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We develop a flat, analytic and nonlinear placement algorithm ePlace, which

is more effective, generalized, simpler and faster than previous works. Based on the

analogy between placement instance and electrostatic system, we develop a novel place-

ment density function eDensity, which models every object as positive charge and the

density cost as the potential energy of the electrostatic system. The electric potential and

field distribution are coupled with density using a modified Poisson’s equation, which

is numerically solved by spectral methods using fast Fourier transform (FFT). Rather

than conjugate gradient (CG) method by previous placers, we propose to use Nesterov’s
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method for faster convergence. The efficiency bottleneck on line search is resolved

by steplength prediction through an equation of Lipschitz constant. Through empirical

validation, ePlace outperforms all prior placers with better quality and efficiency. On av-

erage of ISPD 2005 benchmarks, ePlace outperforms the leading placer BonnPlace with

2.83% shorter wirelength and runs 3.05× faster. On average of ISPD 2006 benchmarks,

ePlace outperforms the leading placer MAPLE with 4.59% shorter wirelength and runs

2.84× faster.

Based on the above placement prototype, we develop ePlace-MS, an electrostat-

ics based placement algorithm for mixed-size circuits. The density function eDensity

is extended to handle the mixed-size placement. We conduct detailed analysis on the

correctness of the gradient formulation and the numerical solution, as well as the ra-

tionale of density equalization with its advantages over prior density functions. Nes-

terov’s method is shown with high yet stable performance over mixed-size circuits. The

steplength prediction methodology is enhanced with backtracking strategy to prevent

overestimation. A nonlinear preconditioner is developed to minimize the topological

and physical differences between large macros and standard cells. Besides, we devise a

simulated annealer for direct macro-layout legalization. All the above innovations are in-

tegrated into our mixed-size placement prototype ePlace-MS, which outperforms all the

related works in literature with better quality and efficiency. Compared to the leading-

edge mixed-size placer NTUplace3, ePlace-MS produces up to 22.98% and on average

8.22% shorter wirelength over all the sixteen modern mixed-size (MMS) benchmark

circuits with the same runtime.
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Chapter 1

Introduction

In this chapter, we introduce the fundamentals of VLSI Placement, highlight its

importance to the overall design quality, and illustrates the motivation to the research

efforts on the placement and relevant topics. We then briefly discuss the main categories

of algorithms for standard-cell and mixed-size placement, as well as the representative

research innovations in literature. Finally, we discuss our major contributions to the

research on analytic nonlinear placement, and outline the remainder of the dissertation.

1.1 Placement Basics

Placement plays an important role in the VLSI physical design automation [25,

31] for both random logic [33] and datapath intensive components [69]. Placement per-

formance largely impacts the downstream stages of power grid design [63], clock tree

synthesis [36], power optimization [37], global and detailed routing [39], post-layout

simulation [18, 19] and design variability handling [67, 68]. The placement quality re-

sults highly correlate with timing [38], routability [16, 54], and power [35]. As the tech-

nology node enters the deep nanometer scale [24] with billion-transistor integration, the

performance of standard-cell placement becomes dominant [42] on the overall quality

of the design. Besides, more and more pre-designed IP blocks, macros and memory

units are included in the modern IC design, in order to shorten the total turnaround. A

1
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typical ASIC may embed up to thousands of large macros and millions of standard cells

with huge topological and physical differences in between. The high design complexity

and complication continuously challenge the capability of existing mixed-size placers.

As a result, innovations of effective and efficient large-scale mixed-size placement al-

gorithms become more and more desirable.

1.2 Prior Arts

Traditional standard-cell placementmethods can be generally divided into four

categories, namely (1) stochastic simulation (2) min-cut partition (3) quadratic mini-

mization (4) nonlinear optimization, respectively. Stochastic approaches are usually

based on simulated-annealing techniques, of which one representative work is Timber-

wolf [53]. Uphill climbing is probabilistically accepted to rescue the placer from lo-

cal optima. Despite high solution quality, stochastic placement has high complexity

and low convergence rate, which induces poor scalability to large circuits. Min-cut

approaches recursively simplify the problem by partitioning the instance (netlist and

placement region) into smaller sub-instances. Local optimum algorithms [4] are usually

employed when the problem instance becomes sufficiently small. State-of-the-art works

include Capo [52], Dragon [59] and Fengshui [3]. However, improper partitioning at

early stages could induce unrecoverable quality loss to the final solution. Quadratic

approaches approximate the net length using a quadratic function, which can be lin-

earized by various net models [57]. The differentiability enables gradient-based mini-

mization techniques [51]. Density equalization is performed by adding pseudo pins and

nets to the physically overlapped cells with a linear term introduced to the cost func-

tion [13]. By solving the linear system, cells are iteratively dragged away from over-

filled regions. State-of-the-art quadratic placers include FastPlace3.0 [61], RQL [60],

SimPL [41], MAPLE [28], ComPLx [27], BonnPlace [58] and POLAR [30]. Despite
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high placement efficiency, the solution quality and robustness usually lag behind non-

linear placers. Nonlinear approaches refer to the algorithms based on a framework of

nonlinear optimization. Wirelength and density are modeled using smooth mathemati-

cal functions thus gradients can be analytically calculated. Wirelength models mainly

include the log-sum-exp model [47] and the weighted-average model [23]. Density mod-

els mainly include the bell-shaped function [47], Gaussian equation [8] and Helmholtz

equation [5]. The partial differential equation (PDE) can be solved by Green’s func-

tion [11] or finite-difference method [5]. By Lagrange relaxation or penalty method, the

grid density constraints are integrated into the objective function and solved by nonlin-

ear CG method. State-of-the-art nonlinear placers include APlace3 [26], NTUPlace3 [8]

and mPL6 [6]. Due to the high complexity of modeling functions, nonlinear approaches

employ multi-level cell clustering to simplify the problem and accelerate the algorithm.

However, the quality overhead is not negligible.

Prior mixed-size placement algorithms can be divided into three categories.

Two-stage methods conduct placement in two separated phases, namely, floorplanning

of macros followed by placement of standard cells. Location and orientation of macros

are determined and fixed at the first phase without simultaneous optimization of stan-

dard cell layout. A placement follows to only optimize standard cells in the global scale.

Based on an initial placement solution, MP-tree [9] packs macros along the chip bound-

aries to avoid overlapping with standard cells. The total amount of cell displacement

and central placeable area are minimized and maximized, respectively. A constraint-

graph (CG) algorithm [7] uses mathematical programming to minimize displacement

while optimize macro positions and orientations. However, the limited or inaccurate

information on the standard cell distribution could misguide the floorplanner at early

stages, inducing suboptimal floorplan solution which inevitably degrades the overall

quality. Constructive (floorplan-guided) approaches combine the advantages of both
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floorplan and placement. The floorplanner conducts simultaneous optimization on both

macros and soft blocks (clusters of standard cells). An incremental placement follows to

further spread standard cells within only local scale. Capo [52] as a min-cut floorplacer

combines the two steps together. A fixed-outline floorplanner is repeatedly invoked

throughout the top-down placement framework providing guidance to the macro shift-

ing. FLOP [65] groups cells into soft blocks with similar shapes and dimensions to

the macros. A min-cut floorplanning approach [64] produces the initial positions for

all the macros and clustered blocks with simultaneous optimization of orientations. In-

cremental global [61] and detailed placement further spread and legalize the standard

cells within local scale. Nonetheless, the intrinsic limitation of min-cut partitioning and

clustering algorithms usually induce suboptimal solutions in the placement perspective.

Optimization space of standard cell placement could be substantially shrunk, while the

quality loss is hard to recover. One-stage solution remains popular among most mod-

ern placement algorithms [22, 26, 27, 28, 30, 61]. Macros and standard cells are being

placed simultaneously where the limitations discussed above can be well avoided. Fast-

Place3.0 [61] performs selective grid resizing to accommodate large macros with more

whitespace. ComPLx [27] shreds macros into small objects with sizes similar to that of

the standard cells. After placement finishes, each macro is reconstructed based on the

gravity center of instances belonging to it. APlace3 [26] reshapes the smoothing curve

of the density function to distinguish the smoothness of macro movement with that of

standard cells. NTUplace3 [22] incorporates rotational and flipping components into

the gradient function, which enables simultaneous optimization on the location of all the

movable objects as well as the orientation of macros. As mentioned in [9, 65], macro

and standard cell co-placement challenges the capability of modern analytic placement

approaches. Despite largest search space, nevertheless, the substantial topological and

physical differences between macros and standard cells might introduce gradient imbal-
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ance and cause the solution hard to converge.

1.3 Our Contributions

In this dissertation, we develop a flat analytic algorithm ePlace [32, 33] for non-

linear global placement. ePlace is more effective, generalized, simpler and faster than

previous approaches. In contrast to the multi-level framework in prior nonlinear plac-

ers, our algorithm conducts placement on the flat netlist. Moreover, we develop a novel

density function eDensity [33] modeling the placement instance as an electrostatic sys-

tem for density equalization. Unlike hierarchical density grid structures used in prior

works, ePlace sticks to a flat density grid with constantly high resolution. Compared

to previous nonlinear placers [6, 8, 26], ePlace avoids quality loss due to suboptimal

cell clustering and low density resolution, especially at early placement iterations. The

density function is formulated as the system potential energy, while the density gra-

dient is defined to be the electric repulsive force. A modified Poisson’s equation is

proposed to couple the charge density with electric potential and field distribution, Neu-

mann boundary condition is enforced to maintain the legality of the global placement

solution. Based on the above definition, a fast numerical method is proposed to solve

Poisson’s equation using spectral methods [56] based on fast Fourier transform (FFT).

it well satisfies the boundary condition and makes the local density gradient aware of

global density information. The time complexity is only O(n logn) where n is the total

number of movable elements. Besides, we propose to use Nesterov’s method [34] for

the nonlinear placement optimization. The steplength is determined as the inverse of

the Lipschitz constant, which is dynamically predicted without computation overhead.

The placement efficiency is improved by more than 2× compared to the CG method

(with line search). We further enhance the performance of the nonlinear solver using a

preconditioning technique to statically approximate the Hessian matrix of the objective
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function. All the above innovations are integrated into the flat nonlinear placement algo-

rithm ePlace, which is validated through experiments on the ISPD 2005 [46] and ISPD

2006 [45] benchmark suites. Empirical validation shows that ePlace outperforms all

the state-of-the-art placers ( Capo10.5 [52], FastPlace3.0 [61], RQL [60], MAPLE [28],

ComPLx [27], BonnPlace [58], POLAR [30], APlace3 [26], NTUPlace3 [8], mPL6 [6] )

with much better quality and better or comparable efficiency. On average of all the eight

ISPD 2005 benchmarks, ePlace outperforms the leading placer BonnPlace [58] with

2.83% shorter wirelength and runs 3.05× faster. On average of all the eight ISPD 2006

benchmarks, ePlace outperforms the leading placer MAPLE [28] with 4.59% shorter

wirelength and runs 2.84× faster.

Moreover, we extend the above standard-cell placement prototype to handle

large-scale mixed-size circuits, based on the infrastructure in FFTPL [33] and ePlace [32].

We name this novel mixed-size placer as ePlace-MS [34, 40]. As the major difficulty

of mixed-size placement remains in the broad spectrum of topological and physical at-

tributes among all the movable objects (i.e., standard cells and large macros), our in-

novation of nonlinear preconditioning well equalizes them in the solver’s perspective.

As a generalized algorithm, ePlace-MS handles standard cells and macros in exactly

the same way (c.f. macro shifting and smoothing [22], soft block formation by stan-

dard cells [61, 65], special macro density smoothing [26, 28], macro shredding [27],

etc.) to ensure high and stable performance over various integrated circuits with po-

tentially quite different structures of the design. We extend our prior density function

eDensity [32, 33] to model mixed-size integrated circuits in a generalized way. Besides,

we provide detailed analysis on eDensity with (1) rationale of removing the direct-

current (DC) component from the spatial density distribution (2) correctness proof of

the density gradient formulation (3) correctness proof of the numerical solution (4) ad-

vantages over density functions in previous placement algorithms. We also extend Nes-
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terov’s method as the nonlinear solver to handle mixed-size placement, with steplength

dynamically predicted via Lipschitz constant. Moreover, we use a backtracking method

to effectively prevent steplength overestimation. We develop an approximated nonlinear

preconditioner to resolve the substantial topological and physical gap between standard

cells and macros. The solution quality is significantly improved with negligible runtime

overhead. We devise an annealing-based macro legalizer providing direct control to the

macro shifting. A second-phase standard cell-only global placement is proposed to re-

solve the quality overhead induced during macro legalization. Finally, we integrate all

the innovations into ePlace-MS, an electrostatics based placement prototype for mixed-

size circuits, with promising experimental results obtained on the modern mixed-size

(MMS) [65] benchmark suite. Empirical validation shows that ePlace-MS outperforms

all the state-of-the-art mixed-size placement algorithms ( Capo10.5 [52], FLOP [65],

FastPlace3.0 [61], ComPLx [27], mPL6 [6], NTUplace3 [22] ) with much shorter wire-

length and shorter or comparable runtime. Specifically, ePlace-MS outperforms the lead-

ing placer NTUplace3 [22] with up to 22.98% and on average 8.22% shorter wirelength

with the same runtime over all the sixteen MMS benchmarks [65].

1.4 Dissertation Outline

The dissertation is organized as follows. Chapter 2 introduces the background

knowledge and related works in literature. Chapter 3 discusses our electrostatics based

density function eDensity, the fast numerical solution by spectral methods using FFT,

the nonlinear optimization by Nesterov’s method, as well as the integration into our

placement prototype ePlace. Chapter 4 discusses our extension to the mixed-size place-

ment prototype ePlace-MS, where we conduct more thorough theoretical analysis on

the density gradient formulation, the rationale of density equalization, the development

of nonlinear preconditioner, as well as the simulated annealing based macro legalization.
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Chapter 5 summarizes all the innovations developed in our works, discusses the advan-

tages and tradeoffs, analyzes pending problems, and points out possible directions for

future research works.



Chapter 2

Background

In this chapter, we first introduce the general picture and essential concepts of

the abstracted placement instance. Then we formulate the problem of the analytic global

placement optimization. We discuss the prior methodologies in literature, and analyze

the arts and problems of each state-of-the-art quadratic and nonlinear placement algo-

rithm.

2.1 Essential Concepts of Placement

A placement instance is formulated as a hyper-graph G = (V,E,R), where V

denotes the set of vertices (cells), E denotes the set of hyper-edges (nets) and R denotes

the placement region, respectively. We use Vm and V f to denote the movable cells and

fixed macros in the node set V . Let n = |Vm| denote the number of movable placement

objects. A legal solution satisfies the following three requirements.

• Every cell is accommodated using enough free sites in the placement region.

• Every cell is horizontally aligned with the boundaries of one placement row.

• There is no overlap between cells or macros.

Based on the legality constraint, a placer targets minimizing the total HPWL of all

the nets. Let v = (x,y) denote a placement solution, where x = {xi|i ∈Vm} and y =

9
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{yi|i ∈Vm} are the horizontal and vertical coordinates of all the cells. The HPWL of

each net e is denoted as HPWLe(v) and defined in Eq. (2.1).

HPWLe(v) =max
i, j∈e

|xi− x j|+max
i, j∈e

|yi− y j|. (2.1)

The total HPWL is then computed as HPWL(v) = ∑e∈EHPWLe(v) and we have the

placement problem defined in Eq. (2.2).

min
v
HPWL(v) s.t. v is a legal solution. (2.2)

2.2 Definition of Global Placement

Global placement is usually regarded as a problem of constrained optimization.

The placement region is uniformly decomposed into a set of m×m rectangular grids

(bins) denoted as B. Based on a placement solution v, let ρb (v) denote the density of

each grid b as expressed in Eq. (2.3).

ρb(v) = ∑
i∈V
lx(b, i)ly(b, i). (2.3)

Here lx(b, i) and ly(b, i) denote the horizontal and vertical overlaps between the grid b

and the cell i. Both lx(b, i) and ly(b, i) exhibit a rectangular shape, which is not differ-

entiable at boundary points. As Eq. (2.4) shows, a global placement problem targets a

solution v with minimum total HPWL subject to the constraint that the density ρb(v) of

all the grids are equal or below a predetermined target placement density ρt .

min
v
HPWL(v) s.t. ρb(v) ≤ ρt , ∀b ∈ B. (2.4)
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2.3 Wirelength Smoothing

As Eq. (2.1) shows, the wirelength function HPWL(v) is not differentiable and

hard to minimize. As a result, various smoothing techniques have been developed to

improve the differentiability thus convergence rate. Here we only discuss the horizontal

part of the wirelength smoothing function while the vertical part can be obtained in a

similar way.

Log-Sum-Exp (LSE) wirelength model is proposed in [47] and widely used in recent

nonlinear placers [6, 8, 26]. For each net e= {(x1,y1),(x2,y2), . . . ,(xn,yn)} with n pins,

the LSE function approximates the horizontal span of net e as Eq. (2.5) shows.

We(v) = γ

(
ln∑
i∈e
exp

(
xi

γ

)
+ ln∑

i∈e
exp

(−xi
γ

))
. (2.5)

Here γ is the smoothing parameter, which can be used to control the modeling accuracy1.

As discussed in [62], the modeling error is upper-bounded by εLSE(e) ≤ γ lnn.

Weighted-Average (WA) wirelength model is proposed in [23]. Eq. (2.6) shows the

horizontal function of net e

We(v) =

(
∑i∈e xi exp(xi/γ)

∑i∈e exp(xi/γ)
− ∑i∈e xi exp(−xi/γ)

∑i∈e exp(−xi/γ)

)
, (2.6)

where similarly γ is used for accuracy control. [23] shows that the modeling error is

upper-bounded by εWA(e) ≤ γ∆x
1+exp∆x/n , which is roughly half of that of εLSE(e). In this

work, we use the WA wirelength model for our nonlinear placement prototype ePlace,

and use both LSE and WA wirelength models for our mixed-size placement algorithm

ePlace-MS.

