UC San Diego

Research Theses and Dissertations

Title
Nonlinear Stochastic Response of Marine Vehicles

Permalink
https://escholarship.org/uc/item/8234174n

Author
Duthoit, Christophe

Publication Date
1987-08-01

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/8234174n
https://escholarship.org
http://www.cdlib.org/

INFORMATION TO USERS

The most advanced iechnology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the upper
left-hand corner and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" x 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

siUMI

Accessmg the World's Information since 1938

300 North Zeeb Road, Ann Arbor, M1 48106-1346 USA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Order Number 8811829

Nonlinear stochastic response of marine vehicles

Duthoit, Christophe Frangois, Ph.D.
University of California, Santa Barbara, 1987

Copyright ©1987 by Duthoit, Christophe Frangois. All rights reserved.

U-M-1

300 N. Zecb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a checkmark v .

-t
.

Glossy photographs or pages
Colored illustrations, paper or print
Photographs with dark background

llustrations are poor copy

Pages with black marks, not original copy \/
Print shows through as there is text on both sides of page ‘/
Indistinct, broken or small print on several pages ‘/

Print exceeds margin requirements

© ® N O 0 » O D

Tightly bound copy with print lost in spine

-
o

Computer printout pages with indistinct print

-l
-h
.

Page(s) lacking when material received, and not available from school or
author.

12. Page(s) seem to be missing in numbering only as text follows.
13. Twopagesnumbered . Textfollows.

14. Curling and wrinkled pages _______

15. Dissertation contains pages with print at a slant, filmed as received

16. Other

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UNIVERSITY OF CALIFORNIA
Santa Barbara

Nonlinear Stochastic Response of Marine Vehicles

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in

Mechanical & Environmental Engineering

by
Christophe Duthoit

Committee in charge:
Professor Jean-Louis Armand, Chairman
Professor Marshall P. Tulin
Professor Theodore Kokkinis
ProZessor Michel K. Ochi

August 1987

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



_ The dissertation of
Christophe Duthoit is approved:

(772‘:.0/{4:,[36 A /;/«é,\,v

'/

Ox'vp@u\
! (7mrmttee Charperson

August 1987

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner.

Further reproduction prohibited without permission.



August 3, 1987

Copyright © by Christophe Duthoit, 1987

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

I am particularly indebted to my dissertation advisor, Professor J.-L. Armand for
his constant help and patient constructive criticism throughout this work. I am also
grateful to the other members of my committee Professors M. P. Tulin, T. Kokkinis
and M. K. Ochi for their inspiring guidance as well as to all the faculty and staff of the
University of California, Santa Barbara.

Other people made valuable contributions. Among them, F. van Roeckeghem is to
be specially thanked for his insightful comments regarding the numerical algorithm
leading to the distribution of maximum entropy.

Dr. P. Orsero provided much encouragements in the early stages of this
dissertation. Many of the applications have been made possible by the careful digital
simulations performed by Dr. J. F. Dalzell.

This work is the result of research sponsored in part by NOAA, National Sea Grant
College Program, Department of Commerce, under grant number NA85AA-D-SG-140,
project number R/OT-12, through the California Sea Grant College Program. The
U.S. government is authorized to reproduce and distribute for governmental purposes.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The support of the Ocean Technology Program of the Office of Naval Research,
Department of Defense, Dr. E. Silva, Program Director (ONR contract number NOO
014-86-K-0866) and the French company Technip Geoproduction are also gratefully
acknowledged.

Finally, I would like to express my deep gratitude to Diane and Adrien for their

continuous support and inspiration throughout this work.

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



August 3, 1959
June, 1983

June, 1984
1984 - 87

1986 - 87

Vita

Born in Neuilly sur Seine (France).

Civil Engineer, Ecole Spéciale des Travaux Publics, du Batiment
et de I'Industrie, Paris (France).

Master of Science, University of California, Berkeley.

Teaching assistant appointments, Dept. of Computer Science,
University of California, Berkeley, and Dept. of Mechanical &
Environmental Engineering, University of California, Santa
Barbara.

Sea Grant trainee

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Publications

"Nonlinear Dynamic Behavior of Moored Platforms Driven by Stochastic Seas,"
Proceedings, Offshore Mechanics and Arctic Engineering Symposium, Houston,
Texas, vol. 2, 1987, pp. 285-294 (with Pr. J.-L. Armand), also to appear in the
Journal of Offshore Mechanics and Arctic Engineering, ASME.

"Nonlinear Response of Marine Vehicles to Stochastic Signals: a Review," Technical
Report 87-12, Ocean Engineering Laboratory, Dpt. of Mechanical &
Environmental Engineering, University of California, Santa Barbara, Calif.,
93106, 1987.

"The Principle of Maximum Entropy Applied to the Nonlinear Response of Marine
Vehicles," submitted for publication in Probabilistic Engineering Mechanics ,
1988 (with Pr. J.-L. Armand).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Nonlinear Stochastic Response of Marine Vehicles
by
Christophe Duthoit

The dynamic behavior of marine vehicles in extreme sea states is a matter of great
concern following some recent and dramatic accidents. The complex problem of its
prediction can be approached through the study, yet of broader scope, of nonlinear -
dynamic systems driven by stochastic processes.

Nonlinear statistical dynamics is a relatively new and difficult field. Although the
diversity of techniques now available may seem fostering, the achievement of a unified
and general theory for nonlinear response to stochastic process appears as a quite
remote event.

Second-order statistics contain the most important information to describe a random
process. Both theoretical and empirical evidence showing the superiority of the method
of equivalent linearization to predict second-order statistics are exhibited and

exemplified. The rationale underlying the Wiener-Hermite functional model appears to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



further support this affirmation.

However, higher-order statistics cannot be accurately predicted within the
framework of this technique whenever deviation from normal behavior becomes
significant. A new technique for predicting the responss moments and cumulants of
nonlinear systems is presented.

This technique relies upon the construction of a series of linear systems aimed at the
prediction of the response statistics of a given order. Such linear systems are
successively defined by linearizing the original nonlinear system and matching the
Volterra functional model response statistics of the desired order. The linear system for
predicting second-order statistics coincide with the one obtained using the method of
equivalent linearization.

This technique is exemplified by a nonlinear system governed by the Duffing
equation with linear plus cubic damping. Several innovative results related to the
transfer functions and the response cumulant of Volterra series are exhibited and used
in our model.

Response probability distributions can be constructed from knowledge of these
statistical moments. Particular attention is devoted to the distribution of maximum
entropy and its justification as a method of inference in such underdetermined moment
problems.

Finally, several applications to the rigid body behavior of marine vehicles serve to
assess the accuracy and the versatility of these techniques. Response distributions of
maxima so predicted compare very well with exact solutions or time domain simulation
estimates when no exact solution is available.

xiv
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Introduction

Offshore technology has experienced a dramatic growth since 1937, when offshore
drilling began in the Gulf of Mexico. Operating in ever increasing depths and amid an
extremely hostile environment, ocean structures are characterized by their complexity as
well as by the difficulty to design them.

Drawing heavily on past experience, the design of ocean structures, similar to that
of ships, is for the most part based on empirical rules and codes. While such
experience may be extensive in the case of ships, the design of which is the result of
centuries of mostly careful and slow evolution, it is necessarily limited for ocean
structures. Furthermore, ocean structures are built for specific purposes and designed
to operate in particular environmental conditions. These may differ from one structure
to another and from those of existing structures.

Extrapolation of available data can be a perilous exercise, as exemplified by various
recent and fatal failures, partial or total, of ocean structures ("The Alexander Kielland
Accident”, 1981 and "Capsizing and Sinking of the ... Ocean Ranger ...", 1983)!. The

1Titles or authors followed by date refer to the bibliography.
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need for a more rationally-based design procedure for ocean structures is now well
recognized. _

The awareness of the present lack of understanding of the mechanisms leading to
large amplitude response and eventual capsizing of marine structures, such as
semisubmersibles, has motivated extensive, worldwide research. However, the
mathematical formulation of the problem represents a formidable challenge. Most of
the various phenomena involved are not yet fully understood. Nevertheless, a useful
insight into this complex problem can be gained from the consideration of simpler,
though as yet unsolved, situations. Such mathematica! models can be arrived at by
isolating and idealizing the prevailing phenomena, while discarding the unessential.

The design process (figure 0.1) of ocean structures involves five successive steps.
The environment interacts with the structure through a set of loading conditions.
Mathematical modeling allows the idealization of such physical phenomena. The
structure, in turn, responds to external loads in various ways (rigid-body motions,
bending moments, stresses...). The derivation and study of methods of analysis to
predict the response of an ocean structure to given external loads constitutes the
essential scope of this work. Finally, a reliability and risk study can be drawn from the
knowledge of the overall structure behavior. This is the design properly speaking.

The classical method of analysis does not adequately take into account the actual
operating conditions of ocean structures. The paramount reason for such discrepancies
stems from the diversity, as well as the complexity, of interacting effects governing the
loading conditions. Ocean structures operate in an environment random in nature,
which essentially governs their behavior. Therefore, rather than undertaking a

deterministic approach, through which randomness of loading conditions is more or
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Figure 0.1. Structural Design Process.
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less overcome by the introduction of "safety coefficients" into the design process, a
stochastic approach seems more approﬁriate. Thus the essential notion of risk is
quantified rather than simply eluded. Such a stochastic model may eventually lead to
the notions of probability of failure and reliability, useful in engineering dssign.

The development and implementation of probabilistic models for predicting the
loads acting on an ocean structure have already been the subject of comprehensive
research. Yet to be thoroughly investigated is the stochastic prediction of an ocean
structure’s response to environmental loads which would provide the information
essential for its rational design. The objective is to characterize the probabilistic
structure governing the stochastic response of the system or the statistical properties
exhibited 5y the response.

Linear system theory is a well developed body of knowledge, and its applications
are relatively straightforward. It has, on the other hand, severe limitations now
recognized in many situations involving ocean structures.

Nonlinearities play an important role in the design of moored ﬂoaﬁng structures, in
particular. Also, the response to loads in unusual or extreme conditions, which
constitutes a significant éspect of the design process, is essentially governed by
nonlinear effects. This is for instance the case whenever the small amplitude motion
and potential flow hypotheses, inherent to the linearized diffraction-radiation theory, do
not apply. Furthermore, a nonlinear model alone can yield insight into the mechanisms
leading to large amplitude response, and eventually to one or another mode of structural
failure.

More often than not, the time scales describing the time-varying loads and the

natural periods of ocean structures turn out to be of comparable magnitude. Thus, the

—
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Figure 0.2. Dissertation Outline.
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possibility for resonant behavior l;mst, in general, be explore&. These phenomena can
only be successfully explained within the framework of a dynamic rather than a static
model. Memory effects arising from the presence of the free surface must also be
treated within a dynamic approach.

The prime objective of this work is to improve the methods of analysis for
nonlinear, dynamic response to stochastic process (figure 0.1). Meanwhile, the
necessary mathematical modeling is assumed given, whereas the reliability and risk
study that follows is not discussed.

The following is an outline of the present work. The first chapter attempts to
explore available methods. The emphasis is placed on ocean engineering applications.
Statistical dynamics has inherited a considerable amount of knowledge from the work
of physicists in the theory of Brownian motion, electrical engineers in the fields of
information and control, and mathematicians in probability theory. In spite of a fruitful
cross-fertilization between these different disciplines, a general theory for nonlinear
response to stochastic process is not yet available.

The nonlinear features of a transformation represent such a difficulty that many
techniques rely upon the consideration of one or several linear systems substituted to
the original nonlinear one (equivalent linearization, Volterra functional model ...).

The proposed technique relies upon two essential observations. First, that linear
modeling is a simple, versatile and appealing technique, then, that the method of
equivalent linearization yields accurate estimates of second-order statistics (Chapter 2).
If the method of equivalent linearization appears appropriate to predict secor.d-order
statistics, it may be possible to extrapolate this method to the construction of linear
models to predict higher-order statistics (Chapter 3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

Finally, probability distributions can be constructed from knowledge of these
statistics (Chapter 4). They provide the necessary information for the rational design of
ocean structures. Figure 0.2 illustrates the relations among these different aspects of
the resulting method of analysis. The connections with other available techniques are
also exhibited. '
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CHAPTER 1
Bibliographical Review

We have already discussed how useful insight into the behavior of ocean structures
in unusual or extreme conditions can be gained from the study of nonlinear, dynamic
systems driven by stochastic signals. Therefore, it is relevant to explore, in details, the
field of nonlinear statistical dynamics. Meanwhile, the emphasis will be placed on
ocean engineering applications.

The mathematical problem may, in general, be stated as follows. Let us consider a
nonlinear dynamic system described by the functional input-output relationship!:

Qiy®1 =x(
(1.1

1Upper-case Roman symbols denote scalar functions and operators, lower-case Roman symbols denote
scalar variables, the same notations in bold are used for vectorial and matrix quantities, whereas cursive
Roman symbols represent functionals.
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where x(t) and y(t) respectively denote the excitation and the response stochastic
processes, and ? is a nonlinear autonomous (i.e. time-invariant) and generally causal
functional.

The causality condition, usually satisfied by physical systems, may be

mathematically written as:

Fiy0O} = Po@; t<=x®
(1.2)
It is required to derive some statistical or probabilistic properties of the response
process y(t) when the deterministic system 7 and stochastic excitation x(t) are given.
Such a general theory of the same scope as the linear theory, is not ).'et available,
and thus progress toward a satisfactory stochastic theory of ship and platform motions
has been rather slow. |
Nonlinear stochastic modelling is a relatively new and difficult field, drawing on the
latest advances in nonlinear system theory and stochastic processes. All the existing
approaches are, in some way, limited in scope by assuming particular properties of
both the excitation (Gaussian, harmonic, white noise, etc.) and the system (time-
invariance, memoryless, analytic, etc.). Moreover, most of these techniques yield a
limited description of the response (generally second-order statistical properties or first-
order probabilistic structure).
We will examine some exact methods first. These techniques constitute the basis as
well as most of the leading ideas governing other approximated methods which may

apply whenever no exact one is possible.

—
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Exact Methods

Historically, the mathematical methods of analysis in the discipline of nonlinear
statistical dynamics evolved quite independently from two fundamental theories.

The spectral analysis (or broadly speaking, the correlation methods) essentially
appeared in connection with signal processing in the fields of communication and
electrical engineering. Whereas the theory of Markov processes and the Fokker-Planck
equation (methods of kinetic equations) are intimately linked to early works in the
theory of Brownian motions and later to statistical physics.

Both theories are reviewed below. In addition, several fundamental theorems

related to the behavior of memoryless (or static) systems are examined.

Spectral Analysis Theory: Linear Systems

The theory governing the behavior of linear autonomous dynamic systems:

Liy®} = x(®

(1.3)
driven by stationary Gaussian signals is a well developed body of knowledge and we
will not reproduce it here2

“Related litterature and textbooks are abundants (Crandall, 1963b, Crandall and Mark, 1963, Lin, 1967,
Bolotin, 1969, Papoulis, 1984, Newland, 1984 and Lin et al., 1986).
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Let us simply state that the spectral analysis of linear systems originated during the
first half of the century, and culminated with the much celebrated work of Rice (1944 &
1945).

The method is essentially based on the Wiener-Khintchine relations (Wiener, 1930)
and the convélution theorem together with the assumptions of stationarity and
ergodicity of the response process. They yield relatively straightforward frequency
domain expressions (power spectral density) of the second-order statistics of linear
autonomous transformations of stationary Gaussian processes.

For future reference it is essential to emphasize that the response of such
transformations may be entirely described by its mean value and second-order statistics.
These second-order statistics can be evaluated in the frequency domain through the
power spectral density or in the time domain through the autocorrelation function.

Statistical moments of order 1 and 2, however, do not completely describe the
behavior of random processes whenever deviation from normality is substantial, even if
the transformation is linear. Furthermore, associated with this difficulty is the fact that
nonlinear transformations, which are to be discussed below, do not preserve Gaussian
character. |

The case of non-Gaussian excitations is discussed in Kuznetsov, Stratonovitch and
Tikhonov (1953). ‘

The application of linear spectral theory to describe the motions of ships in irregular
waves appeared with the pioneering work of St. Denis and Pierson (1953). Later, St.
Denis (1973, 1974a, 1974b & 1975) and Yamanouchi (1974) discussed the severe
limitations of linear models in various situations involving offshore platforms as well as

ships.

we—
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Nonlinear Static Systems

Although the theory of nonlinear system with memory remains our primary
concern, it is instructive to examine the, quite extensive, litterature on static
transformations in order to gain further insight into the difficulties associated with these
memory effects.

Nonlinear static systems can be understood as nonlinear transformations without
memory, therefore the response of such systems only depends upon present or

instantaneous values of the excitation process:

F(y(®) = x()
(1.4)
In the case of a Gaussian excitation, Price's (1958 & 1964 and Baum, 1969) and
Bussgang's (1952) theorems yield useful information on output second-order statistics.
Whereas the case of a general excitation can be found in Abramson (1967).
Generalization of Price's theorem to the functional version of ( 1.4) can be found in
Gorman and Zaborszky (1968). While, the response probability distribution can be
easily obtained by a simple transformation in most cases (Bendat, 1985).
A number of the leading contributions to the theory of memoryless transformations
of stochastic processes are reproducéd in Haddad (v1.975).
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Fokker-Planck Equation: Nonlinear Dynamic Systems

The origins of the Fokker-Planck equation are intimately linked to the theory of
Brownian motions, named after an English botanist Robert Brown who observed in
1827 that small particles suspended in fluids undergo erratic movements. -

The very first satisfactory statistical theory of Brownian motions appeared with
Einstein in 1905 through the diffusion equation in bringing together the Maxwell-
Boltzmann theory and the random walk method (Fuller, 1969). However, it was not
until a decade later that the combined works of Smoluchowski, Langevin, Fokker,
Planck, and Ornstein among others led to considerable generalization of Einstein's
pioneering work: the Fokker-Planck equation. Whereas, further mathematical aspects
of the theory were examined by Wiener, Kolmogorov, and others (Uhlenbeck and
Omstein, 1930 and Ming Chen Wang and Uhlenbeck, 1945).

