turbo decoding with the maximum number of iterations set to 8 for

each stage of decoding. We assume that a rate pair (R1, R2) is achieved for given Pi

and gij if the resulting bit-error rate (BER) is below 10−3 over 1000 independent sets of

simulations.

4.3.3 Simulation Results

We assume symmetric rate, power, and channel gains, i.e., R1 = R2 = R,P1 =

P2 = P, g11 = g22 = 1, and g12 = g21 = g. We fix the signal-to-noise ratio SNR to be

10dB and vary the interference-to-noise ration INR from 8-12dB.

As shown in Figure 4.4, the sliding-window coded modulation scheme outper-

forms treating interference as noise in all strong and weak interference regimes and

approaches the theoretically best known performance of simultaneous decoding as the

interference becomes strong.

4.4 Han–Kobayashi Inner Bound

In this section, we describe an alternative SWSC scheme for the two-user inter-

ference channel that achieves an arbitrary rate point on the simultaneous decoding inner

bound by a two-dimensional 2-2 split (U,X1) and (V,X2). We first show the achievability

of an arbitrary rate pair in the two-user simultaneous decoding region in Theorem 4.4.1

1It should be stressed that b is the total number of blocks, not the size of the decoding window (which
is 2). Every message is recovered with one-block delay. While a larger b reduces the rate penalty of 1/b,
it also incurs error propagation over multiple blocks, both of which were properly taken into account in
our rate and BER calculation.
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Figure 4.4. Performance comparison in the symmetric Gaussian interference channel.

in Section 4.4.1. Then, we show that for the given two-dimensional 2-2 split, all possible

layering orders s1, s2, . . . , s6 in (4.9) are achievable by varying over different decoding

orders in Theorem 4.4.2. As an important application of this theorem, we establish

in Section 4.4.2 the achievability of the Han–Kobayashi inner bound for the two-user

interference channel [34] using a SWSC scheme in Theorem 4.4.3.

4.4.1 Two-dimensional SWSC

Theorem 4.4.1. A rate pair (R1, R2) is achievable with the two-dimensional SWSC

scheme if

R1 < min{I(U ;Y1) + I(X1;Y1 |U,X2), I(X1;Y2 |V )},

R2 < min{I(X2;Y1 |U), I(V ;Y2) + I(X2;Y2 |V,X1)}
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for some pmf p(u, x1)p(v, x2). In particular, for any rate point (I1, I2) in the simul-

taneous decoding inner bound, there exists a pmf p(u, x1)p(v, x2) such that (I1, I2) is

achievable.

Remark 4.4.1. The achievable rate region above is equivalent as

⋃

p=p(u,x1)p(v,x2)

(R15(p) ∩ R26(p)) ,

where R15(p) and R26(p) are the same as in (4.10). In other words, receiver 1 achieves

the rate region corresponding to layering order s5 : U → V → X2 → X1 and receiver 2

achieves the rate region corresponding to layering order s6 : V → U → X1 → X2.

Remark 4.4.2. One advantage of the two-dimensional SWSC scheme is that the split of

(U,X1) and (V,X2) can be chosen separately. In other words, one only needs to separately

make sure that p(u, x1) is chosen such that

I1 ≤ I(U ;Y1) + I(X1;Y1 |U,X2),

I2 ≤ I(X2;Y1 |U)

and that p(v, x2) is chosen such that

I1 ≤ I(X1;Y2 |V ),

I2 ≤ I(V ;Y2) + I(X2;Y2 |V,X1).

However, as we will see, the decoding delay and finite-length rate loss incurred by two

dimensional SWSC scheme is larger.

Now we briefly sketch the coding scheme. We transmit b1(b2 − 1) messages

M1(jk), j ∈ [1 : b1], k ∈ [1 : b2 − 1], and (b1 − 1)b2 messages M2(jk), j ∈ [1 : b1 −

1], k ∈ [1 : b2], over b1b2 blocks. The average achievable rate pair over b1b2 blocks is
(
b2−1
b2

R1,
b1−1
b1

R2

)
, which can be made arbitrarily close to (R1, R2). In Figures 4.5 and
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4.6, we illustrate the encoding and decoding for b1 = b2 = 4.

U, V
X1, X2 i2 = 1 2 3 i2 = 4

i1 = 1
1, 1 1, m2(11) 1, m2(12) 1, m2(13)

m1(11),m2(11) m1(12),m2(12) m1(13),m2(13) m1(14), 1

2
m1(11), 1 m1(12),m2(21) m1(13),m2(22) m1(1, 4),m2(23)

m1(21),m2(21) m1(22),m2(22) m1(23),m2(23) m2(1, b2), 1

3
m1(21), 1 m1(22),m2(31) m1(23),m2(32) m1(24),m2(33)

m1(31),m2(31) m1(32),m2(32) m1(33),m2(33) m1(34),m2(34)

i1 = 4
m1(31), 1 m1(32),m2(41) m1(33),m2(42) m1(34),m2(43)

1, m2(41) 1, m2(42) 1, m2(43) 1, 1

Figure 4.5. Message scheduling for the two-dimensional SWSC.

Encoding. We use superposition coding to generate independent codebooks,

one for each block. On each column i2 ∈ [1 : b2], message M1(i1, i2), i1 ∈ [1 : b1 −

1], is spread over two blocks and carried by un(M1(i1, i2)) in block (i1 + 1, i2) and

xn1 (M1(i1, i2)|M1(i1−1, i2)) in block (i1, i2). On each row i1 ∈ [1 : b1], messageM2(i1, i2),

i2 ∈ [1 : b2−1], is spread over two blocks and carried by vn(M2(i1, i2)) in block (i1, i2+1)

and xn2 (M2(i1, i2)|M2(i1, i2 − 1)) in block (i1, i2).

m̂2(11) −→ m̂2(12) −→ m̂2(13)
ւ ց ւ ց ւ ց

m̂1(11) m̂1(12) m̂1(13) m̂1(14)
↓ ց ւ ↓ ց ւ ↓ ց ւ ↓
↓ m̂2(21) →↓→ m̂2(22) →↓→ m̂2(23) ↓
↓ ւ ց ↓ ւ ց ↓ ւ ց ↓

m̂1(21) m̂1(22) m̂1(23) m̂1(24)
↓ ց ւ ↓ ց ւ ↓ ց ւ ↓
↓ m̂2(31) →↓→ m̂2(32) →↓→ m̂2(33) ↓
↓ ւ ց ↓ ւ ց ↓ ւ ց ↓

m̂1(31) m̂1(32) m̂1(33) m̂1(34)
ց ւ ց ւ ց ւ
m̂2(41) −→ m̂2(42) −→ m̂2(43)

Figure 4.6. The dependency in recovering all messages at receiver 1.
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Decoding. In Figure 4.6, we describe the dependency in recovering messages

{m̂1(i1, i2)} and {m̂2(i1, i2)} at receiver 1. Here the arrow m̂A → m̂B indicates that

message mA should be recovered before message mB. A valid decoding order is any or-

dering of {m̂1(i1, i2)}∪{m̂2(i1, i2)} such that no message is recovered before any message

it depends on. It is clear that a valid decoding order exists if the dependency graph in

Figure 4.6 is acyclic. For example, one valid decoding order is top-down row by row and

from left to right on each row:

m̂2(11) →· · · → m̂2(13) → m̂1(11) → · · · → m̂1(14)

→ m̂2(21) →· · · → m̂2(23) → m̂1(21) → · · · → m̂1(24)

→ m̂2(31) →· · · → m̂2(33) → m̂1(31) → · · · → m̂1(34)

→ m̂2(41) →· · · → m̂2(43).

Another valid decoding order is to follow the diagonals:

m̂2(11) → m̂1(11)

→ m̂2(12) → m̂1(12) → m̂2(21) → m̂1(21)

→ m̂2(13) → m̂1(13) → m̂2(22) → m̂1(22) → m̂2(31) → m̂1(31)

→ m̂1(14) → m̂2(23) → m̂1(23) → m̂2(32) → m̂1(32) → m̂2(41)

→ m̂1(24) → m̂2(33) → m̂1(33) → m̂2(42)

→ m̂1(34) → m̂2(43).

Following a valid decoding order, the decoder applies successive cancellation and sliding-

window decoding over two corresponding blocks. With a similar analysis as in the single

dimensional SWSC scheme, it can be shown that the rate constraints for successful
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decoding at receiver 1 is

R1 < I(U ;Y1) + I(X1;Y1 |U,X2),

R2 < I(X2;Y1 |U).

(4.15)

This is the rate region corresponding to layering order U → V → X2 → X1. The

dependency relation at receiver 2 can be derived from Figure 4.6 by swapping m̂1(i1, i2)

with m̂2(i2, i1) for i1 ∈ [1 : 3], i2 ∈ [1 : 4]. One can similarly derived the rate constraints

for successful decoding at receiver 2

R1 < I(X1;Y2 |V ),

R2 < I(V ;Y2) + I(X2;Y2 |V,X1).

(4.16)

This is the rate region corresponding to layering order V → U → X1 → X2. Combin-

ing (4.15) and 4.16 establishes Theorem 4.4.1.

Remark 4.4.3 (Decoding delay). Suppose that the transmission is row by row, that is in

the order of (11) → · · · → (1, b2) → (21) → · · · → (2, b2) → · · · → (b1, 1) → · · · → (b1, b2).

Some thoughts on transmission order and the decoding orders reveal that at receiver 1, the

the decoding delay for both messages are b2 blocks, while at the receiver 2, the decoding

delay is one block for message M1, and b2 blocks for message M2. Similarly, if the

transmission is column by column, the maximum decoding delay is b1 blocks. In both

cases, it is much larger than the single dimensional SWSC scheme, which incurs a delay

of two blocks.

Remark 4.4.4 (Finite-length rate loss). For a single dimensional 2-2 split, the rate loss

is 1
b
Rj for j = 1, 2, where b is the number of blocks. Suppose in the two-dimensional

SWSC, we choose b1 = b2 and thus the block length is b = b1b2. Then, the rate loss

incurred by a two-dimensional 2-2 split is

1√
b
Rj
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for j = 1, 2, which is larger than 1
b
Rj in the single dimensional SWSC.

Now let us fully explore all possible achievable layering orders of the above two-

dimensional 2-2 split.

Theorem 4.4.2. For a 2-2 split p = p(u, x1)p(v, x2) and two-dimensional message

scheduling as illustrated in Figure 4.5, the achievable rate region is

6⋃

i1=0

6⋃

i2=0

[
R1,i1(p) ∩ R2,i2(p)

]
,

or equivalently,
2⋂

j=1

(
6⋃

i=0

Rji(p)

)

,

where Rji(p), j = 1, 2, i ∈ [0 : 6], are defined the same as in (4.10) and (4.11).

Remark 4.4.5. Unlike the single-dimensional SWSC scheme, which only achieves lay-

ering orders s1, s2, s3, s4, Theorem 4.4.2 states that the two-dimensional SWSC scheme

achieves all possible layering orders.

It is easy to check that the treating interference as noise region Rj0(p), j = 1, 2, is

achievable. We show the achievability of each rate region Rji(p) for j = 1, 2 and i ∈ [1 : 6].

The crucial step here is to show the dependency graph among all messages is acyclic and

thus a valid decoding order exists. We first note that for the same layering order si, the

dependency graph remains the same at different receivers j = 1, 2. Second, we note that

the layering order s4 can be obtain from s1 by swapping U ↔ V and X1 ↔ X2. Similarly

for s2 ↔ s3 and s5 ↔ s6. As a consequence, the dependency graph for layering order

s4 (and s3, s6 respectively) can be obtained from that of s1 (and s2, s5 respectively) by

swapping m̂1(i1, i2) ↔ m̂2(i2, i1). Therefore, there are three essentially different cases:

layering orders s1, s2, and s5. The dependency graph corresponding to layering order s5

is given in Figure 4.6. Now we show the dependency graph corresponding to layering

order s1 in Figures 4.7.
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m̂2(11) −→ m̂2(12) −→ m̂2(13)
ր տ ր տ ր տ

m̂1(11) m̂1(12) m̂1(13) m̂1(14)
↓ ց ւ ↓ ց ւ ↓ ց ւ ↓
↓ m̂2(21) →↓→ m̂2(22) →↓→ m̂2(23) ↓
↓ ր տ ↓ ր տ ↓ ր տ ↓

m̂1(21) m̂1(22) m̂1(23) m̂1(24)
↓ ց ւ ↓ ց ւ ↓ ց ւ ↓
↓ m̂2(31) →↓→ m̂2(32) →↓→ m̂2(33) ↓
↓ ր տ ↓ ր տ ↓ ր տ ↓

m̂1(31) m̂1(32) m̂1(33) m̂1(34)
ց ւ ց ւ ց ւ
m̂2(41) −→ m̂2(42) −→ m̂2(43)

Figure 4.7. The dependency graph corresponds to layering order s1.

One valid decoding order corresponds to layering order s1 is

m̂1(11) → m̂1(12) → m̂2(11) → m̂1(13) → m̂2(12) → m̂1(14) → m̂2(13)

→ m̂1(21) → m̂1(22) → m̂2(21) → m̂1(23) → m̂2(22) → m̂1(24) → m̂2(23)

→ m̂1(31) → m̂1(32) → m̂2(31) → m̂1(33) → m̂2(32) → m̂1(34) → m̂2(33)

→ m̂2(41) → m̂2(42) → m̂2(43).

Following a similar analysis as in the single dimensional SWSC scheme, one can show

that the rate region Rj1(p) is achievable. We notice that the decoding order on each row

above is the same as that of a single dimensional SWSC scheme for a target rate region

Rj1(p).

Now we show the dependency graph corresponding to layering orders s2 in Fig-

ure 4.8.

