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Abstract

Background: Gestational weight gain (GWG) and anthropometric trajectories may affect fetal
programming, and are potentially modifiable.

Objectives: To assess concomitant patterns of change in weight, circumferences and adiposity
across gestation as an integrated prenatal exposure, and determine how they relate to neonatal
body composition.

Methods: Data are from a prospective cohort of singleton pregnancies (n=2,182) enrolled from
United States perinatal centers, 2009-2013. Overall and by prepregnancy BMI group (overweight/
obesity and healthy weight), joint latent trajectory models were fit with prenatal weight, mid-
upper arm circumference (MUAC), triceps (TSF) and subscapular (SSF) skinfolds. Differences in
neonatal body composition by trajectory class were assessed via weighted least squares.

Results: Six trajectory patterns reflecting co-occurring changes in weight and MUAC, SSF and
TSF across pregnancy were identified overall, and by BMI group. Among people with a healthy
weight BMI, some differences were observed for neonatal subcutaneous adipose tissue, and
among individuals with overweight/obesity some differences in neonatal lean mass were found.
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Neonatal adiposity measures were higher among infants born to individuals with prepregnancy
overweight/obesity.

Conclusions: Six integrated trajectory patterns of prenatal weight, subcutaneous adipose
tissue and circumferences were observed that were minimally associated with neonatal body
composition, suggesting a stronger influence of prepregnancy BMI.

Keywords

Gestational weight gain; body composition; pregnancy; infancy; adiposity; trajectory modeling;
latent class analysis

Introduction

Gestational weight gain (GWG) above the 2009 Institute of Medicine (I0OM, now the
National Academies of Science, Engineering and Medicine) guidelines is associated with
an increased risk of adverse outcomes for both pregnant people and their children.l: 2 A
majority of pregnant people in the United States (US) gain in excess of the IOM guidelines.3
Interventions designed to support healthy GWG have been only moderately successful at
reducing total GWG to recommended levels.# ® This may be because of the need for

more intensive interventions to help pregnant people limit daily energy intakes—especially
individuals with obesity, who can meet the guidelines without an increase in energy
intake.5-8 More personalized guidance to support pregnant people in optimizing their GWG
is needed. Attention to the trajectory patterns of GWG, adipose tissue accretion and other
regional anthropometric changes might be one way to provide such insight and guidance.
Regional skinfold thickness—reflecting subcutaneous adipose tissue and circumference
changes in particular, may reflect the location of adipose tissue depot changes—either
mobilization or deposition—across gestation with shifts in the iliac crest and subscapular
region reflecting the more metabolically active abdominal/trunk region, whereas changes
in the mid-thigh and arm regions reflecting shifts in the limb region. Shifts in GWG and

its composition reflect both the uterine milieu and the nutrient stores available to support
fetal growth and development, and may offer insight about developmental programming of
offspring adiposity, and are feasible to measure in clinical practice; yet, very few studies
have examined how the composition and patterns of these weight changes impact neonatal
adiposity.9-14

Neonatal fat mass is predominately subcutaneous, rather than intraabdominal or visceral
and is a more sensitive measure of adiposity than weight or length-derived indices.
Prenatal determinants of neonatal and child adiposity, including GWG (total, pattern, and
composition) and the prenatal metabolic milieu, are of growing interest in the research
and clinical community.16 Previous research has demonstrated that GWG above the IOM
recommendations is associated with greater neonatal adiposity, particularly among people
with prepregnancy overweightl’ or healthy BMI category,18 and further that effects of
high GWG have long term effects on child adiposity.1% 20 Although prior studies have
evaluated associations between GWG patterns and neonatal birthweight, very few have
reported associations between GWG patterns and/or prenatal adipose tissue changes with
neonatal adiposity. In a Colorado-based birth cohort, high rates of GWG in early, mid, and
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late gestation were positively associated with neonatal adiposity.12 In a subset of participants
with prepregnancy healthy weight or overweight in the NICHD Fetal Growth Study (FGS)—
Singletons, weight change rates in the second and third trimesters were positively associated
with neonatal size and body composition.13 Even modeled over time, however, GWG is

still a summary measure, and may have different biological effects depending on where the
adipose tissue is stored and mobilized across gestation. No prior study has considered the
nuanced and dynamic features of concomitant weight, circumference and regional adipose
tissue accrual across pregnancy, and further, whether these changes relate to neonatal
adiposity.