Essentially, the method relies on the fact that the response of a discrete dynamic
system subjected to a Gaussian white noise signal behaves as a continuous
multidimensional Markov process. Then, it is possible to show that Markov processes
must satisfy a consistency equation; the Chapman-Kolmogorov or Smoluchowski

equation:

POy 1Y 1) = [ POp L ITp D PO, LIy, 1 dy, 4 StSy

(1.5)
The Smoluchowski equation, in turn, leads to the response transition probability

density function p(z, s |y, t), solution of a partial differential equation; the Fokker-

—
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Planck-Kolmogorov equation (Ming Chen Wang and Uhlenbeck, 1945 and Caughey,
1971):

o[A, (t,y) ] IB.(t,
_g% z Pl 1 z z ,, y)pl
(1.6)

The steady-state solution of equation (1.6) is the probability density function p(y)
of a stationary response process y.

The Fokker-Planck equation has been subsequently applied to a variety of problems
in electrical engineering, nonlinear control systems, nonlinear vibrations...

The appealing aspect of an approach based on the Fokker-Planc -Kolmogorov
equation is that the derived solution is an exact one. However, the assumptions
underlying the existence of an analytic stationary solution to equation (1.6) are quite
restrictive: in general the nonlinearities are required to be of static nature only, and the
excitation must be a Gaussian process the spectral density of which is that of a white
noise (Caughey, 1963a & 1971).

A precise and comprehensive survey of the nonlinear systems which can be solved
exactly by means of the Fokker-Planck equation can be found in Caughey (1971),
Caughey and Ma (1982a & 1982b) and Ludwig (1975).

Concerning second-order properties of the response, virtually all the Markov
processes the power spectrum of which can be evaluated exactly are the one which are
Gaussian (Ming Chen Wang and Uhlenbeck, 1945). Therefore, the case of second-
order statistics of nonlinear transformations remains unsolved at least from the theory

of Markov processes.
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Roberts (1981) derived the amplitude distribution of the slow drift oscillations of
moored vessels from the Fokker-Planck equation.

Approximate Methodé

Drawing upon the two fundamental techniques described in the previous section,
more general nonlinear transformations of random processes, for which no exact or
closed-form solutions are known, can be discussed.

Again, two kinds of methods can be examined. Methods which relies on the theory
of Markov processes and It5 stochastic calculus and those essentially based on spectral
analysis and functional calculus. Both are addressed through this section.

Let us start this chapter on approximate methods with a rather systematic, yet
cumbersome, technique which consists in a time domain simulation of the governing

equations.
Time Pomain Simulation

Time domain digital simulation of the equations of motion remains the foremost
way of predicting the response of a nonlinear system to some prescribed input.

Apart from its systematic aspect, such a method exhibits many well-known
drawbacks, mostly linked to the prohibitive amount of calculations necessary. In
particular, in the case of a stochastic excitation, a spectral or probabilistic description of

SERSE
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the response becomes rather cumbersome using a time domain simulation, the nature of
which is essentially deterministic.

Clearly, pre- and post-processing of the time simulation of equations of motion
generally include respectively simulation of the excitation power spectrum and spectral
analysis of the response time series. Both of which must be handled with care and are
quite demanding in computer capacity if conducted properly.

For these reasons, stochastic frequency domain techniques are generally preferred,
whenever possible, to the more expensive time domain techniques.

Nevertheless, it has been applied to the description of ship motions. Dalzell (1971
& 1973) showed, through a time-stepping procedure, that for most of the practical
dynamic domain, the distribution of roll maxima does not correspond to the distribution
of the maxima of a random Gaussian process predicted by theory, i.e. the Cartwright
and Longuet-Higgins (1956) distribution.

Pérez y Pérez (1974) modeled the motions of a steered ship in waves by a linear
convolution integral and frequency independent nonlinearities considered to be part of
the exciting forces, these nonlinearities being associated with the rudder forces, viscous
roll damping and restoring forces and moments. When compared with experiments,
the roll motion prediction proves to be not as accurate as the yaw and rudder motion
predictions.

Besides digital computer simulations of the equations of motion, analog
measurements of electronic or electro-mechanical circuits are possible and may prove to
be useful when the system in hand can be successfully modeled in that manner (Broch,
1977).
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Equivalent Linearization

Linearizing the system comes next among the available techniques. Basically, an

“"equivalent" linear system:

-Ceq{y(t)} = x(t)

1.n
is substituted to the original nonlinear one; equations (1.1).

The price to be paid for such a drastic simplification of the nonlinear model lies in
the choice of a linearization procedure, which does not follow any strict guidelines, as
well as in an incomplete description of the nonlinear system in hand which ignores the
specific features® of nonlinear systems. The system is thus essentially assumed to
behave as a linear one.

In the case of a deterministic excitation, Kryloff, Bogoliuboff and Mitropolsky
(1947 & 1961) invoque equivalent energy balance during one cycle.

Drawing upon Kryloff and Begoliuboff work, the stochastic case is generally
handled in replacing the original nonlinear equations describing the system, by

equivalent linear equations which minimize the mean square error:

SNonlinearities usually have two different effects. The first of these leads to a response which differs
only quantitatively from the linear response (amplitude modulation), while the second one induces
phenomena which are not predictable within the framework of a linear approach, such as non-Gaussian
response to Gaussian processes and certain types of dynamic instabilities, sub- or superharmonic
responses (frequency modulation), bifurcations...
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ElPiy0} - L yob" @yl - L, fyob]

(1.8)
An application of functional calculus of variations (Volterra, 1930) leads to the

following set of linear integral equations in terms of the kemels of equivalent system

Lo

ny(t)-jheq(o) R”(‘:-c) do=0 V1s0

(1.9)
which are known, in linear mean square estimation (linear filtering), as the Wiener-
Hopf equations (Wiener, 1949 and Papoulis, 1984).

The more common case of nonlinear differential equations of motion leads to linear
algebraic equations in the equivalent linear system parameters. This technique was
introduced by Booton (1953 & 1954) and Caughey (1959, 1960 & 1963b). The
resulting system thus depends upon some statistics of the response?, which is not really
inconvenient provided that stationarity is preserved.

- Further theoretical foundations, like proofs of existence and uniqueness of the
derived equivalent linear system, can be found in the works of Iwan (1973) and Spanos
and Iwan (1978). ‘

The class of nonlinear systems that can be handled within the framework of the
method of equivalent linearization is quite large. In principle, the nonlinearities are not

4Therefore the response probability law must be assumed. The various alternative procedures have
been discussed by Crandall (1979), Beaman and Karl Hedrick (1979) and Tung (1979).
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restricted to any term, but are generally assumed to be "weak” although the underlying
reasons remain unclear.

Moreover, equivalent linearisation techniques may be applied to coupled sets of
equations of motion (Caughey, 1963b, Kazakov, 1965 and Iwan and Yang, 1972) as
well as asymmetric nonlinearities (Borgman, 1967 and Spanos, 1980).

Hysteretic behavior as well as non-stationary excitations are, at least in principle,
amenable to equivalent linearization.

Nevertheless, it is yet unclear what kind of response statistics can be predicted
within reasonable accuracy through the use of this method. In other yvords, does
equivalence in the mean square sense precludes accurate prediction of statistics other
than second order ones?

Moreover, the available litterature seems to indicate that the method of equivalent
linearization tends to underestimate the response statistics (Lin, et al., 1986) although
no theoretical justification appears to support this observation.

This method has been applied to ship rolling in random waves by Kaplan (1966)
(viscous damping) and Vassilopoulos (1971) (viscous damping and nonlinear restoring
moment). A variation of this technique involves the use of a describing function in
considering the ship as a feedback system (Flower & Mackerdichian, 1978).

Following the same idea, it is also possible to substitute an "equivalent" nonlinear
system to the original system when, for example, the “equivalent" nonlinear system
belongs to a class of problems which can be solved (exactly or not) (Caughey, 1984).
A similar methodology has been proposed by Jaunet (1984) where a simplified
nonlinear model (cascading systems: linear with memory + nonlinear without meraory)
of ship rolling in irregular seas is identified from experimental data .

e
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White Noise Spectrum Excitation

The mathematical idealization of white noise excitationS allows the use of
techniques based on the Fokker-Planck equation as well as It5 calculus.

In this section nonlinear systems for which no exact solutions are known, are
discussed. It will be shown how approximate response probability distributions or
statistics can be evaluated through these techniques.

Fokker-Planck Equation

The foremost and maybe most restrictive hypothesis related to the application of the
Fokker-Planck equation is that the excitation power spectrum must be that of a white
noise. In principle, this assumption may be removed if one recalls that colored
spectrum may be whitened whenever they are factorizable$ (Schetzen, 1980 and
Papoulis, 1984). However, this possibility is more theoretical than it first appears
since it leads to such an excessive complication of the associated Fokker-Planck
equation that even numerical solutions are not easily obtained.

Therefcre, one is left with approximate methods which may take more or less into
account the shape of the excitation spectrum. One such method is a stochastic
averaging procedure proposed by Stratonovitch (1963 & 1967) and applied with some

5Such an idealization may be justified provided that the correlation time of the actual excitation process
is small when compared with the relaxation time of the dynamic transformation (Lin, 1967, Lin et al.,
1986).

6A procedure due to Wiener (1949).
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success to the nonlinear broad-banded roll motion of ships by Roberts (1982a, 1982b,
1984 & 1985).

When the Fokker-Planck equation (1.6) associated with the nonlinear system in
hand cannot be solved exactly, a number of approximate techniques exist. The method
of equivalent nonlinearization can be invoqued (Caughey, 1984 & 1986) and has been
applied to the case of an oscillator with nonlinear damping by Kirk (1974). Haddara
(1973 & 1974) used a perturbation method to solve the Fokker-Planck equation in the.
case of the roll motion of a ship. |

The Fokker-Planck equation can also be solved numerically. The method of finite
differences is used by Ochi (1984 & 1986), in the case of the Duffing oscillator with
nonlinear damping driven by a Gaussian white-noise excitation which was assumed to
model the surge motion of a tension leg platform in heavy seas.

A Galerkin method with Hermite polynomial expé,nsion can also be used. Wen
(1975) employed such a numerical scheme in the case of nonstationary excitations.
While Taudin and Rocaboy (1986) proposed a similar technique in the case of multi-
degree-of-freedom marine structures subjected to general wave excitations. Taudin and
Rocaboy (1986) emphasized that this numerical scheme is about as consuming in
computer time as a time domain simulation. Moreover numerical instabilities may arise
and therefore such a versatile technique does not seem, at least for the time beiné, to be

very useful in practical applications.
Cumulant Closure

The statisticai moments and cumulants of the response of nonlinear systems to

white noise excitation can be computed through Itd stochastic calculus (Itd, 1951a &
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1951b) from the governing equatiors. Successive coupled equations in the response
power moments generally result. They form an infinite hierarchy. Therefore, an
appropriate closure scheme must be used in order to obtain approximate closed-form
solutions.

One such closure scheme relies upon neglecting cumulants, which represent higher
and higher order measures of deviation from normal behavior, after some prescribed
order (Crandall, 1980, Wu and Lin, 1984).

This closure scheme seems to yield accurate results (Crandall, 1980 and Wu and
Lin, 1984) but has yield very few applications to ocean engineering problems so far
(Kanegaonkar and Haldar, 1987).

Perturbation Techniques

The general feature of perturbation methods is to substitute an infinite number of
linear systems to a nonlinear one through an expansion in terms of a "small" parameter
associated with the magnitude of the noniinearities.

In this way, the difficulties related to the nonlinear features of the system
temporarily disappear. On the other hand, the system response is now expressed in
terms of a, generally infinite, series (Crandall, 1963a). The difficulty of evaluation of
each term usually increases geometrically with its order in the series.

Two fundamental questions then arise; namely the convergence of the series, as
well as the number of terms necessary to get an accurate description of the solution.
The answer to the former is generally not easy although one may get a good

approximation of the solution from the knowledge of the first few terms only, even
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when the series diverges. Once again, the nonlinearities must remain weak in order to
insure both convergence and accurate prediction of the solution with a limited number
of terms.

Such an expansion procedure has been applied to the nonlinear rolling of ships in
random seas, first in the case of viscous damping (Yamanouchi, 1964 & 1966) and
later in the case of a static nonlinearity (Flower, 1976). Both papers discuss the
influence of nonlinearities on the response power spectrum.

Among the perturbation techniques, multiple scale methods (spatial and/or
temporal) may be applied to second order low frequency excitation problems
(Triantafyllou, 1979 & 1982 and Agnon and Mei, 1983).

Basically, the general idea underlying the work of Triantafyllou (1979 & 1982) is
that the motions of a floating body may be splitted into two components: a smail
ampiitude, quickly varying motion and a large amplitude, slowly varying motion. The
main hypothesis being to assume that the two motions may be treated separately. The
solution may eventually be written as the sum of the solutions of the two linear

problems.

Functional Series Representation Methods

In most derivations of the equations of motion of floating bodies such as ships and

offshore structures, the system is conveniently reduced to a set of second-order
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differential equations with frequency-dependent coefficients?, whether linearity is
assumed or not.

The simplicity of such a description is only apparent; it actually represents integral
equations in the time domain, the physical interpretation of which lies in the fact that a
structure freely floating in waves is actually a space-time system.

Various approximations and integrations are made to reduce it to a time only system
(Tick, 1959 and Wehausen, 1971). The price to be paid to allow such a simplification
resides in the memory effect which appears as we get rid of the space dimensions and is
mathematically described by integral equations over the past history of the motion.

When the further assumption of linearity is made, the system is compactly
described by its impulse response matrix in the time domain and by its harmonic
response matrix in the frequency domain. The fundamental importance of these
concepts in ship hydrodynamics have been introduced by Cummins (1962) and further
emphasized by Bishop, Burcher and Price (1973).

In the nonlinear case, a perturbation technique would represent a natural
generalization of this procedure to handle the non-linearities. It may be intuitively
thought not as a regular expansion in power series, but rather as a power series "with

memory", namely the Volterra functional series representation technique.

Volterra Functional Series
The functional series representation of differential, integral and integro-differential
equations originated with the work of Volterra by the end of last century (see e.g.

7rThis dependency is omitted or neglected without much justification among virtually all the litterature
reviewed.
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Volterra (1930) and Barrett (1980b) for a comprehensive bibliography). Essentially,
the input-output relationship of a given analytic system is expanded in a functional
power series which can be formally obtained, by analogy with Taylor series, through
successive functional derivatives, as defined by Volterra (1930):

0= Y, A {x®}

n=1
(1.10)
where the n-th order Volterra functional is defined by3:
/‘ln{x(t)} = “‘j hn(tl,‘tz,...,‘t ) X(t - T, x(t - T) . X(t-T D dtldtz...d‘r. .
(1.11)

Such a power series is called a Volterra series, and the kernel hy(T1,%,...,T,) iS
called the n-th order Volterra kernel. In the case of a causal (or physically realizable)
system (equation (1.2)), kernels h, must vanish whenever any of their arguments
become negative; A

It is a "power series with memory". That it is a power series can be readily seen
recalling that the n-th order Volterra functional /Lln{x(t)} is a homogeneous functional
of order n. Itis a series with memory since fla{x(t)} is a n-fold convolution in time.
Clearly, the generalized n-th order Volterra functional /'ln{xl(t),...,xn(t)} is n-linear,
by analogy with multilinear function theory.

Wiener (1958) later applied Volterra's description of general functional

relationships to nonlinear communication problems. The first systematic study of the

SInfinite bounds of integration will often be omitted.
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application of the Volterra functional model to physical systems appeared with the work
of Barrett (1963).

Vassilopoulos (1967) discussed the applicaf:ility of the Volterra and Wiener series
to the motions of a ship in irregular seas modeled as a nonlinear autonomous system,
together with particular applications to the cases of wave-induced ship resistance in
random seas, as well as uncoupled nonlinear motions such as roll.

Determination of the Volterra kernels. The problem of determining the
kernels h,(t;,%,,...,T,) or equivalently the transfer functions? H (0;,0;,...,0,) can be
understood differently depending on the problem in hand.

In the first case, the Volterra kemnels are to be determined from knowledge of a
general functional relationship of the type (1.1). This inversion problem admits a
solution whenever the functional ‘7 is analytic, and its linear part stable (therefore
invertible (Barrett, 1963)). In this case, several methods are possible.

In the direct expansion method, the system equations are manipulated until they are
brought into the form of the Volterra series expansion (1.10) (Bedrosian and Rice,
1971). In the case of nonlinear autonomous deterministic systems19, these identities

lead to successive algebraic equations in terms of the transfer functions of any order of
functionals Hn and ? (Barrett, 1963 and Parente, 1970). Such an approach yields

directly the transfer functions H,, via frequency association.
The harmonic input method relies on specific properties of the Volterra transfer
functions. Clearly, they can be understood as harmonic response functions (Bedrosian

and Rice, 1971).

9The transfer functions are n-fold Fourier transforms of the kemnels, and the Fourier transform is one-to-
one

10Assuming a deterministic system does not preclude the possibility of stochastic excitations.
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In the second case, the Volterra series is determined from simultaneous
measurements of the input and the ouipixt functions. This is the case of identification.
Schetzen (1965b) proposed a method for measuring the Volterra kernels of nonlinear
systems. Essentially, this approach' is based on the n-linear properties of n-th order
Volterra functional /LZ,, ”

Statistical and Probabilistic Properties of the Response. Once the
Volterra series is entirely determined, it is possible to evaluate the statistical properties
of its response y(t).

Most of the existing works deals with the prediction of second-order statistics 1! of
nonlinear autonomous systems driven by ergodic random Gaussian processes.