One valid decoding order corresponds to layering order s2 is

m̂1(11) → m̂2(11) → m̂1(12) → m̂2(12) → m̂1(13) → m̂2(13) → m̂1(14)

→ m̂1(21) → m̂2(21) → m̂1(22) → m̂2(22) → m̂1(23) → m̂2(23) → m̂1(24)

→ m̂1(31) → m̂2(31) → m̂1(32) → m̂2(32) → m̂1(33) → m̂2(33) → m̂1(34)
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m̂2(11) −→ m̂2(12) −→ m̂2(13)
ր ց ր ց ր ց

m̂1(11) m̂1(12) m̂1(13) m̂1(14)
↓ ց ւ ↓ ց ւ ↓ ց ւ ↓
↓ m̂2(21) →↓→ m̂2(22) →↓→ m̂2(23) ↓
↓ ր ց ↓ ր ց ↓ ր ց ↓

m̂1(21) m̂1(22) m̂1(23) m̂1(24)
↓ ց ւ ↓ ց ւ ↓ ց ւ ↓
↓ m̂2(31) →↓→ m̂2(32) →↓→ m̂2(33) ↓
↓ ր ց ↓ ր ց ↓ ր ց ↓

m̂1(31) m̂1(32) m̂1(33) m̂1(34)
ց ւ ց ւ ց ւ
m̂2(41) −→ m̂2(42) −→ m̂2(43)

Figure 4.8. The dependency graph corresponds to layering order s2.

→ m̂2(41) → m̂2(42) → m̂2(43).

Following a similar analysis as in the single dimensional SWSC scheme, one can show

that the rate region Rj2(p) is achievable. Again, we observe that each row of the above

decoding order is the same as that of a single dimensional SWSC scheme for a target

rate region Rj2(p).

This completes the proof of Theorem 4.4.2. As a simple corollary of this theorem,

we have the following.

Corollary 4.4.1. In a 2-sender L-receiver interference networks p(y1, y2, . . . , yL|x1, x2),

fix a 2-2 split p = p(u, x1)p(v, x2) and two-dimensional encoding as illustrated in Fig-

ure 4.5, the achievable rate region of the two-dimensional SWSC scheme is given by

L⋂

j=1

(
6⋃

i=0

Rji(p)

)

.

4.4.2 SWSC achieves the Han–Kobayashi Inner Bound

In this section, we show how a SWSC scheme achieves the Han–Kobayashi inner

bound [34] for two-user interference channels.

The original Han–Kobayashi coding scheme in [34] is illustrated in Figure 4.9.



99

Y n
1 L̂1, L̂2, L̂3

Y n
2 L̂2, L̂3, L̂4

p(y1, y2 |x1, x2)

Xn
1

L1

L2

Xn
2

L3

L4

x1(t1, t2)

x2(t3, t4)

T n
1

T n
2

T n
3

T n
4

p(y1, y2 | t1, t2, t3, t4)

Figure 4.9. Han–Kobayashi coding scheme.

Message M1 is split into two independent parts (L1, L2) and message M2 is split into

two independent parts (L3, L4). Message Lj, j ∈ [1 : 4], is carried by codeword T n
j (Lj).

Then the channel inputs Xn
1 and Xn

2 are formed using two symbol-by-symbol mappings

x1(t1, t2) and x2(t3, t4). Receiver 1 uniquely decodes (L̂1, L̂2, L̂3) upon receiving Y n
1 ,

while receiver 2 uniquely decodes (L̂2, L̂3, L̂4) upon receiving Y n
2 . Through the two

symbol-by-symbol functions, the original two-user interference channel is transformed

into a four-sender two-receiver interference channel with conditional pmf

p(y1, y2 |t1, t2, t3, t4) = p(y1, y2 |x1(t1, t2), x2(t3, t4)).

The Han–Kobayashi inner bound for the two-user interference channel p(y1, y2|x1, x2) is

given by
⋃

p

Proj4→2

(
R

′
1(p) ∩ R

′
2(p)

)
. (4.17)

Here the input is of the form p =
(∏4

j=1 p(tj)
)
p(x1|t1, t2)p(x2|t3, t4), where p(x1|t1, t2)

and p(x2|t3, t4) are {0, 1}-valued according to functions x1(t1, t2) and x2(t3, t4). The rate

region R′
1(p) is the set of rate triples (R′

1, R
′
2, R

′
3) such that

∑

j∈J

R′
j ≤ I(TJ ;Y1 |T[1:3]\J )

for all J ⊆ [1 : 3] and TJ := (Tj : j ∈ J ) for an index set J . The rate region R′
2(p) is
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the set of rate triples (R′
2, R

′
3, R

′
4) such that

∑

j∈J

R′
j ≤ I(TJ ;Y2 |T[2:4]\J )

for all J ⊆ [2 : 4]. The operator Proj4→2 is to apply the Fourier–Motzkin elimination

from the 4-dimensional rate region (R′
1, R

′
2, R

′
3, R

′
4) to the 2-dimensional rate region

(R1, R2) = (R′
1 +R′

2, R
′
3 +R′

4).

Theorem 4.4.3. The Han–Kobayashi inner bound (4.17) is achievable using a two-

dimensional SWSC scheme.

Remark 4.4.6. The rate region (4.17) can be improved by coded timesharing [27]. But

to simplify notation, here we only present a SWSC scheme that achieves the rate re-

gion (4.17). Coded timesharing can be incorporated on top of it later.

In order to show the achievability of any rate tuple (I1, I2, I3, I4) in R′
1(p)∩R′

2(p)

in (4.17), we need to show there exists a layering order for {U1, U2, U3, U4, V1, V2} that

achieves the rate triple (I1, I2, I3) in R′
1(p) and another layering order for {U1, U2, V1,

V2, V3, V4} that achieves the rate triple (I2, I3, I4) in R′
2(p). In the following, we show

this is indeed the case.

Let us first understand the Han–Kobayashi inner bound (4.17). We note that

R′
1(p) is the standard rate region for a three-user multiple access channel (MAC)

p(y1 |t1, t2, t3) =
∑

t4,y2,x1,x2

p(y1, y2 |x1, x2)p(x1 |t1, t2)p(x2 |t3, t4)p(t4)

and R′
2(p) is the standard rate region for a three-user MAC

p(y2 |t2, t3, t4) =
∑

t1,y1,x1,x2

p(y1, y2 |x1, x2)p(x1 |t1, t2)p(x2 |t3, t4)p(t1).

The auxiliary region in (R′
1, R

′
2, R

′
3, R

′
4) is the intersection of two three dimensional MAC

rate regions, where dimensions R′
2 and R′

3 are in common.
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Let us recall the rate-splitting multiple access result by Grant, Rimoldi, Urbanke,

and Whiting. Consider a three-user MAC p(y|x1, x2, x3). Fix p = p(x1)p(x2)p(x3), the

achievable rate region R(p) is the set of rate triples (R1, R2, R3) such that

∑

j∈J

Rj ≤ I(XJ ;Y |X[1:3]\J )

for all J ∈ [1 : 3].

Lemma 4.4.1 ( [32]). Any rate triple (I1, I2, I3) in R(p) is achievable by splitting two

signals of {X1,X2,X3} into two layers each, keeping one signal unsplit, and choosing a

proper layering order. In particular, there exist a 2-2-1 split p(u1)p(u2)p(v1)p(v2)p(x3)

and functions x1(u1, u2), x2(v1, v2) and a layering order for {U1, U2, V1, V2,X3} that achieves

(I1, I2, I3). Moreover, there also exist a 2-1-2 split that achieves p(s1)p(s2)p(t1)p(t2)p(x2)

and functions x1(s1, s2), x3(t1, t2) and a layering order for {S1, S2, T1, T2,X2} that achieves

the same point.

Now, fix p =
∏4

j=1 p(tj) and functions x1(t1, t2) and x2(t3, t4), which determine

the regions R′
1(p) and R′

2(p). In order to achieve (I1, I2, I3) in R′
1(p), we keep T2 unsplit

and split T1 and T3 into two layers. By Lemma 4.4.1, there exists p(u3)p(u4)p(v1)p(v2)

p(t2) and functions t1(u3, u4), t2(v1, v2) and a layering order on {U3, U4, V1, V2, T2} that

achieves (I1, I2, I3). In order to achieve (I2, I3, I4) in R′
2(p), we keep T3 unsplit and

split T2 and T4 into two layers. By Lemma 4.4.1, there exists p(u1)p(u2)p(v3)p(v4) and

functions t2(u1, u2), t4(v3, v4) and a layering order on {U1, U2, V3, V4, T3} that achieves

(I2, I3, I4). This fully specified the signal splitting

4∏

i=1

p(ui)p(vi)

and functions

x1(u1, u2, u3, u4) := x1(t1(u3, u4), t2(u1, u2))
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and

x2(v1, v2, v3, v4) := x2(t3(v1, v2), t4(v3, v4)).

We are ready to describe our SWSC scheme. We will switch from heterogeneous

superposition coding as in all above SWSC scheme to homogeneous superposition cod-

ing, where independent layers are generated first and mapped to physical channel input

through a symbol-by-symbol mapping [22].

Fix the distribution on (U4, V 4, T 2,X2) as above. Encoding is done in two-

dimension over b2 blocks. We split the message L1 into two independent parts (L′
1, L

′′
1)

and message L4 into two independent parts (L′
4, L

′′
4). For i1, i2 ∈ [1 : b], messages

L′
1(i1, i2), L

′′
1(i1, i2), L

′
4(i1, i2), and L′′

4(i1, i2) are carried by the codewords Un
3 (L

′
1),

Un
4 (L

′′
1), V

n
3 (L′

4), and V n
4 (L′′

4) respectively in block (i1, i2). Message L2 and L3 are

kept unsplit and are carried by (U1, U2) and (V1, V2) through a two-dimensional SWSC

scheduling. That is, message L2(i1, i2) is carried by Un
1 (L2) in block (i1 + 1, i2) and

Un
2 (L2) in block (i1, i2) and message L3(i1, i2) is carried by V n

1 (L3) in block (i1, i2 + 1)

and V n
2 (L3) in block (i1, i2), as illustrated in Figure 4.10.

U1, V1
U2, V2 i2 = 1 2 3 i2 = 4

i1 = 1
1, 1 1, l3(11) 1, l3(12) 1, l3(13)

l2(11), l3(11) l2(12), l3(12) l2(13), l3(13) l2(14), 1

2
l2(11), 1 l2(12), l3(21) l2(13), l3(22) l2(1, 4), l3(23)

l2(21), l3(21) l2(22), l3(22) l2(23), l3(23) l3(1, b2), 1

3
l2(21), 1 l2(22), l3(31) l2(23), l3(32) l2(24), l3(33)

l2(31), l3(31) l2(32), l3(32) l2(33), l3(33) l2(34), l3(34)

i1 = 4
l2(31), 1 l2(32), l3(41) l2(33), l3(42) l2(34), l3(43)

1, l3(41) 1, l3(42) 1, l3(43) 1, 1

Figure 4.10. Two-dimensional message scheduling for L2 and L3.

Based on the layering order that achieves the target point at each receiver, we
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need to show a valid decoding order exists. First note that the encoding of L1 and L4 are

done in the regular rate splitting manner and do not involve coding over multiple blocks.

So we only need to check the dependency graph for messages L2 and L3 and consider

the restricted layering order for {U1, U2, V1, V2}. Since we scheduled the two messages

with the two-dimensional SWSC, Theorem 4.4.2 ensures that any layering order for

{U1, U2, V1, V2} is achievable. Therefore, a valid decoding order exists. This completes

the proof of Theorem 4.4.3.

4.5 Discussion

In this Chapter, we presented a random coding scheme that achieves the simul-

taneous decoding inner bound for the two-user interference channel with successive can-

cellation and sliding-window decoding. All components involved in the coding scheme

have low-complexity implementations using COTS codes. This is an alternative low-

complexity coding techniques (in addition to the polar coding technique presented in

Chapter 3) for interference management in future wireless networks.

Perhaps interestingly, the way the polar coding scheme and the SWSC scheme

resolve incompatibility in interference channels are inherently related. The polar coding

scheme produces universality by sending the same bit twice over to bit-channels, while

the SWSC scheme provides robustness by sending the same message twice over two

blocks. However, it seems that the extensions of the two schemes to more than two-user

interference networks are quite different. It would be interesting to fully explore the

connections between the two scheme.

Acknowledgment

This chapter is, in part, a reprint of the material in the papers: Lele Wang, Eren
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Chapter 5

Broadcast Channels

In this chapter, we consider another important random coding scheme, superposi-

tion coding, in broadcast channels. We compare the two variants of superposition coding

schemes, by Cover [22] and by Bergmans [10], under the maximum likelihood decoding.

We show that Cover’s superposition coding scheme can achieve rates strictly larger than

Bergmans’s scheme. Based on this fact, we then propose a polar coding scheme that

achieves the rate region given by Cover’s superposition coding and maximum likelihood

decoding.

5.1 Introduction

Superposition coding is one of the fundamental building blocks of coding schemes

in network information theory. This idea was first introduced by Cover in 1970 at the

IEEE International Symposium on Information Theory, Noordwijk, the Netherlands,

in a talk titled “Simultaneous Communication,” and appeared in his 1972 paper [22].

Subsequently, Bergmans [10] adapted Cover’s superposition coding scheme to the gen-

eral degraded broadcast channel (this scheme is actually applicable to any nondegraded

broadcast channel), which establishes the capacity region along with the converse proof

by Gallager [29]. Since then, superposition coding has been applied in numerous prob-

105
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lems, including multiple access channels [32], interference channels [14,18,34], relay chan-

nels [24], channels with feedback [25,58], and wiretap channels [17,26].

The objective of superposition coding is to communicate two message simulta-

neously by encoding them into a single signal in two layers. A “better” receiver of the

signal can then recover the messages on both layers while a “worse” receiver can recover

the message on the coarse layer of the signal and ignore the one on the fine layer.

There are two variants of the superposition coding idea in the literature, which

differ in how the codebooks are generated. The first variant is described in Cover’s

original 1972 paper [22] and later in [72] and [23]. Both messages are first encoded

independently via separate random codebooks of auxiliary sequences. To send a message

pair, the auxiliary sequences associated with each message are then mapped through

a symbol-by-symbol superposition function (such as addition) to generate the actual

codeword. One can visualize the image of one of the codebooks centered around a fixed

codeword from the other as a “cloud” (see the illustration in Figure 5.1(a)). Since all

clouds are images of the same random codebook (around different cloud centers), we

refer to this variant as homogeneous superposition coding. Note that in this variant, the

messages are treated equally and the corresponding auxiliary sequences play the same

role. Thus, there is no natural distinction between “coarse” and “fine” layers and there

are two ways to group the resulting superposition codebook into clouds.

