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Abstract

Brain graphs provide a useful way to computationally model the network structure of the 

connectome, and this has led to increasing interest in the use of graph theory to quantitate and 

investigate the topological characteristics of the healthy brain and brain disorders on the network 

level. The majority of graph theory investigations of functional connectivity have relied on the 

assumption of temporal stationarity. However, recent evidence increasingly suggests that 

functional connectivity fluctuates over the length of the scan. In this study, we investigate the 

stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach 

that estimates the dynamic structure of graph theoretical measures of whole-brain functional 

connectivity. In addition to extracting the stationary distribution and transition probabilities of 

commonly employed graph theory measures, we propose two estimators of temporal stationarity: 

the S-index and N-index. These indexes can be used to quantify different aspects of the temporal 

stationarity of graph theory measures. We apply the method and proposed estimators to resting-

state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our 

analysis shows that several graph theory measures, including small-world index, global integration 

measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be 

more robust. Additionally, we demonstrate that accounting for subject-level differences in the level 

of temporal stationarity of network topology may increase discriminatory power in discriminating 

between disease states. Our results confirm and extend findings from other studies regarding the 

dynamic nature of functional connectivity, and suggest that using statistical models which 

explicitly account for the dynamic nature of functional connectivity in graph theory analyses may 

improve the sensitivity of investigations and consistency across investigations.
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1. Introduction

Connectomic analysis using graph theoretical methods is increasingly found to be a 

powerful quantitative method for investigating complex brain networks on the whole-brain 

level. Through the computation of neurobiologically interpretable network measures, graph 

theory provides a mathematical framework through which topological properties of the 

network may be studied, including aspects related to clustering, efficiency, modularity, long-

range connectivity, and small-worldness [1, 2]. Its application to functional data on resting 

state networks from functional MRI, magnetoencephalography, and electroencephalography 

has provided novel insights into various neurological and psychiatric diseases [3, 4, 5, 6]. 

Increasingly, studies are demonstrating the utility of graph theory measures of functional 

connectivity for identifying abnormalities in network connectivity and serving as clinical 

diagnostic markers and as markers of disease severity [7, 8, 9, 10].

Despite the large number of analyses of resting-state network connectivity that use graph 

theory to explore network connectivity, the majority rely on the assumption of temporal 

stationarity. In most cases, the strength of inter-regional signal associations is calculated 

using some measure of linear dependence, such as the synchronization likelihood or a 

measure of correlation, over the entire scanning session. The strength of these associations is 

then either analyzed as weighted graphs or binarized into unweighted graphs [2]. However, 

recent evidence increasingly shows that inter-regional signal associations are dynamic over 

time, and are highly modulated by attention, medications, and cognitive state [11]. In 

addition, [12] have found that resting state functional connectivity exhibits a large degree of 

variability both within and across scanning sessions. [13] have also demonstrated that 

functional connectivity fluctuates over time within scans, furthermore finding that first-order 

temporal dynamics may approximate these dynamics. Although the reasoning behind the 

dynamic nature of resting-state brain topology is a relatively new concept and under 

investigation, it is thought to reflect the configuration of functional networks around a stable 

anatomical skeleton [14]. Computational modeling and empirical work have demonstrated 

that, at shorter time scales, these various functional network configurations may be 

spontaneously visited around the same anatomical skeleton in the presence of local cell 

dynamics [14]. While some aspects of brain topology, such as the level of small-worldness, 

may exhibit greater temporal stationarity in order to maintain a relatively constant optimum 

network configuration, others, such as local measures, may be more susceptible to local cell 

dynamics and more likely to traverse multiple configurations. Various functional 

configurations may also exist in order to allow flexibility to support different cognitive 

functions [15].

Recently, studies have noted that conflicting results have arisen in graph theory 

investigations of functional connectivity. Investigations of clustering coefficient and 
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characteristic path length, for example, have variably found evidence of increase, decrease, 

or no change in patients with epilepsy compared to controls [6, 16]. One contributing factor 

to current inconsistencies in the literature may be small sample sizes and moderate effect 

sizes [16]. In light of recent evidence that resting-state functional connectivity is in fact non-

stationary, however, another major factor may be greater temporal instability in some 

topological characteristics than others, leading some investigations to capture the topology 

of particular functional network configurations while other investigations may capture other 

topological configurations. Understanding of temporal dynamics of graph measures of 

network topology may help address these previous literature inconsistencies.

The aim of this study is to identify which aspects of network topology exhibit less within-

scan temporal variability in resting state networks, with the objective of evaluating which 

graph theory metrics may be robustly estimated using static functional connectivity analyses. 

To the best of our knowledge, this is the first attempt of quantifying the relative temporal 

stationarity of graph theory metrics of brain network topology in functional connectivity 

analysis. In particular, we use a Bayesian hidden Markov model to estimate the transition 

probabilities of various graph theoretical network measures using resting-state fMRI (rs-

fMRI) data. We propose two estimators of temporal stationarity, which can be used to 

quantitate different aspects of the temporal stationarity of functional networks: the N-index, 

which is a deterministically-based estimator of the number of change-points, and the S-

index, which is a probabilistically-based estimator that takes into account stochastic 

variation in the estimated states. Based on the estimated stationarity distribution and 

transition probabilities, we evaluate the relative levels of temporal stationarity among 

various commonly investigated measures of brain network topology. Additionally, we point 

to possible hierarchical extensions of our model which may be used to aid in disease 

prediction, by showing that incorporating temporal dynamics into investigations of brain 

connectivity may increase discriminatory power of graph theory metrics.

2. Materials and Methods

In order to determine which aspects of network topology are robust under static functional 

connectivity analysis, we investigate commonly employed graph theoretic measures in 

current literature using a Bayesian hidden Markov model. We apply our proposed estimators 

to the healthy control and temporal lobe epilepsy populations, and illustrate that differences 

in temporal dynamics between epileptic and healthy brain networks may be quantitated and 

may provide a potential diagnostic marker.

2.1. Participants

Participants consisted of 24 healthy controls (HC; average age, 32.50 ± 1.88 SE (y); 

range/Q1/Q3, 19-64/27/35 (y); 8 females) and 32 patients with temporal lobe epilepsy (TLE; 

average age, 37.56±1.86 SE (y); range/Q1/Q3, 20-63/32/45 (y); 16 females; average epilepsy 

duration, 18.79 ± 2.25 SE (y); range/Q1/Q3, 2-45/6/31 (y)). Healthy control subjects had 

normal structural MRIs and no history of neurologic illness or were taking neurologic 

medications. TLE patients were recruited from the University of California, Los Angeles 

(UCLA) Seizure Disorder Center. Diagnostic evaluation for all subjects included video-EEG 
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monitoring, high-resolution MRI, FDG-PET scanning, and neuropsychological testing. 

