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ABSTRACT OF THE THESIS

Blind Spots of Neural Sequence Models

by

Paarth Neekhara

Master of Science in Computer Science

University of California San Diego, 2019

Professor Shlomo Dubnov, Chair

Deep neural networks (DNNs) serve as a backbone of many image, language and speech

processing systems. Such models are being deployed extensively in personal devices, cloud based

applications and automated security services like face recognition, speaker identification etc.

While DNNs have shown to achieve state of the art results in their respective domains, recent

studies have exposed the vulnerabilities of these models to adversarial attacks. The work on

adversarial examples has primarily focused on the domain of images.

In this work, we explore the vulnerabilities of neural networks working on sequential

data like text and audio. We propose a novel method to repurpose text classification networks

for alternate tasks. This gives incentive to adversaries to steal computational resources from a
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system provider. An adversary in such an attack scenario can potentially train a simple input

transformation for discrete sequences for repurposing the victim model for a new classification

task.

We also study the existence of universal adversarial perturbations for Automatic Speech

Recognition (ASR) Systems. We propose an algorithm to find a single quasi-imperceptible

perturbation, which when added to any arbitrary speech signal, will most likely fool the victim

speech recognition model. Our experiments demonstrate the application of our proposed technique

by crafting audio-agnostic universal perturbations for the state-of-the-art ASR system – Mozilla

DeepSpeech. Additionally, we show that such perturbations generalize to a significant extent

across models that are not available during training, by performing a transferability test on a

WaveNet based ASR system.

For example, a carefully designed imperceptible perturbation in an image can cause a

victim image classification model to mis-classify the image. Such attacks target the ”blind spots”

of neural networks input domain. In this work, we focus on exposing such blind spots in neural

sequence models for language and speech.
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Chapter 1

Introduction: Adversarial Examples

Deep neural networks (DNN) are being extensively deployed as image, language and

speech processing systems in personal devices, cloud based applications and automated security

services. While DNNs have shown to achieve state of the art results in their respective domains,

recent studies have exposed the vulnerabilities of these models to adversarial attacks. For example,

a carefully designed imperceptible perturbation in an image can cause a victim image classification

model to mis-classify the image. Such attacks target the “blind spots” of neural networks input

domain. In this work, we focus on exposing such blind spots in neural sequence models for

language and speech.

In this chapter, we introduce adversarial examples and vulneribilities of neural networks.

We go over some of the prior work in the domain of adversarial attacks and adversarial repro-

gramming. Section 1.6 covers existing work in the domain of adversarial attacks on Speech

Reocgnition System. This chapter lays the necessary background for our proposed adversarial

attacks in Chapter 2 and Chapter 3.
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1.1 Adversarial Examples

Adversarial examples are intentionally designed inputs to a machine learning model that

cause the model to make a mistake [23]. These attacks can be broadly classified into untargeted

and targeted attacks. In the untargeted attack scenario, the adversary succeeds as long as the

victim model classifies the adversarial input into any class other than the correct class, while in

the targeted attack scenario, the adversary succeeds only if the model classifies the adversarial

input into a specific incorrect class. In both these scenarios, the intent of the adversary is usually

malicious and the outcome of the victim model is still limited to the original task being performed

by the model.

Adversarial attacks of image-classification models often use gradient descent on an image

to create a small perturbation that causes the machine learning model to mis-classify it [58, 16].

There has been a similar line of adversarial attacks on neural networks with discrete input

domains [48, 65], where the adversary modifies a few tokens in the input sequence to cause

misclassification by a sequence model. In addition, efforts have been made in designing more

general adversarial attacks in which the same modification can be applied to many different

inputs to generate adversarial examples [17, 23, 42]. For example, authors [12] trained an

Adversarial Transformation Network that can be applied to all inputs to generate adversarial

examples targeting a victim model or a set of victim models. In this work, we aim to learn such

universal transformations of discrete sequences for a fundamentally different task: Adversarial

Reprogramming described below.

1.2 Untrageted vs Targeted Attacks

In untargeted attacks, the goal of the adversary is to cause mis-prediction by the victim

model. let l(x) denote the label produced by a victim model for an input x, the goal of the

adversary is to design an adversarial input x′ which is perceived as indistinguishable from the
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original input x but causes mis-classification i.e l(x) 6= l(x′). In targeted attacks, the goal of the

adversary is to design an adversarial input x′ which is perceived as indistinguishable from the

original input x, and maps to a target label t i.e l(x) = t.

1.3 Transferability of Adversarial Samples

Adversarial sample transferability is the property that adversarial samples produced by

training on a specific model can affect another model, even if they have different architectures.

Since in case of black-box attack, adversary does not have access to the target model F, an attacker

can train a substitute model F’ locally to generate adversarial example x+δ which then can be

transferred to the victim neural network. While there have been many studies conducted on the

transferability of adversarial examples in the image domain [55, 45, 13, 59, 39], but to the best of

our knowledge similar efforts have not been applied in the audio domain.

1.4 Adversarial Reprogramming

Adversarial Reprogramming [22] introduced a new class of adversarial attacks where

the adversary wishes to repurpose an existing neural network for a new task chosen by the

attacker, without the attacker needing to compute the specific desired output. The adversary

achieves this by first defining a hard-coded one-to-one label remapping function hg that maps

the output labels of the adversarial task to the label space of the classifier f ; and learning a

corresponding adversarial reprogramming function h f (.;θ) that transforms an input (X̃) 1 from

the input space of the new task to the input space of the classifier. The authors proposed an

adversarial reprogramming function h f (.;θ), for repurposing ImageNet models for adversarial

classification tasks. An adversarial example Xadv for an input image X̃ can be generated using the

1X̃ is an ImageNet size (n×n×3) padded input image
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following adversarial program: 2

Xadv = h f (X̃ ;θ) = X̃ + tanh(θ)

where θ ∈ Rn×n×3 is the learnable weight matrix of the adversarial program (where n is the

ImageNet image width). Let P(y|X) denote the probability of the victim model predicting label

y for an input X . The goal of the adversary is to maximize the probability P(hg(yadv)|Xadv)

where yadv is the label of the adversarial input Xadv. The following optimization problem that

maximizes the log-likelihood of predictions for the adversarial classification task, can be solved

using backpropagation to train the adversarial program parameterized by θ:

θ̂ = argminθ

(
− logP(hg(yadv)|Xadv)+λ||θ||22

)
(1.1)

where λ is the regularization hyperparameter. Since the adversarial program proposed is a

trainable additive contribution θ to the inputs, it’s application is limited to neural networks

with a continuous input space. Also, since the the above optimization problem is solved by

back-propagating through the victim network, it assumes a white-box attack scenario where the

adversary has gained access to the victim model’s parameters.

In our work, we will describe how we can learn a simple transformation in the discrete

space to extend the application of adversarial reprogramming on sequence classification problems.

We also propose a training algorithm in the black-box setting where the adversary may not have

access to the model parameters.

2Masking ignored because it is only a visualization convenience

4



1.5 Universal Adversarial Perturbations

In [42], the authors try to find an universal perturbation vector which can fool the network

to predict a false classification output on most of the validation instances. Let k̂(x) be the

classification output for an input x and let x be distributed according to µ then they propose that

we want to find a universal perturbation v such that:

k̂(x+ v) 6= k̂(x) for ”most” x ˜µ.