The second variant was introduced in Bergmans’s 1973 paper [10]. Here, the

coarse message is encoded into a random codebook of auxiliary sequences. For each

auxiliary sequence, a random satellite codebook is generated conditionally independently

to represent the fine message. This naturally results in clouds of codewords around each

auxiliary sequence. Since all clouds are generated independently, we refer to this variant

as heterogeneous superposition coding. This is illustrated in Figure 5.1(b).

A natural question is whether these two variants are fundamentally different, and

if so, which of the two is preferable. It is known that both variants achieve the capacity

region of the degraded broadcast channel [10]. For the two-user-pair interference chan-
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1,1

1,3

1,2

1,4

2,1

2,3

2,2

2,4

3,1

3,3

3,2

3,4

(a) Homogeneous coding

1,1

1,3

1,2

1,4

2,1

2,2

2,3
2,3

3,1

3,23,4

3,3

(b) Heterogeneous coding

Figure 5.1. Superposition codebooks for which (a) the structure within each cloud is iden-
tical and (b) the structure is nonidentical between clouds. Codewords (dots) are annotated by
“m1,m2”, where m1 is the coarse layer message and m2 is the fine layer message.

nel, the two variants again achieve identical rate regions, namely, the Han–Kobayashi

inner bound (see [34] for homogeneous superposition coding and [18] for heterogeneous

superposition coding). Since heterogeneous superposition coding usually yields a simpler

characterization of the achievable rate region with fewer auxiliary random variables, one

may be tempted to prefer this variant.

However, we show in this chapter that homogeneous superposition coding always

achieves a rate region at least as large as that of heterogeneous superposition coding for

two-user broadcast channels, provided that the optimal (maximum likelihood) decoding

rule is used. Furthermore, this dominance can be strict in general. Intuitively speak-

ing, homogeneous superposition coding results in more structured interference from the

undesired layer and this structure can be exploited under optimal decoding.

5.2 Rate Regions for the Two-Receiver BC

Consider the two-receiver discrete memoryless broadcast channel depicted in Fig-

ure 5.2. The sender wishes to communicate message M1 to receiver 1 and message M2

to receiver 2. We define a (2nR1 , 2nR2 , n) code by an encoder xn(m1,m2) and two de-

coders m̂1(y
n
1 ) and m̂2(y

n
2 ). We assume that the message pair (M1,M2) is uniformly

distributed over [1 : 2nR1 ] × [1 : 2nR2 ], i.e., the messages are independent of each other.
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The average probability of error is defined as P
(n)
e = P{(M1,M2) 6= (M̂1, M̂2)}. A rate

pair (R1, R2) is said to be achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes

such that limn→∞ P
(n)
e = 0.

M1,M2 Xn

p(y1, y2|x)

Y n
1

Y n
2

M̂1

M̂2

Enc

Dec 1

Dec 2

Figure 5.2. Two-receiver broadcast channel.

We now describe the two variants of superposition coding and compare their

achievable rate regions for this channel under optimal decoding.

5.2.1 Homogeneous Superposition Coding (UV Scheme)

Codebook generation. Fix a pmf p(u) p(v) and a function x(u, v). Randomly and

independently generate 2nR1 sequences un(m1), m1 ∈ [1 : 2nR1 ], from
∏n

i=1 pU(ui), and

2nR2 sequences vn(m2), m2 ∈ [1 : 2nR2 ] from
∏n

i=1 pV (vi).

Encoding. To send the message pair (m1,m2), transmit xn1 , where

xi = x(ui(m1), vi(m2)).

Decoding. Both receivers use simultaneous nonunique decoding, which achieves

the same rate region as maximum likelihood decoding [8] for this codebook ensemble.

In particular, upon receiving yn1 , receiver 1 declares that m̂1 was sent if it is the unique

message such that

(
un(m̂1), v

n(m2), y
n
1

)
∈ T (n)

ǫ

for some m2. If there is no unique m̂1, it declares an error. Similarly, upon receiving yn2 ,

receiver 2 declares that m̂2 was sent if it is the unique message such that

(
un(m1), v

n(m̂2), y
n
2

)
∈ T (n)

ǫ
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for somem1. If there is no unique m̂2, it declares an error. Standard typicality arguments

show that receiver 1 will succeed if

R1 < I(U ;Y1) or
R1 +R2 < I(X;Y1),

R1 < I(X;Y1 |V ),

(5.1)

or, equivalently, if

R1 < I(X;Y1 |V ),

R1 +min{R2, I(X;Y1 |U)} < I(X;Y1).

Similarly, receiver 2 will succeed if

R2 < I(V ;Y2) or
R1 +R2 < I(X;Y2),

R2 < I(X;Y2 |U),

(5.2)

or, equivalently, if

R2 < I(X;Y2 |U),

R2 +min{R1, I(X;Y2 |V )} < I(X;Y2).

The regions for both receivers are depicted in Table 5.1. Letting RUV (p) denote the

set of rate pairs (R1, R2) satisfying (5.1) and (5.2) under the given pmf p(u) p(v) and

function x(u, v), it follows that the rate region

RUV = co

(
⋃

p∈PUV

RUV (p)

)

is achievable. Here, co(·) denotes convex hull, and PUV is the set of distributions of the

form p = p(u) p(v) p(x|u, v) where p(x|u, v) represents the function x(u, v).
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Receiver 1 Receiver 2

RUV (p) R1 < I(X;Y1 |V ), R2 < I(X;Y2 |U),
R1 +min{R2, I(X;Y1 |U)} < I(X;Y1) R2 +min{R1, I(X;Y2 |V )} < I(X;Y2)

R1

R2

R1

R2

RUX(p) R1 +min{R2, I(X;Y1 |U)} < I(X;Y1) R2 < I(X;Y2 |U),
R1 +R2 < I(X;Y2)

R1

R2

R1

R2

Table 5.1. Rate regions for homogeneous and heterogeneous superposition coding.

5.2.2 Heterogeneous Superposition Coding (UX Scheme)

Codebook generation. Fix a pmf p(u, x). Randomly and independently generate

2nR1 sequences un(m1), m1 ∈ [1 : 2nR1 ] from
∏n

i=1 pU (ui). For each message m1 ∈ [1 :

2nR1 ], randomly and conditionally independently generate 2nR2 sequences xn(m1,m2),

m2 ∈ [1 : 2nR2 ] from
∏n

i=1 pX|U(xi|ui(m1)).

Encoding. To send (m1,m2), transmit xn(m1,m2).

Decoding. Both receivers use simultaneous nonunique decoding, which is rate-

optimal as shown below. In particular, upon receiving yn1 , receiver 1 declares m̂1 was

sent if it is the unique message such that

(
un(m̂1), x

n(m̂1,m2), y
n
1

)
∈ T (n)

ǫ

for some m2. If there is no unique m̂1, it declares an error. Similarly, upon receiving yn2 ,
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receiver 2 declares m̂2 was sent if it is the unique message such that

(
un(m1), x

n(m1, m̂2), y
n
2

)
∈ T (n)

ǫ

for some m1. If there is no unique m̂2, it declares an error. Standard arguments show

that receiver 1 will succeed if

R1 < I(U ;Y1) or R1 +R2 < I(X;Y1), (5.3)

or, equivalently, if

R1 +min{R2, I(X;Y1 |U)} < I(X;Y1).

Similarly, receiver 2 will succeed if

R2 < I(X;Y2 |U),

R1 +R2 < I(X;Y2).

(5.4)

A similar argument to the one in [8] readily shows that the region in (5.3) cannot be

improved by using maximum likelihood decoding. It is also shown in the Appendix that

applying maximum likelihood decoding does not improve the region in (5.4).

The regions for both receivers are depicted in Table 5.1. Let RUX(p) denote the

set of all rate pairs (R1, R2) satisfying both (5.3) and (5.4). Clearly, the rate region

RUX = co

(
⋃

p∈PUX

RUX(p)

)

is achievable. Here, PUX is the set of distributions of the form p = p(u, x).

If the roles of m1 and m2 in codebook generation are reversed, one can also

achieve the region RV X = co(∪pRV X(p)) obtained by swapping Y1 with Y2 and R1 with

R2 in the definition of RUX(p).



112

It is worth reiterating that the two schemes above differ only in the depen-

dence/independence between clouds around different un sequences, and not in the under-

lying distributions from which the clouds are generated. Indeed, it is well known that the

classes of distributions PUX and PUV are equivalent in the sense that for every p(u, x) ∈

PUX , there exists a q(u) q(v) q(x|u, v) ∈ PUV such that
∑

v q(u) q(v) q(x|u, v) = p(u, x)

(see, for example, [27, p. 626]).

5.3 Main Result

Theorem 5.3.1. The rate region achieved by homogeneous superposition coding includes

the rate region achieved by heterogeneous superposition coding, i.e.,

co
(
RUX ∪ RV X

)
⊆ RUV .

Moreover, there are channels for which the inclusion is strict.

R1

R2

I(X ;Y2|U)

I(X ;Y2)

I(X ;Y1)

I(X ;Y1|U)

RUX(p)

(a) Rate region in (5.6).

R1

R2

I(X ;Y2|U)

I(X ;Y2)

I(X ;Y1|V )

I(X ;Y1|U)

RUV (q)

(b) Rate region in (5.7).

Figure 5.3. Rate regions for the proof of Theorem 5.3.1.

Proof. Due to the convexity of RUV and the symmetry between the definitions of RUX

and RV X , it suffices to show that RUX(p) ⊆ RUV for all p ∈ PUX . Fix a p ∈ PUX . Let

q′ ∈ PUV be such that U = X, V = ∅, and q′(x) = p(x). Let q′′ ∈ PUV be such that

V = X,U = ∅, and q′′(x) = p(x). An inspection of (5.1)–(5.4) and Table 5.1 reveals that
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RUV (q
′) is the set of rate pairs satisfying

R2 = 0,

R1 < I(X;Y1),

and RUV (q
′′) is the set of rate pairs satisfying

R1 = 0,

R2 < I(X;Y2).

It then follows that co
(
RUV (q

′) ∪ RUV (q
′′)
)
includes the rate region

R1 +R2 < min
{
I(X;Y1), I(X;Y2)

}
. (5.5)

We will consider three cases and prove the claim for each.

• If I(X;Y1) ≥ I(X;Y2) then RUX(p) reduces to the rate region

R2 < I(X;Y2 |U),

R1 +R2 < I(X;Y2),

which is included in the rate region in (5.5), and therefore in RUV .

• If I(X;Y1) < I(X;Y2) and I(X;Y1 |U) ≥ I(X;Y2 |U), then RUX(p) reduces to the

rate region

R2 < I(X;Y2 |U),

R1 +R2 < I(X;Y1),

which is also included in the rate region in (5.5), and therefore in RUV .
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• If I(X;Y1) < I(X;Y2) and I(X;Y1 |U) < I(X;Y2 |U), then RUX(p) reduces to the

rate region (see Figure 5.3(a))

R2 < I(X;Y2 |U),

R1 +min{R2, I(X;Y1 |U)} < I(X;Y1).

(5.6)

Find a q ∈ PUV with q(u, x) = p(u, x), and note that RUV (q) is described by the

bounds

R2 < I(X;Y2 |U),

R1 < I(X;Y1 |V ),

R1 +min{R2, I(X;Y1 |U)} < I(X;Y1).

(5.7)

Comparing (5.6) with (5.7) (Figure 5.3(b)), one sees that RUX(p) ⊆ co
(
RUV (q) ∪

RUV (q
′)
)
. This proves the first claim of the theorem.

To show that the inclusion can be strict, consider the vector broadcast channel with

binary inputs (X1,X2) and outputs (Y1, Y2) = (X1,X2). For all p ∈ PUX , we have

from (5.4) that R1+R2 < I(X1X2;Y2) < 1, and thus RUX is included in the rate region

R1 + R2 < 1, and by symmetry, so is RV X . Note, however, that the rate pair (1, 1) is

achievable by homogeneous superposition coding, setting U = X1 and V = X2. This

proves the second claim.

5.4 Polar Coding for Cover’s Superposition Coding

We now present a polar coding scheme that achieves the rate region RUV . We

note that through the symbol-by-symbol mapping x(u, v), the two-user broadcast channel

p(y1, y2|x) can be transformed into a two-user interference channel

p(y1, y2 |u, v) = P (y1, y2 |x(u, v)),
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where sender j ∈ {1, 2} wishes to communicates an independent messageMj to receiver j,

as illustrated in Figure 5.4.

Y n
1 M̂1

Y n
2 M̂2

P (y1, y2 |x)
XnM1

M2

x(u, v)
Un

V n

P (y1, y2 |u, v)

Figure 5.4. Illustration of Cover’s superposition coding as coding for two-user interference
channels.

Moreover, one can write an equivalent rate region of RUV as

RUV = co

(
⋃

p

4⋃

i=1

(
R1i(p) ∩ R2i(p)

)

)

,

where the distribution is of the form p = p(u)p(v) x(u, v) and R1i(p)∩R2i(p) corresponds

to the rate region when the decoder j = 1, 2 is required to uniquely recover message sets

M̂Aj
. For i = 1, 2, 3, 4, the corresponding message sets are

i = 1: A1 = {1},A2 = {2};

i = 2: A1 = {1, 2},A2 = {2};

i = 3: A1 = {1},A2 = {1, 2};

i = 4: A1 = {1, 2},A2 = {1, 2}.

Now we can readily apply the polar coding scheme developed in Chapter 3 to achieve

each of the region R1i(p) ∩ R2i(p), i = 1, 2, 3, 4.

For example, R13(p) ∩ R23(p) is the set of (R1, R2) such that

R1 < I(U ;Y1),

R1 < I(U ;Y2, V ),
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R2 < I(V ;Y2, U),

R1 +R2 < I(U, V ;Y2).

