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Abstract 

 

The Neural Bases of Individual Differences in Complex Cognition and Behavior 

 

by 

 

Adam Skyler Eichenbaum 

 

Doctor of Philosophy in Neuroscience 

 

University of California, Berkeley 

 

Professor Mark D’Esposito, Chair  

 

 

 

Everyday human cognition and behavior is accomplished via the coordinated efforts of numerous 

complex processes. From retaining information in memory to maintaining long-term personal 

goals, human behavior is multifaceted. In light of this complex nature, there exists massive 

variability from human to human in their ability to perform and implement these behaviors. In 

this dissertation, I present three experiments that elucidate the neural processes underlying this 

variability. Each experiment involved the collection and analysis of functional magnetic 

resonance imaging (fMRI) data. In one of these experiments, subjects performed a cognitive task 

during fMRI, while the other two assessed the relationship between baseline neural activity and 

complex cognition.  

 

The first chapter of this dissertation uses behavioral modeling and fMRI to assess individual 

differences in the ability to learn and subsequently implement a hierarchically-structured rule set. 

I show that humans are capable of learning and implementing the complex hierarchical rule and 

that neural activity across multiple networks supports this ability. First, I find that brain regions 

across frontal and parietal cortices support the initial discovery of the hierarchical rule. Next, 

activity across a cingulo-opercular network of brain regions supports the generalization of this 

knowledge to novel settings.  

 

I present evidence in the second chapter that individual differences in cognition and behavior are 

not only predicted by the patterns of coordinated neural activity across the entire brain, but that 

novel temporally-varying analysis approaches provide additional predictive power unobtainable 

with previous approaches. Here, I analyzed fMRI data collected while subjects performed no 

explicit task, a procedure referred to as “resting-state” fMRI.  Subjects also completed a set of 

cognitive computer tasks that measured complex cognitive abilities such as working memory and 

cognitive control. By applying both traditional time-invariant and novel time-varying graph 

theoretical analyses to the resting-state fMRI data, I was able to predict individual differences in 

the cognitive abilities measured outside the MRI scanner. Moreover, the novel time-varying 

analysis revealed relationships to behavior that better captured task-specific behavioral 

variability.  
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The final chapter examines the ability of resting-state graph theoretical approaches to predict 

cognitive abilities related to attention and inhibitory control. Moreover, neural measures were 

interrogated alongside measures of human physiological functioning. Here, I find that all 

attentional and inhibitory abilities are accurately predicted across all neural and physiological 

measures. Specifically, neural measures indicative of brain-wide activity patterns predicted 

attentional accuracy and global inhibition ability, while neural measures reflecting activity 

patterns of particular neural networks additionally predicted attentional reactivity. Further, 

measures of physiological functioning were able to predict individual aspects of inhibitory 

control. 

 

Together, the three experiments presented here contribute to our knowledge of how neural 

activity patterns ultimately beget complex cognition and behavior. Using multiple 

complimentary analytical approaches, I find evidence for the role of multiple neural networks in 

explaining the differences in cognitive abilities across the healthy human population.    
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CHAPTER 1 

 

1.1 Introduction 

 

Once thought to be governed by humble stimulus-response conditioning, human behavior 

is now known to be the result of a multitude of complex processes that dynamically interact to 

produce everyday human behaviors. From learning how to adapt to a new social setting, to 

maintaining relevant information in memory, and attending to various streams of information in 

order to achieve short- and long-term goals, human behavior is complex and highly variegated. 

Alongside this complexity comes variability across humans in their ability to perform these 

behavioral functions. The goal of this dissertation is to elucidate the neural mechanisms 

responsible for this observed variability in complex human behavior.  

 

In Chapter 2 I focus on the neural mechanisms associated with the learning and 

generalization of complex rules. Although seemingly mundane, the simple act of visiting a new 

coffee shop requires generalizing knowledge from previous experiences. You must determine 

where the line forms, what the menu consists of, and how to place your order and retrieve your 

drink. Humans are uniquely capable of adapting to novel scenarios such as these, evidenced by 

the fact that such an act itself seems unremarkable. However, the processes involved in learning 

new information and generalizing it to novel scenarios are highly complex, and the neural 

mechanisms underlying this ability are only beginning to be understood. Regions along the right 

lateral frontal surface of the brain have been associated with the learning and implementation of 

complex, hierarchically structured rules such as these (Badre & D’Esposito, 2007; Badre & Nee, 

2018). In addition, regions comprising a “cingulo-opercular” network that spans frontal cortex, 

insular cortex, and the subcortex have been associated with the maintenance of structured task 

sets that coordinate a series of goal-relevant behaviors (Dosenbach, Fair, Cohen, Schlaggar, & 

Petersen, 2008; Dosenbach et al., 2006). It remains uncertain, though, how the brain supports the 

generalization of this knowledge to novel settings. Using fMRI and behavioral modeling, I 

discovered that a network of regions spanning both frontal and parietal cortices work together to 

support the initial discovery of a hidden hierarchical rule that governs how subjects should 

respond to all incoming stimuli. In addition, I found that individual differences in the ability to 

generalize this rule to novel settings was related to the variability in the activity throughout a 

cingulo-opercular network of brain regions. These results demonstrate that the uniquely human 

ability of learning and adaptation relies on a dual-network architecture of brain areas spanning 

multiple cortical regions.  

 

In Chapter 3 I investigate how distributed patterns of neural activity measured during a 

task-free baseline resting state predict individual differences in working memory and cognitive 

control. Working memory is a core cognitive function and refers to the active short-term 

retention of information that is no longer present in the environment (D’Esposito & Postle, 2015; 

Fuster, 1973). In addition, cognitive control is a foundational human ability and broadly refers to 

the collective ability of maintaining and processing selective information from multiple streams 

in order to perform specific behaviors (M. M. Botvinick, Braver, Barch, Carter, & Cohen, 2001). 

Cognitive abilities that tap these crucial functions have been interrogated using resting-state 

fMRI analyses in the past with great success (Biswal, Yetkin, Haughton, & Hyde, 1995; Cohen 

& D’Esposito, 2016; Stevens, Tappon, Garg, & Fair, 2012). These resting-state fMRI analyses 
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have typically analyzed neural activity as a static, time-invariant property, however recent 

findings have shown that considering the data from a time-varying perspective may allow for 

additional insight (Cohen, 2018; Sadaghiani, Poline, Kleinschmidt, & D’Esposito, 2015; 

Thompson, 2018; Vidaurre, Smith, & Woolrich, 2017). Specifically, the time-varying nature of 

these analyzes may be better situated to capture variability in these core cognitive abilities. By 

contrasting time-invariant against time-varying resting-state fMRI analysis approaches, I 

discovered that information carried in time-varying resting-state neural activity patterns better 

captured behavioral differences compared to time-invariant methods. Specifically, time-invariant 

analyses tracked trait-level attributes such as general multi-task cognitive abilities and 

personality traits, while time-varying analyses additionally tracked individual differences in the 

variability of working memory reaction times. These results provide evidence that time-varying 

fluctuations in rest-state neural activity patterns carry meaningful information related to the 

variability of complex human behaviors such as working memory. 

 

In Chapter 4 I investigate individual differences in core attentional and inhibitory 

cognitive abilities using resting-state fMRI alongside the analysis of measures of physiological 

functioning. Building off the previous analysis of resting-state fMRI data, I incorporate the 

collection of measures of cardiac and respiratory functioning in order to predict individual 

differences in cognitive abilities. I found that although neural measures derived from resting-

state fMRI and physiological measures tracked performance variability across multiple attention-

based cognitive tasks, unique prediction differences existed within and between the two 

measurement modalities. First, neural measures indexing brain-wide activity patterns tracked 

measures of general accuracy and global inhibition ability, while activity patterns within specific 

neural networks additionally tracked measures of general reaction time. Measures of 

physiological functioning, in addition to tracking measures of general reaction time and global 

inhibition ability, were uniquely capable of teasing apart differences related to inhibition reaction 

time and inhibition accuracy. These results suggest that predictive models of complex human 

behavior can benefit by the inclusion of extra-neuronal biologically-relevant features.  



 

 3 

CHAPTER 2 

 

Dissociable neural systems support the learning and transfer of hierarchical control 

structure 

 

 

 

2.1 Abstract 

 

Humans can draw insight from previous experiences in order to quickly adapt to novel 

environments that share a common underlying structure. Here we combine functional imaging 

and computational modeling to identify the neural systems that support the discovery and 

transfer of hierarchical task structure. Human subjects (male and female) completed multiple 

blocks of a reinforcement learning task that contained a global hierarchical structure governing 

stimulus-response action mapping. First, behavioral and computational evidence showed that 

humans successfully discover and transfer the hierarchical rule structure embedded within the 

task. Next, analysis of fMRI BOLD data revealed activity across a frontal-parietal network that 

was specifically associated with the discovery of this embedded structure. Finally, activity 

throughout a cingulo-opercular network supported the transfer and implementation of this 

discovered structure. Together, these results reveal a division of labor in which dissociable 

neural systems support the learning and transfer of abstract control structures.  

 

 

 

2.2 Introduction 

 

Whether it is learning how to drive a new car or interacting with an unfamiliar social 

group, humans show remarkable adaptability inferring the correct action given minimal 

information. Such learning usually occurs via trial and error where feedback works to guide 

future behavior. These problem-solving approaches are routinely accelerated by generalizing 

previous knowledge (Woodworth & Thorndike, 1901). When simple stimulus-response 

mappings are learned in experimental settings, responses learned in one context can be directly 

transferred to a subsequent context, leading to an immediately observable benefit (Behrens et al., 

2007; Collins et al., 2014; Collins & Frank, 2016). Although humans can encounter scenarios 

such as these (e.g., opening computer applications on a Windows vs. Apple operating system), 

humans also encounter settings where this approach leads to failure (e.g. starting computer 

programs on Windows/Apple vs. Linux). In these cases, it is advantageous to instead leverage 

prior knowledge to guide the learning of the correct behavior, a process known as “learning to 

learn” (Bavelier et al., 2012; Botvinick et al., 2019; Harlow, 1949; Kemp et al., 2010). While the 

behavioral and neurobiological underpinnings of more direct types of transfer have been 

relatively well-characterized (Collins et al., 2014; Collins & Frank, 2016), the neural systems 

and mechanisms underlying this more abstract form of transfer remain poorly understood. 

  

Everyday experiences are often structured hierarchically where actions and experiences 

are influenced by superordinate contexts and rules. For example, when traveling away from 

home it is common to pack a bag with clothes and overnight necessities. However, the rule that 
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restricts packing small-volume liquids is only relevant in certain contexts: when traveling by 

airplane, not by car. By grouping these sets of behaviors and experiences hierarchically, one is 

able to easily generalize rules from one context to another, and even to contexts that have not yet 

been personally experienced. One way in which learned hierarchical structures may be 

generalized to novel contexts is the creation of task sets or task structures that span across related 

contexts regardless of low-level features (Collins & Frank, 2013).  

 

Although the combination of task sets and hierarchical processing provides a natural 

candidate solution for how learned hierarchical structure is generalized, the neural basis of these 

cognitive processes has typically been studied in isolation. Growing neurobiological and 

computational evidence suggests that the frontal cortex facilitates hierarchically-structured 

behavior (Badre & D’Esposito, 2007; Badre et al., 2010; Collins & Frank, 2013; Frank & Badre, 

2012; Koechlin, 2003; Nee & D’Esposito, 2016; Wang et al., 2018). Specifically, left lateral 

frontal cortex is organized along a rostrocaudal gradient wherein more rostral regions support the 

learning and execution of increasingly higher-order hierarchically-structured rules. It remains 

undetermined whether these regions, likely those more rostrally, additionally support the transfer 

of learned structure (Badre & Nee, 2018). In addition, processing of task sets has generally been 

related to activity in frontal cortex, as well as to a distributed “cingulo-opercular” network of 

regions (Dosenbach et al., 2008; Sakai, 2008). As generalization of hierarchical knowledge 

involves the integration of information across multiple sources, it is likely that a network of 

regions spanning beyond frontal cortex will be involved. 

 

To investigate the discovery and transfer of abstract hierarchical structure, we designed a 

hierarchical reinforcement learning task that promotes the creation and transfer of a 

superordinate structure (Figure 2.1). Critically, although each block contained entirely new 

stimulus features, a global 2nd-order hierarchical rule remained. Therefore, successful 

performance of a previous block conveyed no immediate advantage on subsequent blocks. 

However, knowledge of the correct hierarchical structure instead facilitated a more rapid 

learning of the correct response mappings. We leveraged converging computational modeling 

approaches to confirm (1) when subjects first discovered the global hierarchical structure, and (2) 

that rapid learning occurred thereafter, indicating transfer of learned structure. Lastly, we used 

fMRI to investigate the left lateral frontal regions along the predefined rostrocaudal gradient, as 

well as broader neural systems, that support these two processes. 

 

 

 

2.3 Materials and Methods 
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Figure 2.1 Schematic Depiction of Experimental Logic and Trial Sequence. (A) Schematic of task design showing 

example stimulus-to-action mappings. Subjects completed five blocks in total throughout the experiment. The 

stimuli in each block varied along three dimensions: shape, color, and texture. Each block contained two stimulus 

features for each dimension (e.g. two shapes) and the specific features changed for each block. The first block 

contained a flat policy structure such that the mapping between stimuli and actions (A1, A2, etc.) was randomly 

assigned. The remaining four blocks all shared the same global 2nd-order policy structure: the shape of the stimulus 

indicated whether first-order rules were determined by color or texture on the current trial. In the example shown for 

hierarchical block 1, a circular stimulus indicated that color determined the correct action (i.e., green pairs with A1, 

orange pairs with A2). Hierarchical blocks included an irrelevant fourth dimension (stimulus position on screen) that 

is not shown here. (B) Schematic of trial design. Trials began with stimulus presentation, after which subjects had up 

to 2s to respond by pressing one of four buttons mapped to their right index, middle, ring, and pinky fingers. 

Subjects then indicated their confidence in their answer by positioning a black bar along the screen in a one-shot 

manner. Subjects received auditory and visual feedback following a jittered ISI. 
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Human Subject Details 

 

Thirty-two healthy right-handed subjects (range: 18 – 29 years; mean = 19.63; SD = 2.54; 

20 females) with normal or corrected-to-normal vision participated in the study at the University 

of California – Berkeley. Target sample size was based on prior relevant literature (Badre et al., 

2010; Collins & Frank, 2016; Nee & D’Esposito 2016). Eight subjects were excluded from all 

behavioral analyses (four subjects failed to complete the entire session, two subjects did not 

follow the instructions, and two subjects exhibited sub-threshold behavioral performance (no 

above-chance performance in any hierarchical block, i.e., state-space model outcomes of the 

distribution around the probability to produce a correct response always included the chance-

level performance value)). Five additional subjects were excluded from all fMRI analyses (one 

subject due to above-threshold in-scanner motion (>2.5mm in X, Y, or Z across all blocks), one 

subject for atypical anatomical data and three subjects due to scanner image reconstruction 

failures).  

 

All behavioral analyses presented here include data from the 24 subjects for whom we 

obtained a complete behavioral dataset (range: 18 – 24 years; mean = 19.25; SD = 1.75; 16 

females). All fMRI analyses presented here include data from the 19 subjects for whom we 

obtained a complete behavioral and fMRI dataset (range: 18 – 24 years; mean = 19.26; SD = 

1.88; 13 females). Behavioral analyses restricted to these 19 subjects show the same results as 

the 24-subject group. All research protocols were approved by the Committee for Protection of 

Human Subjects at the University of California, Berkeley. Informed and written consent was 

obtained from all subjects prior to participation. 

 

Experimental Design and Statistical Analyses 

 

Task Design 

 

In the current experiment, we designed a reinforcement learning task (inspired by Badre 

et al., 2010) that required learning multiple distinct 2nd-order hierarchical rules (hereafter referred 

to as 2nd-order policy) that shared a global hierarchical policy structure (hierarchical blocks). 

Specifically, a 2nd-order hierarchical policy determined that the shape of the stimulus cued 1st-

order rules defined by other stimulus dimensions (e.g. if the stimulus is a square, perform action 

1 for red squares, and action 2 for blue squares, however if the stimulus  is a circle, perform 

action 3 for striped circles, and action 4 for checkered circles, regardless of other stimulus 

features). Thus, subjects who learn the block-specific hierarchical policy in successive blocks 

can discover the existence of the global hierarchical structure. By transferring their knowledge of 

the global hierarchical structure to subsequent blocks, subjects can more rapidly learn the block-

specific hierarchical policy. 

 

Subjects completed one block containing a rule set in which there was no higher-order 

structure (flat block) and four hierarchical blocks while inside the scanner (Figure 2.1). Subjects 

viewed stimuli that varied along three or four dimensions: shape, color, black-and-white image 

pattern (referred to as “texture”), and stimulus position on screen (hierarchical blocks only) 

(Figure 2.1A). For each block, stimulus dimensions could vary between two features (e.g. Color: 

red/blue, Shape: square/circle, etc.), resulting in 8 unique stimuli in the flat block and 16 unique 
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stimuli in each hierarchical block. All blocks contained unique features, and thus subjects had to 

learn entirely new stimulus-response mappings for each block. We assigned stimulus features to 

blocks by random assignment.   

 

Stimuli 

 

Stimuli were generated using PsychoPy (Peirce, 2007, 2008). Colors included red, green, 

blue, yellow, magenta, cyan, white, maroon, black, and orange. Shapes included a circle, square, 

rectangle, triangle, pentagon, rhombus, trapezoid, six-sided star, oval, and tear drop. Texture 

images were sourced from the Normalized Brodatz Texture Database (Abdelmounaime & Dong-

Chen, 2013). These images included close-up photographs of various real-world textures, such as 

tree rings, sand dunes, snakeskin, bubbles, etc. Subjects did not report difficulty in discriminating 

between textures (Figure 2.1A). The stimuli generally subtended ~7.5˚ of visual angle. Stimulus 

position in the hierarchical blocks was computed along an invisible circle positioned at the center 

of the screen with a radius subtending ~7.5˚ of visual angle. The eight locations along this circle 

began at 27.5˚ clockwise from the vertical meridian and were equally spaced by 45˚ increments.  

 

Flat Block 

 

The flat block consisted of 20 repetitions of each stimulus for a total of 160 trials. 

Stimulus order was randomized within each set of 8 trials so as to restrict the range of the 

number of trials between stimulus repetitions. On average, each stimulus was viewed once every 

8 trials, ranging from 0 to 15. Prior to the start of the block, subjects had the opportunity to view 

all 8 stimuli created for the upcoming block. All stimuli were presented on screen in a 2x4 array 

and remained on screen until the subject chose to proceed. No additional instructions were 

provided regarding the viewing of the stimuli.  

  

Trials began with the presentation of the stimulus slightly offset left of the center of the 

screen for a maximum of 2,000ms (Figure 2.1B). Stimulus composition included a black-and-

white image cropped into a specific shape with a colored border. Subjects were instructed to 

respond to the presentation of the stimulus by pressing one of four buttons mapped to their right 

index, middle, ring, and pinky fingers. Responding within 2,000ms advanced the trial to the 

confidence response phase. This phase began with the appearance of a vertical rectangle offset 

right of center with a horizontal black bar appearing either on the bottom or top of the rectangle. 

To indicate their confidence that their most recent response to the stimulus was correct, subjects 

had 1,500ms to re-press and hold down the button they had just pressed. By re-pressing the 

button, the black bar began to move away from its starting position at a constant rate until it 

reached the other side of the rectangle, a process that lasted up to 1,250ms. Regardless of the 

bar’s starting position, the top of the rectangle indicated 100% confidence in their answer being 

correct, while the bottom of the rectangle indicated 0%.  Subjects were instructed to be as precise 

as possible with their confidence rating. Following the release of the held-down button, or after 

1,250ms, both the stimulus and confidence probe disappeared from screen. Following a pseudo-

random inter-stimulus interval (200ms, 1,200ms, or 2,200ms), subjects received audiovisual 

feedback. Correct feedback involved the presentation of the word “Correct” and “$$$$$” stacked 

vertically in the center of the screen, as well as a pleasant tone. Incorrect feedback contained the 

word “Incorrect” and an unpleasant tone. The feedback stimulus persisted for 333ms. Feedback 
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was 100% valid. Following feedback, a fixation cross was displayed for the remainder of the trial 

duration (5,283ms, 6,283ms, or 7,283ms, depending on the duration of the inter-stimulus interval 

on that trial). The next trial then began after a variable inter-trial interval (ITI) with a mean of 

1,500ms (range = 500ms – 4,500ms). The order of ITIs within a block was optimized to permit 

estimation of the event-related response using optseq2 (Dale, 1999). 

  

We assigned two stimuli to each response option so that each button had a 25% chance of 

being correct on any given trial. Stimulus-response mappings were independent from one 

another, such that no higher-order structure was present, thus requiring each response to be 

learned individually. Following the final trial, mean block accuracy was presented on screen.  

 

Hierarchical Block 

 

We designed the hierarchical blocks identically to the flat block with the following 

exceptions. (1) Stimuli now included a fourth dimension: position on screen. In each of the four 

hierarchical blocks, the stimulus could appear in one of two locations on screen. These locations 

were semi-randomly selected from 8 possible equidistant positions along an invisible aperture 

around the center of the screen. We assigned the positions in each block in pairs, such that each 

pair was offset in both the x- and y-axis so as to create as large a separation and difference as 

possible. Position was not included in the flat block as pilot testing indicated subjects were 

unable to learn above chance 16 independent stimuli across four button responses in an 

appropriate amount of time. (2) The number of stimulus repetitions decreased from 20 to 6, 

resulting in a decrease in the number of total trials from 160 to 96 per block. (3) Given the new 

position dimension, the confidence probe was moved to the center of the screen so as not to 

interfere with the stimulus. (4) The position-on-screen dimension was not included in the pre-

block stimulus presentation screen in which all 8 stimuli were shown.  

 

Lastly, and most critically, all hierarchical blocks contained a 2nd-order policy 

relationship that subjects could discover and transfer across blocks so as to facilitate their 

learning, instead of learning 16 independent stimulus-response mappings. Specifically, the shape 

dimension cued 1st-order rules dependent on either the colors or textures, and as a result, screen 

position was irrelevant. By learning and exploiting this structure the number of rules to be 

learned decreased to four (i.e. two rules for color, two rules for texture). The same 2nd-order 

policy relationship was maintained across blocks, in that the shape dimension (shape) always 

cued rules based on either color or texture dimensions.  