They solve this problem as an optimization problem with constraints which ensure that the

universal perturbation obtained has the smallest possible p-norm and will also be able to fool the

desired number of instances in the training set. The interesting thing about this paper is that they

show that only training their model over small number of instances (e.g. 500 examples) can fool

the networks on about 30% of the cases in the validation set. Also they show that the universal

perturbation produced using one network say VGG-16 can also be used to fool other network say

GoogLeNet showing that their method is doubly universal.

1.6 Adversarial Attacks on Speech Recognition Systems

In this section we discuss some prior work on adversarial attacks in the audio domain.

The goal of these works is to design an imperciptle audio perturbation which when added to an

audio signal causes mis-transcription or mis-classification by a neural speech reocgnition model.

1.6.1 Audio Adversarial Examples: Targeted Attacks on Speech-to-Text

In this paper [18], the authors generate targeted audio adversarial examples for automatic

speech recognition systems that are end-to-end. Their white-box iterative optimization-based

attack achieves 100 % success rate on Mozillas open source Speech-To-Text engine DeepSpeech

[29], which is a state-of-the-art speech-to-text transcription neural network. Given any natural

5



Figure 1.1: Targeted Adversarial attack on Speech Recognition System [18]

waveform x, they are able to construct a perturbation δ that is nearly inaudible, but so that x+δ is

recognized as any desired phrase by a victim neural network. The key differences between this

work and a prior work [20] by the same authors, is that in their prior efforts they only targeted

traditional systems such as HMMs and GMMs, using obfuscated examples and they do not

operate on end-to-end neural networks. Obfuscated examples means that the examples sound

like random noise rather than normal human perceptible speech, which makes attacks using

obfuscated examples easier.

1.6.2 Generating Adversarial Examples for Speech Recognition

The authors of [31] demonstrate successful attacks on neural ASR systems based on

WaveNet [61], using fast gradient sign method [23]. The authors note that ASRs rely on the Mel

Frequency Cepstral Coefficients (MFCCs) as features of the input audio data. In this attack, the

adversary designs perturbations on MFCC (mel spectogram) representation instead of the raw

audio waveforms as done in [18] and described in Section 1.6.1. The adversary then decodes raw

audio from the MFCC representation and generated adversarial examples for the victim model.

The auhtors demonstrated their attack on the WaveNet model for speech recognition.
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1.6.3 Did you hear that? Adversarial Examples Against Automatic Speech

Recognition

This paper [6] focuses on generating adversarial noise to perform targeted attacks on

Automatic Speech Recognition systems (ASRs) in a black-box setting where the attacker knows

nothing about the model architecture and parameter values, but is capable of querying the model

results. The authors argue that using backpropagation and other gradient based methods to

generate adversarial noise, are not easily applicable to speech recognition models.

As previously stated, ASRs rely on the Mel Frequency Cepstral Coefficients (MFCCs) as

features of the input audio data. To avoid differentiating through MFCC computations, the authors

propose a genetic algorithm which is a gradient-free optimization method. The genetic algorithm

based method does not require knowledge of the victim model architecture or parameters and

can therefore be utilized to perform black-box attacks where the attackers do not have access to

model parameters and architectures.
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Chapter 2

Adversarial Reprogramming of Text

Classification Neural Networks

2.1 Introduction

Adversarial Reprogramming [22] is a new class of adversarial attacks where a machine

learning algorithm is repurposed to perform a new task chosen by the attacker. The authors demon-

strated how an adversary may repurpose a pre-trained ImageNet [21] model for an adversarial

classification task like classification of MNIST digits or CIFAR-10 images without modifying the

network parameters. Since machine learning agents can be reprogrammed to perform unwanted

actions as desired by the adversary, such an attack can lead to theft of computational resources

such as cloud-hosted machine learning models. Besides theft of computational resources, the

adversary may perform a task that violates the code of ethics of the system provider.

The adversarial reprogramming approach proposed by [22] trains an additive contribution

θ to the inputs of the neural network to repurpose it for the desired alternate task. The adversary

defines a hard-coded mapping between the class labels of the original and adversarial task. The

adversarial program parameterized by θ is updated such that the classifier predicted label, when

8



mapped to the adversarial label space, correctly classifies an adversarial input. This approach

assumes a white-box attack scenario where the adversary has access to the network’s parameters.

Also, the adversarial program proposed in this work is only applicable to tasks where the input

space of the the original and adversarial task is continuous.

H e n r i q u e sAdversarial Task: 
Name Classification

Adversarial Reprogramming Function (fḎ)

Victim Model - Questions Classifier (C)

 other always live What Who does ind Who gold is off ...Original Task: 
Question Classification

Portuguese

Human
Label Remapping (fL)

Figure 2.1: Example of Adversarial Reprogramming for Sequence Classification. We aim to
design and train the adversarial reprogramming function fθ, such that it can be used to repurpose
a pretrained classifier C, for a desired adversarial task.

In this work, we propose a method to adversarially repurpose neural networks which

operate on sequences from a discrete input space. The task is to learn a simple transformation

(adversarial program) from the input space of the adversarial task to the input space of the

neural network such that the neural network can be repurposed for the adversarial task. We

propose a context-based vocabulary remapping function as an adversarial program for sequence

classification networks. We propose training procedures for this adversarial program in both

white-box and black-box scenarios. In the white-box attack scenario, where the adversary has

access to the classifier’s parameters, a Gumbel-Softmax trick [32] is used to train the adversarial

program. Assuming a black-box attack scenario, where the adversary may not have access to the

classifier’s parameters, we present a REINFORCE [63] based optimization algorithm to train the

adversarial program.

We apply our proposed methodology on various text classification models including

Recurrent Neural Networks such as LSTMs and bidirectional LSTMs, and Convolutional Neural
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Networks (CNNs). We demonstrate experimentally, how these neural networks trained on a par-

ticular (original) text classification task can be repurposed for alternate (adversarial) classification

tasks. We experiment with different text classification datasets given in table 2.1 as candidate

original and adversarial tasks and adversarially reprogram the aforementioned text classification

models to study the robustness of the attack.

2.2 Methodology

2.2.1 Adversarial Reprogramming Problem Definition

Consider a sequence classifier C trained on the original task of mapping a sequence s ∈ S

to a class label lS ∈ LS i.e C : s 7→ lS. An adversary wishes to repurpose the original classifier C

for the adversarial task C′ of mapping a sequence t ∈ T to a class label lT ∈ LT i.e C′ : t 7→ lT .

The adversary can achieve this by hard-coding a one-to-one label remapping function:

fL : lS 7→ lT

that maps an original task label to the new task label and learning a corresponding adversarial

reprogramming function:

fθ : t 7→ s

that transforms an input from the input space of the adversarial task to the input space of the

original task. The adversary aims to update the parameters θ of the adversarial program fθ such

that the mapping fL(C( fθ(t))) can perform the adversarial classification task C′ : t 7→ lT .

10



2.2.2 Adversarial Reprogramming Function

The goal of the adversarial reprogramming function fθ : t 7→ s is to map a sequence t to s

such that it is labeled correctly by the classifier fL(C).