1The HPWL smoothing parameter γ cannot be set to arbitrarily small due to the computation precision
constraint.
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2.4 Density Penalty

As Eq. (2.4) shows, a legal global placement solution requires all the |B| grid

density constraints to be satisfied simultaneously, where |B| could be of million-scale or

even larger for the modern IC design. As a result, all the constraints are usually cast into

a single penalty function N(v) as shown in Eq. (2.7). By definition, all the |B| density

constraints will be satisfied if and only if we have N(v) = 0.

ρb(v) ≤ ρt , ∀b ∈ B ⇔ N(v) = 0. (2.7)

Quadratic placement approaches usually model the density penalty as a linear

or quadratic function, which can be easily integrated into their objective function. The

penalty in UPlace [66] is explicitly devised as a weighted sum of all the frequency com-

ponents of the density function. Specifically, N(v) = ∑u,vwu,va
2
u,v, where u and v are

the discrete frequency indexes, wu,v are the weight factors and au,v are the frequency

coefficients. Notice that each frequency component is a differentiable wave function, of

which the smooth curve can help direct gradient-based optimization in an effective way.

The above penalty is fitted into a quadratic form and integrated into the objective func-

tion. Other quadratic placers [13, 27, 28, 30, 57, 61] modify the netlist by introducing

anchor points, which implicitly produce the density penalty terms for the quadratic cost

function.

Nonlinear placers have no constraints on the order of modeling functions thus

are able to design the penalty in more flexible ways. APlace3 [26] and NTUPlace3 [8]

use a quadratic penalty function with respect to grid density as Eq. (2.8) shows

N(v) = ∑
b∈B

(ρ̃b(v)−ρt)
2 . (2.8)
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As the original density function ρb(v) is not differentiable and hard to optimize, a

smoothed density function ρ̃ is used here by employing a “bell-shape” local smooth-

ing technique [47]. In contrast to the penalty method as discussed above, mPL6 [6]

directly applies Lagrange multipliers to all the density constraints. The density function

in [6] is smoothed in a global scale by using Helmholtz equation (Eq. (7) in [5]).

In this work, we model the placement instance as an electrostatic system and

devise the density penalty N(v) to be the system potential energy. In the remaining part

of the dissertation, we will use N(v) to denote both density penalty and system energy

alternatively. This modeling methodology is discussed in detail in Section 3.1 regarding

how the density penalty and gradient are defined. A fast numerical solution to the density

and potential related Poisson’s equation (Eq (3.16)) is proposed in Section 3.2.

2.5 Nonlinear Optimization Formulation

Based on the smooth wirelength function W (v) and density penalty function

N(v), nonlinear global placers [8, 26] formulate the objective function f (v) using a

penalty factor λ as follows

min
v
f (v) =W (v)+λN(v). (2.9)

As both the wirelength function and the density penalty are smoothed thus differentiable,

gradient-based optimization methods [20] are used in prior nonlinear placers [8, 26] to

produce high-quality numerical solutions. Alternatively, Lagrange multipliers are also

used [6] to formulate the objective function in a different form as below

min
v
f (v) =W (v)+ ∑

b∈B
λb |ρ̃b(v)−ρt | . (2.10)
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Here λb denotes the multiplier on the density constraint of the bin b. This approach

might consume longer runtime due to the computation demand on the multipliers. Multi-

level cell clustering is employed in all the previous nonlinear placers [6, 8, 26] to accel-

erate the placement algorithm. Despite efficiency improvement, the quality overhead

due to sub-optimal clustering is not negligible.



Chapter 3

ePlace: Electrostatics based Placement

using Fast Fourier Transform and Nes-

terov’s Method

In this chapter, we discuss our analytic nonlinear placement algorithm ePlace.

We leverage the analogy between placement density constraint and electrostatic equi-

librium state and develop a novel density function (eDensity). Spectral methods based

on fast Fourier transform (FFT) is used to numerically solve the Poisson’s equation.

Instead of Conjugate gradient method, we use Nesterov’s method as the nonlinear place-

ment solver with steplength estimated as inverse of Lipschitz constant. The experiments

validates the high and stable performance of our placement algorithm.

3.1 eDensity: A Novel Density Function by Electro-

static System Modeling

We propose a novel formulation of the density penalty and gradient function,

eDensity, by modeling the entire placement instance as a two-dimension independent

electrostatic system. The distribution of electric potential and field is determined by

all the elements in the system. Each node i (a cell or a macro block) in the netlist is

transformed to a positively charged particle (also denoted as i). The electric quantity qi

15
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(a) Electric density. (b) Horizontal electric field. (c) Electric potential.

Figure 3.1. The snapshots of electric density, horizontal field and potential distribution extracted

at iteration 50. The placement is driven by only density force and conducted on the ISPD 2005

ADAPTEC1 benchmark.

of the particle is set to be the node area Ai. The motion of a movable cell i is driven

by the electric force Fi = qiξξξ i formulated by Lorentz force law, where ξξξ i is the local

electric field. Similarly, the cell potential energy Ni is calculated as Ni = qiψi where ψi

is the electric potential at cell i. The correlation between the original placement instance

and the transformed electric system is illustrated in Figure 3.2. By Coulomb’s law, the

electric field and potential at cell i are the superposition of the contribution from all the

remaining cells in the system. An example of charge density ρ(x,y), horizontal electric

field ξx(x,y) and potential ψ(x,y) distribution in the entire placement region R is shown

in Figure 3.1.

3.1.1 System Modeling Using Electrostatic Equilibrium

Based on the system modeling, we correlate the global placement constraint of

even density distribution with the system state of electrostatic equilibrium. The electric

force helps direct the charge (cell) movement towards the equilibrium state. By Gauss’s

law, the electric field equals the negative gradient of the potential as Eq. (3.1) shows

ξξξ (x,y) = (ξx,ξy) = −∇ψ(x,y) =

(
−∂ψ(x,y)

∂x
,−∂ψ(x,y)

∂y

)
, (3.1)
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while the charge density equals the divergence of the electric field

ρ(x,y) = ∇ ·ξξξ (x,y) = −∇ ·∇ψ(x,y) = −
(

∂ 2ψ(x,y)

∂x2
+

∂ 2ψ(x,y)

∂y2

)
. (3.2)

Cell Instances Electric Particles

Cell Density Charge Density

yx, yx,

Density Penalty
Potential Energy

iVi i
m

qN v

Density Gradient
Electric Field

yxyx /,/,

Placement Instance Electrostatic System

Figure 3.2. The placement instance is modeled as an electrostatic system. Each movable cell or

fixed macro is transformed to a positive charge with the electric quantity set to be the node area.

The density force is set as the electric force which drives cells apart from each other. The target

of density equalization is equivalent to the system state of electrostatic equilibrium.

An electrostatic system with only positive charges will introduce only repulsion

forces. The corresponding equilibrium state would have all the cells distributed along

the chip boundaries where the global placement constraint is violated. As a result, we

remove the direct-current (DC) component (i.e., the zero-frequency component) from

the density distribution ρ(x,y) to produce negative charges, while the integral of the

density function over the placement region becomes zero. Specifically, since our den-

sity function transforms all the objects to be positive charges, a positive charge density

distribution is thus produced. However, after removing the DC component from the

spatial charge density distribution, under-filled placement regions with electric quantity

below the original DC level become negatively charged. Meanwhile, the over-filled

regions remain positively charged but with reduced electric quantity (DC is deducted

from the original quantity). Cells at positively charged (i.e. highly over-filled) regions
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(a) Placement without filler inser-

tion.

(b) Placement with filler inser-

tion.

(c) Placement with filler insertion

(removed afterwards).

Figure 3.3. The distribution of standard cells and fillers at the end of global placement. Macros,

standard cells and fillers are shown by black rectangles, red dots and blue dots, respectively.

The total wirelength is shorter as fillers populate up whitespace thus squeeze cells to be placed

closer. The placement is conducted on the ISPD 2005 ADAPTEC1 benchmark using Nesterov’s

method.

are attracted to the negatively charged regions, where the positive and negative charges

neutralize with each other. Meanwhile, cells at negatively charged regions will mostly

keep still. In the end, the system reaches the electrostatic equilibrium state with zero

charge density over the entire placement region, while the total potential energy is re-

duced to zero. As a result, we model the placement density penalty and gradient using

the system potential energy and electric field, respectively.

3.1.2 Density Penalty and Gradient Formulation

The total potential energy equals the sum of potential energy over all the charged

elements of a new set V ′, which includes not only movable and fixed nodes from V , but

also newly added fillers and dark nodes as discussed below.

Filler insertion: Let Am denote the total area of all the movable nodes, while Aws de-

notes the total area of white space. The target of even density distribution will overly

spread the cells thus increase the wirelength, if we have the target density ρt >
Am
Aws
. Sim-

ilar to [2, 6], we add fillers into the system, all of which are equally sized (rectangles),

movable and disconnected (with zero pins). Let V f c denote the set of filler cells. The
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total area of filler cells is denoted as A f c and defined as below.

A f c = ρtAws−Am. (3.3)

We illustrate the effect of filler insertion in Figure 3.3. The additional density force due

to filler insertion will squeeze the cells to be placed closer to their connected neighbors

with density constraint still satisfied. The size of each filler i is denoted as Ai, which is

determined based on the area distribution of the movable cells. Specifically, we set the

filler size to be the average size of the mid 80% movable cells. The remaining top and

bottom 10% largest and smallest cells are considered as noise factors and filtered out.

All the fillers are removed from the final solution of global placement.

Dark node insertion: As a generalized approach, our method could handle any irreg-

ularly shaped placement region without loss on quality or efficiency. Suppose that the

entire placement instance comprises a set of rectangular regions for cell placement. We

impose a uniform grid R to cover all the placement regions. The total space within R

but not belonging to any placement region will be decomposed into a set of rectangles,

each is modeled as a dark node, which is processed in the same way as that of a fixed

object in the problem instance. LetVd denote the set of all the dark nodes and Ad denote

the total area of all the dark nodes. Movable nodes will be stopped by the repelling

force from the dark nodes when they are approaching the boundaries of any placement

regions.

Density scaling: After the insertion of filler cells, we have the target density ρt =
Am+A f c
Aws
.

The area Ai of each fixed or dark node i must be scaled by the target density ρt , in

order to maintain a globally equalized density distribution. Otherwise, the density force

becomes higher than that of cells and fillers and repels cells away, while the whitespace

around the fixed nodes is emptied with wirelength overhead induced as Figure 3.4 shows.
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(a) Placement without macro den-

sity scaling.

(b) Density distribution without

macro density scaling.

(c) Placement with macro density

scaled by the target density ρt .

Figure 3.4. Without macro area scaling, the bin density at the macro blocks becomes higher than

the target density ρt . As a result, the density force pushes the cells away from macros, inducing
under-filled whitespace around macros and wirelength overhead.

Notice that our density scaling method will not introduce legalization issue. The electric

quantity of each fixed or movable large macro is scaled down to the target placement

density. Regions filled by small standard cells or covered by large macros will have the

same charge density, there is no additional density force to drag cells away from macros.

Without density scaling, it is impossible to achieve even charge density distribution over

the entire domain.

Potential energy computation: Let V ′ = Vm ∪V f ∪V f c ∪Vd denote the set of all the

elements in the system. For each node i∈V ′, let ρi, ξξξ i and ψi denote the electric density,

field and potential at the point where the node i locates. Given a placement solution v

for both movable cells Vm and filler cells V f c, the total potential energy N is defined in

Eq. (3.4)

N(v) =
1

2
∑
i∈V ′
Ni =

1

2
∑
i∈V ′
qiψi. (3.4)

As the system energy equals the sum of mutual energy of all the pairs of charges, we

have a factor of 1
2
for the energy of each single charge. We cast the numerous grid density

constraints into a single energy constraint of zero system energy (N(v) = 0). Our density

penalty is different from that of all the previous formulations [6, 8, 26] where it consists

of a complete electrostatic system model with all the according physics laws strictly
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applied. By using the penalty factor λ , we could produce an unconstrained optimization

problem as Eq. (3.5) shows

min
v
f =W (v)+λN(v), (3.5)

where W (v) is by Eq. (2.6) and f (v) is the objective cost function to minimize. As

bothW (v) and N(v) are smooth, we can generate the gradient vector by differentiating

Eq. (3.5) as follows

∇ f (v) = ∇W (v)+λ∇N(v) =

(
∂W

∂x1
,
∂W

∂y1
, · · ·
)T

−λ
(
q1ξ1x ,q1ξ1y , · · ·

)T
. (3.6)

Modeling of density force orientation and magnitude remains a long-term controver-

sial topic [42] in the analytic placement domain. For quadratic placement, it remains

unclear where to introduce the anchor point for each cell in order to produce a proper

dragging force. An ad-hoc force scaling is proposed in [13], while in RQL [60] the top

10% highest density force are empirically cut off to improve the quality. SimPL [41],

MAPLE [28] and ComPLx [27] determine the anchor points by recursive netlist bi-

partitioning, while the density force relies on initial condition and cutline determination.

Without restriction on the function order, the density force formulation in nonlinear

placement is of higher freedom. However, the Bell-shape smoothing technique [47]

employed in [8, 26] incorporates only local information into force modeling, thus it is

difficult for the placers to identify a global path of cell movement. Parameter adjustment

in the smoothing function could help include remote density information but is highly

case dependent and would consume more engineering effort and cause robustness issue.

The algorithm in mPL6 [6] uses a more generalized approach with density force derived

from potential differentiation. However, it lacks the electrostatics modeling method-
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(a) Iter=1, N=1.25e12,

τ = 97.0%.
(b) Iter=5, N=6.07e11,

τ = 93.1%.
(c) Iter=6, N=2.98e11,

τ = 79.8%.
(d) Iter=7, N=5.40e10,

τ = 42.4%.

(e) Iter=8, N=2.16e10,

τ = 33.0%.
(f) Iter=12, N=2.79e9,

τ = 27.6%.
(g) Iter=18, N=3.07e8,

τ = 14.3%.
(h) Iter=60, N=8.12e5,

τ = 2.54%.

Figure 3.5. Snapshots of the density distribution ρ(x,y) (grayscale) and the field distribution
ξξξ (x,y) (red arrows) produced by eDensity. The placement is driven by only density force and
conducted on the ISPD 2005 ADAPTEC1 benchmark, using Nesterov’s method with precondi-

tioning. Total potential energy and total density overflow are denoted by N and τ , respectively.

ology, which helps cast all the density constraints into one single energy function, as

Eq. (3.4) shows. All of the existing problems indicate further improvement space for

the density force formulation. Our analytic approach handles the problem by following

the Lorentz force law, specifically

• The density force orientation on each cell aligns with that of the steepest descent

of the density penalty (system potential energy).

• The density force magnitude on each cell is determined by its contribution to the

reduction of the density penalty, as Eq (3.1) shows.

• The system density force vector is well balanced with the wirelength force vector

using a single penalty factor, as Eq (3.5) shows.

As a result, our approach models the density force in a systematic way and it is validated

by the experimental results in Section 3.5 with shorter wirelength and high efficiency.
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3.1.3 Correctness of Gradient Formulation

As discussed in Section 3.1.1, we use qiξix as the gradient of the density function

N(v)w.r.t. the horizontal movement of the charge i. However, by directly differentiating

N(v) w.r.t. xi, we obtain the following formula

∂N(v)

∂xi
=
1

2

(
∂Ni(v)

∂xi
+

∂
(
∑ j 6=iN j(v)

)

∂xi

)
=
1

2
qi

∂ψi(v)

∂xi
+
1

2
∑
j 6=i
q j

∂ψ j(v)

∂xi

=
1

2
qiξ ix(v)+

1

2
∑
j 6=i
q j

∂ψ j(v)

∂xi
,

(3.7)

which is different from qiξix with one extra term. By the nature of electrostatics, the po-

tential at each charge i is the superposition of the potential contributed by all the remain-

ing charges in the system. Let Ni j denote the potential energy of charge i contributed by

j, vice versa. Given a two-dimension rectangular electrostatic field (placement domain)

R, we first illustrate the potential at certain distance r due to a charge q. By Gauss’s law,

we have

∇ ·ξξξ =
∮

q
ξξξdr=

q

ε0
⇒ 2πrξξξ =

q

ε0
⇒ ξξξ =

q

2πε0r
(3.8)

By Poisson’s equation, we have

ψ = −
∫ r

rref

ξξξdr= −
∫ r

rref

q

2πε0r
dr= − q

2πε0
ln

(
r

rref

)
, (3.9)

rref is the reference distance where ψ decreases to zero. As a result, for an electrostatic

system defined on the two-dimension plane, we have

Ni j(v) = − qiq j
2πε0

ln

(
ri, j(v)

rre f

)
= N ji(v), (3.10)
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where ri, j(v) is the physical distance between the two charges i and j based on the

placement solution v. rre f is the reference distance where the potential by charge i ( j)

dimishes to zero, in this work we see it as the dimension of placement domain R. As a

result, we have Ni j(v) = N ji(v), thus the mutual potential energy of each pair of charges

i and j are equivalent. By the principle of potential superposition, we have

Ni(v) = ∑
j 6=i
Ni j(v) = ∑

j 6=i
N ji(v). (3.11)

Therefore,

∂N(v)

∂xi
=
1

2

(
∂Ni(v)

∂xi
+

∂
(
∑ j 6=iN j(v)

)

∂xi

)
=

∂Ni(v)

∂xi
= qi

∂ψi(v)

∂xi
= qiξix(v), (3.12)

so qiξix(v) is the actual gradient of N(v) with respect to the horizontal movement ∆xi of

the object i. Similarly, the density gradient ofN(v)with respect to the vertical movement

of i is qiξiy(v). As a result, qiξξξ i(v) is consistent with the gradient descent of the density

cost (system potential energy) function N(v).