 

Instructions and Training Protocol 

 

Prior to performing the task inside the MRI scanner, all subjects completed a training 

session on a desktop computer to make sure they understood the task and could perform it 

adequately. After obtaining experimental consent, and confirming both study and MRI scanner 

eligibility, subjects reviewed the instructions of the task. Along with visual aids on the computer, 

the experimenter described the task such that subjects knew they had to learn stimulus-response 

mappings across multiple task blocks, however no information was provided that could cue 

subjects to the hierarchical structure of the task. Subjects then practiced the confidence-reporting 

component of the task in a guided environment using stimuli not present in the real experiment. 
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Subjects received guided instructions indicating which button to press and how confident they 

should report feeling for each practice trial. Instructed confidence levels included 0%, 15%, 

35%, 50%, 65%, 85%, and 100%. Subjects needed to place the confidence bar at the appropriate 

location along the vertical rectangle to match the instructed confidence level across 21 practice 

trials (3 repetitions of each level). A 93% accuracy criterion was required to progress. Subjects 

had to repeat the 21-trial practice block until they met criterion. The timing of all events matched 

that of the real experiment.  

  

Following completion of the confidence reporting practice, subjects then performed 24 

practice trials of a flat block, using the same stimuli as before. Just as in the real task, subjects 

had to learn eight independent stimulus response mappings across four buttons using the 

feedback provided at the end of each trial. No performance criterion was included, as the goal of 

this practice session was to familiarize subjects with the components of the task in real time.  

 

Upon completion of the practice session, subjects were then escorted to the MRI scanner 

suite and placed inside the scanner. During the acquisition of an anatomical scan (details below), 

subjects went through the practice instructions and confidence reporting session again so as to 

become accustomed to both the MRI-compatible four-button response box, and to being inside 

the active scanner. Subjects received compensation at a rate of $20 per hour and could earn a 

bonus of up to $10 based on their overall trial accuracy. 

 

Statistical Analyses of Behavioral Data  

 

Analyses of behavioral data included the use of paired t-tests with one exception. When 

analyzing the number of learned 2nd-order rules across blocks, we used Wilcoxon sign-ranked 

tests due to the non-parametric nature of the data (i.e. subjects could learn either zero, one, or 

two 2nd-order rules per block) and the within-subjects design of the study. In addition, the 

stimulus dimension of position-on-screen was fully ignored in all analyses of the data.  

 

Statistical Analyses of fMRI Data 

 

Whole-brain analyses were performed in SPM and cluster correction was performed at 

the family wise error rate of p = 0.05, using p = 0.001 as the cluster defining threshold. 

Correlations between fMRI data and behavioral data were performed using standard parametric 

linear regression, as well as non-parametric rank-ordered regression in order to better control for 

potential outliers in the dataset. Results for each assessment are presented in tandem throughout 

the manuscript. 

 

fMRI Data Acquisition 

 

Whole-brain imaging was performed at the Henry H. Wheeler Jr. Brain Imaging Center 

at UC Berkeley using a Seimens 3T Trio MRI scanner using a 32-channel head coil. Functional 

imaging data was acquired with a gradient-echo echo-planar pulse sequence using a multi-band 

acceleration factor of 4 (TR = 1,000ms, TE = 33ms, flip angle = 40˚, array = 84 x 84, 52 slices, 

voxel size = 2.5mm isotropic). T1-weighted MP-RAGE anatomical images were collected as 

well (TR = 2,300ms, TE = 2.98ms, flip angle = 9˚, array = 256 x 256, 160 slices, voxel size = 
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1mm isotropic). Subject’s head movement was restricted using foam padding. Auditory feedback 

was presented through in-ear headphones connected to the stimulus presentation computer.  The 

flat block consisted of a single run of 1290 TRs, while each hierarchical block consisted of 760 

TRs.  

 

fMRI Data Preprocessing 

 

Preprocessing was performed using FMRIPREP v1.0.2 (Esteban et al., 2018), a Nipype 

(Gorgolewski et al., 2011) based tool. Each T1w (T1-weighted) volume was corrected for INU 

(intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-

stripped using ANTs BrainExtraction. Spatial normalization to the ICBM 152 Nonlinear 

Asymmetrical template version 2009c was performed through nonlinear registration with the 

antsRegistration tool of ANTs v2.1.0 (Avants, Epstein, Grossman, & Gee, 2008), using brain-

extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal 

fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 

T1w using FSL’s fast (Y. Zhang, Brady, & Smith, 2001). Functional data were motion corrected 

using FSL’s mcflirt (Jenkinson, Bannister, Brady, & Smith, 2002b). This was followed by co-

registration to the corresponding T1w using boundary-based registration (Greve & Fischl, 2009a) 

with 9 degrees of freedom, using flirt (FSL). Motion correcting transformations, BOLD-to-T1w 

transformation, and T1w-to-template (MNI) warp were concatenated and applied in a single step 

using ANTs ApplyTransforms using Lanczos interpolation. Slice timing correction was not 

performed. Preprocessed data were spatially smoothed with an 8mm FWHM isotropic Gaussian 

kernel.  Motion estimates used for subject exclusion were calculated using SPM’s realign 

function. 

 

Computational Modeling: State-Space Model 

 

Trial responses were modeled with a state-space modeling approach (A. C. Smith et al., 

2004) to produce learning curves. The model outputs trial-by-trial estimates of the probability of 

a correct response on each trial, as well as a 90% confidence interval around each estimate. 

Similar to (Badre et al., 2010), our analyses focused on the following metrics derived from the 

learning curve: (1) the trial for which the 90% confidence interval no longer included chance 

performance, referred to as the “learning trial”; (2) the maximal 1st derivative of the learning 

curve, which indexes the rate of learning; (3) the maximal 2nd derivative, which indexes the rate 

of change in one’s learning rate.  

 

Computational Modeling: Mixture of Experts Model 

 

We make use of a hybrid Bayesian-reinforcement learning mixture of experts (MoE) 

model previously used by Frank and Badre (2012) in order to estimate subjects’ attention to 

various hypothesis states that we assume are being tested while subjects perform the task. Given 

the observed stimuli and responses, the MoE model estimates individual subjects’ attention to 

likely hypotheses about the relationship between context (i.e. the features of the stimulus) and 

action (i.e. the available button responses) in each task block. Each expert in the model 

represents a prediction about how a stimulus feature, or combination of features, relates to the 

likelihood of obtaining a reward given the motor actions available to the subject. For example, 



 

 11 

the “shape expert” could learn the likelihood of obtaining a reward based only on the shape of 

the stimulus. For each trial, the expert makes its prediction about what action is likely to be 

correct given its assigned feature, and experts who contribute accurate predictions are rewarded 

while experts providing unreliable predictions are not. For hierarchical experts, the model makes 

predictions about subordinate stimulus dimensions (i.e. color or texture) contingent on the 

identity of a third, superordinate dimension (i.e. shape), such that weights assigned to predictions 

about each subordinate dimension are dynamically gated based on the feature of the 

superordinate dimension (e.g., circle vs. square). The MoE model also assigns attentional 

weights to experts that learn the overall reliability of hierarchical vs. flat predictions based on the 

reliability of all the hierarchical and flat experts, respectively.  

 

For the current study, we adapted the model in order to allow for individual fits to each 

hierarchical expert. As the original version used a single hyperparameter across all three 

hierarchical experts, thus preventing the ability to estimate different initial weights, we instead 

modeled each hierarchical expert with a separate parameter. We also removed the decay 

parameter originally used to model the degree to which the current block’s attentional weights 

carried over into the next block. Instead, we modeled a separate set of parameters for the various 

experts in each block. By removing the decay parameter, and modeling each block 

independently, we ensure that the model is incapable of being biased by the previous block. As a 

result, any differences between blocks in the parameter values, as well as the computed 

attentional weights at the beginning of the block, are the result of that block’s data alone.  

 

Specifically, subjects’ beliefs about reward probability for each of the 4 available 

response options (per expert) were modeled as a Beta distribution and updated via Bayes’ Rule. 

For example, the color expert was updated by: 

 

𝑃(𝜃𝑅,𝐶|𝑟1 … 𝑟𝑛)  ∝  𝑃(𝑟1 … 𝑟𝑛|𝜃𝑅,𝐶)𝑃(𝜃𝑅,𝐶)  
 

where 𝜃𝑅,𝐶 reflects the parameters determining the belief distribution about rewards given the 

presence of color C and the choice of response R, with 𝑟1 … 𝑟𝑛 being the rewards seen so far 

when this specific R was chosen. Next, the probability of selecting each response is calculated by 

comparing the means 𝜇 of their reward distributions using a softmax function. For example, the 

probability of the color expert selecting Ri on trial t was 
 

𝑃𝑅𝑖

𝐶 (𝑡) =  
𝑒

𝜇𝑅𝑖
𝐶 (𝑡)

𝜅

∑ 𝑒
𝜇𝑅𝑗

𝐶 (𝑡)

𝜅𝑗

 

 

where 𝜅 governs the choice stochasticity, with lower (higher) values reflecting less (more) noise. 

The same computations were performed for each expert e, including a shape expert and texture 

expert, as well as all 2-way conjunctions, and finally the full 3-way conjunction. The model 

represents subjects’ beliefs about the reliability of each expert with another Beta distribution, and 

again uses Bayes’ Rule to learn the probability that the expert is reliable. For example, the color 

expert is updated as follows 
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𝑃(𝜃𝐶|𝑟1′ … 𝑟𝑛′)  ∝  𝑃(𝑟1′ … 𝑟𝑛
′|𝜃𝐶)𝑃(𝜃𝐶)  

 

where r’ are the rewards indicating whether the expert contributed to the outcome. Specifically, 

if 𝑅𝑖 is the chosen action, rewards are delivered as follows   

 

𝑟 = {
𝑟, 𝑖𝑓 𝜇𝑅𝑖

>  𝜇𝑅𝑗
, ∀𝑗 ≠ 𝑖

1 − 𝑟,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

 

Thus, experts were rewarded when a reward was received and that expert assigned the 

highest probability to the chosen response. If, on the other hand, the expert predicted one of the 

unselected options it would not be rewarded (i.e. r = 0). Moreover, if the chosen action was not 

correct and the expert assigned the largest probability to that action, then it was not rewarded. 

However, it was rewarded if the outcome was not correct (i.e. it did not contribute to the 

incorrect action). We can assign an attentional weight to each expert that reflects its history of 

contributing to successful outcomes. To do so, we use another softmax function to assign 

weights to each expert, relative to all other experts. For the color expert, we can determine its 

weight with the following equation:  

 

𝑤𝐶(𝑡) =  
𝑒

𝜇𝐶(𝑡)
𝜁

∑ 𝑒
𝜇𝐸(𝑡)

𝜁
𝐸

 

 

where 𝑤𝐶  on trial t is the attentional weight, based on its expected reward probability 𝜇𝐶  relative 

to all other experts. Lastly, 𝜁 acts as a gain parameter that discriminates between the separate 

experts (similar to the 𝜅 parameter in the action selection softmax). Thus, the probability of 

selecting response Ri is the sum of the experts E in proportion to their weight  

 

𝑃𝑅𝑖

𝑓 (𝑡) =  ∑ 𝑤𝐸
𝐸

𝑃𝑅𝑖

𝐸 (𝑡) 

 

where Pf refers to the probability of generating responses for a superordinate “flat expert” (the 

combination of the all subordinate experts so far mentioned).  

  

At this point, the model is incapable of detecting any hierarchical structure that may be 

present in the task. In order to afford the model this ability, we now discuss the inclusion of a set 

of “hierarchical experts”. These experts learn about 2 of the stimulus dimensions contingent on 

the identity of another, higher order dimension. For example, the texture hierarchical 

ℎ𝐶𝑆|𝑇 expert would learn reward probabilities for color and shape separately for each texture 

option in T. This manner of learning is accomplished by having 2 subordinate experts learn the 

reward probability for selecting a response for color C (shape S) given texture T: 

 

𝑃(𝜃𝑅,𝐶|𝑇|𝑟1 … 𝑟𝑛)  ∝  𝑃(𝑟1 … 𝑟𝑛|𝜃𝑅,𝐶|𝑇)𝑃(𝜃𝑅,𝐶|𝑇)  

𝑃(𝜃𝑅,𝑆|𝑇|𝑟1 … 𝑟𝑛)  ∝  𝑃(𝑟1 … 𝑟𝑛|𝜃𝑅,𝑆|𝑇)𝑃(𝜃𝑅,𝑆|𝑇). 
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Credit assignment works as it did with the flat experts, but now across the subordinate 

experts within the hierarchical expert framework. For the ℎ𝐶𝑆|𝑇 hierarchical texture expert, 

attentional weights are dynamically assigned to the color or shape dependent on the texture: 

 

𝑤𝐶|𝑇(𝑡) =  
𝑒

𝜇𝐶|𝑇(𝑡)
𝜁

𝑒
𝜇𝐶|𝑇(𝑡)

𝜁 + 𝑒
𝜇𝑆|𝑇(𝑡)

𝜁

 

 

where 𝑤𝐶|𝑇(𝑡) is the attentional weight to the color expert relative to the shape expert when 

texture T is present. The probability of selecting a response Ri according to this hierarchical 

texture expert is the result of mixing the subordinate experts on each trial: 

 

𝑃𝑅𝑖

ℎ𝐶𝑆|𝑇(𝑡) =  𝑤𝐶|𝑇 𝑃𝑅𝑖

𝐶|𝑇(𝑡) + 𝑤𝑆|𝑇 𝑃𝑅𝑖

𝑆|𝑇(𝑡). 

 

In addition to the texture expert, we also included a hierarchical shape and hierarchical 

color expert. Similar to the overall flat expert, a superordinate hierarchical expert assigned 

attention weights to the hierarchical experts via: 

 

𝑃𝑅𝑖

ℎ (𝑡) =  𝑤𝐶𝑆|𝑇 𝑃𝑅𝑖

𝐶𝑆|𝑇(𝑡) + 𝑤𝐶𝑇|𝑆  𝑃𝑅𝑖

𝐶𝑇|𝑆(𝑡) + 𝑤𝑇𝑆|𝐶  𝑃𝑅𝑖

𝑇𝑆|𝐶(𝑡). 

 

Lastly, a second-level attentional selection step was included to arbitrate between the two 

overall experts (flat, hierarchical): 

 

𝑤𝐻(𝑡) =  
𝑒

𝜇𝐻(𝑡)
𝜉

𝑒
𝜇𝐻(𝑡)

𝜉 +  𝑒
𝜇𝐹(𝑡)

𝜉

 

 

where 𝜉 determines the gain of the discrimination between the hierarchical and flat expert. The 

ultimate response is then selected as follows: 

 

𝑃𝑅𝑖
(𝑡) =  𝑤𝐻  𝑃𝑅𝑖

𝐻(𝑡) + 𝑤𝐹  𝑃𝑅𝑖

𝐹 (𝑡). 

 

In total, the model included 11 free parameters to be estimated, with each block being fit 

independently. Three of these consisted of the 𝛼-parameters from each one-way flat experts’ 

initial Beta distribution (the mean of which is represented by, in the example of the flat color 

expert, 𝜇𝐶). Another two came from the 𝛽-parameter of the Beta distribution for the two-way 

and three-way flat experts, where in the case of the three two-way experts, the value acted as a 

hyperparameter over each expert. Another 3 consisted of the 𝛽-parameter of the Beta distribution 

for each hierarchical expert. The last three included the noise/gain parameters in each of the three 

softmax functions (i.e. action selection, attentional weight assignment, and superordinate 

attention to hierarchy). 

 

In order to obtain the best fit for the data, we first modeled all subjects together (pseudo-

R2 = 0.25 and 0.12 for the mean hierarchical block and flat block, respectively) in order to 
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generate appropriate initial starting parameter values to be used as our initialization point for the 

model when fitting each subject individually (mean pseudo-R2 = 0.33 and 0.15 for the mean 

hierarchical block and flat block, respectively). Model fitting occurred via maximum likelihood 

estimation. These pseudo-R2 values are similar to those reported in Frank and Badre (2012). 

Validation of the revised MoE model involved simulating datasets across each of the five task 

blocks. We used the parameter values obtained from fitting the model to the real subject data to 

generate simulated responses to the task. In order to draw comparisons to the human data, the 

simulated data was then fit to the State Space model so as to produce learning curves, which 

allowed for calculation of learning metrics (i.e., maximum 2nd derivative). Overall, the revised 

MoE model was successfully able to recreate the qualitative patterns of behavior and attentional 

weight recovery across blocks seen in the human data.   

 

Univariate fMRI Analysis 

 

Statistical models were constructed for each subject under the assumptions of the general 

linear model (GLM) using SPM 12 (Statistical Parametric Mapping; www.fil.ion.ucl.ac.uk/spm). 

Each trial was modeled by one of two sets of five boxcar regressors: (1) a regressor for the 

stimulus response phase (beginning with stimulus onset and ending when a response was made), 

(2) a regressor with the same onset and duration as the stimulus response phase, but whose value 

was parametrically modulated by the subject’s reaction time to the stimulus, (3) a regressor for 

the confidence response phase (beginning and ending with the onset and offset, respectively, of 

the confidence probe), (4) a regressor with the same onset and duration as the confidence 

response phase, but whose value was parametrically modulated by the reported confidence level, 

(5) a regressor for the feedback phase (beginning and ending with the onset and offset, 

respectively, of the audiovisual feedback). In order to match the analysis approach of Badre et 

al., 2010, one set of regressors exclusively modeled correct trials, while the other set exclusively 

modeled incorrect trials. To ensure the parametrically modulated regressors only explained the 

variance unique to processes associated with the modulatory values (i.e. stimulus reaction time 

and confidence level), we orthogonalized both the modulated stimulus response phase and 

modulated confidence response phase regressors with respect to their respective unmodulated 

regressors. Next, we included three additional regressors to remove variance associated with 

events related to the subject failing to make a required response. Two regressors modeled 

stimulus and confidence response phases where no stimulus or confidence response, 

respectively, was made. The third regressor modeled feedback phases where “No Response” was 

presented. Although trials where subjects failed to indicate their level of confidence could be 

separated by whether the subject’s stimulus response was correct or incorrect, we chose to model 

these events together because we considered both events to be of no interest and thus nuisance 

signals. Lastly, five block regressors were included to account for run-to-run variance. In total, 

each block contained a theoretical maximum of fourteen regressors: some subjects had blocks 

where all required responses were made, and thus no regressors could be made that modeled 

events related to a failure to respond. Low frequency signals were removed with a 1/128 Hz 

high-pass filter. This first level regression thus yielded standardized regression coefficients 

(“betas”) for each voxel in the brain for each regressor included in the model. Linear contrasts 

were used to obtain subject-specific effects, which were then entered into a second-level analysis 

treating subjects as a random effect and comparing voxel effects against a value of zero. Cluster 

correction was performed on all whole-brain, voxelwise analyses using an initial height threshold 



 

 15 

of p < 0.001 in order to then define a familywise error rate threshold of p = 0.05. The first 

voxelwise analysis of stimulus response phase activity compared to baseline (Figure 2.3) resulted 

in an extent threshold of 29516 voxel. The voxelwise map revealing the contrast of stimulus 

response phase activity in Hier 2 greater than the average of Hier 1 and Hier 3 resulted in an 

extent threshold of 106 voxels (Figure 2.4A), while the voxelwise map assessing the behavioral 

metric of transfer in Hier 3 and Hier 4 resulted in an extent threshold of 107 voxels (Figure 

2.4B).    

 

Region-of-Interest (ROI) analyses supplemented the whole-brain search. ROIs were 

constructed with the Marsbars (Brett, Anton, Valabregue, & Poline, 2002) and wfupickatlas 

(Maldjian, Laurienti, Kraft, & Burdette, 2003) toolboxes in SPM12. Coordinates and sphere size 

for frontal cortex nodes (i.e. dorsal premotor cortex  (PMd), pre-dorsal premotor cortex (pre-

PMd), mid inferior frontal sulcus (Mid-IFS), and frontal polar cortex (FPC)) were taken from 

Badre et al., (2010). Cingulo-opercular and fronto-parietal coordinates and size (i.e. CO: bilateral 

anterior prefrontal cortex, bilateral anterior insula / frontal operculum, bilateral thalamus, and 

dorsal anterior cingulate cortex / mid-superior frontal cortex; FP: bilateral intraparietal sulcus, 

bilateral frontal cortex (roughly BA 6), bilateral precuneus, bilateral inferior parietal lobule, 

bilateral dorsolateral prefrontal cortex (roughly BA 9/46), and midcingulate cortex) were taken 

from Dosenbach et al., (2007).  

 

Behavioral Metrics of Transfer 

 

To test for brain-behavior correlations that relate individual differences in transfer 

performance to fMRI activity, we calculated the behavioral metric of transfer based on the state-

space model we employed. We computed a difference score between the fourth and the first 

hierarchical block so as to assess the maximum impact that hierarchical structure transfer could 

have on behavioral performance. Specifically, our metric of transfer came from computing the 

change in the state-space model’s maximum 2nd derivative measure. We chose to focus on the 

maximum 2nd derivative as it should best capture the degree to which learning accelerates once 

the subject determines the appropriate 1st-order rules associated with the known 2nd-order policy. 

Defining transfer in this manner allowed us to contrast subjects’ performance when learning a 

hierarchically structured task with no ability to transfer knowledge of 2nd-order policy to when 

subjects have the greatest likelihood of transferring learned 2nd-order policy. 

 

For the whole-brain analysis, we defined a contrast for each subject that contrasted mean 

stimulus response phase activity for the third and fourth hierarchical block against baseline. At 

the second level, the transfer metric was used as a covariate and regressed against this contrast to 

identify univariate activity across individuals that was associated with differences in transfer. 

 

 

 

2.4 Results 

 

State-Space Model Reveals Discovery and Transfer of Global Hierarchical Structure 
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Trial outcomes from each block were fit with a state-space model (Figure 2.2A, Smith et 

al., 2004), and the following metrics were computed from the learning curves in each block: the 

(1) maximal 1st derivative (Figure 2.2B), (2) maximal 2nd derivative (Figure 2.2B), and (3) the 

“learning trial”  (Figure 2.2B) (see Material and Methods for definitions). 

 

 
Figure 2.2 Learning Curve and Mixture of Experts Results Reveal the Discovery and Transfer of the Global 

Hierarchical Policy Structure. (A) Output of the state-space model (Smith et al., 2004) for a representative subject. 

For each trial within a block, the model computes the probability of a correct response given the block’s trial 

outcomes. The 90% confidence interval around each trial’s estimated probability is shown in grey (Flat block) and 

blue (Hierarchical blocks). The red line indicates chance-level performance. (B) State Space model estimates for 

maximal 1st and 2nd derivatives and learning trial, averaged across subjects. The 1st and 2nd derivative metrics reveal 

a significant increase in learning following the 2nd hierarchical block, while the mean learning trial improves more 

gradually across hierarchical blocks. (C) Mixture of Experts model weights for Attention to the Hierarchical Shape, 

Color, and Texture Experts at the beginning of the Flat (gray) and four Hierarchical (blue) blocks. Each expert 

corresponds to a latent hypothesis regarding the hierarchical task structure that a subject might hold at the beginning 

of each block. Following the second hierarchical block, there is a significant increase in attention for the expert that 

corresponds to the global 2nd-order policy: shape cues color or texture (Hierarchical Shape Expert). Error bars 

represent within-subjects standard error of the mean. Significance is assessed at p < 0.05. 

