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Abstract

On extremizers for adjoint Fourier restriction inequalities
and a result in incidence geometry

by

René Leonardo Quilodrán

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Christ, Chair

Whenever we have a bounded linear operator T : X → Y between two Banach spaces
X, Y we can ask what nonzero elements x∗ ∈ X satisfy ‖Tx∗‖ = ‖T‖‖x∗‖. Such elements
of X are called extremizers for the inequality ‖Tx‖ 6 ‖T‖‖x‖. A sequence {xn}n∈N in
X satisfying ‖xn‖ 6 1 and ‖Txn‖ → ‖T‖, as n → ∞, is called an extremizing sequence.
For extremizing sequences we can ask whether they are precompact after the application of
symmetries of the operator T . We can also ask for the value of the operator norm of T , ‖T‖.

The adjoint Fourier restriction operator associated to a hypersurface S with measure
σ in Rd, f 7→ f̂σ, is known to be bounded from L2 to Lp in the case of the cone, the
hyperboloid and the paraboloid in Rd, for a certain range of exponents p ∈ [1,∞]. Existence
and nonexistence of extremizers, precompactness of extremizing sequences, Euler-Lagrange
equations for extremizers and best constants is what we study in the first three parts of this
dissertation.

In the first part we study the adjoint restriction inequality on the cone, Γ2 ⊂ R3. We
prove that extremizing sequences for the inequality from L2(Γ2) to L6(R3) are precompact
up to the natural symmetries of the cone, dilations and Lorentz transformations.

In the second part we study extremizers on the hyperboloid in dimensions 3 and 4. We
prove that in both cases extremizers do not exist and compute the best constant in the
adjoint Fourier restriction inequality.

In the third part, in a joint work with Michael Christ, we consider the case of the
paraboloid, or equivalently, Strichartz inequalities for the Shrödinger equation. It is shown
there that a natural class of functions, the Gaussians, known to extremize the L2 → Lp

adjoint Fourier restriction inequalities in dimensions 2 and 3 are no longer critical points, and
thus are not extremizers, of the nonlinear functional associated to the Lq → Lp inequalities
for q 6= 2. The case of mixed norms is also studied.

In the last chapter we look at an incidence geometry problem, the problem of counting
noncoplanar intersections of lines in Rd. The problem can be seen as a discrete version of
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the Kakeya problem, an open problem in real analysis. There we prove a sharp upper bound
for the number of transverse intersections of a collection of lines.
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Chapter 1

Introduction to extremals for Fourier
restriction inequalities

We give here an introduction to the topic of extremals for Fourier restriction inequalities.
Without trying to be exhaustive we will give an overview of recent results in this subject as
well as discuss the general ideas in some of the results which are relevant for this dissertation.

Let d > 2 and S ⊂ Rd be a an n-dimensional submanifold of the Euclidean space and
σ a positive Borel measure on S. The adjoint restriction operator, or extension operator,
associated to (S, σ) is

Tf(x) =

∫
S

e−ix·yf(y)dσ(y), (1.1)

defined for x ∈ Rd and f ∈ S(Rd). The operator T is the formal adjoint of the operator R,
defined by Rg = ĝ|S, for g ∈ S(Rd), i.e. the restriction of the Fourier transform of g to S.

With the Fourier transform in Rd defined to be ĝ(x) =
∫
Rd
e−ix·yg(y)dy we have Tf(x) =

f̂σ(x).
We are interested in the case where S is a hypersurface in Rd and the measure σ = ψ ·dµ,

where µ is the surface measure on S and ψ ∈ C∞(Rd). Examples include the paraboloid,
sphere, hyperboloid and cone endowed with their natural measures.

Under conditions on S that include smoothness and nonvanishing Gaussian curvature an
estimate of the kind1

‖Tf‖Lp(Rd) 6 C‖f‖L2(S) (1.2)

holds for a certain range of p ∈ [1,∞]. Suppose p is such that (1.2) holds and let R =
sup06=f∈L2(S) ‖Tf‖Lp(Rd)‖f‖−1

L2(S) be the best constant, then we can talk about extremizers
and extremizing sequences:

Definition 1.1. An extremizing sequence for the inequality (1.2) is a sequence {fn} of

functions in L2(S, σ) satisfying ‖fn‖L2(S) 6 1, such that ‖f̂nσ‖Lp(Rd) → R as n→∞.

1For different kinds of conditions an range of exponent p we refer to Chapter 8 in [45].
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An extremizer for (1.2) is a function f 6= 0 which satisfies ‖f̂σ‖Lp(Rd) = R‖f‖L2(S).

Our main purpose here is to mention different results that prove the existence of extrem-
izers, the precompactness of extremizing sequences and/or that compute the best constant.

We start with the work of Kunze [31] where he considers the adjoint Fourier restriction
on the parabola in R2, P1 = {(y, 1

2
y2) : y ∈ R} with measure σ(y, y′) = δ(y′ − 1

2
y2)dydy′,

defined as ∫
fdσ =

∫
R

f(y, 1
2
y2)dy, (1.3)

for f ∈ S(R2).
One has the following estimate [47]

‖f̂σ‖L6(R2) 6 C‖f‖L2(P1). (1.4)

Using the technique of concentration-compactness of Lions [32], Kunze proves

Theorem 1.2 ([31]). There exists an extremizer for inequality (1.4). Moreover, nonnegative
extremizing sequences are precompact, after the application of symmetries.

1.1 The method of Foschi

The work of Foschi [20] is of special importance for us. He relies on the equivalent formulation
of the restriction inequality in terms of a convolution inequality, obtained via the Fourier
transform. In [20], he considers the case of the restriction on the paraboloid (or equivalently,
Strichartz estimates for the Schrödinger equation) in dimensions 2 and 3, and the case of
Strichartz inequalities for the wave equation in dimensions 3 and 4. This last ones are
related to the restriction on the cone, case considered by Carneiro [7], who used the method
developed by Foschi. We mention here that Hundertmark and Zharnitsky obtained the same
result as Foschi for the restriction on the paraboloid, using a different method. To state their
theorems we need to introduce the measures on the respective manifolds.