3.2 Poisson’s Equation and Numerical Solution

Based on our eDensity formulation in Section 3.1, we propose Poisson’s equa-

tion to couple the charge density with electric potential and field. Neumann boundary

condition is used to enforce the legality of the global placement solution. The Poisson’s

equation is numerically solved using spectral methods with high accuracy yet low com-

plexity. Moreover, we propose a technique to locally smooth the density over discrete

grids.
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3.2.1 Well-Defined Poisson’s Equation

By Gauss’ law, the electric potential distribution ψ(x,y) can be coupled with the

density function ρ(x,y) using Poisson’s equation as Eq. (3.13) shows.

∇ ·∇ψ(x,y) = −ρ(x,y), (x,y) ∈ R. (3.13)

Here the density function equals the negative of the divergence of the gradient vector

of the potential function. Let n̂ denote the outer normal vector of the placement region

R and ∂R denote the boundary. When cells are moving towards the borderline of the

placement region, the movement should be slowdown or stopped in order to prevent

cells from moving outside. The electric (density) force is thus diminishing towards zero

while approaching the boundary of the density function domain. As a result, we use

the Neumann boundary condition which requires zero boundary gradient as Eq. (3.14)

shows

n̂ ·∇ψ(x,y) = 0, (x,y) ∈ ∂R. (3.14)

Besides, the integral of the density function ρ(x,y) and the potential function

ψ(x,y) over the entire placement region R is set to be zero, as Eq. (3.15) shows

∫∫

R
ρ(x,y) =

∫∫

R
ψ(x,y) = 0. (3.15)

Therefore, all the constant factors introduced by the indefinite integration from density

to field and potential become zero. Moreover, Eq. (3.15) ensures the unique solution to

the partial differential equation (PDE) in Eq. (3.13). The problem due to the ill-defined

PDE in [13] is thus overcome. Based on all the above definitions, we have our well-
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defined Poisson’s equation constructed as below





∇ ·∇ψ(x,y) = −ρ(x,y),

n̂ ·∇ψ(x,y) = 0, (x,y) ∈ ∂R,

∫∫
Rρ(x,y) =

∫∫
Rψ(x,y) = 0.

(3.16)

There are several quadratic placement works [13, 57] in literature, of which the

Poisson’s equation is used. However, the PDE solution is only used to determine the

location of anchor points. Some nonlinear placers [6] use Helmholtz equation to include

two orders of derivatives to the smoothed density function. To guarantee unique PDE

solution, a linear term is added to the equation with a self-tuned multiplier. Unlike all the

previous PDE-based placement approaches, our method is based on a complete system

model. The density penalty is formally formulated as the system potential energy. The

Poisson’s equation is used to compute the electric field, which together with electric

quantity determine the density gradient by strictly following the Lorentz force law. The

uniqueness of our PDE solution is promised by enforce zero integral of the potential,

which not only simplifies the integration but also avoid the introduction of extra noise

due to the linear term in [6].

3.2.2 Fast Numerical Solution using Spectral Methods

We propose a numerical solution using spectral methods [56] to effectively and

efficiently solve the Poisson’s equation in Eq. (3.16). Spectral methods express the

solution to some PDE as the summation of basis functions (e.g., sinusoid and cosine

waveforms) and choose the coefficients in the sum to satisfy the PDE and boundary

conditions. A sinusoid function is an odd and periodic function. It diminishes to zero

at the boundary of each period, which could naturally satisfy the Neumann condition as
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stated in Eq. (3.14). As a result, we use sinusoid wave function as the basis function

to express the electric field. As the density and potential functions are the derivative

and integral of the field function, we use cosine wave as basis function to express them.

Based on such decomposition at frequency domain, we use spectral methods to solve

the Poisson’s equation.

For expression using discrete cosine transformation (DCT), we modify the origi-

nal density function ρ(x,y) to an even and periodic form ρDCT (x,y). Therefore, the new

function can be decomposed into a group of cosine waveforms oscillating at different

frequencies and constructed by DCT. Electric field and potential functions can be con-

structed by DCT and discrete sinusoidal transform (DST) in a similar way. The specific

modification to the density function is as follows. Suppose the placement region R is uni-

formly decomposed into an m×m grid structure, thus the density function ρ(x,y) is de-

fined within the domain of [0,m−1]× [0,m−1]. We mirror the density wave to the neg-

ative half-plane, such that the function domain is extended to [−m,m−1]× [−m,m−1],

while the density function becomes even. Then we periodically extend the domain of

the density function to [−∞,+∞]× [−∞,+∞]. Based on these two modifications, the

new density function ρDCT (x,y) can be expressed using DCT as follows.

Let u and v denote integer indexes ranging from 0 to m−1. The frequency com-

ponents are defined as wu = 2π u
m
and wv = 2π

v
m
, respectively. We use au,v to denote the

coefficient of each basis wave function of DCT. By definition, all the m×m coefficients

can be generated by the integral of the density function multiplied by the basis wave

functions over the 2D grid. The solution to each coefficient is shown in Eq. (3.17).

au,v =
1

m2

m−1
∑
x=0

m−1
∑
y=0

ρ(x,y)cos(wux)cos(wvy). (3.17)

All the above coefficients can be rapidly computed by invoking FFT library only once.
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Using these cosine coefficients, the new density function ρDCT (x,y) can be expressed as

a sum of cosine waves as Eq. (3.18) shows

ρDCT (x,y) =
m−1
∑
u=0

m−1
∑
v=0

au,v cos(wux)cos(wvy), (3.18)

which can also be rapidly computed using one time of inverse FFT library invocation.

Based on Eq. (3.13), (3.15) and the cosine expression of the density function in

Eq. (3.18), we have the solution to the potential function ψDCT (x,y) as Eq. (3.19) shows

ψDCT (x,y) =
m−1
∑
u=0

m−1
∑
v=0

au,v

w2u+w
2
v

cos(wux)cos(wvy), (3.19)

which well satisfies Eq. (3.13). By Gauss’s law, the electric field vector is the neg-

ative gradient of the potential function as Eq. (3.1) shows. Based on the solution to

the potential function in Eq. (3.19), we can obtain the solution to the electric field

ξξξ (x,y) = (ξXDSCT ,ξYDCST ) in the form of DCT and DST as Eq. (3.20) shows.





ξXDSCT = ∑u∑v
au,vwu

w2u+w
2
v
sin(wux)cos(wvy),

ξYDCST = ∑u∑v
au,vwv

w2u+w
2
v
cos(wux)sin(wvy).

(3.20)

Notice that the horizontal component ξXDSCT is constructed by sinusoid waves for the

horizontal field, which diminishes to zero while reaching the end of a period thus the

horizontal boundary of the placement region. Similar construction is conducted on the

vertical field ξYDCST . Library support to the above numerical solutions can be found in

various FFT packages [50].

UPlace [66] also employs DCT to transform the density function into the fre-

quency domain. They form the density penalty using a weighted sum of all the fre-

quency components, where the biased weights between different frequencies would help



29

improve the density equalization. In our approach, the DCT and DST are used in spec-

tral methods to generate the solution to the partial differential equations, where density

penalty and gradient are modeled as system potential energy and electric force. As a

result, our approach is different from UPlace in the formulation of both density penalty

and gradient.

3.2.3 Correctness of Numerical Solution

Poisson’s equation in Eq. (3.16) is solved via spectral methods, which uses the

fast Fourier transform (FFT) applied to the two-dimension (2D) spatial domain. Sinu-

soidal waveform approaches zero at the end of each function period, such behavior well

matches the Neumann condition n̂ ·∇ψ(x,y) = 0, ∀(x,y) ∈ ∂R in Eq. (3.16), which re-

quires zero gradient along the boundaries. As a result, we apply discrete sinusoidal trans-

formation (DST) to the spatial field distribution ξξξ (x,y). As the electric potential and

density distribution are the integral and derivative of the field, i.e., ∇ψ(x,y) = −ξξξ (x,y)

and ρ(x,y) = ∇ ·ξξξ (x,y), we reconstruct them via discrete cosine transformation (DCT).

Based on an even mirroring and periodic extension, we have the DCT coefficients a j,k

of the spatial density distribution ρ(x,y) as

a j,k =
1

m2

m−1
∑
x=0

m−1
∑
y=0

ρ(x,y)cos(w jx)cos(wky), (3.21)

where w j and wk are frequency components. The density ρ(x,y) can then be spatially

expressed as

ρ(x,y) =
m−1
∑
j=0

m−1
∑
k=0

a j,k cos(w jx)cos(wky). (3.22)

As ∇ ·∇ψ(x,y) = −ρ(x,y), we have the spatial potential distribution expressed as

ψ(x,y) =
m−1
∑
j=0

m−1
∑
k=0

a j,k

w2j +w
2
k

cos(w jx)cos(wky). (3.23)
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Notice that for every pair of horizontal and vertical frequency components cos(w jx) and

cos(wky) from density ρ(x,y) and potential ψ(x,y), we have the Poisson’s equation in

Eq. (3.16) well satisfied in the numerical perspective as shown below.

∇ ·∇ψ(x,y) =
∂ 2ψ(x,y)

∂x2
+

∂ 2ψ(x,y)

∂y2

=

∂ 2
(

∑ j∑k
a j,k

w2j+w
2
k

cos(w jx)cos(wky)

)

∂x2
+

∂ 2
(

∑ j∑k
a j,k

w2j+w
2
k

cos(w jx)cos(wky)

)

∂y2

=−∑
j
∑
k

a j,kw
2
j

w2j +w
2
k

cos(w jx)cos(wky)−∑
j
∑
k

a j,kw
2
k

w2j +w
2
k

cos(w jx)cos(wky)

=−∑
j
∑
k

a j,k cos(w jx)cos(wky) = −ρ(x,y)

(3.24)

We remove the DC component ρavg from ρ(x,y) by setting a0,0 = 0. The spatial field

distribution is similarly expressed as below





ξx(x,y) = ∑ j∑k
a j,kw j

w2j+w
2
k

sin(w jx)cos(wky),

ξy(x,y) = ∑ j∑k
a j,kwk

w2j+w
2
k

cos(w jx)sin(wky),

(3.25)

which also satisfies Eq. (3.16) in the numerical perspective as we have

∇ψ(x,y) =

(
∂ψ(x,y)

∂x
,
∂ψ(x,y)

∂y

)

=




∂

(
∑ j∑k

a j,k

w2j+w
2
k

cos(w jx)cos(wky)

)

∂x
,

∂

(
∑ j∑k

a j,k

w2j+w
2
k

cos(w jx)cos(wky)

)

∂y




=

(
−∑
j
∑
k

a j,kw j

w2j +w
2
k

sin(w jx)cos(wky),−∑
j
∑
k

a j,kwk

w2j +w
2
k

sin(w jx)cos(wky)

)

=(−ξx(x,y),−ξy(x,y)) = −ξξξ (x,y)

(3.26)

Given |V | = n′ movable objects (standard cells, macros and fillers) in the netlist, ePlace-

MS decomposes the placement region R into m×m grids, where m =
√
n′, to have
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one object per grid on average. The above 2D-FFT computation thus costs exactly

O(n′ logn′) runtime per iteration. As the number of fillers is at essentially the same

order of the number of all the standard cells and movable macros, the complexity is

essentially O(n logn). The well-formulated density gradient, global density smoothness

and low computational complexity enables ePlace-MS to conduct placement on the flat

netlist and the flat density grid with constantly high resolution. Compared to all the

prior mixed-size nonlinear placers [6, 22, 26] with multi-level netlist clustering and grid

coarsening, ePlace-MS avoids quality loss due to the suboptimal clustering and low

density resolution, especially at early iterations.

3.2.4 Convergence

Our density function formulation is based on the analogy between an electro-

static system and a placement instance. For general case, the traditional bin packing

problem has been proved to be NP-hard [10] thus it is intractable to prove its conver-

gence. However, for homogeneous case, i.e., all the objects are of equal size, we can

show the convergence through analogy of the charge distribution. Assume the final den-

sity distribution is not even, from Eq. (3.17) we know that there must be some density

frequency coefficients au,v 6= 0. As a result, we have the respective electric field coeffi-

cients
au,vwu

w2u+w
2
v
6= 0 and au,vwv

w2u+w
2
v
6= 0, which means that ξx and ξy are not zero. The electric

force will then keep pushing the system potential energy to drop by gradient descent till

finally a globally even density distribution is achieved. As a result, our density function

has guaranteed convergence.

3.2.5 Behavior and Complexity Analysis

An example of discrete density and field distribution in a two-dimension plane

is shown in Figure 3.5. The distribution of the electric field changes across different
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iterations according to the variation of the density distribution. Therefore, the electric

field dynamically directs the cells to the under-filled regions. From the figure we can

also find that the electric field diminishes at the boundaries of the placement region.

As also shown in Figure 3.1(b), such behavior satisfies the Neumann condition and the

demand of global placement.

Suppose that we totally have n′ cells (n′ = |Vm|+ |V f c|) and an m×m grid im-

posed on the placement region. The total complexity of our numerical solution has two

sources of contribution (1) density computation (2) potential and field computation.

Density computation: At each iteration, the density function is generated by the fol-

lowing two steps.

• Traversing all the bins in B to clear the cell density and cell area occupation of

each bin to zero.

• Traversing all the cells in Vm∪V f c to determine the area contribution of each cell

to the according bins which overlap with the cell.

The first step consumes O(m2) time while the second step consumes O(n′) time. Totally

it would consume O(n′ +m2) time to generate the density distribution at each iteration.

Potential and field computation: At each iteration, we need to invoke FFT library for

four times to solve Eq. (3.17), (3.19) and (3.20), respectively. Each 2D FFT library call

consumes O(m2 logm2) = O(2m2 logm) = O(m2 logm) time, thus the total complexity

is O(m2 logm).

In general, our numerical solution has the computation complexity of O(n′ +

m2 logm) for each placement iteration. As the number of grid is usually at the same

scale of the number of cells (to ensure accuracy after discretization), we have O(n′) =

O(m2) and the total complexity is essentially O(m2 logm) or O(n′ logn′). Addition of

fillers could slightly increase the computation time but would not change the overall
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complexity. All the fillers are equally sized towards the average of size of standard cells

and will all be upsized to that of a single bin if utilization is small, thus the total number

of fillers will not exceed O(m2). Moreover, as the number of fillers is at essentially the

same order of that of movable placement objects, we have n = O(n′), thus the overall

complexity is still O(n logn), where n is the number of movable placement objects.

There are many numerical solutions used in literature for the placement den-

sity function. Green’s function is used in [13] to solve the PDE using 2D convolution.

However, the computation complexity is high with O(n2) total runtime consumed. Bell-

shape density smoothing is used in [8, 26], where by default the density gradient is

aware of only local information. Global density variation could be included in local gra-

dient computation by parameter adjustment in the smoothing function. However, as the

gradient computation on each cell would take O(m2) = O(n) time, the total time is still

O(n2). Our PDE solution with spectral methods provides better performance than the

above numerical solutions, as it is aware of global density information while only takes

O(n logn) time for each iteration. The density variation could be instantly propagated

to all the placement grids due to the frequency decomposition in Eq. (3.18). As shown

in Figure 3.6, local density gradient could be immediately adjusted based on the cell

redistribution at remote area.

3.2.6 Local Smoothness Over Discrete Grids

Global smoothness by eDensity is achieved via Eq. (3.1) and Eq. (3.2). How-

ever, as the physical dimension of each density bin is usually larger than that of cells,

local cell movement within a bin cannot be reflected in the density cost function, where

smoothness is degraded. As a result, we propose a local smoothing technique to handle

this issue, such that the density function by Eq. (3.4) could well reflect any infinitely

small movement of cells within each bin. A one-dimension example is shown in Fig-
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(a) (b) (c)

Figure 3.6. The spatial distribution of density force across different placement iterations. All the

cells are initially squeezed into the lower-left subregion with an obstacle placed at the upper-right

subregion. The local density gradient could immediately respond to the remote density variation

and identify a global motion path for each overlapped cell to some remaining whitespace on the

chip. b ’ b ’ ’
w iĨ x ( b ’ , i ) Ĩ x ( b ’ ’ , i ) x

l x ( b * , i )1 0 0 %5 0 % c b ’ c b ’ ’c i
w b w bi i

(a)

b ’ b ’ ’w i < w b
w b w bi ii i ’w i ’ = w bĨ x ( b ’ , i ) Ĩ x ( b ’ ’ , i )

(b)

Figure 3.7. A one-dimension illustration of our local density smoothing technique. Here the cell

width is smaller than the bin width (wi < wb). We enlarge the cell to the dimension of one bin.
As a result, movement of the cell i at any time will always change the overlaps between itself

and the two bins b′ and b′′, thus change the density of b′ and b′′ simultaneously. There is no local
smoothing applied when wi ≥ wb.

ure 3.7. Here wi and wb are the widths of cell i and bin b, ci and cb are the coordinates

of the centers of cell i and bin b, respectively. lx(i,b) and l̃x(i,b) are the original and

smoothed horizontal overlaps between the cell and the bin, so we have

l̃x(i,b) =





(
1.0− ci−cb

wb

)
×wi : ci ∈ [cb−wb,cb+wb]

0 : ci ∈ (−∞,cb−wb)∪ (cb+wb,+∞)

(3.27)

As the cell is being shifted rightwards, the contribution to the density of b′ is linearly

reduced, while the contribution to the density of b′′ is linearly increased, respectively.
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The total contribution of i to the two neighboring bins (b′ and b′′) is constant and equals

wi when the center of the cell ci locates between the centers of the two bins cb′ and cb′′ .

The smoothing effect is equivalent to the combination of cell dimension stretching and

cell density lowering, which keeps the objective cost function analytic. Specifically, for

each cell i, we conduct the local density smoothing as follows.

• If wi < wb, stretch the cell width from wi to wb and reduce the cell density from

1.0 to wi/wb.

• If wi ≥ wb, keep the original cell width and density.