 

We first tested whether subjects acquired 2nd-order hierarchical rules in blocks that 

contained a hierarchical policy structure, which should be reflected in differences in the learning 

curve metrics. Compared to the flat block, learning in the first hierarchical block was more 

efficient (earlier learning trial: t(23) = 3.22, p = .004; Figure  2.2B) and showed the abrupt gains 

in accuracy expected from generalization of learned 2nd-order policy to unknown 1st-order rules 

(greater max 1st derivative:  t(23) = 3.30, p = 0.003; max 2nd derivative: t(23) = 3.20, p = 0.004; 

Figure 2.2B). This pattern was also present when comparing learning curve metrics from the flat 
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block to the average metrics across all hierarchical blocks: max 1st derivative: t(23) = 5.74, p < 

0.001; max 2nd derivative: t(23) = 4.68, p < 0.001; learning trial: t(23) = 3.95, p < 0.001, Figure 

2.2B). 

 

We next sought to investigate the role of hierarchical structure transfer. In the first 

hierarchical block, subjects acquired and exploited the block-specific 2nd-order policy to 

facilitate learning relative to the flat block. Subsequently, the second hierarchical block provides 

the opportunity for subjects to discover the global 2nd-order policy structure: after acquiring the 

block-specific 2nd-order policy in the second hierarchical block, subjects can discover that the 

same abstract 2nd-order policy (i.e., shape cues color or texture) has been shared across the first 

two hierarchical blocks. Subjects can then transfer their learned knowledge of a global 2nd-order 

policy structure to subsequent blocks, which should greatly facilitate the acquisition of a block-

specific 2nd-order policy (e.g. star cues color, trapezoid cues texture) and subsequently allow the 

subject to more rapidly resolve 1st-order rules within the known hierarchical structure. Thus, we 

predicted that successful structure transfer would result in markedly more efficient and abrupt 

learning following the second hierarchical block. 

 

To test for behavioral evidence of hierarchical structure transfer, performance in 

hierarchical block three – where subjects can implement learned structure knowledge from the 

start of the block – was compared to hierarchical block two – where subjects can initially 

discover the global 2nd-order policy structure (Figure 2.2B). As predicted, there is a significant 

improvement in hierarchical learning as measured by the max 1st derivative (t(23) = 2.25, p = 

0.035), and max 2nd derivative (t(23) = 2.23, p = 0.036). However, the learning trial metric does 

not show the same pattern (t(23) = 0.41, p = 0.688). This improvement is not easily explained by 

general practice effects: there is not a reliable change in performance metrics from the first to the 

second hierarchical block – when subjects can take advantage of task practice and general 

familiarity with the trial procedure – but must still discover the global 2nd-order policy structure 

(as assessed by all three metrics, max t = 1.28, p = 0.21). Instead, the evidence of transfer is only 

observed after subjects have had the opportunity to discover the global structure in the second 

hierarchy block. 

 

Following discovery of the global 2nd-order policy structure, hierarchical knowledge 

transfer can facilitate learning for all subsequent blocks. Therefore, the learning metrics averaged 

across hierarchical blocks three and four (when the knowledge can be implemented to support 

learning) were compared to the average across hierarchical blocks one and two (when the 

knowledge has not yet been acquired). Subjects showed evidence of improved hierarchical 

learning in the last two hierarchical blocks versus the first two across all behavioral metrics: max 

1st derivative: t(23) = 2.99, p = 0.007; max 2nd derivative: t(23) = 2.76, p = 0.011; learning trial: 

t(23) = 2.50, p = 0.020.  

 

Lastly, we used a method previously developed to assess hierarchical learning (Badre et 

al., 2010) to analyze hierarchical structure learning and transfer. Instead of modeling all trials 

together within a block, responses to each unique stimulus were individually analyzed in order to 

obtain separate learning trials. Moreover, in tasks with hierarchically structured 2nd-ordered 

policy, one can conclude that a 2nd-order rule is completely learned if all of its subordinate 1st-

order rules are learned above chance. Then, evidence of hierarchical structure transfer can be 
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assessed, which should allow for faster and more complete learning of 2nd-order rules. Subjects 

learned more 2nd-order rules in the hierarchical blocks than in the flat block (Z = 15.5, p < 

0.001). Moreover, there was a significant increase in learned 2nd-order rules from the second to 

the third hierarchical block (Z = 4.5, p = 0.008). Lastly, subjects also learned more 2nd-order 

rules in the last two hierarchical blocks than in the first two (Z = 12.0, p < 0.001). Together, 

these results provide evidence that learning and subsequently transferring the global 2nd-order 

policy structure supports more efficient hierarchical learning, over and above the expected level 

of hierarchical learning if the hierarchical policy must be re-learned on every block.  

 

Mixture of Experts Model Confirms Transfer of Specific Hierarchical Structure 

 

Although learning rate metrics derived from the state-space model allow us to 

characterize how learning changes across blocks, they do not provide information about why 

learning may have changed. We theorized that subjects discovered the specific 2nd-order policy 

that was globally persistent across blocks. When learning the rules for a new block, this 

knowledge should encourage subjects to test the hypothesis that shape determines 2nd-order 

policy. In turn, this would enhance learning by biasing their attention toward the relevance of the 

shape dimension, and away from the color and texture dimensions. As an alternative explanation, 

subjects might have discovered that the presence of hierarchical policy, in general, was persistent 

across blocks: one dimension cues the relevant 1st-order dimensions.  When learning the rules for 

a new block, this knowledge should encourage subjects to test the hypothesis that a 2nd-order 

policy exists. This knowledge could enhance learning by biasing their attention towards the 

relevance of 2nd-order policies, in general, versus a flat policy. Because the state-space model 

cannot distinguish these two explanations, we used a hybrid Bayesian-reinforcement learning 

Mixture of Experts (MoE) model to infer the latent hypothesis states of each subject during the 

learning process (Frank & Badre, 2012). This approach allows us to probe the underlying 

cognitive mechanisms that support transfer by estimating how specific hypotheses regarding 

hierarchical task structure were being attended and transferred across blocks (see Materials and 

Methods for details). 

 

The MoE model was employed to derive attention measures for four modeled “experts” 

each associated with a specific hypothesis. The first measure indexes the attention subjects place 

on the specific hypothesis that the shape dimension forms the top of the 2nd-order policy and cues 

subordinate 1st-order rules based on either color or texture (referred to as “attention to the 

hierarchical shape expert”). The second and third measures index the attention placed on the 

specific hypotheses that the color or texture dimensions, respectively, form the top of the 

hierarchy. The fourth measure indexes the attention subjects place on the general hypothesis that 

hierarchical structure, in the form of any 2nd-order policy, exists in the block compared to a flat 

policy (referred to as “attention to hierarchy”). The attention to hierarchy measure does not 

discern between which dimension sits atop the hierarchy, in contrast to the other three measures. 

In order to characterize what knowledge is being transferred from the previous block, we focus 

on the model estimates for these measures that capture the state of the subject prior to 

encountering the first trial of the block. These estimates of the subject’s latent state before the 

block begins are inferred by fitting the model to each individual’s trial-by-trial sequence of 

choices and rewards. Therefore, a discrimination can be made between whether a subject is 

transferring a hypothesis regarding a specific 2nd-order policy (attention to the hierarchical shape 
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expert), compared to a general hypothesis regarding the presence of 2nd-order policy (attention to 

hierarchy), at the start of the block.  

 

First, in order to determine whether subjects discover the global 2nd-order policy that is 

persistent across blocks and then test the hypothesis that this policy applies to subsequent blocks, 

the attention to the hierarchical shape expert was analyzed across blocks (Figure 2.2C). In line 

with our predictions, subjects’ attention to the hierarchical shape expert at the start of the block 

increases from the second to the third hierarchical block (t(23) = 2.08, p = 0.049, Figure 2.2C), 

after they have had the opportunity to discover the global 2nd-order policy structure. Moreover, 

because this knowledge can inform the hypotheses for all subsequent blocks, attention to the 

hierarchical shape expert is greater at the start of hierarchical blocks three and four than at the 

start of the first two hierarchical blocks (t(23) = 2.64, p = 0.015). Although specific statistical 

predictions regarding attention to the hierarchical color and texture experts were not made, 

attention to these experts should generally be diminished when attention is biased in favor of the 

hierarchical shape expert. Indeed, attention to the color and texture experts is qualitatively low in 

the hierarchical blocks (Figure 2.2C).  

 

Next, we analyzed whether subjects test the hypothesis that a hierarchical policy, in 

general, is persistent across blocks. Subjects’ attention to hierarchy does not increase from the 

second to the third hierarchical block (t(23) = 1.70, p = 0.103). However, there is a more gradual 

change in attention to hierarchy such that the measure increases from the first two hierarchical 

blocks to the last two (t(23) = 2.51, p = 0.019). Together, these results show that the 

improvement in hierarchical learning observed after the second hierarchical block can be 

explained by subjects discovering and then transferring their knowledge of the appropriate global 

2nd-order policy structure that is persistent across all hierarchical blocks.  

 

Lateral Frontal Regions Linked to Discovery of Global Hierarchical Structure 

 

First, a whole-brain univariate contrast of activity during the stimulus response phase on 

correct trials across all blocks compared to baseline was performed (p = 0.05 cluster-corrected, 

Figure 2.3A). The resultant map is consistent with those seen in previous hierarchical 

reinforcement learning studies (Badre et al., 2010). The task recruited regions along the lateral 

frontal cortex associated with hierarchical task performance (Badre & D’Esposito, 2007; 

Koechlin, 2003), as well as parietal cortex, and more specifically the intraparietal sulcus, anterior 

insula, mid-cingulate cortex, occipital lobe, thalamus, and medial temporal lobe.  
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Figure 2.3 Lateral Frontal Regions Linked to Discovery of Global Hierarchical Policy Structure and Behavioral 

Transfer. (A) Group-level activity across all blocks during the stimulus response phase on correct trials only. The 

overlaid numbered pink circles indicate the position of each of the four lateral frontal cortex ROIs. Map is cluster-

corrected to a family-wise error rate of p < .05. (B) ROI analyses for the regions shown in A. The mean beta 

coefficients from the stimulus response phase show elevated activity during the second hierarchical block (versus 

the first and third hierarchical blocks) in all regions except PMd. Error bars indicate within-subject standard error. 

(C) Correlations between behavioral transfer and activity in the left lateral frontal cortex ROIs following discovery 

of the global hierarchical policy structure. Only activity in PMd is tentatively correlated with individual differences 

in transfer.  

 

To address which brain regions supported searching for and discovering the global 2nd-

order policy structure, we first focused on regions in left lateral frontal cortex that support the 

learning and execution of hierarchical control policies: the dorsal premotor cortex (PMd), pre-

dorsal premotor cortex (prePMd), mid-inferior frontal sulcus (Mid-IFS), and frontal polar cortex 

(FPC) (Badre et al., 2010, Figure 2.3A). In their original work, Badre and colleagues (2007) 

discovered that PMd resolved competition between 1st-order rules regarding motor response 

options, prePMd resolved competition between 2nd-order rules relating one stimulus feature to 

another (e.g. for squares, red cues action 1 while blue cues action 2), Mid-IFS resolved 

competition between 3rd-order rules, and FPC resolved competition between 4th-order task 

contexts. Moreover, activity in these regions has been associated with the search for a specific 

hierarchical policy within a task block (Badre et al., 2010). However, it remains unknown 

whether these same regions also support the learning of a more abstract, global hierarchical 

structure that facilities learning the specific hierarchical policies within each block.  

 

The behavioral results demonstrate that subjects were able to both learn block-specific 

hierarchical policies, as well as search for and discover the global hierarchical policy structure 

during the second hierarchical block. To identify activity in the frontal cortex that is related to 

discovering the global structure, over and above activity associated with learning a block-

specific hierarchical policy, activity in the second hierarchical block relative to the first 

hierarchical block was assessed (Figure 2.3B). With the exception of PMd (t(18) = 0.72, p = 

0.483), activity across the lateral frontal cortex regions is greater in the second hierarchical block 

compared to the first (prePMd t(18) = 3.48, p = 0.003; Mid-IFS t(18) = 2.10, p = 0.050; FPC 

t(18) = 2.19, p = 0.042). Next, activity in the second hierarchical block was compared to the third 

hierarchical block, where subjects no longer need to search for structure and can instead 

implement their transferred structure knowledge from the second hierarchical block (Figure 

2.3B). Again, activity in prePMd (t(18) = 2.80, p = 0.012) and Mid-IFS (t(18) = 2.12, p = 0.048) 

is greater in the second hierarchical block. Activity is also numerically greater in FPC (t(18) = 

1.52, p = 0.147), but not statistically significant. Lastly, activity in PMd did not differ across the 
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blocks (t(18) = 0.12, p = 0.904). Because the activity in rostral regions of frontal cortex is 

elevated in the second hierarchical block relative to both the preceding and proceeding blocks, 

the observed results are likely due to a process that is preferentially engaged in the second 

hierarchical block, as opposed to a process that continuously evolves over time such as effects 

related to time on task or practice. 

 

Lateral Frontal Regions Linked to Transfer of Global Hierarchical Structure 

 

Next, we determined if activity in the lateral frontal ROIs predicts behavioral transfer, 

which was indexed by more abrupt hierarchical learning in the blocks that follow discovery of 

the global hierarchical structure (see Materials and Methods for definitions and details). 

Different lateral frontal cortex regions could support transfer of the global hierarchical policy 

structure. For example, prePMd could support transfer of 2nd-order policy by means of a more 

efficient resolution of competition between competing within-block 2nd-order rules. 

Alternatively, if transfer is an additional third level in the policy hierarchy (i.e. the task block 

contextualizes 2nd-order rules associated with the shape dimension), then Mid-IFS (e.g. the 

region associated with policy abstraction one level greater than that being transferred) could 

support transferring learned structure. Lastly, FPC activity could support transfer, as structure 

transfer may be a form of extended temporal contextualization, or episodic control, that biases 

task representations across multiple blocks. Knowledge of the shape dimension’s position in the 

hierarchy may take the role of a schema and thus recruit FPC to support the accommodation and 

contextualization of new information within this framework. 

 

To test these predictions, correlations between the mean activity in each lateral frontal 

ROI from blocks where behavioral transfer could occur (i.e. hierarchical blocks three and four), 

and the behavioral metric of transfer for each subject were performed (Figure 2.3C). Activity in 

prePMd (r = – 0.02, p = 0.937), Mid-IFS (r = 0.15, p = 0.528), and FPC (r = 0.18, p = 0.633) did 

not reliably correlate with behavioral transfer. However, activity in the most caudal frontal 

region, PMd, appeared to reliably correlate with behavioral transfer (r = 0.65, p = 0.002). To test 

the robustness of these individual differences results, we also performed the analyses using a 

non-parametric rank-ordered regression test. In line with the previous results, PMd was 

significantly correlated with behavioral transfer (spearman rho = 0.48, p = 0.037), while prePMd, 

Mid-IFS, and FPC were not statistically significant (absolute value of all spearman rho’s < 0.43, 

all p’s > 0.065). However, one high-leverage subject who showed substantial behavioral transfer 

also had the highest activity in PMd (Fig. 3C). When this subject is removed from the analysis, 

the positive correlation no longer reaches statistical significance (PMd: r = 0.37, p = 0.12 (rho = 

0.39, p = 0.11); all other ROI p’s > 0.38 (non-parametric p’s > 0.09)). Thus, these results suggest 

that PMd is the most likely lateral frontal region to relate to transfer, although this relationship 

may be modest and awaits confirmation in future studies. 

 

Whole-brain Analyses: Regions Linked to Discovery of Global Hierarchical Structure 

 

In order to identify regions recruited by the search and discovery of the global 

hierarchical policy structure, a whole-brain voxelwise analysis was performed by contrasting 

activity in the second hierarchical block to the average of the first and third hierarchical blocks 

(Figure 2.4A). This contrast revealed activity that overlapped with the left prePMd and Mid-IFS 
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ROIs. However, activity was also found in medial superior frontal gyrus, the left inferior parietal 

lobule (IPL) and intraparietal sulcus (IPS), and the right IPL. The location of these lateral frontal 

and parietal regions overlap with a set of regions referred to as the “FP network” that have been 

previously implicated in cognitive control functions (Dosenbach et al., 2007, 2008). 

 

 
Figure 2.4 Voxelwise Analyses Reveal Regions Linked to Unique Behavioral Roles. (A) Activity during the search 

and discovery of the global hierarchical structure during the second hierarchical block shown by the contrast of Hier 

2 > Hier 1 + Hier 3. (B) Whole-brain analysis of regions for which stimulus response phase activity following 

discovery of the global hierarchical structure correlates with behavioral transfer. All activity maps are cluster-

corrected to a family-wise error rate of p < .05. 

 

Whole-brain Analyses: Regions Linked to Transfer of Global Hierarchical Structure 

 

To further identify which regions support behavioral transfer in blocks following the 

discovery of the global hierarchical policy structure, a whole-brain analysis was performed using 

the degree of behavioral transfer as a parametric modulator of the mean stimulus response phase 

activity in the third and fourth hierarchical blocks (p = 0.05 cluster-corrected, Figure 2.4B). PMd 

activity (overlapping with our ROI) – in accord with the previous ROI analyses – as well as 

bilateral anterior insula / frontal operculum, anterior cingulate cortex, left lateral occipital cortex, 

and left medial temporal cortex correlated with behavioral transfer. Anterior insula and dorsal 

anterior cingulate cortex correspond to the “core” regions of the putative cingulo-opercular 

network commonly found in tasks requiring cognitive control (“CO network”, Dosenbach et al., 

2007, 2008; Sadaghiani & Kleinschmidt, 2016). 

 

Dissociation of Behavioral Roles for FP and CO Networks 

 

The FP and CO networks have been proposed as two components of a dual-network 

architecture of cognitive control (Dosenbach et al., 2008), and regions in both the FP and CO 

networks were active during performance of our hierarchical learning task. However, these 

regions may support task performance by making separable behavioral contributions. To test this 

hypothesis, we directly compared the relationship between activity across the networks’ 
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respective regions and (1) discovering the global hierarchical policy structure versus (2) 

transferring of hierarchical structure knowledge across blocks.  

 

First, we assessed the relationship between activity in these networks and the search and 

discovery of hierarchical structure that occurs during the second hierarchical block. The 

canonical FP and CO networks were defined based on a previous meta-analysis of cognitive 

control tasks (FP: bilateral frontal cortex, bilateral dorsolateral prefrontal cortex, bilateral 

intraparietal sulcus, bilateral inferior parietal lobule, bilateral precuneus, and midcingulate 

cortex; CO: bilateral anterior insula / frontal operculum, bilateral anterior prefrontal cortex, 

bilateral thalamus, and dorsal anterior cingulate cortex / mid-superior frontal cortex, Figure 

2.5A; coordinates from Dosenbach et al., 2007). Separately for the FP network and CO network 

ROIs, the activity during each block was estimated and a contrast was performed for the activity 

in the second hierarchical block versus the first and third hierarchical blocks (Figure 2.5B). FP 

activity was significantly increased during the second hierarchical block (t(18) = 3.49, p = 

0.003), as expected based on the whole-brain results, whereas CO activity was not significantly 

different (t(18) = 1.46, p = 0.162). Since the FP network was chosen for further analysis based on 

the observation of left lateral frontal and bilateral parietal activity in our previous whole-brain 

contrast, any ROI analyses that include these regions may be biased by circularity (Vul, Harris, 

Winkielman, & Pashler, 2009). To address this possibility, a separate analysis was performed 

that included only the FP network ROIs that were not observed in the original whole-brain 

results (i.e. right frontal cortex, right dorsolateral frontal cortex, right intraparietal sulcus, 

bilateral precuneus, and midcingulate cortex), which also found a significant result for the 

contrast (t(18) = 2.80, p = 0.012). Next, to formally dissociate the patterns observed across the 

FP and CO networks (Henson, 2006), we tested the interaction between block (second 

hierarchical block; average of first and third hierarchical blocks) and region (FP; CO) and found 

that the difference in activity between the second hierarchical block compared to the first and 

third blocks is significantly greater in the FP regions than in the CO regions (t = 3.37, p = 0.003).  

 

We next assessed the relationship between activity in these networks and the transfer of 

hierarchical structure knowledge. As before, we sought to confirm the relationship between 

behavioral transfer and the canonically defined CO network, while additionally ruling out the 

potential for circularity in our analyses. Our first analysis confirmed a significant relationship 

between activity averaged across all cingulo-opercular regions and behavioral transfer (r = 0.57, 

p = 0.011, spearman rho = 0.67, p = 0.002, Figure 2.5C). Moreover, in order to control for 

circularity in this analysis, we ran a separate test of the relationship between the CO network and 

behavioral transfer by excluding the insular and anterior cingulate ROIs that were present in the 

original whole-brain regression. This new analysis, which only included activity from bilateral 

thalamus and bilateral anterior prefrontal cortex (referred to as the “periphery” of the CO 

network, Dosenbach et al., 2008), found a significant correlation between mean ROI activity and 

the behavioral transfer metric (r = 0.66, p = 0.002, spearman rho = 0.77, p < 0.001). In contrast to 

the robust correlation between the CO network and behavioral transfer, activity in the FP 

network in the last two hierarchical blocks is only modestly correlated with the behavioral 

transfer metric (r = 0.26, p = 0.279, spearman rho = 0.61, p = 0.006, Figure 2.5C).  

 

To test whether the CO network is uniquely related to transfer, both the CO network and 

FP network activity were included in a multiple regression with behavioral transfer as the 
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dependent variable, as this approach controls for any shared contribution made by both networks. 

This analysis revealed that activity in the CO network selectively predicts transfer (CO network: 

r = 0.52, p = 0.023, spearman rho = 0.47, p = 0.045; FP network: r = -0.003, p = 0.990, spearman 

rho = 0.04, p = 0.881, Figure 2.5D). Collectively, these findings demonstrate a clear dissociation: 

the regions of the FP network are specifically involved in the search and discovery of 

hierarchical structure, whereas the regions of the CO network are selectively involved in the 

transfer of hierarchical structure knowledge across blocks.  

 

 
Figure 2.5 fMRI Analyses Reveal Dissociation of Behavioral Roles for FP and CO Networks. (A) Locations of 

regions that define the FP (green) and CO (yellow) networks defined from Dosenbach et al., 2007. FP: Bilateral 

frontal cortex, dorsolateral prefrontal cortex, IPL, IPS, precuneus, and midcingulate. CO: Bilateral aI/ FO, aPFC, 

thalamus, and dACC / msFC. (B) The contrast of the mean beta coefficients from the stimulus response phase across 

all respective regions in the second hierarchical block compared to the first and third blocks reveals an increase in 

activity during the search and discovery phase only in the FP regions. Moreover, there is a significant interaction 

such that the difference in activity between these blocks is greater in the FP network than in the CO network. Error 

bars indicate within-subject standard error of the mean. (C) The correlation of transfer with each network’s mean 

beta coefficient from the third and fourth hierarchical blocks. (D) Regression analyses for the FP and CO networks 

against behavioral transfer reveal a unique role of the CO network in structure transfer. Shown are the partial-

correlation coefficients from a multiple regression that accounts for the effects of both networks. 