The tokens in the sequence s and t belong to some vocabulary lists VS and VT respectively.

We can represent the sequence s as s = s1,s2, ..,sN where si is the vocabulary index of the ith token

in sequence s in the vocabulary list VS. Similarly sequence t can be represented as t = t1, t2, .., tN

where ti is the vocabulary index of the ith token of sequence t in the vocabulary list VT .

In the simplest scenario, the adversary may try to learn a vocabulary mapping from VT

to VS using which each ti can be independently mapped to some si to generate the adversarial

sequence. Such an adversarial program has limited potential since the representational capacity

of such a reprogramming function is very limited. We experimentally support this hypothesis

by showing how such a transformation has limited potential for the purpose of adversarial

reprogramming.

A more sophisticated adversarial program can be a sequence to sequence machine transla-

tion model [57] that learns a translation t 7→ s for adversarial reprogramming. While theoretically

this is a good choice, it defeats the purpose of adversarial reprogramming. This is because the

computational complexity of training and using such a machine translation model would be

similar if not greater than that of a new sequence classifier for the adversarial task C′.

The adversarial reprogramming function should be computationally inexpensive but

powerful enough for adversarial repurposing. To this end, we propose a context-based vocabulary

remapping model that produces a distribution over the target vocabulary at each time-step based

on the surrounding input tokens. More specifically, we define our adversarial program as a

trainable 3-d matrix θk×|VT |×|VS| where k is the context size. Using this, we generate a probability

11



distribution πi over the vocabulary VS at each time-step i as follows:

hi =
k−1

∑
j=0

θ[ j, ti+bk/2c− j] (2.1)

πi = so f tmax(hi) (2.2)

Both hi and πi are vectors of length |VS|. To generate the adversarial sequence s we sample each

si independently from the distribution πi.

si ∼ πi

Given the max input length N accepted by the victim model, the input sequence t is padded

with bk/2c instances of a dummy token before the first token and N− length(t)+bk/2c instances

after the last token to generate an N length output s . For sequences with length(t)> N, we select

the first N tokens of t as input to the adversarial reprogramming function fθ. We demonstrate in

the Experiments section, that this approach works for different combinations of adversarial and

original tasks with different average sequence lengths.

In practice, we implement this adversarial program as a single layer of 1-d convolution

over the sequence of one-hot encoded vectors of adversarial tokens ti with |VT | input channels

and |VS| output channels with k-length kernels parameterized by θk×|VT |×|VS|. Note that the

time-complexity of using this adversarial reprogramming function (equations 2.1,2.2) is just

O(k×|VS|× length(t)) and it can be parallelized to improve further.

2.2.3 White-box Attack

In the white-box attack scenario, we assume that the adversary has gained access to the

victim network’s parameters and architecture. Let P(l|s) denote the probability of predicting label

12



Update θ
Update θ

ls

Label Remapping fL
lt

Reward
+1 : Correct Preditcion
-1 : Incorrect Prediction

t1 t2 t3 t4 t5 tN

s1 s2 s3 s4 s5 sN

Adversarial Program - 
Policy Network

Action - Sample a token

REINFORCE

Pad Pad

Text Classifier C

target = fL-1( lt ) Cross Entropy Loss

t1 t2 t3 t4 t5 tN

g1 g2 g3 g4 g5 gN

Distributions over Vs (πi’s) Distributions over Vs (πi’s)

Adversarial Program - 
Policy Network

Generate Gumbel
Distribution Backpropatgation

Pad Pad

Text Classifier C

Figure 2.2: Adversarial Reprogramming Function and Training Procedures. Left: White-
box Adversarial Reprogramming. The adversary generates gumbel distributions gi at each time-
step which are passed as a soft version of one-hot vectors to the classifier C. The cross-entropy
loss between the predictions and the mapped class is backpropagated to train the adversarial
program θ. Right: Black-box Adversarial Reprogramming. The adversarial reprogramming
function is used as a policy network and the sampled action (sequence s) is passed to the classifier
C to get a reward based on prediction correctness. The adversarial program is then trained using
REINFORCE.

l for a sequence s by classifier C. We wish to maximize the probability P( f−1
L (lt)| fθ(t)) which is

the probability of the output label of the classifier being mapped to the correct class lt for an input

t in the domain of the adversarial task. Therefore we need to solve the following log-likelihood

maximization problem:

θ̂ = argminθ(−∑
t

log(P( f−1
L (lt)| fθ(t)))) (2.3)

Note that that the output of the adversarial program s = fθ(t) is a sequence of discrete

tokens. This makes the above optimization problem non-differentiable. Prior works [37, 27, 65]

have demonstrated how we can smoothen such an optimization problem using the Gumbel-

Softmax [32] distribution.

In order to backpropagate the gradient information from the classifier to the adversarial

program, we smoothen the generated tokens si using Gumbel-Softmax trick as per the following:

For an input sequence t, we generate a sequence of Gumbel distributions g = g1,g2, ..,gN .
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The nth component of distribution gi is generated as follows:

gn
i =

exp((log(πn
i )+ rn)/temp)

∑ j exp((log(π j
i )+ r j)/temp)

where πi is the softmax distribution at the ith time-step obtained using equation 2.2, rn

is a random number sampled from the Gumbel distribution [28] and temp is the temperature of

Gumbel-Softmax.

Gumbel-Softmax approximates one-hot vectors of si’s with differentiable representations.

The temperature parameter controls the flatness of this distribution. As temp→ 0 the Gumbel

distribution becomes close to a one-hot vector and as temp→∞ the Gumbel distribution assumes

a uniform distribution over |VS| variables. The sequence then passed to the classifier C is the

sequence g which serves as a soft version of the one-hot encoded vectors of si’s. Since the model

is now differentiable, we can solve the following optimization problem using backpropagation:

θ̂ = argminθ(−∑
t

log(P( f−1
L (lt)|g))) (2.4)

During training the temperature parameter is annealed from some high value tmax to a very low

value tmin. The details of this annealing process for our experiments have been included in the

supplementary material.

2.2.4 Black-box Attack

In the black-box attack scenario, the adversary can only query the victim classifier C

for labels. Since the adversarial program needs to produce a discrete output to feed as input

to the classifier C, it is not possible to pass the gradient update from the classifier fL(C) to the

adversarial program θ using standard back-propagation. Also, in the black-box attack setting it is

not possible to back-propagate the cross entropy loss through the classifier C in the first place.
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We formulate the sequence generation problem as a Reinforcement Learning problem

[9, 10, 67] where the adversarial reprogramming function is the policy network. We define the

state, action, policy and reward for this problem as follows:

• State and Action Space: The state of the adversarial program is a sequence t ∈ T where T

is the input space of the adversarial task. An action of an RL agent is to produce a sequence

of tokens s ∈ S where S is the input space of the original task.

• Policy: The adversarial program parameterized by θ, models the stochastic policy πadv(s|t;θ)

such that a sequence s ∈ S may be sampled from this policy conditioned on t ∈ T .