To achieve arbitrary point here, one can first find a good point-in-point code for R13(p)

and a monotone permutation for the MAC region R23(p). Then apply method in 3.4.1

to align the incompatible indices in the code for Un. This achieves any point in the rate

region R13(p)∩R23(p). Similarly for each decoding set, one can design a corresponding

polar coding scheme based on the method above. Therefore, the proposed polar coding

scheme achieves the optimal rate region given Cover’s superposition encoding. The

generalization to L-user broadcast channels can be done similarly.

As a side remark, the independence between U and V in Cover’s superposition

coding is important for transforming the broadcast channel into a two-user interference

channel. For general correlated (U, V ) ∼ p(u, v) as in Marton coding for broadcast

channels, one needs different techniques. A method for Marton coding as well as an

alternative polar coding scheme for Bergmans’s superposition coding can be found in [56]

and [31].

5.5 Discussion

In addition to the basic superposition coding schemes presented in Section 5.2,

one can consider coded time sharing [27], which could potentially enlarge the achiev-

able rate regions. In the present setting, however, it can be easily checked that coded

time sharing does not enlarge RUX . Thus, the conclusion of Theorem 5.3.1 continues

to hold and homogeneous superposition coding with coded time sharing outperforms

heterogeneous superposition coding with coded time sharing.
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5.6 Appendix: Optimality of the Rate Region in (5.4)

We show that the heterogeneous superposition coding ensemble cannot achieve

a rate region larger than the one in (5.4) under any decoding rule. To that end, denote

the random codebook by

C = (Un(1), Un(2), . . . ,Xn(1, 1),Xn(1, 2), . . . ).

By Fano’s inequality,

H(M2 |Y n
2 , C)

=
∑

c

P{C = c}H(M2 |Y n
2 , C = c)

≤
∑

c

P{C = c}[1 + nR2 P{M̂2 6=M2 | C = c}]

≤ nǫn, (5.8)

where ǫn → 0 as n→ ∞. Thus,

nR2 = H(M2 | C,M1)

≤ I(M2;Y
n
2 | C,M1) + nǫn

= H(Y n
2 | C,M1)−H(Y n

2 | C,M1,M2) + nǫn

(a)

≤ nH(Y2 |U)− nH(Y2 |X) + nǫn

= nI(X;Y2 |U) + nǫn,

where (a) follows by the definition of the codebook ensemble and the memoryless prop-

erty.

To see the second inequality, first consider the case

R1 < I(X;Y2). (5.9)
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By (5.8), we have

H(M1,M2 |Y n
2 , C) = H(M2 |Y n

2 , C) +H(M1 |Y n
2 , C,M2)

≤ nǫn +H(M1 |Y n
2 , C,M2).

To bound the last term, note that given M2 = m2, the codebook reduces to

C′ = (Xn(1,m2),X
n(2,m2),X

n(3,m2), . . . ).

These codewords are pairwise independent since they do not share common Un sequences,

and thus C′ is a nonlayered random codebook of rate R1. Since (5.9) holds, receiver 2 can

reliably recover M1 from (Y n
2 , C,M2) by using, for example, a typicality decoder. Thus

we have

H(M1 |Y n
2 , C,M2) ≤ nǫn.

The sum-rate can then be bounded as

n(R1 +R2) = H(M1,M2)

≤ I(M1,M2;Y
n
2 | C) + 2nǫn

≤ nI(X;Y2) + 2nǫn. (5.10)

To conclude the argument, suppose that there exists a decoding rule that achieves a

rate point (R1, R2) with R1 ≥ I(X;Y2). Then, this decoding rule must also achieve

(R′
1, R

′
2) = (I(X;Y2)−R2/2, R2) with the heterogeneous superposition coding ensemble,

since (R1, R2) dominates (R′
1, R

′
2). Note that R′

1 < I(X;Y2). It thus follows from the

discussion above that R′
1 +R′

2 ≤ I(X;Y2), which yields a contradiction.
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Chapter 6

Relay Channels

In this chapter, polar coding schemes are developed for the decode–forward re-

laying (digital-to-digital interface) and the compress–forward relaying (analog-to-digital

interface) in the three-node relay channel. For decode–forward, a technique based on the

recent universal polarization method is applied to create the desired nested structure.

For compress–forward, existing methods are generalized to allow arbitrary input distri-

butions and channel statistics. Both schemes achieve full theoretical rates in general

relay channels.

6.1 Introduction

Consider the three-node discrete memoryless relay channel (X1 × X2,

p(y2, y3|x1, x2),Y2 × Y3) that consists of four finite sets X1,X2,Y2,Y3, and a collection

of conditional probability mass functions (pmfs) p(y2, y3|x1, x2) on Y2 ×Y3 (Figure 6.1).

The sender wishes to communicate a message M to the receiver with the help of the

relay. Let the bold-font letter x = (x1, x2, . . . , xN ) denote the vector of length N . Let

xi = (x1, x2, . . . , xi) for i 6= N .

A (2NR, N) code for the relay channel consists of

• a message set [1 : 2NR] := {1, 2, . . . , 2NR},

120
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replacemen

X1

X2Y2

Y3
M M̂

p(y2, y3|x1, x2)

Relay encoder

Encoder Decoder

Figure 6.1. Three-node relay channel.

• an encoder that assigns a codeword x1(m) to each message m ∈ [1 : 2NR],

• a relay encoder that assigns a symbol x2i(y
i−1
2 ) to each past received sequence yi−1

2

at time i ∈ [1 :N ], and

• a decoder that assigns an estimate m̂ or an error message e to each received se-

quence y3 ∈ YN
3 .

We assume that the message M is uniformly distributed over the message set.

The average probability of error is defined as P
(n)
e = P{M̂ 6=M}. A rate R is said to be

achievable if there exists a sequence of (2NR, N) codes such that limN→∞ P
(n)
e = 0. The

capacity C of the relay channel is the supremum of all achievable rates.

The capacity of the general relay channel is not known. Many information-

theoretic relaying techniques have been developed over the past four decades. Among

them, two primitive techniques are decode–forward and compress–forward. For decode–

forward, the relay treats received sequence y2 as digital signals, recovers the message

from it, and coherently cooperates with the sender to communicate the message to the

receiver. The decode–forward lower bound is given by [24]

C ≥ RDF := max
p(x1,x2)

min
{
I(X1,X2;Y3), I(X1;Y2 |X2)

}
. (6.1)

In comparison, for compress–forward, the relay treats the received sequence y2 as analog

signals, applies Wyner–Ziv coding with the receiver’s sequence y3 acting as side informa-
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tion, and forwards the compression index. The compress–forward lower bound is given

by [24]

C ≥ RCF := max I(X1; Ŷ2, Y3,X2), (6.2)

where the maximum is over all conditional pmfs p(x1)p(x2)p(ŷ2|x2, y2) such that

I(X2;Y3) ≥ I(Y2; Ŷ2 |X2, Y3).

The goal of this chapter is to show the achievability of the two lower bounds using polar

coding techniques.

Polar coding schemes for decode–forward have been proposed in degraded relay

channels, where X1 → (X2, Y2) → Y3 form a Markov chain [3,12,40,41]. Under the degra-

dation condition, the two polarization processes involved in the decode–forward scheme

possess a nested structure. Obtaining such nested structure in general relay channels is

nontrivial [35]. This is because the indices of good bit-channels are different for differ-

ent underlaying channels (not universal) by regular polar transform [7]. Recently, two

universal polar coding methods were proposed [36, 63], which provide tools to resolve

this difficulty. In section 6.2, we propose a novel polar coding scheme that generalizes

previous polar coding schemes to arbitrary three-node relay channels. By carefully in-

corporating the universal polarization techniques in [63], the proposed scheme creates

the desired nested structure and thus achieves the decode–forward lower bound (6.1).

A polar coding scheme for compress–forward has been proposed in relay chan-

nels with orthogonal receiver components, where Y3 = (Y ′
3 , Y

′′
3 ) and p(y2, y3|x1, x2) =

p(y′3, y2|x1)p(y′′3 |x2) [12]. The scheme achieves the so called symmetric compress–forward

rate, which is strictly smaller the compress–forward lower bound (6.2). In Section 6.3, we

extend this scheme to general relay channels. While the key ideas in our coding scheme

resemble that in [12], the contribution in this part is the probability of error analysis

technique that cleans up the unnecessary constraints imposed on the channel statistics

and the input distributions and thus establishes a polar coding scheme that achieves the
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compress–forward lower bound (6.2) in general relay channels.

6.2 Decode–Forward Relaying

We first write the decode–forward lower bound (6.1) in an alternative way. The

proof is skipped due to space limitations.

Lemma 6.2.1. The decode–forward rate can be expressed as

RDF = maxmin
{
I(X2;Y3) + I(V ;Y3,X2), I(V ;Y2,X2)

}
,

where the maximum is over all pmfs p(v)p(x2) and functions x1(v, x2) such that V ∼

Unif[1 : q] for some prime q.

Proof. By the functional representation lemma [27, Appendix ?], for any conditional

pmf p(x1|x2), there exists a random variable V independent of X2 such that X1 can

be represented by a function x1(v, x2). If V is not uniform, we let Ṽ ∼ Unif[1 : q]

for some q ≥ |V| and choose the function f : Ṽ → V to construct V from uniform

Ṽ . Note that Ṽ can be chosen independent of X2 and X1 can thus be represented as

x1(v, x2) = x1(f(ṽ), x2) := x̃1(ṽ, x2). Therefore, in expression (6.1), there is no loss

of generality in restricting the input pmfs to V ∼ Unif[1 : q] independent of X2 and

functions x1(v, x2). Under this input pmf, we have

I(X1,X2;Y3) = I(X2;Y3) + I(X1;Y3 |X2)

(a)
= I(X2;Y3) + I(V,X1;Y3 |X2)

(b)
= I(X2;Y3) + I(V ;Y3 |X2)

(c)
= I(X2;Y3) + I(V ;Y3,X2),

where (a) follows since V → (X1,X2) → Y3 form a Markov chain, (b) follows since X1 is

a function of V and X2, and (c) follows since V and X2 are independent. For a similar
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reason, we have I(X1;Y2|X2) = I(V ;Y2,X2).

In the decode–forward coding scheme, the sender broadcasts the message to both

the relay and the receiver. The relay recovers the message and sends the bin index of

the message to help receiver recover the message. The code design requirements are

summarized as follows.

1. We need to assign a bin index l ∈ [1 : 2NR2 ] for each massage m ∈ [1 : 2NR].

2. We need a code to send the bin index l of the messagem through the point-to-point

channel

p(y3 |x2) =
∑

v,x1,y2

p(v)p(x1 |v, x2)p(y2, y3 |x1, x2).

3. We need a code to broadcast the message m through two point-to-point channels

p(y3, x2 |v) =
∑

x1,y2

p(x2)p(x1 |v, x2)p(y2, y3 |x1, x2),

p(y2, x2 |v) =
∑

x1,y3

p(x2)p(x1 |v, x2)p(y2, y3 |x1, x2),

such that the receiver can recover the message if its bin index l is provided as side

information and the relay can recover the message without side information.

In degraded relay channels, requirement 3) can be fulfilled easily, as the good

bit-channel for p(y3, x2|v) is also good for p(y2, x2|v) using regular polar transform [7].

Unfortunately, the same design is strictly suboptimal in general relay channels. We show

in Section 6.2.1 how to create a similar nested index-set structure for good bit-channels

using methods in [63]. The coding scheme is presented in Section 6.2.2.

6.2.1 Polarization for Broadcasting

Let us first recall the universal polarization method in [63]. A universal polar

transform of rate R is a one-to-one recursive transform such that R fraction of good
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channels and (1 − R) fraction of bad channels are created at each recursion. As the

number of recursions increases, the good channels become increasingly good, and the bad

channels become increasingly bad. The indices of the good channels and bad channels

are independent of the underlying channels, ensuring universality. Thus, if the good

channels converge to perfect channels, we can design a universal code of rate R by

putting information bits in the good channels and freezing the bits in the bad channels.

In [63], a systematic method to design the universal polar transform of any rational

rate is introduced for the class of binary-input memoryless channels. In particular, the

following polarization result is established.

Proposition 6.2.1 (Universal polarization [63]). For any rational rate R∗ ∈ [0, 1], there

exists an N ×N invertible matrix TN over F2 and a partition [1 :N ] = G ⊎ N ⊎ O such

that

lim
N→∞

1

N
|G | = R∗ and lim

N→∞

1

N
|N | = 1−R∗. (6.3)

Let W : X → Y be a binary-input memoryless channel with symmetric capacity I(W ).

Let U = XTN . We have the following properties:

1. If I(W ) ≥ R∗, then for any i ∈ G,

lim
N→∞

I(Ui;Y, U
i−1) = 1.

2. If I(W ) ≤ R∗, then for any i ∈ N ,

lim
N→∞

I(Ui;Y, U
i−1) = 0.

Remark 6.2.1. Proposition 6.2.1 continues to hold for any q-ary alphabet with prime

q. One can simply change the mutual information computation to base q and apply the

modulo-q arithmetics for U = XTN .

Now we are ready to describe the polarization method that fulfills requirement
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3). Suppose that for the pmf that attains RDF in Lemma 6.2.1, I(V ;Y3,X2) < RDF.

(Otherwise, one can achieve rate I(V ;Y3,X2) by transmitting only through the direct

link V → (Y3,X2).) Consider two underlying channels

W1 : V → (Y3,X2) and W2 : V → (Y2,X2).

Choose R∗ / RDF. We design a concatenated two-stage polarization. For the inner po-

larization, we apply the universal transform TN1 for q-ary alphabet. By Proposition 6.2.1,

the index set partition [1 :N1] = G ⊎ N ⊎ O is the same for W1 and W2. For the outer

polarization, we concatenate regular polar transform GN2 for q-ary alphabet. Define the

set of indices that branch out from G as

R = ∪i∈G[(i − 1)N2 + 1 : i×N2].

For β < 1/2, define

A = {i : I(Ui;Y3,X2, U
i−1) > 1− 2−N2

β},

B = {i : I(Ui;Y2,X2, U
i−1) > 1− 2−N2

β}.