For d > 1, let Pd = {(y, 1
2
|y|2) : y ∈ Rd} ⊂ Rd+1 denote the paraboloid in Rd+1. In Pd

we consider the scale invariant measure σ(y, y′) = δ(y′ − 1
2
|y|2)dydy′, i.e.∫

Pd
f(y, y′)dσ(y, y′) =

∫
Rd

f(y, 1
2
|y|2)dy,

for all f ∈ C0(Rd+1). The adjoint Fourier restriction operator is then

Tf(x, t) = f̂σ(x, t) =

∫
R2

e−ix·ye−
1
2
it|y|2f(y)dy,

We denote by Γd = {(y, |y|) : y ∈ Rd} ⊂ Rd+1 the cone in Rd+1 with measure σ(y, y′) =
δ(y′ − |y|)|y|−1dydy′.



CHAPTER 1. ON FOURIER RESTRICTION INEQUALITIES 3

In the case of the paraboloid, if (d, p) = (2, 4) or (d, p) = (1, 6) then (see [47])

‖f̂σ‖Lp(Rd+1) 6 C‖f‖L2(Pd), (1.5)

and in the case of the cone, if (d, p) = (2, 6) or (d, p) = (3, 4) then

‖f̂σ‖Lp(Rd+1) 6 C‖f‖L2(Γd). (1.6)

Theorem 1.3 ([20],[28]). The following inequalities are sharp

‖f̂σ‖L6(R2) 6
(2π)

1
2

3
1
12

‖f‖L2(P1),

‖f̂σ‖L4(R3) 6 23/4π‖f‖L2(P2),

and there is equality if and only if f(y) = e−a|y|
2+b·y+c, for a, c ∈ C, Re a > 0 and b ∈ C2 or

C3 depending on the case.

Theorem 1.4 ([7]). The following inequalities are sharp

‖f̂σ‖L6(R3) 6 (2π)5/6‖f‖L2(Γ2),

‖f̂σ‖L4(R4) 6 (2π)5/4‖f‖L2(Γ3),

and there is equality if and only if f(y) = e−a|y|+b·y+c, for a, c ∈ C, Re a > 0 and b ∈ C2 or
C3 depending on the case.

By considering the inequality in convolution form, one can reduce the problem to the
computation of the convolutions σ ∗ σ for the inequality from L2 to L4, and σ ∗ σ ∗ σ for the
inequality from L2 to L6.

We will give an idea of Foschi’s method with two examples. In the first we will sketch the
proof of Theorem 1.3 in the case of the paraboloid in R3 and in the second, that extremizers
do not exist for a perturbation of the paraboloid.

1.1.1 An existence result

Let us consider Theorem 1.3 in three dimensions

Theorem 1.5 ([20], [28]). For any f ∈ L2(P2),

‖f̂σ‖L4(R3) 6 23/4π‖f‖L2(P2).

The inequality is sharp and there is equality if and only if f(y) = e−a|y|
2+b·y+c, for a, c ∈ C,

Re a > 0 and b ∈ C2.
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Foshi’s argument relies on the following lemma

Lemma 1.6. Let f ∈ L2(P2), then for all (ξ, τ) ∈ R2 ×R we have

|fσ ∗ fσ(ξ, τ)|2 6 |f |2σ ∗ |f |2σ(ξ, τ) · σ ∗ σ(ξ, τ). (1.7)

Before we prove the lemma we give the proof of the theorem

Proof of Theorem 1.5. Using Plancherel’s theorem,

‖f̂σ‖2
L4 = ‖(f̂σ)2‖L2 = ‖(fσ ∗ fσ)̂ ‖L2 = (2π)3/2‖fσ ∗ fσ‖L2 ,

so we need to show that ‖fσ ∗ fσ‖L2 6 π1/2‖f‖2
L2 for all f ∈ L2(R2) with equality only if f

is a Gaussian. Applying the Lemma, and denoting P the support of σ ∗ σ, gives

‖fσ ∗ fσ‖2
L2(R3) 6

∫
P
|f |2σ ∗ |f |2σ(ξ, τ) · σ ∗ σ(ξ, τ)dξdτ (1.8)

6 sup
(ξ,τ)∈P

σ ∗ σ ·
∫
P
|f |2σ ∗ |f |2σ(ξ, τ)dξdτ (1.9)

= ‖σ ∗ σ‖L∞(R3)‖f‖4
L2(P2). (1.10)

It is not hard to compute σ ∗ σ explicitly. The symmetries of the paraboloid can be used to
simplify the calculations. One gets

σ ∗ σ(ξ, τ) = πχ{τ> 1
4
|ξ|2},

and therefore
‖fσ ∗ fσ‖L2(R3) 6 π1/2‖f‖2

L2(P2) (1.11)

as desired.
We now show that the inequality is sharp. To have equality in (1.11) we must have

equality in (1.8) and (1.9). Since σ ∗ σ is constant in its support, (1.9) is an equality. For
equality in (1.8), we need equality in (1.7) for a.e. (ξ, τ) in the support of fσ ∗ fσ. On the
one hand it is easy to show that for f(y) = e−a|y|

2+b·y+c, with a, b, c as in the statement of
the theorem, (1.7) becomes equality for all (ξ, τ). Foschi shows that the converse holds by
studying a certain functional equation obtained from (1.7) by imposing the Cauchy-Schwarz
inequality (1.12) below to be equality.

Proof of Lemma 1.6. Note that

fσ ∗ fσ(ξ, τ) =

∫
R2

f(y)f(ξ − y)δ(τ − 1
2
|y|2 − 1

2
|ξ − y|2)dy

=

∫
R2

f(y)f(z)δ(τ − 1
2
|y|2 − 1

2
|z|2)δ(ξ − y − z)dzdy

=

∫
R2

f(y)f(z) δ

(
τ − 1

2
|y|2 − 1

2
|z|2

ξ − y − z

)
dzdy.
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For each (ξ, τ), the measure

µ(ξ,τ) = δ

(
τ − 1

2
|y|2 − 1

2
|z|2

ξ − y − z

)
dzdy

is defined as the pullback of the Dirac delta on R×R2 by the function Φ(ξ,τ) : R2 ×R2 →
R×R2 given by

Φ(ξ,τ)(y, z) = (τ − 1
2
|y|2 − 1

2
|z|2, ξ − y − z).

Denote by (f ⊗ g)(y, z) = f(y)g(z), so that

fσ ∗ fσ(ξ, τ) = 〈f ⊗ f, 1⊗ 1〉(ξ,τ).