To support the mechanistic understanding of the developmental origins of obesity, and the
development of evidence-based guidelines and interventions supporting prenatal health, a
more dynamic understanding of anthropometric changes, adipose tissue accrual, and how
they co-occur across pregnancy is needed. Therefore, we jointly examined concomitant
changes in pregnant people’s weight, subcutaneous adipose tissue, and circumferences
across gestation, and then evaluated how these change patterns as an integrated prenatal
exposure relate to neonatal body composition among the sizable and diverse cohort of
pregnant people followed prospectively in the NICHD-FGS-Singletons. We hypothesized
that patterns of change typified by higher GWG in early and mid-pregnancy coupled with
greater gains in skinfolds and circumferences would be associated with greater neonatal size
and adiposity.

This a secondary analysis of data from the NICHD FGS—Singletons, which was designed
to develop a national normative standard for fetal growth in the US and has been previously
described.?1 22 Briefly, from July 2009 to January 2013, pregnant people who self-identified
as non-Hispanic White, non-Hispanic Black, Hispanic, and Asian or Pacific Islander were
enrolled at 12 US clinical sites. Enrollment criteria included singleton pregnancy at 8-13
weeks gestation at study entry, age 18—-40 years, non-smoking, body mass index (BMI)
19.0-29.9 (non-obese group) or BMI 30.0-45.0 kg/m? (obese group), and no major chronic
disease. Among the non-obese group, additional exclusion criteria included: history of
gestational diabetes (GDM), stillbirth, neonatal death, preterm delivery <34 weeks, and
offspring birthweight <2.5 kg or >4.5 kg. Written informed consent was obtained from all
participants.

Prenatal visits included a screening visit with ultrasound to confirm gestational dating, and
up to five follow-up visits at regularly staggered intervals between 16-41 weeks. Trained
research staff conducted anthropometric measurements using a standardized protocol
(training and protocol details are in the Online Supplemental Material Extended Methods).23
Prenatal study visit measurements (Mean: 5.3) included: weight (beam balance or digital
scale), height (Seca 214, Shorr Board or wall-mounted approved stadiometer), mid-upper
arm circumference (MUAC) with a non-stretchable tape measure, and triceps (TSF) and
subscapular (SSF) skinfold thickness with Lange calipers. Both study visit and clinical
record abstracted prenatal weights (Mean 18.1+3.2 per participant) were used in analyses.
Neonatal measures were conducted within 12 to 24 hours after birth?3 and included: length
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with a recumbent length board (Seca 416); weight with infant-beam balance or digital scale;
MUAC with a non-stretchable tape measure; and triceps, subscapular, anterior thigh, and
abdominal flank skinfold thicknesses with Lange calipers. Birthweight and gestational age at
delivery were abstracted from delivery records.

Prepregnancy BMI was calculated from self-reported prepregnancy weight, which was
highly correlated with measured weight at the first study visit (correlation coefficient
r=0.97, p<0.001), and measured height. Birthweight and gestational age at delivery were
used to categorize infants as large for gestational age (LGA, >=90% percentile) and
small for gestational age (SGA, <10% percentile) using newborn sex-specific references.24
Sex-specific neonatal BMIZ (BMI z-scores) from the World Health Organization (WHO)
were also calculated, as these predict obesity risk better than weight-for-length.25: 26

The sum of neonatal skinfolds was calculated by adding the values for abdominal flank,
anterior thigh, triceps, and subscapular values. Neonatal fat mass was estimated using

a prediction equation (Catalano) with birthweight, birth length, and abdominal flank
skinfold thickness.2” Neonatal lean mass was calculated as birthweight minus fat mass,
and percentage body fat was calculated as fat mass over birthweight times 100.

methods

Statistical analyses were conducted in R and are more extensively described in the Online
Supplemental Material Extended Methods. To be included in this analysis, participants
needed at least 4 prenatal weight measures and delivery on or after 37 weeks. All analyses
were conducted in steps for the overall sample, and then also stratified by prepregnancy
BMI into (1) healthy weight BMI category and (2) overweight/obesity BMI categories;
further stratification into overweight or obesity categories was not possible due to small cell
sizes for some parity and race covariates in the trajectory class groups, which would limit
adjustment in our analyses. Step I: fitting joint latent class model with prenatal weight and
anthropometric measures and determining best model fit, Step 2. using the latent classes
identified in step one to compare participant characteristics between the classes, Step 3.
using the latent classes to compare neonatal outcomes by the latent classes pattern and, Step
4. sensitivity analyses.