Essentially, tire response autocorrelation function is evaluated first:

Ry,® =2, - Bl (x0} A_{xte+ O]

n=1 m=1

(1.12)

The response power density spectrum may then be obtained by Fourier transform

of the above equation (1.12). A direct approach leads to the result derived by Rudko
and Weiner (1978). Clearly, if x(t) is of order &, the response power density spectrum
Syy(®) so obtained direclty appears as a power series of &, keeping in mind the
homogeneous property of functional IL[,, For example, E[fla{x(t)}/'lm{x(tn) H will

be of order gm+n,

11Essentially because the Volterra and Wiener functional models were first applied in connection with
signal processing and mean-square estimation in the field of communication.
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In an alternative approach, proposed by Mircea & Sinnreich (1969), the terms in
(1.12) are reordered, resulting in a single series which turns out to be closely related to
the Wiener-Hermite expansion. v ‘

Dalzell (1976b & 1982) and Yamanouchi (1977) investigated the applicability of the
Volterra series model to nonlinear ship rolling. Particular attention has been devoted to
the third degree Volterra functional (Dalzell, 1982), where the transfer functions are
evaluated using the so-called harmonic input method, while the roll spectrum is
evaluated through the Mircea-Sinnreich series.

Dalzell (1976a) and Dalzell and Kim (1979), used this technique again in the
problem of added ship resistance in irregular waves and lateral drift forces and moment
(Kim and Dalzell, 1981 and Dalzell, 1986). Langley (1986) analyzed the low
frequency motions of moored vessels.

Borgman (1982) described the general procedure to iake into account various type
of nonlinearities (wave theory, structure motion, drag force, mooring and free surfice
effects).

Finally, Bouché (1985) and Bouché and Olagnon ( 1985) analyzed the vibrations of
a fixed circular cylinder in waves where the transfer functions were evaluated by a
direct expansion procedure.

Although second order statistics are essential they only yield an incomplete
description of the response of nonlinear systems, principally when deviation from
normal behavior becomes significant. In particular, the accurate prediction of the
probabilistic structure of the response necessarily involves higher order statistics.

Although there does not appear to exist any general formula, the first few output
cumulants of general Volterra series can be computed from Bedrosian and Rice (1971),
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which in turn, may lead to an Edgeworth-series type probability distribution. Yet, quite
surprisingly, there does not seem to exist any application of these ideas.

In the case of second-order autonomous stochastic systems, the probabilistic
description of the response is possible through the Kac-Siegert method (Kac and
Siegert, 1947). Applications of this method to ir_mrine structures can be found in Neal
(1974), Vinge (1983) and Naess (1985). Ultimately, extreme-value behavior of the

marine structure response may be obtained (Naess, 1985).

Wiener-Hermite Functional Series

Nonlinear system representation by Volterra functionals is but one technique among
the functional representation techniques.

Two basic difficulties are associated with the practical application of the Volterra
functional series. The first difficulty arises with the measurement (identification) of the
Volterra kernels/transfer functions of a physical system, whereas the latter one is related
to the question of convergence of the resulting series.

To circumvent these problems, Wiener constructed a new set of orthogonal
functionals Kn{x(t)}, orthogonal with respect to a Gaussian white noise input,
determined from the Volterra functionals (Wiener, 1958, Barrett, 1963, Schetzen, 1980
and Rugh, 1981). The orthogonality relations are:

EIK (x©1 K _{x¢+D}=0 n=m

(1.13)
Orthogonalization of the Volterra series (1.10), through a Gram-schmidt
orthogonalization procedure, leads to the Wiener series:
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yo = 2, K {x}

n=1

(1.14)

Because the convergence of an orthogonal series is a convergence in the mean, the

class of nonlinear systems that can be described by the Wiener functionals is much
broader than the class that can be described by a Volterra series (Schetzen, 1980).

Yet another and simpler derivation of the Wiener functionals expansion relative to a

Gaussian white noise can be achieved through expansion in some set of orthogonal

polynomials. A suitable choice of orthogonal functional polynomials are the Grad
Hermite polynomials /2¢() (Barrett, 1963 & 1964):

(n)
/Cn{x(t)} = ‘”J- kn(tl,tz,...,tn) he {x;t- Tpt- Ty t- ':n} d‘t:ld‘cz...d'cn

(1.15)
where the Wiener kernels k,(t;,T,,...,T,) may be determined through the orthogonality

condition (1.13):

;o8 _ ée(n) ‘
n! So k 2 (T1sTpreess T ) =Ely(® {x;t- Ty t- T t- T}

(1.16)

The Wiener-Hermite expansion can be generalized to the case of a non-white

Gaussian excitation process by redefining appropriate Hermite functionals (Barrett,
1980a & 1982).
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Clearly, the Wiener-Hermite functional series can be understood as an crthogonal
expansion with memory relativé to a Gaussian input process.

It will be now shown how advantage can be gained from such an orthogonal
expansion both in the measurement of the kernels and transfer functions and in the
derivation of output second-order statistics.

Determination of the Wiener-Hermite kernels. The Wiener kernels
ky(%1,%2,...,Ty) and transfer functions K, (®,,0,,...,00,) can be determined from
knowledge of the Volterra kernels and of the transfer functions (Barrett, 1980a & 1982
and Rugh, 1981)

However, one of the appealing aspects of these orthogonal expansions lies in the
relative simplicity to identify the corresponding kernels and transfer functions:

_Uj ku("l’“z’"'"’n) R, (0;- ) Ru("z' Ty) - Rn(cn- T) dcsldcsz...dcrn

1
= F Ry he(n)(x)(tl’Tz’...’tn)
(1.17)
S (n) (m 1 ,0)2,. . .,mn)
K (0,,0,...,0) = y e "(x)
n! S _(w,) Sxx(m2 - S, (@)
(1.18)

The use of the Wiener expansion in analog identification of nonlinear systems,
driven by stationary Gaussian white noise, appeared with the work of Lee and Schetzen
(1965) (equation (1.17)). Whereas French and Butz (1973) showed how the Wiener
kernels may be measured in the frequency domain through equation (1.18). Extensive

-
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applications to physiological systems can be found in Marmarelis and Marmarelis
(1978) and Marmarelis (1979).

The application of identification techniques of linear autonomous systems to ship
and offshore structure motions is well established. Essentially, cross-spectrum
techniques (equation (1.18)) are used in order to evaluate the linear transfer function.
The superiority of the cross-spectrum over the auto-spectrum technique is not only that
it yields complete response characteristics, including both amplitude and phase
relations, but also that cross-spectrum is free from the effect of any orthogonal!2 noise
included in the response (Yamanouchi, 1974). _

In this respect, such an approach, together with an auto-spectrum technique allows
a convenient measure of the adequacy of the linear model through coherence functions
(Bendat, 1982, 1983 & 1985).

The cross-spectrum approach (1.18) to the identification of nonlinear systems has
been mentioned for some time in the ocean engineering litterature, but without any
reference to its mathematical foundation: the Wiener-Hermite expansion.

For example, as early as 1961 Tick (1961) and Hasselman (1966) showed that the
nonlinear transfer functions can be obtained from high order statistical moments of the
ship motions (equations (1.18)). This underlines the fact that when a nonlinear system
is driven by a stationary Gaussian noise, the output is, in general non-Gaussian and
therefore it cannot anymore be reasonably described by its first two moments alone.

Dalzell (1974) demonstrated, through identification, that a second order Volterra
polynomial model is a reasonable representation of the added ship resistance produced
by waves. He used identification techniques to evaluate the linear and quadratic kernels

l20rl:l'nog0ﬂa1 in the sense of equation (1.13).
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through the cross-spectrum and cross-bispectrum respectively. Assuming the Gaussian
random wave model valid, Neal (1974) and Borresen (1978) treated the nonlinear
response of a ship up to the second order, i.e. taking the low-frequency excitations into
account.

A quite general and advanced review of the identification techniques of second and
third order Volterra systems can be found in Bendat (1985), where particular emphasis
is placed on square-law (with or without sign) and cubic systems.

A somewhat systematic approach to identify a general transformation giving the
inline and transverse forces on a vertical cylinder element in raadom waves has been
undertaken by Vugts and Bouquet (1985). The adequacy of the models to describe the
relationship between input and output is evaluated by a total cokerence function
(Bendat, 1985). This work led to a revalidation of the Morison equation, together with
the associated dilemma of an appropriate selection of the empirical coefficients.
Moreover, among their conclusions was emphasized the coefficient dependency on the
input conditions. Such a dependency is in contradiction with the "black box" concept.

Statistical and Probabilistic Properties of the Response. Keeping in
mind the orthogonality of the Wiener-Hermite expansion (equation (1.12)), the

response autocorrelation function can be written as the single sum:

R, (V)= f IR {x(0} K {x(t+ D

n=1

(1.19)
‘The response power density spectrum may then be obtained by Fourier transform
of the above equation (1.19) (Barrett, 1980a):

p——
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S,y (@) = J' jj 0! K (@ @S, (@)...8 (@ ) 8(0 - 0;-..n @) dO0,... d0_

(1.20)
where 8 denotes the Dirac distribution.

This expression turns out to coincide with the response power density spectrum
derived by Mircea and Sinnreich (1969) and Bedrosian and Rice (1971) and simply
consists in a rearangement of the terms in the Volterra series. It is interesting to
mention that equation (1.20) provides a decomposition of the output power spectrum
into its frequency components (Barrett, 1982).

In order to illustrate this frequency resolution, let us consider the simple and
idealized case of a narrow-band excitation spectrum with modal frequency @y and mean
square Sg: Sy (0)=S¢8(w-wp). Upon substitution in equation (1.20) the response

power density spectrum results:

S, (@) = Z n! lKn(coo,...,a;o)izs; 8(w - nwy)

o=l

(1.21)

It is clear from this example that nonlinear response occurs not only at the

frequency of excitation but at superharmonic frequencies multiple of the fundamental
one.

The output frequency spectrum Syy(@) of analytic nonlinear systems can be

evaluated either as a power series (by Fourier transform of equation (1.12)) or as the

single sum (1.20). In practice such series must be truncated, thus (1.12) yields the
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Simulation
Eq. Linearization
Fokker-Planck

Functionals

Table 1.1. Methods of Nonlinear Statistical Dynamics.
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lowest order nonlinear terms whereas (1.20) yields the first few harmonics. Clearly,
choice of either series should depend upon the problem in hand.

A general theory for nonlinear response to stochastic processes should satisfy three
attributes: simplicity of implementation, accuracy of the resulting response statistics,
and versatility of the method!3,

Table 1.1 compares the different methods discussed with respect to these three
attributes. The figure shows the darkest areas wherever the techniques perform best.
Clearly, such a theory is not available, and one is left with the various techniques
described and the associated dilemma of choosing the one which holds the most
promises with regard to the problem in hand.

Furthermore, the singular lack of comprehensive full-scale as well as model
measurements of situations involving marine vehicles seriously impairs the possibility

of assessing the validity and adequacy of these techniques.

13Versatile regarding both the class of nonlinear systems for which it applies and the resulting
response statistics or probability distributions.
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CHAPTER 2
Second-Order Statistics

Although second order statistics do not completely define nonlinear transformations
of Gaussian random processes, they provide the necessary information related to the
amount and repartition of energy so transmitted.

More precisely, the energy spectral density S(w) of a random process provides
significant insight into the frequency content of such a process. This frequency
repartition proves to be useful whenever significant dynamic effects, such as resonant
frequencies and instabilities can be expected. Furthermore, the Bienaimé-Chebyshev's
inequality provides an upper-bound of the probability distribution of any stochastic
process, from knowledge of its mean value and variance alone.

Therefore, although the first- and second-order statistical properties do not
completely characterize general stochastic processes, they still contain the most
important information about that process.

Spectral analysis of linear systems essentially relies upon the correlation properties
of such systems. They mainly consist in the convolution theorem and the Wiener-

Khintchine relations. It is a well established body of knowledge thereby promoting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




40

linear filtering as an effective mean to examine the statistical as well as the probabilistic
content of the corresponding response process.

On the other hand, a careful review of the litterature (Chapter 1) has revealed that
there does not exist any unified and general theory aimed at predicting the response
frequency spectrum of general nonlinear dynamic systems driven by stochastic
Gaussian signals.

We will examine the connections among several approximated techniques, with
particular reference to linear filtering, together with their applicability to practical

problems related to the behavior of marine vehicles driven by stochastic seas.

Linear Filtering

Let us consider a nonlinear, causal and autonomous (i.e. time invariant) system (S)
described by equation (1.1). Probably the most appealing technique consists in
linearizing the nonlinear system in hand. Clearly, such an input-output functional

relationship can always be rewritten under the form:

Liy®} + ELy®} =x®
(2.1)
where, o is a linear functional, and 8 is a functional equal to the difference ?w@
The problem of linear estimation of the nonlinear system 7 consists in constructing
such a linear system o> through appropriate choice of the error functional 8

Therefore, the following linear approximations result:

—— - P
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LIy} =x()
Liym)} =x(0)

2.2)
where tilde superscripts indicate estimated quantities resulting from the linear
approximation.

The choice of such an "equivalent" linear functional is neither unique nor a priori
evident. It usually results from the minimization of some measure of the error
commited either on the excitation process x(t), on the response process y(t) or
alternatively on the error functional €.

Therefore, a numbér of techniques are possible: they belong to the general problem
of linear filtering which originated with the theory of communication.

Mean Square Estimation

Linear mean square estimation of stochastic processes is a well established
technique in the theory of communication, mainly in connection with signal analysis
and processing (Wiener, 1949 and Makhoul, 1975). Essentially, it is desired to
estimate the present value of a stochastic process y(t) in terms of the valﬁes x(7) of
another process x(t) specified for every T in some time interval. When t > 7 this is the
problem of linear filtering.

In the case of a nonlinear system ?{y(t)} = x(t), it is possible to show how a linear

estimate of the response process y(t) can be obtained, at least in principle, as a linear
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transformation of past values of the excitation process x(t) from mean square estimation
theory.
We may recall briefly the rationale underlying this téchnique. The linear mean

square estimation problem reduces to find the linear transformation acms which

minimizes the output mean square error:

40000

+00
E[(y(®) - i(t))?j = R”(O) - 2! hm(t) ny(‘t) dt+ J Ihm(t) hm(c) Rxx(t-o) dtdo

2.3)

An application of functional calculus of variation (Volterra, 1930) leads to the

following integral equation in the kemel h, of linear mean square system (Sp,;) known
as the Wiener-Hopf equation (Wiener, 1949):

400
ny(‘t) dt= ! h () Rxx(t-c) drtdc 20

-0

(2.49)

The solution hy(t) of the above equation is known as the Wiener filter. Generally,

this equation must be solved numerically, and cannot be readily Fourier transformed to

obtain frequency domain estimates rather than time domain ones becaﬁse of the
causality condition; equation (1.2), necessary to yield a physically realizable filter.

In order to overcome the difficulty related to the causality condition, Wiener and

Hopf introduced a special technique called spectrum factorization. Note however that if
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the poles of the resulting transfer function H,,((®) all lies in the left half complex plane,

then the causality condition is automatically satisfied, and fhe following relation holds:

S, (@)
N 2.
i )
(2.5)
Finally, the mean square error becomes:
Efy?] = Ely - )1 = Ely1 - B 2120
(2.6)

In other words, the minimum value of the mean square error is equal to the
difference of the mean squares of the exact process y(t) and its linear mean square
estimate. |

Clearly the method of linear mean square estimation invariably leads to an
underestimated approximation, in the mean square sense, of the actual mean square of
response process y(t) by an amount equal to the error (2.6). Thus, care must be
exercised in interpreting such an unconservative estimation of the response mean square
value in engineering design.

The transfer function of linear mean square system (Sps) is obtained through
equation (2.5) as the ratio of the cross-spectrum Sy, (w) over the excitation spectrum
S;x(®w). Therefore, such a linear representation is most convenient whenever the
system is to be identified through simultaneous measurements of the excitation and

TEeSponse processes.
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In the case of a nonlinear system described through a functional relationship of the
type (1.1) the cross-spectral density Syx((o) is not known in general (at least not
exactly). Nevertheless, we will show lafer how ihis technique can be related to the
more convéntional method of equivalent linearization in nonlinear statistical dynamics.

Let us now consider the integral version of Schwarz' inequality:

Efu v}’ <Efu? E[v]
@7
Substituting:
u=y(t) and v=y(t+T) - y(t+1)
u=y(t)-y® and v=y(t+1)
2.3)
in inequality (2.7), we respectively obtain the inequalities:
{EIy(®) y(:+D)] - Ely® 5 (+0]3 SEYI By 3
{Ely® y(t+0)] - EF® y+0]F <E A Ely 3
2.9)
Invoking the triangle inequality, [u + v| < fu] + [v], it is possible to combine the two
inequalities above to yield:
(B y+o)] - EFO 301 <E T (JEYA +VEF ¥
(2.10)

e .
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Finally, since the mean square is given by equation (2.6) and is necessarily

positive, we obtain:

{E® ye+D] - EFO ye+0l) _ 4 (B -E 1)
ETy] Ely’]

(2.11)

Thus, the relative mean square error gives an ui:per bound of a measure of the error
commited on general second-order statistics, the temporal autocorrelation function,
keeping in mind the properties of stationarity and ergodicity of the excitation as well as
the response processes.

Let us now assume that the actual process y and its linear mean square estimate are
equal in the mean square sense, i.e. that the mean square error (2.6) is equal to zero.
Then it follows from equation (2.11) that their temporal autocorrelation function as well
as their spectral density (i.e. any second-order statistics) coincide.

Obviously, the relative mean square error:

Ely’] - E[y 2
Ely’]

(2.12)
generally does not vanish, nevertheless it can be shown, through some examoples, to
remain quite reasonable and even bounded as departure from linear behavior becomes
more and more significant (see Chapter 3, Figure 3.2). Note that this error is always

positive and less than one.
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All these results tend toward the same conclusion, namely that linear filtering using
mean square estimation should yield reasonable prediction of second order statistics of

the random process so estimated.
The Method of Equivalent Linearization

In the method of equivalent linearization, an equivalent linear system (Seg) is
substituted to the original nonlinear one (S). The hnear functional aceq describing the
input-output relationship of system (Seg) is defined as the one which minimizes an
"appropriate” measure of the corresponding error 8.