Written informed consent was obtained prior to scanning for all subjects in accordance with 

guidelines from the UCLA Institutional Review Board. A two-sample t-test with unequal 

variances and Fisher exact test showed no significant difference in age or gender, 

respectively at the α=0.05 level of significance.

2.2. Image acquisition and pre-processing

Imaging was performed with a 3T MRI system (Siemens Trio, Erlangen, Germany). 

Functional imaging was performed with the following parameters: TR=2000 ms, TE=30 ms, 

FOV=210 mm, matrix= 64 × 64, slice thickness 4 mm, 34 slices. Subjects were instructed to 

relax with eyes closed during imaging. No auditory stimulus was present except for the 

acoustic noise from imaging. High-resolution structural images were obtained during the 

same imaging study with the parameters: TR=20 ms, TE=3 ms, FOV = 256 mm, matrix = 

256 × 256, slice thickness 1 mm, 160 slices. The images were acquired in the axial plane 

using a spoiled gradient recalled (SPGR) sequence for the anatomical images and an echo 

planar imaging (EPI) sequence for the functional images. The imaging sessions included 

multiple simultaneous EEG and fMRI recordings, each lasting 5 to 15 minutes. For resting 

state fMRI analysis, 20 minutes of BOLD fMRI data was used for each subject. To limit the 

influences of motion, subjects were checked to ensure that no subjects had a maximum 

translation of > 1.5mm (HC, 0.24 ± 0.04 mm; TLE, 0.37 ± 0.04 mm). Resting-state fMRI 

was performed for TLE patients after the comprehensive epilepsy surgery evaluation and 

prior to epilepsy surgery. Patients remained on their regular medications during the fMRI. 

None of the patients had a seizure in the 24 hours preceding the imaging. None of the 

patients had seizures during the study as confirmed by the simultaneous EEG obtained 

during fMRI. The EEG results were not included in the data analysis other than to exclude 

seizures. Details of the simultaneous EEG methods have been described previously [17]. 

Neuroimaging and fMRI pre-processing steps are similar to that described previously [18]. 

Preprocessing was performed using FSL (fMRIB Software Library) version 5.0.7 (Oxford, 

United Kingdom, www.fmrib.ox.ac.uk/fsl) [19, 20] and included head movement artifact 

correction [21], nonbrain tissue elimination [22], high-pass filtering (100 s), spatial 

smoothing at 5 mm full-width half-maximum, and mean-based intensity normalization as 

described previously for resting-state fMRI analyses [23, 24]. Excessive head movement was 

corrected using motion scrubbing through nuisance regression [25]. We used the tool fsl 

motion outliers within FSL to identify TRs that showed instantaneous changes in blood 

oxygen level-dependent (BOLD) intensity that exceeded threshold (75th percentile + 1.5× 

interquartile range). The average number of identified outliers per participant was 4.11%

±2.65%. Tissue-type segmentation was performed on each participant's structural image 

using FAST (FMRIB's Automated Segmentation Tool) [26], before being aligned to their 

respective BOLD images. White matter signal and cerebrospinal fluid signals were obtained 

using the segmented masks. The following were included as temporal covariates and 

regressed out using linear regression: motion outliers, six motion parameters, white matter 

signal, cerebrospinal fluid signal, and their associated derivatives. The residuals were then 

filtered through a low pass filter (< 0.1 Hz).
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2.3. Functional network construction and graph theory metrics

Functional BOLD images were segmented into 90 regions of interest using the automated 

anatomical labeling (AAL) atlas. Each BOLD image was registered to the participant's high-

resolution structural image using FLIRT (FMRIB's Linear Image Registration Tool) [21, 27, 
28], and the high-resolution structural was registered to the standard MNI space using 

FNIRT (FMRIB's Non-linear Image Registration Tool) [29]. The transformation matrix and 

warpfields were inverted, and then applied to the 90 regions of interest to obtain ROI masks 

in each individual's BOLD space. Functional connectivity between each pair of nodes was 

computed as the Pearson correlation between the average regional time series, using a 

sliding-window approach. A window size of 44s were used with 50% overlap to segment the 

original 300 volumes in each region into 26 windows. The effect of window size has been 

investigated in [30], with a window size of 44s found to provide a good trade-off between 

the quality of covariance matrix estimation and resolution of functional dynamics. [31] 

found that cognitive states can be correctly identified with as few as 30 – 60s of data, with 

topological assessments estimated to stabilize for window lengths greater than 30s [32]. 

Variation in window size between 30s and 2 minutes has been found to have little effect on 

functional dynamics [30]. Negative correlations were set to zero to improve the reliability of 

graph theory measures [33]. Binary undirected graphs were constructed by thresholding the 

correlation matrix across a series of biologically plausible network densities [2], yielding a 

range of potential undirected graphs of the brain's functional network. This procedure 

ensured that between-network and between-group comparisons of graph theory metrics 

reflected differences in topological organization rather than differences in absolute 

connectivity. This resulted in a non-random connection density range of 0.37 – 0.50, in order 

to involve graphs that were fully connected for all windows for all subjects (degree > 1 for 

all nodes) and non-random topological properties [34]. Network measures were averaged 

across the non-random connection density range, with the same range used in order to 

ensure comparability between populations.

In this study, we investigate network characteristics related to small-world index (σ), global 

integration (λ, normalized characteristic path length; GE, global efficiency), local 

segregation (γ, normalized clustering coefficient; LE, average local efficiency), and 

centrality (BC, betweenness centrality; EC, eigenvector centrality). A vast number of graph 

theory measures of network topology have been recently studied in various neurological 

diseases. The majority of these features relate to various aspects of global network 

integration or local segregation [35, 36, 37]. Another important subset of features identifies 

nodes that have a strong influence on the communication of the network, which are known 

as centrality or hub measures. The simplest of these centrality measures is degree centrality, 

which counts the number of edges connected to each node. Other centrality measures 

capture more nuanced quantities, such as eigenvector centrality, which identifies nodes that 

are connected to other highly central nodes, or betweenness centrality, which captures the 

number of shortest paths that pass through a node [38]. In addition, presence of deviations 

from a small-world configuration has been consistently found to characterize various types 

of brain disease, including Alzheimer's disease, epilepsy, brain tumors, and traumatic brain 

injury [3]. Graph theory measures were calculated as in [1] using the Brain Connectivity 
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Toolbox in Matlab version R2014b. Normalization of characteristic path length and 

clustering coefficient was relative to a set of 500 randomly rewired graphs [39].