Using the Cauchy-Schwarz inequality we obtain

|fσ ∗ fσ(ξ, τ)|2 6 ‖f ⊗ f‖2
(ξ,τ)‖1⊗ 1‖2

(ξ,τ). (1.12)

Now,

‖f ⊗ g‖2
(ξ,τ) =

∫
|f |2(y)|g|2(z) δ

(
τ − 1

2
|y|2 − 1

2
|z|2

ξ − y − z

)
dzdy

= |f |2σ ∗ |g|2σ(ξ, τ)

for all f, g ∈ S(R3), and the result follows.

1.1.2 A nonexistence result

Here we consider a perturbed paraboloid. For a > 0 let Sa = {(y, 1
2
|y|2 + a|y|4) : y ∈

R
2} ⊂ R3, endowed with the measure σa(y, y

′) = δ(y′ − 1
2
|y|2 − a|y|4)dydy′. There exists

C = Ca <∞ such that for all f ∈ L2(Sa) the following inequality holds

‖f̂σa‖L4(R3) 6 C‖f‖L2(Sa). (1.13)

We have the following result,

Theorem 1.7. Let a > 0. For all f ∈ L2(Sa)

‖f̂σa‖L4(R3) 6 23/4π‖f‖L2(Sa).

The inequality is sharp and there are no extremizers.

Remark 1.8. Note that the measure σa is not the surface measure on Sa. On the one
hand, if surface measure is used, then it is not hard to see that an inequality as (1.13)
does not hold. On the other hand, if surface measure, σa,ρ, is used on the truncation of Sa,
Sa,ρ = {(y, 1

2
|y|2 + a|y|4) : y ∈ R2, |y| 6 ρ} for ρ > 0, then an inequality as (1.13) holds.
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The existence of extremizers depends on the relationship between a and ρ. The first step
in proving precompactness of extremizing sequences is to obtain a lower bound for the best
constant, of the form

Ca,ρ := sup
f∈L2(Sa,ρ,σa,ρ)

‖f̂σa,ρ‖L4(R3)‖f‖−1
L2(Sa,ρ) > 23/4π. (1.14)

Inequality (1.14) is a necessary condition for the argument in [9] to work. A stronger condi-
tion is needed to prove that every extremizing sequence is precompact, as one needs to rule
out concentration at every point on Sa,ρ, not just at the vertex (0, 0) ∈ Sa,ρ (see Proposition
1.17). A sufficient condition to dismiss concentration seems to be

Ca,ρ > (2π)3/4 sup
y∈P
|σa,ρ ∗ σa,ρ(y)|1/4,

where P is the part of the boundary of the support of σa,ρ ∗ σa,ρ, contained in the surface
{(y, 1

4
|y|2 + a

8
|y|8) : y ∈ R2}. Observe that (1.14) is equivalent to the weaker condition

Ca,ρ > (2π)3/4|σa,ρ ∗ σa,ρ(0)|1/4.
If ρ is sufficiently large, independent of a, then (1.14) holds for all a > 0. For small ρ,

it is possible to show that if a is small, then (1.14) holds, and if a is large, then (1.14) does
not hold. More precisely, there exists a0 ∈ [1

8
, 1

4
] with the property that for all a > a0, there

exists ρ0 > 0 such that Ca,ρ = 23/4π if ρ < ρ0 and Ca,ρ > 23/4π if ρ > ρ0, and if a < a0 then
Ca,ρ > 23/4π for all ρ > 0. We do not prove this here.

As for the case of the paraboloid, the proof of Theorem 1.7 reduces to the calculation of
σa ∗ σa.

Lemma 1.9. For any a > 0 we have

σa ∗ σa(ξ, τ) 6
πχ(τ > 1

4
|ξ|2 + a

8
|ξ|4)(

8a(τ − 1
4
|ξ|2 − a

8
|ξ|4) + (1 + a|ξ|2)2

)1/2
. (1.15)

Sketch of proof. In the case a > 0 there are no exact symmetries, so we write

σ ∗ σ(ξ, τ) =

∫
R2

δ(τ − 1
2
|ξ − y|2 − 1

2
|y|2 − a|ξ − y|4 − a|y|4)dy.

The use of the change of variables η = 1
2
ξ − y, polar coordinates and a few more changes of

variables gives the formula

σ ∗ σ(ξ, τ) = χ(τ > 1
4
|ξ|2 + a

8
|ξ|4)

∫ π/2

0

dθ

(2a(τ − |ξ|2
4
− a|ξ|4

8
+ 2ah2(a, ξ, θ)))1/2

, (1.16)

where h(a, ξ, θ) = 1
4a

(1 + a|ξ|2(1 + 2 cos2 θ)).
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For 0 6 θ 6 π
2
,

2a(τ − 1
4
|ξ|2 − a

8
|ξ|4) + 4a2h2(a, ξ, θ) = 2a(τ − 1

4
|ξ|2 − a

8
|ξ|4) + 1

4
(1 + a|ξ|2(1 + 2 cos2 θ))2

> 2a(τ − 1
4
|ξ|2 − a

8
|ξ|4) + 1

4
(1 + a|ξ|2)2.

Then

σa ∗ σa(ξ, τ) 6
πχ(τ > 1

4
|ξ|2 + a

8
|ξ|4)(

8a(τ − 1
4
|ξ|2 − a

8
|ξ|4) + (1 + a|ξ|2)2

)1/2
.

Proof of Theorem 1.7. The same argument as for the paraboloid gives the inequality

‖fσa ∗ fσa‖L2(R3) 6 ‖σa ∗ σa‖1/2

L∞(R3)‖f‖
2
L2(Sa). (1.17)

Lemma 1.9 and (1.16) imply that ‖σa ∗ σa‖L∞(R3) = π for all a > 0, just as the case of the
paraboloid, that corresponds to a = 0. Hence

‖fσa ∗ fσa‖L2(R3) 6 π1/2‖f‖2
L2(Sa).

To show that the inequality is sharp we consider the extremizing sequence {fn/‖fn‖2}n∈N,

where fn(y) = e−n( 1
2
|y|2+a|y|4). Since fn is the restriction of the linear function in R3, e−nx3 ,

to Sa, one sees that fnσa ∗ fnσa(ξ, τ) = e−nτσa ∗ σa(ξ, τ). A calculation shows

lim
n→∞

‖fnσa ∗ fnσa‖L2‖fn‖−2
L2 = π1/2.

To prove that extremizers do not exist we note that (1.15) implies that

σa ∗ σa(ξ, τ) < π for all (ξ, τ) 6= (0, 0),

and therefore (1.17) is a strict inequality whenever f 6= 0 as can be seen from the equivalent
of (1.9) for Sa.