First, GWG and regional anthropometric (MUAC, SSF, and TSF) change trajectories across
gestation were jointly modeled using a latent class model (LCM) using an expectation-
maximization (EM) algorithm that included prepregnancy BMI as a continuous variable in
the class membership component of the model specification, analogous to BMI adjustment
(Figure 1).28 Within each latent class, changes in parameters over time were modeled for
(1) weight changes as a function of gestational age with low-rank thin-plate splines with
five knots at 0, 10, 20, 30, and 40 gestational weeks, class-specific error variances, and
individual-specific random slopes, and (2) regional body composition (MUAC, SSF, and
TSF) values (up to six per participant) with quadratic polynomials for gestational age and
individual random intercepts. To select the model for use in subsequent analyses, we fit
models with four, five, and six latent classes and used Bayesian Information Criterion (BIC)
and the proportion of participants in each class (=5% per group) to guide the choice of

the number of latent classes for use in subsequent steps. The six-class model was selected
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because it had the lowest BIC of the three models overall and by BMI category. Latent
class membership was estimated using the posterior probability of class membership and
participants were assigned to the class with the highest probability. Second, descriptive
statistics for each class were estimated overall and by BMI category. Third, we estimated
pairwise differences and bootstrap confidence intervals for each neonatal outcome by the
pattern groups. For our sensitivity analyses, we examined whether assigning participants to
with partial assignments (i.e., partial assignment to multiple latent classes) rather than to
the highest probability, changed observed associations between the trajectories and neonatal
outcome measures. Additionally, as GWG patterns before and after GDM diagnosis may be
different, we also refit the joint model excluding GDM cases (n=114) to examine whether
inclusion of GDM cases impacted model fit and the GWG curves.

Of the 2,762 participants in the FGS—Singletons, GWG trajectories were estimated

for 2182 pregnant people, while neonatal size data were available for up to 2027

neonates depending on the specific measurement (Figure 2). Pregnant people’s baseline
characteristics between those included versus excluded from the analytic sample are shown
in Supplemental Table 1. A larger portion of those included in the analysis had greater than
high school education, income greater than $50,000, were married, and were Non-Hispanic
white, Asian, and Hispanic, while fewer were Non-Hispanic Black. Overall, a majority of
those in the analytic sample were married, and over half had a prior pregnancy and gained
above the IOM GWG guidelines, while mean infant BMIZ scores were lower than the WHO
reference (Table 1 & Table 2).

Gestational weight gain, regional body composition and anthropometric trajectory models

The best-fitting joint model identified six trajectory pattern groups of GWG, subcutaneous
adipose tissue and MUAC, both among the overall cohort and within each of the stratified
by prepregnancy BMI groups (Figure 3). These co-occurring patterns of change in weight,
MUAC, TSF and SSF across gestation show the composition of weight shifting across
gestation in different body regions. For example, those with prepregnancy healthy weight in
Class 6 (pink, Figure 3) showed very high initial weight gain in early pregnancy and then
high weight gain subsequently across gestation (top row of Figure), and these changes were
also seen in the higher starting values and earlier pregnancy increases of MUAC, SSF and
TSF that attenuated with increasing gestational age (rows 2—4 of Figure 3). By contrast, in
those who showed weight loss initially during pregnancy and then more rapid weight gain
after 20 weeks gestation (Class 5, blue), MUAC was flat initially from 10-20 weeks, while
SSF and TSF both increased more rapidly initially and then subsequently had a smaller
increase as pregnancy progressed.

As shown in Figure 3, overall (Panel A) and when stratified by BMI category (Panel B

& C), two estimated GWG patterns showed higher initial weight gains in early pregnancy
[Class 6 and Class 2], while two patterns had lower first trimester gains [Class 3 and
Class 4]. One pattern showed more weight stability in the first trimester [Class 1] and
one pattern showed weight loss in early pregnancy [Class 5]. To further contextualize the
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GWG patterns shown in Figure 3, Table 2 (overall sample) and Supplemental Table 2
(stratified by BMI category) provides estimated weight gain rates by trimester as well as
other characteristics for each trajectory class group. Overall, all six patterns showed weight
gain in the second and third trimesters, with differing weight change velocities (Table 2):
the highest velocity was observed in the Class 5 group in the second and third trimesters,
whereas the lowest velocity was seen in the Class 4 group in the second trimester, and the
Class 2 group in the third trimester. When stratified into healthy and overweight/obesity
categories, generally similar rate patterns are observed with lower rates among those with
prepregnancy overweight/obesity, compared to those with prepregnancy healthy BMI values
(Supplemental Table 2).