2.4. Bayesian hidden Markov model

A hidden Markov model is a state-space model with discrete hidden states, which is able to 

capture sequential dependence structure in the data. Indeed, HMMs have been successfully 

employed in the analysis of data with such intrinsic structure, see [40] and [41] for examples 

on array comparative genomic hybridization (CGH) data, and [13] for a frequentist 

application on spatial functional connectivity.

We model the time-varying aspect of graph theory metrics by treating the observed value of 

the graph theory metric as the realization of a time-varying hidden state, which we denote 

ξit. Let  denote the value of graph theory metric g (g = 1, …, G), for subject i (i = 1, …, 

n) during time t (t = 1, …, T). For each time point  is obtained by computing 

the graph metric g on sliding windows centered at time t. For simplicity, in the below we 

omit the index g.

From a mathematical point of view, a HMM comprises of two components: a Markov chain 

with stochastic measurements on the hidden states and, conditionally on the states, an 

independent emission distribution (Figure 1). In the context of our specific application, we 

choose a first-order HMM on the latent functional connectivity states. This choice assumes 

that the probability of being in a specific hidden state at a specific time point depends only 

on the hidden state at the previous time point, as described in formula by

(1)

where A = (ahj) is a matrix of transition probabilities whose elements ahj indicate the 

transition probability from state h to state j. The transition matrix A has a unique stationary 

distribution πA = (πA(1), …, πA(K)) for states k = 1, …, K. We assume that the state of the 

first time point is distributed as πA. As for the emission distribution, we assume that, 

conditional on the hidden states, the observed graph theory metric values are independent 

and follow a distribution with state-specific parameters θj,

(2)

where for graph theory metrics with support (−∞, ∞) we define . As 

discussed by [42], this density can be used to approximate any finite continuous density 

function arbitrarily closely. Therefore, the full likelihood can be factorized as
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(3)

Pulling together the likelihood in Equation 3 and the Markov chain in Equation 1, the first-

order HMM employed can be described by the following factorization:

(4)

As for the prior specification of our modeling approach, we assume conjugate independent 

Dirichlet priors on the rows of the transition probability matrix

where K is the number of states. We further place conjugate vague priors on the parameters 

of the emission distributions:

∀j = 1, …, K. Note that here and throughout this paper IG denotes the Inverse-Gamma 

distribution. Employing conjugate vague priors is a common choice in the Bayesian 

literature to approximate non-informative priors in the absence of prior information, 

following their introduction by [43].

2.4.1. MCMC algorithm and posterior inference—The joint posterior distribution of 

all parameters of interest can be sampled employing a Metropolis-within-Gibbs sampling 

technique. This combines Metropolis-Hastings steps as proposed by [41] for updating the 

transition probability matrix and state matrix with Gibbs steps for sampling the mean and 

variance of the hidden states conditional upon the other parameters. Full details of the full 

conditional distributions and MCMC implementation are provided in Appendix A. Given the 

MCMC output, we perform inference on the states, ξ, by calculating, for each ξit, the 

maximum a posteriori estimate using the mode of the state values after burn-in. Posterior 

inference on the transition matrix and emission parameters is performed through the 

posterior mean to minimize squared error loss.

In our analysis, all hyperparameters were set to be non-informative, with δj = 0 and αj = 1 

∀j. Data were standardized through centering and scaling prior to usage in the Gaussian 

emission distribution. Therefore, we expect 99.7% of the data to fall within three standard 

deviations of the mean. Consequently, we set the prior variance of the state means, τj, to 
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, where X(n) and X(1) are, respectively, the maximum and minimum values 

observed in the data. As for the shape and scale hyperparameters of the state-specific 

variances cj and dj, we set these to yield a prior expectation of 0.5 and prior variance of 2 on 

the distribution of . The MCMC chain was initialized with initial values  and 

set to equally spaced intervals from [−1, 1] ∀j. We initialized ξ(0) by setting  if the 

corresponding Tj < Xit < Tj+1, where . We initialized A(0) 

from the initial value of ξ(0), by setting  to the proportion of transitions from state h to 

state j in ξ(0). For each measure, we ran 50,000 MCMC iterations with the first 30,000 

sweeps discarded as burn-in.

All code was written in R version 3.1.3. A software package to carry out implementation has 

been made available at the corresponding author's website [Note to editor: Software will be 

made available upon publication]. Code is available upon request from the corresponding 

author.

2.5. Statistical inference on relative temporal stationarity of graph theory metrics

We propose two estimators of the relative temporal stationarity of each graph theory metric: 

the N-index, which is a deterministically-based estimator of the number of change-points, 

and the S-index, which is a probabilistically-based estimator that takes into account 

stochastic variation in the estimated states. To our knowledge, although some investigation 

into general aspects of temporal stationarity in functional connectivity has shown that 

functional connectivity fluctuates over time [13, 30], no attempt has yet been made to 

provide quantitative estimates of the temporal stationarity of specific aspects of graph 

topology. Furthermore, we allow for direct comparison of relative temporal stationarity 

across measures or across disease populations by proposing scalar indexes of stationarity. 

The first estimator, the N-index, estimates the proportion of time that the network measure 

spends in stable states (i.e., not in change-points). Importantly, we show that our proposed 

estimator is an unbiased and asymptotically consistent estimator of the average proportion of 

time spent in stable states. The second estimator, the S-index, provides a weighted estimate 

of the stationarity of the dominant state, and takes into account probabilistic variation of the 

hidden states.

1. N-index: This is proposed as the complement of the mean proportion of change-

points, where the number of change-points for a given subject is estimated based on 

the posterior mode of posterior samples of ξ, i.e.

(5)

where ξ̂
it denotes the posterior mode across the posterior samples of ξit ∀i, t. Due to 

estimation based on the posterior mode of ξ, the N-index yields a deterministic 
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estimator of the general stationarity of the process. As shown in Appendix B, (5) 

provides an unbiased and asymptotically consistent estimator of the average 

proportion of time spent in a stable state. Similarly, for inference on the individual 

subject level, (5) reduces to:

2. S-index: The second estimator, the S-index, is proposed as the weighted mean of 

the probabilities of remaining in the same state from time t to time t + 1, where 

weights are given by the stationary distribution, i.e.