Theorem 6.2.1. For R,B,A defined above,

lim
N1,N2→∞

1
N1N2

|R ∩ B| = R∗, (6.4)

lim
N1,N2→∞

1
N1N2

|R ∩ B ∩ A| = I(V ;Y3,X2). (6.5)

Proof. First consider the polarization for channel W2. Note that

R∗ ≤ RDF ≤ I(V ;Y2,X2) = I(W2),

where the last equality follows since V ∼ Unif[1 : q] in Lemma 6.2.1. By property
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1) of Proposition 6.2.1, for any ǫ > 0, there exists an N ′
1 such that after the universal

polarization all bit-channels in G has symmetric capacity as least 1−ǫ. Since the fraction

of good bit-channels in R converges to the average symmetric capacity of channels in R

as N2 → ∞, there exists an N2 such that

|R ∩ B|
|R| > 1− ǫ. (6.6)

By equation (6.3), there exists an N ′′
1 such that

(1 + ǫ)R∗ > 1
N ′′

1 N2
|R| > (1− ǫ)R∗.

Setting N1 = max{N ′
1, N

′′
1 }, we have

(1 + ǫ)R∗ > 1
N1N2

|R ∩ B| > (1− ǫ)2R∗,

establishing (6.4).

For (6.5), consider the polarization for channelW1. First, by regular polarization

results, there exists an N2 such that

I(V ;Y3,X2) + ǫ > 1
N1,N2

|A| > I(V ;Y3,X2)− ǫ.

Second, since I(W1) = I(V ;Y3,X2) ≤ R∗, by property 2) of Proposition 6.2.1, there ex-

ists an N1 such that after the universal polarization, all bit-channels in N has symmetric

capacity at most ǫ. Counting the total mutual information of bit-channels in N , we have

1
N1N2

|Rc ∩ A| < ǫR∗/(1 − 2−N
β
2 ) < ǫ

Moreover, by (6.6),

|R ∩ A ∩ Bc|
N1N2

≤ |R ∩ A ∩ Bc|
|R| ≤ |R ∩ Bc|

|R| < ǫ.
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Therefore, I(V ;Y3,X2) + ǫ > 1
N1N2

|R ∩ B ∩A| = 1
N1N2

(
|A| − |Rc ∩A|− |R ∩A∩Bc|

)
>

I(V ;Y3,X2)− 3ǫ.

By construction, the good bit-channel indices R∩B∩A for W1 is a subset of the

good bit-channel indices R ∩ B for W2. Theorem 6.2.1 ensures that these sets converge

to the right fraction. Now requirement 3) can be fulfilled by sending information in

M := R∩B and freezing the rest bits in F := (R∩B)c. The receiver of channel W1 can

decode if the bits in S := R∩ B ∩ Ac is provided as side information.

6.2.2 Coding Scheme

Now we describe the polar coding scheme that achieves the decode–forward lower

bound (6.1). We use b transmission blocks, each consisting of N = N1N2 transmissions.

A sequence of (b− 1) messages Mj , j ∈ [1 : b− 1] is sent over these b blocks.

Codebooks and rate. Fix the pmf that attains RDF in Lemma 6.2.1. We use two

polar codes. One is a polar code of rate R2 =
1
N
|S| for the point-to-point channel p(y3|x2)

using the method in [65, Chapter 3]. The existence of such a code is guaranteed since,

by Theorem 6.2.1, limN→∞
1
N
|S| = R∗ − I(V ;Y3,X2) ≤ RDF − I(V ;Y3,X2) ≤ I(X2;Y3).

Here, we abstract this code by an encoder x2(l) and a decoder l̂(y3). The other is a polar

code for broadcasting a common massage over W1 and W2. The polarization transform

for this code is given in Section 6.2.1. We locate the message at UM := {Ui : i ∈ M}.

We fix UF = uF and reveal its value to all parties. Thus the rate achieved by this coding

scheme is 1
N
|M|, which, by Theorem 6.2.1, can be arbitrarily close to RDF for large N

and good choices of R∗.

Bin assignment. The bin index for UM is US (recall S ⊂ M). Since the message

UM is uniform, US is also uniform.

Encoding. In block j ∈ [1 : b − 1], the message mj is carried by u
(j)
M. The

sender computes v(j) from u(j) through the polar transform. The sender transmits

x1i = x1(v
(j)
i , x2i(u

(j−1)
S )) at time i ∈ [1 :N ].
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Relay encoding. In block j ∈ [1 : b], upon receiving y
(j)
2 , the relay sets ũ

(j)
F = uF

and successively recovers ũ
(j)
M as

ũi = argmax
u∈U

pUi|Y2,X2,U i−1(u|y(j)
2 ,x2(ũ

(j−1)
S ), ũi−1).

The relay transmits x2

(
ũ
(j)
S

)
in block j + 1.

Decoding. Let the received sequence in block j be y
(j)
3 . The receiver first recovers

û
(j)
S = l̂(y

(j+1)
3 ). Then it sets û

(j)
F = uF and successively recovers û

(j)
M\S as

ûi = argmax
u∈U

pUi|Y3,X2,U i−1(u|y(j)
3 ,x2(û

(j−1)
S ), ûi−1).

Analysis of the probability of error. For j ∈ [1 : b− 1], let

E1(j) = {Ũ (j)
M 6= U

(j)
M },

E2(j) = {Û (j)
S 6= Ũ

(j)
S },

E3(j) = {Û (j)
M\S 6= U

(j)
M\S}.

Then, the average probability of error is bounded by

P{Û (j)
M 6= U

(j)
M }

≤ P{E1(j − 1) ∪ E2(j − 1) ∪ E2(j) ∪ E3(j)}

≤ P{E1(j − 1)}+ P{E2(j − 1)} + P{E2(j)}

+ P{E3(j) ∩ Ec
1(j − 1) ∩ Ec

2(j − 1) ∩ Ec
2(j)}.

The first term corresponds to the transmission on channel p(y2, x2|v). By the error bound

for universal polarization [63], P(E1(j − 1)) = N1O(2−N2
β

). The second and third terms

correspond to the transmission on channel p(y3|x2). Since we are using a good polar

code for this channel, P(E2(j − 1)) = P(E2(j)) = O(2−Nβ

). To bound the last term,

note that X
(j−1)
2 is i.i.d. ∼ p(x2) and independent of V(j). By a similar argument as
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in [62, Appendix A], once x2 is recovered correctly and uS is provided to the receiver of

channel, P{E3(j) ∩ Ec
1(j − 1) ∩ Ec

2(j − 1) ∩ Ec
2(j)} = N1o(2

−N2
β

). Thus, the total error

tends to zero for fixed N1 and N2 → ∞.

Complexity. By the complexity results of regular polar codes [7] and universal

polar codes [63], the complexity is bounded as O(N logN).

6.3 Compress–Forward Relaying

In this section, we develop a polar coding scheme that achieves the compress–

forward lower bound (6.2). In the compress–forward coding scheme, the relay helps

communication by sending a description of its received sequence to the receiver. Because

this description is correlated with the received sequence, Wyner–Ziv coding is used to

reduce the rate needed to communicate it to the receiver. The code design requirements

are summarized as follows.

1. We need a Wyner–Ziv code to compress the source (Y2,X2) when the side infor-

mation (Y3,X2) is available at the decoder. Here, the joint pmf is

p(y2, x2, y3) =
∑

x1

p(x1)p(x2)p(y2, y3 |x1, x2).

2. We need a code to send the compression index of the Wyner–Ziv code over the

point-to-point channel

p(y3 |x2) =
∑

x1,y2

p(x1)p(y2, y3 |x1, x2).

3. We need a code to send the message m over the point-to-point channel

p(y3, ŷ2, x2 |x1) =
∑

y2

p(x2)p(ŷ2 |x2, y2)p(y2, y3 |x1, x2).
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Polar coding for lossy compression with side information available at the decoder

(the Wyner–Ziv problem) has been studied for special cases: (i) doubly symmetric binary

source [44] and (ii) uniform source [12]. The problem for arbitrary joint distribution has

been implicitly addressed in [61]. Here we restate it explicitly for completeness and

describe the compress–forward scheme in Section 6.3.2.

6.3.1 Polarization for the Wyner–Ziv coding

Fix the pmf that attains RCF. Let (Ŷ2,Y2,Y3,X2) be i.i.d. according to

p(ŷ2, y2, y3, x2). Let U = Ŷ2GN , where GN is the polar transform for alphabet of

size |Ŷ2| (refer to [65, Chapter 3] non-binary polar transform). For β < 1/2, define

C = {i : H(Ui |Y2,X2, U
i−1) > 1− 2−Nβ},

D = {i : H(Ui |Y3,X2, U
i−1) < 2−Nβ}.

Note that the pmf that attains RCF satisfies the Markov chain Ŷ2 → (Y2,X2) → (Y3,X2).

Thus, for any i ∈ C, H(Ui|Y3,X2, U
i−1) ≥ H(Ui|Y2,X2, U

i−1) > 1 − 2−Nβ

> 2−Nβ

,

which implies C ⊆ Dc. Let I = (C ∪ D)c. Then, the index set is partitioned as [1 :N ] =

C ⊎ I ⊎ D. By standard polarization results,

lim
N→∞

1
N
|I | = H(Ŷ2 |Y3,X2)−H(Ŷ2 |Y2,X2)

= I(Ŷ2;Y2 |Y3,X2).

6.3.2 Coding Scheme

Again, we use b transmission blocks, each consisting of N transmissions. A

sequence of (b− 1) messages Mj , j ∈ [1 : b− 1] is sent over these b blocks.

Codebooks and rate. We use three codes. The first code is a polar code for lossy

compression of (Y2,X2) when the side information (Y3,X2) is available at the decoder.

We letU = Ŷ2GN as above. The rate of this code is R̂2 =
1
N
|I| ≤ I(Ŷ2;Y2|X2, Y3)+δ1 for
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some small δ1. Let the bits UC be i.i.d. according to Unif[1 : |U|]. Let Z ∼ Unif[1 : 2nR̂2 ]

be independent of U. (UC , Z) are shared by all parties. We use two point-to-point polar

codes for the channels p(y3|x2) and p(y3, ŷ2, x2|x1), respectively, using the method in [39].

We abstract the polar code for p(y3|x2) as an encoder x2(l) and a decoder l̂(y3). The rate

of the code is 1
N
|I| ≤ I(Ŷ2;Y2|X2, Y3)+ δ1 ≤ I(X2;Y3)− δ2, where the second inequality

follows from the constraint in the compress–forward lower bound (6.2) with small δ1 and

δ2. We abstract the polar code for p(y3, ŷ2, x2|x1) as an encoder x1(m) and a decoder

m̂(y3, ŷ2,x2). The rate of the code is R = RCF − δ3. Here, δ1, δ2, δ3 > 0 can be made

arbitrarily small for large N .

Encoding. To send the message mj ∈ [1 : 2nR] in block j ∈ [1 : b− 1], the sender

transmits x1(mj).

Relay encoding. Let (uC , z) be the observed random variable. Let y
(j)
2 be the

received sequence in block j ∈ [1 : b]. The relay sets U
(j)
C = uC . For i ∈ Cc, it randomly

assigns U
(j)
i = u with probability pUi|Y2,X2,U i−1(u|y(j)

2 ,x2(lj−1), u
i−1) for u ∈ U . Let

lj =
(
u
(j)
I + z

)
mod 2nR̂2 . The relay transmits x2(lj) in block j + 1.

Decoding. Let the received sequence in block j ∈ [1 : b] be y
(j)
3 . The decoder first

recovers l̂j = l̂(y
(j+1)
3 ) and computes û

(j)
I =

(
l̂j + z

)
mod 2nR̂2 . Then, it sets û

(j)
C = uC

and successively recovers bits in D as

û
(j)
i = argmax

u∈U
pUi|Y3,X2,U i−1(u|y(j)

3 ,x2(l̂j−1), û
i−1).

Upon recovering ŷ
(j)
2 = û(j)GN , the decoder declares m̂j = m̂(y

(j)
3 , ŷ

(j)
2 ,x2(l̂j−1)) as its

message estimate.

Analysis of the probability of error. There is some subtlety in the error analysis,

since the actual source sequence (Y2,X2) at the relay are not necessarily i.i.d. as desired

in the Wyner–Ziv problem. We denote the desired distribution as

P (x1,x2,y2,y3, ŷ2,u) = 1{u=ŷ2GN}

( N∏

i=1

p(x1i)p(x2i)p(y2i, y3i |x1i, x2i)p(ŷ2i |x2i, y2i)
)

.



133

Let Q be the actual distribution of the above variables

Q(x1,x2,y2,y3, ŷ2,u) = Q(x1)Q(x2)P (y3,y2 |x1,x2)
1

|U||C|

·
∏

i∈Cc

P (ui |y2,x2, u
i−1)1{u=ŷ2GN}.

Proposition 6.3.1. For β < 1/2,

‖P (x1,x2,y2,y3, ŷ2,u)−Q(x1,x2,y2,y3, ŷ2,u)‖ = O(2−Nβ

),

where ‖P (s)−Q(s)‖ :=
∑

s |P (s)−Q(s)|.

Proof. For the polar coding ensembles designed in [39],

‖Q(x1)− P (x1)‖ = O(2−Nβ

),

‖Q(x2)− P (x2)‖ = O(2−Nβ

).

We write x̃ := (x1,x2,y2,y3). The above implies

‖Q(x̃)− P (x̃)‖ = ‖Q(x1,x2)− P (x1,x2)‖

=
∑

x1,x2

∣
∣Q(x1)[Q(x2)− P (x2)] + P (x2)[Q(x1)− P (x1)]

∣
∣

≤
∑

x2

|Q(x2)− P (x2)| +
∑

x1

|Q(x1)− P (x1)| = O(2−Nβ

).