Among the overall sample and by BMI category, Supplemental Table 3 shows MUAC,

TSF and SSF estimates from the model by trajectory class group. Initial regional body
composition (MUAC, SSF, TSF) estimates measured in early pregnancy (~10 weeks
gestation) and changes across pregnancy generally followed similar patterns to one another
by the trajectory group membership from the joint model overall (Figure 3 - Panels D,

G, J). Overall, the highest estimated MUAC, SSF, TSF trajectories were generally among
those in Class 6, and the lowest were among those in Class 1. For the groups with lower
initial estimates for regional measures (Class 1, Class 5, Class 3), each group showed
some increases in values over time with varying slopes, whereas, for the groups with higher
initial estimates (Class 2, Class 4, Class 6), regional estimates were relatively stable or
even decreased over time. GWG patterns were generally similar between the BMI categories
(Healthy weight vs. Overweight and obesity) (Figure 3: Panels B & C), while MUAC, SSF
and TSF showed more heterogenous initial values and changes over time in measures when
stratified by BMI (Figure 3).

For the overall sample (Table 1), several prenatal characteristics were similar across

the trajectory class groups, including height, and gestational age at delivery, while age,
education, parity, GDM prevalence, and racial/ethnic group showed some differences by
trajectory class membership. When stratified by BMI category (Supplemental Tables 4 & 5),
similar differences were observed by trajectory class membership.

Neonatal size characteristics by gestational weight gain and body composition trajectory

group:

Overall, unadjusted mean neonatal BMIZ were all below 0, with the lowest values among
infants of mothers in Class 1 and Class 4 and the highest among infants of mothers in
Class 3 & 5 (Table 1). Overall percentage body fat in the neonates was 12.4% with the
lowest values among Class 1 and highest among Class 4. When stratified into healthy and
overweight/obesity prepregnancy BMI categories, mean neonatal BMIZ scores were lower
among infants exposed to prepregnancy healthy weight with the lowest BMIZ among Class
5, and average BMIZ were higher among those exposed to overweight/obesity with the
lowest BMIZ among Class 2.

Trajectory class-specific adjusted standardized estimates for neonatal body composition
outcomes are shown in Table 3 for everyone overall and by BMI category. Generally
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adjusted estimates are lower among infants exposed to a healthy prepregnancy BMI

and were higher among infants exposed to prepregnancy overweight or obesity. After
stratifying by BMI category, Class 4—with some initial GWG in early pregnancy and

then more moderate rates compared to the other groups—had the lowest fat mass and
percent body fat for both the healthy and overweight/obesity prepregnancy BMI categories,
while Class 6 had the highest percent body fat among those infants whose mothers had a
healthy prepregnancy BMI and Class 1 had the highest among infants whose mothers had
prepregnancy overweight and obesity. In our sensitivity analyses comparing (1) unadjusted
and adjusted and (2) weighted versus highest probability class assignment, neonatal body
composition estimates were fairly similar to our primary findings (data not shown).

No significant pairwise differences in neonatal body composition measures were observed
overall by integrated prenatal trajectory class (Supplemental Table 6). When stratified by
BMI category, among prepregnancy healthy weight (Supplemental Table 6) significant
pairwise differences were observed for sum of skinfolds between Classes1 & 4 of >1.17
mm and also Classes 4 & 6 of >1.55 mm, and among infants exposed to prepregnancy
overweight/obesity, small pairwise differences in fat-free mass were observed, especially
between Classes 1 & 4 where a difference of over 115 grams was observed and between
Classes 1 & 2 where a difference in fat-free mass index of 0.25 kg/m? was observed
(Supplemental Table 6). Results were similar between the weighting and highest probability
estimates for pairwise differences with minor differences depending on the covariate
adjustment sets (data not shown).