(6)

where π̂ = (π̂j) is the posterior mean of the stationary distribution, and âjj denotes 

the jth diagonal element of the posterior mean of the estimated transition 

probability matrix, Â. In contrast to the N- index, we propose the S index solely for 

inference on the group level. In addition, whereas the N-index is based on 

deterministically estimated states, the S-index is a probabilistic estimator which 

takes into account the stochastic variation of the estimated states through (6). The 

definition in (6) allows S to assume values in the interval [0, 1]. The estimated S-

index approaches 1 if the probability of staying in the same state goes to 1, while 

the estimated S-index approaches 0 if the probability of transitioning to a different 

state goes to 1. By weighting the probabilities by the stationary distribution, larger 

weight is assigned to states which occur more frequently in the process. Thus, if the 

probability of remaining in a given state is small for state j, but the graph theory 

metric spends little time in state j, then less weight is given to this probability in 

computing (6). Conversely, if the probability of remaining in a given state is small 

for state j, and the graph theory metric spends a large proportion of time in state j, 
then more weight is given to this probability in computing (6).

Whereas the N-index measures the frequency of change-points, the S-index takes into 

account both the frequency of change-points as well as whether the network measure has a 

dominant state or exists in multiple states more equally. A network measure which has a 

low-frequency of change-points as well as exists in a dominant state will result in a high N-

index and high S-index.

2.6. Model validation

The proposed method was tested on simulated data for n = 30 subjects and T = 300 time 

points. Model performance in accurately predicting the transition probability matrix and 

hidden states was validated using the mean square error and misclassification error. Model 

validation is shown in Appendix C.
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2.7. Temporal dynamics and class separability

Our model provides a hierarchical modeling approach to estimating temporal non-

stationarity, which may be built upon to aid diagnostic prediction. In particular, the 

likelihood in (2) may be extended to a discriminant analysis context, allowing for 

probabilistic prediction of disease status. Here, we illustrate the potential utility of individual 

differences in the temporal dynamics of graph measures to increase discriminatory power. 

To obtain a measure of the increase in discriminatory power after accounting for temporal 

dynamics for various graph measures, we evaluated two criteria for class separability. The 

first separation criterion is based on the well-known ratio of the within-class scatter matrix 

and between-class scatter matrix, known as the Fisher criterion:

(7)

where ΣB is the between-class scatter matrix and ΣW is the within-class scatter matrix. 

Larger values of J generally indicate greater class separability, based on a larger between-

class scatter relative to within-class scatter. However, because the separability criterion in (7) 

is not directly related to classification error [44], we adopted a second measure, the 

Bhattacharyya distance, defined as:

where μi, Σi are the mean and covariance of class i, respectively. As shown by [45], BD is a 

class separability measure that yields the upper and lower bounds of Bayes classification 

error, with higher values of BD yielding lower levels of classification error. Class 

separability was assessed for three feature combinations: (1) the estimated graph metric 

under the assumption of stationarity, (2) the N-index of the graph metric, and (3) the 

combined feature vector of the estimated graph metric and corresponding N-index.

3. Results

3.1. Model comparison

The model and proposed estimators were applied to two neurologic populations of interest 

studied in brain connectivity research, the healthy control and temporal lobe epilepsy 

populations. For each network measure, we explore HMM fits over a grid of values of K (K 
= 2, …, 6 in our study) to find the number of states K yielding the best model fit. Model fit 

for each value of K was assessed using the deviance information criterion (DIC) and 

convergence of the state allocations to the stationary distribution. Models with lower DIC 

indicate better goodness of fit and are generally preferable to models with higher DIC. The 

DIC for each model is shown in Figure 2. In our study, state allocations showed convergence 

to a unique stationary distribution for K = 2. For K > 2 states, trace plots for the following 

graph measures: BC (HC, TLE), σ (HC, TLE), λ (HC, TLE), GE (HC), EC (HC), and γ 
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(TLE) appeared to switch between a few local optima, following a behavior consistent with 

the artificial splitting of a single state into multiple states [46]. For γ (HC), LE (HC, TLE), 

and EC (TLE), DIC was minimized for an HMM fit with K = 2 states. For GE (TLE), DIC 

was minimized for an HMM fit with K = 3 states.

3.2. Relative temporal stationarity of graph metrics

The relative temporal stationarity of the different network measures among healthy controls 

and TLE patients based on estimated values of N-index and S-index is shown in Figure 3(a) 

and (b), respectively. Posterior probabilities of the relative levels of temporal stationarity 

were estimated through Monte Carlo approximation and are shown in Table E.1. Among 

healthy controls, small-world index was consistently identified by both the N-index and S-

index to exhibit the greatest temporal stationarity among network measures (Figure 3(a)-(b), 

Table E.1). Global efficiency exhibited greater temporal stationarity than local efficiency, 

while betweenness centrality exhibited greater stationarity than eigenvector centrality. For 

global integration measures, global efficiency exhibited greater stationarity than 

characteristic path length. The estimated stationary distribution for each network measure, 

which provides the equilibrium probability that the Markov chain is found in each particular 

state, describes the expected long-run behavior of the chain and is shown in Figure 4. 

Among healthy controls, local segregation measures (γ, LE) and eigenvector centrality 

demonstrated the least amount of evidence for existence of a single dominant state, spending 

roughly equal amounts of time in each state. In contrast, global integration measures (λ, 

GE), small-world index, and betweenness centrality each demonstrated greater evidence for 

existence of a dominant state, with greater than 0.70 probability of being found in a single 

dominant state for each of these measures (Figure 4).

TLE patients exhibited similar patterns in the relative temporal stationarity of each network 

measure, with two primary exceptions. Firstly, TLE patients exhibited weaker evidence for a 

difference between global efficiency and path length than healthy controls (Table E.1). The 

second exception was with respect to clustering coefficient for TLE patients, which was 

consistently identified as one of the least temporally stationary network measures for healthy 

controls but to exhibit great temporal stationarity for TLE patients (Figure 3). Consistent 

with this observation, the stationary distribution of clustering coefficient for TLE patients 

estimated that more than 90% of the scan was spent in a single dominant state for clustering 

coefficient (Figure 4). Global integration measures (λ, GE), small-world index, and 

betweenness centrality each were expected in the long-run to have greater than 0.70 

probability of being found in a single dominant state in TLE patients. Three-state and two-

state models for global efficiency among TLE patients were similar with respect to the long-

run proportion of time spent in the dominant state (Figure F.1).