The choice of such a measure is not a priori straightforward and does not follow
any specific guidelines. In the case of a stochastic excitation, the mean square error is
generally minimized, mostly for computational convenience. This leads to the method
of equivalent linearization as defined by Booton (1954) and Caughey (1959 & 1963b)
(see Chapter 1).

The method of equivalent linearization as defined by Booton (1954) and Caughey
(1959 & 1963b) was introduced essentially to deal with nonlinear sets of ordinary
differential equations governing the behavior of electrical and mechanical systems, and
therefore does not directly apply to more general nonlinear systems. Furthermore, the
main idea underlying this technique relies upon the construction a priori of an
equivalent linear system (Seg) in substituting linear terms to nonlinear terms in original

system (S), where the unknown coefficients of each linearized term are then determined

in minimizing the meax square error E[82].
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This technique has been proposed and applied to engineering problems for some
time and with some success. However several fundamental, yet unanswered,
questions can be raised:

What are we precisely doing in minimizing the mean square error 8?

What kind of response statistics can be predicted (if any), within reasonable
accuracy, through the method of equivalent linearization?!

Why does the method of equivalent linearization tends to underestimate the
response variance?

‘When does it apply?

How does it compare to the Volterra (i.e. perturbation) and Wiener-Hermite
functional models?

How is it related to linear mean square estimation?

All these questions will be considered, with various degree of completeness,
through the following discussions.

In order to gain some further insight into the equivalent linearization method, let us

consider the equivalent linear functional /-1, function of past values of the excitation

process x(t), with kernel heq(‘c):

a1 by
L (x93 = [b, - ocee

(2.13)

IRegarding this question, it is pertinent to quote Lyon (19602 & 1960b) discussing the method of
equivalent linearization: "As a general matter it seems difficult to anticipate just which parameters will
be estimated reasonably ... some caution would seem advisable in indiscriminate application of these
techniques ..."
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Clearly, the method of equivalent linearization minimizes the mean square error:

) 400 +o0po0
EIE{yON =R,O)- 2[h @R, @de+ [ [ @b @R (5, -7 )avde,

(2.14)

A procedure similar to the one used in the previous section i.e. linear mean square
estimation leads to the transfer function H,qan) of equivalent linear system (Seq):

S, (w)
=
Heq (@)= Sxy(co)
(2.15)
Whereas the mean square error becomes:
Efx3 =El(x - 03 = Ex3 - EZ 4 20
(2.16)

From this inequality and from linear equations (2.2), it is possible to conclude that:

Ely’1-E[y 120
2.17)
if and only if a&q-l is a monotonic decreasing functional in the mean square sense. In
other words:
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ExJ2Ey"] or Ex12Ey ]
(2.18)

It is obvious that cceq-l is monotonic since it is linear, though not formally because
it depends upon some statistics of random process y(t). In the case of mechanical
systems the decreasing condition turns out to be met more often than not, since they are
usually designed to act in such a way. In the increasing case, the response mean square
is overestimated. Thus, the sign of the respoﬁse mean square error can be predicted
from consideration of the equivalent linear functional alone. Although such a general
tendency to underestimate the response mean square value has been already observed
(Lyon, 1960b, Iwan and Yang, 1972 and Lin, et al., 1986), it has never been
thoroughly examined.

It is essential to emphasize that the rationale underlying the method of equivalent
linearization is intimately related to the actual form of the functional relationship
governing the behavior of nonlinear system (S). A nonlinear system described by an
input-output relationship of the type (1.1) yields the equivalent linear transfer fuction
(2.15), whereas the nonlinear system:

0-F o}

(2.19)
leads to the same linear transfer function as the one obtained by linear mean square
estimation, equation (2.5), although the original nonlinear systems are virtually
identical.
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When the nonlinear system is described through an explicit functional relationship
of the type: y(t) = ?‘1 {x(t)} the transfer functions obtained by each technique coincide.

Both methods yield a linearized system which necessarily depends upon some
higher order statistics of the actual response process, thefefore its probability law
should be known. Since, in most cases this law is unknown, normal behavior is
generally conveniently assumed.

Finally the connections between the methods of linear mean square estimation and
equivalent linearization can be emphasized by their transfer functions respectively
obtained from equations (2.5) and (2.15) in the case of an inverse nonlinear system of
the type: ?{y(t)} = x(t). In practice however, ratios (2.5) and (2.15) cannot be
evaluated exactly since they both involve some statistics of unknown process y(t).
Assuming that the response process y(t) is respectively obtained from its mean square
and equivalent linear approximations, then the two linear transfer functions coincide.
This will be illustrated with the example below.

The Duffing Equation

The fundamental nuances which characterize the method of equivalent linearization

and linear mean square estimation of a nonlinear system described by an input-output
relationship of the type ?{y(t)} = x(t) can be emphasized by considering the Duffing

equation:

y+28y +y+y =x

(2.20)
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Upon multiplying both sides by x(t+1) or y(t+t) and averaging with respect to the

time variable, the following equations result:

Ry () +26R, (0 +R (M +R (M) =R_(1)

@2.21)
R}, @+ 2R (D +R, (D +R, ) =R_(¥)

(2.22)
where the prime superscript denotes time differentiation.
By Fourier transform and substitution in equations (2.5) and (2.15), the linear

mean square estimated and equivalent linear transfer functions can be obtained:

S .. (w)
H_(®)=H, (@)1 - —%)—}
XX
(2.23)
S (w)
H, g (@) = H (o)1 - 2}
Xy
(2.24)
Assuming now that deviation from normal behavior is light, we obtain:
Ryyx(®) = 3B IR, (0
(2.25)
R, ()= 3E[y"JRyy @
(2.26)
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Fourier transforming and Substituting in equations (2.23) and (2.24), the optimum

transfer function results;

1
1+3Ely - o’ + 2itw

H (@) =H_ () =

(2.27)

Thus the linear mean square estimated and equivalent linear systems are identical if

normality is assumed. Although this equivalent system is essentially linear, it can still

predict some nonlinear effects such as increased spectral bandwidth and natural
frequency not revealed by the pure linear approximation. |

The Wiener-Hermite Functional Model

In order to gain further insight into the methods of equivalent linearization and mean
square estimation, it is relevant to examine, in some details, the Wiener-Hermite
functional model. Wiener constructed a new set of orthogonal functionals in order to
overcome several difficulties associated with the convergence and the measurement of
the functional series model originally developed by Volterra (Wiener, 1958).

However, one additional important feature of the truncated Wiener-Hermite
functional series over the Volterra series stems from the resulting optimum nonlinear
model (Barrett, 1963 and Schetzen, 1965¢ & 1980). In particular, the first term of the
Wiener-Hermite functional expansion turns out to yield an optimum linear modei

closely related to the linear mean square model.
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Wiener considered a complete set of functionals, Kn{x(t)}, orthogonal with
respect to a stationary Gaussian white noise excitation process x(t). The generalization
to a general Gaussian excitation process originated with the work of Barrett (19802 &
1982).

The further generalization to non-Gaussian input processes can be achieved using
the gate functions at the expense of much greater complication (Schetzen, 1965a &
1980). Therefore, we will only consider Gaussian excitations. We can however
emphasize that the assumption of a Gaussian random process can be overcomed if it is
possible to reconstruct the actual process through a nonlinear Wiener-Hermite
transformation of a Gaussian one.

The hypothesis of normality justifies the choice of an expansion in a set of
generalized Hermite polynomials 26®, The orthogonality relations (1.13) involving
the Wiener-Hermite functionals result from the Hermite expansion. Where the Wiener-
Hermite functionals are given by equation (1.15), and the corresponding Wiener-
Hermite kernels k(t,,T,,...,T,) are determined by the orthogonality conditions
(equation (1.17)).

The Wiener-Hermite functional series is now completely defined, thus we are, at
least in principle, able to derive any statistics describing the response process y(t),
defined by:

s = >, K {x0}

n=1

(2.28)
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Taking advantage of the fact that the terms in the above series are all uncorrelated,
the derivation of the cross-spectral density Syx(co) between the excitation and the

response processes is straightforward:

Syx(m) = K1(°’)Sxx(°’)

(2.29)
Similarly, the auto-spectral density is given by the Mircea-Sinnreich (1969) series:

400400 400

S, (@)=, j j J' 0! [K (@08, (@))...8 (0 )8(@-0;-...-0 )do,..dw_

n'ldo-co o

(2.30)
where K;(®y,...,0,) is the n-th order Wiener-Hermite transfer function, Fourier

transform of the n-th order Wiener-Hermite kernel k,(T;,...,t,).

When the response y(t) can be expanded as a Volterra functional series of the

excitation process x(t), the Wiener-Hermite transfer functions K (®;,...,00,) can be

written in terms of the Volterra transfer functions Hy(0,...,0,) (Barrett, 19802 &

1982):

| oo FoOH 400
n! K (@,,...,0) = Z ”f 2VH, (@ ® 0] 0] e @) )S_(O))...
m=OM ~00

‘"sxx(mx’n)dm.l"‘dm;n

(2.31)
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Equations (2.5) and (2.15) together with (2.29) and (2.30) lead to the transfer

functions of the linear mean square estimated and the equivalent linear systems:

H ns(®) = K1 (w)

232)
H @ =K@+ Y [ [..] 2t K @0 (@)..5_@)5@0,..
0=2_ 0 00 o
-00,)d0,..do_/ K, (@)S,_(w)
2.33)

which, in turn, lead to the response spectrum predicted by the methods of equivalent

linearization and mean square estimation:

S yys(@) = K (@)’S_ (@)

(2.34)
2
Syyea@ = K @)’ (@)

+ 22 I I I n! lKn(col,...,con)lzs < (@)---S, (® n)&m-ml-...-mn)dml...dm n

n=2-oo-oo -0

2 f [ f 2t K0S (0.5 (0 60000 )0, .0

n=2-eo-oe 00

K, @)/*S]} ()

(2.35)
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If we now assume that x(t) is of order €, then the excitation power spectrum will be
of order €2. Under the double further assumptions that the response process y(t) can be
expanded in Volterra series and is an odd functional of the excitation process x(t), it can
be shown from equation (2.31) that the response power spectrum, as predicted by the
method of equivalent linearization (equation (2.35)) as well as the method of mean
square estimation (equation (2.34)) are exact up to the fifth order in € (note that the
response power spectrum S,,(®) is an even expansion in €).

This confirms and demonstrates a property of the method of equivalent linearization
already observed in some specific cases (Caughey, 1963b, Lin, 1967 and Payne,
1968).

Although, it is not obvious, it can be shown that the same property holds in the case
of asymmetric Volterra series as well. It becomes clear recalling that the second order
Volterra transfer function Hy(9;,03,) does not appear in the response centered power
spectral dénsity. .

Such a property is very general and applies to any systems which can be expanded

in Volterra series (i.e. analytic systems).

Applications

The case of a nonlinear system which can be solved exactly is considered first.
Then, particular attention is devoted to the case of the nonlinear roll motion of ships.
Extensive time domain simulations of a nonlinear mathematical idealization of this

problem by Dalzell (1971 & 1973) are used for the purpose of comparing and
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characterizing various approximated analytical models leading to the roll spectral
density.

An Elementary Example

We consider the case of a nonlinear system, the response process of which, is

exactely described by the two-term odd Volterra polynomial:

yi®) = jhl(‘tl) x(t-t)) dt, + I II hy(7,,T,.T) x(t-T)) X(t-T,) x(t-T,) dt, dt, dt,

(2.36)
It is assumed that such a representation exactly described the response of a
nonlinear system of the type: ?{y(t)} = x(t). One such nonlinear system is the case of

the adimensionalized differential equation:

Y+ 28y +y=x+X

2.37)
Clearly, it is possible to derive, from the functional representation (2.36), the
response power spectral density resulting from various approximations, as well as the

e€xactone:

(i) Linear approximation:
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Sy,(@) = H,(@)” S (@)

(2.38)
(ii) Two-term perturbation (Volterra polynomial) approximation:

$,,(®@) = H, @) S, (@) {1 + 667}

(2.39)
(iii) Mean square estimation, equivalent linearization approximations and first term
of the Wiener functional model (equation (2.34)):

$,,(@) = H,@)” S_(®) {1 + 36’}

(2.40)
(iv) Exact solution:
S,,(@) = H (@) S (@) {1 + 302}
400
+6 H (0) ” S(@)) S (@) S_(0- 0- 0,) doda,
- (2.41)
where the linear transfer function is given by:
1
Hl(co) =—
-0 +2ifw+1
(2.42)
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The damping ratio is chosen equal to 0.1, while the adimensionalized natural
frequency is equal to unity.

The case of an excitation process, the power spectrum of which is a band-limited
white noise, serves to illustrate and compare the different approximations involved.

Figures 2.1 to 2.6 show the various approximations together with the exact
response spectral density. The solid curve shows the exact spectrum (2.41), while the
white squares, the black squares and the white dots respectively depict the linear
(2.38), the 2-term Volterra (2.39) and the equivalent linear (2.40) approximations.

Figures 2.1, 2.2 and 2.3 show the response spectral density for increasing levels of
nonlinearity (levels 1, 2 and 3 respectively correspond to excitation standard deviations
equal to 0.5, 1 and 5), and excitation spectrum centered at the linear natural frequency
of the system with a bandwidth of 0.5.

The equivalent linear approximation is, by far and consistently, the most accurate,
whereas the 1- and 2-term Volterra approximations yield comparatively poor
approximations. We may emphasize that the difference between the mean square and
equivalent linear approximation (2.40) and the exact spectral density (2.41) is limited to
the double convolution, the effect of which is to sensibly increase the bandwidth of the
Tesponse process.

The same general pattern is observed when the excitation central frequency is a third
of the natural one, Figures 2.4, 2.5 and 2.6, with excitation bandwidth 0.2. However
no one of the approximations predict the apparition of a superharmonics at three times
the mean excitation frequency as well as the significant features on both sides of the

fundamental spectral response, resulting from the double convolution.
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Figures 2.1-2.3. Spectral Desnsity, Excitation 1.
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Level 1 4
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Figures 2.4-2.6. Spectral Density, Excitation 2.
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There probably lies one of the fundamental limitations of the methods of equivalent
linearization and linear mean square estimation which cannot predict such typical

qualitative nonlinear effects.
A Mathematical Idealization of Ship Rolling

The mathematical modelling of the problem of the roll motion of ships among
waves originated with the pioneering work of William Froude during the last century.
When the roll motion of a ship can be decoupled with the other modes, the most widely
agreed form of the equation governing the roll motion is:

y+ay+bylyl+y-y’ =x
(2.43)
and represents a slight truncation of Froude's model.

Dalzell (1971 & 1973) undertock a time domain simulation of this equation of
motion, excited by a Gaussian sea state described by the 12th ITTC spectrum, in order
to estimate the roll spectral density and probability distribution. We will use these
simulated spectra in order to further characterize the various approximations already
discussed. Among numerous configurations considered by Dalzell, we have chosen
those for which departure from linear behavior is the most significant.

Figures 2.7-2.18 show the roll spectral density for four different configurations
(Table 2.1), with varying linear damping ratio, nonlinear damping coefficient and
excitation modal frequency. In each configuration three different sea states, by

increasing level of intensity (the intensity of each sea state is defined by the

—
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Configuration 1
Configuration 2
Configuration 3

Configuration 4

Table 2.1. Roll Motion Configuratians.
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adimensionalized? wave slope standard deviation: 0.0039, 0.0117 and 0.0351) from
sea state one to sea state three are considered.

On the figures, the white dots show Dalzell's time domain simulation estimates,
while the solid curve labelled Linear, Equivalent Linear, Volterra and Wiener
respectively correspond to the linear, the equivalent linear, the 2-term Volterra
functional expansion (perturbation) and the 2-term Wiener-Hermite functional model
(first two terms of equations (2.31) and (2.34)) spectral density approximations.

Clearly, the method of equivalent linearization consistently yields the best overall
agreement with simulation estimates, in 11 cases out of 12, when compared with the
first few terms of the Volterra and Wiener-Hermite functional series.

More terms in such expansions may result in an added accuracy, however the price
to be paid would be significant, if not unachievable, in terms of computational costs.
The configuration 2 was considered by Dalzell (1976a) in a comparison with a Wiener-
Hermite functional model containing one more term at a significant expense (double
convolution) without a much better accuracy.

We may nevertheless emphasize that the Wiener-Hermite model seems to attain a
better level of accuracy than the Volterra model. Furthermore, the method of equivalent
linearization and the Wiener functional model possess the advantage over the Volterra
perturbation to guarantee the positivity of the resulting spectral density.

Increasing the level of nonlinearity results in larger spectral bandwidth because the
damping does not increase linearily. This effect tends to overcome the effect of

simultaneous nonlinear decrease in restoring force which acts in the opposite direction

ZRelative to the half range of positive static stability of the ship.
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Figures 2.7-2.9. Roll Spectral Density, Configuration 1.
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Sea State 1

Sea State 2

Sea State 3

Figures 2.10-2.12. Roll Spectral Dessity, Configuration 2.
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Sea State 1

Sea State 2

Sea State 3

Figures 2.13-2.15. Roll Spectral Density, Configuration 3.
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Sea State 1
le—Wiener .
Equivalent Linear
“Volterra
) 1 1
Sea State 2
1 1 1
Sea State 3
[ 1 1

Figures 2.16-2.18. Roll Spectral Density, Configuration 4.
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The method of equivalent linearization seems to yield the most accurate response
specu'al density whenever its bandwidth is the largest. This may be why the agreement
tends to be better for higher levels of nonlinearity, although the average relative error of
the roll motion standard deviation resulting from the equivalent linearization was found
to increase with more severe sea states: 0.9% , 2.0% and .2.7% respectively, for sea
states 1, 2 and 3. We can emphasize again that this error is consistently on the
unconservative side.

Finally, we can state that the method of equivalent linearization should provide a
rather accurate prediction of the roll motion spectral density, considering that such
levels of nonlinearity correspond to very heavy sea states leading to some of the most
extreme response a ship will encounter in its lifetime.