Gestational Diabetes Sensitivity Analysis

A sensitivity analysis was also conducted to examine whether excluding people with
gestational diabetes impacted the trajectory patterns and model fit. Exclusion of people
with GDM (n=114) from the analytic sample did not substantially change the overall shape
or trajectory patterns (Supplemental Figure 1) and did not markedly change model fit.
However, there were tighter confidence intervals around the estimates and some differences
among certain trajectory groups in regional anthropometric changes were observed. For
GWG, estimated first-trimester weight change patterns after exclusion of the GDM cases
were somewhat attenuated for Class 2 and Class 3, while the velocity in later pregnancy
was somewhat lower for Class 5; however, the overall shapes were strikingly similar. For
regional anthropometric estimates across gestation, exclusion of GDM cases resulted in
lower initial values for MUAC, SSF, and TSF for Class 2, but the patterns of change over
time were not noticeably different compared to the analytic sample that included participants
with GDM.

Discussion

In the first integrative model of time varying changes in multiple measures of anthropometry
and adiposity across gestation, we identified six trajectory patterns of co-occurring

changes in weight, MUAC, SSF and TSF across gestation, which offers a more nuanced
understanding of how these metrics concomitantly change during pregnancy. GWG was
modeled jointly with time-varying indicators of subcutaneous adipose tissue in the arm
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(TSF), overall upper arm size (MUAC), and subcutaneous adipose tissue changes in the
trunk region (SSF). Despite reflecting overall weight changes and regional shifts in adipose
tissue depots and circumferences with our trajectory patterns, only a few associations were
observed between these trajectory patterns with neonatal body composition measures.

Our best fitting model included six trajectory patterns for GWG and body composition
across gestation with some curves showing high initial GWG in the first trimester and others
showing initial weight loss, stability or low GWG and then varying rates in the second

and third trimesters. The shapes of the GWG curves were relatively similar across the BMI
categories with more marked differences between some groups earlier in pregnancy. As
expected, there was lower overall GWG among those with overweight or obesity, while
MUAC, SSF and TSF by prenatal trajectory classes were more overlapping with each
among those with prepregnancy overweight or obesity. The concomitant changes in weight
and body composition patterns as depicted show interesting relationships that appear to

be differential by prepregnancy BMI category. For example, for Class 5, weight loss and
then accelerated weight gain was observed among both BMI groups, and this shift in
weight is reflected in initial stability and then increases in MUAC, and also increases and
then a plateau in both SSF and TSF among those with healthy weight, whereas the body
composition shifts among those with prepreghancy overweight and obesity are much less
striking for MUAF and TSF and only the SSF seems to notably increase. For Class 4, the
low GWG observed in the first trimester among those with healthy prepregnancy BMI is
also observed among those with overweight and obesity, but remains low well into the 2nd
trimester. This difference is also reflected in the body composition parameters; increases
are seen for SSF and TSF across pregnancy among those with healthy weight in Class 4,
reflecting adipose tissue deposition, while decreases in SSF and TSF across gestation in
Class 4 were observed among people with overweight or obesity, reflecting mobilizing of
adipose tissue.

It is unknown how each of the six integrated prenatal trajectory groups reflect the uterine
metabolic environment and nutritional availability to support fetal growth. We theorized that
patterns characterized by high GWG and gains in skinfold thickness in the trunk region
(such as subscapular) in early pregnancy may reflect a less favorable metabolic milieu and
indicate greater fuel availability in early pregnancy that may promote excessive adiposity
accrual in the fetus, particularly among people with obesity.16: 22 Patterns characterized by
relatively low GWG or weight loss in early pregnancy—and smaller increases, stability or
decreases in skinfolds and mid-upper arm circumference—may reflect a more favorable
early pregnancy metabolic milieu; however, those with higher adiposity levels in early
pregnancy may still have insulin resistance and elevated lipids/triglycerides despite showing
lower GWG or even weight loss at this time.

Overall, despite our predictions, the prenatal trajectories were not associated with pairwise
differences between neonatal body composition outcomes. After stratifying by pregnancy
BMI category, a few differences between prenatal trajectory classes were observed for
skinfold thickness among those infants whose mothers had prepregnancy normal weight
and for fat-free mass among infants of mothers with prepregnancy overweight/obesity, and
no significant pairwise differences were found for fat mass, BMIZ or percentage body fat
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in contrast to our hypothesis. This lack of differences in most neonatal body composition
measures suggests that GWG patterns—even those with very rapid and high GWG and
increases in regional adipose tissue depots and circumferences—may not impact neonatal
body composition as strongly within similar prepregnancy adiposity levels, or when GWG
modeling also incorporates prenatal regional body composition changes. It also could be due
our relatively healthy sample compared to the general population due to strict inclusion
criteria for the FGS. Interestingly, significant pairwise differences in both BMI strata