Therefore, we have

‖P (x̃,u, ŷ2)−Q(x̃,u, ŷ2)‖ = ‖P (x̃,u)−Q(x̃,u)‖

=
∑

x̃,u

P (uCc |x̃)
∣
∣
∣P (x̃)

∏

i∈C

P (ui |y2,x2, u
i−1)−Q(x̃) 1

|U||C|

∣
∣
∣

≤
∑

x̃,u

P (uCc , x̃)
∣
∣
∣

∏

i∈C

P (ui |y2,x2, u
i−1)− 1

|U||C|

∣
∣
∣
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+
∑

x̃,u

P (uCc |x̃) 1
|U||C|

∣
∣
∣P (x̃)−Q(x̃)

∣
∣
∣

(a)

≤
∑

i∈C

√

2(log|U| e)(1 −H(Ui |Y2,X2, U i−1)) +O(2−Nβ

)

= O(2−Nβ

),

where (a) follows from Pinsker’s inequality.

Given Proposition 6.3.1, to bound the error under true distribution Q, we can

instead consider the error under distribution P . For j ∈ [1 : b], define the error events

E(j) = {M̂j 6=Mj}, E1(j) = {L̂j 6= Lj},

E2(j) = {ÛI 6= UI}, E3(j) = {ÛD 6= UD}.

Then the probability of error (averaged over (UC , Z)) is

P(E(j)) ≤ P(E(j) ∪ E1(j − 1) ∪ E2(j) ∪ E3(j))

≤ P(E2(j)) + P(E1(j − 1))

+ P(E3(j) ∩ Ec
2(j) ∩ Ec

1(j − 1))

+ P(E(j) ∩ Ec
3(j) ∩ Ec

2(j) ∩ Ec
1(j − 1)).

For the first term, the compression index UI is sent through the point-to-point channel

p(y3|x2) via randomization Lj = (UI + Z) mod 2nR̂2 . Note that although the compres-

sion index might not be uniform over [1 : 2nR̂2 ], after the randomization, Lj ∼ Unif[1 :

2nR̂2 ]. Thus, the probability of error (averaged over Z) is P(E2(j)) =
∑

lj
p(lj)P{ÛI 6=

UI |Lj = lj} = 1

2nR̂2

∑

lj
P{L̂j 6= Lj|Lj = lj} = P(E1(j)) = O(2−Nβ

), where the last

equality follows from the error bound for point-to-point polar codes with uniform mes-

sage [39]. P(E1(j − 1)) is bounded for the same reason. The third term is bounded by

∑

i∈D Z(Ui|Y2,X2, U
i−1) = O(2−Nβ

). Once ŷ2(j) and x2(l̂j−1) are recovered correctly,
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the last term is bounded as O(2−Nβ

), since a good point-to-point polar codes is used

over the channel p(y3, ŷ2, x2|x1). Therefore, there must exists a good (uC , z) such that

the error is bounded as O(2−Nβ
).

Complexity. By the standard polar coding result, the complexity of this coding

scheme is O(N logN).

6.4 Discussion

In this chapter, we present polar coding schemes that achieve the decode–forward

and compress–forward lower bounds in general three-node relay channels. A technique

based on the universal polarization method in [63] is applied to resolve the incompatible

polarization issue in general relay channels. One could also apply the “chaining construc-

tion” in [36] to solve this problem. However, two levels of block Markov coding might

be needed as the basic relaying scheme already involves one.

The decode–forward scheme can also be adapted to achieve the partial decode–

forward lower bound for the three-node relay channel. The proof technique in the

compress–forward scheme ensures that the existing scheme continues to work for “close

to i.i.d.” sources. This technique can be useful for other problems, such as Marton cod-

ing for broadcast channels. Unlike the polar coding schemes for interference channels [?],

which have straightforward extensions to interference networks, here it is nontrivial to

extend to more general schemes for relaying networks, such as noisy network coding [50]

or distributed decode–forward [49]. We leave this as an open problem.
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Chapter 7

Channel Coding and

Slepian–Wolf Coding

In this chapter, We study the duality between channel coding and Slepian–Wolf

coding in the linear coding framework. We show how a code (both its encoder and

decoder) for a symmetric channel coding problem can be used to design a code for a

general Slepian–Wolf problem. Conversely, we show how a code for a symmetric Slepian–

Wolf problem can be used to design a code for a general channel coding problem. The

exact relations between the rates and the probability of errors of the two codes are

established.

7.1 Introduction

7.1.1 Channel Coding Problem

A binary-input memoryless channel (BMC) p(y|x) consists of an input alphabet

X = {0, 1}, a finite output alphabet Y, and a collection of conditional probability mass

functions p(y|x) on Y for x ∈ {0, 1}. We say a BMC p(y|x) is symmetric if there exists

a permutation π : Y → Y such that p(y|x) = p(π(y)|x⊕ 1) for all y ∈ Y and x ∈ {0, 1}.

136
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A (k, n, ǫ) code (f, φ) for the BMC p(y|x) consists of

• a codebook C ⊆ {0, 1}n of size |C| = 2k,

• an encoder f : C → {0, 1}n that maps each codeword cn to a channel input xn =

f(cn), and

• a decoder φ : Yn → C that assigns a codeword estimate ĉn = φ(yn) to each received

sequence yn.

We assume that Cn is uniform over the codebook C. The rate of the code is Rch = k/n.

The average probability of error of the code is P{Ĉn 6= Cn} = ǫ.

We say a channel code is linear if the codebook C is such that for any two

codewords cn, c̃n ∈ C, cn ⊕ c̃n ∈ C. Equivalently, a linear code can be defined by its

parity check matrix H(n−k)×n. For notational convenience, we introduce the augmented

parity check matrix H̄n×n =
[

0
H

]
so that all vectors in this paper are of length n. Thus,

the codebook of a linear code can be written as C = {cn : H̄cn = 0n}. When a (k, n, ǫ)

code (f, φ) is linear with associated augmented parity check matrix H̄ and f(cn) = cn,

we say it is a (k, n, ǫ) linear code (H̄, φ).

7.1.2 Slepian–Wolf Problem

A Slepian–Wolf problem p(x, y) consists of two finite alphabets X = {0, 1},Y, and

a joint pmf p(x, y) over {0, 1}×Y. The binary memoryless sourceX with side information

Y generates a jointly i.i.d. random process {(Xi, Yi)} with (Xi, Yi) ∼ pX,Y (xi, yi). We

say a Slepian–Wolf problem p(x, y) is symmetric if X ∼ Bern(1/2) and the channel p(y|x)

is symmetric.

An (l, n, ǫ) code (g, ψ) for the Slepian–Wolf problem p(x, y) consists of

• an index set I ⊆ {0, 1}n of size |I| = 2l,

• an encoder g : {0, 1}n → I that maps each source sequence xn to an index sn =

g(xn), and
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• a decoder ψ : I × Yn → {0, 1}n that assigns a source estimate x̂n = ψ(sn, yn) to

each index sn and side information sequence yn.

The rate of the code is Rsw = (n− k)/n. The average probability of error of the code is

P{X̂n 6= Xn} = ǫ.

We say a Slepian–Wolf code is linear if for any xn, x̃n ∈ {0, 1}n, g(xn)⊕ g(x̃n) =

g(xn ⊕ x̃n). When an (l, n, ǫ) Slepian–Wolf code (g, ψ) is linear with an encoder defined

by matrix multiplication g(xn) = H̄xn, where H̄n×n =






0

Hl×n




, we say it is an (l, n, ǫ)

linear code (H̄, ψ).

7.1.3 Background

The connection between the channel coding problem and the Slepian–Wolf prob-

lem has long been observed in the literature. In [81], Wyner showed that a linear (k, n, ǫ)

code for the binary symmetric channel with crossover probability p (BSC(p)) can be used

to construct a linear (n − k, n, ǫ) code for the symmetric Slepian–Wolf problem p(x, y)

where p(y|x) is a BSC(p). Since then, several attempts have been made to generalize

this observation [2, 15,16,21,30,44,55,59,68,70]. In [16], Chen, He, Jagmohan, Lastras-

Montano, and Yang related a general Slepian–Wolf problem p(x, y) to a dual channel

coding problem pV |U (v|u), where V = (U ⊕X,Y ) and (X,Y ) ∼ p(x, y) is independent of

U . Under the maximum a posteriori decoding, a linear (k, n, ǫ) code for the dual channel

p(v|u) can be used to design a linear (n − k, n, ǫ) code for the Slepian–Wolf problem

p(x, y). Miyake [55] studied this duality for sparse matrix codes with minimum-entropy

decoding. Such duality were also established for some low-complexity codes, such as

LDPC codes with density evolution decoding [15] and polar codes with successive can-

cellation decoding [44]. In all of these results except [81], the duality was established

only for the encoder, i.e., the encoder of one code is treated as a black box in designing

another code. However, one has to specify the decoding rule to analyze the probability

of error.
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7.1.4 Contributions

In this paper, we investigate whether the duality result can be established for a

given encoder and decoder pair. Given a linear (k, n, ǫ) symmetric channel code (H̄, φ),

how can we construct a general Slepian–Wolf code and what can we say about its per-

formance (in terms of rate and probability of error)? Conversely, given a linear (l, n, ǫ)

symmetric Slepian–Wolf code (H̄, ψ), how can we construct a general channel code and

what can we say about its performance? The motivation is to translate the performance

of commercial off-the-shelf codes that are well studied and simulated in one communica-

tion scenario into the performance of codes for another communication scenario. From

the theoretical point of view, such a linear code duality will generalize most existing

results and will unify the analysis.

The main results of this paper are summarized in Figure 7.1. We first show how

to construct a linear (n − k, n, ǫ) symmetric Slepian–Wolf code from a linear (k, n, ǫ)

symmetric channel code in Section 7.2.1 and a general (n − k, n, ǫ) Slepian–Wolf code

from a linear (n − k, n, ǫ) symmetric Slepian–Wolf code in Section 7.2.2. Next we show

how to construct a (k, n, ǫ) symmetric channel code from a linear (n− k, n, ǫ) symmetric

Slepian–Wolf code in Section 7.2.3 and a (k, n, ǫ) general channel code from a linear

(k, n, ǫ) symmetric channel code in Section 7.2.4. By combining all four results, we

establish the duality between the general Slepian–Wolf problem and the general channel

coding problem.

symmetric SW

symmetric CC

general SW

general CC

Thm 7.2.1Thm 7.2.3

Thm 7.2.2

Thm 7.2.4

Figure 7.1. A summary of the main results. SW is short for Slepian–Wolf coding and CC is
short for channel coding.



140

7.2 Linear Code Duality

7.2.1 Symmetric Channel Code to Symmetric Slepian–Wolf Code

Suppose that for the symmetric BMC p(y|x) with permutation π, there is a linear

(k, n, ǫ) code (H̄, φ). Without loss of generality, assume that the augmented parity check

matrix is systematic

H̄ =






0 0

A In−k




 ,

where A is an (n− k)× k matrix and In−k is the (n− k)× (n− k) identity matrix. The

block diagram for this problem is shown in Figure 7.2. We have the average probability

of error is given by

P{φ(R̃n) 6= C̃n} = ǫ.

ĈnC̃n

p(y|x)
∼ Unif(C)

φ
R̃n

Figure 7.2. A channel code for symmetric BMC p(y|x).

To construct a code for the symmetric Slepian–Wolf problem p(x, y) from the

above channel code, we first introduce two building blocks.

The first block, termed codify, takes two inputs, a binary sequence xn and the

syndrome H̄xn of it, and outputs the element-wise modulo-two sum of the two inputs

xn ⊕ H̄xn, as depicts in the left part of Figure 7.3. Intuitively, this operation shifts any

binary sequence xn to a codeword, as illustrated in the right part of Figure 7.3. We

prove this in Lemma 7.2.1.

Lemma 7.2.1. For any xn ∈ {0, 1}n, xn ⊕ H̄xn ∈ C.
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Proof. For any xn ∈ {0, 1}n, we have

H̄(xn ⊕ H̄xn) = H̄xn ⊕






0 0

A I




 H̄x

n

(a)
=






0

Hxn




⊕






0 0

A I











0

Hxn






=






0

Hxn




⊕






0

Hxn






= 0,

where H = [A, I] in (a). Therefore, xn ⊕ H̄xn ∈ C.

H̄Xn

Xn

codify

Cn

Figure 7.3. The codify block. Left: The block diagram. Right: Illustration of a shift by
H̄Xn in {0, 1}n space.

H̄Xn

Y n

noisy

codify

Rn

Figure 7.4. The noisy codify block. Left: The block diagram. Right: Illustration of a shift
by H̄Xn in Yn space.

The second block, termed noisy codify, takes two inputs, the noisy observation

yn of the binary sequence xn and the syndrome H̄xn, and outputs yn ⊙ H̄xn, which is
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defined as follows. For y ∈ Y and s ∈ {0, 1},

y ⊙ s =







y if s = 0

π(y) if s = 1.

Let yn⊙sn be the element-wise ⊙ operation. The left part of Figure 7.4 depicts the block

diagram. Similar to the shift in the codify operation, this block takes a corresponding

shift in Yn space and outputs a noisy version of the output sequence in the codify block,

as illustrated in the right part of Figure 7.4. Lemma 7.2.2 makes this statement rigorous.

Lemma 7.2.2. Let (Xn, Y n) be i.i.d. according to p(x, y), where p(x, y) is symmetric

under permutation π. Let Cn = Xn ⊕ H̄Xn and Rn = Y n ⊙ H̄Xn. Then,

P{Cn = cn, Rn = rn} =
1

2k

n∏

i=1

pY |X(ri |ci)

for every cn ∈ C and rn ∈ Yn.