We have shown that the methods of equivalent linearization and mean square
estimation are intimately related. In particular, they yield identical linear systems
whenever the response process deviation from normal behavior can be neglected3.
Moreover, the resulting linear model is the optimum linear approximation, in the mean
square sense, of the actual nonlinear one.

We have also shown that the second order statistics resulting from this linear model
are exact up to the 5th order in the expansion parameter €. Finally the corresponding
linear transfer function is obtained analytically as the first term of the Wiener-Hermite
functional series model (equations (2.31) & (2.34)) and alternatively through cross-
spectrum identification (equations (2.5) & (2.15)).

This yields a simple and quite versatile technique for predicting the response
second-order statistics of nonlinear dynamic systems. Several examples show the level

SNote that it is neglected only for second-order statistics purposes.
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of accuracy of the spectral density obtained when compared with exact and simulation
results.

However, the main drawback of the technique of linear filtering probably lies in its
intrinsic inability to predict specific nonlinear effects such as superharmonic response,
non-Gaussian response to Gaussian random process... which result from the multiple
convolutions (i.e. of order higher than one) appearing in the Wiener-Hermite form of
the energy spectral density, equation (2.30).

Furthermore, prediction of statistics of order higher than two do not quite fit the
methods of linear mean square estimation and equivalent linearization. Essentially,
since linear behavior is assumed, higher order response statistics will be those of a
Gaussian process if the excitation process is Gaussian. Therefore, we will now try to
circumvent such drawbacks of the method of equivalent linearization in order to predict

response higher-order statistics.
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CHAPTER 3
Higher-Order Statistics

Throughout the previous chapter, we have exhibited both theoretical and empirical
new evidences to promote the method of equivalent linearization (also known as
statistical linearization) as one of the most useful procedure in nonlinear statistical
dynamics to predict response second-order statistics.

However, higher-order statistics so predicted will necessarily be those of a
Gaussian process. Furthermore, since nonlinear transformations do r;ot preserve
Gaussian character, response statistics of order higher than two must be considered.

Although most of the information pertaining to the physical description of stochastic
processes, is contained in the first two moments, higher order statistics yield further
information about deviation from normal behavior as well as extreme values. Extreme
values constitute an essential body of information in probabilistic engineering design as
well as in system reliability.

The main purpose of this chapter is to provide an innovative method for predicting

such higher-order response statistics.
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However, let us start this chapter by discussing and exposing some new results in
connection with an already conventional technique: the Volterra functional model.
These new results will serve both to emphasize some drawbacks of the Volterra
functional model and thereafter to determine some unknowns in the proposed
"linearize-and-match" method.

The Volterra Functional Model

In general, a random variable can be described from the knowledge of its statistical
moments lt, or alternatively of its statistical cumulants ;, or its quasi-moments B,. In
the case of a stochastic processl, all the joint moments or cumulants of the

noncountable infinity of random variables which specify the stochastic process must be
considered. Such statistics are known as the moment functions Ha(T1,T3,...,Ty), the

cumulant functions? K,(t;,Ty,...,T;) and the quasi-moment functions Ba(T15T25---sT)
(Kuznetsov, Stratonovitch and Tikhonov, 1951, Stratonovitch, 1963 and Lin, 1967).
It is essential to realize that the first N cumulants, moments and quasi-moments
contain just as much information. If we confine ourselves to the first N such statistics,
it is clear, from their definitions, that knowledge of any set of these leads to the
remaining other two.
Owing to the complexity of the present problem, we choose to consider the

moments and cumulants of the stationary response process. In other words, its

1 Also known as random process or random function.
2 Also called correlation functions (Stratonovitch, 1963) or semi-invariants (Rice, 1944 & 1945).

—
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moment and cumulant functions will be evaluated when their arguments are all equal:
T=T=...=Tp.

A general expression for the re;sponse statistical cumulants of nonlinear systems
described by a Volterra functional series is not yet available. Bedrosian and Rice's
(1971) work appears the most advanced one regarding this problem.

Essentially, they derived the first four cumulants up to the 6th order in the small
parameter € defined below. They proposed 8th order terms, in cumulant x,, based on
the conjecture, supported by the mémoryless case, that only the terms that do not
separate into products of integrals occur in the cumulants.

Their inability to push the expansion beyond that point was apparently motivated by
the resulting excessive complexity of the higher order terms, as well as the lack of a
general cumulant expression.

The following developments generalize and extend Longuet-Higgins' (1963)
derivation of the cumulants of nonlinear algebraic transformations of independent
random variables. His work was primarily motivated by the study of the effect of
nonlinearities on statistical distributions of sea wave elevation. Let us consider the
more general case of the output cumulants of a Volterra series (equations (1.10) and

(1.11)) driven by a zero-mean stationary and ergodic Gaussian stochastic process x(t):

yit) = Sj h, (7)) x(t-7,) dt, + & “‘ hy(%),T) x(t-T,) x(t-T,) dT,de, + ...

(3.1)
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where, without any loss of generality, the kernels hy(T;,T,,...,T;) can be assumed to be
symmetric with respect to their arguments? (Bedrosian and Rice, 1971). For notational

convenience, we choose to rewrite the Volterra series (3.1) as:

YO = Bx o+ ByX, X5+ B X X, Xy + e

3.2)
where repeated subscripts indicate integration in time4, and successive kernels are

characterized, without ambiguity, by the number of their indices (our notation

implicitely takes into account the successive power of parameter €).
Response Power Moments

The first moment 1, of stochastic process y(t) results upon time averaging equation

(3.2) and taking advantage of the normality of excitation process x(t):

M, = hijxixj + 3hijkxixjxk + IShiﬂl XXX XX X+ eee

3.3)
where, stationarity allows omission of the t-variable without any ambiguity. The first

few terms in second and third moments p, and pi5 can be obtained similarly up to the
6th order in &:

3The Volterra kemnels as wel! as the transfer functions are defined within any permutation of their
arguments. Thus symmetry ensures uniqueness.

4By analogy with the summation convention in tensorial calculus. These quantities can actually be
understood as tensors.
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My =hhxx + (b, + 2h by + 6., ) xl_x; XX

+ (9hi]1:h1mn + 6hikmhjln + 30hihjklmn + 6hijhkhnn + 24hikhjlm) XX X X) XX + o

(3.4)
My = Ghyhy, + 6h h) XX XX,
+ (hijhk.lhmn + 6hij h, + Shﬂ:hjmhlnl'" 18hihk.lhjmn
+36hhhy + 36hh, By v Ohbh .+ 36hhh ) XX, %Xy Kok + o
(3.5)

Obviously, such a straightforward approach rapidly leads to an excessive amount of
algebra. Instead, we will follow Longuet-Higgins' method.

Drawing upon Longuet-Higgins (1963) reasoning, it is possible to notice that some
of the terms in p,, t5 such as:

hijhk.l ?"J ﬁ = (hij ;E) (hy x—kg)
3hihjhk.l ij g"-l =3 (hihj x—i;j) (hy "k—"l)
(3.6)
as well as in higher order power moments can be factorized whereas some others

cannot. Longuet-Higgins calls such terms irreducible, and finds it convenient to
introduce a compact notation for them. Let us denote by [H H...H{] the sum of all the

irreducible terms among the
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P+qQ+...+L
_1__2 2 I.(p+q+...+t+1)

ﬁ 2

3.7

terms in the mean value:

Bitiz. apXi1Xiz-Rip D12 je¥j1%j2--%iq - Benim2.. mt ¥t Xz Xemt
(3.9
where I'(p) denotes the usual gamma function (Abramowitz and Stegun, 1970). Note

that p+q+...+t is always even since the excitation process is zero-mean and odd power

moments of this process all vanish.

Clearly, the power moments of the random process y(t) can be written in terms of
[HH,...H:

.. 1 i 3 m 1 n!
C(l,],...,m) = k—!Cn C’n-i oee Cn-i-j-...-l = Em

(3.9)
where the outer sum extends over all the values of p, q, ..., t, and the inner sum over

all the groupings Hp, Hy, ..., H, into unordered sets such that i+j+...+m=n. Whereas

the multinomial coefficient C(i,j,...,m) denotes the number of ways of choosing such

sets, and k is the number of sets:

. 1 & 4 m 1 n!
C(@,j,...,m) = Ecn C‘n-i - Cn—i—j-...-l = o m

(3.10)
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where C;i denotes the usual binomial coefficient.
Response Cumulants

Throughout the following, we choose to describe the response process y(t) through
its cumulants rather than its power moments. Such a choice results from the double
advantage that cumulants are simpler and are directly related to the deviation from
normality of the process they describeS.

The moment W, of a random process corresponds to the n-th derivative of the
moment generating function ¢ (Kendall and Stuart, 1958):

6@ = [p0 e ag=Y &

n=0
(3.11)
While the cumulants x,, are defined by the cumulant generating function y:
+oo |
. . (it)
W(it) = In 6it) = 21 K
n=
3.12)

Equating the coefficients of same power in (it)? in equations (3.11) and (3.12),

general relations between moments and cumulants of any order are obtained:

>A process is said to be deterministic whenever all its cumulant functions vanish except the first one,
and Gaussian whenever all its cemulant functions vanish except the first- and second-order ones.
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K K K
1 M ™y I
g =n! ST T e T
’ i1+i2;..+ik-n Kbt gt
(3.13)
1 B K K
X =n! D& -—‘.—12 g
? i1+i2§ik=n ki ’ 12 lk!,
(3.19)

Upon identification of equation (3.9) with the moment - cumulant relationship,

equation (3.13), the general cumulant expression results:

K=, HH, H]

(3.15)
The added simplicity of the cumulants over the power moments now appears
obvious at the light of such a general expression. Only the so-called irreducible terms
appear in the cuamulant expression, whereas all the terms are needed to write the power
moment of same order.
1t appears clearly now that Bedrosian and Rice's (1971) intuitive idea, based on the
memoryless case is correct, namely that only the terms that do not separate into
products of integrals in the power moments contribute to the corresponding cumulants.
To a lesser degree, Rice (1944 & 1945) also appeared to have explored an idea along
similar lines.
In particular, retaining all the terms up to the 10th order in &, the following

expressions are obtained for the first few cumulants:
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% = (] + [H,] + [Hyl + (] + [H ] + ..

%= (] + (] + 204 H] + (E] + 20H,H,] + 2(LH,) + (H2] + 20,
+ 20F,H + 2(HH,] + [H] + 20HH,) + 2FLH,] + 20,H] + 2HH] + .

Ky = SEGEL] + (H] + G(H,FLHL] + S[HIH,] + S(ELH] + 3(HCH,] + 6[H,ELH,)

+ 6[HFLH] + S(ELH] + 30GH,] + SEGH) + 3ELH,] + 6H,HH,)
+ 6[H,FLH.] + 6[H,H;H] + 6[H,HH] + 3[HH,] + ...

Ky = 3] + GGHG] + ATEGEL] + [FL) + 12H FGH,] + 6HIH2) + 12[HCHLH,]
+ AT + 6HLHG) + 4EGH,] + 20 FLHLH,) + 120 HH] + A, HD)
+ 6(HHG] + 12[HCELH,] + 12(H7HH] + 40H,) + .

s = STEGHL,) + 12(EGH) + 20(H)FLHL] + STH{H,] + (E] + 20[H HH,]
+ 30(H]H,H] + 32(H{H;H,] + 20[HSELH,] + 20[H HLH,] + STH'H] + ...

X = (] + 170HGH] + 6(HEL] + 17HCH,] + GAECH2HL] + 15[H H7]
+ 3R[EIELH,] + 6[HHJ] + ...

(3.16)
where it appears that:
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[HilHiz"'Hin] =0 for i+ i+ i<2n-4

(3.17)

Such a property can be generalized to any order, keeping in mind that such terms
can always be factorized since iy is always strictly less than n-2 in these quantities
(Longuet-Higgins, 1963). This, in turn, leads to the, quite remarkable, property of the
response cumulants of a Volterra series (3.1), namely, that the non-vanishing lowest

order term in n-th order cumulant x;, is of order €222 instead of € as we could have

reasonably guessed:

x = 0D

(3.18)

This cumulant property is quite noteworthy. It further justifies the description of
the response process with a set of statistical cumulants rather than moments.

Furthermore, it is interesting to mention that the general cumuiant expressions
(equations (3.16)) could as well have been derived from the memoryless case without
any influence of the memory effects.

Assuming now a Volterra series of the type (3.1) containing only odd-order terms,
we have derived the general frequency domain expressions of all the cumulants up to
the 10th order in €, through Fourier transform of original time domain integrals. In
order to save space, we will use notations simiiar to Bedrosian and Rice's (1971).
€28;;(0)d® and Hy(®,,0,,...,0,) are simply respectively written as (S,,) and

(1,2,...,n):

N
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S [T E

+00

+]]6 (M 122) 5, 5,

+ J [30 (1) (-1,2,-2,3,-3) + 9 (1,2,-2) (-1,3,-3)

v e
-0

+6(12,3) (-1,2-3)] (S) (S,) (S, )

+ Iﬁ J‘ [210 (1) (-1,2,-2,3,-3,4,-4) + 120 (1,2,3) (-1,-2,-3,4,-4)

+90 (1,1,2) (:2.3,-34,4)] (S.,) (5,) (S,) S

+ Hﬁj [1890 (1) (-1,2,-2,3,-3,4,4,5,-5)

+ 1260 (1,2,3) (-1.-2,-3,4,-4,5,-5) + 630 (1,-1,2) (-2,3,-3,4,-4,5,-5)
+ 120 (1,2,3,4,5) (-1,-2,-3,-4,-5) + 600 (1,-1,2,3,4) (-2,-3,-4,5,-5)
+225 (1:1,2,2,3) (:34,4,5,:5)] (S) (S) (5, ) (S.) (S,) + .

3.19)

400

K, = j’ 27O 123666

+[f J' [240 (1) 2) (3) (-1,2,-3,4,4)

~00

+ 216 (1) (2) (-1,-2,3) (-3,4,-4) + 108 (1) (2) (-1,3,4) (-2,-3,-4)
+ 108 (1) () (-1,3,/3) (:2:4,4)] (S, ) (S, ) (S,)) (S)
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. j Iﬁ [3240 (1) (-1,2,3) (-2,-3,4) (4,5,-5)

+ 9000 (1) (2) ('1"2:3) ("3943’4,5s'5)
+ 2520 (12,3) (-1,-2,3,4,4,5-5)] (S,) (S,) (S) (5,0 (S, ) + ...

(3.20)
%6 = I H ” [540 (1) @) (3) @) (-1,-2,3) (-4,5,-5)
+720 (1) @) B) @) ) 1,2,3,4,5] (S) () (S) (S) () + ..

(3.21)
Bedrosian and Rice (1971) derived ail the terms up to the sixth order in € in the

cumulants above, as well as odd-order ones. It is believed that it is the farthest anyone
carried out these expansions until these innovative results.
The particular case of a nonlinear system governed by the Duffing equation will

serve to exemplify these new results in the last section of this chapter.

The Linearize-and-Match Model

Although the general response cumulant expression of a Volterra functional system
is now available, the usefulness of these expansions remains limited to the first few
terms by the excessive complexity of both high order wransfer funciions and resulting

multiple integrals. In most applications to the determination of the response of
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nonlinear dynamic systems to stochastic excitation, perturbation and other general
functional methods are not generally carried further than the first nonlinear term,

Moreover, it will be shown that the improvement provided by a two- or a three-term
perturbation method only covers a region where the perturbation parameter is so
"small" that the linear and the equivalent linear approximations are already quite
accurate enough from a practical point of view (Morton and Corrsin, 1970 and Duthoit
and Armand, 1987). This is believed to be true for most "inverse" nonlinear problems
such as those described by a functional relationship of the type (1.1).

The main idea underlying the following developments is to provide an improved
theory over the Volterra functional seﬁ;s model in deriving the response statistics (e.g.
moments and cumulants) of autonomous nonlinear systems driven by Gaussian
stochastic signals. Rather than expressing these statistics by a truncated series the
convergence and accuracy of which remain questionable, closed-form approximate
solutions are developed.

These statistics will eventually be used to evaluate response probability distributions
(Chapter 4).

In order to illustrate this technique without involving any excessive amount of
algebra, let us consider the particular case of the Duffing equation with linear plus cubic
damping. Considerations regarding more general nonlinear systems are discussed in
Appendix C.
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Linearizing

Let us consider the nonlinear system (S) described by the following differential
equation, written in dimensionless form:

y+28y +Ey +y+y =x

(3.22)
in which the excitation x(t) is assumed to be a zerc-mean, stationary, ergodic, and

Gaussian random process with double-sided frequency spectrum Syx(®),
The following "equivalent” linear systems (S,) are defined next in substituting
terms proportional to their mathematical expectations to nonlinear terms in original

system (S):

Yo+ @E+EBEL My, +1+aEly Dy =x®) (e N¥)

(3.23)
where successive parameters o, and B, will be chosen in order to provide an accurate
linear approximation to the output 2nth-order moment E [y2] of the original nonlinear
system (S).

Clearly, for n = 1, (S;) corresponds to the equivalent linear system (equivalent in
the mean square sense) as defined by Caughey (1963b).

The actual form of "equivalent” linear systems (S,) (equations (3.23)) is suggested
by the form of the original differential equation describing the input-output relationship
of system (S) (equation (3.22)).
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Although the linearizing procedure is largely heuristic, and does not proceed from
any formal, mathematical arguments, it is the simplest one which account for

nonlinearities. Furthermore, choosing any other dimension preserving linearized

quantity of the type E[y,ZI1/E[y,22] or any combination of these leads to identical
linear systems (S,) in this example, owing to the normal properties of stochastic
process Y.