were observed between Class 1 and Class 4 but for different measures; higher values

in Class 1 compared to Class 4 were observed for skinfold thickness among infants of
mothers with healthy prepregnancy weight and for lean mass among infants for infants

in the overweight/obesity prepregnancy BMI category. The differences in GWG and body
composition between Classes 1 & 4 are apparent in the first trimester, where Class 1 has
relative weight stability and Class 4 shows low GWG, and then as pregnancy progresses
more rapid increases in Class 1 in GWG and body composition measures, compared to
Class 4, suggesting this period of rapid GWG after weight stability may propagate higher
subcutaneous adipose tissue accumulation in infants born to individuals with prepregnancy
normal weight, while among infants born to individuals with prepregnancy overweight/
obesity this may lead to greater neonatal lean mass, but interestingly not greater fat mass.
Previous reports from the NICHD FGS in which low GWG and moderate-high GWG
trajectories estimated with latent class analyses (i.e., proc traj in SAS with polynomials to
capture the shape of the curve over time) were positively associated with LGA, a crude
indicator of larger body size at birth,11 are in contrast to our limited pairwise differences in
neonatal body composition using the joint prenatal model. While this approach was similar
to our latent class analysis, we jointly modeled weight with other measures of adiposity
and body size changes, used splines for curve estimation to capture the nuanced shape

of the changes, and we examined neonatal body composition rather than using a larger
size-for-gestational age.

Our results are generally consistent with the prior literature showing distinct patterns

of GWG and body composition change across pregnancy and further that some GWG
trajectory patterns are associated with neonatal size and body composition outcomes.
Although analyses incorporating GWG and body composition into a joint trajectory model
have not been fit previously, others have reported on correlations or associations between
individual prenatal anthropometric measures with newborn anthropometry or fat mass
estimated with equations.13: 14 In one study, small positive correlations between maternal
fat mass with infant biceps, triceps, iliac crest and subscapular skinfold measures were
observed.30 In another study from NICHD FGS participants with a BMI<30 kg/m2, higher
rates of change in maternal MUAC and triceps skinfolds were associated with lower lean
mass, but not fat mass.13 We have previously reported on how the pattern of GWG by
trimester was associated with overall body composition changes across pregnancy, and also
with neonatal birthweight in a 1990s New York-based cohort. Among pregnant individuals
(n=156) with predominately healthy weight prepregnancy BMI (60.3%), higher GWG
rates were associated with greater overall fat mass gains across pregnancy, and also with
greater neonatal birth weight and length.® Our findings build upon this work by showing
concomitant shifts in regional body composition measures along with GWG, and that
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high GWG s reflected in these regional body composition changes. For GWG patterns

in relation to neonatal adiposity, in a Colorado-based birth cohort (n=752) in which about
half of participants had a healthy weight prepregnancy BMI (52%), a quarter had overweight
(25%) and a fifth had obesity (20%), high rates of GWG in early (0-17 weeks), mid
(17-27 weeks), and late gestation (>27 weeks) estimated with multiple linear regression
were positively associated with neonatal adiposity and percentage body fat assessed with
air-displacement plethysmography.12 In this cohort, a 1-kg/week increase in early, mid, and
late pregnancy GWG was associated with an estimated 8.12, 9.1, and 6.2 g higher neonatal
fat mass and 0.18, 0.21, and 0.13 higher neonatal percentage body fat, respectively.12
These findings are in contrast to ours, as we found no associations between integrated
prenatal trajectories with neonatal adiposity measures other than skinfold thickness for
those with prepregnancy healthy weight; this could be because we used a very different
modeling approach with our latent class analysis incorporating prenatal body composition
and weight, and different infant body composition measures (skinfolds/anthropometry vs.
air-displacement plethysmography).

Sensitivity analyses were conducted to examine whether exclusion of GDM cases markedly
changed trajectory class shapes and model fit. Exclusion of GDM cases from the joint model
did not markedly change the shape of the GWG curves, which was not surprising given our
small sample size of GDM cases.