• Reward: We use a simple reward function where we assign a reward +1 for a correct

prediction and -1 for an incorrect prediction using the classifier fL(C) where fL is the label

remapping function and C is the classifier. Formally:

r(t,s) =


+1, fL(C(s)) = lt

−1, fL(C(s)) 6= lt

The optimization objective to train the policy network is the following:

max
θ

J(θ) where, J(θ) = Eπadv[r(t,s)]

Following the REINFORCE algorithm [63] we can write the gradient of the expectation with
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respect to θ as per the following:

∇θJ = ∇θ

[
E

πadv
[r(t,s)]

]
= ∇θ

[
∑
s

πadv(s|t;θ)r(t,s)
]

= ∑
s

πadv(s|t;θ)∇θ log(πadv(s|t;θ))r(t,s)

= E
πadv

[r(t,s)∇θ log(πadv(s|t;θ))]

= E
πadv

[r(t,s)∇θ log(πadv(s1, ..,sN |t;θ))]

= E
πadv

[
r(t,s)∇θ log(∏

i
πadv(si|t;θ))

]

= E
πadv

[
r(t,s) ∑

i
∇θ log(πadv(si|t;θ))

]

Note that πadv(si|t;θ) is the same as πi defined in equation 2.2 which can be differentiated

with respect to θ. The expectations are estimated as sample averages. Having obtained the

gradient of expected reward, we can use mini-batch gradient ascent to update θ with a learning

rate α as: θ← θ+α∇θJ.

2.3 Experiments

2.3.1 Datasets and Classifiers

We demonstrate the application of the proposed reprogramming techniques on various

text-classification tasks. In our experiments, we design adversarial programs to attack both

word-level and character-level text classifiers. Additionally, we aim to adversarially repurpose

a character-level text classifier for a word-level classification task and vice-versa. To this end,

we choose the following text-classification datasets as candidates for the original and adversarial

classification tasks:
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• Surname Classification Dataset (Names-18, Names-5)[51]: The dataset categorizes sur-

names from 18 languages of origin. We use this dataset for character-level classification task.

We use a subset of this dataset Names-5 containing Names from 5 classes: Dutch, Scottish,

Polish, Korean and Portuguese, as a candidate for adversarial task in the experiments.

• Experimental Data for Question Classification (Questions) [38]: categorizes around 5500

questions into 6 classes: Abbreviation, Entity, Description, Human, Location, Numeric. We

divide this dataset into 4361 questions for training and 1091 for testing.

• Arabic Tweets Sentiment Classification Dataset [3]: contains 2000 binary labeled tweets

on diverse topics such as politics and arts. The tweets in this dataset, comprising of 1000

positive and 1000 negative tweets, are written in Modern Standard Arabic (MSA) and the

Jordanian dialect. We use 1600 samples for training and 400 for testing.

• Large Movie Review Dataset (IMDB) for sentiment classification [40]: contains 50,000

movie reviews categorized into binary class of positive and negative sentiment. It is split

into 25,000 reviews for training and 25,000 reviews for testing.

The statistics of the above mentioned datasets have been given in table 2.1. We train

adversarial reprogramming functions to repurpose various text-classifiers based on Long Short-

Term Memory (LSTM) network [30], bidirectional LSTM network [25] and Convolutional neural

network [33] models. All the aforementioned models can be trained for both word-level and

character-level classification. We use character level classifiers for Names-18 and Names-5

datasets and word-level classifiers for IMDB, Questions and Arabic Tweets datasets. We use

randomly initialized word/character embeddings for all the classification models. For LSTM, we

use the output at last timestep for prediction. For the Bi-LSTM, we combine the outputs of the

first and last time step for prediction. For the Convolutional Neural Network we follow the same

architecture as [33]. The hyper-parameter details of these classifiers have been included in table 2

of the supplementary material.
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Table 2.1: Summary of datasets and test accuracy of original classification models. |V | denotes
the vocabulary size of each dataset. Note that we use character-level models for Names-5 and
Names-18 and word-level models for all other tasks.

Test Accuracy (%)
Data Set # Classes Train Samples Test Samples |V | Avg Length LSTM Bi-LSTM CNN

Names-18 18 115,028 28,758 90 7.1 97.84 97.84 97.88
Names-5 5 3632 909 66 6.5 99.88 99.88 99.77
Questions 6 4361 1091 1205 11.2 96.70 98.25 98.07
Arabic Tweets 2 1600 400 955 9.7 87.25 88.75 88.00
IMDB 2 25,000 25,000 10000 246.8 86.83 89.43 90.02

2.3.2 Experimental Setup

As described in the methodology section, the label remapping function fL we use, is a

one-to-one mapping between the labels of the original task and the adversarial task. Therefore it

is required to apply the constraint that the number of classes of the adversarial task are less than

or equal to the number of classes of the original task. We choose Names-5, Arabic Tweets and

Question Classification as candidates for the adversarial tasks and repurpose the models allowed

under this constraint. We use context size k = 5 for all our experiments.

In white-box attacks, we use the Gumbel-Softmax based approach described in the

methodology to train the adversarial program. The details of the temperature annealing process are

included in table 1 of the supplementary material. For black-box attacks, we use the REINFORCE

algorithm described in methodology, on mini-batches of sequences. Since the action space for

certain reprogramming problems, (eg. reprogramming of IMDB classifier) is large (|VS|= 10000),

we restrict the output of the adversarial program to most frequent 1000 tokens in the vocabulary

VS. We use Adam optimizer [34] for all our experiments. Hyperparameter details of all our

experiments are included in table 1 of the supplementary material.
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Table 2.2: Adversarial Reprogramming Experiments: The accuracies of white-box and
black-box reprogramming experiments on different combinations of original task, adversarial
task and model. Figures in bold correspond to our best results on a particular adversarial task in
the given attack scenario scenario (black-box and white-box). White-box on Random Network
column presents results of the white-box attack on an untrained neural network. Context size
k = 5 is used for all our experiments.

Test Accuracy (%)

Victim
Model

Original
Task

Adversarial
Task Black-box White-Box

White-Box on
Random
Network

LSTM

Questions Names-5 80.96 97.03 44.33
Questions Arabic Tweets 73.50 87.50 50.00
Names-18 Questions 68.56 95.23 28.23
Names-18 Arabic Tweets 83.00 84.75 51.50
IMDB Arabic Tweets 80.75 88.25 50.50

Bi-LSTM

Questions Names-5 93.51 99.66 63.14
Questions Arabic Tweets 81.75 83.50 70.00
Names-18 Questions 94.96 97.15 80.01
Names-18 Arabic Tweets 78.75 84.25 69.25
IMDB Arabic Tweets 83.25 86.75 84.00

CNN

Questions Names-5 88.90 99.22 93.06
Questions Arabic Tweets 82.25 87.25 76.25
Names-18 Questions 71.03 97.61 33.45
Names-18 Arabic Tweets 80.75 86.50 60.00
IMDB Arabic Tweets 84.00 87.00 84.25

2.3.3 Results and Discussions

The accuracies of all adversarial reprogramming experiments have been reported in table

2.2. To interpret the results in context, the accuracies achieved by the LSTM, Bi-LSTM and CNN

text classification models on the adversarial tasks can be found in table 2.1.