 

 

 

2.5 Discussion 

 

Subjects were able to efficiently discover and exploit abstract structure during a 

hierarchical reinforcement learning task. During the task, subjects rapidly discovered and 

generalized an embedded global task structure to subsequent novel task blocks. Moreover, this 

generalization was supported by an increase in subjects’ awareness of the specific global 

hierarchical structure at the start of a new block. The fMRI data revealed that multiple left lateral 

frontal regions were involved during task performance (prePMd, Mid-IFS, and FPC). In addition, 

regions within a frontal-parietal network were involved in the initial discovery of the global 

hierarchical structure, while regions within a cingulo-opercular network, and potentially PMd, 

were involved in the transfer of this structure.  
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Previous work on structure learning in the context of hierarchical reinforcement learning 

(Collins et al., 2014; Collins & Frank, 2013, 2016) has shown that subjects tend to build 

generalizable structures that allow for components of the stimulus (e.g. shape) to act as a higher-

order context that cues rules based on other stimulus features (e.g. color). However, in contrast to 

previous work where stimulus-response groupings could be directly transferred, our task design 

prevented direct block-to-block transfer of action mappings. Instead of discovering structure that 

immediately informed action, such as learning one of the block-specific hierarchical policies, 

subjects discovered structure that informed subordinate task-set policies, as evidenced by more 

rapid learning in hierarchical blocks following discovery. Moreover, when a MoE model was 

used to derive an estimate of subjects’ attention to the hierarchical shape rule at the start of the 

third hierarchical block, the model-derived estimate was greater than at the start of the second 

hierarchical block, indicating that subjects transferred and immediately applied their structural 

knowledge following discovery in the second hierarchical block. This demonstrates that subjects 

are capable of learning a higher-order representation between stimulus dimensions that can 

abstract away from the groupings of specific response pairings, and can then transfer this 

knowledge to new contexts. 

 

Our brain imaging findings have implications regarding the functional organization of the 

frontal cortex in support of hierarchical learning. The lateral frontal cortex is recruited for both 

the learning and execution of hierarchical rules (Badre & D’Esposito, 2007; Badre et al., 2010; 

Badre & Nee, 2018; Collins et al., 2014; Koechlin, 2003; Nee & D’Esposito, 2016), with 

recruitment of more rostral regions during processing of higher levels of policy abstraction. In 

addition, patients with lateral frontal cortex lesions exhibit asymmetric behavioral impairments: 

caudal lesions impair both concrete and abstract cognitive control task performance, while rostral 

lesions only impair abstract task performance (Badre, Hoffman, Cooney, & D’Esposito, 2009). 

In tasks where hierarchical rules had to be implicitly learned, different lateral frontal regions are 

simultaneously involved in the search for hierarchical policy within a block (Badre et al., 2010). 

However, patients with pre-PMd lesions are impaired at learning the full 2nd-order policy, but not 

the subordinate 1st-order rules (Kayser & D’Esposito, 2013). This asymmetric functional deficit 

is evidence of the hierarchical organization of functions associated with these regions. Our study 

extends these findings by demonstrating that frontal cortex is involved in the search for a global 

hierarchical structure, beyond that of the block-specific 2nd-order policies, when evidence of its 

presence is first available. We conclude that the same hierarchical frontal cortex organization 

used to execute policy rules, as well as search for hierarchical relationships of varying 

complexity within the moment (i.e. block-specific policies), is also involved in the search for 

hierarchical relationships across contexts.  

 

There existed a potential relationship between activity in the most caudal region (PMd) 

and the measure of transfer and implementation of global hierarchical structure, defined as the 

change in the maximum 2nd-derivative across blocks. The maximum 2nd-derivative captures the 

initial rise of the learning curve, indicating the transition from searching for higher-order rules to 

the resolution of 1st-order rules. Subjects are transitioning from a phase of the task where the 

search space of possible structures is large to one where it has become well-defined and narrow. 

With conflict of the 2nd-order policy resolved, all that remains is the resolution of 1st-order rules, 

a process linked to PMd function. It is likely that subjects who resolve the 2nd-order conflict 

more rapidly can then rely primarily on processes associated with PMd (i.e., linking specific 



 

 26 

colors and textures to motor responses) for the remainder of the block, therefore facilitating 

performance.  

 

Together with previous work, the current findings suggest a sophisticated coordination 

between motor control, rule implementation, rule discovery, and rule generalization in the 

service of hierarchical control, where each function incorporates knowledge of both the 

immediate setting (i.e. task block) and overall environment (i.e. global hierarchical structure). In 

simple tasks lacking contextual elements, caudal premotor regions likely resolve response 

competition without influence from superordinate rostral frontal regions. However, in tasks for 

which contextual information must be considered (e.g., abstracted hierarchical policy), rostral 

premotor and mid-dorsolateral regions are likely recruited to exert control over sensory-motor 

conflict in more caudal premotor regions (Badre et al., 2009; Kayser & D’Esposito, 2013). In 

settings where actions and rules are being learned, these contextual influences are likely being 

tested and updated via cortico-striatal interactions in response to task-based feedback signals 

(Badre & Frank, 2012; Frank & Badre, 2012). Thus, when a subject discovers and transfers 

global structure, knowledge of this structure works to restrict the search space of potential 

hypotheses, resulting in selective recruitment along the rostrocaudal gradient to those involved in 

representing the generalized known structure. Thus, multiple regions can be involved in the 

process of structure transfer, but specifically only those regions along the gradient necessary for 

the resolution of the remaining unresolved block-specific rules. 

 

Several cortical and subcortical regions outside the lateral frontal cortex associated with 

behavioral transfer were identified. Subjects with greater levels of activity in regions comprising 

the CO network learned the block-specific hierarchical policies faster following discovery of the 

global hierarchical structure. Critically, this association was not found in regions comprising the 

FP network, suggesting that CO network activity is specifically related to the manner in which 

subjects maintain and implement the learned structure. Alternatively, it is possible CO activity is 

increased in subjects who are more engaged and attentive to the task (Sadaghiani & 

Kleinschmidt, 2016). We favor the former interpretation because our transfer metric indexes a 

difference between performance in the first, compared to final, hierarchical block, and is thus 

insensitive to differences between subjects who perform poorly in both phases (when it could be 

assumed that subjects are failing to pay attention to the current task), and those who perform 

exceedingly well in both phases (when it is likely that attentional engagement is greatest).  

 

Previous work has implicated the CO network in both “task-set maintenance” 

(Dosenbach et al., 2006, 2007, 2008), broadly defined as the configuration of control signals 

required to perform any type of task, and “tonic alertness” (Sadaghiani & D’Esposito, 2015; 

Sadaghiani et al., 2010), or the user-driven sustained control necessary to remain prepared to 

process incoming information. Task-set maintenance requires that a specific structure be known 

to the individual – that which defines successful performance of the task – whereas tonic 

alertness precludes any need for a specific structural representation of the task as alertness takes 

the role of “nonselective disengagement" (Sadaghiani & Kleinschmidt, 2016). Thus, our findings 

are more consistent with a role of the CO network in task-set maintenance, although a role in 

tonic alertness during our task cannot be ruled out.  
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Whereas the CO network was uniquely related to transfer, the FP network was selectively 

involved in the search and discovery of the global hierarchical structure. Our findings suggest 

that the FP network is not only involved in the representation and integration of current task rules 

and response mappings, but also in the integration of previous task-relevant components. The 

integration of this information would likely allow for complex structured relationships to be 

discovered across blocks. Although the component processes of searching for and discovering 

abstract hierarchical structure overlap with behaviors associated with learning and navigating the 

explore-exploit dilemma – classically linked to regions along anterior cingulate cortex (ACC) – 

it is unlikely that ACC would be uniquely linked to search and discovery as additional roles 

associated to ACC likely occurred during the preceding and proceeding phases of the task (i.e. 

exploring and evaluating individual hierarchical policies in the 1st hierarchical block, 

representing exploitative behaviors in the 3rd hierarchical block, etc.) (Quilodran, Rothé, & 

Procyk, 2008; Stoll, Fontanier, & Procyk, 2016; Walton, Bannerman, Alterescu, & Rushworth, 

2003). Recent studies have discovered that tasks requiring varying levels of cognitive control 

recruit regions along a caudal-rostral gradient in parietal cortex in a similar fashion to that found 

in lateral frontal cortex (Choi, Drayna, & Badre, 2018). Moreover, regions along both gradients 

showed mirroring patterns of functional connectivity with striatal sites, in line with previous 

work (Badre & Frank, 2012; Collins & Frank, 2013). Accordingly, the present results implicate a 

system of parallel and distributed hierarchical gradients across frontal and parietal cortex that 

supports the search and discovery of structure of varying complexity within and across task 

blocks. 
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CHAPTER 3 

 

Differential contributions of static and time-varying functional connectivity to human 

behavior 

 

 

 

3.1 Abstract 

 

Measures of human brain functional connectivity acquired during the resting-state track 

critical aspects of behavior. Recently, fluctuations in resting-state functional connectivity 

patterns – typically averaged across in traditional analyses – have been considered for their 

potential neuroscientific relevance. There exists a lack of research on the differences between 

traditional “static” measures of functional connectivity and newly-considered “time-varying” 

measures as they relate to human behavior. Using functional magnetic resonance imagining 

(fMRI) data collected at rest, and a battery of behavioral measures collected outside the scanner, 

we determined the degree to which each modality captures aspects of personality and cognitive 

ability. Measures of time-varying functional connectivity were derived by fitting a Hidden 

Markov Model. To determine behavioral relationships, static and time-varying connectivity 

measures were submitted separately to canonical correlation analysis. A single relationship 

between static functional connectivity and behavior existed, defined by measures of personality 

and stable behavioral features. However, two relationships were found when using time-varying 

measures. The first relationship was similar to the static case. The second relationship was 

unique, defined by measures reflecting trialwise behavioral variability. Our findings suggest that 

time-varying measures of functional connectivity are capable of capturing unique aspects of 

behavior to which static measures are insensitive. 

 

 

 

3.2 Introduction 

 

Measuring activity in the human brain during a task-free “resting state” has become 

common as this activity is known to be spatially and temporally organized (Biswal et al., 1995). 

These patterns of resting-state functional connectivity (rsFC) are sensitive to numerous aspects 

of behavior, including cognitive performance (Chan, Park, Savalia, Petersen, & Wig, 2014; 

Stevens et al., 2012), age (Chan et al., 2014), and the extent of cognitive impairments 

(Alexander-Bloch et al., 2010; Rudie et al., 2013). Using rsFC data from the Human 

Connectome Project (Van Essen et al., 2013), a recent report utilized canonical correlation 

analysis (CCA) to reveal that rsFC and numerous behavioral measures were linked via a single 

mode of population covariation,  providing a single inextricable link between stable functional 

brain organization and interindividual behavioral differences (Stephen M. Smith et al., 2015).  

 

The majority of neuroimaging studies have investigated rsFC by assuming that it is stable 

across the measurement period. However, a recent emphasis has been placed on determining 

whether, and to what degree, rsFC systematically varies in time (Calhoun, Miller, Pearlson, & 

Adali, 2014). While some measurable fluctuations are likely due to noise or non-neural, 
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physiological signals (Duff, Makin, Cottaar, Smith, & Woolrich, 2018; Hindriks et al., 2016; 

Hutchison et al., 2013; Lindquist, Xu, Nebel, & Caffo, 2014; Lurie et al., 2019), there is 

evidence that these rapidly evolving changes have a neuronal basis (Brookes et al., 2014; Chang 

& Glover, 2010; de Pasquale et al., 2010; Thompson, 2018). Moreover, analysis of time-varying 

FC might reveal new relationships to behavior unobtainable by static analyses (Cohen, 2018; 

Kucyi, Tambini, Sadaghiani, Keilholz, & Cohen, 2018). There is recent evidence that 

fluctuations of task-based FC track aspects of cognitive control (Khambhati, Medaglia, Karuza, 

Thompson-Schill, & Bassett, 2018) and attention (Sadaghiani et al., 2015), suggesting that 

flexible network reconfiguration indexes trial-by-trial performance.  

 

It is important to consider ways in which static and time-varying FC differ, and how these 

differences impact the way each modality encodes aspects of behavior. Whereas static measures 

provide a snapshot of the stable organization of the brain, time-varying measures index higher-

order relationships between brain regions. Such measures include the degree to which functional 

networks vary their interconnectivity with other networks, the change in global organizational 

structure, and how the global FC profile transitions between different functional substates (Shine 

& Breakspear, 2018; Vidaurre et al., 2017). Thus, it is likely that measures of static and time-

varying FC encode different behavioral features, however a precise characterization of this 

relationship is missing. Studies have focused on either one type of connectivity (static: Smith et 

al., 2015, time-varying: Casorso et al., 2019), or on specific behaviors (Rosenberg et al., 2016), 

but only two studies attempted to simultaneously disentangle static and time-varying FC’s 

behavioral relevance (Jia, Hu, & Deshpande, 2014; Liegeois et al., 2019). Jia and colleagues 

found that time-varying measures of FC explained more variance in behaviors tracking alertness, 

cognition, emotion, and personality than did static FC. Liégeois and colleagues found that 

measures of time-varying FC tracked both task-based behavior and self-reported personality 

traits, whereas static measures only captured self-reported traits. Although leveraging the power 

of the Human Connectome Project, these studies only had access to basic measures of human 

behavior, lacking access to measures typically employed by cognitive neuroscientists studying 

working memory, cognitive control, and executive function. 

 

In order to directly address the behavioral differences captured by static and time-varying 

FC, we utilized resting-state blood-oxygen-level-dependent (BOLD) data collected alongside a 

battery of complex behavior and personality measures. These measures ranged across working 

memory, executive functioning, processing speed, affect, and impulsivity. Building off Smith 

and colleagues (2015), we leveraged CCA to determine whether there exist modes of covariation 

between behavior and static, as compared to time-varying, rsFC. Static rsFC was estimated by 

computing a node-node correlation matrix across all regions of the brain. Time-varying rsFC was 

estimated by fitting a Hidden Markov Model (HMM) to the data. The HMM allowed for the 

characterization of, and transition likelihood between, multiple latent “states” in a data-driven 

fashion as fast as the modality allowed, overcoming limitations imposed by sliding-window 

methods (Hutchison et al., 2013). The HMM has been used to characterize brain dynamics across 

multiple neuroimaging modalities during rest (Baker et al., 2014; Vidaurre et al., 2017) and task 

(Vidaurre et al., 2018). 

 

Using static FC, CCA revealed a single relationship primarily defined by variance in 

measures of personality and affect, as well as task-general behavioral features. With time-
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varying FC, CCA instead revealed two (orthogonal) relationships. The first was highly similar to 

that found using static FC. However, the second was specific to time-varying FC, and was 

defined by variance in trialwise measures of reaction time to processing speed and working 

memory tasks, as well as measures tapping into overall processing accuracy. These results 

suggest that there exists meaningful information in the temporal fluctuations of rsFC patterns 

which can explain aspects of human behavior to which previous analytic methods have been 

insensitive.  

 

 

 

3.3 Materials and Methods 

 

Participants 

 

Twenty-three healthy young adult participants (mean age = 28.26 years, SD = 4.52 years, 

10 females) were recruited for a repeated measures study to participate in two or three sessions. 

Five participants were unable to attend the third study session as a result of having moved away 

from the state of California. As a result, only 18 participants were included in the third session 

(mean age = 27.67 years, SD = 4.64 years, 8 females). All participants were native English 

speakers, had normal or corrected-to-normal vision, and had normal hearing. Participants were 

excluded for any history of neurological or psychiatric disorders, use of psychotropic drugs, a 

history of substance abuse, or MRI contraindications. All participants provided written informed 

consent according to the procedures of the UC Berkeley Institutional Review Board. 

 

Experimental Design and Procedure 

 

Participants underwent one practice session approximately one week (mean = 6 days, SD 

= 2.37 days) before their first testing session. They then completed two or three identical testing 

sessions. Testing sessions 1 and 2 were separated by approximately one week (mean = 8 days, 

SD = 1.47 days), while testing sessions 2 and 3 were separated by approximately one year (mean 

= 399 days, SD = 28.73 days).  

 

Each session began with two 6-minute resting-state scans in the MRI machine, in which 

participants were instructed to stay awake with their eyes open and fixate on a crosshair. During 

the first session, the resting-state scans were followed by a structural scan. Immediately after the 

MRI scan, participants completed two self-report questionnaires and a task outside of the 

scanner: a Visual Analogue Scale (VAS, McCormack, Horne, & Sheather, 1988), the Barratt 

Impulsiveness Scale (BIS, Patton, Stanford, & Barratt, 1995) and a Box Completion Task 

(Salthouse, 1996). Immediately following completion of the questionnaires and task, participants 

then completed four computerized cognitive tasks in counterbalanced order (different orders 

across participants and for each session): a Stroop task (Stroop, 1935), a digit symbol 

substitution task (DSST; Rypma et al., 2006), a spatial working memory (WM) task (Kuo, Yeh, 

Chen, & D’Esposito, 2011), and a color WM task (W. Zhang & Luck, 2008). Visual depiction of 

the four computerized task paradigms are shown in Figure 3.1. 
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Figure 3.1 Computerized Task Paradigms. Shown are the time courses of example trials of the 4 computerized 

behavioral tasks. (A) Stroop task. Trial 1 is Incompatible, 2 is Compatible, and 3 is Neutral. (B) DSST. (C) Spatial 

WM. Both early- and late-cueing trial types are shown, with the early-cueing trial depicting a match trial and the 

late-cueing trial depicting a non-match trial. (D) Color WM.  
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The BIS is a survey that determines measures of impulsivity along a set of three sub-

traits: “Attentional,” “Motor,” and “Non-planning”. The VAS has participants make a mark 

along a line segment in which one side represents “Not” and the other side “Extremely” for the 

following items: “Anxious,” “Happy,” “Sad,” “Nauseous,” “Drowsy,” “Jittery,” “Fatigued,” and 

“Dizzy”. Participant responses are measured as the distance (in centimeters) away from the 

“Not” end of the line. The Box Completion Task requires that participants use a pencil to fill in 

the fourth side of an open-ended square as rapidly as possible. The measure of interest is the 

duration of time it takes to complete 100 squares. 

 

In the Stroop task, color words (blue, red, green, yellow) or animal names (horse, bird, 

cat, dog) printed in different colors (blue, red, green, yellow) were presented on the left side of 

the computer screen. Participants had to indicate the font color by pressing one of four buttons. 

For ease of task performance color-to-button mappings were presented at the bottom part of the 

screen throughout the duration of the experiment. Participants used the four fingers of their right 

hand for responding with color-to-button mappings randomly assigned to participants. 

Compatible, neutral, and incompatible trials were presented with equal probability. In compatible 

trials, color and word were the same. In neutral trials, the task-irrelevant dimension (e.g., word 

meaning) was not related to the task (e.g., animal names). In incompatible trials, color and word 

differed. Each Stroop session was ten minutes long and comprised 8 blocks of 36 trials each. The 

stimuli were presented for 300 ms with an interstimulus interval of 1700 ms. The measures of 

interest included the difference score, in milliseconds, between the median response time of 

correct responses to trials in which there was an incongruity between the word and color 

(incongruent trials: i.e., the word “RED” in blue text) and the median response time of correct 

responses to a trial in which the color of the text matched the word (congruent trials: i.e., the 

word “RED” in red text). Moreover, we also focused on the standard deviation of this response 

time difference, as well as the accuracy on incongruent trials. We chose not to compute a 

difference score for accuracy as individual differences for accuracy on congruent trials was 

likely to be minimal.    

 

The DSST required that participants indicated via button press whether a presented 

symbol-number pair correctly matched an on-screen answer key. Nine symbols were paired with 

numbers 1 through 9 and the answer key was shown at the top of the screen on every trial. 140 

pairs were presented in which the symbol-number pair either matched (50%), or did not match 

(50%), the provided answer key. Pairs were presented on screen for 4000 ms, during which the 

participant could indicate their response. Participants were instructed to respond as rapidly and as 

accurately as possible. Measures of interest included the overall accuracy, median reaction time, 

and standard deviation of reaction time, for match and non-match trials separately.  

 

The spatial WM task (“Spatial WM”) required that participants initially encode and retain 

the color of a rapidly presented set of colored squares. The task followed a 2 (load: 2 vs. 4) x 2 

(cue onset: early vs. late) design. Participants viewed an array of 2 or 4 colored squares for 180 

ms prior to retaining this information over a 900 ms delay period. In the early-cue condition, a 

cue appeared in the location of where one of the squares had previously been after 200 ms (and 

stayed on screen for the remaining 700 ms). In the late-cue condition, the cue appeared after 800 

ms (and stayed on screen for the remaining 100 ms). Next, participants had to indicate whether a 
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newly presented colored square, among an array of 2 or 4 colored squares, matched the color of 

the spatially cued square prior to the delay. The new array remained on screen for 1920 ms. 

Participants were instructed to respond as accurately and as quickly as possible. In total, 

participants completed 240 trials, with 60 trials coming from each condition. Measures of 

interest included percent accuracy, median reaction time, and the standard deviation of reaction 

time, across both cognitive loads, for match and non-match trials separately. 

 

The color working memory task (“Color WM”) required that participants initially encode 

the colors of 3 squares rapidly presented on screen for 1000 ms. Following a delay of 500 ms, a 

visual cue to the location of one of the squares appeared for 500 ms. After a 1250 ms delay, a 

distractor color appeared on screen for 500 ms. Following another delay of 1250 ms, the 

participants were then presented with a colorwheel for 3000 ms and were instructed to move the 

cursor along the wheel in a continuous fashion until the selected color matched the color of the 

cued square being held in memory. Participants completed 40 trials in total and were provided a 

5 second break after the end of the 20th trial. Measures of interest included the median and 

standard deviation of reaction time and error angle (calculated as the difference in degrees along 

the colorwheel between the correct answer and the response provided by the participant) across 

all responses. 

 

During the practice session, participants completed the four cognitive tasks so as to 

familiarize themselves with the tasks before the testing sessions. The purpose of this session was 

to minimize practice effects. The testing sessions were all identical. The final testing session was 

conducted on the same MRI machine as the previous sessions, but in a different location. 

Reliability tests ensured that MRI effects (such as signal-to-noise ratio and artifacts) were not 

different across the two locations.  

 

Behavioral measures for each subject at each session were considered as separate yet 

dependent datapoints, and therefore no averaging across sessions occurred. Given the dependent 

nature of these data points, we utilize the analytic methodology from Smith et al. (2015), which 

accounted for familial relationships between specific subjects in the Human Connectome Project. 