3.3. Temporal dynamics and class separability

Here, we explore the potential diagnostic utility of incorporating temporal dynamics into 

graph theory estimates. Figure 3(c) shows the magnitude of the difference in S-index and N-

index between TLE and controls, for various graph theory measures. Overall, the S-index 

and N-index identified consistent differences in the temporal stationarity of network 

measures between TLE patients and healthy controls, with minor differences due to the 
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probabilistic versus deterministic nature of the estimators. Clustering coefficient 

demonstrated the largest difference in the level of temporal stationarity between healthy 

controls and TLE patients. Small-world index and betweenness centrality also demonstrated 

moderate differences in the level of temporal stationarity between disease and normal brain 

states (Figure 3(c)). Differences between TLE patients and healthy controls based on the N-

index of clustering coefficient, small-world index, and betweenness centrality are shown in 

Figure 5(a). The ability of the N-index to capture individual differences in temporal 

stationarity is shown for a few representative subjects in Figure G.1 (Appendix G). In 

particular, we see the group differences apparent in Figure 5(a) reflected on the individual 

subject level in Figure G.1. From Figure 5(a), the N-index of clustering coefficient, small-

world index, and betweenness centrality was generally higher in TLE compared to controls, 

with the greatest difference present in clustering coefficient. This is apparent in Figure G.1 

on the individual subject level, as a lower frequency of change-points and longer stretches of 

stationarity among TLE patients than in healthy controls.

Class separability for each graph measure, as well as the corresponding N-index of temporal 

stationarity, is shown in Table 1(a)-(b) and (d)-(e), respectively. Table 1(c) and (f) shows the 

class separability when the N-index of the graph measure was used as a feature in addition to 

the estimated graph measure. We observed that the Fisher criterion and Bhattacharyya 

distance yielded similar results, with increased class separability observed between TLE and 

controls when temporal stationarity was taken into account. In particular, the Fisher criterion 

for class separability was greater when the N-index was considered as an additional feature 

along with the estimated graph metric for both clustering coefficient and small-world index 

(Table 1). This indicates a greater level of between-class relative to within-class scatter when 

the N-index was considered as an individual feature. The Bhattacharyya distance between 

the classes increased as well for clustering coefficient, small-world index, and betweenness 

centrality when the N-index was considered as an individual feature, indicating better 

separability between the classes. Although the Fisher criterion failed to identify an increase 

in class separability for betweenness centrality when the N-index was taken into account, 

this may reflect the closeness of the centroids of the respective classes to the overall 

centroid.

The added contribution of the N-index to the original graph metric in diagnostic prediction is 

visualized in Figure 5(b). The bottom right panel of Figure 5(b) demonstrates the difficulty 

of differentiating the pathological classes when considered only with respect to the whole-

brain graph metrics. When temporal dynamics are considered, the pathological states exhibit 

much greater separability (bottom left, top left panels).

4. Discussion

In this study, we investigate the temporal stationarity of various graph theoretical measures 

of network topology from resting-state fMRI data. We propose two quantitative scalar 

estimators of temporal stationarity, the S-index and N-index, which may be used to compare 

different aspects of temporal stationarity across disease populations or across network 

measures, while allowing for different levels of probabilistic uncertainty through the two 

estimators. Our quantification of the temporal stationarity of topological characteristics 
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related to small-world index, global integration, local segregation, and centrality provides, to 

our knowledge, the first attempt to understand the temporal dynamics of different aspects of 

brain network topology. We show that several graph theoretical measures, including small-

world index, global integration measures, and betweenness centrality, may be more robust to 

an assumption of temporal stationarity in functional connectivity analyses than others. In 

addition, we demonstrate that subject-level differences in the temporal stationarity of 

network topology may be useful as an additional marker of abnormality.

4.1. Graph measures and temporal stationarity

Functional connections can be roughly classified into two categories: long-range 

connections between different modules or clusters of neurons, and local connections within 

modules or clusters of neurons. While the former allows for integration of different sources 

of information, the latter allows for local information processing [47]. Network measures of 

global integration were observed here to generally exhibit greater stationarity than network 

measures of local segregation. This may reflect the organization of the resting-state brain, in 

which the small-world architecture of the brain is thought to have evolved in order to create 

systems that support efficiency in both local and global processing [48]. Since long-range 

connections are generally thought to ensure the interaction between distant neuronal clusters 

[47], a large component of fluctuations between neuronal clusters (e.g., long-range 

connections) may therefore occur downstream to fluctuations within neuronal clusters (e.g., 

local connections), resulting in slightly greater temporal stationarity among global relative to 

local connections. Furthermore, while connectivity within local subgraphs may be more 

susceptible to local cell dynamics and likely to fluctuate over time, higher levels of local 

fluctuations may be expected to be associated with lower levels of long-range fluctuations in 

order to maintain relatively constant net levels of temporal variability. Although the concept 

of the brain network as a closed system has been discussed previously [48], its potential 

impact on the temporal dynamics of network topology remains relatively unknown.

Small-world index was observed to be one of the topological network measures exhibiting 

the greatest amount of stationarity on the seconds time scale among healthy controls. This is 

perhaps unsurprising, as small-world index provides a measure of the level of optimality of 

the network structure for synchronizing neural activity between brain regions [49, 50] as 

well as efficient information exchange [48], and may be thus less likely to be affected over 

short increments of time analyzed within a single scanning session. It may also be of interest 

to note that the level of small-worldness of a network is based on the ratio of clustering 

coefficient to characteristic path length. Therefore, the fact that small-world index 

consistently exhibited greater levels of temporal stationarity than both clustering coefficient 

and characteristic path length among healthy controls indicates that clustering coefficient 

and characteristic path length tended to fluctuate in the same direction among healthy 

controls. In contrast, small-world index among TLE patients consistently exhibited greater 

levels of temporal stationarity than characteristic path length, but lower levels of stationarity 

than clustering coefficient. This indicates that there was a lower correspondence between the 

tendency of clustering coefficient and characteristic path length to fluctuate in the same 

direction among TLE patients. [51] suggested that an optimal balance between global 

integration and local segregation, reflected by the level of small-worldness, is needed to 
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support efficient information processing. It may be that dynamic increases (decreases) in 

local segregation are normally accompanied by increases (decreases) in global integration in 

order to maintain an optimal level balance of network integration and segregation in the 

healthy control population. Our results suggest that the temporal correspondence between 

network integration and segregation may be affected in pathology.

Among global integration measures, we found that global efficiency exhibited greater 

temporal stationarity than characteristic path length with high posterior probability among 

healthy controls. In contrast, only weak evidence was present for such a relationship among 

TLE patients. While global efficiency is the average inverse shortest distance between two 

generic nodes in the network and is a measure of parallel efficiency, characteristic path 

length is the average shortest distance between two generic nodes and a measure of 

sequential efficiency [48]. Our observation that global efficiency exhibits greater temporal 

stationarity than characteristic path length, therefore, suggests that the level of parallel 

efficiency of brain networks remains more constant over time than the level of sequential 

efficiency. A similar phenomenon is observed in computer system design, in which parallel 

computing systems exhibit greater fault tolerance than sequential computing systems, due to 

the redundancy and ability for error checking and correction provided by parallel compared 

to sequential streams [52]. Our interesting observation confirms the similarity of 

construction principles among brain and other networks.