We demonstrate how character-level models trained on Names-18 dataset can be repur-

posed for word-level sequence classification tasks like Question Classification and Arabic Tweet

Sentiment Classification. Similarly, word-level classifiers trained on Question Classification

Dataset can be repurposed for the character-level Surname classification task. Interestingly,
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classifiers trained on IMDB Movie Review Dataset can be repurposed for Arabic Tweet Sentiment

Classification even though there is a high difference between the vocabulary size (10000 vs

955) and average sequence length(246.8 vs 9.7) of the two tasks. It can be seen that all of the

three classification models are susceptible to adversarial reprogramming in both white-box and

black-box setting.

White-box based reprogramming outperforms the black-box based approach in all of our

experiments. Figure 2.3 shows the learning curves for both white-box and black-box attacks. In

practice, we find that training the adversarial program in the black-box scenario requires careful

hyper-parameter tuning for REINFORCE to work. We believe that improved reinforcement

learning techniques for sequence generation tasks [10, 9] can make the training procedure for

black-box attack more stable. We propose such improvement as a direction of future research.

Figure 2.3: Top: Training and validation accuracy plots for 2 different white-box experiments.
Bottom: Accuracy and reward plots for a black-box training experiment.

To assess the importance of the original task on which the network was trained, we

also present results of white-box adversarial reprogramming on untrained random network.

Our results are coherent with similar experiments on adversarial reprogramming of untrained

ImageNet models [22] demonstrating that adversarial reprogramming is less effective when it
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targets untrained networks. The figures in table 2.2 suggest that the representations learned by

training a text classifier on an original task, are important for repurposing it for an alternate task.

However another plausible reason as discussed by Elsayed et al. is that the reduced performance

on random networks might be because of simpler reasons like poor scaling of network weight

initialization making the optimization problem harder.

Adversarial Sequences:

Figure 2.4 shows some adversarial sequences generated by the adversarial program for

Names-5 Classification while attacking a CNN trained on the Question Classification dataset. A

sequence t in the first column is transformed into the adversarial sequence s in the second column

by the trained adversarial reprogramming function. Note that in contrast to traditional adversarial

examples, the generated adversarial sequences need not be constrained by a small perturbation to

the valid input sequence of the original task. While these adversarial sequences may not make

semantic or grammatical sense, it exploits the learned representation of the classifier to map the

inputs to the desired class. For example, sequences that should be mapped to HUMAN class

have words like Who in the generated adversarial sequence. Similarly, sequences that should be

mapped to LOCATION class have words like world, city in the adversarial sequence. Other such

interpretable transformations are depicted via colored text in the adversarial sequences of Figure

2.4.

Effect of Context Size:

By varying the context size k of the convolutional kernel θk×|VT |×|VS| in our adversarial

program we are able to control the representational capacity of the adversarial reprogramming

function. Figure 2.5 shows the percentage accuracy obtained when training the adversarial pro-

gram with different context sizes k on two different adversarial tasks: Arabic Tweets Classification

and Name Classification. Using a context size k = 1 reduces the adversarial reprogramming
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Adversarial 
Task 

Sequence (t) 
(Names-5)

Adversarial Program Output (s) (Question 
Classification)

Prediction by 
Classifier

Mapped 
Class Actual Class

Ryoo white sport substance animal All off .. ENTITY Korean Korean
Houtum player video exp abb What does off is off .. ABBREVIATION Dutch Dutch

Winogrodzki manner France manner video def oil def 
reason desc What do All off .. DESCRIPTION Polish Polish

Murphy world live exp city What university All is off 
.. LOCATION Scottish Scottish

Paulissen player stars along abb abb exp exp always 
abb What is off .. ABBREVIATION Dutch Dutch

Henriques other always live What Who does ind Who 
gold is off .. HUMAN Portuguese Portuguese

Maly world attend home abb home is off .. LOCATION Scottish Polish

Kasprzak does exp exp def manner does reason 
What does off .. DESCRIPTION Polish Polish

Ferreiro e-mail Who ind exp Who ind university 
university gold off .. HUMAN Portuguese Portuguese

Hong sport cremat substance university is off .. ENTITY Korean Korean

Figure 2.4: Adversarial sequences generated by our adversarial program for Names-5 Classifi-
cation (adversarial task), when targeting a CNN trained on the Question Classification dataset
(original task). Interpretable transformations are shown as colored words in the second column.
Adversarial program outputs that are mapped to the same class are depicted with the same color
in the second column.

function to simply a vocabulary remapping function from VS to VT . It can be observed that

the performance of the adversarial reprogramming model at k = 1 is significantly worse than

that at higher values of k. While higher values of k improve the performance of the adversarial

program, they come at a cost of increased computational complexity and memory required for the

adversarial reprogramming function. For the adversarial tasks studied in this paper, we observe

that k = 5 is a reasonable choice for context size of the adversarial program.

2.3.4 Conclusion

In this work, we extend adversarial reprogramming, a new class of adversarial attacks, to

target sequence classification neural networks. We introduce a novel adversarial program and

present training algorithms in both white-box and black-box settings. Our results demonstrate

the effectiveness of such attacks in the more challenging black-box settings, posing them as a

strong threat in real-world attack scenarios. We demonstrate, for the first time, that recurrent

neural networks (RNNs) can be reprogrammed for alternate tasks, which opens doors to solve
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Figure 2.5: Accuracy vs Context size (k) plots for all 3 classification models on 2 different
adversarial reprogramming experiments.

more ambitious problems such as repurposing them for mining cryptocurrrency. Due to the threat

presented by adversarial reprogramming, we recommend future work to study defenses against

such attacks.

Chapter 2, in full, is a reprint of the material as it appears in AAAI 2019 workshop on

Engineering Dependable and Secure Machine Learning Systems. Neekhara, Paarth; Hussain,

Shehzeen; Dubnov, Shlomo; Koushanfar, Farinaz. The dissertation/thesis author was the primary

investigator and author of this paper.
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Chapter 3

Universal Adversarial Pertrubations for

Speech Recognition Systems

3.1 Introduction

Machine learning agents serve as the backbone of several speech recognition systems,

widely used in personal assistants of smartphones and home electronic devices (e.g. Apple Siri,

Google Assistant). Traditionally, Hidden Markov Models (HMMs) [14, 15, 4, 5, 11] were used to

model sequential data but with the advent of deep learning, state-of-the-art speech recognition

systems are based on Deep Neural Networks (DNNs) [7, 62, 61, 29]. However, several studies

have demonstrated that DNNs are vulnerable to adversarial examples [24, 8, 19, 35, 44]. An

adversarial example is a sample from the classifier’s input domain which has been perturbed in a

way that is intended to fool a victim machine learning (ML) model. While the perturbation is

usually imperceptible, such an adversarial input can mislead neural network models deployed in

real-world settings causing it to output an incorrect class label with higher confidence.

The majority of past research in adversarial machine learning has shown such attacks

to be successful in the image domain [58, 44, 47, 49, 46, 17, 23]. However, few works have
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addressed attack scenarios involving other modalities such as audio. This limits our understanding

of system vulnerabilities of many commercial speech recognition models employing DNNs, such

as Amazon Alexa, Google Assistant, and home electronic devices like Amazon Echo and Google

Home. Recent studies that have explored attacks on automatic speech recognition (ASR) systems

[6, 18, 20, 64], have demonstrated that adversarial examples exist in the audio domain. The

authors of [18] proposed targeted attacks where an adversary designs a perturbation that can

cause the original audio signal to be transcribed to any phrase desired by the adversary. However,

calculating such perturbations requires the adversary to solve an optimization problem for each

data-point they wish to mis-transcribe. This makes the attack in-applicable in real-time since the

adversary would need to re-solve the data-dependent optimization problem from scratch for every

new data-point.