Specifically, we performed all statistics such that permuted null distributions never shuffled 

labels across sessions for subjects. In other words, all sessions from any particular subject were 

always grouped together so as to appropriately account for within-subject variability. 

 

Factor Analysis of the Behavioral Data 

 

All 31 behavioral measures were included in the analyses and subjected to a factor 

analysis. Six measures each came from the Spatial WM task and the DSST: percent accuracy, 

median reaction time, and the standard deviation of reaction times for match and non-match 

trials. Three measures came from the Stroop task: percent accuracy on incongruent trials, median 

reaction time difference between congruent and incongruent trials, and the standard deviation of 

the reaction time difference between congruent and incongruent trials. Four measures came from 

the Color WM task: median and standard deviation of response error, as well as median and 

standard deviation of reaction times. All eight measures from the VAS were included, as well as 

the scores of the three sub-traits of the BIS. Lastly, the time to complete all 100 squares for the 

Box Completion Task was included.  
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We clustered the behavioral data into 8 factors using MATLAB’s factoran function and 

allowed for promax oblique rotation (Figure 3.2). We labeled these factors qualitatively by 

observing which behavioral measures loaded highest on each factor. We chose 8 factors as it 

most cleanly separated tasks from one another and grouped together correlated measures.   

 

 
Figure 3.2 Factor Loadings in Behavioral Data. Shown are the factor loadings across the 8 derived factors for each 

of the 31 behavioral measures. To aid interpretability, certain values are highlighted to show the clustering of 

loadings within groups. Factors were assigned names based on the behavioral variables that loaded most heavily on 

them. RT: Reaction Time. 
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fMRI Data Acquisition 

 

Imaging data were collected on a 3-Tesla Siemens MAGNETOM Trio whole-body MR 

scanner using a 12-channel head coil at the University of California, Berkeley Henry H. Wheeler 

Jr. Brain Imaging Center. Whole-brain functional data were acquired in two runs using a T2*-

weighted echo-planar imaging (EPI) pulse sequence (180 volumes/run, 37 interleaved axial 

slices parallel to the AC-PC line, slice thickness 3.5 mm, interslice distance = 0.7 mm, TR = 

2000 ms, TE = 24 ms, FA = 60°, matrix 64 x 64, field of view 224 mm). A high-resolution T1-

weighted structural 3D MP-RAGE was also acquired (160 slices, slice thickness 1 mm, TR = 

2300 ms, TE = 2.98 ms, FA = 9°, matrix 256 x 256, field of view 256 mm). An LCD projector 

back-projected a fixation cross for the resting-state scan onto a screen mounted to the RF coil.  

 

fMRI Data Processing 

 

Preprocessing of the imaging data were performed using fMRIPrep 1.1.4 (Esteban et al., 

2018, 2019), which is based on Nipype 1.1.1 (Gorgolewski et al., 2011). The T1-weighted (T1w) 

image was corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection (ANTs 

2.2.0, Tustison et al., 2010), and used as T1w-reference throughout the workflow. The T1w-

reference was then skull-stripped using ANTs BrainExtraction (ANTs 2.2.0), using OASIS as 

target template. Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, Dale, Fischl, 

& Sereno, 1999), and the brain mask estimated previously was refined with a custom variation of 

the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical 

gray-matter of Mindboggle (Klein et al., 2017). Spatial normalization to the ICBM 152 

Nonlinear Asymmetrical template version 2009c (MNI152NLin2009cAsym, Fonov, Evans, 

McKinstry, Almli, & Collins, 2009) was performed through nonlinear registration with ANTs 

Registration (ANTs 2.2.0, Avants et al., 2008), using brain-extracted versions of both T1w 

volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter, and 

gray-matter  was performed on the brain-extracted T1w using fast (FSL 5.0.9, Y. Zhang et al., 

2001).  

 

For each of the BOLD runs found per participant (across all sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to 

the BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) were estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, 

Jenkinson et al., 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI. The 

BOLD time series (including slice-timing correction when applied) were resampled onto their 

original, native space by applying a single, composite transform to correct for head-motion and 

susceptibility distortions. These resampled BOLD time series will be referred to as preprocessed 

BOLD in original space, or just preprocessed BOLD. The BOLD reference was then co-

registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 

registration (Greve & Fischl, 2009a). Co-registration was configured with nine degrees of 

freedom to account for distortions remaining in the BOLD reference. The BOLD time series 

were resampled to MNI152NLin2009cAsym standard space, generating a preprocessed BOLD 

run in MNI152NLin2009cAsym space. Several confounding time series were calculated based 
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on the preprocessed BOLD: framewise displacement (FD), DVARS, and three region-wise 

global signals. FD and DVARS were calculated for each functional run, both using their 

implementations in Nipype (following the definitions by Power et al., 2014). The three global 

signals were extracted within the CSF, the white matter, and the whole-brain masks (i.e., global 

signal). The head-motion estimates calculated in the correction step were also placed within the 

corresponding confounds file. All resamplings were performed with a single interpolation step 

by composing all the pertinent transformations (i.e. head-motion transform matrices, 

susceptibility distortion correction when available, and co-registrations to anatomical and 

template spaces). Gridded (volumetric) resamplings were performed using ANTs 

ApplyTransforms, configured with Lanczos interpolation to minimize the smoothing effects of 

other kernels (Lanczos, 1964).  

 

Further post-processing included removal of artifactual signals from the time series data. 

We used recommended nuisance regression approaches based on recent processing comparisons 

(Ciric et al., 2017; Parkes, Fulcher, Yücel, & Fornito, 2018). We regressed out the 6 head-motion 

estimates, the mean white matter signal, the mean cerebral spinal fluid signal, their temporal 

derivatives and quadratic expansions, and the quadratic expansions of the temporal derivatives. 

We chose to avoid global signal regression due to (1) the known effect of introducing artefactual 

negative correlations into the data and (2) the increase in distance-dependent motion effects. As 

temporal contiguity is necessary to accurately estimate changes in FC across time, we did not 

apply any scrubbing techniques to our data. Last, we applied a bandpass filter from 0.01 to 0.1 

Hz to the data. Mean framewise displacement of our sample was relatively low (mean FD = 0.14, 

range = 0.06 – 0.37) and aligned with previously analyzed samples (Power et al., 2014).  

  

Static Functional Connectivity  

 

In order to obtain measures of FC, we first measured the mean BOLD signal across all 

voxels contained within each node of our brain atlases. Cortical nodes were taken from the 400-

node Local-Global atlas (Schaefer et al., 2018). 21 subcortical nodes were taken from the 

Harvard-Oxford atlas (Makris et al., 2006). 22 cerebellar nodes were taken from the AAL atlas 

(Tzourio-Mazoyer et al., 2002). Four cortical nodes in bilateral anterior temporal pole regions 

had to be removed from all analyses due to insufficient coverage (less than 25% of voxels 

contained data) in one or more participants in one or more scans. This left data from 439 nodes 

distributed across the entire brain. 

 

Scans were concatenated within session, per participant, in order to increase reliability of 

the measured FC profile for each session. To remove spurious data differences between sessions, 

each session’s data was standardized. FC was measured as the Pearson correlation coefficient 

between every node and all other nodes for which there was sufficient coverage. 

 

Hidden Markov Model 

 

Setup 
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The HMM derives brain dynamics based on BOLD time series parcellation data. The 

HMM assumes that the time series data are characterized by a number of states that the brain 

cycles through at different times throughout the scanning period (Baker et al., 2014).  

 

At each time point t of brain activity, the observed time series data was modeled as a 

mixture of multivariate Gaussian distributions. Each one of these Gaussian distributions 

corresponded to a different state k and was described by first-order and second-order statistics 

(activity [μk] and FC [Σk], respectively) that can be interpreted as the activity and FC of each 

state. Using notation, if xt describes the BOLD data at each time point t, then the probability of 

being in state k is assumed to follow a multivariate Gaussian distribution 

 

P( xt | st = k) ~ Multivariate Gaussian( μk, Σk ) 

 

In turn, we modeled how transitions between states took place. The basic Markovian 

principle that describes the transition between states assumes that the probability of the data 

being in state k at time t relates only to the probability of being in state l at time t-1. This can be 

described by the following equation     

 

P( st = k ) = Σl 𝛩l, k P( st-1 = l ) 

 

where 𝛩l, k is the transition probability from state l to state k. Taken together, the HMM infers the 

P( st = k ) probabilities for each state k and time t (state time courses) as well as the transition 

probabilities 𝛩l, k and the statistics of each state (μk, Σk) that best describe the data. To make 

inference tractable, a variational Bayes algorithm was used that works by minimizing the 

Kullback-Leibler divergence between the real and the modeled data (Wainwright & Jordan, 

2007). 

 

The input time series data for the HMM was the total time series data for all participants 

and all sessions (for the last session there were only 18 participants). Specifically, across the 

three sessions and for all participants we concatenated the processed functional time series and 

obtained a matrix of dimensions: (360x23 + 360x23 + 360x18) × number of regions of interest 

(439) (Vidaurre et al., 2017). Data were standardized for each participant prior to running the 

HMM. To control the dimensionality in the final data matrix, a principal component analysis 

(PCA) dimensionality-reduction technique was applied on the concatenated time courses using 

25 components (Stevner et al., 2019). Finally, the number of states for the HMM was chosen as 

12. Both of these settings were similar to the previous work that introduced the use of the HMM 

on fMRI data (Vidaurre et al., 2017). 

 

Inference 

 

Running the HMM with these parameters resulted in a data matrix of dimensions (# time 

points x # participants) x # states. Each row represented the probability of each state being active 

at each timepoint for each participant. Additional quantities related to the temporal 

characteristics of each state could then be obtained. First, we quantified the proportion of time 

that an individual resided in the state during the scan acquisition (fractional occupancy; FO). 

Additionally, the switching rate was defined as the difference between the probability of 
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activating a state at time t and activating a state at time t+1 summed over all states and over all 

time points and divided by the number of time points. The HMM also provided each state’s 

mean activity and connectivity μk and Σk, respectively. Finally, the HMM also provided the state 

transition probability matrix of dimensions (# states x # states) where each matrix entry (k, l) 

quantified the transition probability of going from state k to state l. 

 

An agglomerative hierarchical clustering algorithm was applied to the transition 

probability matrix in order to determine whether there existed a temporal structure in the data, as 

had previously been shown with resting-state FC data from the Human Connectome Project 

(Vidaurre et al., 2017). This analysis starts by classifying each data point as a separate cluster 

and progressively combines clusters of data at different hierarchical levels: similar data are 

clustered at a low level of hierarchy and less similar data are clustered at a higher level of 

hierarchy (Hastie, Friedman, & Tibshirani, 2009). We used the linkage function as implemented 

in MATLAB with default settings (method= ‘single’, distance= ‘euclidean’). We regarded each 

identified cluster as one metastate.  In turn, the metastate time courses were considered as the 

sum of the time courses of the individual states that comprised them. Fractional occupancy and 

switching rate of the metastates were calculated as in the case for single states. 

 

In order to assess whether there existed any relationship between the derived HMM time-

varying FC measures and in-scanner head motion, we first computed the mean FD across both 

runs for each subject in each session. There existed no difference in mean FD across sessions (all 

t’s < 1.19, adjusted-p’s = 0.679). Next, we correlated these session-specific mean FD values with 

each of the 17 measures derived from the HMM (i.e. fractional occupancy of each of the 12 

states, fractional occupancy of each of the 3 metastates, mean switching rate across the 12 states, 

and mean switching rate across the 3 metastates). Given the number of statistical tests performed 

(17 x 3 = 51) and the related nature of the data being assessed, we applied FDR correction to our 

results to account for multiple comparisons. Two of the fifty-one tests survived multiple 

comparisons correction: Fractional Occupancy of State 1 in Session 2 (r = 0.847, adjusted-p < 

0.001), and Fractional Occupancy of State 11 in Session 3 (r = 0.734, adjusted-p = 0.026). Given 

the lack of any consistent relationship between in-scanner head motion and our HMM measures 

across sessions, it is likely that our preprocessing strategy of the fMRI BOLD data appropriately 

corrected for motion artifact for the current study’s analyses of time-varying FC. 

 

Spatial Characterization of States 

 

In order to spatially characterize the derived states, we thresholded the activity maps of 

each state to include the top 40% of both positive and negative activations. We then spatially 

overlapped each state with the 10 resting-state networks described in Smith et al., (2009) to 

obtain an overlap index for each network.  The index was calculated by counting the number of 

voxels that were included in the thresholded map and then dividing these by the size of the 

resting-state network under consideration in order to account for size bias.  

 

Canonical Correlation Analysis (CCA) 

 

To relate the behavioral measures to static and time-varying FC we used CCA (Figure 

3.3). CCA finds correlations between multidimensional data wherein potential relationships may 
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be present (Hotelling, 1936). This is a more principled approach compared to conducting all 

potential correlations and correcting for multiple comparisons. Specifically, this analysis finds 

maximal correlations between two sets of variables, X (n x d1) and Y (n x d2), where d1 and d2 

are the number of variables used in X and Y respectively, and n is the number of observations for 

each variable. It produces two matrices, A and B, such that the variables U=AX and V=BY are 

maximally related. CCA values were obtained from the MATLAB canoncorr function. It is 

worth noting that like the PCA, this function can produce more than one mode, with each mode 

ranked by the covariance that can be explained between X and Y. 

 

 
Figure 3.3 Methodology Overview. CCA was performed on two different datasets, which were matched for 

measures of behavior but differed with regard to the rsFC data included. The first CCA (A) included measures of 

static FC (i.e., the node-to-node connectivity strength), while the second CCA (B) included measures of time-

varying FC. Measures of time-varying FC were derived by fitting a Hidden Markov Model to the BOLD time 

series.  
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We conducted two separate CCAs. First, we designated the factors of the behavioral data 

as Y, and the edgewise static FC strength as X (n = 96,141). In a second CCA, Y remained the 

same, but we varied X. Specifically, we designated X as the fractional occupancy of each HMM 

state (n = 12) and temporally defined metastate (n = 3), as well as the mean switching rate across 

states (n = 1) and metastates (n = 1) separately. As a final preprocessing step, the dimensionality 

of the static FC data was reduced using PCA as described in Smith et al. (2015), retaining the top 

13 components. No dimensionality reduction was required for the HMM data as the number of 

variables was low. However, we performed an analysis of the HMM data using PCA and report 

that the results are highly similar to the case when PCA is not employed (see Validation of CCA 

Analysis below).  

 

Statistical significance of the CCA analyses was estimated as follows. We calculated 

10,000 permutations of the rows of X relative to Y, respecting the within-participant structure of 

the data, and recalculated the CCA mode for each permutation in order to build a distribution of 

canonical variate pair correlation values (i.e. <U,V>). By comparing the outcome from the CCA 

of the true data to the shuffled data, we found that each mode of covariation discovered with the 

true data was highly significant (p < 1/10,000). In addition, a cross-validation approach was 

adopted in order to assess the robustness of the discovered mode(s) (as described in Smith et al., 

2015). Across 1,000 runs, we ran CCA on a randomly selected set of 80% of the data, respecting 

the within-participant nature of the data, and stored the resultant U and V. We then estimated the 

mode on the held-out 20% of data and determined the significance of the estimated mode 

employing the same permutation significance testing procedure as before. These estimated 

modes were found to be highly significant, with the correlation between the derived canonical 

weight vectors in the test dataset being very robust (replicating the results from Smith et al., 

2015).   

 

Post-hoc correlations of the values of X (Y-respective) with the columns of the 

significant mode U (V-respective) were used to quantify the contributions (positively or 

negatively) of each behavioral measure with the CCA mode. In other words, we quantified the 

extent to which the Y variables were loaded/weighted on the CCA mode. There is no clear cutoff 

at which one finds a significant correlation value and thus correlation values are reported in 

isolation. 

 

Validation of CCA Analysis 

 

We validated the identified CCA modes by comparing outcomes across a range of 

behavioral factors (behavior) and FC principal components (static FC, time-varying FC). The 

number of behavioral factors ranged from 1 to 9, while the number of static FC principal 

components ranged from 1 to 20 and the number of time-varying FC principal components 

ranged from 1 to 17. For the static case, we ran CCA on each combination and stored the 

resulting post-hoc correlations for each behavioral measure (i.e., with respect to FC), and 

computed the Pearson correlation between these values across all 180 combinations (Figures 3.4, 

3.5). For combinations that included two or more behavioral factors, we found that the 

discovered canonical covariate modes were highly similar, with Pearson correlations tending to 

be very highly positive (i.e., greater than r = 0.90) as well as very highly negative (i.e., less than r 

= -0.90). This bimodal distribution at the extremes of the correlation range indicates that the 
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discovered modes were highly preserved in structure (i.e., the same behavioral measures loaded 

highly). We determined the optimal combination (i.e., 8 behavioral factors, 13 FC PCs) by 

selecting either (A) the most significant canonical covariate pair (i.e. U x V), or (B) in cases 

where multiple pairs had the same maximal 1 / 10,000 permutation significance value, 

determining if combinations were highly similar after a certain number of factors or components 

were included, and then taking the smallest number of factors and components that produced this 

outcome, restricted by those that had a significant permutation value.  

 

 
Figure 3.4 Validation of Static Functional Connectivity CCA. Similarity between modes of covariation are plotted 

across varying numbers of behavioral factors (1-9) and edge strength principle components (1-20). Similarity was 

measured as the Pearson correlation coefficient between each mode’s vector of 31 behavioral post-hoc correlations. 

The plot is organized such that for each CCA run, connectivity data in varying principal component space is grouped 

together within chunks of behavioral data in a fixed factor-space. For example, the first row represents CCA being 

run on behavioral data in 1-factor space and connectivity data in 1-PC space; the 10th row represents CCA being run 

on behavioral data in 1-factor space and connectivity data in 10-PC space; the 25th row represents CCA being run 

on behavioral data in 2-factor space and connectivity data in 5-PC space, etc. Essentially, only one mode is found 

across all PCs when in 1- and 2-factor space, with the discovered modes being identical within factor space, and 

almost exact inverses of each other across factor spaces. Modes discovered from CCA run on data in 3-factor space 

and above, across all PCs, almost entirely represent the same relationship as each other.   
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Figure 3.5 Similarity between modes of covariation are plotted across varying numbers of behavioral factors (1-9) 

and edge strength principle components (1-17, capped by number of HMM variables included). Similarity was 

measured in the same way as for the static FC CCA validation procedure using Pearson correlation. Unlike in the 

static FC case, we additionally assessed whether the discovered modes differed as a function of whether PCA was, 

or was not, run on the HMM data. The final 9 rows represent the modes discovered from CCA run on behavioral 

data in 1- through 9-factor space when PCA was not performed on the HMM data. As can be seen, the modes 

discovered when CCA was run on the raw HHM data almost perfectly match those found when PCA was run on the 

HMM data. A corresponding plot for post-hoc correlations computed from modes greater than 1 is inappropriate as 

we had no a priori knowledge that more than 1 significant mode of covariation would be discovered, and thus only 

the first mode of covariation can be compared across datasets.  

 

 

 

3.4 Results 

 

Factor Analysis  

 

Brain and behavioral data were obtained as described in the Methods. We used factor 

analysis to reduce the 31 behavioral measures to 8 factors (Figure 3.2). The first factor, referred 

to as “Processing Reaction Time”, had DSST median and standard deviation reaction time 

measures for both match and non-match trials loading highly positively. The second factor was 

referred to as “Task General” because it contained a mixture of measures across multiple tasks, 

with positive loadings from the Spatial WM task percent accuracy (match trials), the Stroop task 

percent accuracy, and “Anxious” on the VAS, and negative loadings on the Stroop task median 

reaction time and the DSST percent accuracy (both match and non-match trials). The third factor, 

referred to as “Working Memory Reaction Time,” had the Spatial WM task median and standard 

deviation reaction time measures, for both match and non-match trials, loading highly positively. 

The fourth factor, referred to as ”Working Memory Precision Reaction Time,” had two Color 

WM task measures loading highly positively: median and standard deviation of reaction time. 
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The fifth factor, referred to as “Affect,” had the VAS measures “Sad” and “Happy” loading 

highly positively and negatively, respectively. The sixth factor, referred to as “Processing 

Accuracy,” had only the DSST percent accuracy on match trials loading highly positively. The 

seventh factor, referred to as “Arousal,” had high positive loadings for both the “Drowsy” and 

“Jittery” VAS measures. Finally, the eighth factor, referred to as “Impulsivity,” included high 

positive loadings of all three BIS measures. 

  

The first (“Processing Reaction Time”), third (“Working Memory Reaction Time”), and 

fourth (“Working Memory Precision Reaction Time”) factors all contain measures of both the 

median and standard deviation of reaction time across the DSST, Spatial WM, and Color WM 

tasks, respectively, and therefore reflect aspects of within-task stability (median reaction time) 

and within-task variability (standard deviation of reaction time). In contrast, the second (“Task 

General”) and sixth (“Processing Accuracy”) factors only contain task measures of accuracy 

and/or median reaction time, and thus only reflect aspects of within-task stability. Lastly, the 

fifth (“Affect”), seventh (“Arousal”), and eighth (“Impulsivity”) factors all contain measures that 

reflect the personality and mood of the participant.  

 

Canonical Correlation Analysis: Static Functional Connectivity 

 

CCA was used to find a mode of population covariation between behavior and static FC. 

The CCA included the behavioral data in 8-factor space, as well the static rsFC data in 13-

principal component space, based on the validation we performed (see the "Validation of CCA 

Analysis" section of the Methods for details). The CCA revealed a single mode of covariation 

between these two datasets (Figure 3.6). To assess the statistical significance of the discovered 

modes of covariation, we followed the permutation and cross-validation procedure as outlined in 

Smith and colleagues (2015; see “Canonical Correlation Analysis (CCA)” section in Methods, 

and Figure 3.6A, B).  

 

We used post-hoc correlations between the discovered mode and the behavioral factors to 

evaluate the contribution of each factor to the mode, with respect to the static FC data. This 

mode was defined by highly positive weights for the “Affect” (r = 0.69), “Task General” (r = 

0.54), and “Working Memory Precision Reaction Time” (r = 0.30) factors, and a highly negative 

weight for the “Impulsivity” (r = -0.30) factor. All other factors had correlation values below an 

absolute value of 0.11. These results indicate that static connectivity might encode more general 

behavioral and personality features rather than information that may relate more to task, or trial-

specific, behavior.  

 

 



 

 44 

 
Figure 3.6 Canonical Correlation Analysis – Static Functional Connectivity. (A) CCA can discover as many modes 

of covariation as the lowest rank of each dataset (i.e., 8 behavioral factors). Statistical significance was found only 

for the first discovered mode. (B) Additional cross-validation of the discovered mode revealed that the first mode 

was statistically robust across the majority of the 1,000 folds. (C) Post-hoc correlations for the discovered mode and 

the 8 behavioral factors revealed that measures of “Affect” and “Impulsivity”, as well as a “Task General” factor, 

dictated the structure of the mode. RT: Reaction Time. 