As a result, this smoothing technique is consistent over different granularity and cell

dimensions. Notice that our local smoothing technique is being used at every iteration

when updating the density map. It costs constant time for each object since only finite

neighboring bins are affected by each object, thus the computation complexity is not

changed.

3.2.7 Advantage Analysis

Density force modeling remains quite a controversial problem [42] in quadratic

placement, where the best location of anchor point for each object is usually unclear.

RQL [60] nullifies the top 10% density force vectors to suppress over-spreading of stan-

dard cells, while the empirical tuning lacks theoretical support and may not guarantee

convergence. [13] uses Green’s function to determine appropriate positions of cell

anchors. The two-dimension convolution makes the complexity to be O(n2) thus is

computationally expensive. Kraftwerk2 [57] determines the anchor position via solu-

tion to the Poisson’s equation. Due to the function order restriction in the quadratic

placement infrastructure, the density cost is degraded from exponential to linear, which

helps achieve convexity and efficiency but loses quality. SimPL [41] and ComPLx [27]
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determine the anchor position via recursive bi-partitioning, while convergence is theo-

retically promised via the primal-dual framework. Nevertheless, the solution quality is

sensitive towards the initial solution. Moreover, it is hard to tell how much the optimum

solution would follow the initial layout with minimum wirelength yet high overlap.

Nonlinear placement has no restriction on function orders thus ensures more

flexibility in density modeling. However, the non-convexity of the density function re-

mains a headache to the nonlinear solvers. Bell-shapemethod [47] covers only adjacent

grids in the local scale. Iterative grid uncoarsening is usually conducted in prior nonlin-

ear placers [22, 26] to keep consistent with the scale of clustered netlist. However, the

quality degradation due to low density resolution is not negligible. Besides, such local

density smoothness would force objects to detour around obstacles thus inevitably lower

the convergence rate. Notice that bell-shape method could realize fully global density

smoothness by parameter adjustment, nevertheless, the regarding complexity scales up

to O(n2), which is numerically expensive. Helmholtz equation in [6] smooths the den-

sity in global scale with only O(n logn) runtime complexity. However, sub-optimality

in the choice of the linear factor ε in the Helmholtz equation (Eq. (7) of [5]) introduces

noises. Moreover, there is no formulation of density gradient functions in [6], where

up to millions of constraints are simultaneously applied to all the grid density, which

complicates the problem, degrades the placement quality and efficiency.

eDensity concisely formulates the placement density problem using the closed-

form equation in Eq. (3.4). By differentiating it, we derive the gradient vector to direct

density cost reduction, where by Eq. (3.5) only one penalty factor is needed for force

balancing with wirelength. eDensity numerically solves the partial differential equation

via the spectral methods in Eq. (3.23) and (3.25). Based on the nice properties of fast

Fourier transform, it consumes exactly only O(n logn) runtime per iteration. At each

grid, the local electric potential and field are impacted by the global density distribution,
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while objects driven by density forces are able to freely move over blockages or macros,

as Figure 4.4 shows. Moreover, the global smoothness enables all the movable objects

in over-filled regions to detect whitespace at remote area, as illustrated in Figure 4.3,

which helps quickly converge to the objective of even density. To this end, unlike all

the prior methodologies in literature, eDensity approaches density equalization via di-

rectly simulating the behavior of a real electrostatic system, which in reality will always

transfer towards the states of lower potential energy (until the energy decreases to zero),

therefore theoretically guarantees the global convergence of eDensity. The nature of

simulation enables us to use constantly high density resolution throughout the whole

global placement, without any potential misguidance to the nonlinear solver.

3.3 Nonlinear Optimization

Global placement is proved to be an NP-complete problem [15]. Development

of prior heuristics are mostly directed by mathematical derivation for quality and ef-

ficiency. As Eq. (2.9) shows, the objective function consists of a convex wirelength

function [23] and usually a non-convex density function [47], where the property of

non-convexity challenges the performance of modern convex programming methods. In

this section, we first briefly introduce the Conjugate Gradient (CG) method [20] which

is widely used in previous nonlinear placement works [8, 26], and discuss the efficiency

bottleneck on the line search. Then we propose Nesterov’s method to solve the nonlinear

problem and illustrate our technique of Lipschitz constant prediction, which determines

the steplength in constant time. To the best of our knowledge, our work is the first one

in literature to incorporate Nesterov’s method and Lipschitz constant prediction into

global placement optimization. A comparison of placement quality and efficiency by

using these two optimization methods in ePlace is shown in Section 3.5, where Nes-

terov’s method could outperform CG method with 2.28% shorter wirelength and 2.21×
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speedup on average of all the ISPD 2005 benchmarks. In the end, we discuss our pre-

conditioning technique.

3.3.1 Conjugate Gradient Method with Line Search

Details of the CG method in one iteration is illustrated in Algorithm 1. Polak-

Ribiere method is used to update βk for correlation with previous search directions as

line 2 shows. βk is reset to zero when the conjugacy is lost. The search direction is com-

puted at line 3. We use line search to determine the steplength, the best solution along

the search path dk and within the search interval αmaxk is obtained. In our approach,

golden section search (GSS) is used to implement line search1 as line 4 shows. The new

solution for the current iteration is computed at line 5 and used as the initial solution

for the next iteration, while CG would converge after a number of such iterations. CG

Algorithm 1. CG-Solver at kth iteration

Require: initial solution vk
objective function fk = f (vk) maximal and minimal search interval α

max
k and αmink

Ensure: local optimal solution vk+1
1: gradient vector ∇ fk = ∇ f (vk)

2: Polak-Ribiere parameter βk =max
{

∇ f Tk (∇ fk−∇ fk−1)
‖∇ fk−1‖2 ,0

}

3: search direction dk = −∇ fk+βkdk−1
4: steplength αk = GSS

(
vk, fk,dk,α

max
k ,αmink

)

5: new solution vk+1 = vk+αkdk
6: return vk+1

targets optimization of locally quadratic functions. The closer f is to a quadratic form,

the faster CG would converge. Otherwise, CG would easily lose the conjugacy with β

reset to zero (line 2). As discussed in [55], the local error rate of CG method is bounded

as ‖e(k)‖ ≤ 2
(√

κ−1√
κ+1

)k
‖e(0)‖, where ‖e(k)‖ is the error at the kth iteration and κ is the

condition number of the Hessian matrix of the objective function, respectively. On the

1Within one iteration, the length of the search interval is recursively reduced by the golden ratio 0.618
in each step until the interval length is below αmink .
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other side, the global convergence rate by CG method cannot exceed O(1/k) [48]. De-

spite the wide usage of CG in previous nonlinear placers, there are still several existing

problems.

• The major runtime bottleneck of nonlinear placement lies on the line search at

line 4, where the cost function is repeatedly evaluated at different points along

the search direction. Profile statistics in Section 3.5 show that on the placement

of ISPD 2005 ADAPTEC1, line search takes about 63% of the total runtime of

global placement and about 50% of the total placement turnaround, respectively.

As a result, line search becomes a roadblock to the pursuit of higher placement

efficiency.

• At each iteration, the CG method requires the steplength to be at the zero gradi-

ent point along the search direction. However, GSS could only locate the local

minimal point, while the actual zero gradient point may fall beyond the range of

the search interval. As a result, such inaccurate steplength would prevent the CG

method from matching its expected performance.

• The objective function of placement is highly nonlinear where the local cost be-

havior is usually far from a quadratic form. It becomes fairly easy to lose the

conjugacy with respect to previous search directions, while the current search

direction is repeatedly reset to that of the negative gradient (βk = 0 at line 2), de-

grading the performance of the CG method to that of the gradient descent method.

As line search is usually time consuming and could dominate the efficiency of the entire

nonlinear placement [26], there are attempts in literature to use steplength prediction [8]

instead. Specifically, as shown by Eq. (12) in [8], steplength is modeled as αk = swb
‖dk‖2

where wb is the bin dimension and ‖dk‖2 is the Euclidean norm of the search direction

vector. s is a constant factor which is tuned between 0.2 and 0.3 to obtain a good tradeoff
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between runtime and quality. In this work, we propose a novel and systematic approach

to dynamically estimate the steplength, based on the local smoothness of the gradient

function. Specifically, we use Nesterov’s method as the nonlinear solver and Lipschitz

constant prediction to determine the steplength. The optimizer could be beneficial from

both convergence rate and solution quality simultaneously. The results in Section 3.5

show that our approach could outperform [26] and [8] by roughly 14% and 10% shorter

wirelength and 10× and 1.5× speedup on average of all the ISPD 2005 and ISPD 2006

benchmarks.

3.3.2 Nesterov’s Method with Lipschitz Constant Prediction

We propose to use Nesterov’s method for nonlinear global placement optimiza-

tion. Similar to the CGmethod, Nesterov’s method requires only first-order gradient and

linear memory cost with respect to the problem size. Nesterov’s method targets solving

a convex programming problem in Hilbert space H. Unlike most convex programming

methods, Nesterov’s method constructs a minimizing sequence of points {uk}∞
0 which

is not relaxational. Algorithm 2 illustrates one iteration of the method on a typical prob-

lem min{ f (u)|u∈H} with a non-empty setU∗ of minima. Here u is the solution to the

Algorithm 2. Nesterov-Solver at kth iteration

Require: major solution uk, reference solution vk, optimization parameter ak and ob-

jective function fk = f (yk).
Ensure: new solutions uk+1 and vk+1
1: gradient vector ∇ fk = ∇ f (vk)
2: steplength αk = argmax

α
{ fk− f (vk−α∇ fk) ≥ 0.5α‖∇ fk‖2}

3: new solution uk+1 = vk−αk∇ fk

4: parameter update ak+1 =
(
1+
√
4a2k+1

)
/2

5: new reference solution vk+1 = uk+1+(ak−1)(uk+1−uk)/ak+1
6: return uk+1

convex programming problem, v is a reference solution which determines the steplength,
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a is an optimization parameter and α is the steplength, respectively. At the beginning

(k = 0), the method starts from an initial solution v0 ∈ H and sets a0 = 1, u0 = v0 and

α0 = ‖v0−z‖
‖∇ f (v0)−∇ f (z)‖ , respectively. z is an arbitrary point in H and z 6= v0. All the above

vectors and scalars will be iteratively updated. At line 2, the steplength αk is maximized

in order to accelerate the convergence. The new solution uk+1 is updated at line 3 based

on the initial reference solution vk. The new optimization parameter ak+1 is updated at

line 4, while the new reference solution vk+1 is updated at line 5 based on the solution

u and parameter a.

The convergence rate of Nesterov’s method in Algorithm 2 is proved to be

O(1/k2) in [49] where k is the number of iterations. Notice that Nesterov’s method [49]

is the first one in literature to achieve O(1/k2) convergence rate, which is proved to be

the upper-bound of convergence rate for the first-order optimization methods [48]. The

expected convergence rate requires that the steplength αk satisfies Eq. (3.28) at every

single iteration.

f (vk)− f (vk−αk∇ f (vk)) ≥ 0.5αk‖∇ f (vk)‖2 (3.28)

An upper-bounded error rate of Nesterov’s method is shown in Eq. (3.29).

Theorem 1. Suppose f (u) is a convex function in C1,1(H) and U∗ 6= /0, where C1,1(H)

means that the gradient function ∇ f (u) is of Lipschitz continuity. We have u∗ ∈U∗ and

L is the Lipschitz constant of the gradient function ∇ f (u). The following assertion is

true based on the solution uk output by Algorithm 2.

f (uk)− f (u∗) ≤
4L‖v0−u∗‖2

(k+2)2
(3.29)

Here we define the Lipschitz constant L of the gradient function ∇ f as follows.
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Definition 1. Given f ∈C1,1(H), L is the Lipschitz constant of ∇ f , if ∀u,v∈H we have

‖∇ f (u)−∇ f (v)‖ ≤ L‖u−v‖. (3.30)

∇ f (u) is thus of Lipschitz continuity. The inequality in Eq. (3.28) must be it-

eratively satisfied to achieve O
(
1/k2

)
convergence rate. Similar to line search in CG

method, [49] uses bisection search to determine the maximum steplength. At each it-

eration, the objective function would be evaluated for O(logL) times, which increases

the complexity to O(n logn logL). Instead of line search, we use steplength prediction

to accelerate our placement algorithm. As discussed in [49], if the Lipschitz constant

of the gradient function is known, we can set the steplength as the inverse of Lipschitz

constant to satisfy Eq. (3.28) without convergence overhead. However, to estimate the

exact Lipschitz constant for the objective function of global placement is difficult due to

the following issues.

• The objective function is non-convex due to the energy (density) function, thus

the requirement for Theorem 1 is not satisfied.

• The wirelength function is iteratively changed due to the dynamically adjusted

smoothing coefficient (γ in Eq. (2.6)).

• The penalty factor (λ in Eq. (3.5)) on the energy (density) function is iteratively

changed for the runtime force balancing between wirelength and density.

As a result, we propose a method to dynamically approximate the Lipschitz constant

L̃k. Based on Eq. (3.30), we select u to be the current reference solution (vk) and v to

the reference solution at the last iteration (vk−1). The Lipschitz constant for ∇ f (vk) is
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approximated as follows

L̃k =
‖∇ f (vk)−∇ f (vk−1)‖

‖vk−vk−1‖
. (3.31)

Our approximation method is effective and efficient because

• There is no additional computation cost introduced as both ∇ f (vk) and ∇ f (vk−1)

are known.

• The two solutions vk and vk−1 are supposed to be close to each other. Therefore

‖vk−vk−1‖ is relatively small compared to ‖u−v‖ by randomly selecting u and

v. This prevents underestimation of L̃k thus overestimation of the steplength αk.

The results in Section 3.5 show that our placement algorithm using Nesterov’s method

with Lipschitz constant prediction could simultaneously improve the runtime and wire-

length by 2.21× and 2.28% on average of all the ISPD 2005 benchmarks, compared to

that by CG method together with line search.

3.3.3 Preconditioning

Preconditioning reduces the condition number of a problem, which is trans-

formed to be more suitable for numerical solution. Traditional preconditioning tech-

niques compute and inverse the Hessian matrix (Hf) of the objective function ( f ). Pre-

conditioning has very wide applications in quadratic placers [27, 30, 41, 60, 61] but zero

attempts in nonlinear placers [6, 8, 26], because the density function is not convex. A

preconditioned gradient vector∇ fpre =Hf
−1∇ f can smooth the numerical optimization

to converge in fewer iterations. Nevertheless, the objective function of global placement

is highly nonlinear and iteratively changed. Moreover, the problem instance is usually

of millions of objects, where the complexity of O(n2) makes the iterative computation
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of Hessian matrix fairly expensive and indeed impractical. As a result, we select Jacobi

preconditioner with only diagonal terms of the Hessian matrix being used as Eq. (3.32)

shows.

Hfx,x =




∂ 2 f
∂x21

∂ 2 f
∂x1∂x2

· · · ∂ 2 f
∂x1∂xn

∂ 2 f
∂x2∂x1

∂ 2 f
∂x22

· · · ∂ 2 f
∂x2∂xn

...
...

. . .
...

∂ 2 f
∂xn∂x1

∂ 2 f
∂xn∂x2

· · · ∂ 2 f
∂x2n




≈




∂ 2 f
∂x21

0 · · · 0

0
∂ 2 f
∂x22

· · · 0

...
...
. . .

...

0 0 · · · ∂ 2 f
∂x2n




= H̃fx,x (3.32)

We have similar definition on H̃fy,y and can construct H̃f based on them. By

Eq. (3.5) we have
∂ 2 f (v)

∂x2i
= ∂ 2W (v)

∂x2i
+ λ ∂ 2N(v)

∂x2i
, and we concisely approximate

∂ 2W (v)

∂x2i

and
∂ 2N(v)

∂x2i
to ensure functionality of the preconditioner. Differentiating the wirelength

function in Eq. (2.6) by two orders is computationally expensive and we use the vertex

degree of object i instead,

∂ 2W (v)

∂x2i
= ∑
e∈Ei

∂ 2We(v)

∂x2i
⇒ |Ei|, (3.33)

where Ei denotes the net subset incident to the object i. The non-convexity of the den-

sity function in Eq. (3.4) disables the traditional preconditioner to achieve the expected

performance. Eq. (3.34) shows its two-order differentiation

∂ 2N(v)

∂x2i
= qi

∂ 2ψi(v)

∂x2i
= qi

−∂ξix(v)

∂xi
⇒ qi. (3.34)

As a result, we use the linear term qi as the density preconditioner and the Hessian
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matrix is approximated as below

H̃fx,x =




|E1|+λq1 0 · · · 0

0 |E2|+λq2 · · · 0

...
...

. . .
...

0 0 · · · |En|+λqn




. (3.35)

Therefore, we have the preconditioned gradient as ∇ fpre = H̃−1
f ∇ f . In Section 3.5 it

shows that our preconditioner could improve the wirelength by 2.42% with essentially

the same runtime on average of all the ISPD 2005 benchmarks.

3.4 Global Placement Algorithm
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Figure 3.8. The entire flow of ePlace, including initial quadratic wirelength minimization, our

novel global placement algorithm, and detailed placement with legal solution generated.

The entire flow of ePlace is shown in Figure 3.8, where our algorithm accounts

for the middle stage of global placement. The global placement is based on the input

solution vip from the initial placement stage, where the quadratic wirelength is mini-

mized using the bound-to-bound (B2B) net model [57]. A linear CG solver is used with
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Jacobi preconditioning for acceleration [41]. After global placement completes, all the

fillers are removed from the solution vgp, which is then legalized and discretely opti-

mized using the detailed placer from [8]. As discussed in Section 3.3, both CG method

and Nesterov’s method are used to solve the unconstrained optimization problem in

Eq. (3.5). A self-adaptive parameter adjustment method (introduced in Section 3.4.1) is

incorporated to improve the quality and convergence rate. Finally, we discuss the global

placement algorithm in Section 3.4.2.