It is important to emphasize that the proposed method is not restricted to systems of
the type (3.22). In fact, a much more general class of differential equations and even
integral or integro-differential equations can be handled within the framework of this
technique (Appendix C)

Since each system (S,) is linear, the corresponding output :1ean squares (or

variances) E [y,2] and E [y,2] are simply given by:

Bl = [ Hols,@d  @eNy

B.24)

Ey = J' O'H)@)’S_(0)do (e N¥)

(3.25)

where
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1 _
-0’ +ie(28 + ZBEY ) + (1 + o, Ely2])

Hi(w) =

(3.26)
is system (S,) transfer function. Clearly, (3.24) and (3.25) are coupled integral

equations of system (S,) output variance and output time derivative variance.
Since system (S) only involves terms of odd orderS, all output moments of odd
order are identically zero, while output moments p,, of even order are approximately

obtained from the systems (S,) considered separately”:

Hp=E21 (e N®

(3.27)
Keeping in mind that y, is the ouput of an autonomous linear system driven by a

Gaussian, stationary and ergodic random process, it is possible to prove the following
set of equalities:

Ey™] = —=2"T'(n + %) E'ty’]

Jr
(3.28)
where I denotes the gamma function. The output moments 1, are thus now given in

terms of the output mean square of system (S,).

6The proposed technique is, in this form, restricted to analytic systems involving odd order terms only.
The generalization to any analytic system is discussed in Appendix C.

7Tilde superscript indicates approximated moments or cumulants as predicted by the proposed
technique.
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Throughout the following, we will be more concemed with the cumulants Ky, of
the response of system (S), than with its moments Hon As already observed through
the previous section, cumulants are simpler, are directly related to deviation from
normality, and possess specific properties related to the Volterra functional model

Thus, upon substitution of equations (3.27) and (3.28) into the cumulant-moment

relationship (3.14), general approximate expressions for output cumulants result:

B EDY BT
EZn___ (2n)! 2 (‘1)k+1 l i[ylll [Yh] .- k[y lk]
igtighoti=n @lipt @) @i

(3.29)

where the sum extends over all the indicial combinations such that ij+ig+...+i;=n. And
the only unknowns are the o, and B, coefficients which appear in Efy,2] through

equations (3.24) and (3.25). For example, the first few cumulants are simply obtained
by substituting n=1, 2, 3 and 4:

%, =Ely]]
K ,=3Ely2] - 3E'y)
K = 15E’ly3] - 4SEYIIE Iy2] + 30E°y)
s = 105E"[y;] - 630E Ty’] - 315E"Ty2] + 1260E°y 2IE [y 2] - 420ELy I [y2]

At
I

(3.30)
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Matching

So far, expressions (3.27) and (3.29) for the output moments and cumulants would
not provide a significant improvement over other existing techniques if we were unable
to determine coefficients o, and B,. Assuming that equations (3.27) and (3.29)
represent uniformly valid approximate expressions of the output statistics of system (S)
over some practical dynamic domain, some additional information, not provided by the
linear theory, is needed in order to completely determine these approximate response
statistics.

The main idea underlying the determination of the o, and B, coefficients consists in
matching the general cumulant expressions (3.29) with some "inner" solution obtained
through an expansion procedure in terms of a small parameter £ describing the
magnitude of the response y(t). Volterra functiorai series can be used (Volterra, 1930
and Wiener, 1958) to perform this expansion, though it is actually identical to a regular
perturbation3 "with memory".

In order to illustrate the matching procedure, an application to the case of a
nonlinear system, the input-output relationship of which is described by equation
(3.22), is provided. The response y(t) is assumed to be given by the Volterra series
(Bedrosian and Rice, 1971):

8The Volterra functional series model essentially consists in the Taylor series expansion, with
memory, of an input-output relationship. Therefore, it does not provide anything more than what can
otherwise be obtained through a regular expansion technique. The real advantage of tie Volterra series
model lies in the rather advanced body of results related to its application. Furthermore, the Volterra
series approach has the virtue that many such problems can be treated by first computing the necessary
transfer functions and then substituting those in the appropriate general formulas (e.g. Bedrosian and
Rice, 1971, Chua and Ng, 1979, or in the present case equations (3.15)).
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400 +00

y® =) b, x@) dr + €[ [ byt tt0) xe) x01y) x(a) dr dr g, .

(3.31)

Where the small parameter ¢ is introduced essentially to clarify the expansion and
the matching procedures,

A 3rd order Volterra functional series yields cumulants x,,, n <2, which, in turn,
lead to the determination of unknown coefficients o, o, and B, B,.

Clearly, for a Gaussian excitation the response 2nd order cumulant KX; is obtained
by integrating the output power density spectrum at this order (see equation (3.19) and
the transfer functions calculated in Appendix A):

%, = {&*- 6e"f [Re{H, ()} - SolzfH, (@)} H, o) S, () do}

400

[ s (@ do .

-0

(3.32)
where H; () is the linear frequency response function of system (S), and
400
2 2 2
Oy linear = € I H, (w)| Sxx(m) do
(3.33)

is the linear response variance.
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We now turn to the 4th order cumulant evaluated through equation (3.20) together
with the transfer functions evaluated in Appendix A:

Kg = -24¢€6 L L L[Bﬁ{H, (Wy+wprwgl} + EwywowlalH, (wy+wyrws)}]

H, (wq)I2H, (w)l2lH, .(ms)lzs,o‘(w; 1550 (WIS () dwidwdws + ...
(3.34)
Coefficients o, and B,, n=1,2 are obtained identifying terms of same order in € in

equations (3.29) with equations (3.32) and (3.34):

o Jl 2
=3+2o4 I 52=3+2 2 ? Iz
. G .. (o]
y linear "1 y linear y

(3.35)
where I;, I, J; and J, are defined in Appendix B.

One reason to describe the response through its cumulants rather than its moments
lies in the fact that the lowest order terms of the output curnulant x, of a Volterra series
is of order €202, n 2 2 (see equation (3.18)). Taking advantage of this property, all
coefficients o, and By, n 2 3, can be determined in eliminating terms of order lower

than €2(e-1) jn cumulant x,, (equation (3.29)):
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I )
0, =3+20) - — B =3+2@1)—"2
Oy finear 1) Oy linear O.
y linear

(3.36)

Finally, the first few output moments (equations (3.27)) and cumulants (equations
(3.29)) may be obtained by substituting above coefficients o, and B, in equations
(3.24) and (3.25), and formally solving these integral equations. It is pertinent to
mention that these integral equations are apparently well-behaved. They can be solved
through a rather simple iteration scheme involving the linear values as initial conditions.
Convergence is consistently achieved after a few iterations.

Although we have considered the particular case of a nonlinear system described by
the Duffing equation, the linearize-and-match method is applicable to a quite more
general variety of nonlinear transformations. Essentially, the method applies to any
type of analytic? system driven by general stochastic processes. The case of
asymmetric nonlinear systems the excitation of which do not possess a zero mean is
exposed in Appendix C. Coupled multiple degree of freedom systems can similarly be
treated within the general framework of this technique provided that they can be
expanded in Volterra series.

Non-Gaussian excitation processes can as well be treated within the general
framework of this method, provided that such processes can be reasonably
approximated as the response of an auxiliary Volterra system driven by a Gaussian
process. Original system (S) is thereby enlarged by such an auxiliary system.

91e. nonlinear systems which can be expanded in Volterra functional series.
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Two particular cases involving the Duffing equation will serve to assess the

accuracy and the possibilities of the method.

The Duffing Equation

The response cumulants resulting from the linearize-and-match method can be
compared with the exact ones as well as with other approximations available, whenever
exact methods are possible.

In the case = = 0 (linear damping only), equation (3.22) coincides exactly with the
so-called Duffing equation (equation (2.20)). There exist at least two situations where
the response moments and cumulants of the Duffing equation can be determined
exactly.

The first of these is the case of the idealized white noise excitation, and the latter is
the case of a narrow-banded excitation centered at the origin (static case). In both
cases, the validity and the possibilities of our method has been assessed through

comparison with the exact solution and some other methods.
White Noise Excitation
In the case of the Duffing oscillator excited by a Gaussian white noise, the response

probability density function is obtained as the stationary solution of an appropriate
Fokker-Planck-Kolmogorov equation (Caughey, 1963a):
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3.37)
where A, is a normalizing constant.

The response power moments as well as cumulants can easily be obtained exactly
from this distribution. On the other hand, the Voiterra functional model can lead to a
series expansion in terms of the "small" parameter Oy linear Of these cumulants from the
knowledge of the transfer functions (Appendix A) and residue integration in the

frequency domain of equations (3.19), (3.20) and (3.21). Keeping all the terms up to
the 10th order in this parameter, we obtain:

2 4 6 8 10
K, = Sy linear 3<J'y tinear + 24Gy linear™ 297(7y linear + 4896(3'y linear T -
6 8 10
K, = -6oy linear 1260'y linear 26820‘y tinear + **
10
K¢ = 3600'y linear +

(3.38)

We should however mention frankly that only the terms up to the 6th order could
actually be derived from the Volterra functional modell9, because of the excessive
complexity resulting from higher order transfer functions (Appendix A). The
remaining terms can be obtained directly from the exact probability distribution

10The 6-th order term in X3 is in contradiction with Smith's (1977 & 1980) assertion. Namely that,
motivated by the fact that some integrals cannot be evaluated analytically, for most cases this 6-th order
term is approximately equal to 180y jipe4® instead of its exact analytical value 240y finear”!
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(equation (3.37)), through an appropriate change of variable and Taylor series

expansion in terms of small parameter Oy jiper-

Finally, the linearize-and-match method, as described throughout the previous
section, yields the following approximated expressions for the first few even order

response cumulants:

x2=3,/1+1zcﬂ. -1)
3 2 2 1 2 2
k4= ,/1+16<syﬁm -1) -5 ‘/1+1zcyﬁm -1)

~ 3 , 5 ¢, 2 3

Ke= 555V 1206 1y - 1/*36“/1*12%11@'1)
45 2 2 2
'3187(‘/“16"”' -1)(,/1+12cyﬁm-

(3.39)
Expanding in terms of the small parameter Oy linear WE oObtain:
E2=°§linear 30" ¢ linear + 180" Sy linear 1356yhnw+ 11340},11“,=ar
K,=- im* 1056, gy = 15540, o +
= 3300'y linear *
(3.40)
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Figure 3.1. Response 2nd Order Cumulant, Kappa-2.
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Figure 3.2. Response 2nd Order Cumulant, Kappa-2.
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Figure 3.3. Response 4th Order Cumulant, Kappa-4.
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Figure 3.4. Response 4th Order Cumulant, Kappa-4.
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Figure 3.5. Response 6th Order Cumulant, Kappa-6.
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Figure 3.6. Response 8th Order Cumulant, Kappa-8.
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So that the predicted response cumulants ,, are exact up to the 2(n+1)th order in
this parameter, as expected from the matching procedure.

Figures 3.1 to 3.6 show the various approximations of response cumulants K7, Ky,
g and g as function of parameter Oy yin,, together with the exact one, as given by
equation (3.37).

Clearly, the linearize-and-match method consistently yields, by far, the best
agreement with the exact cumulants. Whereas the Volterra functional model leads to
comparatively poor estimates for the levels of nonlinearity shown. Furthermore, the
Volterra functional model results in such an amount of computational effort that
evaluating terms beyond the 6th order in Oy linear WOUld be quite cumbersome if not
practically impossible. This difficulty is related to both higher order transfer functions
and multiple integral computation. Finally, the linear and equivalent linear
approximations lead to vanishing 4th and higher order cumulants, simply because they
necessarily predict Gaussian response processes.

Furthermore, the linearize-and-match does provide a relatively simple and accurate

technique for predicting such response statistics.
Behavior at Infinity
Since we can expect the worst accuracy of our method whenever departure from

linear behavior is the most significant, it is interesting to examine the predicted power

moments when nonlinear effects should be the most significant i.e. whenever:
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ylinear-)"°

(3.41)
The first term of the asymptotic expansion of the exact power moments as obtained

from the response probability density, equation (3.37) is:

n i
=2"g" 1"(7*-2)
Hop = y linear 1
r (z)

3.42)
Similarly, the first term of the asymptotic expansion of the predicted response

power moments is:

T(n+)

~ o _n
Hop=2 Oy i

ﬁt- n+ 2)5

(3.43)
It follows immediately from these expressions that the exact and predicted power
moments are of the same order of magnitude in Oy linear> Which guarantees the fact that

the resulting relative error:
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Exact Solution W

Behavior at infinity-

Table 3.1.

—
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- 1 1
by By 073 M@+ 3)

Hoq >

T+ 2)2

(3.44)
will always remain bounded.

The behavior of the first few cumulants in the limit as Oy linear tends to infinity can
be obtained from equations (3.42) and (3.43). Table 3.1 (¢ denotes the perturbation
parameter Oy jin.qr) compares the different approximations with the exact solution. The
cumnulants resulting from the linearize-and-match approximation are clearly the most

accurate.
Static Approximation

The second application is the case of the Duffing equation excited by an idealized
Gaussian narrow-band process centered at the origin. This case corresponds to a pure

static configuration.
The response probability density function is exactly:

PG =

+y)
(1 +3y) exp(- ‘—2"—)
v2n Oy tivear 26y linear
(3.45)
Since this nonlinear transformation is static, the response statistical cumulants can

be expanded in power series directly from the equation of motion, without difficulty:
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Ky = O, ncar - 60y fnegr + 1056, ;o - 31500) .+ 1351350, ;00 +
6 8 10
Ky =240 peqr + 1152(5y linear ™ 604800'y linear + -

10
Kg = 67500, 1 pr + -

(3.46)
The linearize-and-match method yields the response power moments as solution of
a polynomial, and the a-coefficients are:

an=1+2n

(3.47)

The behavior of cumulants x,, k4, Xg and g, as functions of the parameter
describing the magnitude of the nonlinearity are not shown. But observations similar to

the white noise case can be drawn. Again, the linearize-and-match method yields the
most accurate estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

CHAPTER 4
Probability Distributions

We have shown, through Chapters 2 and 3, how the response statistics of a broad
variety of nonlinear systems can be predicted rather accurately. Although such
cumulants and moments represent significant statistical quantities to describe stochastic
processes, their probability distributions! constitute an essential body of information in
engineering design. They, in turn, may lead to the useful notions of system reliability
and probability of failure.

Whereas the methods based on functional representation techniques yield response
statistics, the prediction of response probability distributions belongs, for the most part,
to the realm of methods drawing upon the theory of Markov processes. These methods
are however limited in scope. Instead, we will explore another avenue consisting in the
contruction of these distributions from appropriate response statistics.

A stochastic process y(t) can be described, in increasing order of completeness, by
the set of probability density functions (Ming Chen Wang and Uhlenbeck,1945):

1As it is customary, probability distributions of a stochastic process denote, loosely speaking, both
density functions and distributions, as well as any other set of functions reiated to the probabilistic
description of such a process.
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P(y1,T1) dy; = Pr{y; <y(t;) Sy; + dy,}
PY1,%1; Y2:T2) dy1dyz = Pr{y; <y(t)) <y, + dy, and y, S y(t)) <y, + dy,}

P(Y1:T15-5 Yoo'T) GY1---dYn = Pr{y; < y(7)) Sy; + dy; ... Yo S y(Tp) <y, + dy,}

4.1)
These distributions must fulfill some obvious conditions. They must be positive,

normalized and satisfy the compatibility conditions:

P(Y5Ty5--5Y ) = jj...."p(yl,tl;...;yk,tk) dyn+1...dyk n<k

4.2)

We will show how such probability distributions can be constructed from
knowledge of their statistical moments or cumulants, even when a finite number of
those are known.

Although a complete set of such distributions can be constructed similarly, we will
only consider the first order one p(y) in the case of a stationary stochastic process y.
Several techniques for reconstructing these distributions will be described and
compared through various mathematical idealizations of the rigid body behavior of

marine vehicles.
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The Underdetermined Moment Problem

In the classical problem of moments, a probability density function p(y) is to be
determined from knowledge of its power moments:

+00
T f Yy’ p(y) dy

4.3)

The extent to which the density p(y) may be uniquely determined from its moments
has been discussed through the litterature. Briefly, expanding the moment generating
function of the probability density p near the origin (equation (3.11)), it can be shown
that the density of a random variable is uniquely determined by its power moments if all
moments are finite and the series converges absolutely in some neighborhood of the
origin (Papoulis, 1984).

In practice, only a finite number N of these moments are known2. Clearly then
there exists an infinite number of density p(y), the moments of which coincide with the
N prior power moments.

The construction of a probability density from knowledge of a finite number of its
power moments can thus be understood as an underdetermined moment problem.
Nevertheless, a number of approximation procedures exists which aim at reconstructing

such a function p(y).

2The normalizing moment pg=1 is implicitely included in these N moments.
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Edgeworth Series Distribution

One such technique involves the expansion of p(y) in a set of orthogonal
polynomials, the first N power moments of which are required to be correct. This
implies the solution of an NxN linear system. In practice, the choice of a suitable set of
orthogonal polynomials is difficult, so the resulting sequences may exhibit oscillating
approximations to p(y) which are further impaired by lack of positivity of the truncated
series (e.g. Ochi, 1986).

‘When Hermite polynomials are used, p(y) is expressed as the usual Gram-Charlier
series in the case of moment constraints (Cramer, 1945, Kendall and Stuart, 195 8). If
cumulants are used instead of moments, the Edgeworth series results (Edgeworth,
1904).

Although any set of statistical moments and cumulants up to the same order contain
precisely the same amount of information, the Gram-Charlier and Edgeworth series do
not coincide. In other words, different ways of taking the same information into
account lead to different distributions. This is yet another drawback of the truncation
procedure.