 

Canonical Correlation Analysis: Time-Varying Functional Connectivity 

 

We next assessed whether any relationships existed between time-varying FC and 

behavior. To quantify the time-varying FC profile in each participant we fit the resting-state 

BOLD data with a HMM. This model works by finding relevant states and their associated 

spatial (activity, connectivity) and temporal (fractional occupancy, switching rate) characteristics 

(see the “Hidden Markov Model” section in the Methods). After fitting the HMM, we identified 

12 states that were representative of brain dynamics across all participants (Figure 3.7). Previous 

work has shown that the transition probabilities between HMM states derived from resting-state 

data is structured (Vidaurre et al., 2017). Specifically, there are certain sets of states, or 

“metastates”, that are more temporally coherent than others. In other words, if a participant visits 

a state within one metastate they are more likely to stay within that metastate compared to 

transitioning to another metastate. Hierarchically clustering the transition probability matrix 

resulted in three main clusters. One included two states, another included nine states, and the 

third included a single state. These results are similar to those found previously with the Human 

Connectome Project dataset (Vidaurre et al., 2017), indicating that even with our comparatively 

small sample size, we could reliably estimate brain dynamics. For completeness, we included all 

twelve states in our analysis; however, our results remained unchanged when we excluded the 

state that failed to cluster with the other states. 
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Figure 3.7 Metastates Resulting from the Temporal Clustering of Brain Dynamics. Probability, across all 

participants, of transitioning from one state to another. Clustering of the 12-state transition probability 

matrix revealed a temporal hierarchy wherein groups of states preferentially transitioned within groupings compared 

to across groupings. Two groupings contained multiple states (i.e. “metastates”), while one state was clustered only 

with itself.    

 

Next, we used the fractional occupancy (i.e., time spent in each state) of each state and 

metastate, as well as the mean switching rate between states and metastates (n = 17 in total), as 

input into a CCA to determine the relationship between time-varying FC characteristics and the 

behavioral factors (n = 8, see Methods for description of selection and validation process). We 

found two significant CCA modes using the same permutation testing and cross-validation 

procedure as employed for static FC (Figure 3.8A).  

 

The first mode was defined by positive weights for “Task General” (r = 0.58), “Affect” (r 

= 0.51), “Arousal” (r = 0.45), and “Processing Reaction Time” (r = 0.26) factors, showing a 

similar pattern to the mode obtained from static FC (Figure 3.8B). Specifically, “Task General” 

and “Affect” loaded highest, while “Impulsivity” (r = -0.10) loaded most negatively (although its 

loading was greatly reduced compared to the previously discovered static mode). All other 

loadings fell below an absolute value of 0.09.   

 

The second mode exhibited different behavioral weights when compared to the first time-

varying mode. Here, “Task General” (r = 0.28), “Affect” (r = 0.07), and “Arousal” (r = -0.14) 

factors had substantially lower weights. Instead, “Processing Reaction Time” (r = 0.45) and 

“Working Memory Precision Reaction Time” (r = 0.37) factors loaded most highly on the 

positive end, while the “Processing Accuracy” (r = -0.71) factor loaded most negatively (Figure 

3.8C). All remaining factors had weights below an absolute value of 0.15.  
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Similar to a previous analysis on the differentiable contributions of static and time-

varying FC (Liegeois et al., 2019), we found that time-varying FC, while showing some similar 

relationships to behavior as static FC, could also distinguish relationships with more task-based 

measures of behavior. However, by using more specific measures of working memory (i.e. 

match-to-sample vs. free recall, accuracy vs. reaction time), task processing, and cognitive 

control, we were additionally able to determine that the second time-varying CCA mode 

distinguished unique behaviors associated with task performance. Specifically, the mode was 

defined by a separation (i.e., a positive-negative split in post-hoc correlations) between reaction 

time and accuracy, thus revealing within-task effects that previously had not been interrogated.  

 
Figure 3.8 Canonical Correlation Analysis - Time-Varying Functional Connectivity. (A) CCA performed on 

measures of time-varying FC revealed two significant modes of covariation. Results of the cross-validation 

procedure and post-hoc correlations between (B) mode 1 and (C) mode 2 revealed that both modes were highly 

robust (assessed across 1,000 folds) and were sensitive to different sets of behavioral features. Whereas mode 1 

largely matched the mode discovered with static measures of FC, mode 2 was instead sensitive to task- and trial-

specific measures of behavior. RT: Reaction Time.  

 

To further characterize each state obtained from the HMM, we overlapped their spatial 

profiles with those of canonical rsFC networks (Smith et al., 2009). Qualitatively, we found that 

the two-state metastate overlapped with two distinct task-positive networks (i.e., fronto-parietal 

and somatomotor networks; Figure 3.9). The nine-state metastate overlapped with a larger 

variety of networks, including the default mode, executive, and visual networks (Figure 3.9). 

Unthresholded spatial maps of each of the 12 states are shown in Figure 3.10.  

 



 

 47 

 
Figure 3.9 HMM State Activation Map Overlap with Resting-State Networks. Voxel overlap proportion for each 

HMM-derived state to the ten resting-state ICA maps from Smith and colleagues (2009). Ordering of states matches 

that of Figure 3.7. Specifically, states 1 and 2 clustered together in one metastate, states 3-11 in another metastate, 

and state 12 clustered alone. 
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Figure 3.10 Spatial profile of HMM States. Shown are the mean activation profiles (positive and negative) for each 

of the 12 HMM states. States 1 and 2 formed one metastate, states 3-11 formed another metastate, and state 12 

clustered by itself.  
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3.5 Discussion 

 

Using CCA, we investigated the relationship between complex measures of human 

behavior and both static and time-varying rsFC. We found a single CCA mode between the 

behavioral measures and static FC. In contrast, we found two CCA modes relating behavior and 

time-varying FC. Of these two modes, the first one resembled its static counterpart, while the 

other appeared to be distinct in that it was more sensitive to measures of task-specific behavioral 

variability. We thus argue that time-varying FC describes nuanced brain-behavior relationships 

distinctly from that which is captured by static FC. 

 

Measures of static FC typically consider average FC over a prolonged period of time 

(e.g., several minutes of an fMRI scan) and have been used extensively to study the functional 

organization of the brain during rest and task performance (Cohen & D’Esposito, 2016; Cole, 

Bassett, Power, Braver, & Petersen, 2014). We used nodal bidirectional FC edge strength 

quantified across the entire scan in a CCA to relate the brain’s intrinsic static functional 

organization to behavior. The CCA revealed a significant relationship between these measures 

and our behavioral factors. Measures of affect and impulsivity determined the main positive and 

negative directions of this mode, respectively. To a lesser extent, the positive direction of this 

mode was also characterized by a “Task General” factor. This factor represents accuracy 

measures derived from tasks sensitive to working memory (Spatial WM), cognitive control 

(Stroop), and processing speed (DSST). This factor also contains a high loading for the median 

reaction time measure from the Stroop task. The “Task General” factor is thus most similar to 

previous analyses that have used data from the Human Connectome Project where behavioral 

measures include median reaction times either in isolation or multiplexed with task-specific 

performance values. These results indicate that static FC likely tracks participant-level 

personality measures present during the scanning session (e.g., affective state). Unsurprisingly, 

static connectivity is also sensitive to measures of task performance that likely characterize 

stable behavioral features of the individual (i.e., general, multi-task performance, including 

working memory). As such, these results largely confirm the findings of previous studies on 

static rsFC’s predictive power in regard to certain measures of human behavior. 

 

However, it has been shown that FC, including measures from resting-state protocols, is 

likely a dynamic process whereby fluctuations in regional connectivity occur rapidly (Lurie et 

al., 2019). Given the rate at which they occur, these fluctuations might better encode behavioral 

information reflecting ongoing cognitive demands, as compared to a general characteristic which 

would remain stable over the span of minutes, hours, or days. Previously, Casorso and colleagues 

(2019) assessed a similar, albeit broader, hypothesis by extracting time-varying rsFC 

components and submitting these to a CCA along with behavioral measures collected in the 

Human Connectome Project. Two modes of covariation were found between their time-varying 

components and behavior; however, no analysis of static FC was made against which to 

compare. One mode was largely defined by positive post-hoc correlation values for vocabulary 

comprehension and working memory, and negative values for prosocial behaviors. The second 

mode was defined by positive post-hoc correlation values for visuospatial orienting and 

emotional processing, and negative values for inter- and intrapersonal processing and wellbeing. 

Although a critical step forward in the analysis and validation of time-varying FC’s relevance to 

human behavior, this study did not address the nature of how time-varying FC relates to behavior 
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in a unique manner compared to static FC measures. Specifically, the Human Connectome 

Project behavioral measures used preclude the ability to measure processes that likely vary from 

trial to trial, as task-specific measures of reaction time only reflect the median, and not trialwise 

variability. In our experiment, we recorded behavioral measures that separately tracked processes 

related to stable (e.g., accuracy) vs. time-varying (e.g., reaction time) aspects of behavior to 

better assess our hypothesis. Although reaction time variability and accuracy measures never 

loaded highly together on any factor, it should be noted that our two measures of reaction time 

(i.e., median and standard deviation) loaded together on the three factors representing working 

memory and processing speed reaction times. Even so, the high loading of reaction time 

variability measures in these factors represents a novel behavioral measure compared to previous 

reports using publicly available datasets. 

 

Using measures of time-varying FC calculated from fitting a HMM to our rsFC data, we 

investigated whether CCA would reveal modes of population covariation sensitive to measures 

of behavioral variability. Our analysis resulted in two significant modes. One mode largely 

resembled the mode discovered with static measures of FC. The primary difference between 

these modes is that this time-varying FC mode carried a highly positive weight for measures of 

drowsiness and fatigue, potentially reflecting a sensitivity of time-varying FC to neural and 

physiological correlates of arousal (Patanaik et al., 2018).   

 

Whereas one of the time-varying modes reflected a largely similar, but not identical, 

behavioral profile as the static FC mode, the other time-varying mode reflected a more unique 

behavioral profile. High positive weights were associated with response time measures for tasks 

that assessed working memory and processing speed, while a strong negative weight was found 

for the measure of accuracy on the processing speed task. Characterized in part by measures of 

trial-by-trial response variability, this mode’s positive end potentially reflects a greater 

sensitivity to behavioral dynamics that occur on a more rapid timescale compared to what static 

FC is likely sensitive. In addition, the separation of measures of response variability and overall 

response accuracy, especially within the same task, reveals that time-varying FC is likely capable 

of disentangling unique behavioral components within the same task. Although our static FC 

mode did show some sensitivity to a measure that captures response variability, the distinction 

between stable and time-varying components of behavior was not present as is seen in our 

second time-varying mode. Overall, it is possible that this time-varying mode captures the 

relationship between brain dynamics and the measures of trial-by-trial behavioral variability 

within complex measures of human behavior.  

 

The manner by which time-varying fluctuations in rsFC relate to independent measures 

of human behavior remains unresolved. It is known that the spatial organization of functional 

connections changes in response to different tasks compared to rest (Cohen & D’Esposito, 2016; 

Cole et al., 2014). Specifically, inter-network connectivity is more predominant during tasks that 

require flexible cognition (i.e., working memory) compared to more rudimentary tasks such as 

finger-tapping. Moreover, a previous report found that measures of global network integration 

and within-network connectivity (i.e., participation coefficient and module degree, respectively), 

when assessed in a time-varying manner, varied throughout the performance of tasks and tracked 

the cognitive complexity of the task demands (Shine et al., 2016). Thus, one hypothesis as to 

how resting dynamics relate to behavior is that the dynamic interactions within and between 
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these networks observed during tasks can be recapitulated during periods of wakeful rest. 

However, it should be noted that the dynamic interactions that occur during task performance are 

likely more constrained than during rest due to the confined cognitive context required by task 

performance. Resting-state dynamics can serve as a “baseline” repertoire that can potentially 

index the extent to which FC reconfigures during task and, in turn, track behavioral performance 

(Liegeois et al., 2019). It will be crucial for future studies on the behavioral relevance of time-

varying FC to assess this possibility.   

 

It is also important to emphasize the spatio-temporal signature of these time-varying 

network interactions and what it means for behavioral performance. Methods such as the HMM 

investigate brain dynamics with high temporal resolution, thus extending previous methods 

showing reconfiguration of connectivity between different task blocks (Cohen, 2018). For 

example, Vidaurre and colleagues used a HMM to show how a motor task drives reconfiguration 

of large-scale networks on a timepoint-by-timepoint basis showing that task execution happens at 

faster timescales that had been previously undetected when interrogated using sliding window 

methods (Vidaurre et al., 2018). Regarding the spatial profile of the current HMM states, a visual 

and quantitative assessment of their overlap with canonical rsFC networks (Smith et al., 2009) 

suggested that our metastates had distinct spatial profiles. We identified a nine-state metastate 

spanning multiple networks including fronto-parietal, executive, default-mode, and visual 

networks. Integration of the “task-positive” and “task-negative” networks has been observed 

during motor tapping and autobiographical planning, suggesting a more mutually compatible role 

than previously believed (Fox et al., 2005), one that can facilitate goal-directed cognition (Braga, 

Sharp, Leeson, Wise, & Leech, 2013; Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010; 

Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015). On the other hand, the two-

state metastate we identified, characterized by a more constrained spatial profile of fronto-

parietal and somatomotor networks, potentially reflects networks specific to task execution. The 

differences in spatial topography of the two-state versus nine-state metastates may provide 

insight regarding the different behavioral relationships we found with static versus time-varying 

FC. The flexible interaction of activity across each metastate’s respective individual states might 

allow for the encoding of information to which static measures are insensitive. Although static 

measures are capable of reflecting multi-network interactions, they are incapable of tapping into 

the specific temporal patterns through which these network interactions occur. Further 

investigation of the spatial patterns of these states is needed.  

 

In conclusion, the current study demonstrates that static and time-varying FC are 

differentially associated with behavior. We argue that via integration across multiple networks at 

different temporal scales, time-varying FC is associated with both trial-by-trial and stable 

behavioral measures, while static FC is associated with participant-level personality measures 

and measures of stable task-general performance. These results demonstrate that it is important 

for future studies to look at both the static and temporal aspects of FC to more fully delineate the 

behavioral contributions of each. 
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CHAPTER 4 

 

The role of physiological and neural measures in tracking baseball-related cognitive 

abilities 

 

 

 

4.1 Abstract 

 

The practice of scouting for and training baseball talent is undergoing a revolution as 

newly developed analytics and measurement tools are beginning to eclipse traditional practices. 

Quantifiable measures derived from sport-agnostic modalities, such as those derived from human 

biology, hold the potential to index aspects of human behavior and future potential that can be 

leveraged by sports psychologists and data scientists to better identify and hone sport-specific 

talent. The current report collected baseline measurements of neurophysiological functioning in 

order to assess their unique and shared ability to predict cognitive abilities crucial for successful 

baseball performance. Cardiac and respiratory timeseries data was collected from human subjects 

(male and female) undergoing 20 minutes of resting-state functional magnetic resonance 

imaging. Subsequently, subjects performed four computerized tasks measuring multiple forms of 

reaction time and inhibitory control. All baseball-related cognitive skills were tracked by at least 

one physiological or neural measure. Skills related to basic reaction time and accuracy, as well 

the intersection of inhibition accuracy and reaction time, were tracked by neural measures. 

Physiological measures were able to track basic reaction time and intersection of inhibition 

accuracy and reaction time, but not basic accuracy. In addition, physiological measures were able 

to separately track inhibition accuracy and reaction time. These results provide evidence that the 

collection of multiple forms of human biological functioning can aid in the scouting and training 

of baseball talent.  

 

 

 

4.2 Introduction 

 

Assessing current talent and scouting for future potential is common across sports, 

especially baseball. The practice has traditionally relied on deriving game-specific metrics and 

observing hard-to-define intangible qualities. However, recent approaches are leveraging more 

general and objective measures to assess both ability and potential. Some of these measures are 

evolutions of traditional count-based in-game statistics (e.g., On-base Plus Slugging percentage), 

while some represent player-specific ability (e.g., pitched-ball rotation, batted-ball exit velocity, 

etc.). There is also a focus on player-specific measures obtained outside the context of the game 

itself. These include biophysiological and psychological measures such as heart rate (HR, Duran, 

Tapiero, & Michael, 2018; Kennedy & Scholey, 2000) and heart rate variability (HRV, Hansen, 

Johnsen, & Thayer, 2003; Thayer, Hansen, Saus-Rose, & Johnsen, 2009), cognitive skill (e.g., 

reaction time (RT, Burris et al., 2018), and most recently, patterns of neural activity measured 

with electroencephalography or functional magnetic resonance imaging (fMRI, Muraskin et al., 

2016; Sherwin, Muraskin, & Sajda, 2012; Sie et al., 2019).  
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It is highly unlikely that any one measure can predict overall performance in baseball. 

Therefore, it is advantageous to obtain a comprehensive repertoire of measures from each player 

in order to better understand which measures track which skills. Previous reports have found that 

measures of human physiology, such as signatures of cardiac and respiratory functioning, track 

aspects of human behavior. Variability in baseline measures of HR has been shown to track the 

processing of informative emotional cues (Duran et al., 2018), to predict error-based RT in a 

working memory updating task (Hansen et al., 2003), and lower HR was associated with 

enhanced performance on a demanding mental arithmetic task (Kennedy & Scholey, 2000). In 

addition, measures of HRV, known to be a robust indicator of autonomic nervous system 

functioning (Thayer et al., 2009), have been shown to track numerous aspects of cognitive 

control and attention (Hovland et al., 2012; Park & Thayer, 2014; Park, Vasey, Van Bavel, & 

Thayer, 2013). There have also been reports of these measures being used to assess baseball-

specific behaviors, specifically for HRV (Cornell et al., 2017) and HRV biofeedback training 

(Strack, 2003). Last, the rate of respiration has been found to increase under cognitive load 

(Grassmann, Vlemincx, von Leupoldt, Mittelstädt, & Van den Bergh, 2016) and stabilize during 

periods of sustained attention (Vlemincx, Taelman, De Peuter, Van Diest, & Van Den Bergh, 

2011). Therefore, measures of physiological functioning are likely to index numerous aspects of 

behavior and cognition. 

 

The resting human brain shows patterns of activity that are spatially and temporally 

organized when measured using fMRI (Biswal et al., 1995). The organization of these activity 

patterns represents a highly modular community structure, such that activity patterns of brain 

regions within communities are highly correlated compared to the patterns observed from 

regions belonging to different communities (Sporns & Betzel, 2016). While the overall 

functional organization of the human brain is largely preserved across individuals (Zuo et al., 

2017) – with exceptions seen in cases of neurological pathology (Alexander-Bloch et al., 2010) – 

individual differences due to age (Chan et al., 2014), emotion (Cisler et al., 2013), and cognitive 

ability (Stevens et al., 2012) have been observed across multiple scales of this structure. 

Moreover, there exists substantial evidence that this organization is plastic (Chan et al., 2014; 

Sadaghiani et al., 2015) and can index training-related improvement potential following specific 

forms of behavioral training (Gallen & Esposito, 2019). As such, one’s baseline functional brain 

organization provides an ability to measure the broadscale characterization of one’s current, and 

potentially future, behavioral profile. Currently, there are only scant reports on how brain activity 

is related to baseball ability and performance (Muraskin et al., 2016; Sherwin et al., 2012; Sie et 

al., 2019), with no reports focusing on functional brain organization.  

 

Measures such as HRV and cognitive skill can be obtained without hassle on the playing 

field or in the locker room, while other measures such as those derived from fMRI require 

specialized settings and protocols. It is important to assess the shared and unique predictive 

power of these measurements in order to understand the limits and advantages of each 

measurement modality. Therefore, the current study collected measures of functional brain 

organization alongside measures of resting cardiac and respiratory functioning. These measures 

were used to predict cognitive skills assessed across a range of computerized tasks designed to 

tap skills necessary for successful baseball performance. These skills included both simple and 

multi-choice RT, as well as multiple measures of inhibitory control. Additionally, subjects 

provided feedback on the manner in which they performed these tasks, allowing us to assess 
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potential differences related to task strategy. Data were collected from the general population as 

we sought to determine how measures of physiology and brain structure tracked baseball-specific 

skills agnostic of expertise or a prolonged history of training in the sport.  

 

Overall, we found that individual differences in all baseball-related cognitive abilities 

were tracked by the recorded measurements, with some being associated only with measures of 

physiology or functional brain organization, while others were tracked by both physiological 

functioning and functional brain organization. In addition, one set of skills showed separate 

relationships to biology based on the subject-specified strategy used during the task. These 

results suggest that the collection of multi-modal datasets proves advantageous in assessing skills 

related to successful baseball performance. 

 

 

 

4.3 Materials and Methods 

 

Human Subject Details 

 

Ninety-two healthy right-handed subjects (range: 18 – 30 years; mean = 20.02; SD = 

2.63; 37 males) with normal or corrected-to-normal vision participated in the study at the 

University of California – Berkeley. All behavioral analyses presented here include data from the 

74 subjects for whom we obtained a complete dataset of acceptable quality (i.e., 1 anatomical 

scan, 2 functional scans, at least 10 minutes of cardiac recordings, at least 10 minutes of 

respiratory recordings, completion of all 4 behavioral tasks, and completion of post-study 

questionnaire; range: 18 – 30 years; mean = 19.76; SD = 2.57; 30 males; see below for 

definitions of modality-specific quality control thresholds). Two subjects were removed due to 

excessive motion during both resting state scans. Two subjects failed to complete both resting-

state scans. Fourteen subjects did not have physiological data recorded during either resting-state 

scan due to either hardware failure of the recording devices or corruption of data when 

transferring data from the recording computer to storage. All research protocols were approved 

by the Committee for Protection of Human Subjects at the University of California, Berkeley. 

Informed and written consent was obtained from all subjects prior to participation. Behavioral 

data was collected in collaboration with NeuroScouting (Somerville, MA). I, along with all 

committee members, declare no financial conflicts of interest. NeuroScouting does not retain the 

rights to the data presented herein.  

 

Experimental Design and Statistical Analyses 

 

Instructions and Protocol 

 

First, we obtained experimental consent, and confirmed both study and MRI scanner 

eligibility, prior to the start of data collection. Subjects were then escorted to the MRI scanner 

suite where the scanning protocol was explained to them. Prior to placing the subject inside the 

scanner, the cardiac and respiration recording devices were attached to the subject (see 

“Physiological Data Acquisition” for details). Next, subjects were placed inside the scanner and 

the lights were turned off in the scanner suite. We then collected the anatomical scan, followed 
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by two back-to-back 10-minute functional resting-state scans. Upon completion of the final 

resting-state scan, subjects were removed from the scanner and escorted to a separate room 

where they were placed in a testing booth with a laptop. The subjects then completed four 

computerized tasks (see below for details, Figure 1). Last, the subjects completed a questionnaire 

that probed their experience with the 4 computerized tasks they had just performed. Subjects 

received compensation at a rate of $20 per hour. 