Due to the scope of the study, we were unable to assess overall body composition

changes (i.e., fat and fat free mass) with a multi-compartment method or with MRI in

our pregnant participants, and were only able to use regional assessments of adiposity with
skinfold thickness and anthropometric changes in weight and mid-upper arm circumference.
Although there do exist some equations for estimating prenatal fat mass change during
pregnancy, we are unaware of an equation that would be appropriate for estimating change
in adiposity across pregnancy with data similar to ours, and further, use of the absolute
skinfold thickness values for examining data longitudinally is preferred as it applies fewer
assumptions to the data.3! While neonatal body composition was estimated with validated
prediction equations using skinfold thickness and circumferences, it was not measured with
a multi-compartment model. Neonatal measures were conducted 12—24 hrs after birth and
water loss and other body composition changes during this period could potentially have
impacted the accuracy of our measurements; however, given that the infants in NICHD
FGS were all measured around the same time window post-delivery, and that we have

not seen other reports of prenatal weight and body composition changes during pregnancy
impacting these changes, we are unsure how this would affect our findings. Compared

to those not included in our analysis, our analytic sample was of higher socio-economic
status, which may affect the generalizability of our findings. Additionally, our ability to
detect associations and our generalizability is also affected by the strict inclusion criteria
for the NICHD-FGS resulting in a healthier sample with no chronic disease among those
with healthy and overweight prepregnancy BMI and less chronic diseases among those
with obesity, compared to the general prenatal population. However, we hypothesize that
if this analysis were repeated in a more general obstetric population, greater variance

in our neonatal body composition measurements would likely have been observed and
allowed more discrimination among the prenatal trajectories. While infant BMIZ scores
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in our sample were lower than the WHO reference population (i.e., values below 0), our
sample still had a high prevalence (53.2%) of those with excessive GWG, which is in

line with prevalence data from the United States showing a range of excessive GWG

from 38.2-54.7%, depending on the state.3 Our prepregnancy BMI was calculated from
self-reported prepregnancy weight, but was highly correlated with measured prepregnancy
weights in the NICHD FGS and has also been shown to be highly correlated in other
populations.32 Prenatal weights used in our trajectory modeling were from both study
visits and routine prenatal care, therefore there may be variability in the time of day

and fasting status when measurements were taken; pregnancy measures taken later in the
day may also be affected by water retention/edema. Additionally, we presented results
with predicted probabilities and also assigning participants to the trajectory class with the
highest probability, and noted more greater divergence of estimates between weighted vs.
highest class membership assignment for the classes with smaller numbers. Despite these
limitations, this analysis is strengthened by the study design. The NICHD FGS—Singletons
is a contemporary, diverse longitudinal cohort with repeated measurements of prenatal
regional body composition measurements at up to six time points during pregnancy along
with neonatal body composition anthropometric measurements obtained by highly trained
research personnel.

Conclusions

Six trajectory patterns of prenatal weight, anthropometry and body composition change
across pregnancy were identified, allowing for a more nuanced understanding of GWG

and regional body composition changes co-occurring across pregnancy. These patterns were
minimally associated with neonatal body composition, which was more strongly linked to
prepregnancy BMI category. This paper provides an example of an analytic approach that
integrates complex time-varying data and multiple measures of adiposity across gestation
into a single exposure per individual. This type of analytic approach can be used to integrate
multiple measures to contextualize the uterine environment in epidemiologic research to
better predict risks and also inform interventions. These types of dynamic integrative
models can also possibly be leveraged for future personalized interventions designed to
support healthy GWG and nutrition during pregnancy, which could for example incorporate
real-time assessment of weight and body composition coupled with prenatal diet, activity,
and metabolic measures in order to guide recommendations. Although few differences in
neonatal body composition by prenatal trajectory group were observed, we did observe
some small differences for skinfold thickness and lean mass, and moreover, observed
differences in neonatal body composition by BMI strata with higher values among infants
born to individuals with prepregnancy overweight or obesity. Given that children’s body
composition may track across childhood and into adulthood, supporting pregnant individuals
and people planning pregnancy to have a healthy BMI along with appropriate GWG may
have lasting implications for offspring size.15 33,34
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Visual overview of prenatal data measurement timing and integration into the joint latent
trajectory model. Overview shows an example of the six latent trajectory change pattern

estimates and 95% confidence intervals across pregnancy for the healthy weight BMI

category reflecting dynamic patterns of change for each of the measures.
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NICHD Fetal Growth Study - Singletons Cohort
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Participant flow diagram of the prenatal weight and body composition trajectory and
neonatal body composition analysis, NICHD Fetal Growth Studies
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