This very same method allows us to prove that for the hyperboloid Hd = {(y,
√

1 + |y|2) :

y ∈ Rd} with Lorentz invariant measure σ(y, y′) = δ(y′ −
√

1 + |y|2) dydy′√
1+|y|2

, extremizers do

not exist for the inequalities

‖f̂σ‖Lp(Rd+1) 6 C‖f‖L2(Hd) (1.18)

for (d, p) equal to (2, 4), (2, 6) and (3, 4). We also compute the value of the best constant for
those three cases of (d, p).
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1.2 A refinement of the adjoint Fourier restriction ine-

quality

Moyua, Vargas and Vega gave in [34] a refinement to the Fourier extension inequality. This
refinement will be important for the proof of Christ and Shao discussed in Section 1.3 and we
will obtain an analogous result for the cone in R3. To state their result we let Φ : B(0, 2) ⊂
R

2 → R be a C∞ function satisfying

det(∂2
xixj

Φ) > 1,

for all x ∈ B(0, 2) = {x ∈ R2 : |x| 6 2}. This implies that the surface S = {(y,Φ(y)) : |y| 6
1} has nonvanishing Gaussian curvature and thus Tf defined by

Tf(x, t) = f̂σ(x, t) =

∫
|y|61

e−ix·ye−itΦ(y)f(y)dy (1.19)

satisfies
‖f̂σ‖L4(R3) 6 C‖f‖L2(|y|61), (1.20)

for all f ∈ L2(B(0, 1)), for C <∞ independent of f .
For 1 < p < 2 the cap space Xp is defined as

Xp =
{
f : ‖f‖Xp :=

(∑
δ,k

δ4
( 1

|τ kδ |

∫
τkδ

|f |pdx
)4/p)1/4

<∞
}
, (1.21)

where, for δ = 2−j, j = 1, 2, . . . , {τ kδ }k∈N denotes a grid of squares with disjoint interior and
dimensions δ × δ.

Moyua, Vargas and Vega prove the following,

Theorem 1.10. For every p > 12/7 there exists Cp < ∞ with the property that for all
f ∈ Xp,

‖f̂σ‖L4(R3) 6 Cp‖f‖Xp . (1.22)

They also prove that Xp is a bigger space than L2, provided that p < 2,

Proposition 1.11. Given 1 < p < 2 there exists C < ∞ such that for every f ∈ Xp,
‖f‖Xp 6 C‖f‖L2.

Rogers and Vargas [40] obtain the same type of refinement for the adjoint Fourier re-
striction inequality on the saddle {(x1, x2, x3) ∈ R

3 : x3 = x1 x2} where the measure
δ(x3 − x1 x2)dx1dx2dx3 is used. Moreover they refine the inequality in Proposition 1.11
in an analogous way to that obtained by Christ and Shao for the case of the sphere. In [9],
that refinement is used to obtain a “cap decomposition” of a given function f ∈ L2(S2). We
will discuss this in the next section.
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1.3 The concentration-compactness argument of Christ

and Shao

In this section we give a general idea of the proof given by Christ and Shao for the existence
of extremizers for the Fourier extension inequality on the sphere. The work of Christ and
Shao [9] is the first that considers the case of a compact manifold, in this case the sphere
S2 ⊂ R3. They develop a general concentration compactness argument suitable to be used
for other manifolds.

Let S2 = {y ∈ R3 : |y| = 1} denote the sphere in R3 and σ the surface measure on S2.
The adjoint Fourier restriction operator on S2 is defined by

Tf(x) = f̂σ(x) =

∫
S2

e−ix·yf(y)dσ(y). (1.23)

for x ∈ R3 and f ∈ L2(S2). With the Fourier transform defined to be ĝ(ξ) =
∫
R3 e

−ix·ξg(x)dx

we see that Tf(x) = f̂σ(x). The Thomas-Stein inequality for the adjoint Fourier restriction
operator states that there exists C <∞ such that

‖f̂σ‖L4(R3) 6 C‖f‖L2(S2), (1.24)

for all f ∈ L2(S2).
Denote by R the best constant in (1.24),

R = sup
06=f∈L2(S2)

‖Tf‖L4(R3)

‖f‖L2(S2)

. (1.25)

The use of Plancherel’s Theorem allows us to rewrite (1.24) as a convolution inequality,

‖f̂σ‖2
L4 = ‖(f̂σ)2‖L2 = ‖(fσ ∗ fσ)̂ ‖L2 = (2π)3/2‖fσ ∗ fσ‖L2 .

Then (1.24) is equivalent to

‖fσ ∗ fσ‖L2(R3) 6 C‖f‖2
L2(S2). (1.26)

The convolution form of (1.24) implies that ‖|̂f |σ‖4 > ‖f̂σ‖4 for all f ∈ L2(S2) and so
in the analysis of extremizers and extremizing sequences we can restrict to the case where
the functions are nonnegative.

The main theorem in [9] is

Theorem 1.12. There exists an extremizer in L2(S2) for the inequality (1.24). Moreover,
any extremizing sequence of nonnegative functions in L2(S2) for the inequality (1.24) is
precompact.
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A symmetry of the functional T allows to reduce to the case of even functions, func-
tions satisfying f(x) = f(−x) for all x ∈ S2. So in what follows we will assume that the
extremizing sequences are of even functions.

The argument in [9] relies on a refinement of (1.24) coming from [34] as stated in Theorem
1.10. We will restate the result for the case of the sphere.

A cap C = C(z, r) with center z ∈ S2 and radius r ∈ (0,
√

2] is the set of all points
y ∈ S2 such that |y − z| < r where | · | denotes the euclidean distance in R3. For each
k > 0 choose a maximal subset {zjk} ⊂ S2 satisfying |zjk − zik| > 2−k for all i 6= j. Then the
caps Cjk = C(zjk, 2−k) cover S2 for each k and they have finite overlap, that is, there exists a
constant C, independent of k, such that a point in S2 belongs to no more than C caps Cjk.
This is the analog of the grid {τ kδ } of Section 1.2. For p > 1 the Xp norm is defined by

‖f‖4
Xp =

∞∑
k=0

∑
j

2−4k
( 1

|Cjk|

∫
Cjk

|f |pdσ
)4/p

.