4.2. Implications for inter-study replicability and temporal lobe epilepsy

The differences in temporal stationarity between different topological characteristics 

identified here, with some measures tending to remain in a single state than others, may be 

one reason underlying the inconsistencies between existing studies regarding the direction in 

which topological characteristics are altered in disease. Here, we found that clustering 

coefficient demonstrates the least amount of evidence of the existence of a single dominant 

state in the healthy control population, as quantified by its estimated stationary distribution, 

and moreover spent the largest proportion of time in change-points, as quantified through the 

N-index and S-index. Several review studies have, in fact, observed that case-control studies 

investigating how clustering coefficient is altered in disease using static connectivity 

analyses have resulted in inconsistent conclusions. In temporal lobe epilepsy, for example, 

[6] found that there exists a large amount of variation in conclusions regarding the direction 

of alteration of clustering coefficient in temporal lobe epilepsy relative to healthy controls, 

with both increases [53, 54, 55, 56] and decreases [5, 57, 58] identified. [59] also observed 

inconsistencies across studies which have evaluated the directionality of altered clustering 

coefficient among Alzheimer's disease relative to healthy controls, with both increases [60] 

and decreases [10] identified. Inconsistencies have generally been attributed to differences in 

imaging modalities, analytic methods, or clinical heterogeneity between studies. The 

temporal non-stationarity of clustering coefficient among healthy controls found in our 

study, however, suggests that another reason for current between-study inconsistencies may 

relate to the lack of temporal stationarity of clustering coefficient. In particular, some studies 

may capture clustering coefficient of their healthy control sample in one particular state, 

whereas other studies may capture clustering coefficient in another state. If this is the case, 

then utilization of statistical methods which account for the dynamic nature of connectivity, 
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rather than assuming temporal stationarity, may be appropriate to attain better estimated 

values of clustering coefficient. Betweenness centrality was also consistently more 

temporally stable than eigenvector centrality across models in both TLE and healthy 

subjects. The higher level of temporal stationarity of betweenness centrality may lead to a 

higher level of sensitivity in characterizing hub distributions based on static analytic 

approaches. Betweenness centrality has been consistently implicated in both localizing [7] 

and lateralizing TLE [61, 62], whereas eigenvector centrality has been less well implicated.

Notably clustering coefficient, while the least stable measure among healthy controls, was 

the most temporally stable measure among TLE patients, surpassing even small-world index 

in temporal stationarity. We postulate that this may relate to neuronal cell loss secondary to 

seizures in TLE. A meta-analysis of focal epilepsies, for example, found that the focal 

epileptic brain has a more segregated and less integrated network [16]. This implies that 

nodes become more tightly interconnected with immediate neighbors and less connected 

with nodes outside their immediate neighborhood, with a more densely connected 

neighborhood facilitating more stable local connections in TLE.

The proposed measures of temporal stationarity in this study facilitate future exploration of 

the ability of temporal stationarity levels of different network measures to serve as 

diagnostic biomarkers. Here, we found that considering the N-index of graph metrics in 

addition to their estimated values may significantly increase the discriminant power of 

classifiers between TLE patients and healthy controls. Future investigation is needed in 

order to further evaluate the feature importance of these measures for prediction of 

diagnostic and prognostic status.

4.3. Limitations

As mentioned in the Results section, the proposed model requires the number of states in the 

HMM to be fixed a priori. We found that two or three states optimally maximized the 

goodness of fit for whole-brain graph theory metrics in our sample of temporal lobe epilepsy 

patients and healthy controls. A separate study on the dynamics of whole-brain functional 

connectivity in schizophrenic patients and healthy controls also found that three states 

optimally maximized the difference between within- and between-cluster variance [13]. 

Another study on young healthy controls found that seven states optimally characterized 

whole-brain functional connectivity dynamics [30]. A third study also found that 

generalizability in healthy controls drastically decreases after six or seven states, and that 

gains in generalizability are generally reduced after three or four states in simulated data 

[63]. The number of states K in the HMM is not generalizable across populations and data 

types, and K should be optimized for each individual dataset. In HMMs, there have 

generally been two approaches employed for choosing the number of states K. The first 

approach is the one we have employed, in which K is fixed a priori. The HMM model is fit 

over a grid of values of K, and the model fit for each value of K is then assessed through a 

goodness-of-fit criterion, such as the deviance information criterion [64]. The second 

approach uses Bayesian non-parametrics [65, 66], which has the advantage of automatically 

learning the value of K but the disadvantage of the need to explore transdimensional 

parameter spaces, thus adding to the computational demands of the algorithm.
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A practical issue in using HMMs is that the estimation of state-specific parameters is subject 

to sample size constraints. The primary algorithmic stability concern that arises as the 

number of states increases is that a lower number of observations are expected to be 

assigned to a specific state. This is equivalent of reducing the sample size for the estimation 

of the transition matrix, the vector of state-specific means, and the vector of state-specific 

variances. Therefore, the number of estimable free parameters is constrained by the number 

of time points and samples. Another computational concern is that the DIC must be 

computed for each number of states. However, as each model is independent of the other, 

computational speed-up may be attained through parallel processing.

4.4. Future work

The results presented in this work suggests several lines of future research. Firstly, we used 

the Pearson correlation coefficient to estimate functional connectivity between nodes. 

Although this is the predominant method that has been used to estimate undirected graphs in 

current resting-state fMRI studies, several other methods exist to estimate undirected graphs, 

including graphical lasso [67], partial correlation coefficients, and a large number of other 

possible methods for quantifying associations. Each of these methods provides an 

approximation to the true unknown graphical structure of the brain, and future studies may 

wish to evaluate whether some topological measures exhibit greater temporal stationarity 

under some estimation procedures than others. Whether temporal stationarity may also be 

improved through usage of particular parcellation schemes or variations in graph theory 

metric calculation should also be explored. Secondly, in order to facilitate comparison with 

current graph theory investigations, graph metrics for each window were estimated by 

averaging over the non-random connection density range, as the coefficient of variation 

across thresholds for each graph measure was within the range of within-subject variability 

described for fMRI data [68]. A straightforward extension of our model which avoids this 

averaging step is to directly model the vector within the emission distribution. Thirdly, we 

examined connectivity using a sliding window approach with a window size of 44s and 50% 

overlap. This choice was based on previous studies, which have found that a shorter window 

size of 44s provides the ability to resolve temporal dynamics while providing a good 

tradeoff with the quality of covariance matrix estimation [30]. Varying window size between 

30s and 2 minutes has been found to have relatively little impact on functional connectivity 

dynamics other than the expected result of reducing the variability associated with longer 

time windows [30]. Lastly, to identify dynamic patterns of graph theoretical measures, we 

used a finite HMM with Gaussian emission distribution. Although HMMs are an efficient 

way of recovering complex Markov processes in which hidden states emit the observed data 

according to some probability distribution, they have several limitations including difficulty 

separating heavily overlapped states. Of note, the overall higher DIC in TLE patients 

suggests that the temporal dynamics of brain topology in TLE patients may be more 

complex than in healthy controls, which may be captured by additional model parameters. 