One important property of the Edgeworth series is that it represents a non-linear
perturbation of a linear problem the probability density of which is Gaussian. Clearly,
unknown cumulants, which are directly related to the deviation of p(y) from normality,
are automatically set equal to zero. Such probability distributions have been used, for
some time, in connection with ocean engineering problems (e.g. Longuet-Higgins,

1963 and Ochi, 1986).
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Edgeworth (1904) developed an asymptotic series probability density function for
the sum of random variables related to the law of error. In practice, the series is
truncated assuming slighty non Gaussian random variables. The first few terms of the
Edgeworth series distribution of a random variable are given by3 (see e.g. Abramowitz

and Stegun, 1970):

Y, 'Y
P() = Z(w) - 5 Z20)] + [ 22% + =Zw)]

.
i [g 29 172 Zm(u) % LEPIO

2%
Y, % %Y T, ¥,
4 ., (6) 193 8) 192 10) (12)
*lgZ W+ (1152 720)2( @+ 17282( 31104z @] +
4.4
where:
y L
u= Yﬂ-l = eve—
\/"2 er—;'
1 u ( )
Z(u) = expl—)  Z®(w) = = = He,(u) Zw)
\/ 2rx,
(4.5)

and He,(u) denotes the usual Hermite polynomial of order n.

3Note that the advantage of the quasi-moments is that they directly yield the coefficients of the Hermite
polynomial expansion (Kuznetsov, Stratonovitch and Tikhonov, 1951).
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Distribution of Maximum Entropy

The maximum entropy approach offers yet another procedure for the construction

of a positive density p(y).

Background

Although the distribution of maximum entropy constitutes a relatively recent and
still unused model, when compared with the more conventional expansions in a set of
orthogonal polynomials, its scientific origins are quite old.

Entropy and Thermodynamics. The physical concept of entropy originated
with the work of Clausius in 1850, and is intimately linked to the essence of the second
-iaw of thermodynamics.

While the first law of thermodynamics does not place any restriction on the
direction of the process involved, the second law draws its historical importance as a
law of nature allowing energy transfer to occur spontaneously only in certain preferred
directions. Mathematically, this limitation is expressed as an inequality# stating that the
internal entropy production (a state function related to the heat transfer) is never
negative.

Clearly, entropy is a quantity that remains constant in any reversible process, while
it must increase in ény irreversible process.

Entropy and Probability. The probabilistic interpretation of entropy, in the

context of statistical mechanics, is attributed to Bolizmann (1877). However, the

4The Clausius-Duhem inequality.
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explicit relationship between entropy and probability did not appear before 1906 with
Planck.

In statistical mechanics, the entropy of a state is directly related to the probability of
occurence of that state among all the possible states that could occur. And it is found
that changes of state are more likely to occur in the direction of greater disorder when a
system is left to itself. Thus, increasing entropy is associated with increasing disorder.
The second law of thermodynamics implies an almost natural preference for situations
of disorder.

In other words, entropy is a measure of randomness of the organisation of a
system, and this measure can only increase as the system moves into state space
regions of greater probability.

The much celebrated work of Shannon and Weaver (1949) laid the foundations of
modern information theory and led to Jaynes's principle of maximum entropy (1957a &
1957b) and Kullback's principle of minimum cross-entropy (1959).

The method of maximum entropy has been applied to a variety of problems
involving the determination of probability distributions from incomplete data (Jaynes,
1957a & 1957b, Agmon, Alhassid and Levine, 1979, Levine, 1980 and Mead and
Papanicolaou, 1984).

Historicaily, the entropy functional S{p} was derived from a number of postulates
based on our heuristic understanding of uncertainty and information (Shannon and
Weaver, 1949 and Papoulis, 1984). It can be shown that the discrete version of the

sum:
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8p} =- [ ) Inp) dy

(4.6)
satisfies these postulates and is unique within a constant factor (see e.g. Papoulis,
1984).

Rationale

Until now we have not exhibited any "hard" evidence that the principle of maximum
entropy would actually provide any worse or better an approximation of an unknown
probability function than any other available technique.

Intuitively, the distributions of higher entropy represeﬁt more "disorder,"” they are
"smoother,” "more probable,” and they "assume less" (Jaynes, 1982). Nevertheless,
one may wonder what exactly are we doing in maximizing entropy. Keeping in mind
that it is generally possible to get an accurate prediction of any density provided that a
sufficient number of its power moments are known.

At least two kinds of justifications can be provided, the former is based on the
entropy concentration theorem (Jaynes, 1982), while the latter relies on an axiomatic
derivation of the principle of maximum entropy (Shore and Johnson, 1980). .

Entropy Concentration theorem. Let us consider a random experiment which

has m possible results for each of the M trials. Each of the nN outcomes yields a set of
frequencies {p;, i € [1,m]}. The quantity A& is defined next:
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Sox-88 < 8oy < 8

@7

Then, it is possible to show, using combinatorial analysis, that 2MAS s
asymptotically distributed, over the class of all possible outcomes that could be

. observed in M trials, as chi-squared with k=M-N-1 degrees of freedom, independently
of the actual nature of the constraints (Jaynes, 1982).

Invoking the entropy concentration theorem, Jaynes (1982) concludes by stating
that given incomplete information, the distribution of maximum entropy is not only the
one that can be realized in the greatest number of ways; in fact, for large M the
overwhelming majority of all possible distributions compatible with our information
have entropy very close to the maximum.

In other words, distributions of entropy away from the maximum are improbable
relative to those allowed by the constraints.

Drawing upon some elementary examples Jaynes finally concludes: "... it is
prudent to adopt for purposes of inference that distribution which has maximum
entropy subject to the data we have. It is prudent, not for any vague, mystical reason;
but for the very clear and pragmatic reason that the maxent predictions are the most
reliable ones that can be made on the given information. It is a combinatorial theorem
that to choose any other estimate would amount to ignoring the vast majority of all the
possibilities allowed by the data...”

Axiomatic Justification. As already mentioned, the entropy functional S{p}
was derived from a number of postulates based upon desired properties of information

measures (Shannon and Weaver, 1949).
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Yet, another axiomatic derivation, proposed by Shore and Johnson (1980) and
based upon self-consistent properties of inference methods, provides new evidence
toward choosing distributions of maximum entropy.

The principle of maximum entropy can be illustrated by an elementary, but typical
example (van Roeckeghem, 1986). Let us assume the probability of having a black
court card is to be estimated. For that purpose, the following events are defined:

X;: geta black court card
Xy: getared court card
x3: getanother black

X4: get another red

It is further assumed that we are given the probability of getting a court card and the
probability of getting a black card:

3 1
p(x,) + p(x,) = e p(x) +p(xy) =5

4.8)
Clearly, there is an infinite number of probability assignments that satisfy those

constraints. Maximizing the entropy:

4
Stp}=- Y, p(x) In p(x))

n=1

(4.9)
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subject to the constraints (4.3) leads to the probabilities:

3 10
p(x,) =p(x,) = ET3 P(xy) = p(x,) = 3

(4.10

There is no correlation between the color and the value of the cards induced from
the maximization procedure. This should be expected from any reasonable solution.
Maximizing any function other than entropy would have induced undesirable
correlations.

This is one of the arguments that led to the axiomatic derivation of the principle of
maximum entropy (Shore and Johnson, 1980).

Essentially, their approach postulates that reasonable methods of inference should
lead to consistent results when there are several ways of taking the same constraints
into account (e.g. different sets of coordinates).

They show that there is a unique distribution obtained by maximization that satifies
the constraints assuming that the technique used verifies the postulates (or consistency

axioms); this distribution can be obtained by maximizing the entropy.

The Maximum Entropy Probability Distribution
The entropy S{p} is maximized under the constraints that the first N power

moments be equal to the true moments j,. Defining appropriate Lagrange multipliers

Ap, one aims at maximizing the entropy functional redefined from (Mead and

Papanicolaou, 1984):
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400 N 400
8p1=- [ 66) 1m0 - b1 4y - D, ([ " ey - )
~o0 n=0 oo

4.11)
where the sum extends over all the prior moment constraints (equation (4.3)).
Upon maximization, the following density function p(y) results:
N
P =exp(- A y")
n=0
4.12)

where the Lagrange multipliers are determined from the N moment constraints (4.3),
and A is a normalizing constant. Several peculiar features of the probability density of
maximum entropy (4.12) can be emphasized:

First it is interesting to mention that for N=2, the norma! probability density is
obtained.

The density of maximum entropy py(y) remains always positive, at each finite stage
of the iteration, unlike densities derived from sets of orthogonal polynomial.

Using cumulant or quasi-moment constraints instead of moments leads to the same
distribution, provided that these constraints are of the same order. In other words,
different ways of expressing the same information lead to identical distributions5.

For numerical purposes, a potential is introduced by an appropriate Legendre

transformation. It can be shown to be everywhere convex through explicit construction

>This is not the case of orthogonal polynomial expansions, e.g. Edgeworth and Gram-Charlier
distributions.
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of the corresponding Hessian. Such a property ensures that a local stationary point
actually maximizes entropy (Mead and Papanicolaou, 1984).

Given a set of moment constraints (4.3), the maximum entropy distribution can be
evaluated evaluated through the Raphson-Newton algorithm. At each step of the

iteration procedure, the first 2N power moments must be computed:

+oo N
B, = Iy“ exp(- 3, Ay') dy
—o i=0

(4.13)
Integrating by parts, the general expressions are obtained:
1 N-1
B, = N—Z.N- ((n -N+Du - 2; i klun.Mi) n2N
1=
4.14)

Thus, only the first N moments actually need to be evaluated ir cluding po=1. The
remaining power moments yt,, n2N are given in terms of the lower order ones by the
above recurrence relationship.

Such original relationships are very useful in the construction of the Hessian at each
iterative step of the Raphson-Newton algorithm. '

Referring to the two examples already discussed (Chapter 3), empirical evidences
leading to the preference of the maximum entropy distributions over other distributions
can be exhibited.

In the case of the Duffing oscillator excited by a Gaussian white noise, the exact

response probability density is obtained from equation (3.37). Such a probability
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density coincides with the maximum entropy distribution as soon as the 2nd- and 4th-
order moments (or cumulants) belong to any set of moment constraints of the type
4.3).

Let us consider now the pure static case of the Duffing oscillator excited by a
Gaussian narrow-banded signal at the frequency @y = 0. The response probability
function is exactly given by equation (3.45). Clearly, such a probability density cannot
generally coincide with the distribution of maximum entropy given any finite set of
moment constraints of the type (4.3). Nevertheless we show, starting with a set of
exact moments, that the distribution of maximum entropy is in far better agreement with
the exact distribution than the corresponding Edgeworth series-type distributions
(Figures 4.1 and 4.2).

These observations agree with other works on the distribution of maximum entropy
in the problem of moments (Levine and Tribus, 1979, Agmon, Alhassid and Levine,
1979, Levine, 1980 and Mead and Papanicolaou, 1984).

It is essential to keep in mind that the maximum entropy approach, just as any other
approximation, should not be regarded as the panacea for the solution of all moment
problems. After all, a polynomial expansion would be perfect if the exact density
happened to be a finite polynomial, while maximum entropy would be ideal if the
density were the exponential of a finite degree polynomial (Mead and Papanicolaou,
1984).

However, in the absence of any other information than our moment constraints
(4.3), the distribution of maximum entropy "is uniquely determined as the one which is
maximally noncommittal with regard to missing information" (Jaynes, 1957a &

1957b).

o
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Figure 4.1. Response Proga.bility Deansity Function, Static Case.

Oy linear = 0.5
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Edgeworth 3

Figure 4.2. Response Probability Density Function, Static Case.

2
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Applications: Marine Vehicle Rigid Body Behavior

Two applications to the rigid body behavior of marine vehicles will serve to
exemplify and to assess the accuracy of the different approximations discussed. The
approximations appear at two levels. First in the prediction of the response statistics
(Chapter 3), and also in the construction of the response distributions from knowledge
of these statistics (Chapter 4).

The purpose of these applications is not to pretend that such mathematical models
will invariably apply to the behavior.of marine vehicles, but rather to show that our

methods can be useful, at least in some situations involving those structures.
Surge Motion of a Tension Leg Platform

The case of the surge motion of a tension leg platform is considered first. Ochi and
Malakar (1984) assumed that such a motion could be modeled by the single degree of

freedom equation of motion:

§+2§mﬂfr+m§y+ry3=x
(4.15)
This assumption may be satisfied, provided that the other modes are decoupled
from surge. The nonlinearity in y3 appearing in the equation of motion models the
nonlinear behavior of the mooring system.

——
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Figure 4.3. Surge Probability Distribution of Maxima,
Edgeworth-Type Distributions, Hs =9.15 m.
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Figure 4.4. Surge Probability Distribution of Maxima,
Maximum Entropy Distributions, Hs =9.15m.
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40&:::

Surge Maxima

Figure 4.5. Surge Probability Distribution of Maxima,
Edgeworth-Type Distributions, Hs = 14 m.
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Figure 4.6. Surge Probability Distribution of Maxima,
Maximum Entropy Distributions, Hs = 14 m.
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The American Bureau of Shipping provided them with the force resulting from a
sea state described by the Pierson-Mosckowitz wave spectrum. The significant wave
height is 9.15 m, with modal period 10 s. We also consider a significant wave height
of 14 m, by simply extrapolating linearly Ochi's data.

Ochi and Malakar (1984) made the further assumption that the wave excitation
could be approximated by a Gaussian white noise process. They introduced a method
to evaluate the magnitude of an equivalent white noise spectrum based on equating the
energy with the one associated with the corresponding linear system.

The following data were also used: @,=0.1 rad.s1; £=20%; r=0.0057 m-2.s-2.
Such configurations respectively correspond to adimensionalized linear ouput variance
Oylinear>=0.12 and 0.28 for the incoming significant wave height of 9.15 m and 14.0
m.

The surge motion distribution of maxima can be obtained, assuming that the surge
power spectral density is sufficiently narrow-banded (Duthoit and Armand, 1987).
Figures 4.3, 4.4, 4.5 and 4.6 show the surge distribution of maxima on Rayleigh
probability paperS, in order to emphasize deviation from the theoretical distribution of

the maxima of a narrow-banded Gaussian process.

The case Hy=9.15 m is considered on Figures 4.3 and 4.4, whereas the more
severe case Hy=14 m is shown on Figures 4.5 and 4.6. Figures 4.3 and 4.5 show the
Edgeworth-type distributions evaluated from the response cumulants predicted by the
linear, the perturbation as well as the linearize-and-match methods. Figures 4.4 and

4.6 show the corresponding maximum entropy distributions.

CLe. Rayleigh distributions will appear as straight lines.
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Table 4.1. Probabilities of Exceedence
9.15 m Significant Wave Height.

Table 4.2. Probabilities of Exceedence
14 m Significant Wave Height.
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As already mentioned in Chapter 3, the perturbation method yields rather poor
estimates. The Edgeworth-type distributions together the linearize-and-match
cumulants provide accurate results over a reasonable range of maxima (0-2.5Gxacy)-
For larger values of the surge maxima, these distributions may reach values greater than
1 and thus are of little interest.

The figures clearly emphasize that the distributions of maximum entropy together
with the linearize-and-match first two moment constraints are the most accurate when
compared with the exact distributions? obtained from Fokker-Planck equation (equation
(3.37)). Such agreement is equally good for the probability of exceedence (Tables 4.1
and 4.2).

The improvement over the linear and the equivalent linear models is clear and is the

most significant for extreme values, i.e. Pr{y 2 46,44}, Which corresponds to rare

events of the order 10-5 or 10-S.
Roll Motion of a Ship

The form of the equation governing ship rolling has been discussed through the
litterature for some time. There exists at least one important configuration where ship
rolling can be modelized as a single degree of freedom equation, this is the case of
beam waves.

In such a case, it is generally agreed that the differential equation that prevails is of

the form:

/Exact within the narrow-band hypothesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

y+ay+y+bylyl-y’ =x
(4.16)
where the roll angle y as well as the incoming wave slope have been both
adimensionalized relatively to the half range of positive static stability of the ship
(Dalzell, 1971 & 1973).

The technique presented above is not directly applicable to this type of differential
equation. In order to transform this differential equation into an analytic system, the
technique of equivalent nonlinearization is used (Barrett, 1963 and Caughey, 1984).
One nonlinear analytic equation "equivalent” to (4.16) is:

§+2§3}+.‘:‘.§'3+y-y3=x

4.17)
where:

28 =a+ b, / 2E2'2] and ZE=b -2
‘ 9nE[y *]

The extent to which such an approximation be reasonable clearly depends on the

(4.18)

kind of statistics sought. Keeping in mind that equivalence in the mean square sense is
invoqued in order to substitute (4.17) to (4.16), equation (4.17) should yield second
order statistics within reasonable accuracy. On the other hand, one can predict that less
accurate higher order statistics will result.
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In order to assess the validity of both the output moment prediction technique and
the distribution of maximum entropy approximation, comparisons with Dalzell (1971 &
1973, Roberts, 1982a) simulation of nonlinear ship rolling have been performed.

In his work, three different wave input processes (labelled 1, 2 and 3) were
considered, wave process 1 corresponds to a narrow-band wave spectrum, while wave
process 3 has the largest bandwidth. Unfortunately, the spectral density of wave
process 1 do not have an analytic form, thus only the two others are considered here.
Only the configurations of highest severity are shown and discussed here. The average
error of our method on the roll angle standard deviation was found to be less than 3%,

In Dalzell's work, those configurations where the deviation of the distribution of
roll maxima from those of a Gaussian process are the most sensible will now be
considered. In order to evaluate the distribution of maxima, the spectral density in roll
is assumed to be narrow-banded. Such an assumption turns out to be justified by the
bandwidth parameters calculated by Dalzell, which for practical purpose, can be set
equal to zerc.

Figures 4.7, 4.8, 4.9 and 4.10 show Dalzell's simulation results together with the
linear and the maximum entropy® distributious on Rayleigh probability paper. Figures
4.7, 4.9 and 4.10 correspond to wave process 3 with modal frequency Wy = 0.90, and
standard deviation 0.0351, while a = 0.1; 0.01 and O respectively and b = 1. Figure
4.8 corresponds to wave process 2 with modal frequency ®g = 0.95, and standard
deviation 0.0261, whilea=0.1and b = 1.