Theorem 1.10 implies that for p > 12/7 there exists C <∞ such that for any f ∈ L2(S2),

‖f̂σ‖L4(R3) 6 C‖f‖Xp . (1.27)

What is important about p is that one can take it in the interval (1, 2). From Proposition
1.11 the Xp norm is bounded by the L2 norm, but a further refinement is needed for the
argument to work. The following is proved in [9]

Lemma 1.13. For any p ∈ [1, 2) there exists C <∞ and γ > 0 such that for any f ∈ L2(S2),

‖f‖Xp 6 C‖f‖1−γ
L2

(
sup
k,j
|Cjk|

−1/2

∫
Cjk

|f |
)γ
. (1.28)

Putting together (1.28) and (1.27) gives

‖f̂σ‖L4(R3) 6 C‖f‖1−γ
L2

(
sup
k,j
|Cjk|

−1/2

∫
Cjk

|f |
)γ
.

This tells us that if ‖f̂σ‖L4(R3) is large then there exists a cap C such that f puts compar-
atively large mass in C. This can be made rigorous and the result is a “cap decomposition” of
a function f ∈ L2(S2), f =

∑∞
ν=0 fν , where, for each ν, fν is supported in a pair of antipodal

caps and the fν ’s have disjoint supports. The previous sum is L2 convergent. More useful
properties of the decomposition can be obtained if f is a δ-nearly extremal, i.e.

‖f̂σ‖L4 > (1− δ)R‖f‖L2 .

The final purpose of the decomposition is to prove a concentration-compactness result
in the spirit of that of Lions [32]. This we record in Proposition 1.17 below, but before we
introduce some definitions and general results in measure theory, taken from [26].

Let (X,B, µ) be a measure space,
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Definition 1.14. Let p ∈ [1,∞). A subset H of Lp(X) is called equiintegrable of order p if
for every ε > 0 there exists δ > 0 such that for every measurable subset A of X of µ-measure
at most δ, ∫

A

|f |pdµ 6 ε, for all f ∈ H.

It is an easy exercise to show

Proposition 1.15. Let H be a bounded subset of Lp(X). Then, H is equiintegrable of order
p if and only if

lim
R→∞

∫
{|f |>R}

|f |pdµ = 0, (1.29)

uniformly with respect to f ∈ H.

In the case of finite measure the following holds,

Proposition 1.16. Suppose µ(X) <∞. Let {fn} be a sequence in Lp(X) and let f ∈ Lp(X).
The sequence {fn}n∈N converges to f in Lp if and only if the following two conditions are
satisfied:

1. {fn}n∈N converges in measure to f ,

2. The family {fn : n ∈ N} is equiintegrable of order p.

Now returning to the extremizers for the sphere, for z ∈ S2 we say that a sequence
{fn}n∈N of functions in L2(S2), satisfying ‖fn‖2 → 1 as n→∞, is concentrating at the pair
{z,−z} if for every ε, r > 0 there exists N ∈ N such that for all n > N∫

min(|x−z|,|x+z|)>r
|fn(x)|2dx < ε.

The cap decomposition argument applied to δ-nearly extremals imply the following
concentration-compactness result.

Proposition 1.17. Let {fn}n∈N be an extremizing sequence for (1.24) of even nonnegative
functions in L2(S2). Then there exists a subsequence, again denoted {fn}n∈N, and a de-
composition fn = Fn + Gn where Fn, Gn are even and nonnegative with disjoint supports,
limn→∞ ‖Gn‖2 = 0, and {Fn}n∈N satisfies one of the two possibilities:

(i) {Fn : n ∈ N} is equiintegrable of order 2.

(ii) {Fn}n∈N concentrates at a pair of antipodal points.
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Of course, since ‖Gn‖2 → 0 as n→∞, then {fn}n∈N also satisfies one of the two possibili-
ties above. We write the proposition in that way so one sees it follows from Proposition 2.7 in
[9]. The dichotomy comes from Proposition 2.7 in [9] where the decomposition fn = Fn +Gn

is accompanied by the existence of a cap Cn = C(zn, rn). If lim supn→∞ rn > 0, then (i) holds
in Proposition 1.17, while if lim supr→∞ rn = 0, (ii) holds.

The desirable case is the equiintegrability of {Fn}n∈N and the concentration must be
ruled out. To prove the precompactness we will use the following result of Fanelli, Vargas
and Visciglia from [18], for the case of the sphere.

Proposition 1.18 ([18]). Let T : L2(S2)→ L4(R3) be the Fourier extension operator defined
in (1.23). Let {fn}n∈N ⊂ L2(S2) such that:

(i) ‖fn‖2 = 1;

(ii) lim
n→∞

‖Tfn‖L4(R3) = ‖T‖L(L2(S2),L4(R3));

(iii) fn ⇀ f 6= 0;

(iv) Tfn → Tf a.e. in R3.

Then fn → f in L2(S2), in particular ‖f‖2 = 1 and ‖Tf‖L4(R3) = ‖T‖L(L2(S2),L4(R3)).

This result says that the only obstruction for the precompactness of an extremizing
sequence is that every weak limit is zero. We show that under the equiintegrability condition,
nonnegative extremizing sequences have nonzero weak limits.

Proposition 1.19. Let {fn}n∈N be a sequence of L2-normalized nonnegative functions. Sup-
pose that {fn}n∈N is equiintegrable of order 2, then every L2-weak limit is nonzero.

Proof. Since ‖fn‖2 = 1 for all n, the set of L2-weak limits is nonempty. After passing to a
subsequence we can assume fn ⇀ f , as n→∞, for some f ∈ L2(S2). Suppose f = 0 a.e. in
S2. Then, by the weak convergence it follows that∫

S2

fn(y)dσ(y)→
∫
S2

f(y)dσ(y) = 0, as n→∞.

Since fn > 0 this tells us that {fn}n∈N converges to 0 in L1(S2) and thus fn → 0 in measure.
In view of Proposition 1.16, fn → 0 in L2(S2), and so 1 = ‖fn‖2 → 0 as n→∞, which is a
contradiction. Thus, f 6= 0 as was to be shown.

This easily implies

Corollary 1.20. Let {fn}n∈N and {Fn}n∈N be as in Proposition 1.17. Suppose that {Fn}n∈N
satisfies condition (i). Then {fn}n∈N is precompact.
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Proof. Since fn = Fn+Gn and Fn, Gn have disjoint supports, we have ‖Fn‖2 → 1 as n→∞.
Also,

‖TFn‖4 > ‖Tfn‖4 − ‖TGn‖4 > ‖Tfn‖4 −R‖Gn‖2,

thus ‖TFn‖4 → R as n→∞. Therefore {Fn}n∈N is an extremizing sequence of nonnegative
functions. By assumption {Fn}n∈N is equiintegrable of order 2, so every L2 weak limit is
nonzero. For a subsequence, called the same, Fn ⇀ F , for some 0 6= F ∈ L2(S2). Every
condition in Proposition 1.18 is satisfied by {Fn}n∈N and so Fn → F in L2(S2) and F is
an extremizer to (1.24). It follows that fn → F as n → ∞ in L2(S2), and so {fn}n∈N is
precompact.