Universal Adversarial Perturbations [42] have demonstrated that there exist universal

image-agnostic perturbations which when added to any image will cause the image to be mis-

classified by a victim network with high probability. The existence of such perturbations poses a

threat to machine learning models in real world settings since the adversary may simply add the

same pre-computed universal perturbation to a new image and cause mis-classification.

In this work, we seek to answer the question “Do universal adversarial perturbations exist

for neural networks in audio domain?” We demonstrate the existence of universal audio-agnostic

perturbations that can fool DNN based ASR systems 1. We propose an algorithm to design

such universal perturbations against a victim ASR model in the white-box setting, where the

adversary has access to the victim’s model architecture and parameters. We validate the feasibility

of our algorithm, by crafting such perturbations for Mozilla’s open source implementation of

the state-of-the-art speech recognition system DeepSpeech [29]. Additionally, we discover that

the generated universal perturbation is transferable to a significant extent across different model

architectures. Particularly, we demonstrate that a universal perturbation trained on DeepSpeech

1Sound Examples: http://universal-audio-perturbation.herokuapp.com
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can cause significant transcription error on a WaveNet [61] based ASR model.

3.2 Related Work

Adversarial Attacks in the Audio Domain: Adversarial attacks on ASR systems have primarily

focused on targeted attacks to embed carefully crafted perturbations into speech signals, such

that the victim model transcribes the input audio into a specific malicious phrase, as desired by

the adversary [6, 18, 31, 20, 60]. Prior works [20, 60] demonstrate successful attack algorithms

targeting traditional speech recognition models based on HMMs and GMMs, that operate on Mel

Frequency Cepstral Coefficient (MFCC) representation of audio. In Hidden Voice Commands

[20], the attacker uses inverse feature extraction to generate obfuscated audio that can be played

over-the-air to attack ASR systems. However, obfuscated samples sound like random noise rather

than normal human perceptible speech and therefore come at the cost of being fairly perceptible

to human listeners. Additionally, these attack frameworks are not end-to-end, which render them

impractical for studying the vulnerabilities of modern ASR systems based on DNNs.

In more recent work [18], Carlini et al. propose an end-to-end white-box attack technique

to craft adversarial examples, which transcribe to a target phrase. Similar to the work in images,

they propose a gradient-based optimization method that replaces the cross-entropy loss function

used for classification, with a Connectionist Temporal Classification (CTC) loss [26] which

is optimized for time-sequences. The CTC-loss between the target phrase and the network’s

output is backpropagated through the victim neural network and the MFCC computation, to

update the additive adversarial perturbation. The adversarial samples generated by this work are

quasi-perceptible, motivating a separate work [53] to minimize the perceptibility of the adversarial

perturbations using psychoacoustic hiding.

Designing adversarial perturbations using the above mentioned approaches requires the

adversary to solve a data dependent optimization problem for each input audio signal the adversary
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wishes to mis-transcribe, making them ineffective in a real-time attack scenario. The existence of

universal adversarial perturbations (described below) can pose a threat to ASR systems in real-

world settings since the adversary may simply add the same pre-computed universal adversarial

perturbation to any input audio and fool the DNN based ASR system.

Universal Adversarial Perturbations: The authors of [42] craft a single universal perturbation

vector which can fool a victim neural network to predict a false classification output on the

majority of validation instances. Let k̂(x) be the classification output for an input x that belongs

to a distribution µ. The goal is to find a perturbation v such that: k̂(x+ v) 6= k̂(x) for “most”

x ∈ µ. This is formulated as an optimization problem with constraints to ensure that the universal

perturbation is within a specified p-norm and is also able to fool the desired number of instances

in the training set. The proposed algorithm iteratively goes over the training dataset to build a

universal perturbation vector that pushes each data point to its decision boundary. The authors

demonstrate that it is possible to find a quasi-imperceptible universal perturbation that pushes

most data points outside the correct classification region of a victim model. More interestingly, the

work demonstrates that the universal perturbations are transferable across models with different

architectures.

3.3 Methodology

3.3.1 Threat Model

We aim to find a universal audio perturbation, which when added to any speech waveform,

will cause an error in transcription by a speech recognition model with high probability. For

the success of the attack, the error in the transcription should be high enough so that the tran-

scription of the perturbed signal (adversarial transcription) is incomprehensible and the original

transcription cannot be deduced from the adversarial transcription. As discussed in [18], the

transcription “test sentence” mis-spelled as “test sentense” does little to help the adversary. To
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Figure 3.1: Threat Model: We aim to find a single perturbation which when added to any
arbitrary audio signal, will most likely cause an error in transcription by a victim Speech
Recognition System

make the adversary’s goal challenging, we report success only when the Character Error Rate

(CER) or the normalized Levenshtein distance (Edit Distance) [68] between the original and

adversarial transcription is greater than a particular threshold. Formally, we define our threat

model as follows:

Let µ denote a distribution of waveforms and C be the victim speech recognition model

that transcribes a waveform x to C(x). The goal of our work is to find perturbations v such that:

CER(C(x),C(x+ v))> t for “most” x ∈ µ

Here, CER(x,y) is the edit distance between the strings x and y normalized [68] by the

length of x i.e

CER(x,y) =
EditDistance(x,y)

length(x)

The threshold t is chosen as 0.5 for our experiments i.e., we report success only when

the original transcription has been edited by at least 50% of its length using character removal,
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insertion, or substitution operations.

The universal perturbation signal v is chosen to be of a fixed length and is cropped or

zero-padded at the end to make it equal to length of the signal x.

3.3.2 Distortion Metric

To quantify the distortion introduced by some adversarial perturbation v, an l∞ met-

ric is commonly used in the space of images. Following the same convention, in the audio

domain [19], the loudness of the perturbation can be quantified using the dB scale, where

dB(v) = maxi(20. log10(vi)). We calculate dBx(v) to quantify the relative loudness of the univer-

sal perturbation v with respect to an original waveform x where:

dBx(v) = dB(v)−dB(x)

Since the perturbation introduced is quieter than the original signal, dBx(v) is a negative value,

where smaller values indicate quieter distortions. In our results, we report the average relative

loudness: dBx(v) across the whole test set to quantify the distortion introduced by our universal

perturbation.

3.3.3 Problem Formulation and Algorithm

Our goal to find a quasi-imperceptible universal perturbation vector v such that it mis-

transcribes most data points sampled from a distribution µ. Mathematically, we want to find a

perturbation vector v that satisfies:

1. ‖v‖∞ < ε

2. P
x∼µ

(CER(C(X),C(x+ v)> t))≥ 1−δ.
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Here ε is the maximum allowed l∞ norm of the perturbation, δ is the desired success rate and t is

the threshold CER chosen to define our success criteria.