3.4.1 Self-Adaptive Parameter Adjustment

Grid dimension: ePlace uses fixed grid dimension throughout the entire global place-

ment. There is naturally a trade-off between granularity and efficiency. Coarser grid

induces higher efficiency but lower accuracy, vice versa. From experiments we observe

that coarser grid causes additional problems. For instance, more cells are undertaking

the same density force. These cells clot together and motion in the same trace. This

induces density oscillation between adjacent regions and impedes cell spreading. In our

approach, we determine the grid dimension based on the number of cells in the netlist

and inserted fillers. As the FFT package from [50] requires that the grid dimension m

to be a power of 2, we set m= ⌈log2
√
n′⌉ and upper-bound m by 1024 due to efficiency

concerns.

Steplength: As discussed in Section 3.3, in Nesterov’s method the steplength is deter-

mined by the inverse of the approximated Lipschitz constant as shown in Eq. (3.31). In

CG method, the steplength is determined by line search which locates the local minimal

cost along the conjugate search direction within a interval. The length of the search inter-

val αmaxk is dynamically adjusted as follows. The initial value is determined as linearly

proportional to the bin dimension, specifically, αmax0 = κwb, where wb is the grid width.

In practice, we set κ = 0.044 to achieve the best placement quality. αmaxk is iteratively
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updated based on the optimal steplength αk−1 as Eq. (3.36) shows.

αmaxk =max(αmax0 ,2αk−1), α
min
k = 0.01αmaxk (3.36)

αk is the steplength for the kth iteration generated by GSS, as line 4 of Algorithm 1

shows. Notice that in practice, αk may not be the exact local optimal, as line search

will stop when the interval reduces to αmink . Moreover, if f (x) is a multi-modal func-

tion within the search interval, GSS may perform like a “random perturbation” and even

increase the cost under pathological conditions. Despite its sub-optimality, such occa-

sional “random perturbation” will be actually useful. Solutions could escape from local

optimum with uphill climbing actions due to GSS. As a result, GSS remains an effective

and efficient line search option.

Penalty factor: In our approach, we set the initial value of the penalty factor λ0 by

Eq. (3.37), in order to balance the forces of wirelength and density. This method is also

used in [8, 26]. Here Wxi =
∂W
∂xi
and Wyi =

∂W
∂yi
, while ξxi and ξyi denote the horizontal

and vertical electric field at node i, respectively.

λ0 =
∑i∈V ′

m

(
|Wix |+

∣∣Wiy
∣∣)

∑i∈V ′
m
qi
(
|ξix |+

∣∣ξiy
∣∣) . (3.37)

Traditional approaches usually multiply the penalty factor λ by a constant number (2.0

in [8, 26]), when the optimization converges locally. However, as wirelength and density

are changed at every iteration, the penalty factor should be updated immediately in order

to remain adaptive. In our approach, we iteratively update the penalty factor by setting

λk = µkλk−1. The multiplier µk is based on the iterative HPWL variation ∆HPWLk =

HPWL(vk)−HPWL(vk−1) as Eq. (3.38) shows

µk = µ
− ∆HPWLk

∆HPWLre f
+1.0

0 , (3.38)
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Figure 3.9. The illustration of the iterative variation of penalty factor using CG method with

line search and Nesterov’s method with Lipschitz constant approximation. The penalty factor in-

creases almost monotonically under the nonlinear optimization by both methods. The placement

is conducted on the ISPD 2005 ADAPTEC1 benchmark, where Nesterov’s method consumes

fewer iterations than CG method.

where µ0 is a pre-determined fixed number and ∆HPWLre f is the expected wirelength

increase per iteration. In practice, we set µ0 = 1.1 and ∆HPWLre f = 3.5×105 for best

quality. The multiplier µk is upper- and lower-bounded by 1.1 and 0.75 in order to damp

out the transient noise during the optimization flow. The experimental results show

that the penalty factor iteratively increases under the nonlinear optimization of both CG

method and Nesterov’s method as illustrated in Figure 3.9.

Density overflow: Global placement usually terminates when the overlap is sufficiently

small. The remaining work is handled by the downstream legalizer and detail placer.

Similar to NTUPlace3 [8] and mPL6 [11], we use the density overflow τ defined in

Eq. (3.39) as the stopping criterion.

τ =
∑b∈Bmax(ρ

′
b−ρt ,0)Ab

∑i∈Vm Ai
. (3.39)

Here Ab is the area of grid b, while Ai is the area of movable cell i. ρ
′
b denotes the density

of grid b due to only movable cells. The global placer terminates when the overflow τ

is less than τmin. The experimental results show that the total potential energy N is well

correlated with the density overflow τ as illustrated in Figure 3.10(a). The potential
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Figure 3.10. The overflow decreases in a linear rate while the potential energy decreases in

an exponential rate. The smoothed wirelength cost approximates HPWL better when the den-

sity overflow approaches the lower limit (τmin). The global placement uses CG method and is
conducted on the ISPD 2005 ADAPTEC1 benchmark.

energy decreases exponentially while the density overflow decreases linearly.

Wirelength coefficient: In our approach, we use the WA model [23] in Eq. (2.6) to

smooth the wirelength function. WA outperforms the traditional LSE model with about

2× accuracy. The experiments show that quality and convergence are sensitive to the

smoothing parameter γ . Our approach relaxes the smoothing parameter at early itera-

tions, such that more cells are encouraged to be globally moved out of the high-density

regions. At later stages, when local movement dominates, the parameter is reduced

to make the smoothed wirelength W approach HPWL. Meanwhile, the density of a

smaller grid is more sensitive towards cell movement, vice versa. Therefore, we set the

smoothing parameter γ to be the function of both the density overflow τ and the grid

size wb. By reducing the smoothing parameter, we only enable the motion of HPWL-

insensitive cells which are locally shifted to resolve the remaining overlap. Here for

HPWL-insensitive cells we are referring to those cells whose movement will not change

the HPWL of their incident nets, i.e., cells locate relatively far away to the boundaries

of net bounding box. At later iterations, we only expect minor perturbation to the place-

ment layout, such that solution will converge smoothly. As a result, we determine to
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enhance the accuracy of wirelength modeling, the respective wirelength force becomes

stronger to allow only small-scale cell movement thus minor layout perturbation. The it-

erative correlation of the smoothed wirelength to the HPWL is shown in Figure 3.10(b),

where the smoothed wirelength converges to HPWL in the end. Our empirical stud-

ies show that modeling γ as a linear function of bin dimension wb yet an exponen-

tial function of density overflow τ achieves the best quality. As the density overflow

usually starts from around 100% and end with 10% (our stopping criterion), we set

γ(τ = 1.0) = 80wb and γ(τ = 0.1) = 0.8wb by empirical tuning. The function of the

smoothing parameter γ in terms of density overflow τ is then modeled as

γ(τ) = 8.0wb×10kτ+b. (3.40)

Based on the value of γ(1.0) and γ(0.1) as mentioned above, it is easy to derive that

k = 20
9
and b= −11

9
, respectively.

3.4.2 Global Placement

The detail flow of our global placement method ePlace is shown in Algorithm 3.

The objective function fk is formulated at line 5. The wirelength gradient ∇Wk and

density distribution ρk(x,y) are computed at line 6. The FFT library [50] is invoked at

line 7 to generate the distribution of field ξξξ k(x,y) and potential ψk(x,y). The density

(energy) gradient ∇Nk is computed at line 8, while the total gradient ∇ fk is computed

at line 9. The nonlinear solver (NL-Solver) is invoked at line 10 with current solution

vk. The solution vk+1 for the next iteration is output by the nonlinear solver and used

to update the parameters at line 11. The stopping criterion is evaluated at line 12 to

determine whether the solution converges or not. Finally, the global placement solution

vgp is output to the legalizer and detailed placer at line 17.
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Algorithm 3. ePlace

Require: initial placement solution v0 = vip
uniform chip decomposition into m×m grid
minimum overflow τmin
maximum iterations kmax = 3000

Ensure: global placement solution vgp
1: m×m decomposition over R
2: initialize λ0 by Eq. (3.37)
3: initialize αmax0 = 0.044wb
4: for k = 1→ kmax do
5: fk = f (vk) =W (vk)+λkN(vk)
6: compute wirelength gradient ∇Wk and density ρk
7: (ψk,ξ k) =FFT-Solver(ρk)
8: compute energy (density) gradient ∇Nk = qξξξ k
9: ∇ fk = ∇Wk+λk∇Nk
10: vk+1 =NL-Solver

(
vk, fk,∇ fk,α

max
k ,0.01αmaxk

)

11: update αmaxk+1, λk+1, τk+1, γk+1 by Eq. (3.36), (3.38), (3.39), (3.40)
12: if τk+1 ≤ τmin then
13: vgp = vk+1
14: break

15: end if

16: end for

17: return vgp
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(a) Iter=1,

HPWL=4.27e7,

τ = 96.2%, W=2.10e7,
N=1.25e12.

(b) Iter=50,

HPWL=6.54e7,

τ = 81.5%, W=1.77e7,
N=5.30e11.

(c) Iter=150,

HPWL=6.89e7,

τ = 78.4%, W=2.00e7,
N=2.13e11.

(d) Iter=175,

HPWL=7.25e7,

τ = 72.2%, W=2.62e7,
N=7.18e10.

(e) Iter=200,

HPWL=7.56e7,

τ = 63.6%, W=3.59e7,
N=1.74e10.

(f) Iter=225,

HPWL=7.76e7,

τ = 51.8%, W=4.90e7,
N=1.94e9.

(g) Iter=250,

HPWL=7.64e7,

τ = 33.1%, W=6.20e7,
N=1.46e8.

(h) Iter=286,

HPWL=7.42e7,

τ = 9.95%, W=6.95e7,
N=2.01e6.

Figure 3.11. Snapshots of cell and filler distribution during global placement progression. Stan-

dard cells, macros and fillers are shown by red points, black rectangles and blue points, respec-

tively. The placement is conducted on the ISPD 2005 ADAPTEC1 benchmark by ePlace using

Nesterov’s method with preconditioning.

We illustrate the process of global placement in Figure 3.11 using snapshots

of cell and filler distribution extracted from eight intermediate iterations. Nesterov’s

method is used for the nonlinear optimization with dynamic prediction of Lipschitz

constant to determine the steplength. The initial placement solution vip is shown in Fig-

ure 3.11(a), where standard cells are placed at the central region while filler cells are

randomly distributed over the entire placement region R. At later iterations, standard

cells are spreading away from over-filled regions, the density force pushes the discon-

nected fillers towards the boundary of the placement region. In the end, all the standard

cells converge to a stable location with acceptable system energy (density penalty) and

wirelength overhead.
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3.5 Experiments and Results

We implement our algorithm using C programming language and execute the

program in single-thread mode on a Linux machine with Intel i7 920 2.67GHz CPU and

12GB memory. In our experiments, we use the benchmark suites from [46] and [45],

which are published in the ISPD 2005 and ISPD 2006 placement contests, respectively.

As denoted in [45, 46], the benchmark circuits preserve the physical structure of real

ASIC designs. We also use the evaluation policies and scripts in [46] and [45], as they

have become common criteria and are widely admitted in modern placement works,

to rank the performance of different placers in our experiments. Besides, we set the

minimum density overflow τmin = 10% as the stopping criterion of global placement for

all the benchmarks. We apply the same setting of parameters to all the testcases, in other

words, there is no parameter tuning towards specific benchmarks.

Global placement plays the dominant role on the overall placement solution qual-

ity. However, global placement result is illegal and it is relatively hard to tell how much

wirelength penalty will be introduced when legalizing it. There are placers in literature,

e.g. SimPL [41] and ComPLx [27], which consists of only global placement algorithm

development, and they invoke detailed placement engine from other works to legalize

and discretely optimize their solutions. As a result, we follow the custom in literature

to conduct performance comparison between legalized solutions. Specifically, we use

the detailed placer in [8] to perform legalization and detailed placement on our global

placement solution.

We compare the performance of our work with ten cutting-edge placers of dif-

ferent categories: Capo10.5 [52] (min-cut), FastPlace3.0 [61], RQL [60], MAPLE [28],

ComPLx (v13.07.30) [27], BonnPlace [58], POLAR [30], (quadratic), APlace3 [26],

NTUPlace3 [8] and mPL6 [6] (nonlinear). We have applied and obtained the source
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Table 3.1. Circuit statistics of the ISPD 2005 placement benchmark suite [46].

Circuits # Objects # Standard # Movable # Fixed # Nets Density (%) Util. (%) Density

Cells Macros Macros Bound (%)

ADAPTEC1 211447 210904 0 543 221142 75.71 57.34 100

ADAPTEC2 255023 254457 0 566 266009 78.59 44.32 100

ADAPTEC3 451650 450927 0 723 466758 74.58 33.68 100

ADAPTEC4 496045 494716 0 1329 515951 62.71 27.18 100

BIGBLUE1 278164 277604 0 560 284479 54.19 44.67 100

BIGBLUE2 557866 534782 0 23084 577235 61.88 37.90 100

BIGBLUE3 1096812 1093034 2485 1293 1123170 85.52 56.23 100

BIGBLUE4 2177353 2169183 0 8170 2229886 65.14 44.06 100

code or binaries from seven of the above ten placers, each of them is compiled and ex-

ecuted in our local machine. The executable of RQL, MAPLE and BonnPlace are not

available due to their industrial use and other issues. As a result, their solution quality

and runtime results are cited from the according publications [28, 58, 60]. The perfor-

mance of Capo10.5 and APlace3 on the ISPD 2006 benchmark suite is obtained from

the respective contest result [45].

3.5.1 Results on ISPD 2005 Benchmark Suite

The circuit statistics of ISPD 2005 benchmark suite are shown in Table 3.1. No-

tice that the design scale is up to of two million cells, which well represents the modern

IC design complexity. As there is no specific density constraint, the density upper-bound

in Table 3.1 is set as 100% for every benchmark. Notice that one out of the totally eight

circuits (BIGBLUE3) has movable macros, of which the physical dimension and logic

effort differ quite a lot from standard cells. Such objects further challenge the existing

placers to provide stable performance under different circuit characteristics.

All the experimental results are shown in Table 3.2 and Table 3.3 with HPWL

in ×106 and CPU in minutes. The experiments are executed in the single-thread mode

(except for POLAR, which consumes up to four CPUs simultaneously) with the solution

quality evaluated using the official scripts from [46]. For our placement framework

ePlace, we include three different configurations to study its performance in detail.
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• CG: ePlace using conjugate gradient method for nonlinear optimization and line

search for steplength determination.

• Nes: ePlace using Nesterov’s method for nonlinear optimization and Lipschitz

constant prediction for steplength determination.

• Nes-Pre: ePlace using Nesterov’s method for nonlinear optimization, Lipschitz

constant prediction for steplength determination and preconditioning for search

space reshaping.

It is relatively difficult for ePlace-CG and ePlace-Nes to handle large macros (e.g., BIG-

BLUE3) as density force is linearly proportional to the object area by Eq. (3.6), while

movable macros significantly differ from standard cells with much higher magnitude

of gradient. As a result, unpreconditioned gradient makes macros with large area and

high incidence degree bounce between opposite placement boundaries, causing the so-

lution to oscillate and hard to converge within limited number of iterations2. To prevent

divergence of nonlinear placement optimization, in ePlace-CG and ePlace-Nes, we dis-

able the movement of objects with area larger than 500× of the average objects area.

By preconditioning, we relieve the imbalance between object gradient and make the

search space more spherical, thus all the objects are allowed to move in ePlace-Nes-

Pre. Among all the above three options, ePlace-CG has the worst solution quality and

placement efficiency, where ePlace-Nes could outperform it by roughly 2.28% shorter

wirelength and 2.21× speedup on average. Using preconditioning could further reduce

the wirelength by 2.42%, while the runtime is not increased. By default, we use Nes-

terov’s method together with gradient preconditioning in ePlace.

Compared to the performance of all the ten placers from our local experiments or

according publications as shown in Table 3.2, ePlace-Nes-Pre generates the best place-

2In ePlace, we set 3000 as the upper limit of iterations.
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ment solutions with the shortest total wirelength in all the eight benchmarks. On aver-

age, ePlace-Nes-Pre improves the total wirelength by 21.14%, 10.00%, 5.40%, 3.21%,

4.50%, 2.83%, 3.08%, 14.33%, 12.05%, and 8.33% over Capo10.5, FastPlace3.0, RQL,

MAPLE, ComPLx, BonnPlace, POLAR, APlace3, NTUPlace3 and mPL6, respectively.

ePlace is faster than all the previous nonlinear placers. Specifically, ePlace-

Nes-Pre outperforms APlace3, NTUPlace3 and mPL6 with 9.13×, 1.40× and 3.78×

speedup, even if they are using multi-level clustering for problem simplification while

we are conducting placement on the original flat netlist. At the coarsest level, a hierar-

chical placer will usually place about only 1000 clusters, which is 0.1% of that of the

original netlist. However, despite zero netlist coarsening, our placer runs faster than the

previous multi-level works. Such performance validates the efficiency of our placement

algorithm. ePlace-Nes-Pre is slower than some of the previous quadratic placement

approaches. This is mainly because all the computation intensive steps in nonlinear op-

timization are not included in quadratic placers. For instance, in nonlinear placement

the objective cost and gradient function are both of very high order, they consume most

portion of the runtime at each iteration. However, in quadratic placement, these two

functions are of only second and first orders, of which numerical solution can be com-

puted much faster. Specifically, ePlace-Nes-Pre runs 0.53×, 0.91× and 0.52× slower

than FastPlace3.0, RQL and ComPLx, while the respective wirelength improvement is

10.00%, 5.40% and 4.50%. MAPLE, BonnPlace and POLAR have the best published

results on the ISPD 2005 benchmark suite in literature. As Table 3.3 shows, the average

runtime of MAPLE, BonnPlace and POLAR is 2.84×, 3.05× and 0.52× that of our

placer ePlace-Nes-Pre, respectively, while our wirelength improvement over these three

placers are 3.21%, 2.83% and 3.08%, respectively.