Several extensions of the hierarchical model proposed in this paper may be explored to 

improve inference, including the use of Bayesian non-parametric methods to avoid a priori 

specification of the number of states, or different emission distributions in the HMM to 

accommodate graph theory measures with integer support spaces. Inference may also benefit 

from a larger number of time points and the inclusion of additional subjects.
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Appendix A. MCMC algorithm

We employ Markov chain Monte Carlo (MCMC) methods to sample from the joint posterior 

distribution of {A, ξ, θj}. In particular, at iteration (s):

1. Update A with Metropolis-Hastings step:

Propose  where 

, j = 1, …, K, for all rows h. Jointly accept 

with probability

2.
Update  with Metropolis-Hastings step. For each column t = 1, …, T:

a. For each element ξit, i = 1, …, n: If t = 1, propose . If t > 1, 

propose  from the current transition probability matrix A(s), i.e.

b. For each element ξit, i = 1, …, nt, accept  with probability

where

and where
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(A.1)

and where all transition probabilities in (A.1) are as given in the current 

transition probability matrix A(s). Note that (A.1) is true for every t < T, 

while for t = T the ratio simplifies to 1.

3. Update parameters of emission distributions:

a. Update μj, j = 1, …, K with Gibbs step: Draw

∀j = 1, …, K, where .

b. Update , j =, …, K with Gibbs step: Draw

∀j = 1, …, K, where .

4. Due to the invariance of the likelihood in (3) under permutations of the labels of the 

hidden states, label-switching occurs in hidden Markov models. We account for 

label-switching by enforcing the identifiability constraint μ1 < μ2 < … < μk. In 

particular, we permute the values of ξ and θj on-line to satisfy the above constraint.

Appendix B. Proof of unbiasedness and asymptotic consistency of N-index

It can be shown that (5) is an unbiased estimator of the average proportion of time spent in a 

stable state. In order to do so, it is enough to show that
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Furthermore, the variance of (5) asymptotically goes to 0 as either the number of subjects n 
→ ∞ or the number of time points T → ∞, since

(B.1)

which clearly goes to 0, since  faster than the summand goes to ∞. Note 

that the independence of indicators in (B.1) follows from first-order Markov property.

Appendix C. Evaluation of performance using simulated data

Here, we evaluate the performance of the model through simulated data, and demonstrate the 

utility of our proposed stationarity measures, the N-index and S-index, for quantifying 

aspects of temporal stationarity.

Appendix C.1. Simulation settings

In this section, we use simulated data to evaluate the performance of the Bayesian hidden 

Markov model for identifying hidden states and transition probabilities for graph theory 

metrics. In order to assess performance of the model in accurately estimating transition 

probabilities, we compute the mean square error of the estimated transition probabilities. We 

assess performance in accurately predicting the hidden states by computing the 

misclassification error for the estimated hidden state matrix, ξ. In addition, we demonstrate 

the utility of the N-index and S-index as quantitative measures for capturing the frequency of 

transitions between states.

In particular, we simulate data on graph theory metrics for n = 30 subjects and T = 300 time 

points. Using the silhouette index [69], three states has been found to optimally maximize 

the difference between within- and between-cluster variation for the strength of functional 

connections [13]. For each graph theory network measure, these three states are ordered, 

lending to a natural interpretation of these states as characterizing low, normal, and high 

levels of each network measure. Transitions between adjacent ordered states are expected to 

be more likely than transitions between non-adjacent ordered states (e.g., low levels of 

network connectivity, for example, are more likely to transition to a normal level of network 

connectivity before progressing to a high level of network connectivity). Based on these 

considerations, we generate the simulated n × T matrix ξ of hidden states as follows:

1. Using the following transition probability matrix:
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(C.1)

we follow [40] and [41], and sample the first column (i.e., the hidden states of the n 
samples at the first time point) from the initial probability vector πA, which is 

calculated as the normalized left eigenvector associated with the principal 

eigenvalue.

2. Given the first column of ξ, we sample all other columns from the transition 

probability matrix in (C.1).

Given ξ, we generate simulated values of X as in (2), where we fix μ1 = −0.5, μ2 = 0, μ3 = 

0.5, σ1 = σ2 = σ3 = 0.1. The simulated data are shown in Figure C.1 (left) and the underlying 

transition matrix is shown in Figure C.2 (left). Hidden states are shown in Figure C.2 (right). 

To evaluate robustness of our model to different levels of overlap between the states, we also 

evaluate a second scenario, with μ1 = −0.3, μ2 = 0, μ3 = 0.3, σ1 = σ2 = σ3 = 0.1 (Figure C.1, 

right).

Hyperparameters were set to be non-informative when possible. In particular, we set δj = 0, 

τj = 100, cj = 2, dj = 1 ∀j, α1 = α2 = α3 = 1. The MCMC chain was initialized with initial 

values , , , and . We initialized ξ(0) by setting 

 if the corresponding Tj < Xit < Tj+1, where T = [−∞, −0.5, 0.3, ∞] for the first 

scenario, and T = [−∞, −0.2, 0.2, ∞] for the second scenario. We initialized A(0) from the 

initial value of ξ(0), by setting  to the proportion of transitions from state h to state j in 

ξ(0). We ran 1000 iterations with the first 500 sweeps discarded as burn-in. Convergence to 

the stationary distribution was assessed using the Raftery-Lewis diagnostic.

Figure C.1. 
Simulated data: (Left) Simulated values of graph theory metric (μ1 = −0.5, μ2 = 0, μ3 = 0.5) 

and (Right) Simulated values of graph theory metric (μ1 = −0.3, μ2 = 0, μ3 = 0.3), for a 

sample subject.
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Appendix C.2. Performance on simulated data

Figure C.2 (a) shows the performance of our model for estimating the transition probability 

matrix and graph theory states under the first scenario. Performance under the second 

scenario, with a greater amount of overlap between the states, is shown in Figure C.2 (b). 

Predicted values of the transition probabilities were close to the true transition probabilities, 

with a mean square error of 0.0013 under the first scenario, and a mean square error of 

0.0009 under the second scenario. Hidden states were also predicted with high accuracy for 

both small and large levels of overlap between the states, with a misclassification error of 

0.23% for the first scenario, and a misclassification error of 4.76% for the second scenario.