To solve the above problem, we adapt the universal adversarial perturbation algorithm

proposed by [42] to find universal adversarial perturbations for the goal of mis-transciption of

speech waveforms instead of mis-classification of data (images). Let X = x1,x2, . . . ,xm be a set

of speech signals sampled from the distribution µ. The algorithm (Algorithm 1) goes over the

data-points in X iteratively and gradually builds the perturbation vector v. At each iteration i, we

seek a minimum perturbation ∆vi, that causes an error in the transcription of the current perturbed

data point xi+v. We then add this additional perturbation ∆vi to the current universal perturbation

v and clip the new perturbation v, if necessary, to satisfy the constraint ‖v‖∞ < ε.

Algorithm 1 Universal Adversarial Perturbations for Speech Recognition Systems
1: input: Data Points X , Validation Set Xv, Victim Model C, allowed distortion level ε, desired

success rate δ

2: output: Universal Adversarial Perturbation vector v
3: Initialize v← 0
4: while Err(Xv)< 1−δ do
5: for each data point xi ∈ X do
6: if CER(C(xi + v+ r),C(xi))< t then
7: Compute min perturbation that mis-transcribes xi + v: ∆vi← argminr ‖r‖2 s.t.:

CER(C(xi + v+ r),C(xi))> t
8: Update and clip universal perturbation v: v = Clipv,ε(v+∆vi)

At each iteration we need to solve the following optimization problem, that seeks a

minimum (under l2 norm) additional perturbation ∆vi, to mis-transcribe the current perturbed

audio signal xi + v:

∆vi← argmin
r
‖r‖2 s.t. CER(C(xi + v+ r),C(xi))> t (3.1)

It is non-trivial to solve the above optimization in its current form. In [42], the authors try

to solve a similar optimization problem for the goal of mis-classification of data points. They
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approximate its solution using DeepFool [43] which finds a minimum perturbation vector that

pushes a data point to its decision boundary. Since we are tackling a more challenging goal of

mis-transcription of signals where we have decision boundaries for each audio frame across the

time axis, the same idea cannot be directly applied. Therefore, we approximate the solution to the

optimization problem given by (3.1) by solving a more tractable optimization problem:

Minimize J(r) where

J(r) = c‖r‖2 +L(xi + v+ r,C(xi))

s.t. ‖v+ r‖∞ < ε

where L(x,y) =−CTCLoss( f (x),y)

(3.2)

In other words, to mis-transcribe the signal, we aim to maximize the CTC-Loss between

the predicted probability distributions of the perturbed signal f (xi + v+ r) and the original

transcription C(xi) while having a regularization penalty on the l2 norm of r. Since this a non-

convex optimization problem, we approximate its solution using iterative gradient sign method

[36]:

r0 =
−→
0

rN+1 = Clipr+v,ε{rN−αsign(∆rN J(rN)}
(3.3)

Note that the error J is back-propagated through the entire neural network and the MFCC

computation to the perturbation vector r. We iterate until we reach the desired CER threshold t

for a particular data point xi. The regularization constant c is chosen through hyper-parameter

search on a validation set to find the maximum success rate for a given magnitude of allowed

perturbation.
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3.4 Experimental Details

We demonstrate the application of our proposed attack algorithm on the pre-trained

Mozilla DeepSpeech model [2, 29]. We train our algorithm on the Mozilla Common Voice

Dataset [29] which contains 582 hours of audio across 400,000 recordings in English. We train

on a randomly selected set X containing 5,000 audio files from the training set and evaluate our

model on both the training set X and the entire unseen validation set of the Mozilla Common

Voice Dataset. We analyze the effect of the size of the set X below. The length of our universal

adversarial perturbation is fixed to 150,000 samples which corresponds to around 9 seconds of

audio at 16 KHz. The universal adversarial perturbations are trained using our proposed algorithm

1 with a learning rate α = 5 and the regularization parameter c set to 0.5.

Evaluation: We utilize two metrics: i) Mean CER - Character Error Rate averaged over the entire

test set and ii) Success Rate to evaluate our universal adversarial perturbations. We report success

on a particular waveform, if the CER between the original and adversarial transcription (Section

3.3.1) is greater than 0.5. The amount of perturbation is quantified using mean relative distortion

dBx(v) over the test set (Refer to Section 3.3.2).

3.5 Results

Table 3.1 shows the results of our algorithm for different allowed magnitude of universal

adversarial perturbation on both the training set X and the unseen Test Set. Both the success

rate and the Mean Character Error Rate (CER) increase with increase in the maximum allowed

perturbation. We achieve a success rate of 89.06 % on the validation set, with the mean distortion

metric dBx(v) ≈ −32dB. To interpret the results in context, −32dB is roughly the difference

between ambient noise in a quiet room and a person talking [56, 18] . We encourage the reader

to listen to our adversarial samples and their corresponding transcriptions on our web page:

http://universal-audio-perturbation.herokuapp.com
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Table 3.1: Results of our algorithm for different allowed magnitude of universal adversarial
perturbation

Training Set (X) Test Set

‖v‖∞

Mean
dBx(v)

Success
Rate (%)

Mean
CER

Mean
dBx(v)

Success
Rate (%)

Mean
CER

100 -42.03 57.46 0.63 -41.86 56.13 0.64
150 -38.51 72.78 0.81 -38.34 72.49 0.82
200 -36.01 83.27 0.92 -35.84 80.47 0.95
300 -32.49 89.52 1.10 -32.32 89.06 1.11
400 -30.18 90.60 1.06 -29.82 88.24 1.07

Figure 3.2 shows the success rate and mean edit distance compared to the size of the training set

X for maximum allowed perturbation ‖v‖∞ = 200 (Mean dBx(v) =−36.01). We observe that it

is possible to train our proposed algorithm on very few examples and achieve reasonable success

rates on unseen data. For example, training on just 1000 examples can achieve a success rate of

80.47 % on the test set.
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Figure 3.2: Attack Success Rate on the test set vs. the number of audio files in the training set X

3.5.1 Effectiveness of universal perturbations

In order to assess the vulnerability of the victim Speech Recognition System to our attack

algorithm, we compare our universal perturbation with random (uniform) perturbation having the

same magnitude of distortion (same ‖v‖∞) as our universal adversarial perturbation. Figure 3.3

shows the plot of success rate vs. the magnitude of the perturbation for each of these perturbations.

It can be seen that universal adversarial perturbations are able to achieve high success rate with
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Figure 3.3: Success Rate vs ‖v‖∞ of universal and random perturbations.

very low magnitude of distortion as compared to a random noise perturbation. For example,

for allowed perturbation ‖v‖∞ = 100 our universal perturbation achieves a success rate of 65%

which is substantially higher than the success rate of random noise. This implies that for the

same magnitude of distortion, distorting an audio waveform in a random direction is significantly

less likely to cause mis-transcription as compared to distorting the waveform in the direction of

universal perturbation. Our results support the hypothesis discussed in [42], demonstrating that

universal adversarial perturbations exploit geometric correlations in the decision boundaries of

the victim model.

Table 3.2: Results of the same universal adversarial perturbation on two victim models: Wavenet
and Mozilla DeepSpeech. The universal perturbation was trained on the DeepSpeech model.