As Table 3.2 and Table 3.3 shows, on average of all the ISPD 2005 benchmarks,

preconditioning produces 2.42% shorter wirelength and consumes essentially the same
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Table 3.4. Circuit statistics of the ISPD 2006 placement benchmark suite [45].

Circuits # Objects # Standard # Movable # Fixed # Nets Density (%) Util. (%) Density

Cells Macros Macros Bound (%)

ADAPTEC5 843128 842482 0 646 867798 78.62 49.85 50

NEWBLUE1 330474 330037 64 337 338901 70.69 70.69 80

NEWBLUE2 441516 436516 3723 1277 465219 86.15 61.66 90

NEWBLUE3 494011 482833 0 11178 552199 84.71 26.33 80

NEWBLUE4 646139 642717 0 3422 637051 65.82 46.47 50

NEWBLUE5 1233058 1228177 0 4881 1284251 74.43 49.26 50

NEWBLUE6 1255039 1248150 0 6889 1288443 59.26 38.70 80

NEWBLUE7 2507954 2481372 0 26582 2636820 76.36 49.06 80

runtime compared to the original placement. There are some special testcase, such

as BIGBLUE3 of ISPD05, which causes our placer fail to converge without precondi-

tioning, i.e., the runtime would approach infinity. As discussed before, we disable the

movement of objects with size above certain threshold to enforce the convergence.

3.5.2 Results on ISPD 2006 Benchmark Suite

The circuit statistics of the ISPD 2006 benchmark suite [45] are shown in Ta-

ble 3.4. Notice that BonnPlace [58] is specifically designed for the ISPD 2005 bench-

mark suite, while its binary or results on the ISPD 2006 benchmarks are not available.

As a result, we do not include it in the experiments. Similar to ISPD 2005, the design

scale is up to of 2.5 million objects and this represents the complexity of modern ASIC

design. In contrast to ISPD 2005, there is a benchmark-specific density constraint. Vio-

lation of such constraint in placement solutions (i.e., exceeding the density upper-bound)

would induce penalty on the total wirelength. Here two out of the totally eight circuits

(NEWBLUE1 and NEWBLUE2) have movable macros which challenge the placement

performance stability across different object dimensions.

All the experimental results are shown in Table 3.5 and Table 3.6 with the scaled

HPWL (sHPWL) in ×106 and CPU in minutes. Here we just include ePlace-Nes-Pre

(denoted as ePlace) in this experiment. Following the contest protocol, we define the
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scaled wirelength as

sHPWL= HPWL× (1+0.01× τs) . (3.41)

Here τs is the density penalty on the wirelength, it denotes the scaled density overflow

per bin as defined below

τs =

(
τtotAb′ρt
400∑i∈Vm Ai

)2
. (3.42)

Here Ab′ is the area of each uniform bin b
′, which is defined by the contest organizer [45]

with both width and height equal to ten times the placement row height of each bench-

mark. Ai is the area of each movable object i. τtot is the total density overflow amount,

which is defined as

τtot = ∑
b′∈B′
max(ρ ′

b′ −ρt ,0)Ab′ (3.43)

using the contest specified bin structure B′ as mentioned above.

Compared to the quality of all the ten placers as shown in Table 3.5, ePlace gen-

erates the best placement solution (with the shortest scaled wirelength) in seven out of

the totally eight benchmarks. On average, our placer improves the total wirelength by

43.73%, 16.25%, 7.99%, 4.59%, 4.86%, 7.16%, 18.38%, 7.74% and 10.11% over Capo,

FastPlace3.0, RQL, MAPLE, ComPLx, POLAR, APlace3, NTUPlace3 and mPL6, re-

spectively.

The runtime of all the placers on the ISPD 2006 benchmark suite is shown in

Table 3.6. Notice that the runtime of RQL andMAPLE is not available as the authors did

not release them in the respective publications [28, 60]. Compared to all the three prior

nonlinear placers, ePlace improves the efficiency by up to 10.21×. As discussed before,

nonlinear placers lag behind quadratic placers in efficiency due to the computation of

high-order gradient functions. However, such gap is largely reduced by ePlace, i.e., on
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Table 3.6. Runtime (minutes) on the ISPD 2006 benchmark suite [45]. CP=Capo, FP=FastPlace,

CPx=ComPLx, AP=APlace, NP=NTUPlace. Cited results are marked with ∗. Average results
are normalized to ePlace.

Categories Min-Cut Quadratic Nonlinear

Benchmarks CP10.5∗ FP3.0 CPx POLAR AP3∗ NP3 mPL6 ePlace

ADAPTEC5 161.97 21.00 16.70 14.48 337.78 64.53 97.30 34.18

NEWBLUE1 42.70 5.18 4.15 5.95 71.72 12.57 24.48 9.62

NEWBLUE2 94.03 8.80 9.70 8.53 92.22 22.80 61.28 10.10

NEWBLUE3 101.27 10.10 8.58 9.02 208.38 21.00 102.23 14.38

NEWBLUE4 115.43 13.22 11.05 10.17 249.70 38.92 67.75 22.92

NEWBLUE5 347.57 28.70 25.85 23.78 546.65 76.82 127.38 54.83

NEWBLUE6 308.08 20.85 20.52 22.27 485.40 67.60 120.83 52.33

NEWBLUE7 916.03 40.97 50.65 48.23 914.20 149.30 307.03 86.27

Average 6.68× 0.59× 0.55× 0.69× 10.21× 1.63× 3.71× 1.00×

Table 3.7. Scaled density overflow on the ISPD 2006 benchmark suite [45]. CP=Capo,

FP=FastPlace, MPE=MAPLE, CPx=ComPLx, AP=APlace, NP=NTUPlace. Cited results are

marked with ∗. All the results are evaluated by the official scripts [45]. Average results are
normalized to ePlace.

Categories Min-Cut Quadratic Nonlinear

Benchmarks CP10.5∗ FP3 RQL∗ MPE∗ CPx POLAR AP3∗ NP3 mPL6 ePlace

ADAPTEC5 0.62 8.17 9.25 4.76 1.93 12.48 15.87 28.51 1.03 0.71

NEWBLUE1 0.13 1.04 0.34 1.05 1.02 2.13 0.06 0.70 9.02 0.28

NEWBLUE2 0.29 1.00 1.45 1.01 1.05 1.83 0.42 1.82 1.44 0.68

NEWBLUE3 0.01 0.55 0.07 0.77 0.93 1.36 0.00 0.05 0.66 0.07

NEWBLUE4 1.15 4.22 15.2 5.86 1.45 11.38 1.74 13.66 1.70 1.20

NEWBLUE5 0.33 7.21 13.6 4.05 1.76 12.91 12.45 20.37 1.47 0.63

NEWBLUE6 0.05 1.02 4.33 1.08 1.14 5.80 0.03 0.28 1.41 0.40

NEWBLUE7 0.02 1.30 2.57 1.70 1.40 4.63 0.06 2.01 1.19 0.25

Average 0.45× 5.90× 9.08× 5.46× 4.19× 13.77× 5.58× 12.29× 7.14× 1.00×

average of all the eight ISPD 2006 circuits, state-of-the-art quadratic placers consumes

roughly 60% runtime of that by ePlace.

Besides, we also include the results of the scaled density overflow and original

wirelength for comparison between all the placers, as shown in Table 3.7 and Table 3.5

(in parenthesis), respectively. Our placer could outperform eight out of the totally nine

placers with smaller scaled density overflow. For Capo10.5 with better density over-

flow, ePlace produces 44.04% shorter original wirelength, where their respective scaled

wirelength still lag behind ours by 43.73%. In terms of original HPWL, our placer out-

performs eight out of the totally nine placers in comparison. POLAR and NTUplace3
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lag behind ePlace with 0.60% and 1.21% shorter original HPWL, however, their scaled

density overflow is 13.77× and 12.29× than that of ePlace. As a result, the scaled

wirelength of ePlace is 7.16% and 7.74% shorter than that of POLAR and NTUplace3,

respectively.

3.5.3 Placement Runtime Breakdown

We use the timing profile of our placement algorithm ePlace on ADAPTEC1 to

analyze the runtime bottleneck. The placement region is uniformly decomposed into

512× 512 grids. Using CG method with line search (ePlace-CG), we find that 5.62%

of the total runtime is consumed by initial placement (quadratic wirelength minimiza-

tion), 14.68% is consumed by legalization and detailed placement, while the remaining

79.70% is due to our global placement. A breakdown of the global placement execu-

tion shows that the runtime bottlenecks lie on the computation of wirelength gradient

(6.89%), density gradient (20.88%) and function evaluation in line search (63.22%),

while remaining operations take 9.01% runtime. To improve the efficiency, steplength

prediction can be used to replace the line search, and we use Nesterov’s method to solve

the runtime bottleneck. The steplength is predicted based on our method of dynamic

Lipschitz constant approximation, of which the runtime overhead is negligible. After

replacing CG method with Nesterov’s method, the total runtime of ePlace-Nes is im-

proved by 2.21×. Specifically, the runtime consumed by global placement is reduced to

54.72%, while the initial placement and detail placement consume 11.44% and 33.84%,

respectively. The remaining bottlenecks mainly lie on the computation of wirelength

gradient (19.72%) and density gradient (59.6%), while other miscellaneous operations

totally cost 20.68% time. To further accelerate the placement engine, we can extend the

gradient computation to a parallel platform. The symmetric structure of the FFT algo-

rithm for density gradient computation as well as the nature of the wirelength gradient
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computation [12] would well fit the architecture of graphics processing unit (GPU) [43]

and distributed systems.

3.6 Summary

In this chapter, we propose a flat nonlinear global placement algorithm ePlace.

Based on the development of a novel placement density formulation eDensity, the place-

ment instance is converted to an electrostatic system to model the density cost as the

system potential energy. The electric potential and field distribution are correlated with

the spatial density distribution via a well-defined Poisson’s equation, and we use spec-

tral methods based on fast Fourier transform to produce fast and accurate numerical so-

lution. We propose to use Nesterov’s method as the nonlinear placement solver, which

outperforms CG solver with better quality and efficiency. A novel heuristic is devel-

oped to dynamically approximate the Lipschitz constant for steplength prediction. Our

nonlinear preconditioning technique further enhance the solution quality with negligible

runtime overhead. The experimental results on the ISPD 2005 and ISPD 2006 bench-

marks validate the high performance of ePlace. More details on ePlace framework and

solutions can be found at [14].

Chapter 3 includes the published content in the journal “ePlace: Electrostatics

based Placement using Fast Fourier Transform and Nesterov’s Method” by Jingwei Lu,

Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Huang, Chin-Chi Teng and Chung-

Kuan Cheng in ACM Transactions on Design Automation of Electronic Systems (TO-

DAES). The dissertation author was the primary investigator and author of the paper.



Chapter 4

ePlace-MS: Electrostatics based Place-

ment for Mixed-Size Circuits

In this chapter, we discuss our develpement of a novel mixed-size placer ePlace-

MS, which is based on the prototype proposed in Chapter 3. Macros and standard cells

are equalized by our nonlinear preconditioning methodology and smoothly co-optimized

by Nesterov’s method. We also provide more thorough analysis and insights on the den-

sity function eDensity, which shows high performance on mixed-size circuits. Experi-

ments validate the high performance of our mixed-size placer ePlace-MS.

4.1 Placement Overview

Figure 4.1 shows the flowchart of ePlace-MS. Given a placement instance, it

quadratically minimizes the total wirelength at the first stage of mixed-size initial place-

ment (mIP). The initial solution vmIP is of low wirelength but high overlap. Based on the

target density ρt , our mixed-size global placer (mGP) populates extra whitespace with

unconnected fillers, then iteratively co-optimizes all the objects (standard cells, macros

and fillers) together. After mGP, we remove all the fillers, fix the standard-cell layout,

then invoke the annealing engine mLG to legalize the location of all the macros. In

the second-phase global placement (cGP), we retrieve all the fillers and distribute them

65
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appropriately, then free standard cells and co-place them with fillers to further reduce

the wirelength. Finally, in the standard-cell detailed placement (cDP), we invoke the

detailed placer in [22] to legalize and discretely optimize the standard-cell layout.
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Figure 4.1. The flowchart of ePlace-MS.

ePlace-MS does not allow rotation or flipping of any objects due to the lithogra-

phy issue. However, it has the flexibility to smoothly integrate the rotational and flipping

gradients [22] to guide placement optimization iteratively. Deadspace allocation is also

not considered in this work, while it can be effectively realized in ePlace-MS via appro-

priate macro inflation.

ePlace-MS maximally expands the design space for mGP with the major opti-

mization effort budgeted on mixed-size global placement, since all the objects (standard

cells, macros, fillers) are allowed to move and can be optimized simultaneously. In

contrast, the design spaces for mLG and cGP are relatively shrunk, as only macros or

standard cells are allowed to move with other objects fixed thus acting as constraints,

which actually constrains the search space of mixed-size placement solution. Specifi-
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Figure 4.2. Total HPWL, total object overlap (OVLP) and total macro overlap (mOVLP) at

different stages and iterations of ePlace-MS-WA on the MMS ADAPTEC1 benchmark. Over-

lap between macros are cleaned at macro legalization (mLG) where mOVLP decreases to zero.

Remaining OVLP will all be cleaned at cDP (following cGP).

cally, only minor layout perturbation is expected to perform changes within local scale.

As Figure 4.21 shows, the constrained optimization focuses on the mGP stage and termi-

nates when overlap is small enough. The entire placement framework is built upon our

recent work of FFTPL [33] with similar initialization and iterative adjustment of param-

eters. Grid dimension m is statically determined as m= ⌈log2
√
n′⌉ and upper-bounded

by 1024, where n′ = |V ′| is the number of movable macros, standard cells and fillers [33].

Penalty factor λ is initially set as Eq. (10) of [8]. We iteratively update λk = µkλk−1 in

mGP to balance the wirelength and density forces, where µk = 1.1
− ∆HPWLk

∆HPWLREF
+1.0
based

on the HPWL variation ∆HPWLk = HPWL(~vk)−HPWL(~vk−1). In practice, we set

∆HPWLREF = 3.5×105 and bound µk by [0.75,1.1]. Density overflow τ is used as the

stopping criterion. We terminate mGP when τ ≤ 10% and cGP when τ ≤ 7%, respec-

tively. Wirelength coefficient γ is used to smooth the HPWL. We set the smoothing

parameter as γ = 8.0wb× 1020/9×(τ−0.1)−1.0 to encourage global movement at early it-

erations and convergence at later iterations. Fillers are used to balance the electrostatic

direct current (DC) component in the global scale. The total area of fillers equals the

1Here OVLP denotes physical overlap among all the objects. Computation costs O(n logn) time via
scanline and segment-tree data structure.
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total whitespace multiplies target density then subtracted by the total area of all the mov-

able objects. All the fillers are equally sized to be the average physical dimensions of

all the standard cells. More details of parameter adjustment or filler formation can be

found in [33].

4.2 Density Function for Mixed-Size Placement

Given the high performance of ePlace on standard cell circuits, we extend the

density function to handle the mixed-size placement in a generalized way. Figure 4.3

shows the progression via a density-only mixed-size placement by ePlace-MS, where

standard cells and macros are smoothly co-optimized towards even density distribu-

tion. Table 4.2 and 4.3 show that our density function has the best performance with

shortest wirelength and smallest density overflow versus all the mixed-size placers in

literature [22, 27, 61, 65].

A placement density function is developed in our prior work [33] and discussed

in Section 3.1 based on the electrostatic analogy, which is therefore named eDensity.

Modeling every object as a positive charge, the density function N(v) shown in Eq. (4.1)

is modeled as the total electric potential energy. The electric force keeps spreading all

the charges apart from each other, thus reducing the total potential energy towards zero

in the end. The electrostatic equilibrium state is coupled with even placement density

distribution and will be eventually reached. Compared to all the previous mixed-size

placement algorithms [6, 22, 26, 27, 30, 52, 61, 65], our density function achieves the

minimum density overflow as shown in Table 4.3, indicating the fewest violations to the

target density thus the best performance of our density function

N(v) =
1

2
∑
i∈V
Ni(v) =

1

2
∑
i∈V
qiψi(v). (4.1)
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Here qi is the electric quantity of the charge i, it equals the area of the respective object

i. ψi is the local potential. Also, as the system energy equals the sum of mutual po-

tential energy between all the pairs of charges, we have a factor of 1
2
for the energy of

each single charge. A well-defined Poisson’s equation in Eq. (4.2) correlates the density

distribution ρ(x,y) with the potential distribution ψ(x,y), where x and y are spatial coor-

dinates. We enforce Neumann boundary condition (i.e., zero gradient at the boundary of

the density function or placement domain) to prevent objects from moving outside the

placement region R. Specifically, the horizontal density gradients along the two vertical

boundaries are equivalent to zero, vice versa, such that movement towards the placement

boundaries will be gradually slowed down and finally stopped.





∇ ·∇ψ(x,y) = −ρ(x,y),

n̂ ·∇ψ(x,y) = 0, (x,y) ∈ ∂R,

∫∫
Rρ(x,y) =

∫∫
Rψ(x,y) = 0.

(4.2)

Here n̂ is the outer normal vector at the boundary ∂R. We use ξξξ (x,y) = ∇ψ(x,y) to

denote the electric field distribution. The electric force on each charge i equals qiξξξ i(v),

where ξξξ i = (ξix ,ξiy) is the local field vector and can be decomposed into its horizontal

(ξix) and vertical (ξiy) components. Our density function N(v) is generalized. In contrast

to prior nonlinear placers [22, 26], there is no special handling or smoothing applied

to movable macros or fixed blocks. Please refer to Section 3.2.7 for a more detailed

advantage analysis. The global smoothness of N(v) (by Eq. (4.1) and (4.2)) indicates

that the local movement of any object will change the potential map in the global scale.