To show that the second possibility in Proposition 1.17 is not possible we will use Foschi’s
argument. Let C = C(z, r) be a cap in S2 and consider the adjoint Fourier restriction operator
on C, Tz,r,

Tz,rf(x) =

∫
C
e−ix·yf(y)dσ(y).

We are interested in ‖Tz,r‖ = sup06=f∈L2(C) ‖Tz,rf‖L4‖f‖−1
L2 .

By rotation invariance, it is enough to analyze Tz,r when z is the north pole of S2, and
so we will drop the subscript z and write Tr for Tz,r. We prove the following proposition.

Proposition 1.21. For any r > 0, ‖Tr‖ > 23/4π and lim
r→0+

‖Tr‖ = 23/4π.

It will be important for the argument to consider the norm of the adjoint restriction
operator associated to two antipodal caps, C(z, r)∪ C(−z, r). This can be written as T̃z,r :=
Tz,r + T−z,r, when r <

√
2, so the two caps are disjoint. When considering the norm we can

drop the subscript z. From Proposition 1.21 we obtain

Corollary 1.22. Let r ∈ (0, 1/2). Then ‖T̃r‖ = (3/2)1/4‖Tr‖. Thus lim
r→0+

‖T̃r‖ = 21/231/4π.

Before proving Proposition 1.21 and Corollary 1.22 we will prove that condition (ii) in
Proposition 1.17 can not happen.

Lemma 1.23. Let {fn}n∈N, {Gn}n∈N and {Fn}n∈N be as in Proposition 1.17. Then {Fn}n∈N
satisfies condition (i).

Proof. By using the function 1 one obtains a lower bound on ‖T‖ = R > ‖T1‖L4‖1‖−1
L2(S2) =

2π. Since 2π > 21/231/4π we get ‖T‖ > lim
r→0+

‖T̃z,r‖, for any z ∈ S2.

By contradiction, suppose {Fn}n∈N satisfies condition (ii), that is, it is concentrating at
the pair {z,−z}, for some z ∈ S2. Let r0 > 0 be such that

‖T̃z,r‖ < ‖T‖, for all r < r0.
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Consider hn := (χC(z,r0) + χC(−z,r0))Fn. Then

‖Thn‖L4 > ‖TFn‖L4 − ‖T (Fn − hn)‖L4 > ‖TFn‖L4 −R‖Fn − hn‖2. (1.30)

By the concentration assumption

lim
n→∞

‖Fn − hn‖2 = 0. (1.31)

As noted in the proof of Corollary 1.20, {Fn}n∈N is an extremizing sequence. This
together with (1.30) and (1.31) imply that {hn}n∈N is an extremizing sequence for (1.24). On

the other hand, Thn = T̃z,rhn, therefore R = lim
n→∞

‖T̃z,r0hn‖ < R, which is a contradiction.

Proof of Corollary 1.22. The condition r < 1/2 ensures that if f is supported on C(z, r) and
g in C(−z, r), then fσ ∗ fσ, gσ ∗ gσ and fσ ∗ gσ have disjoint supports. The rest follows as
in [20, pg. 754-755] or [37]. We give the argument again here.

For a function f ∈ L2(C(z, r)∪C(−z, r)) we can write f = f+ +f−, where f+ is supported
on C(z, r), and f− on C(−z, r). One then has ‖f‖2

L2(S2) = ‖f+‖2
L2(S2) + ‖f−‖2

L2(S2).
Observe that

‖T̃z,rf‖4
L4 = ‖Tf+ + Tf−‖4

L4 = ‖(Tf+ + Tf−)2‖2
L2

= ‖(Tf+)2 + (Tf−)2 + 2(Tf+)(Tf−)‖2
L2 .

Using that product transforms into convolution under the Fourier transform we see that
the Fourier transforms of (Tf+)2, (Tf−)2 and (Tf+)(Tf−) are supported on disjoint sets,
therefore

‖T̃z,rf‖4
L4 = ‖Tf+‖4

L4 + ‖Tf−‖4
L4 + 4‖(Tf+)(Tf−)‖2

L2

6 ‖Tf+‖4
L4 + ‖Tf−‖4

L4 + 4‖(Tf+)‖2
L2‖(Tf−)‖2

L2 (1.32)

6 ‖Tr‖4(‖f+‖4
L2 + ‖f−‖4

L2 + 4‖f+‖2
L2‖f−‖2

L2) (1.33)

6
3

2
‖Tr‖4(‖f+‖2

L2 + ‖f−‖2
L2)2 (1.34)

=
3

2
‖Tr‖4‖f‖4

L2 ,

where we have used the sharp inequality (as in [20])

X2 + Y 2 + 4XY 6
3

2
(X + Y )2, X, Y > 0

where equality holds if and only if X = Y . Thus, for all f ∈ L2(C(z, r) ∪ C(−z, r))

‖T̃z,rf‖4
L4‖f‖−4

L2(S2) 6
3

2
‖Tr‖4.
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To obtain the lower bound we observe that if {fn}n∈N is an extremizing sequence for Tz,r,

then { 1√
2
(fn + gn)}n∈N is an extremizing sequence for T̃z,r, where gn(x) = fn(−x). This is

so because with this choice of gn, (1.32) and (1.34) become an equality and (1.33) becomes
an equality in the limit as n→∞.

Proof of Proposition 1.21. For σ, the surface measure on S2, one calculates that

σ ∗ σ(x) =
2π

|x|
χ|x|62.

Let σr be the restriction of σ to C(z, r). Clearly σr ∗ σr(x) 6 σ ∗ σ(x) for all x ∈ R3 and
σr ∗ σr(x) = σ ∗ σ(x) for all x in a neighborhood of z. From the formula of the double
convolution of σ we obtain

‖σr ∗ σr‖L∞(R3) 6 π + or(1), where or(1)→ 0 as r → 0+. (1.35)

Foschi’s argument implies that ‖Tr‖ 6 (2π)3/4‖σr ∗σr‖1/4

L∞(R3) and by using a family of linear

functions in R3 restricted to C(z, r) which concentrate at z we obtain ‖Tr‖ > (2π)3/4π1/4.
Thus ‖Tr‖ → 23/4π as r → 0+.