Proof. Define S = {sn ∈ {0, 1}n : sk = 0k}. For any cn ∈ C,

P {Cn = cn}

=
∑

sn∈S

P
{
Xn ⊕ H̄Xn = cn, H̄Xn = sn

}

=
∑

sn∈S

P {Xn = cn ⊕ sn}P
{
H̄Xn = sn |Xn = cn ⊕ sn

}

(b)
=
∑

sn∈S

1

2n

=
1

2k
,

where (b) follows since Xn is i.i.d. Bern(1/2) and for any cn ∈ C and sn ∈ S, H̄(cn⊕sn) =
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0n ⊕






0 0

A I











0k

snk+1




 = sn. Now, for any rn ∈ Yn, consider

P{Rn = rn |Cn = cn}

=
∑

sn∈S

P
{
H̄Xn = sn, Y n ⊙ H̄Xn = rn |Cn = cn

}

=
∑

sn∈S

P
{
H̄Xn = sn |Cn = cn

}

· P
{
Y n ⊙ sn = rn |H̄Xn = sn,Xn = cn ⊕ sn

}

=
∑

sn∈S

P
{
H̄Xn = sn |Cn = cn

}

· P {Y n = rn ⊙ sn |Xn = cn ⊕ sn}

=
∑

sn∈S

P
{
H̄Xn = sn |Cn = cn

}
n∏

i=1

pY |X(ri ⊙ si |ci ⊕ si)

(c)
=
∑

sn∈S

P
{
H̄Xn = sn |Cn = cn

}
n∏

i=1

pY |X(ri |ci)

=

n∏

i=1

pY |X(ri |ci),

where (c) follows from the symmetry of the channel p(y|x).

Lemma 7.2.2 implies that if Y n is the output of the channel p(y|x) when the

channel input is Xn. Then, the output the noisy codify block, Rn, distributes as if it is

the output of the same channel p(y|x) when the channel input is the codified sequence

Cn. This is illustrated in Figure 7.5. To recover (the top right) Xn from (the bottom left)

Y n, one can go through the path Y n → Rn → Cn → Xn. To get an estimate Ĉn from

Rn, one can apply the decoder of the channel code. This explains the three steps—noisy

codify, channel decoder, uncodify—in the Slepian–Wolf decoder in Figure 7.6. Moreover,

since the noisy codify and uncodify blocks are invertible, the essential error in recovering

Xn from Y n is the same as the error in recovering Cn from Rn.

Now we are ready to construct a code for the symmetric Slepian–Wolf problem
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H̄Xn

Xn Cn Xn

codify

H̄Xn

uncodify

H̄Xn

Y n Rn Y n

noisy

H̄Xn

p
(y|x

)

codify

noisy

uncodify

p
(y|x

)

Figure 7.5. Relations of the random variables (Xn, Y n, Cn, Rn).

p(x, y). Figure 7.6 illustrates the block diagram.

X̂n

uncodify
Y n

Xn

H̄ φ

codifynoisy

Slepian-Wolf decoder

Figure 7.6. The construction of a symmetric Slepian–Wolf code from a symmetric channel
code.

Encoding. Upon observing the source sequence xn, the sender transmits sn =

H̄xn.

Decoding. Upon observing yn sequence and receiving the index sn, the decoder

declares

x̂n = φ(yn ⊙ sn)⊕ sn

as the source estimate.
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Analysis of the probability of error. We have

P{X̂n 6= Xn}

= P{φ(Y n ⊙ H̄Xn)⊕ H̄Xn 6= Xn}

= P{φ(Y n ⊙ H̄Xn) 6= Xn ⊕ H̄Xn}

= P{φ(Rn) 6= Cn}
(d)
= P{φ(R̃n) 6= C̃n}

= ǫ,

where (d) follows from Lemma 7.2.2.

This code construction leads to the following conclusion.

Theorem 7.2.1. From each linear (k, n, ǫ) code for the symmetric BMC p(y|x), one can

construct a linear (n− k, n, ǫ) code for the symmetric Slepian–Wolf problem p(x, y).

Remark 7.2.1. By construction, the rate of the Slepian–Wolf code is Rsw = (n−k)/n =

1−Rch.

7.2.2 Symmetric Slepian–Wolf Code to General Slepian–Wolf Code

Now we consider the general Slepian–Wolf problem p(x, y). We show that by in-

troducing common randomness, every general Slepian–Wolf problem can be symmetrized

by scrambling.

Lemma 7.2.3. Let Z ∼ Bern(1/2) be independent of (X,Y ). Let X̃ = X ⊕ Z and

Ỹ = (Y,Z). Then, the Slepian–Wolf problem p(x̃, ỹ) is symmetric.

Proof. First, we note that X̃ ∼ Bern(1/2). Moreover, for every x, z ∈ {0, 1} and y ∈ Y,

we have

pỸ |X̃(y, z |x ⊕ z) =
pY,Z,X̃(y, z, x⊕ z)

pX̃(x⊕ z)
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(a)
=
pY,Z,X(y, z, x)

pX̃(x⊕ z ⊕ 1)

(b)
=
pY,Z,X(y, z ⊕ 1, x)

pX̃(x⊕ z ⊕ 1)

=
pY,Z,X̃(y, z ⊕ 1, x⊕ z ⊕ 1)

pX̃(x⊕ z ⊕ 1)

= pỸ |X̃(y, z ⊕ 1|x⊕ z ⊕ 1),

where (a) follows since X̃ ∼ Bern(1/2) and (b) follows since Z ∼ Bern(1/2) is indepen-

dent of (X,Y ). Thus, the Slepian–Wolf problem p(x̃, ỹ) is symmetric under permutation

π(ỹ) = π(y, z) = (y, z ⊕ 1).

In order to design a code for the general Slepian–Wolf problem (X,Y ), we utilize

a linear (n − k, n, ǫ) code (H̄, ψ) for the symmetrized Slepian–Wolf problem (X̃, Ỹ ) =

(X ⊕ Z, (Y,Z)), where Z ∼ Bern(1/2) is independent of (X,Y ). The block diagram of

this code is shown in Figure 7.7. The average probability of error of this code is

P{ψ(H̄X̃n, Ỹ n) 6= X̃n} = ǫ.

̂Xn ⊕ Zn

Y n, Zn

Xn ⊕ Zn

H̄ ψ

Figure 7.7. A code for the symmetrized Slepian–Wolf problem p(x̃, ỹ).

To construct a code for the general Slepian–Wolf problem p(x, y), we share

between the encoder and the decoder a common random sequence Zn, which is i.i.d.

Bern(1/2) and independent of (Xn, Y n), as shown in Figure 7.8.
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X̂n

Y n

Xn

H̄ ψ

SW decoder

Zn

SW encoder

Zn

scramble descramble

Figure 7.8. The construction of a general Slepian–Wolf code from a symmetric Slepian–Wolf
code.

Encoding. Upon observing xn and zn, the sender transmits

sn = H̄(xn ⊕ zn).

Decoding. Upon receiving sn and yn, the decoder declares

x̂n = ψ(sn, (yn, zn))⊕ zn

as the source estimate.

Analysis of probability of error. The probability of error averaged over Zn is

P{X̂n 6= Xn}

= P{ψ(H̄(Xn ⊕ Zn), (Y n, Zn))⊕ Zn 6= Xn}

= P{ψ(H̄X̃n, Ỹ n) 6= X̃n}

= ǫ.

This code construction leads to the following conclusion.

Theorem 7.2.2. From each linear (n − k, n, ǫ) code for the symmetric Slepian–Wolf

problem p(x̃, ỹ) as defined above, one can construct an (n − k, n, ǫ) code for the general

Slepian–Wolf problem p(x, y).
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Remark 7.2.2. By construction, the rate of the general Slepian–Wolf code equals that

of the associated symmetric Slepian–Wolf code, Rgsw = l/n = Rsw. Moreover, we note

that H(X̃ |Ỹ ) = H(X ⊕ Z|Y,Z) = H(X|Y,Z) = H(X|Y ).

In the next two sections 7.2.3 and 7.2.4, we show how to construct a general

channel code from a symmetric Slepian–Wolf code. Again, we take two steps. We

construct first a symmetric channel code and then a general channel code.

7.2.3 Symmetric Slepian–Wolf Code to Symmetric Channel Code

Suppose that for the symmetric Slepian–Wolf problem p(x, y), there is a linear

(n− k, n, ǫ) code (H̄, ψ), as shown in Figure 7.9. Let (X̃n, Ỹ n) be i.i.d. according to

pX,Y (x̃, ỹ). The average probability of error is

P{ψ(H̄X̃n, Ỹ n) 6= X̃n} = ǫ.

X̂n

Ỹ n

X̃n

H̄ ψ

Figure 7.9. A code for symmetric Slepian–Wolf problem p(x, y).

To construct a channel code for the symmetric BMC p(y|x), we share a common

random sequence Zn, which is i.i.d. Bern(1/2) and independent of the message Cn,

between the encoder and the decoder. Figure 7.10 illustrates the block diagram.

Encoding. To send cn ∈ C, the sender transmits

xn = cn ⊕ zn.
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ĈnY nCn

p(y|x) ψ

channel decoder

Zn

Zn

scramble descramble

Xn

H̄

Figure 7.10. The construction of a symmetric channel coding from a symmetric Sleplian–
Wolf code.

Decoding. Upon receiving yn, the decoder declares

ĉn = ψ(H̄zn, yn)⊕ zn

as the codeword estimate.

Analysis of probability of error. The probability of error averaged over Zn is

bounded as

P{Ĉn 6= Cn} = P{ψ(H̄Zn, Y n) 6= Cn ⊕ Zn}
(a)
= P{ψ(H̄Xn, Y n) 6= Xn}
(b)
= P{ψ(H̄X̃n, Ỹ n) 6= X̃n}

= ǫ,

where (a) follows since Cn ∈ C and thus H̄Xn = H̄Cn ⊕ H̄Zn = H̄Zn and (b) since

after scrambling with i.i.d. uniform Zn sequence, (Xn, Y n) are identically distributed as

(X̃n, Ỹ n) in the Slepian–Wolf problem. Finally, since the probability of error averaged

over Zn is ǫ, there exists a deterministic zn sequence such that the probability of error

is bounded by ǫ.

This code construction leads to the following conclusion.
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Theorem 7.2.3. From each linear (n − k, n, ǫ) code for the symmetric Slepian–Wolf

problem p(x, y), one can construct a (k, n, ǫ) code for the symmetric BMC p(y|x).k

Remark 7.2.3. By construction, the rate of the channel code Rch = k/n = 1−Rsw.

Remark 7.2.4. Throughout the construction, we never use the symmetry of the channel

p(y|x). Therefore, the same construction works for designing general channel coding

from general Slepian–Wolf codes. Due to the uniform dithering, the channel input X is

uniform. Thus, the resulting channel code can only achieve up to the symmetric capacity

Csym := I(Bern(1/2), p(y|x)) of the BMC p(y|x).

7.2.4 Symmetric Channel Code to General Channel Code

Now we consider the general channel coding problem p(y|x). Similar to the

construction from a symmetric Slepian–Wolf code to a general Slepian–Wolf code, the

key technique here is to symmetrize a general channel by scrambling.

Lemma 7.2.4. Let Z̃ ∼ Bern(1/2) be independent of (X,Y ). Then, the channel

pỸ ,Z̃|X̃(ỹ, z̃ |x̃) := 1

2
pY |X(ỹ |x̃⊕ z̃)

is symmetric.

Proof. The channel pỸ ,Z̃|X̃(ỹ, z̃|x̃) is symmetric under permutation π(ỹ, z̃) = (ỹ, z̃ ⊕ 1)

since

pỸ ,Z̃|X̃(ỹ, z̃ |x̃) = 1

2
pY |X(ỹ |x̃⊕ z̃)

=
1

2
pY |X(ỹ |x̃⊕ 1⊕ z̃ ⊕ 1)

= pỸ ,Z̃|X̃(ỹ, z̃ ⊕ 1|x̃⊕ 1)

for any x̃, z̃ ∈ {0, 1} and ỹ ∈ Y.
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Suppose that we have a linear (k, n, ǫ) code (H̄, φ) for the symmetrized channel

p(ỹ, z̃|x̃) as illustrated in Figure 7.11. The average probability of error satisfies

P{C̃n 6= φ(Ỹ n, Z̃n)} = ǫ.

ˆ̃Cn

C̃n

p(y|x)
φỸ n

Z̃n Z̃n

p(ỹ, z̃|x̃)

Figure 7.11. Channel coding for symmetric BMC p(ỹ, z̃|x̃).

To construct a code for the general channel p(y|x), we share between the encoder

and the decoder an i.i.d. Bern(1/2) sequence Zn. The encoding and decoding diagram

is shown in Figure 7.12.

ĈnCn

p(y|x) φ

Zn

scramble

Zn

Xn Y n

Figure 7.12. The construction of a general channel coding from a symmetric channel code.

Encoding. To send cn ∈ C, the sender transmits

xn = cn ⊕ zn.

Decoding. Upon receiving yn, the decoder declares

ĉn = φ(yn, zn)
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as the message estimate.

Probability of error analysis. By construction, for all cn ∈ C, yn ∈ Yn, and

zn ∈ {0, 1}n, we have

P{Ỹ n = yn, Z̃n = zn |C̃n = cn}

=
1

2n

n∏

i=1

pY |X(yi |ci ⊕ zi)

= P{Zn = zn}P{Y n = yn |Xn = cn ⊕ zn}
(a)
= P{Zn = zn |Cn = cn}

· P{Y n = yn |Xn = cn ⊕ zn, Cn = cn}

= P{Zn = zn |Cn = cn}

· P{Y n = yn |Zn = zn, Cn = cn}

= P{Y n = yn, Zn = zn |Cn = cn},

where (a) follows since Zn is independent of Cn and Cn → Xn → Y n form a Markov

chain. Therefore, the triples (Cn, Y n, Zn) and (C̃n, Ỹ n, Z̃n) are identically distributed

and the probability of error is

P{Cn 6= φ(Y n, Zn)} = P{C̃n 6= φ(Ỹ n, Z̃n)} = ǫ.

This code construction leads to the following conclusion.

Theorem 7.2.4. From each linear (k, n, ǫ) code for the symmetric BMC p(ỹ, z̃|x̃) as

defined above, one can construct a (k, n, ǫ) code for the general BMC p(y|x).