 

Task 1: Simple RT 

 

In the Simple RT task, subjects had to hit the spacebar as fast as possible following the 

appearance of a baseball image on screen. Feedback was provided in the form of points that 

started at 0 and accrued throughout the task. The number of earned points appeared on screen 

immediately after a response was made. More points were awarded for faster, correct responses. 

A leaderboard showing their within-task point total compared to all other subjects was displayed 

in the bottom left of the screen and updated after every trial. Subjects completed 50 trials in total. 

 

Task 2: rRT 

 

In the rRT task, subjects had to hit the spacebar as fast as possible following the 

appearance of a baseball image with vertically-oriented laces (“Go” trials). Subjects were 

instructed to inhibit their response if the baseball image was rotated 45˚ to either the right or the 

left (“No-Go” trials). Feedback was provided in the form of points that started at 0 and accrued 

throughout the task. Points were calculated based on both speed and accuracy, with faster, 

correct responses earning the most points. The number of earned points appeared on screen 

immediately after a response was made. A leaderboard showing their within-task point total 

compared to all other subjects was displayed in the bottom left of the screen and updated after 

every trial. Subjects completed 80 trials in total: 38 Go trials, 42 No-Go trials. 

 

Task 3: Rapid Adjust 

 

In the Rapid Adjust task, subjects took on the role of a batter and viewed a ball travel 

“towards” them on screen as though it was being thrown at them by a pitcher standing atop a 

pitcher’s mound. Trials began with the appearance of a white ball above the pitcher’s mound. 

Immediately upon its appearance, the ball would then rapidly move “towards” the batter, 

visualized as a ball moving downwards along a curved trajectory, thus visually replicating an 

incoming pitch. On half the trials, the ball remained white. During these trials, the subject had to 

time their response (hitting the spacebar) such that the ball was located within the confines of a 

3-dimensional box at the bottom of the screen (i.e., the “strike zone”) at the moment the spacebar 

was hit. On the other half of trials, the ball would unexpectedly turn red after a varied amount of 

time prior to entering the strike zone. Subjects were instructed to inhibit their response if the ball 

turned red at any point. Feedback was provided in the form of points that started at 0 and accrued 

throughout the task. Points were awarded at a fixed rate for correct rejections of red-ball trials, 

while they were based on timing and accuracy (i.e. responding when the ball is in the center, 

compared to the periphery, of the strike zone earns more points) for white-ball trials. The number 

of earned points appeared on screen immediately after a response was made. A leaderboard 

showing their within-task point total compared to all other subjects was displayed in the bottom 
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left of the screen and updated after every trial. Subjects completed 156 trials in total: 78 white-

ball trials, 78 red-ball trials. 

 

Task 4: Paced RT 

 

In the Paced RT task, subjects had to press the correct button, of four possible options, as 

fast and as accurately as possible after the appearance of a baseball image on screen. Each trial 

began with four empty circles presented side-by-side in a line across the center of the screen. 

After a variable amount of time, an image of a rapidly-rotating-in-place baseball appeared in the 

center of one of the four empty circles. From left to right, the circles were mapped to the D, F, J, 

and K buttons, and subjects had to place their left middle and index fingers on D and F, 

respectively, and their right index and middle fingers on J and K, respectively. For example, if 

the baseball appeared in the circle that was 2nd from the left, they had to press the F button with 

the left index finger. Feedback was provided in the form of points that started at 0 and accrued 

throughout the task. Points were awarded based on speed and accuracy, with faster, correct 

responses earning the most points. Unbeknownst to the subjects, a single 12-button sequence of 

responses repeated itself twenty times. Thus, subjects completed 240 trials in total. 

 

Post-study Questionnaire: 

 

The questionnaire was completed with pencil and paper and contained six questions. The 

first question was, “On a scale of 1-5, how fatigued/tired were you as you ran through today's 

modules? (1 - Very Tired; 3 - Normal; 5 - Very Alert).” The second question was, “How do you 

feel like you did in rRT? Did you feel like you were weighting speed over accuracy or were you 

able to balance those throughout the session?” The subject responses were scored by the 

experimenter as fitting into one of the following three groups: “Accuracy,” “Speed,” “Balanced.” 

The third question was, “What was the hardest part of Rapid Adjust? Did you feel like you were 

having more trouble hitting on white pitches or holding off on red pitches?” The subject 

responses were scored by the experimenter as fitting into one of the following three groups: 

“White,” “Red,” or “Both.” The fourth question was, “Did you feel like you got better over the 

course of the Paced RT session?” The subject responses were scored by the experimenter as 

fitting into one of the following two groups: “Yes,” “No.” The fifth question was, “There are two 

versions of Paced RT that are administered equally across participants. For half the 

participants, the sequence is determined in a RANDOM manner. For the other half, there was a 

sequence that is administered on REPEAT. Do you think you were in the Random or Repeat 

group?” The subject responses were scored by the experimenter as fitting into one of the 

following two groups: “Random,” or “Repeat.” The sixth question was, “On a scale of 1-5, how 

confident are you that you were in that group (1 - Not confident at all; 3 - Somewhat confident; 5 

- Very confident)?”  

 

Statistical Analyses of Behavioral Data 

 

Analysis of behavioral data included the use of factor analysis to reduce the 

dimensionality of the behavioral data. In addition, analyses of covariance (ANCOVA) were used 

to investigate the effect of questionnaire responses on behavioral factor scores. Independent-
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samples t-tests were used to perform follow-up means comparisons between questionnaire-

defined subgroups.  

 

Statistical Analyses of Physiological and fMRI Data 

 

Behavioral associations between measures of physiology and measures derived from 

fMRI recordings were performed using multiple linear regression, as well as parametric bivariate 

regression for questionnaire-defined subgroup-specific behavioral associations.   

 

Factor Analysis of the Behavioral Data 

 

All 18 behavioral measures were included in the analyses and subjected to a factor 

analysis. Two measures came from the Simple RT task: (1) mean RT and (2) the standard 

deviation of RT. Five measures came from the rRT task: (1) the mean RT to correct “Go” trials, 

(2) the standard deviation of RT to correct “Go” trials, (3) the coefficient of variation for RT to 

correct “Go” trials (i.e., 1 – [Std. Dev / Mean]), (4) dprime, and (5) the stop rate (i.e., percentage 

of “No-Go” trials where the subject correctly inhibited their response). Three measures came 

from the Rapid Adjust task: (1) dprime, (2) the stop rate (i.e., percentage of red-pitch trials where 

the subject correctly inhibited their response), and (3) the point of subjective equality (i.e., 

“PSE”: the duration of time the ball can stay white before turning red where the subject has a 

50% chance of correctly inhibiting their response). Eight measures came from the Paced RT 

task: (1-4) the mean accuracy across trials 1-60, 61-120, 121-180, and 181-240, and (5-8) the 

mean RT across trials 1-60, 61-120, 121-180, and 181-240. 

 

We clustered the behavioral data into 5 factors using MATLAB’s factoran function and 

allowed for promax oblique rotation (Figure 2). We chose 5 factors as the Eigenvalues decreased 

dramatically after the 5th factor across multiple model attempts, as well as Eigenvalues being less 

than or approximately equal to 1 (representing a factor that only explains as much variance as a 

single behavioral measure) after the 5th factor. We labeled these factors qualitatively by 

observing which behavioral measures loaded highest on each factor. 

 

fMRI Data Acquisition 

 

Whole-brain imaging was performed at the Henry H. Wheeler Jr. Brain Imaging Center 

at UC Berkeley using a Seimens 3T Trio MRI scanner using a 32-channel head coil. Functional 

imaging data was acquired across two identical 10-minute runs with a gradient-echo echo-planar 

pulse sequence using a multi-band acceleration factor of 2 (TR = 1,500ms, TE = 24.8ms, flip 

angle = 55˚, array = 70 x 70, 50 slices, voxel size = 3.0mm isotropic). T1-weighted 

MEMPRAGE anatomical images were collected as well (TR = 2,530ms, TE = 1.64ms, flip angle 

= 7˚, array = 256 x 256, 176 slices, voxel size = 1mm isotropic). Subject’s head movement was 

restricted using foam padding. An LCD projector back-projected a blank gray-colored screen for 

the resting-state scans onto a screen mounted to the RF coil. 

 

fMRI Data Preprocessing 
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Results included in this manuscript come from preprocessing performed using fMRIPrep 

1.4.1 (Esteban et al., 2018), which is based on Nipype 1.2.0 (Gorgolewski et al., 2011). 

 

Anatomical data preprocessing 

 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants et al., 2008), 

and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped 

with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast 

(FSL 5.0.9, Zhang, Brady, & Smith, 2001). Volume-based spatial normalization to one standard 

space (MNI152NLin2009cAsym) was performed through nonlinear registration with 

antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the 

T1w template. The following template was selected for spatial normalization: ICBM 152 

Nonlinear Asymmetrical template version 2009c [Fonov, Evans, McKinstry, Almli, & Collins, 

2009, TemplateFlow ID: MNI152NLin2009cAsym]. 

 

Functional data preprocessing 

 

For each of the 2 BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. The BOLD reference was then co-

registered to the T1w reference using flirt (FSL 5.0.9, Jenkinson & Smith, 2001) with the 

boundary-based registration (Greve & Fischl, 2009b) cost-function. Co-registration was 

configured with nine degrees of freedom to account for distortions remaining in the BOLD 

reference. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson, Bannister, Brady, & Smith, 2002). 

BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox & Hyde, 1997). 

The BOLD time-series (including slice-timing correction when applied) were resampled onto 

their original, native space by applying a single, composite transform to correct for head-motion 

and susceptibility distortions. These resampled BOLD time-series will be referred to as 

preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were 

resampled into standard space, generating a preprocessed BOLD run in 

[‘MNI152NLin2009cAsym’] space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Several confounding time-series were 

calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three 

region-wise global signals. FD and DVARS are calculated for each functional run, both using 

their implementations in Nipype (following the definitions by Power et al., 2014). The three 

global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a 

set of physiological regressors were extracted to allow for component-based noise correction 

(CompCor, Behzadi, Restom, Liau, & Liu, 2007). Principal components are estimated after high-

pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-

off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 

tCompCor components are then calculated from the top 5% variable voxels within a mask 
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covering the subcortical regions. This subcortical mask is obtained by heavily eroding the brain 

mask, which ensures it does not include cortical GM regions. For aCompCor, components are 

calculated within the intersection of the aforementioned mask and the union of CSF and WM 

masks calculated in T1w space, after their projection to the native space of each functional run 

(using the inverse BOLD-to-T1w transformation). Components are also calculated separately 

within the WM and CSF masks. For each CompCor decomposition, the k components with the 

largest singular values are retained, such that the retained components’ time series are sufficient 

to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 

The remaining components are dropped from consideration. The head-motion estimates 

calculated in the correction step were also placed within the corresponding confounds file. The 

confound time series derived from head motion estimates and global signals were expanded with 

the inclusion of temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). 

Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as 

motion outliers. All resamplings can be performed with a single interpolation step by composing 

all the pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion 

correction when available, and co-registrations to anatomical and output spaces). Gridded 

(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 

Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Non-

gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

 

Further post-processing included removal of artifactual signals from the time series data. 

Following recent nuisance regression comparisons (Ciric et al., 2017; Parkes et al., 2018), we 

regressed out the 6 head-motion estimates, their temporal derivatives and quadratic expansions, 

the quadratic expansions of the temporal derivatives, and the first 6 aCompCor components. We 

chose to avoid global signal regression due to the effect of introducing artefactual negative 

correlations into the data. Last, we applied a bandpass filter from 0.009Hz to 0.1Hz to the data. 

Subjects were discarded from analysis if more than half of their volumes, across both resting-

state scans, were associated with a framewise displacement (FD, Power, Barnes, Snyder, 

Schlaggar, & Petersen, 2012) value greater than 0.20mm. 

 

Functional Connectivity and Graph Measures 

 

In order to obtain measures of functional connectivity, we first measured the mean BOLD 

signal across all voxels contained within each node of the 400-node Local-Global cortical brain 

atlas (Schaeffer et al., 2018). We then computed the pairwise functional connectivity between all 

nodes using the Pearson correlation coefficient. Correlation matrices were computed on each 10-

minute resting-state scan individually and then averaged together to produce a single mean 

correlation matrix per subject. Negative edges were then removed by being set to a value of 0. 

Modularity was then measured with the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) 

using the community_louvain function, using the Yeo 7-network (Yeo et al., 2011) allegiance 

values as the initial community affiliation vector, and setting gamma to 1. In addition, we 

computed the mean functional connectivity within each of the 7 Yeo networks by taking the 

average value of all positive edges within each network. 

 

Physiological Data Acquisition 
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We collected physiological data during scanning by using the BIOPAC physiological 

monitoring system (http://www.biopac.com). Cardiac functioning was measured using a 

photoplethysmograph that was secured to the subject’s right index finger, or in the case signal 

quality was too low, their right middle finger. Subjects were instructed to leave their right hand 

in a single position following fitting so as to avoid contamination of the signal with movement-

related artefacts.  

 

We measured the subjects’ respiration with a pneumatic pressure sensor placed below the 

sternum, along the right side of their ribcage. The sensor was held in place with tape as well as 

being compressed against the body with an elastic band. Signals were checked for consistency 

following initial setup, and again prior to the start of scanning. Both respiration and cardiac 

signals were recorded alongside analog TTL signals generated by the MRI scanner. 

Physiological data was recorded consistently throughout the scanning procedure at a sampling 

rate of 125Hz.  

 

Physiological Data Preprocessing 

 

Physiological data was isolated for the two 10-minute resting-state scanning periods and 

processing individually. Data was indexed as occurring between the first sample following the 

first TTL pulse and the last sample recorded prior to the final TTL pulse. All data collected prior 

to the first TTL pulse and after the last TTL pulse was not used for analysis. Data was then 

standardized between values of 0 and 1. Next, a Butterworth bandpass filter was applied to each 

10-minute window using the SciPy (https://www.scipy.org/) functions signal.butter and 

signal.lfilter. For the respiratory data, the bandpass filter ranged from 0.25Hz to 0.50Hz. These 

numbers were derived by inspecting the power spectra of the recorded data and identifying the 

range which included the maximum power across subjects. For the cardiac data, the bandpass 

filter ranged from 1Hz to 6Hz. These numbers were also derived based on inspection of the 

power spectra across subjects, as well as including a high enough low-pass filter so as to 

preserve the secondary peak seen in a typical cardiac pulse.  

  

A peak detection algorithm (Eli Billauer, http://billauer.co.il/peakdet.html) was then used 

to identify the timepoints of local maxima in the data. For respiration, this was associated with 

the point of deepest inhalation for the current breath. For the cardiac signal, this peak represented 

the systolic peak amplitude of the beat. Visual inspection of all detected peaks was performed by 

the experimenter to identify potential outliers or improperly labeled peaks in the data. The 

indices of these peaks were recorded so as to compute the instantaneous per-minute rate and 

standard deviation of the instantaneous per-minute rate for both cardiac and respiratory 

signatures, as well as the root mean square of successive differences (RMSSD) measure of HRV 

(Shaffer & Ginsberg, 2017). Instantaneous rate measures were computed by convolving the array 

of peaks (i.e., a 75,000-element vector [600s x 125Hz = 75,000 samples] with a value of 1 at the 

timepoint of the detected peaks and 0’s elsewhere) with a uniform window 1 minute (i.e. 600 

samples) in length. Convolution occurred with maximal overlap and therefore the resultant 

timeseries was 9 minutes in length, comprising 67,500 samples. This new timeseries was then 

down sampled to 1Hz. To compute the mean HR and mean BR for each subject, the two down-

sampled timeseries were temporally concatenated and then averaged over to obtain a single 

value. The same process was followed to obtain the standard deviation of the instantaneous HR 
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and BR of each subject. To obtain the RMSSD measure of HRV, we calculated the successive 

time difference between heartbeats intervals (i.e., the difference in milliseconds between 

successive beat-beat intervals), squared those difference values, computed the average, and then 

computed the square root of that average (Shaffer & Ginsberg, 2017).  

  

One subject had low cardiac signal (i.e. systolic peaks could not be detected separately 

from diastolic peaks or overall noise) during their first resting-state run, and therefore their HR 

measures were computed using only the 10 minutes of data acquired during their second resting-

state scan. Another subject had low cardiac and respiratory signal during their second resting-

state scan (i.e. systolic peaks could not be detected separately from diastolic peaks or overall 

noise, and BR peaks could not be detected at all), and therefore both HR and BR measures were 

computed using only the 10 minutes of signal recorded during their first resting-state scan. For 

both subjects, metrics computed from single-run data fell within normal ranges for mean and 

standard deviation compared to subjects with 20 minutes of data. All other subjects for whom 

physiological data was collected had sufficiently high signal quality during both of their resting-

state scans. 
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Figure 4.1 Computerized behavioral tasks. (A) Simple RT. (B) rRT. All trial types depicted. (C) Rapid Adjust. Both 

Go (white ball) and No-Go (red ball) trials are depicted with successful outcomes. (D) Paced RT. Both correct and 

incorrect response outcomes are shown.   
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4.4 Results 

 

Factor Analysis 

 

We used factor analysis to reduce the 18 behavioral measures to 5 factors (Figure 2). The 

first factor was referred to as “Paced RT Reaction Time” because it had very high positive 

loadings for all four Paced RT mean RT measures. Greater values of this factor indicated slower 

RTs on Paced RT. The second factor was referred to as “Go No-Go Reaction Time Stability” 

because it contained a high positive loading for rRT mean RT, as well as a very high positive and 

a very high negative loading for rRT coefficient of variation of RT and rRT standard deviation of 

RT, respectively. Greater values of this factor indicated more stable, slower RTs on rRT. The 

third factor, referred to as “Paced RT Accuracy,” had high positive loadings for all four Paced 

RT accuracy measures. Greater values of this factor indicated greater accuracy on Paced RT. The 

fourth factor was referred to as “Go No-Go Elite Performance” because it contained very high 

positive loadings for both rRT stop rate and dprime, as well as a negative loading for rRT mean 

RT. High values of this factor indicated that the subject was capable of responding accurately to 

Go trials, inhibiting responses to No-Go trials, and responding quickly to Go trials. The fifth 

factor, referred to as “Inhibition,” had all three Rapid Adjust measures (PSE, stop rate, and 

dprime) loading highly positively, which all measured the subject’s ability to appropriately 

respond to Go trials, and inhibit responses on No-Go trials. Therefore, greater values of this 

factor indicated greater inhibitory control. 
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Figure 4.2 Factor loadings of behavioral measures. Shown are the factor loadings for each of the five derived 

factors across all 18 computed behavioral measures. Factors have been assigned names based on the behavioral 

measures that load most highly, with high loadings being highlighted to aid interpretability.  
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Relationship Between Questionnaire Responses and Behavior 

 

Following completion of the four computerized tasks, subjects completed a questionnaire 

that assessed the manner in which these tasks were performed. For the rRT task, the 

questionnaire probed whether subjects prioritized speed or accuracy, or balanced both, while 

performing the task. For Rapid Adjust, the questionnaire asked if subjects experienced greater 

difficulty in responding to Go trials than inhibiting responses on No-Go trials. For Paced RT, the 

questionnaire asked if subjects felt they improved over the course of the task, whether they 

discovered the existence of the hidden repeating sequence, and their confidence in their 

discovery. We used these responses to assess if the manner that subjects approached the tasks 

affected their performance.  

  

We first performed an ANCOVA using data from the rRT task. The model predicted 

values of Factor 2 (“Go No-Go Reaction Time Stability”) using responses to how subjects 

prioritized their performance (Priority: Accuracy, Speed, Balanced) as a fixed factor, controlling 

for values of reported alertness. The same approach was taken in predicting values of Factor 4 

(“Go No-Go Elite Performance”). There was a main effect of Priority in predicting values of 

Factor 2 (F(2,70) = 3.581, p = 0.033), and a trending main effect in predicting values of Factor 4 

(F(2,70) = 2.691, p = 0.075). Follow-up t-tests revealed that subjects who prioritized accuracy (N 

= 16, mean = 0.161, standard error = 0.243, t(72) = 1.993, p = 0.05), and those who took a 

balanced approach (N = 37, mean = 0.205, standard error = 0.16, t(72) = 2.577,  p = 0.012) had 

greater values of Factor 2, when accounting for alertness, than those who prioritized speed (N = 

21, mean = -0.483, standard error = 0.213). As performing follow-up t-tests would be statistically 

inappropriate for Factor 4 given the non-significant main effect of Priority, we instead performed 

an alternative analysis where we split the data into two groups based on whether or not a 

balanced approach was taken. Subjects who adopted a balanced approach (mean = 0.262, 

standard error = 0.161) had greater values of Factor 4 than subjects who did not (N = 37, mean = 

-0.272, standard error = 0.159, t(72) = 2.421, p = 0.018). 

  

We next analyzed whether performance on Paced RT was affected by whether subjects 

thought they improved during the task (Improvement: No, Yes), whether they detected the 

hidden sequence (Sequence: No, Yes), and how confident they were in their detection of the 

sequence. We performed two ANCOVAs using values of Factor 1 (“Paced RT Reaction Time”) 

and Factor 3 (“Paced RT Accuracy”) as the dependent variables. The categorical responses to the 

two questionnaire items were entered as fixed factors, additionally modeling the interaction 

between the two, as well as accounting for the confidence in their response and their alertness. 

For both Factor 1 and Factor 3, we found no main effect of Improvement (Factor 1: F(1,68) = 

0.595, p = 0.443); Factor 3: F(1,68) = 1.488, p = 0.227), Sequence (Factor 1: F(1,68) = 0.899, p 

= 0.346); Factor 3: F(1,68) = 0.575, p = 0.451), or the interaction of the two (Factor 1: F(1,68) = 

1.898, p = 0.173); Factor 3: F(1,68) = 0.43, p = 0.836). Moreover, confidence was not a 

significant predictor of behavior either (Factor 1: F(1,68) = 0.025, p = 0.874); Factor 3: F(1,68) 

= .146, p = 0.703).  

  

We did not analyze data for Rapid Adjust as there was insufficient variability in the 

questionnaire responses (88% of subjects responded that Go trial were more difficult).  
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Relationship Between Baseline Measures of Functional Connectivity and Physiology to Behavior 

 

To assess how baseline measures of human functional brain organization track behavior, 

we computed global modularity, as well as the mean within-network functional connectivity for 

seven independent functional brain networks derived from the seven-network Yeo and 

colleagues parcellation (Visual, Somatomotor, Dorsal Attention, Ventral Attention / Salience, 

Limbic, Frontoparietal Control, and Default Mode; Yeo et al., 2011). In addition, we calculated 

various measures of baseline physiology, including the mean and standard deviation of HR and 

BR, as well as the RMSSD measure of HRV. We used these measures to predict behavioral 

performance using separate multiple regressions for each factor, while additionally accounting 

for values of reported alertness and mean FD (Tables 1-5). 