Wavenet Mozilla DeepSpeech

‖v‖∞

Mean
dBx(v)

Success
Rate (%)

Mean
CER

Success
Rate (%)

Mean
CER

150 -38.34 26.97 0.37 72.49 0.82
200 -35.84 31.18 0.40 80.47 0.95
300 -32.32 42.05 0.47 89.06 1.11
400 -29.82 63.28 0.60 88.24 1.07

3.5.2 Cross-model Transferability

We perform a study on the transferability of adversarial samples to deceive ML models

that have not been used for training the universal adversarial perturbation, i.e., their parameters
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and network structures are not revealed to the attacker. We train universal adversarial perturbations

for Mozilla DeepSpeech and evaluate the extent to which they are valid for a different ASR

architecture based on WaveNet [61]. For this study, we use a publicly available pre-trained model

of WaveNet [1] and evaluate the transcriptions obtained using clean and adversarial audio for

the same unseen validation dataset as used in our previous experiments. Our results in Table 3.2

indicate that our attack is transferable to a significant extent for this particular setting. Specifically,

when the mean dBx(v) =−29.82, we are able to achieve a 63.28% success rate while attacking

the WaveNet based ASR model. This result demonstrates the practicality of such adversarial

perturbations, since they are able to generalize well across data points and architectures.

3.6 Conclusion

In this work, we demonstrate the existence of audio-agnostic adversarial perturbations for

speech recognition systems. We demonstrate that the audio-agnostic perturbation generalizes well

across unseen data points and to some extent across unseen networks. Our proposed end-to-end

approach can be used to further understand the vulnerabilities and blind spots of deep neural

network based ASR system, and provide insights for building more robust neural networks.

Chapter 3, in full, is a reprint of the material as it appears in the supplementary DSN

2019 proceedings. Neekhara, Paarth; Hussain, Shehzeen; Pandey, Prakhar; Dubnov, Shlomo;

McAuley, Julian, Koushanfar, Farinaz. The dissertation/thesis author was the primary investigator

and author of this paper.
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Chapter 4

Conclusion

In our work we demonstrated two main vulnerabilities of neural sequence models which

makes secure real world deployment of such models a challenge:

• The ability to repurpose neural sequence models for an adversarial task.

• The existence of universal adversarial perturbations for speech recognition systems.

Concurrent with our work, there have been ongoing works in this domain which expose

vulnerabilities of neural sequence models and develop defences against them. In this chapter,

we will discuss some of these works and talk about some open research questions in the field of

adversarial attacks and defences for neural sequence models.

4.1 Recent Advances

In this section we discuss some recent advances in the field of adversarial machine learning

which pose new research questions and lay the directions for future work.
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4.1.1 Imperceptible, Robust and Targeted Adversarial Examples for Au-

tomatic Speech Recognition

This work [50] focuses on developing targeted adversarial examples for speech recog-

nition systems that are imperceptible and robust to ambient noise when played in a simulated

environment. The authors propose a white box attack and demonstrate the application on a state

of the art ASR system google Lingvo.

To construct imperceptible adversarial examples for automatic speech recognition system,

this work uses frequency masking, which refers to the phenomenon that a louder signal can

make other signals at nearby frequencies imperceptible. Through this process of psycho-acoustic

hiding, the authors retain the 100% success rate of Carilini’s attack [18] while being effectively

imperceptible under as per the conducted user study.

In order to improve the robustness of adversarial examples when playing over-the-air, the

authors use the Image Source Method to create the room impulse responses based on the room

configurations (e.g., the room dimension, source audio and target microphones location). The

room impulse responses are then convolved with the audio to create artificial utterances (speech

with reverberations) that mimic playing the audio over-the-air.

By combining both of the above techniques, the attacker can generate both imperceptible

and robust adversarial examples, which can achieve around 50% attack success rate in 100

simulated test rooms.

4.1.2 Characterizing Audio Adversarial Examples Using Temporal Depen-

dency

This work [66] explores methods to mitigate the effect of audio adversarial examples.

This paper first explores whether the lessons learned in the image domain for adversarial examples

apply to the audio domain. The authors study the effectiveness of audio adversarial examples
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under simple input transformations like quantization, local smoothing, down-sampling and auto-

encoding. They find these methods to be reasonably effective in detecting adversarial examples at

the cost of reduced performance of the ASR system. Another downside of these defenses is that

they can be easily bypassed if the attacker is aware of the defense being used in the ASR system.

The authors propose a novel defense that exploits temporal dependency which discrimi-

nates adversarial examples from the original ones. The authors observe that temporal dependencies

in an audio sample are no longer consistent after applying an adversarial perturbation. Based

on this observation, they propose a simple defense that compares the transcription of different

segments on an audio clip to judge whether an audio clip is adversarial or not.

The authors then try to break the defense assuming that the attacker is aware of the defnse.

The authors demonstrate that while it can be bypasses in a completely white-box attack scenario,

however, using an ensemble of such defenders make this attack less effective.

4.1.3 Are adversarial examples inevitable?

The recent works proposing defenses against adversarial examples, have one problematic

trend: They can easily be broken if the attacker is aware of the defense technique and its

parameters. This raises the fundamental question that whether adversarial examples are inevitable.

This paper [54] analyzes adversarial examples from a theoritical perspective and shows that for

certain classes of problems, adversarial examples are inevitable. Using experiments, the authors

explore the implications of theoretical guarantees for real-world problems and discuss how factors

such as dimensionality and image complexity limit a classifier’s robustness against adversarial

examples.
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4.2 Future Work

Based on our work and the recent advances in this field, we discuss some open research

questions which can be the directions of future research:

• What is the scope of adversarial reprogramming? An interesting area to explore in

adversarial reprogramming is to understand what kinds of classification problems can

be solved by reprogramming pre-trained neural networks. That is, how far can a simple

input transformation get us in both continuous and discrete adversarial reprogramming

problem setting. Also, is it possible to design a universal neural network which can be

easily reprogrammed for an alternate task using simple transformation on the inputs and

outputs?

• Can universal adversarial perturbations be played over the air? If universal adversar-

ial perturbations can be played over the air, it poses a real world threat to ASR systems

deployed in home electronic devices and smart phones. It will be interesting to study how

effective our universal audio perturbation is, when played over the air. Also, is it possible

to amend the training procedure using techniques similar to [50], to increase the chances of

an over the air attack?

• How to defend against audio adversarial attacks? Can we develop a provably secure

ASR system that is not vulnerable to adversarial attacks? Recent works on adversarial

defences in the image domain [41, 52] try to model the distribution of real images and

classify an image as adversarial if it does not lie on that manifold. Can we apply similar

ideas in the audio domain to defend against adversarial audio examples?

• Can we develop real-time targeted audio attacks? One challenge with the existing work

on targeted audio attacks is that the adversary needs to solve an optimization problem

for each audio clip they wish to mis-transcribe. While universal adversarial perturbation
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addresses this problem, it is an untargeted attack and cannot yield a target transcription.

Can we develop a real-time attack for ASR systems that can cause mis-transcription to a

target phrase without the need to resolve an optimization problem?

Besides the above, a more fundamental question that remains unanswered is whether or

not we can develop a provably secure machine learning model that can be robust to adversarial

examples without compromising on performance metrics. The existence of white-box attack

methods is a serious threat even in the black box attack scenarios since adversarial examples are

shown to be transferable. To ensure safe deployment of such models in real-world settings there

it is essential to address and explore the vulnerabilities of such systems.
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