Clearly, the linear approximation does not yield any useful information on the

distribution of roll maxima in these cases, while the distribution of maximum entropy

SLabelled L.-&-M. N, where N denotes the number of terms in the distribution of maximum entropy,
except for the normalizing constant.
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Figure 4.7. Roll Probability Distribution of Maxima,
Maximum Entropy Distributions, a=0.1, b=1, Wave Process 3.
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Figure 4.8. Roll Probability Distribution of Maxima,
Maximum Entropy Distributions, a=0.1, b=1, Wave Process 2.
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Dalzell's simulation estimates: o o /
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Figure 4.9. Roll Probability Distribution of Maxima,
Maximum Entropy Distributions, a=0.01, b=1, Wave Process 3.
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Figure 4.10. Roll Probability Distribution of Maxima,
Maximum Entropy Distributions, a=0, b=1, Wave Process 3.
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with two moment constraints derived from the theory exposed in Chapter 3 yields good
agreement with simulation estimates.

When more moment constraints are taken into account in the maximum entropy
distribution, the accuracy is improved. Such a better agreement with Dalzell's
simulation estimates is sensible only in the last case (Figure 4.10).

Recalling that the roll angle is scaled relatively to the half range of positive static
stability of the ship, Dalzell's simulation estimates tend to prove that our method yields
rather accurate predictions at least up to 25 or 35 degree amplitudes.

As already mentioned, the 1-term distribution of maximum entropy coincides with
the one obtained from the method of equivalent linearization. Thus, our method
provides further insights into the probabilistic structure of non-Gaussian processes
which are not, in any way, predictable within the framework of a linear model.

Such deviations from the distribution of the maxima of a Gaussian process are
clearly depicted on the figures and accurately predicted by the proposed method.

It is presumably possible to further refine our model in adding higher order terms in
the equivalent nonlinear system, equation (4.17). Further improvements could be
gained, at some computational expense, in removing the narrow-band assumption,

thereby predicting the distribution of maxima of a general Gaussian stochastic process.

—
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Conclusion

A new heuristic technique for the determination of the nonlinear response to a
stochastic process has been proposed. Essentially, the linearize-and-match method
consists in constructing an infinite series of linear systems. Each one of these systems
is defined so as to predict the response statistics of a given order by matching the
Volterra functional model response statistics of the same order. The linear model for
predicting statistics of order two coincides with the one defined by the method of
equivalent linearization. Some new results related to the Volterra transfer functions and
response cumulants have been derived along the way.

This linearize-and-match method overcomes many of the drawbacks of perturbation
and other functional representation techniques related to the questions of convergence
and accuracy of the resulting series. Furthermore, this method prdvides added
versatility over methods based on the theory of Markov processes such as the Fokker-
Planck equation and It stochastic calculus. Finally, the linearize-and-match method is
characterized by an extreme simplicity of implementation, when compared with the

more excessive digital as well as analog simulation techniques.
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The response statistics, resulting from the linearize-and-match method, can in turn
be combined to derive response probability distributions. Several methods to address
this underdetermined moment problem have been described and compared. The
distribution of maximum entropy appears to consistently yield the best accuracy, based
on incomplete information. The global method applies to a quite broad variety of
nonlinear dynamic systems driven by general stochastic excitation.

Various mathematical idealization of the functional relationship governing the rigid
body behavior of marine vehicles served both to exemplify and to assess the accuracy
of this technique. Comparisons with exact solutions or time domain digital simulations
(whenever exact methods do not apply) of the assumed mathematical models show the
accuracy of the proposed method in predicting response statistics of various order as
well as probability distributions.

Furthermore, we have shown how this method can be generalized in several
directions to address asymmetric as well as coupled multi degree of freedom systems.
Finally, the method is quite simple in principle as well as in practice.

The applications discussed were all implemented on Apple’s Macintosh™
microcomputer.

On the other hand, the main drawback of the linearize-and-match method is that,
although its accuracy appears quite reasonable regarding the configurations considered,
the resulting error on the response statistics is nevertheless irremovable. Therefore it
may not be acceptable in some other situations.

Although the mathematical models considered represent idealized and simple
models of the behavior of ocean structures, it is believed they can yield further insight

N
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. -
: into the complicated mechanisms leading to large amplitude response and cventually

capsizing.

Further assessement of the accurracy of the proposed method cannot be achieved
unless comprehensive model as well as full-scale experiments and measurements (both
digital and analog) are performed. The double objective of identifying the parameters
of the dynamic systems in hand as well as characterizing the approximations which
hold the most promises should govern such experiments.

Finally, further research should be conducted toward the integration of such
techniques within a global dynamic system reliability and safety model not yet
available. Such a model would be an essential step towards the rationally-based design
of ocean structures. '
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APPENDIX A

Volterra Transfer Functions

Let us consider a nonlinear system described by the functional input-output
relationship (1.1). Expanding the nonlinear functional ? in Volterra series, excitation

process x can be written in terms of response process y in the frequency domain:

X() = ; I I j Gj(ml,mz,...,mj) d(w - O, - Q, -...- mj) 111 Y(w,) do,

(A1)
where, G; are known as the transfer functions, X and Y respectively denote the Fourier
transforms of x and y, and § stands for the Dirac distribution.

Clearly, equation (A.1) is the frequency domain equivalent to the time domain
series (1.10) and (1.11). Since this is an inverse formulation of our input-output

relationship, it is generally required to determine the explicit one:
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Y(o) = ijj...JHi(ml,m eees @) (o - O, -0, -...- ©) H X(w) do,
i=1 k=1

(A2)
In other words, transfer functions H; are to be determined from transfer functions

G;. This is an inversion problem which can be solved in a variety of ways (some of the

methods available have been discussed in chapter 1). For instance, the direct expansion
method (Bedrosian and Rice, 1971) consists in expanding functional ? and its

unknown inverse 7-! in the time domain, substituting and identifying the terms of
same order, and finally Fourier transforming the resulting kernels.

However, a simpler approach can be undertaken in directly expanding functional '7
and its inverse in the frequency domain (equations (A.1) and (A.2)). After substitution
of equation (A.1) into equation (A.2), the following relation results:

Y()= g‘[ I ...JHi(col,oaz,...,o)i) oo - Q- ©, ~...- @) ]_:L dmkg j’jf

I Gi(@;, 1,0, 99050, ) KO, - @, - @, ; -..r o, IIII Y(o,)do,

(A.3)
A series of i sums over the indices j;, j,, ..., j; can be substituted to the k-product

of the j-sums above:

Y(w) = i i ii I I...JHi(ml,mz,...,mi) S(w - 0 -0, .- ) |

i=1 jy=l jp=1 j=1
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i
(Ik Il ij(mi+jl+..-+jk_1+1’“.’mi+jl+...+jk) a(n)k - mi+j1+.--+jk_1+l Teee” mi+j1+-..+jk))

j1+jz+...+ji i+j1+...+ji
Y(o,) I I do,
1=1 m=1

(A4)
We can further simplify the expression above in evaluting the i integrals
corresponding to the first i @y variables, and simultaneously making the change of

variables corresponding to the indicial transformation i+j—4:

400 1)
Y(w) = Z Z z jj...JHi(ml+...+ ©; 50 ybent @ oo

o=1 i=l jj+..4j=n

eees®. . +oot @, . - - e @, . .
’ Iyt tiig +l jl+...+ji) 8( 0)1 0)2 mjl+]2+...+ji)

i j1+j2+-lo+ji
lk :[l ij(‘”j,+...+jk_1+1"""°51+...+j,) IIIl Y(w) doy,

(A.5)
where, the rightmost summation is over all the unordered combinations such that

J1+ig+...+j=n. For each different arrangement:

1<j,<j,<... Sj,

(A.6)
There are:
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i!

(A7)
distinct terms contributing to that sum, where p, denotes the number of equal j's in the
r-th run of equalities in the set of inequalities (A.6). If no j's are equal then the prall
vanish (Bedrosian and Rice, 1971).

Finally, in order for equation (A.5) to hold, the following compatibility conditions
must be satisfied:

0
Sln = 2 Z H(o +...+ mjl"°"mj1+.--+ji-1+l+"‘+ mj1+---+ji)

i=1 ji+r+j=n

i

HGJk(mjl+...+]k_l+1’ ’ 11+...+Jk)

k=1
(A.8)
where ;; denotes the Kronecker delta.
These equalities lead to the desired transfer functions H,(0;,0,,...,0,):
H1 (col) = e (10) )
11
(A9)

n-1
Hn(col,mz,...,con)=-Hl(ml)Hl((oz)...Hl(m n)z z Hi(col+...+ mjl,...

i=l ji+...+j=n
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i

. . et O, . I IG. () . (X .
ity +l ]1+...+ji) el Jk( Jp#etip g+’ ’mjl+...+]k)

(A.10)

Such an expression however, does not generally result in the symmetric transfer
functions required in the various derivations of response statistics throughout chapters
2 and 3. Whenever this is the case, the associated symmetric transfer functions can be

derived from the simple transformation:

1
Sym{H (04,0, 0 }- Z Hn(ml,mz,...,mn)

permutauons of o,
(A.11)
Substituting in equation (A.10), we obtain:
ilj ] 3ol e ji!
H(0,,0,,.-,0) = -H (@ )H,(@,)...H,(® )z 2 2y
i=1 ji+..+ji=0 permutations of

Hi(col+...+ mil’""mj1+---+ia.1+1+"'+ coJ . +J,)I I k Jl+ iy, +1""’mix+---+ix)

(A.12)

where the middle sum with a star superscript extends over ail those partitions of n

which have i parts. In other words, the sum is over all the different arrangements
(A.6).

Whereas the rightmost sum extends over all the different terms which can be

obtained in permuting the . Identical is used in the sense that the H; are symmetric in
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their arguments and that for instance: @;+,=0,+®,. The number of terms in this sum

is:

n!
Jipt e 3! P! p,! ... pq!

(A.13)
Equation (A.12) as well as Bedrosian and Rice's formula are recurrence

relationships since each transfer function H(®,,0,,...,03,) depends upon lower order

ones. However, our general inversion fornula, equation (A.12) is not only simpler
than Bedrosian and Rice's but also more general since it applies to general nonlinear
Volterra systems.

Note that such expressions can easily be generalized to the case of a nonlinear

system described by functional relationships of the type:

20} = 2 x0}

(A.14)
where ?1 and ?2 are both nonlinear and analytic functionals, i.e. expandable in

Volterra series.

Duffing Equation with Nonlinear Damping

In order to illustrate the general transfer function expressions, let us consider a

variation of the Duffing equation, namely the Duffing equation with linear plus cubic
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damping (equation (3.22)). Alternatively, this equation can be rewritten in terms of
Volterra integrals:

j:mgl(t-‘l:l)y(1:1)d1:1 + ij‘ [E 8'(t-7)d'(t-1,) 8'(t-1,)

+ 8(t-T )8(t-T,)8(6-T)] y(, )y (T,)y(T,)dT,dr,dt, = x(1)

(A.15)

Equation (A.15) can be Fourier transformed, in order to determine the inverse
transfer functions G;.

JGl(ml) o(w - ©,) Y(®,) do, + J:” E 00,0, + 1] w- ;- 0,- ;) Y(w,)

Y(mz)Y(%) do,do,dw, = X(m)

(A.16)
where the linear and third order transfer functions are given by:
G, (@) =- 0+ 2iEw + 1
G3(col,cu2,m3) = Z0,0,0, + 1
(A.17)

Substituting the G; in equations (A.12) leads to the symmetric version of the first
few transfer functions H;:
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Hl(m) = 2 -
-0+2ifw+1
(A.18)
I'Ia(‘”p“’z""s) =-(1+2 o)lo)z(n3) Hl("’l)Hl(“’z)Hl(“’s)Hl(‘”1+ @,+ co3)
(A.19)
H (@,,0,,0,,0,,0) = ((1 +E 0,0,0,) H, (0 + 0,+ @)H, (0,)H, ()

+(1+Z2 0,0,0,) Hl((o1+ W+ co4)H1(m3)H1(m5)
+(1+Z ©, 0,0 ) Hl (o, + ©,+ O )Hl(cz)s)Hl(oo4 )
+(1+=2 ®,0, m4) Hl(ml+ ®; + @, )Hl("’z)H1(‘°5)
+(l1+Zo cn3m5)H (co + . +c05)H (o, )H (,)
+(l1+Zw m4m5)H (m +O® +m5)H (o)z)H (co )
+(1+= m2m3m4) Hl(co2 + @+ o)4)H1(col )Hl("’s)
+(1+ _.co . ms)H (co2+co + ms)H (o, )Hl(m )
+(1+= 0,0, )H (a)2+a) +cos)H (co )H (0) )
+ (1 + Z 0,0,05) H (@, + @, + 0,)H, (0, H, (©,))
H1(‘°1)H1(‘°2)H1(‘°3)H1( H (cos)H (0,+ o, h+ W+ W+ )
(A.20)
Although the derivations are straightforward, the number of terms in the transfer
functions increases geometrically with its order. For instance, the seventh order

transfer function is made up of 117 terms. This is partly due to the fact that symmetry
is requiréd. It is, however, important to be not misled, the simplification resulting from

—
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not requiring symmetric transfer functions would have, at least partly, to be paid in a

significant complication of the response statistics discussed throughout chapters 2 and
3.
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APPENDIX B
I3, I», J1 and J, Integrals

1= [ H@ReHE, @IS (Xo

) ®.1)
L= ezj ofH, (@) U2{H,@)}S,_(@)}o
) ®2)
1, =€ [ [ R, @+ 0, @18, ), @)7H, @)
Sxx(ml)Su(mz)su(m3)dmldw2d(o3
®3)

12 = 86 J-_” m1m2m3227l{H1 (co1+ W+ co3)}IHl(col)llel(coz)llel(m3)[2
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Sxx("’1)Sxx("’z)sxx("’s)d‘”1d‘°2d‘°3
B4
While integrals I; and I, can be evaluated without too much effort, J 1 and J, are

triple integrals and would involve significant computational effort if evaluated under
this form. Instead, we seek the time-domain equivalents of integrals J pand J,. The

following Fourier transform pairs are defined first:

ot 1 -t
Rylinylin(t) =Jl Sylinyun(m) e do SYunYun(m) B EI RYunYﬁn(t) e dr
R (‘C)=IS . ((D)eimdco S (m)_:Tl_IR . (‘C)e-imd‘l:
YiinY tin oo VoY i YiiaY tin 7:_“ Yiia 5n
@) =5 [ Rt @) ¢ Ref, @) = | 006
£, = 5= [ YA @} o U@} = [ £,0 ¢

Finally, J; and J, are now given in the time domain by single integrals involving

Fourier transforms, for which very efficient algorithms are now well established (fast

Fourier transform):
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<00
6 3
J1 =€ J' fl(t) Ryunym(t) dz

(B.5)

I, = eGJ.fz @R @d

YiinY 1in

(B.6)
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APPENDIX C
Generalization of the Linearize-and-Match Method

We will show how the linearize-and-match method can be generalized to the case of
asymmetric nonlinear systems the excitation process of which does not necessarily
possess a zero mean value. Moreover, we will not only consider nonlinear systems
described by ordinary differential equations, but the more general case of nonlinear
analytic systems with memory.

Let us consider again the case of a general nonlinear analytic system described by
the functional input-output relationship (1.1). Such a functional relationship can be

linearized such that an infinite series of systems (Sp) characterized by the following

diagram results:

YO p——» L |——eP—> x()
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Alternatively, the functional relationship describing these systems are:

Loy, 01+, =x®  (S)
(C.1)
where aC,, is a linear functional, whereas @n denotes an active filter independant of the
instantaneous value of response process y.

Since (S) is an analytic system, the left hand side of equation (1.1) can be written as
a Volterra series with kemnels gy(t;,5,...,T,). Clearly, the general even-order and odd-
order terms:

”J' BTy TyperTy) Ely(E - T)Y(E - T)..(t - )] dt,..dty,
and

_UI g;kd(‘tl,‘tz,...,tzk“) E[y(t - T)y(t - T,)..y(t - Tyl ¥t - Ty, ) dT,..dTy

(C.2)
respectively appear in @n and °cn and are substituted respectively to:
_” I g2k(1:l’ ,...,‘cZk) y(t - ‘tl)y(t - 12)...y(t - 1:2k) d1:l...d't:2k
and
J' I J- 32k+1("1’t ,...,1:2k+l) y(t - tl)y(t - 12)...y(t - 1:2k+1) dv:l...d1:2k+l
(C3)
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in original system (S). The new kernels g, ™ and gy, , ;" are determined by matching of
the n-th order response moment.

Averaging equation (C.1), we obtain:

L AEly, 01} + &, = Elx@®)]

(C4
Defining the zero-mean variables x*(t)=x(t)-E[x(t)] and y*(t)=y(t)-E[y(t)], and
substracting equation (C.4) from (C.1), the linear systems (S,*) are obtained:

*

%* *
Liy,Ot=x,® ()

(C.5)
Equations (C.4) and (C.5), in turn, lead to the mean value and autocorrelation of
systems (Sp) and (Sy*) respectively:

-1
Ely, (0] = £, {Ex()] - &}

(C.6)
* * -1 % -1 %
Ely, )y, 1 =E[L {x (1)} L {x )]

(&)
Taking advantage of the Gaussian property of process y,*, equations (C.6) and

(C.7) represent coupled integral equations in the desired response statistics Efy,(t)] and
Ely,*(t)y,*(©)]-
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Raising yy(t) to the n-th power and averaging, the n-th order power moment of
system (S,) can be obtained:
EG]
OB k -2k
Byl = Y, == 2 Tktz) CE'ly, 1 E"Xpy,)

k=0 y T
(C.3)
where E[n/2] denotes the largest integer smaller than n/2.

The response power moments of system (S) are approximately determined from:

Ely "] = Ely,]
(C.9)
‘Whereas, the central moments are:
H,=E[G-EGDY  n22
(C.10)
Finally, substituting equations (C.8) and (C.9) into (C.10), we get:
. E[—]
fa=2,CF “’b’llz—Z Tkt CX Ey,,
m=0 k=0
(C.1D)

- . -
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These expressions are to be substituted to equations (3.29) in the case of an
asymmetric nonlinear system. Whereas the matching procedure is similar to the one
exposed throughout Chapter 3.
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