1.4 Existence of extremals in the nonendpoint case

In this section we discuss the results of Fanelli, Vega and Visciglia contained in [18]. In [18]
they consider the problem of existence of extremizers for Fourier restriction inequalities in
the nonendpoint case, for compactly supported measures.

In this section, d > 1 and µ will denote a finite, positive and compactly supported
measure on Rd. The Fourier extension or adjoint Fourier restriction operator Tµ is defined
by

Tµf(x) =

∫
Rd

e−ix·yh(y)dµ(y), (1.36)

for all x ∈ Rd and f ∈ S(Rd). We will say that µ satisfies the restriction condition with
respect to p ∈ [1,∞], denoted as (RC)p, if Tµ is a bounded operator from L2(µ) to Lp(Rd).

Since µ is finite, we have ‖Tµf‖∞ 6 ‖f‖2‖µ‖1/2, where ‖µ‖ = µ(Rd), thus µ has the
(RC)∞. An interpolation argument shows that if µ has the (RC)p then it has the (RC)q for
all p 6 q 6∞.

Examples of measures are surface measure on a compact hypersurface in Rd of nonvanish-
ing Gaussian curvature, d > 2. Such a measure µ satisfies (RC)p for all p > 2(d+ 1)/(d−1),
[45, Chapter 8].

If µ satisfies the (RC)p for some 1 6 p 6∞, there exists Cp <∞ such that

‖Tf‖Lp(Rd) 6 Cp‖f‖L2(µ). (1.37)
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and so we can study the problem of existence of extremizers and precompactness of extremiz-
ing sequences as in Definition 1.1 with R the best constant in (1.37). The following theorem
is proved

Theorem 1.24. Let µ be a finite, positive and compactly supported measure on Rd and let

p0(µ) = inf{p ∈ [1,∞] : (RC)p holds for µ}.

Then for every p satisfying max(2, p0(µ)) < p 6∞ there exists an extremizer for (1.37) with
respect to p. Moreover, for every extremizing sequence {fn}n∈N for Tµ w.r.t. p, there exists
{xn}n∈N ⊂ Rd such that {eixn·yhn(y)}n∈N is precompact in L2(µ).

Note that this theorem does not apply to the L2(S2)→ L4(R3) case of the sphere (S2, σ)
studied in [9] since p = 4 equals p0(σ). The theorem is sharp in the sense that for the
endpoint p0(µ) the conclusion does not hold in general. Examples of this are a truncated
cone in R3 or R4 with p = 6 and 4 resp., a truncated paraboloid in R2 or R3 with p = 6
and 4 resp., or a truncated hyperboloid in R3 with p = 4.

They prove a very interesting proposition of which Proposition 1.18 is a special case,

Proposition 1.25 ([18]). Let H be a Hilbert space, p ∈ (2,∞) and T : H → Lp(Rd) be a
bounded linear operator. Let {fn}n∈N ⊂ H such that:

(i) ‖fn‖2 = 1;

(ii) lim
n→∞

‖Tfn‖L4(R3) = ‖T‖L(H,Lp(Rd));

(iii) fn ⇀ f 6= 0;

(iv) Tfn → Tf a.e. in Rd.

Then fn → f in H, in particular ‖f‖H = 1 and ‖Tf‖Lp(Rd) = ‖T‖L(H,Lp(Rd)).

Note that in the case of H = L2(µ), and T = Tµ, the adjoint Fourier restriction operator,
conditions (i) and (ii) are satisfied, by definition, by and extremizing sequence {fn}n∈N.
Condition (iii) follows after passing to a subsequence, by the Banach-Alaoglu Theorem.
If fn ⇀ f in L2(µ), and if µ is compactly supported, then condition (iv) follows. Thus,
Proposition 1.25 states that for compactly supported measures, the only obstruction to the
existence of extremizers is that every L2-weak limit of every extremizing sequence is zero.

We used this proposition to give an alternative approach to the existence of extremizers
for S2. We will use it in the next chapter for the case of the cone to show that extremizing
sequences are precompact up to symmetries of the cone.
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1.5 Extremizers for Strichartz inequalities

In [17], Fanelli, Vargas and Visciglia consider the problem of extremizers for Strichartz
inequalities. Their result includes a large family of such inequalities.

Consider the Cauchy Problem {
i∂tu+ h(D)u = 0,

u(0, x) = f(x),
(1.38)

where u(t, x) = (u1(t, x), . . . , un(t, x)) : R×Rd → Cn, f(x) = (f1(x), . . . , fn(x)) : Rd → Cn.
In (1.38), h(D)u is the the multiplier

ĥ(D)u(t, ξ) =

∫
Rd

e−ix·ξh(x)u(t, x)dx,

where the symbol h(ξ) = (hi,j(ξ))i,j=1,...,n is a matrix valued function.
We make the following assumptions:

(H1) there exists 0 < s < d
2

such that (1.38) is globally well-posed in Ḣs, and the unique
solution given via the propagator, u(t, x) = eith(D)f(x),

(H2) the flow eith(D) is unitary onto Ḣs, that is ‖eith(D)f‖Ḣs = ‖f‖Ḣs , for all t ∈ R, where
s is the same as in (H1).

For the function h we will assume:

(H3) h is homogeneous of degree k, for some k > 0, i.e. h(λξ) = λkh(ξ), for all λ > 0 and
ξ ∈ Rn.

Suppose that for s as in (H1) a Strichartz estimate

‖eith(D)f‖LptLqx 6 C‖f‖Ḣs (1.39)

holds. Then, using the homogeneity condition (H3) p and q have to satisfy the relation

k

p
+
d

q
=
d

2
− s.