 

We found that mean functional connectivity within the Frontoparietal Control network (β 

= -0.303 [-0.556, -0.050], p = 0.02), mean BR (β = 0.323 [0.092, 0.554], p = 0.007), and the 

standard deviation of BR (β = -0.301 [-0.541, -0.061], p = 0.015) predicted values of Factor 1 

(Table 1). No baseline measures of functional brain organization or physiology predicted values 

of Factor 2 (Table 2). Measures of mean functional connectivity within the Motor network (β = 

0.293 [0.064, 0.522], p = 0.013), as well as within the Ventral Attention / Salience network (β = -

0.286 [-0.502, -0.007], p = 0.01) predicted values of Factor 3, while there existed a trend for the 

measure of modularity (β = 0.24 [-0.01, 0.49], p = 0.06; Table 3). There existed only a trending 

effect of mean connectivity within the Frontoparietal Control network (β = 0.239 [-0.045, 0.523], 

p = 0.098) in predicting values of Factor 4 (Table 4). Last, only the standard deviation of BR (β 

= 0.306 [0.052, 0.561], p = 0.019) predicted values of Factor 5 (Table 5).   
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Factor 1: 

“Paced RT Reaction Time” 
β (95% CI) p 

Modularity 0.079   [-0.184, 0.342] 0.551 

Visual Netw. Conn. 0.118   [-0.133, 0.369] 0.351 

Motor Netw. Conn. 0.121   [-0.12, 0.362] 0.319 

DAN Netw. Conn. -0.15   [-0.414, 0.113] 0.259 

VAN / Sal. Netw. Conn. 0.055   [-0.172, 0.282] 0.628 

Limbic Netw. Conn. -0.144   [-0.404, 0.116] 0.272 

FP Control Netw. Conn. -0.303   [-0.556, -0.05] 0.02 

DMN Netw. Conn. 0.068   [-0.222, 0.358] 0.641 

Mean HR 0.114   [-0.181, 0.409] 0.443 

Std. Dev. HR 0.174   [-0.082, 0.429] 0.179 

Mean BR 0.323   [0.092, 0.554] 0.007 

Std. Dev BR -0.301   [-0.541, -0.061] 0.015 

HRV -0.091   [-0.374, 0.193] 0.525 

Mean FD -0.02   [-0.268, 0.227] 0.871 

Alertness -0.301   [-0.559, -0.043] 0.023 
Table 4.1 Multiple regression of Factor 1 (“Paced RT Reaction Time”). Shown are standardized beta coefficients 

and their 95% confidence intervals, along with their significance values. Unique variance in both neural (FP Control 

network connectivity) and physiological (BR mean and variability) measures track values of Factor 1. DAN: Dorsal 

Attention network. DMN: Default Mode network. FP: Frontoparietal. VAN: Ventral Attention network. Yellow 

rows indicate p < 0.05.  

 

Factor 2: 

“Go No-Go Reaction Time Stability” 
β (95% CI) p 

Modularity 0.096   [-0.212, 0.403] 0.535 

Visual Netw. Conn. 0.099   [-0.195, 0.392] 0.504 

Motor Netw. Conn. 0.078   [-0.203, 0.359] 0.582 

DAN Netw. Conn. -0.041   [-0.348, 0.267] 0.792 

VAN / Sal. Netw. Conn. 0.04   [-0.225, 0.305] 0.765 

Limbic Netw. Conn. -0.064   [-0.368, 0.239] 0.672 

FP Control Netw. Conn. 0.109   [-0.186, 0.404] 0.463 

DMN Netw. Conn. -0.009   [-0.348, 0.33] 0.959 

Mean HR -0.202   [-0.546, 0.143] 0.247 

Std. Dev. HR -0.192   [-0.49, 0.106] 0.202 

Mean BR -0.107   [-0.377, 0.162] 0.429 

Std. Dev. BR 0.119   [-0.162, 0.399] 0.4 

HRV -0.112   [-0.443, 0.219] 0.501 

Mean FD -0.014   [-0.303, 0.275] 0.924 

Alertness 0.039   [-0.262, 0.34] 0.796 
Table 4.2 Multiple regression of Factor 2 (“Go No-Go Reaction Time Stability”). Shown are standardized beta 

coefficients and their 95% confidence intervals, along with their significance values. DAN: Dorsal Attention 

network. DMN: Default Mode network. FP: Frontoparietal. VAN: Ventral Attention network.  
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Factor 3: 

“Paced RT Accuracy” 
β (95% CI) p 

Modularity 0.24   [-0.01, 0.49] 0.06 

Visual Netw. Conn. -0.138   [-0.377, -0.101] 0.252 

Motor Netw. Conn. 0.293   [0.064, 0.522] 0.013 

DAN Netw. Conn. 0.144   [-0.106, 0.395] 0.253 

VAN / Sal. Netw. Conn. -0.286   [-0.502, -0.07] 0.01 

Limbic Netw. Conn. -0.045   [-0.293, 0.202] 0.715 

FP Control Netw. Conn. -0.017   [-0.257, 0.224] 0.89 

DMN Netw. Conn. -0.122   [-0.399, 0.154] 0.378 

Mean HR -0.049   [-0.33, 0.232] 0.729 

Std. Dev. HR -0.094   [-0.337, 0.148] 0.439 

Mean BR 0.074   [-0.145, 0.294] 0.5 

Std. Dev. BR 0.131   [-0.097, 0.36] 0.254 

HRV -0.046   [-0.316, 0.223] 0.733 

Mean FD -0.233   [-0.469, 0.002] 0.052 

Alertness -0.25   [-0.496, -0.005] 0.046 
Table 4.3 Multiple regression of Factor 3 (“Paced RT Accuracy”). Shown are standardized beta coefficients and 

their 95% confidence intervals, along with their significance values. Unique variance in measures of both global 

(modularity) and meso-scale (network connectivites) brain organization predict values of Factor 3. DAN: Dorsal 

Attention network. DMN: Default Mode network. FP: Frontoparietal. VAN: Ventral Attention network. Yellow 

rows indicate p < 0.05, blue indicates p < 0.10. 

 

Factor 4: 

“Go No-Go Elite Performance” 
β (95% CI) p 

Modularity -0.147   [-0.443, 0.148] 0.323 

Visual Netw. Conn. -0.037   [-0.319, 0.245] 0.794 

Motor Netw. Conn. -0.008   [-0.278, 0.262] 0.953 

DAN Netw. Conn. -0.062   [-0.358, 0.233] 0.674 

VAN / Sal. Netw. Conn. -0.09   [-0.345, 0.165] 0.483 

Limbic Netw. Conn. -0.046   [-0.338, 0.246] 0.754 

FP Control Netw. Conn. 0.239   [-0.045, 0.523] 0.098 

DMN Netw. Conn. -0.108   [-0.434, 0.218] 0.51 

Mean HR -0.184   [-0.515, 0.148] 0.272 

Std. Dev. HR -0.151   [-0.437, 0.135] 0.296 

Mean BR -0.19   [-0.449, 0.069] 0.148 

Std. Dev. BR 0.129   [-0.14, 0.399] 0.34 

HRV -0.048   [-0.367, 0.27] 0.762 

Mean FD -0.019   [-0.297, 0.259] 0.891 

Alertness 0.174   [-0.115, 0.464] 0.233 
Table 4.4 Multiple regression of Factor 4 (“Go No-Go Elite Performance”). Shown are standardized beta 

coefficients and their 95% confidence intervals, along with their significance values. A trend may exist between 

unique variance in mean functional connectivity within the Frontoparietal Control network and values of Factor 4. 

DAN: Dorsal Attention network. DMN: Default Mode network. FP: Frontoparietal. VAN: Ventral Attention 

network. Blue rows indicate p < 0.10. 
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Factor 5: 

“Inhibition” 
β (95% CI) p 

Modularity -0.052   [-0.331 – 0.227] 0.711 

Visual Netw. Conn. -0.193   [-0.459, 0.074] 0.153 

Motor Netw. Conn. -0.009   [-0.264, 0.247] 0.946 

DAN Netw. Conn. 0.23   [-0.049, 0.51] 0.104 

VAN / Sal. Netw. Conn. -0.114   [-0.355, 0.127] 0.347 

Limbic Netw. Conn. 0.061   [-0.215, 0.337] 0.661 

FP Control Netw. Conn. 0.122   [-0.147, 0.39] 0.367 

DMN Netw. Conn. -0.061   [-0.37, 0.247] 0.691 

Mean HR -0.25   [-0.563, 0.064] 0.116 

Std. Dev. HR -0.16   [-0.431, 0.11] 0.24 

Mean BR -0.2   [-0.445, 0.045] 0.107 

Std. Dev. BR 0.306   [0.052, 0.561] 0.019 

HRV -0.003   [-0.304, 0.298] 0.984 

Mean FD -0.015   [-0.277, 0.248] 0.912 

Alertness 0.293   [0.019, 0.567] 0.036 
Table 4.5 Multiple regression of Factor 5 (“Inhibition”). Shown are standardized beta coefficients and their 95% 

confidence intervals, along with their significance values. Unique variance in the variability of BR is revealed to 

positively predict values of Factor 5. DAN: Dorsal Attention network. DMN: Default Mode network. FP: 

Frontoparietal. VAN: Ventral Attention network. Yellow rows indicate p < 0.05. 

 

Task Approach Associated with Unique Brain- and Physio-Behavior Relationships for rRT 

 

Based on the behavioral differences observed in the rRT task behavior (Factors 2 and 4) 

when considering subjects’ responses to the post-test questionnaire, we assessed whether there 

existed unique relationships between behavior and biology within each grouping. We split the 

data by responses to the Priority question and assessed the Pearson correlation between behavior 

(Factors 2 and 4) and our measures of baseline functional brain organization and physiology. For 

Factor 2, we found no significant relationships for either the accuracy subgroup or speed 

subgroup. However, we found a negative relationship between mean HR (r = -0.331, p = 0.045, 

Figure 3A) and values of Factor 2 in the subgroup of subjects who adopted a balanced approach 

to the rRT task.  

 

For Factor 4 values, we found that mean functional connectivity within the Ventral 

Attention / Salience network (r = -0.623, p = 0.010, Figure 3B) negatively predicted behavior in 

the accuracy subgroup. However, in the speed subgroup, there existed a positive relationship 

with mean functional connectivity within the Ventral Attention / Salience network (r = 0.582, p 

= 0.006, Figure 3C). In addition, there were trending relationships between Factor 4 values and 

both modularity (r = -0.382, p = 0.087, Figure 3D) and mean functional connectivity within the 

Frontoparietal Control network (r = 0.384, p = 0.086, Figure 3E) in the speed subgroup. Last, we 

again found a negative relationship with mean HR (r = -0.338, p = 0.041, Figure 3F) for subjects 

who adopted a balanced approach. 
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Figure 4.3 Scatterplots of Relationships within separate Paced RT subgroups. (A) Factor 2 is negatively predicted 

by mean HR in the balanced subgroup (N = 37). (B, C) Mean functional connectivity within the Ventral Attention / 

Salience network in the (B) accuracy subgroup (N = 16) negatively predicts Factor 4, and (C) positively predicts 

Factor 4 in the speed subgroup (N = 31). (D) Trending negative relationship between Factor 4 and modularity in the 

speed subgroup. (E) Trending positive relationship between mean functional connectivity within the Frontoparietal 

Control network and Factor 4 in the speed subgroup. (F) Similar to Factor 2, mean HR also negatively predicts 

Factor 4 in the balance subgroup. All values shown are standardized units.  

 

 

 

4.5 Discussion 

 

The current report collected a large dataset spanning behavior, physiology, and neural 

activity in order to assess the ability of baseline biological measures to track cognitive abilities 

required for successful baseball performance. We found that basic RT was predicted by both 

physiological measures and a network-level neural measure, while the behavioral factor related 

to RT variability was tracked only by a single physiological measure. Basic accuracy was 

predicted only by neural measures, at both the brain-wide and network-level. Inhibitory control, 

regardless of RT, was tracked by a single physiological measure, while a behavioral factor 

representing both inhibitory control and RT showed unique relationships depending upon the 

strategy adopted by the subject. These results show that neither neural nor physiological 

measures alone are sufficient to predict all behavioral abilities central to baseball performance.  

  

Successfully hitting a baseball requires more than just quick RT. Within milliseconds the 

batter must make a judgment on the type of pitch being thrown, the upcoming location of the 

ball, and whether or not to swing. While rapid RT is indeed a necessary skill, the batter must also 

be able to discriminate between pitch types given highly correlated visual input: all things 
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considered, the kinetics of a professional pitcher releasing a fastball are very similar to that of a 

change-up. Thus, speeded RT must be paired with accurate decision making if one is to 

successfully swing at the ball (i.e. assessed with rRT). However, given the trajectory of the ball, 

the batter may decide instead to withhold their swing due to the ball falling outside of the strike 

zone (i.e., assessed with Rapid Adjust). These scenarios require that batters rapidly inhibit their 

prepotent response to swing. All of these additionally rely on the known repertoire of pitches 

available to the pitcher and the relative likelihood of each pitch being thrown in the current 

context (i.e., assessed with Paced RT). The behavioral tasks employed in the current study tap 

into all of these processes. Moreover, the factor analysis resulted in an intuitive clustering of 

behavior within each task.  

  

The first factor contained the RT measures from the Paced RT task, largely representing 

the baseline speed with which one responds to a visual probe. Values of this factor did not vary 

according to whether the subjects felt they improved on the task over time, or on their subjective 

belief in the presence of a repeating pattern across the trials. The average functional connectivity 

within the Frontoparietal Control network negatively tracked values of this factor, indicating that 

greater connectivity within this network predicted faster response times. This functional network 

has been associated with moment-to-moment processing of task-relevant information (Dixon et 

al., 2018; Dosenbach et al., 2008), and as such, greater connectivity within this network at 

baseline may indicate a greater ability to rapidly process incoming information and enact 

appropriate motor commands. Values of this factor were also tracked by the mean and standard 

deviation of the BR. A greater mean BR was associated with greater (slower) RTs, while greater 

variability in BR was associated with faster RTs. These results are somewhat difficult to interpret 

considering that respiratory control can be under conscious and unconscious control during the 

baseline measurement period. Since measures of physiology were acquired during the resting-

state fMRI scans, these values may better represent how the subject is able to cope with 

unfamiliar situations, such as being inside the bore of the magnet.  

  

The second factor contained a highly negative loading for the measure of the standard 

deviation of RT, as well as a relatively high positive loading for mean RT, in the rRT task. 

Therefore, high values of this factor represent the intersection of stable, and to a lesser extent, 

slow RTs on correct response trials for a task of inhibitory control. Unsurprisingly, subjects who 

prioritized speed while performing the task had the lowest values of this factor compared to 

those prioritizing either accuracy or a balance between speed and accuracy. Across all subjects, 

neither neural nor physiological measures tracked values of this factor. However, in separating 

the data into subgroups based on task priority, we found that those who adopted a balanced 

approach showed a negative relationship between mean HR and the factor values. In other 

words, a lower mean HR at baseline was associated with more stable, slowed correct responses 

in those who adopted a balanced response approach. This result is intuitive as greater control 

over one’s physiological state is likely to align with greater stability when responding rapidly to 

incoming information. 

  

The third factor contained positive loadings for the accuracy measures from the Paced RT 

task, and thus represents a basic form of accuracy in a task where both speed and accuracy of 

responses are valued. This factor was only predicted by measures of neural activity. Greater 

functional connectivity within the Motor network was associated with greater accuracy across 
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the trials of the Paced RT task. As this task required the execution of fast action mappings 

between the on-screen stimulus and one of four button responses, greater functional connectivity 

within this network likely aligns with a greater baseline ability to enact the correct motor action 

in a timely manner. In addition, greater functional connectivity within the Ventral Attention / 

Salience network was associated with lower accuracy in this task. Activity throughout this 

network is associated with alerting or reorienting of attention to salient stimuli in the 

environment (Kastner, 2017). Higher functional connectivity throughout this network while at 

rest may indicate a greater rate of reorienting of one’s attention to stimuli deemed relevant in the 

current context. As such, this reorienting could suggest a lesser ability to sustain attention and 

therefore may predict worse performance on a task that requires minimal amounts of attentional 

shifting. Last, there was a trending positive association between brain-wide modularity and 

values of Factor 3. Modularity has been previously associated with the ability to learn new 

information and is predictive of cognitive training improvement (Bassett & Mattar, 2017; Gallen 

& Esposito, 2019). The current results align with these findings as high accuracy is largely 

dependent on learning the correct task-specific visuomotor response mappings.  

  

The fourth factor contained high loadings for a mix of accuracy and response time 

measures for the rRT task. High values of this factor represented greater inhibition on No-Go 

trials as well as both greater signal detection and more rapid responses on Go trials. Overall, high 

values of this factor indicated greater performance on the rRT task in all facets. Across all 

subjects, there existed a trending positive association between values of this factor and functional 

connectivity within the Frontoparietal Control network. However, when separating subjects 

based on how they approached the task, we discovered unique relationships for each group. 

There existed a negative relationship between mean functional connectivity within the Ventral 

Attention / Salience network and values of this factor for subjects prioritizing accuracy. 

However, the opposite existed for subjects who prioritized speed: greater levels of mean 

functional connectivity within the Ventral Attention / Salience network at rest predicted greater 

values of this factor. The Salience network is associated with the coordination of task-relevant 

behavioral responses as well as to acute stress reactivity (Hermans, Henckens, Joëls, & 

Fernández, 2014; Seeley, 2019; Seeley et al., 2007). Subjects who prioritized different task-

relevant components during task performance are potentially likely to benefit from baseline, 

trait-level Salience network connectivity in unique ways, and as such unique, and potentially 

opposite, relationships with behavioral performance may exist. The speed subgroup also showed 

a trending negative and positive relationship for modularity and mean functional connectivity 

within the Frontoparietal Control network, respectively. Last, and mirroring the relationship seen 

with Factor 2, mean resting HR negatively predicted values of Factor 4 in the subgroup of 

subjects who adopted a balanced approach. It is therefore evident that lower levels of baseline 

HR relate to greater task performance when subjects equally prioritize task-relevant features. 

Overall, a trait disposition to unequally prioritize task-relevant features may result in a lesser 

ability to maximize task performance, evidenced by greater performance in the balanced group 

compared to the others. However, individual differences in performance for low-performing 

subgroups are still uniquely related to baseline differences in functional brain organization.  

  

The fifth factor contained high positive loadings for all three behavioral measures from 

the Rapid Adjust task, and specifically contained the highest loadings for the two measures that 

tracked inhibitory control (i.e., PSE and Stop Rate). Values of this factor were only associated 
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with a single measure of physiological functioning: greater variability in one’s resting BR 

predicted greater values of Factor 5. Similar to the association with Factor 1 values, greater 

variability in one’s resting BR is again associated with greater task performance. It may be 

reasonable to assume that greater variability in BR is the result of a greater degree of switching 

between states of conscious and unconscious control of one’s respiration during the measurement 

period, as breathing patterns and rates are likely to be quite different between the two states. 

Potentially, the balance of switching between these states may be a trait-level marker of 

physiological functioning that indexes something unique about cognitive abilities. Further 

investigations on this topic will be necessary to better elucidate these results.  

  

In conclusion, the current study presents evidence that although cognitive abilities crucial 

for successful baseball performance are predicted by measures of baseline physiology and 

functional brain organization, neither measurement modality is sufficient to track all necessary 

abilities. Neural measures reflecting network-specific properties tracked basic RT and accuracy, 

as well as elite inhibitory performance in certain subgroups. Neural measures reflecting brain-

wide functional organization also tracked basic accuracy and subgroup-specific elite inhibitory 

performance. Although tracking a behavioral factor that incorporates both inhibition accuracy 

and RT, no neural measures tracked inhibition accuracy or inhibition RT separately. However, 

measures of baseline physiological functioning were able to track these behaviors separately, as 

well as basic RT and subgroup-specific elite inhibitory performance. Therefore, in order to 

achieve a comprehensive assessment of an individual’s baseball-related skills, it is necessary to 

collect both measures of physiology and functional neural organization. 
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CHAPTER 5 

 

5.1 Conclusions and Future Directions 

 

Across these three experiments I employed multiple biological analysis methods and 

behavioral models in order to investigate the neural underpinnings associated with multiple 

complex human behaviors. These methods included the analysis of fMRI data while subjects 

performed cognitive tasks, as well as when subjects were at rest. Moreover, behavioral data from 

numerous cognitive tasks was analyzed in a unique manner for each experiment. The variability 

in these approaches allowed for the interrogation of crucial brain-behavioral relationships.  

 

In Chapter 2, I used task-based fMRI and computational modeling of task behavior to 

determine which brain regions support the discovery and subsequent generalization of a hidden 

hierarchically-structured task rule. I found that multiple brain regions spanning frontal and 

parietal cortices supported the initial discovery of the hidden rule, while regions spanning a 

cingulo-opercular network tracked individual differences in the ability to generalize this rule to 

novel contexts. These results provide original evidence for each network’s role in achieving the 

coordinated set of behaviors necessary to extract relevant information from one’s environment 

and to utilize this knowledge in the future. It is necessary to further explore the manner in which 

these networks, and potentially others, interact with one another to achieve these behaviors. 

Moreover, causal methods, such as transcranial magnetic stimulation (TMS), should be 

employed in order to draw a causal link between these networks and their respective functions.  

 

In Chapters 3 and 4, I analyzed fMRI data collected during a task-free resting-state in 

order to build predictive models of complex human behavior. In Chapter 3 I investigated the 

differences between traditional time-invariant and novel time-varying analysis approaches. As 

predicted, time-varying analyses better captured individual differences in measures of behavioral 

variability, while time-invariant measures tracked more stable, task-general cognitive abilities. In 

Chapter 4, I compared the predictive power of neural measures against measures indexing 

physiological functioning. It was revealed that neural measures tracked behaviors related to basic 

accuracy and reaction time, while physiological measures were better able to track accuracy and 

reaction time of inhibition-based behaviors. Further analysis of fMRI data within this context 

would prove fruitful. First, expanding these approaches to datasets of task-based fMRI would 

allow for task manipulations to inform unique temporally-varying patterns of functional 

connectivity. Second, investigating whether these results are seen in clinical populations, such as 

those with neurological pathology or psychiatric diagnoses, would allow for a more refined 

understanding of the neural activity patterns underlying those conditions.  
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	Figure 4.1 Computerized behavioral tasks. (A) Simple RT. (B) rRT. All trial types depicted. (C) Rapid Adjust. Both Go (white ball) and No-Go (red ball) trials are depicted with successful outcomes. (D) Paced RT. Both correct and incorrect response out...