The potential energy of all the objects will thus be changed by the movement of every

single object i.



70

(a) Iter=3, N=3.38e12,

τ = 84.7%.
(b) Iter=7, N=6.58e11,

τ = 74.4%.
(c) Iter=8, N=9.95e10,

τ = 38.5%.
(d) Iter=9, N=7.46e10,

τ = 26.1%.

(e) Iter=10, N=1.02e10,

τ = 22.7%.
(f) Iter=12, N=1.63e9,

τ = 14.4%.
(g) Iter=15, N=5.99e8,

τ = 9.74%.
(h) Iter=24, N=4.88e7,

τ = 5.00%.

Figure 4.3. Snapshots of the density distribution by eDensity via mixed-size placement on the

MMS ADAPTEC1 benchmark. The placement is driven by only density forces (denoted by red

arrows) with the magnitude of the grid density characterized by grayscale. Total potential energy

and total density overflow are denoted by N and τ , respectively.

4.3 Nonlinear Optimization for Mixed-Size Global

Placement (mGP)

Our prior work shows high performance of Nesterov’s method on placing stan-

dard cell based circuits. In this section, we extend it to handle mixed-size placement,

where we observe consistently good performance as shown by the experimental results

in Section 4.7. In the framework of ePlace-MS (Figure 4.1), mGP uses Nesterov’s

method to smoothly conducts simultaneous optimization on both macros and standard

cells, as Figure 4.4 shows. As a generalized approach, mGP handles macros and stan-

dard cells in exactly the same way (c.f. macro shifting at each netlist declustering

level [22], formation of soft blocks by standard cells [61, 65], special density smooth-

ing of macros [26, 28], macro shredding [27], etc.). In each iteration, we compute the

gradient and preconditioner, predict the Lipschitz constant, and adjust steplength via

backtracking. Nesterov’s method solves the nonlinear problem iteratively till conver-
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(a) Iter=50,

W=34.76e6, N=26.6e11,

τ = 84.31%, O=73.30e6,
Om=37.85e6.

(b) Iter=100,

W=41.46e6, N=91.4e10,

τ = 67.59%, O=59.11e6,
Om=24.40e6.

(c) Iter=125,

W=44.44e6, N=35.2e10,

τ = 55.31%, O=49.04e6,
Om=16.68e6.

(d) Iter=150,

W=48.21e6, N=98.78e9,

τ = 44.60%, O=40.10e6,
Om=98.40e5.

(e) Iter=175,

W=52.74e6, N=22.57e9,

τ = 39.72%, O=36.81e6,
Om=80.98e5.

(f) Iter=200,

W=56.99e6, N=46.31e8,

τ = 33.15%, O=31.56e6,
Om=43.09e5.

(g) Iter=235,

W=61.05e6, N=34.78e7,

τ = 20.34%, O=22.76e6,
Om=11.05e5.

(h) Iter=265,

W=63.37e6, N=25.51e6,

τ = 9.67%, O=16.48e6,
Om=58.11e4.

Figure 4.4. Snapshots of mGP progression in ePlace-MS-WA on the MMS ADAPTEC1 bench-

mark with standard cells, macros and fillers shown by red points, black rectangles and blue

points. Total wirelength, total potential energy, total density overflow, total object overlap and

total macro overlap are denoted byW , N, τ , O and Om, respectively.

gence is reached.

4.3.1 Existing Problems

Line search remains the major runtime bottleneck in the Conjugate Gradient

method2, which is widely used in prior nonlinear placers [26]. In practice, it is not

guaranteed that the steplength output by line search could satisfy the conjugacy require-

ment [20]. Specifically, the vector of current search direction may not be orthogonal

(w.r.t. the Hessian matrix of the cost function) to all the previous vectors. Therefore, the-

oretical convergence rate of conjugate gradient method, 2
(√

κ−1√
κ+1

)k
, can not be guaran-

teed. Instead of line search, [8] statically determines the steplength via upper-bounding

the Euclidean distance of objects movement per iteration by a constant number. Such

2Our empirical studies on FFTPL [33] show that line search takes more than 60% of the total runtime

on placing ADAPTEC1 of ISPD 2005.
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static prediction assumes underestimation of steplength, which in general slows down

the placement convergence rate. Moreover, steplength overestimation could still occur

at some special area of the search space where the gradient changes sharply, therefore

degrades the solution quality. As a result, a systematic solution with dynamic steplength

adjustment and theoretical support becomes quite necessary.

4.3.2 Nesterov’s Method

The flow of Nesterov’s method used in ePlace-MS is illustrated in Algorithm 4.

We use Lipschitz constant prediction together with steplength backtracking to control

the speed of optimization. ak is an optimization parameter which is iteratively updated.

There are two concurrently updated solutions, uk and vk, where only u is output as

the final solution (at the end of mGP and cGP), while v is used for steplength prediction.

∇ fpre denotes the preconditioned gradient vector, which will be discussed in Section 4.4.

Initially, we set a0 = 1 and have both u0 and v0 set as vmIP. BkTrk denotes steplength

backtracking as shown in Section 4.3.4. The convergence rate of Nesterov’s method is

proven to be O(1/k2) in [49], on condition that the steplength αk satisfies Eq. (4.3) at

every single iteration k.

f (vk)− f (vk−αk∇ f (vk)) ≥ 0.5αk‖∇ f (vk)‖2 (4.3)

Bisection search is suggested by [49] to generate the maximal αk without violating

the inequality in Eq. (4.3). Similar to line search in the Conjugate Gradient method,

such steplength search usually introduces significant runtime overhead. As [49] claims,

the function f (vk−α∇ f (vk)) would be evaluated by O(logL) times along the search

direction for a single iteration, increasing the complexity to O(n logn logL). Here L is

the Lipschitz constant as defined in Definition 2. As a result, step length prediction
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becomes necessary to accelerate the optimization process.

Algorithm 4. Nesterov’s method in ePlace-MS

Require: ak, uk, vk, vk−1, ∇ fpre(vk), ∇ fpre(vk−1)
Ensure: uk+1, vk+1, ak+1
1: αk = BkTrk (vk,vk−1,∇ fpre(vk),∇ fpre(vk−1))
2: uk+1 = vk−αk∇ fpre(vk)

3: ak+1 =
(
1+
√
4a2k+1

)
/2

4: vk+1 = uk+1+(ak−1)(uk+1−uk)/ak+1
5: return

4.3.3 Lipschitz Constant Prediction

Instead of line search, we compute the steplength through a closed-form formula

of the Lipschitz constant of the gradient, which is defined as below.

Definition 2. Given a multivariate convex function f (v) ∈C1,1(H), ∃L> 0 s.t. ∀u,v ∈

H,

‖∇ f (u)−∇ f (v)‖ ≤ L‖u−v‖. (4.4)

H as Hilbert space is a generalized notion of Euclidean space, C1,1(H) requires

f (v) with Lipschitz continuous gradient. As our objective is non-convex, we lever-

age Nesterov’s method in an approximate way. [49] states that αk = L−1 satisfies the

steplength requirement specified in Eq. (4.3) but lacks a formal proof. The rationale be-

hind is that smaller Lipschitz constant indicates higher smoothness of the gradient thus

faster convergence can be achieved via larger steplength, vice versa. Here we provide a

proof to the statement that αk = L−1 always satisfies Eq. (4.3) as Theorem 2.

Theorem 2. Given convex f ∈C1,1(H) and L defined in Definition 2, α ≤ L−1 satisfies

Eq. (4.3).



74

Proof. ∀u,v ∈ H, we have

f (v)− f (u)−〈∇ f (u),v−u〉

=
∫ v

u
∇ f (v′)dv′−〈∇ f (u),v−u〉

=
∫ 1

0
∇ f (u+ τ(v−u))d (τ(v−u))−〈∇ f (u),v−u〉

=
∫ 1

0
〈∇ f (u+ τ(v−u))−∇ f (u), v−u〉dτ

≤
∫ 1

0
‖∇ f (u+ τ(v−u))−∇ f (u)‖ · ‖v−u‖dτ

≤
∫ 1

0
L · ‖τ(v−u)‖ · ‖v−u‖dτ

=0.5L‖v−u‖2,

(4.5)

where the first and second inequalities hold based on the Cauchy-Schwartz inequality [1]

and the definition of Lipschitz constant in Eq. (4.4), respectively. Eq. (4.5) indicates that

f (v) ≤ f (u)+ 〈∇ f (u),v−u〉+0.5L‖v−u‖2. (4.6)

Let u= vk and v= vk−αk∇ f (vk), based on Eq. (4.6) we have

f (u)− f (v) = f (vk)− f (vk−αk∇ f (vk))

≥〈∇ f (u),u−v〉−0.5L‖v−u‖2

=〈∇ f (vk),αk∇ f (vk)〉−0.5α2k L‖∇ f (vk)‖2

=αk‖∇ f (vk)‖2−0.5α2kL‖∇ f (vk)‖2

≥(αk−0.5α2kα−1
k )‖∇ f (vk)‖2

=0.5αk‖∇ f (vk)‖2,

(4.7)

where the second inequality holds if we have L≤ α−1
k .
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As a result, L−1 can be used as the steplength to accelerate the algorithm with-

out convergence penalty. Exact Lipschitz constant is very expensive to compute (even

more time consuming than line search). Moreover, static estimation will be invalidated

through iterative change of the cost function, as both the wirelength coefficient γ in

Eq. (2.5) and penalty factor λ in Eq. (3.5) are being iteratively adjusted in ePlace-MS

(more details can be found in [33]). As a result, we approximate the Lipschitz constant

and steplength as follows

L̃k =
‖∇ f (vk)−∇ f (vk−1)‖

‖vk−vk−1‖
, αk = L̃−1k , (4.8)

where only v is used for Lipschitz constant prediction. The computation overhead is

negligible since both ∇ f (vk−1) and ∇ f (vk) are known thus there is no extra gradient or

cost computation.

4.3.4 Steplength Backtracking

We develop a backtracking method to enhance the prediction accuracy via pre-

venting potential steplength overestimation by Eq. (4.8), which would unexpectedly mis-

guide the nonlinear solver. Being used to generate vk+1, however, αk by Eq. (4.8) is

predicted using vk and vk−1. Instead, our backtracking method predicts αk using vk and

vk+1. At line 1 of Algorithm 5, we set the steplength computed by Eq. (4.8) as a tem-

porary variable α̂k. The respective temporary solution v̂k+1 (line 3) is used to produce a

reference steplength. If it is exceeded by α̂k (line 4), we update α̂k and v̂k+1 at lines 5

and 7 and do the backtracking circularly until the inequality at line 4 is satisfied. vk and

vk−1 are the placement solutions for the current iteration k and the past iteration k− 1.

uk is the other solution (at iteration k) simultaneously updated with vk, as shown in Al-

gorithm 4. ε = 0.95 is the scaling factor to encourage earlier return of function BkTrk
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Algorithm 5. BkTrk

Require: ak, ak+1, uk, vk, vk−1, ∇ fpre(vk), ∇ fpre(vk−1)
Ensure: αk
1: α̂k =

‖vk−vk−1‖
‖∇ fpre(vk)−∇ fpre(vk−1)‖

2: ûk+1 = vk− α̂k∇ fpre(vk)
3: v̂k+1 = ûk+1+(ak−1)(ûk+1−uk)/ak+1
4: while α̂k > ε

(
‖v̂k+1−vk‖

‖∇ fpre(v̂k+1)−∇ fpre(vk)‖

)
do

5: α̂k =
‖v̂k+1−vk‖

‖∇ fpre(v̂k+1)−∇ fpre(vk)‖
6: ûk+1 = vk− α̂k∇ fpre(vk)
7: v̂k+1 = ûk+1+(ak−1)(ûk+1−uk)/ak+1
8: end while

9: αk = α̂k
10: return

thus prevent over-backtracking, which could consume too much runtime with limited ac-

curacy improvement. The runtime overhead is zero if the first check at line 2 is passed,

since the newly computed gradient ∇ f (v̂k+1) can be reused at the following iteration.

Experiments show that the average number of backtracks per iteration over all the six-

teen MMS benchmarks [65] is only 1.037, indicating less than 4% runtime overhead

on mGP. Disabling backtracking causes ePlace-MS-WA (using the weighted-average

wirelength model) to fail on MMS BIGBLUE4 and increase wirelength by 43.12% on

average of the remaining 15 MMS benchmarks, showing the substantial importance of

our steplength backtracking method for the mixed-size placement.

4.4 Nonlinear Preconditioning

This section introduces our development of the nonlinear preconditioner, which

is used by Nesterov’s method in Algorithm 4 and steplength backtracking in Algorithm 5.

Preconditioning reduces the condition number of a problem, which is transformed to be

more suitable for numerical solution. Traditional preconditioning techniques compute

the inverse of the Hessian matrix Hf of the objective function f . Preconditioning has
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broad application in quadratic placers [27, 30, 60, 61] but none attempts in nonlinear

placers [6, 22, 26], mainly due to the non-convexity of the density function. In this work,

we approximate the original Hessian Hf with a positive definite diagonal matrix H̃f as

the preconditioner. We multiply it to the gradient vector and use ∇ fpre = H̃−1
f ∇ f to

direct the nonlinear placement optimization. A preconditioned gradient vector ∇ fpre is

used to stretch the function space to be more spherical in order to smooth and accelerate

the numerical optimization. However, as the objective function of global placement is

of large scale (usually millions of objects to place) and highly nonlinear, to compute the

Hessian matrix becomes very expensive and indeed computationally impractical. As a

result, we choose the Jacobi preconditioner using only the diagonal terms of the Hessian

matrix Hf, as Eq. (4.9) shows

Hfx,x ≈ H̃fx,x =




∂ 2 f
∂x21

0 · · · 0

0
∂ 2 f
∂x22

· · · 0

...
...
. . .

...

0 0 · · · ∂ 2 f
∂x2n




. (4.9)

By Eq. (3.5), we have

H̃f =



H̃fx,x 0

0 H̃fy,y


= H̃W+λ H̃N. (4.10)

As
∂ 2 f (v)

∂x2i
= ∂ 2W (v)

∂x2i
+λ ∂ 2N(v)

∂x2i
, we need to separately compute or estimate ∂ 2W

∂x2i
and ∂ 2N

∂x2i

at every iteration.
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4.4.1 Wirelength

Based on the LSE wirelength modeling equation shown in Eq. (2.5), we differen-

tiate it to derive the gradient function of the wirelength of net e w.r.t. xi as shown below.

∂WLSEe (v)

∂xi
=

γ

∑ j∈e exp
(
x j/γ

) ×
∂ ∑ j∈e exp

(
x j/γ

)

∂xi
+

γ

∑ j∈e exp
(
−x j/γ

) ×
∂ ∑ j∈e exp

(
−x j/γ

)

∂xi

=
exp(xi/γ)

∑ j∈e exp
(
x j/γ

) − exp(−xi/γ)

∑ j∈e exp
(
−x j/γ

)

(4.11)

Via further differentiating Eq. (4.11) w.r.t. xi, we are able to derive the second-order

gradient of the LSE function as below.

∂ 2WLSEe (v)

∂x2i
=
exp(xi/γ){∑ j∈e exp

(
x j/γ

)
− exp(xi/γ)}

γ{∑ j∈e exp
(
x j/γ

)
}2 +

exp(−xi/γ){∑ j∈e exp
(
−x j/γ

)
− exp(−xi/γ)}

γ{∑ j∈e exp(−x/γ)}2

(4.12)

Similarly, we can derive the gradient function of the WA wirelength model by

differentiating Eq. (2.6), as below shows

∂WWAe (v)

∂xi
=

∑ j∈e exp
(
x j/γ

)
(exp(xi/γ)+(xi/γ)exp(xi/γ))

(
∑ j∈e exp

(
x j/γ

))2 −

(exp(xi/γ)/γ)
(
∑ j∈e x j exp

(
x j/γ

))
(
∑ j∈e exp

(
x j/γ

))2 +

∑ j∈e exp
(
−x j/γ

)
(exp(−xi/γ)− (xi/γ)exp(−xi/γ))

(
∑ j∈e exp

(
−x j/γ

))2 +

(exp(−xi/γ)/γ)
(
∑ j∈e x j exp

(
−x j/γ

))
(
∑ j∈e exp

(
−x j/γ

))2

(4.13)

However, further differentiation of Eq. (4.13) is complicated, moreover, quite computa-
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tionally expensive. As a result, we use the vertex degree of object i instead,

∂ 2WWAe (v)

∂x2i
= ∑
e∈Ei

∂ 2We(v)

∂x2i
≈ |Ei|, (4.14)

where Ei denote the set of all the nets incident to the object i. We have the second-order

derivative of the wirelength function W (v) w.r.t. the horizontal movement of object i

(i.e. xi) expressed as below.

∂ 2W (v)

∂x2i
=

∂ 2∑e∈EiWe(v)

∂x2i
= ∑
e∈Ei

∂ 2We(v)

∂x2i
(4.15)

SinceW (v) in both LSE andWA are strongly convex [21, 47] and globally differentiable,

the Hessian matrices are also positive definite with straightly positive eigenvalues. As a

result, we can use the closed-form formula ∂ 2W
∂x2i
in Eq. (4.15) as the nonlinear wirelength

preconditioner.

4.4.2 Density

By differentiating the density gradient function in Eq. (3.12), we could obtain

the second-order derivative as below

∂ 2N(v)

∂x2i
= −qi

∂ξix(v)

∂xi
= −qiρix(v), (4.16)

where ρi= ρix+ρiy . However, the density function N(v) by Eq. (4.1) is based on a repul-

sive force dominant system, thus it is non-convex. As a result, we could have
∂ 2N(v)

∂x2i
< 0

for some object i. Negative preconditioner will invert the direction of gradient, causing

the cost to increase and the placement solution to diverge. To avoid this, we concisely
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approximate the density preconditioner as below.