Other parameters of interest, including the stationary distribution and measures of temporal 

stationarity, can also be inferred upon. In the first scenario, the stationary distribution, π̂, was 

estimated from the normalized left eigenvector of the predicted transition probability matrix 

as π̂ = [0.446 0.205 0.349]. In other words, the subject would be expected in the long-run to 

spend 44.5% of time in State 1, 34.9% of time in State 3, and 20.5% of time in State 2. The 

N-index was estimated as 0.553, indicating that an estimated 55.3% of the time was spent in 

stable states. The S-index was estimated on the scale of [0, 1] as 0.554, indicating that the 

weighted probability of only 0.554 for remaining in same state. As seen from Figure C.2 (a) 

and Figure C.2 (b), the proposed S-index appears to provide a good quantitative measure of 

the temporal stationarity of the dominant states, as frequent transitions are observed to occur 

for this graph theory metric between states 1 and 3. Estimates of the stationary distribution 

and stationarity of graph theory metric remained robust under higher levels of overlap 

between the states, with an estimated stationary distribution of π̂ = [0.445 0.213 0.342], 

estimated N-index of 0.566, and estimated S-index of 0.543 under the scenario of μ1 = −0.3, 

μ2 = 0, μ3 = 0.3.
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Figure C.2. 
Simulated data. (a) μ1 = −0.5, μ2 = 0, μ3 = 0.5: (Left) True transition probability matrix, 

(Middle) Posterior mean estimated transition probability matrix, (Right) True and posterior 

mode of predicted states for a sample subject. (b) μ1 = −0.3, μ2 = 0, μ3 = 0.3: (Left) True 

transition probability matrix, (Middle) Posterior mean estimated transition probability 

matrix, (Right) True and posterior mode of predicted states for a sample subject. For true 

and predicted states, first 30 time points shown are shown for simplicity.

Appendix D. Supplementary material for Section 3.1

Figure D.1. 
Example of model fitting in the event of mis-specification. Estimated probabilities of 

belonging to each state at each time point is shown for eigenvector centrality of a given 
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subject. (A) The probability of belonging to State 1 under the 3-state HMM is approximately 

equal to the probability of belonging to State 1 under the 2-state HMM, minus a small 

constant c1. (B) The probability of belonging to State 2 under the 2-state HMM is 

approximately equal to the probability of belonging to State 2 under the 3-state HMM, plus 

a small constant c2. The probability of belonging to State 3 under the 3-state HMM, c3, is 

composed of c1 and c2, and is small compared to the peaks in A and B.

Appendix E. Estimates of posterior probability of relative levels of temporal 

stationarity

Table E.1

Posterior probabilities of relative temporal stationarity for graph metrics. (a) Posterior 

probability of greater temporal stationarity in global efficiency than in path length; (b) 

posterior probability of greater temporal stationarity in betweenness centrality than in 

eigenvector centrality; (c) posterior probability of greater temporal stationarity in global 

efficiency than in local efficiency; (d) posterior probability of greater temporal stationarity in 

small-world index than in the other graph measures. λ, characteristic path length; GE, global 

efficiency; γ, clustering coefficient; LE, local efficiency; σ, small-world index; BC, 

betweenness centrality; EC, eigenvector centrality.

HC TLE

(a) Global integration measures (GE vs. λ)

NGE > Nλ SGE > Sλ NGE > Nλ SGE > Sλ

0.81 0.78 0.54 0.52

(b) Centrality measures (BC vs. EC)

NBC > NEC SBC > SEC NBC >NEC SBC > SEC

0.90 0.87 0.994 0.993

(c) Efficiency measures (GE vs. LE)

NGE >NLE SGE > SLE NGE > NLE SGE > SLE

0.98 0.97 0.97 0.96

(d) Small-world index

Nσ > NZ Sσ > SZ Nσ > NZ Sσ > SZ

Z = γ 0.76 0.75 0.00 0.00

Z = GE 0.89 0.87 0.999 0.999

Z = LE 0.998 0.997 0.999 0.999

Z = λ 0.98 0.97 0.999 0.999

Z = BC 0.97 0.96 0.999 0.997

Z = EC 0.998 0.997 0.999 0.999
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Appendix F. Stationary distribution of global efficiency among TLE patients 

for 2- and 3-state models

Figure F.1. 
Stationary distribution of global efficiency under (a) 3-state model and (b) 2-state model in 

TLE patients.

Appendix G. MAP estimates of ξ
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Figure G.1. 
Estimated states for clustering coefficient (γ), small-world index (σ) and betweenness 

centrality (BC), for individual healthy controls and TLE patients, based on MAP estimates 

of ξ. A few representative subjects are shown. Other subjects were similar (not shown).
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Highlights

• Temporal stationarity of graph theory measures of functional connectivity are 

examined.

• A Bayesian hidden Markov model is proposed to estimate temporal transitions.

• Two estimators of temporal stationarity are proposed to capture different levels 

of probabilistic uncertainty.

• Small-world index, global integration measures, and betweenness centrality 

exhibit greater temporal stationarity.

• Differences in temporal stationarity may aid in disease group discrimination.
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Figure 1. 
A hidden Markov model consists of a Markov chain with stochastic measurements on the 

hidden states (ξ1, …, ξT) and an independent emission distribution (X1, …, XT) conditional 

on the states.
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Figure 2. 
Model fitting: DIC for different values of K. γ, clustering coefficient; GE, global efficiency; 

LE, local efficiency; λ, path length; σ, small-world index; BC, betweenness centrality; EC, 

eigenvector centrality; NC, non-convergent solution. Crosses indicate non-convergent 

solutions.
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Figure 3. 
Temporal stationarity of graph metrics of (a) healthy controls and TLE patients using N-

index and (b) healthy controls and TLE patients using S-index. In (c), magnitude of 

differences in temporal stationarity between healthy controls and TLE patients for the 

various graph metrics are shown.
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Figure 4. 
Pie chart showing stationary distribution of (a) healthy controls; and (b) TLE patients. λ, 

normalized characteristic path length; GE, global efficiency; γ, normalized clustering 

coefficient; LE, local efficiency; σ, small-world index; BC, betweenness centrality; EC, 

eigenvector centrality.
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Figure 5. 
(a) Boxplots showing the estimated N-index for clustering coefficient (γ), small-world index 

(σ), and betweenness centrality (BC) for healthy controls and TLE patients. (b) Scatterplots 

showing the separation of pathological states based on the graph metric alone (bottom right 

panel); N-index alone (upper left panel); and combination of the N-index and graph metric 

(bottom left panel). We note that when temporal dynamics are considered as an additional 

feature, the pathological states exhibit much greater separability.
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