Remark 7.2.5. By construction, the rate of the general channel code is Rgch = k/n =

Rch. We note that

I(X̃; Ỹ , Z̃) = I(X̃ ; Ỹ |Z̃)

= H(Ỹ |Z̃)−H(Ỹ |X̃, Z̃)
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(a)
= H(Ỹ )−H(Ỹ |X̃ ⊕ Z̃)

= I(X̃ ⊕ Z̃; Ỹ )

= I(Bern(1/2), pY |X),

where (a) follows since X̃ ∼ Bern(1/2) is independent of Z̃ and thus (Ỹ , X̃ ⊕ Z̃) is

independent of Z̃. Therefore, we can construct a code for general channel pY |X(y|x) only

up to the symmetric capacity I(Bern(1/2), pY |X).
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Chapter 8

Concluding Remarks

We conclude this dissertation with comments for future research directions.

In Chapters 2, 3, 5, and 6, we developed polar coding schemes for various commu-

nication scenarios including compound channels, interference channels, broadcast chan-

nels, and relay channels. In order to develop a general framework towards the polar

Shannon theory, there are several important building blocks to investigate: (i) Short

length polar coding with universality, as universality is only achieved at very large block-

length in the existing schemes; (ii) Single block polar coding for Gelfend–Pinsker coding,

which has many applications such as joint channel–source coding [54], relaying via hybrid

coding [42], and coding for write once memories [79]; (iii) Polar coding with universality

for multiple access channels; and (iv) Polar codes construction algorithms for Arıkan’s

polar splitting scheme [5].

In Chapter 4, we proposed the sliding-window superposition coding scheme,

which allowed us to leverage commercial off-the-shelf codes, such as LDPC or turbo

codes, to achieve the performance of simultaneous decoding with minimal changes to the

encoder and the decoder in existing systems. It would be interesting to explore further

whether this scheme can account for the practical constraints in 5G cellular systems. In

particular, the finite-blocklength performance, the error propagation effect, the sensitiv-
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ity to channel estimation, and the amount of sender-coordination needed are important

directions to investigate.

Looking ahead, it would be interesting to consider another crucial technique for

wireless systems: an implementation of the capacity-achieving coding scheme for MIMO

broadcast channels by Marton. Unlike the current broadcasting techniques that encode

different messages for different receivers separately, the capacity-achieving coding scheme

by Marton involves a nontrivial joint encoding that “entangles” multiple codewords.

In addition to achieving higher rates for broadcast, the low-complexity Marton coding

technique can also bring the performance of interference management to the next level,

because an interference channel can be transformed into a MIMO broadcast channel via

sender-cooperation in the wireless network.

As a long term goal, I wish to better understand the interplay between infor-

mation theory and coding theory. From a traditional perspective, the random coding

scheme, as a standard proof technique in information theory, provides guidance for prac-

tical code design. However, in the past decade, several research results, such as compute-

and-forward relaying [57], interference alignment [13], distributed compression with coset

codes [46], and polar coding for interference channels (Chapter 3), demonstrated that

the structured codes can bring strict rate improvement upon state-of-the-art random

coding schemes. These results inspired me to fully explore the potential of structured

codes and to develop a comprehensive theory of structured coding schemes as well as

their performance analysis. Unlike the random coding schemes, which are equipped with

ample easy-to-use analysis tools like the packing lemma and the covering lemma, exist-

ing analysis tools for structured codes are mostly case-by-case, i.e., depending on the

specific communication scenarios, the particular channel statistics, and the underlying

code used. Therefore, I plan to develop a set of systematic tools for the performance

analysis of structured coding schemes. Chapter 7 took a first step towards this direction.



Appendix A

Polarization Preserves Less Noisy

Ordering

Recall that designing a polar code of length 2n for a channelW consists in finding

a set of good channels among W s, s ∈ {−,+}n, which are defined recursively through

W−(y21 |u1) =
∑

u2∈{0,1}

1
2W (y1 |u1 + u2)W (y2 |u2),

W+(y21 , u1 |u2) = 1
2W (y1 |u1 + u2)W (y2 |u2).

A good code of rate R < I(W ) can be obtained by picking an R fraction of these channels

whose symmetric-capacities I(W s) are largest. Here, we show that a polar code designed

in this manner for a channel is also good for all less noisy versions of this channel under

SC decoding. This result has been established independently in [71]. Here we show it by

proving that the less noisy ordering of channels is preserved under polarization. Recall

that a channel V is said to be less noisy thanW if I(T ;Y ) ≤ I(T ;Z) for all distributions

of the form

p(t, x, y, z) = p(x, t)W (y |x)V (z |x), (A.1)
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Y1

Y2

X1

X2

U1

U2T

Z1

Z2

Figure A.1. Dependence graph of the random variables in (A.2).

that is, for all distributions for which T—X—Y Z is a Markov chain [45]. Observe that

this implies I(W ) ≤ I(V ), and thus will also imply that I(W s) ≤ I(V s) for all s once

we show that polarization preserves the less noisy order. Due to the recursive nature of

polarization, it suffices to prove the latter claim for a single step:

Proposition A.0.1. Let W and V be binary-input channels. If V is less noisy than W ,

then

(i) V + is less noisy than W+,

(ii) V − is less noisy than W−.

Proof. To prove (i), we will show that I(T ;Y1Y2U1) ≤ I(T ;Z1Z2U1) for all random

variables (T,U2
1 , Y

2
1 , Z

2
1 ) that are jointly distributed as

p(t, u21, y
2
1 , z

2
1)

= p(t, u2)W
+(y21 , u1 |u2)V +(z21 , u1 |u2).

(A.2)

Note that the channels W+ and V + here share an output, namely U1, but this does not

affect the mutual informations in question. This assumption on the joint distribution

will simplify the proof. Define X1 = U1 + U2 and X2 = U2 (see Figure A.1). We have

I(T ;Y1Y2U1) = I(T ;Y1Y2 |U1)

= I(T ;Y1 |U1) + I(T ;Y2 |Y1U1)

≤ I(T ;Y1 |U1) + I(T ;Z2 |Y1U1)

= I(T ;Y1Z2 |U1)

= I(T ;Z2 |U1) + I(T ;Y1 |Z2U1)
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≤ I(T ;Z2 |U1) + I(T ;Z1 |Z2U1)

= I(T ;Z1Z2 |U1).

To see the first inequality, note that

TU1U2X1Y1Z1—X2—Y2Z2

is a Markov chain. Therefore we have

p(t, u2, x1, x2, y2, z1, z2 |y1, u1)

= p(x2)p(y2, z2 |x2)
p(t, u1, u2, x1, y1, z1|x2)

p(y1, u1)
.

That is, conditioned on Y1 = y1 and U1 = u1,

TU2X1Z1—X2—Y2Z2

is a Markov chain, and therefore so is T—X2—Y2Z2. This and the less noisiness of V

imply I(T ;Y2|Y1 = y1, U1 = u1) ≤ I(T ;Z2|Y1 = y1, U1 = u1). Averaging over (y1, u1)

yields the first inequality. Similarly, for the second inequality, note that

TU1U2Y2Z2—X1—Y1Z1

is a Markov chain, and therefore so is T—X1—Y1Z1 for every Z2 = z2 and U1 = u1. The

less noisy relation then implies I(T ;Y1|Z2 = z2, U1 = u1) ≤ I(T ;Z1|Z2 = z2, U1 = u1).

Averaging over (z2, u1) yields the inequality.

To prove (ii), we need to show that I(T ;Y1Y2) ≤ I(T ;Z1Z2) for all (T,U1, Y
2
1 , Z

2
1 )
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for which

p(t, u1, y
2
1) = q(t, u1)W

−(y21 |u1)

p(t, u1, z
2
1) = q(t, u1)V

−(z21 |u1)
(A.3)

We will also define a random variable U2 such that (T,U2
1 , Y

2
1 , Z

2
1 ) is jointly distributed

as

p(t, u21, y
2
1 , z

2
1) =

1
2q(t, u1)W (y1 |u1 + u2)W (y2 |u2)

· V (z1 |u1 + u2)V (z2 |u2).
(A.4)

Observe that this definition is consistent with (A.3), it will simplify the proof. Defining

again X1 = U1 + U2 and X2 = U2 (see Figure A.2), we can write

I(T ;Y1Y2) = I(T ;Y1) + I(T ;Y2 |Y1)

≤ I(T ;Y1) + I(T ;Z2 |Y1)

= I(T ;Z2) + I(T ;Y1 |Z2)

≤ I(T ;Z2) + I(T ;Z1 |Z2)

= I(T ;Z1Z2).

To see the first inequality, note that the distribution in (A.4) implies that

TU1U2X1Y1Z1—X2—Y2Z2

is a Markov chain. Therefore we have

p(t, u1, u2, x1, x2, y2, z1, z2 |y1)

= p(x2)p(y2, z2 |x2)
p(t, u1, u2, x1, y1)

p(y1)
.
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Figure A.2. Dependence graph of the random variables in (A.4).

That is, for any fixed value of Y1,

TU1U2X1Z1—X2—Y2Z2

is a Markov chain, and therefore so is T—X2—Y2Z2. This and the less noisiness of V

imply I(T ;Y2|Y1 = y1) ≤ I(T ;Z2|Y1 = y1). Averaging over y1 yields the first inequality.

The proof of the second inequality follows by similar arguments.

Note that the choice of the polarization transform and the alphabet size are

immaterial to the proof above, and thus the result holds in more generality as long as

the polarized channels are appropriately defined.

An interesting question here is whether weaker relations than the less noisy order-

ing are preserved under polarization. One well-known such relation is themore capable re-

lation [45]. A channel V (z|x) is said to be more capable thanW (y|x) if I(X;Y ) ≤ I(X;Z)

for all p(x, y, z) = p(x)W (y|x)V (z|x). This ordering is not preserved under polarization,

however. To see this, note that in the class of symmetric binary-input channels with a

given capacity, the binary symmetric channel W is the least capable [65, Lemma 7.1].

At the same time, I(V −) ≤ I(W−) for any channel V in this class [65, Lemma 2.1].
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Appendix B

A Sufficient Condition for Less

Noisy Ordering

We establish an easy-to-check sufficient condition for less noisy ordering over the

class of binary-input memoryless symmetric (BMS) channels.

Recall that each discrete BMS channel can be decomposed into a convex combi-

nation of a collection of binary symmetric channels (BSC), where the BSC with crossover

probability pi ∈ [0, 1/2] is chosen with probability αi, i = 1, . . . , L. The BMS is

fully characterized by its crossover probability profile—the random variable T with pmf

pT (pi) = αi, for i = 1, . . . , L.

Definition B.0.1. The Lorenz curve of a random variable T is defined as

LT (u) =

∫ 1

1−u

F−1
T (y)dy, 0 ≤ u ≤ 1,

where F−1
T (y) := sup{t : FT (t) ≤ y} is the inverse cdf of T . We say random variable T

weakly majorizes random variable S from below if LS(u) ≤ LT (u) for all u ∈ [0, 1].

The following is an equivalent condition for weak majorization [53, Chapters

3.C.1.b, 4.B.2].
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Lemma B.0.5. T weakly majorizes S from below if and only if E(g(S)) ≤ E(g(T )) for

all continuous increasing convex functions g : R → R.

Definition B.0.2. We say channel X → Y is less noisy than channel X → Z if

I(U ;Z) ≤ I(U ;Y ) for all (U,X) for which U—X—(Y,Z) form a Markov chain.

The main result of this appendix is as follows.

Theorem B.0.5 (A Sufficient Condition). Consider two BMS channels X → Y and

X → Z with crossover probability profiles T and S respectively. If (1 − 2T )2 weakly

majorizes (1− 2S)2 from below, then channel X → Y is less noisy than X → Z.

Proof. We first recall the following equivalent characterization of less noisy partial order.

Lemma B.0.6 ( [73]). Channel X → Y is less noisy than X → Z if and only if the

function

f(p(x)) := I(X;Y )− I(X;Z) (B.1)

is concave in p(x).

Taking the second derivative with respect to γ := pX(1), for BMS channels,

condition (B.1) simplifies to

ET

(
(1− 2T )2

(1− γ ∗ T )(γ ∗ T )

)

≤ ES

(
(1− 2S)2

(1− γ ∗ S)(γ ∗ S)

)

(B.2)

for all γ ∈ (0, 1/2], where a∗b = (1−a)b+a(1−b). Define k(p) = (1−2p)2 for p ∈ [0, 1/2].

Clearly k(p) is one-to-one and its inverse function is k−1(y) = 0.5(1 −√
y) for y ∈ [0, 1].

Define

g(γ, y) =
y

(1− γ ∗ k−1(y))(γ ∗ k−1(y))

for γ ∈ (0, 1/2] and y ∈ [0, 1]. Then condition (B.2) is equivalent as

Ek(T )(g(γ, k(T ))) ≤ Ek(S)(g(γ, k(S))) (B.3)
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for all γ ∈ (0, 1/2]. By Lemma B.0.5, it suffices to check that the function g(γ, y) is

continuous convex increasing in y for every γ ∈ (0, 1/2].

Clearly g(γ, y) is continuous. It is increasing in y since for each γ ∈ (0, 1/2],

∂g(γ, y)

∂y
= (1− γ ∗ k−1(y))(γ ∗ k−1(y)) +

1

4
(1− 2(γ ∗ k−1(y)))(1 − 2γ)

√
y ≥ 0.

It is convex in y since

∂2g(γ, y)

∂y2
=

1

4(1− γ ∗ k−1(y))2(γ ∗ k−1(y))2
> 0.

Remark B.0.6. This is, however, not a necessary condition. Let X → Y be a BSC(0.11)

and X → Z be a BMS with crossover probability profile p(0.08716) = 0.73353 and

p(0.5) = 0.26647. One can check that X → Y is less noisy than X → Z from nec-

essary and sufficient condition (B.2). However, weak majorization is violated since

0.08716 < 0.11.

Corollary B.0.1. Over the class of BMS with the same E((1 − 2T )2), binary erasure

channel (BEC) is the least noisy and BSC is the most noisy.

Proof. Note that LT (1) = E((1 − 2T )2). The claim then follows from an inspection at

the Lorenz curves in Figure B.1.

L(u)

L(1)

u

BSC

BEC

BMS

Figure B.1. Lorenz curves for a BSC, a BEC, and a generic BMS channel with the same
value at u = 1.
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