∂ 2N(v)

∂x2i
= qi

∂ 2ψi(v)

∂x2i
≈ qi (4.17)

Such operation actually helps decompose charges of different electric quantities all into

unit charges, the electric force applied onto each charge is uniquely determined by the

local electric field, while placement oscillation due to imbalance of density forces is

avoided. The rationale behind is similar to the mechanical movement, where the motion

velocity of each object depends on its acceleration, which is uniquely determined by

the respective field (electrostatic, gravitational, etc.) but not the mass of the object. As

a result, our density equalization method is indeed a simulation of the behavior of a

real electrostatic system. Such system in the real world will always progress towards

states of lower energy, which guarantees the convergence in the end achieving the even

density distribution. The performance comparison of the three density preconditioners

(no preconditioner, Eq. (4.17) and Eq. (4.16)) is shown in Figure 4.5. Compared to the

other two options, our proposed preconditioner using charge quantity qi (object area)

achieves the highest effectiveness and efficiency in the convergence of the density cost

minimization.

Figure 4.5. Performance comparison of the three candidate density preconditioners via a density-

only placement on the MMS ADAPTEC1 benchmark.
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4.4.3 Summary

As a result, we use
∂ 2 f (v)

∂x2i
≈ ∂ 2W (v)

∂x2i
+λqi to approximate the ith diagonal term of

the placement preconditioner H̃fx,x w.r.t. horizontal charge movement, while the precon-

ditioner for the vertical charge movement can be derived in a similar way. Disabling the

preconditioner causes ePlace-MS to fail on nine out of the totally sixteen MMS bench-

marks, since macros significantly differ from standard cells with much higher magnitude

of gradients. As a result, unpreconditioned gradient makes macros with large area and

high incidence degree to bounce between opposite placement boundaries, causing the

solution to oscillate and hard to converge within limited number of iterations3. On aver-

age of the remaining seven MMS benchmarks, the wirelength is increased by 24.63%,

indicating the high effectiveness of our preconditioner for the mixed-size placement.

4.5 Macro Legalization (mLG)

Based on the mGP solution vmGP, mLG legalizes the macro layout via a simu-

lated annealing (SA) [29] based approach, as Figure 4.7 shows. Unlike traditional SA

based floorplanners and macro placers [7, 9, 44, 61] which perturb floorplan expression

then physically realize it, mLG uses SA to directly control macro motion.

• We expect a high-quality solution from mGP. Only local macro shifts are expected

in mLG, the shrunk design space can be well explored by SA.

• Our SA engine is more efficient with only minor position change to each single

macro.

• After each random perturbation of floorplan expression, the respective floorplan

realization may cause significant layout change, which is time consuming and

could induce unexpected quality degradation.

3We set 3000 as the upper limit of iterations in ePlace-MS.
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Similar to Timberwolf [53], however, mLG legalizes macros rather than detailedly place

cells. As Figure 4.6 shows, mLG can be decomposed into two levels. At each iteration

j++, update

D, O

j=0, initialize

D, O

tj,k>tmin

k=0, initialize

tj,0, rj,0

Rand. Select & 

Move (<rj,k)

Macro Legalization (mLG)

Simulated Annealing (SA)

else

k++, update 

tj,k, rj,k

rand. in (0,1)

Incremental

Cost Est. ( f )vmGP

else

vmLG

< exp(- f / t j , k )?Overlap Check

(Om=0?)

yes

yes

else

Figure 4.6. Our two-level annealing-based macro legalizer.

of the outer loop (mLG iteration), we update the cost function fmLG(v) by

fmLG(v) = HPWL(v)+ µDD(v)+ µOOm(v), (4.18)

where HPWL(v), D(v) and Om(v) denote the total wirelength, total standard-cell area

covered by macros and total macro overlap, respectively. We set mLG as a constrained

optimization.

• Objective is to minimize HPWL(v) + µDD(v). Since penalty on D(v) will be

transformed to wirelength during cGP and cDP, we treat them equally in mLG

thus statically set µD = HPWL(v)
D(v) .

• Constraint is zero macro overlap (Om(v) = 0). We set µO as the penalty factor

and initialize it as (HPWL(v)+ µDD(v))/Om(v). µO is multiplied by β at each

mLG iteration to make the legalizer more aggressive on macro overlap reduction.
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At each iteration of the inner loop shown in Figure 4.6 (SA iteration), the an-

nealer randomly picks a macro and randomly determine its motion vector within the

search range. The cost difference ∆ f is then incrementally evaluated and we generate

a random number τ ∈ (0,1) to determine whether the new layout will be accepted or

not by checking if τ < exp
(
−∆ f
t j,k

)
. Here j and k denote the mLG and SA iteration in-

dices. The temperature t j,k at each iteration ( j,k) is determined based on the maximum

cost increase ∆ fmax( j,k) that will be accepted by more than 50% probability, thus we set

t j,k =
∆ fmax( j,k)
ln2

. We set ∆ fmax( j,0) (∆ fmax( j,kmax)) as 0.03×β j (0.0001×β j), denoting

that cost increase by less than 3% (0.01%) at the first (last) SA iteration will be accepted

by more than 50% probability. These parameters appear small but fit well into our frame-

work, since only minor layout change is expected in mLG. Meanwhile, they are scaled

up per mLG iteration to adapt to the enhancement of the penalty factor µO. We initialize

∆ fmax( j,k) by ∆ fmax( j,0) and linearly decrease it towards ∆ fmax( j,kmax). The radius

r j,k of macro motion range is dependent on both the penalty factor and the amount of

macros. Given m macros to legalize, we set r j,0 = Rx√
m
× 0.05× β j, which means the

entire placement region R can be decomposed into m sub-regions, every macro can be

moved within 5% of its assigned region at each time. Similar to the temperature, the

radius is scaled by β at each mLG iteration. In practice, we set β = 1.5 to achieve good

tradeoff between quality and efficiency.

4.6 Standard Cell-Only Global Placement (cGP)

Based on the fixed macro layout produced by mLG, cGP mitigates the quality

overhead due to mLG via a second-phase global placement performed on only standard

cells. With the presence of all the macros fixed, however, cGP uses the same nonlinear

algorithm as that of mGP. In contrast, as Figure 4.8 shows, cGP introduces only small

changes to the standard-cell layout and converges much faster than mGP. It consists
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(a) j=0, k=0, W=63.37e6,

D=12.29e5, O=16.48e6,

Om=60.94e4.

(b) j=0, k=1, W=63.61e6,

D=13.57e5, O=16.17e6,

Om=17.14e4.

(c) j=0, k=9, W=64.19e6,

D=14.55e5, O=16.03e6,

Om=2.16e4.

(d) j=3, k=1, W=64.36e6,

D=14.83e5, O=16.08e6,

Om=0.

Figure 4.7. Distribution of macros (a) before mLG (b) 1st mLG iteration (c) 2nd mLG iteration

(d) after mLG by ePlace-MS-WA on the MMS ADAPTEC1 benchmark with fixed standard-cell

layout and all the fillers removed. Total wirelength, total standard-cell area covered by macros,

total object overlap and total macro overlap are denoted byW , D, O and Om, respectively.

(a) Iter=0, W=64.36e6,

N=42.05e9, τ = 9.84%,
O=16.09e6.

(b) Iter=20, W=64.36e6,

N=78.27e6, τ = 9.84%,
O=16.09e6.

(c) Iter=28, W=61.30e6,

N=21.70e7, τ = 19.96%,
O=22.83e6.

(d) Iter=51, W=63.04e6,

N=15.29e6, τ = 9.81%,
O=16.29e6.

Figure 4.8. Distribution of standard cells and fillers (a) before cGP (b) after filler redistribu-

tion (c) standard cell and filler co-optimization (d) after cGP by ePlace-MS-WA on the MMS

ADAPTEC1 benchmark with the fixed macro layout produced by mLG. Total wirelength, total

potential energy, total density overflow and total object overlap are denoted byW , N, τ and O,
respectively. Total macro overlap remains zero and is not shown here.

of three steps (1) filler insertion (2) filler-only placement (3) standard cell & filler co-

placement.

As Figure 4.1 shows, mLG is unaware of existing fillers in xcGP and may in-

troduce substantial macro-to-filler overlap. As a result, we retrieve all the fillers and

randomly distribute them in the placement region. With all the standard cells fixed, a

filler-only placement is conducted for 20 iterations in order to relocate fillers to their best

sites. The resulting solution with minimal density cost ensures the following placement

of standard cells not to sacrifice wirelength to compensate density cost due to improper

filler distribution. Experiments show that on average of all the MMS benchmarks, the
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wirelength will be increased by 6.53% if we remove filler-only placement.

cGP co-optimizes standard cells with fillers after distributing all the fillers to

their best location. The initial penalty factor λ initcGP is determined based on the penalty

factor λ lastmGP at the last mGP iteration. As λ will be multiplied by up to 1.1 for maximal

aggressiveness enhancement, we set λ initcGP = λ lastmGP× 1.1m denoting that m buffering it-

erations are budgeted for cGP to recover the aggressiveness of mGP. This is shown in

the cGP section of Figure 4.2, where the wirelength (overlap) first reduces (increases)

sharply to approach a low-wirelength initial solution for cGP (similar to what mIP does).

By increasing λcGP iteratively, cGP reduces the existing overlap with well controlled

wirelength overhead. In practice, we set m as the number of mGP iterations divided by

ten to achieve good performance with short runtime.

4.7 Experiments and Results

We implement ePlace-MS using C programming language and execute the pro-

gram in a Linux machine with Intel i7 920 2.67GHz CPU and 12GB memory. To vali-

date the performance of ePlace-MS, we conduct experiments on the modern mixed-size

(MMS) benchmarks [65], as shown in Table 4.1. MMS benchmarks inherit the same

netlists and density constraints ρt from ISPD 2005 [46] and ISPD 2006 [45] bench-

marks but have all the macros freed to place. There are also fixed IO blocks inserted

within the placement domain in order to maintain the uniqueness of the analytic solu-

tion. Following the contest policy in ISPD 2006 [45], there is a benchmark-specific

density upper-bound ρt for eight out of the totally sixteen circuits. This target den-

sity ρt helps produce whitespace among circuit objects to accommodate interconnect

and buffers, therefore facilitate the following design stages of routing, timing correc-

tion, etc. By the benchmark protocol [45], exceeding ρt will penalize the wirelength by

sHPWL = HPWL× (1+0.01× τavg), where τavg denotes the scaled density overflow
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per bin and sHPWL is the scaled wirelength. More detailed circuit statistics of MMS

benchmarks can be found in [65]. After cGP is completed, ePlace-MS invokes the de-

tailed placer in [22] for the legalization and detailed placement of only standard cells

(cDP). There is no benchmark specific parameter tuning in our work, and we use the of-

ficial scripts from [65] to evaluate the performance of all the placers in our experiments.

Seven state-of-the-art mixed-size placers covering two categories of algorithms

(as discussed in Chapter 1) are included in the experiments for the performance compari-

son, namely, Capo10.5 [52], FastPlace3.0 [61], ComPLx (v13.07.30) [27], POLAR [30],

mPL6 [6], FLOP [65], NTUplace3-unified [22]. We have obtained the binaries of four

placers and executed them on our machine. FLOP is not available due to IP and other

issues, thus we cite their performance from [65]. Capo10.5 and mPL6 fail to work with

MMS benchmarks in our machine, so we cite the respective results also from [65] in-

stead. Also, APlace3 [26] crashes on every MMS circuit as reported in [65] thus is not

included in the results. MP-tree [9] and CG [7] are not available due to the industrial

copyrights, while their results on MMS benchmarks are also not available. However, as

both of them have been outperformed by NTUplace3-unified [22] with on average 21%

and 9% shorter wirelength (reported in Table V of [22]), we do not include them in our

experiments.

The experimental results of HPWL and scaled HPWL (sHPWL) on the MMS

circuits are shown in Table 4.2. As shown in Table 4.1, there are no target density con-

straints for the first eight circuits (i.e., 100%) thus no density penalty on the wirelength.

In other words, HPWL equals sHPWL for the first eight MMS testcases in Table 4.2

as marked with †. NTUplace3-unified-NR (with macro rotation and flipping disabled)

fails on two MMS benchmarks (NEWBLUE3 and NEWBLUE7) with the average wire-

length, density overflow and runtime computed based on the other fourteen benchmarks.

Compared to all the placers in the experiments, ePlace-MS produces the best solutions
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with the shortest wirelength for fourteen out of the totally sixteen testcases. Besides,

it outperforms the leading-edge mixed-size placer NTUplace3 [22] by up to 22.98%

shorter wirelength4 and on average 8.22% shorter wirelength over all the MMS circuits.

Notice that unlike NTUplace3, ePlace-MS does not allow macro rotation or flipping,

which indicates further improvement space thus potentially better solution quality. The

statistics of density overflow (i.e. the amount of violations to the testcase dependent

target density ρt as specified in Table 4.1) is shown in Table 4.3. The respective results

of Capo10.5, FLOP-NR and mPL6 are not available from respective publications [65].

ePlace-MS obtains consistently the lowest density overflow at all the eight testcases

(with predefined target density), showing the best performance of our density modeling

method eDensity. The runtime statistics is shown in Table 4.4. On average of all the six-

teen MMS benchmarks, ePlace-MS runs faster than Capo10.5, FLOP, ComPLx, mPL6,

and shows essentially the same efficiency with NTUplace3. Despite longer runtime than

FastPlace3.0 and POLAR, ePlace-MS produces on average 19.47% and 32.03% shorter

wirelength. In general, ePlace-MS outperforms all the mixed-size placement algorithms

in literature and achieves good results on both LSE and WA wirelength models, show-

ing that our density function and nonlinear optimization algorithm have high and stable

performance, which are not dependent on specific wirelength models.

Figure 4.9. The runtime breakdown of ePlace-MS-WA on average of all the sixteen MMS

benchmarks.

4ePlace-MS produces 22.98% shorter wirelength than NTUplace3 on NEWBLUE7, which is the
largest design in the MMS benchmark suite with roughly 2.5 million components.
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Figure 4.10. The runtime breakdown of mGP of ePlace-MS-WA on average of all the sixteen

MMS benchmarks.

Figure 4.9 shows the CPU breakdown of ePlace-MS-WA on average of all the

MMS benchmarks. mGP is the most effective placement stage (as Figure 4.2 shows) and

consumes the longest runtime. A further breakdown of mGP by Figure 4.10 illustrates

that computation of density and wirelength gradients and other operations (Lipschitz

constant prediction, parameter update, etc.) consume 57%, 29% and 14% runtime of

mGP.

4.8 Summary

ePlace-MS is a generalized and effective placement algorithm to handle mixed-

size circuits of very large scale. Using the density function eDensity based on electrostat-

ics analogy, macros and standard cells are equalized by preconditioning and smoothly

co-optimized by Nesterov’s method. Steplength is determined via Lipschitz continu-

ity together with a backtracking strategy to prevent overestimation. Unlike all the ap-

proaches in literature, ePlace-MS treats standard cells and macros in exactly the same

way. The experimental results on MMS benchmarks validate its high and stable perfor-

mance.

Chapter 4 includes the content to appear in the journal “ePlace-MS: Electrostat-

ics based Placement for Mixed-Size Circuits” by Jingwei Lu, Hao Zhuang, Pengwen

Chen, Hongliang Chang, Chin-Chih Chang, Yiu-Chung Wong, Lu Sha, Dennis Huang,

Yufeng Luo, Chin-Chi Teng and Chung-Kuan Cheng in IEEE Transactions on Computer-
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Aided Design of Integrated Circuits and Systems (TCAD). The dissertation author was

the primary investigator and author of the paper.



Chapter 5

Conclusion

ePlace is a generalized and effective nonlinear placement algorithm. It resolves

the traditional bottlenecks in nonlinear placement (low efficiency due to line search, sub-

optimality of netlist clustering, quality degradation via coarse density grid at early stage,

etc.), and shows that nonlinear placement has the capability to outperform cutting-edge

quadratic placement algorithms [27, 28, 30, 58, 60] with better solution quality and

comparable or even shorter runtime. Compared to the state-of-the-art research inno-

vations in placement literature, such as the linear formulation of density for quadratic

placement [13], or the exponential formulation of wirelength and Bell-shape quadratic

formulation of density for nonlinear placement [47], and etc., ePlace looks into this tra-

ditional problem in a new angle. Specifically, we well study and leverage the analogy

between placement and electrostatics, while eDensity is actually conducting a simula-

tion on the behavior of the equivalent electrostatic system. As a result, we could have

global smoothness, fast convergence and high quality all be achieved in a promising

way.

By extension, we develop ePlace-MS, a generalized and effective placement al-

gorithm, to handle large-scale mixed-size circuits. Macros and standard cells are well

equalized by our nonlinear preconditioning methodology. All the circuit objects, despite

of huge topological and physical differences, are smoothly co-optimized by Nesterov’s

94
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method with steplength estimated via Lipschitz continuity together with a novel back-

tracking strategy. Unlike all the approaches in literature, ePlace-MS treats standard cells

and macros in exactly the same way, which saves engineering efforts and enhances per-

formance stability. The experimental results on MMS benchmarks validate the high and

stable performance of ePlace-MS over circuits of very different structures.

In future, We will explore opportunities in the parallel computing platform, while

gradient computation can be well accelerated via distributed system [17] or graphics pro-

cessing units [43]. As Figure 4.10 shows, the major runtime bottlenecks of mixed-size

global placement lie in the computation of density and wirelength gradients, where com-

plete independence between placement objects can be identified within the wirelength

formulation and the FFT structure, indicating ultra-high parallelism of ePlace-MS thus

huge potential of acceleration via multi-core, graphics processing unit or distributed sys-

tems. Moreover, the internal analytic infrastructure of ePlace-MS allows it to smoothly

interface with other optimization stages in the entire VLSI back-end design flow, while

integration of other design objectives (timing, routability, thermal, etc.) can be effec-

tively realized through well formulated gradient functions together with appropriate ad-

justment of balancing ratios.
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