Condition (H2) implies
‖eith(D)f‖L∞t Ḣs

x
= ‖f‖Ḣs

that together with the Sobolev embedding Ḣs ⊂ L
2d
d−2s , for 0 < s < d/2, gives

‖eith(D)f‖
L∞t L

2d
d−2s
x

6 C‖f‖Ḣs .
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Thus, if an estimate like (1.39) holds with p < q, then interpolating with the last inequa-
lity gives (see [1] for interpolation of mixed norms)

‖eith(D)f‖Lrt,x 6 C‖f‖Ḣs ,

for r = 2(d+ k)/(d− 2s).
It is extremizers for this last kind of estimate that is considered in [17]. Their theorem

states

Theorem 1.26. Let assumptions (H1), (H2) be satisfied for some 0 < s < d/2 and let (H3)
be satisfied for some k > 0. Moreover, assume that for some 2 6 p < q 6∞

‖eith(D)f‖LptLqx 6 C‖f‖Ḣs ,

so that, for r = 2(d+k)
d−2s

, we also have

‖eith(D)f‖Lrt,x 6 R‖f‖Ḣs , (1.40)

with
R = sup

‖f‖Ḣs=1

‖eith(D)f‖Lrt,x .

Then, there exists f0 ∈ Ḣs such that

‖f0‖Ḣs = 1 and ‖eith(D)f0‖Lrt,x = R,

that is, there exists an extremizer for (1.40). Moreover, extremizing sequences are precom-
pact, after the application of symmetries.

The proof is short and simple and uses Proposition 1.25 together with a result of Gérard

[21] about the Sobolev embedding Ḣs ⊂ L
2d
d−2s .

Of interest to us is the case h(ξ) = |ξ|, that gives estimates for the adjoint Fourier
restriction operator on the cone. The Strichartz estimates for d > 2 are

‖eit|D|f‖LptLqx 6 C‖f‖
Ḣ

1
p−

1
q+

1
2
, (1.41)

under the admissibility condition

1

p
+
d− 1

q
=
d− 1

2
, p > 2, (p, q) 6= (2,∞).

Taking p = q gives ∥∥∥eit|D|f∥∥∥
L

2(d+1)
d−1

t,x

6 C‖f‖
Ḣ

1
2
, d > 2.
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Using the Sobolev embedding as before gives∥∥∥eit|D|f∥∥∥
L

2(d+1)
d−1−2σ
t,x

6 C‖f‖
Ḣ

1
2+σ , 0 6 σ <

d− 1

2
, d > 2. (1.42)

In the cone Γd = {(y, |y|) : y ∈ Rd} ⊂ Rd+1 with measure σ(y, y′) = δ(y′ − |y|)dydy′|y|
considered in Section 1.1 the adjoint Fourier restriction operator is

Tf(x, t) = f̂σ(x, t) =

∫
Rd×R

e−ix·ye−it|y|f(y)
dy

|y|
.

Then Tf(x, t) = e−it|D|g, where ĝ(y) = f(y)|y|−1. For the norms we have the equality

‖g‖Ḣs = ‖f · |y|s− 1
2‖L2(Γd), so (1.42) gives the weighted estimate

‖f̂σ‖
L

2(d+1)
d−1−2σ (Rd+1)

6 C‖f · |y|σ‖L2(Γ2), 0 6 σ <
d− 1

2
, d > 2.

We will study the case d = 2 and σ = 0,

‖f̂σ‖L6(R3) 6 C‖f‖L2(Γ2) (1.43)

which is not covered by Theorem 1.26. The existence of extremals and the value of the
best constant are known, [7]. The part of this dissertation dedicated to the cone proves that
extremizing sequences are precompact, after the application of symmetries of the cone. The
argument can be used for other manifolds, for example, for the L2 → L6 estimates for Fourier
restriction on curves in R2.

Our argument for the cone will use the method of Christ and Shao in [9] and also some
of the techniques developed by Fanelli, Vargas and Visciglia in [18] and [17], that allow a
simplification of the argument in [9].

1.6 A few more references

There have been several results on existence of extremizers and/or computation of best
constants for Fourier extension operators and Strichartz inequalities. We mention here some
of those not already discussed: [4],[6],[12],[27],[42].

1.7 The results proved in this dissertation related to

Fourier restriction inequalities

We prove three results concerning Fourier restriction inequalities (and one result on inci-
dence geometry that we introduce later). We have already mentioned two, the cone and
hyperboloid. In brief the results are
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Theorem 1.27. Any extremizing sequence of nonnegative functions in L2(Γ2) for the ine-
quality (1.43) is precompact up to symmetries, that is, every subsequence of an extremizing
sequence has sub-subsequence that converges in L2(Γ2) after the application of symmetries of
the cone.

Here, the symmetries we refer to are dilations and Lorentz transformations. Concerning
inequality (1.18) for the restriction on the hyperboloid Hd, we define

Hd,p = sup
06=f∈L2(Hd)

‖f̂σ‖Lp(Rd+1)

‖f‖L2(Hd)

,

as well as

H̄d,p = sup
06=f∈L2(Hd)

‖f̂σ‖Lp(Rd+1)

‖f‖L2(H̄d)

,

where H̄d is the two sheeted hyperboloid H̄d = Hd ∪−Hd = {(y, y′) ∈ Rd+1 : y′2 = 1 + |y|2}.
We prove

Theorem 1.28. The values of the best constants are, H2,4 = 23/4π, H2,6 = (2π)5/6 and
H3,4 = (2π)5/4. In each of the three cases of pairs (d, p) extremizers do not exist.

For the two sheeted hyperboloid the best constants are, H̄2,4 = (3/2)1/4H2,4, H̄2,6 =
(5/2)1/3H2,6 and H̄3,4 = (3/2)1/4H3,4. Here extremizers do not exist either.

In a joint work with Michael Christ, we consider the adjoint restriction inequality on the
paraboloid, or equivalently, Strichartz inequalities for the Schrödinger equation. As stated
in Theorem 1.3, Gaussians extremize the adjoint Fourier restriction inequality in dimensions
d = 2, ‖f̂σ‖L6(R2) 6 C‖f‖L2(P1), and d = 3, ‖f̂σ‖L4(R3) 6 C‖f‖L2(P2).

There are Lp → Lq estimates for f̂σ,

‖f̂σ‖Lq(Rd+1) 6 C‖f‖Lp(Pd), (1.44)

where q = q(p, d) is specified by

q−1 =
d

d+ 2
(1− p−1),

for 1 6 p 6 p(d), for a certain 2 < p(d) < 2(d+ 1)/d.
There are mixed norm estimates,

‖f̂σ‖LrtLqx(R1+d) 6 C‖f‖L2(Pd)

where q, r > 2 satisfy
2

r
+
d

q
=
d

2
,

with endpoint q =∞ excluded for d = 2.
The main result is
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Theorem 1.29. Let d ≥ 1, let 1 < p < 2(d + 1)/d, and set q = q(p, d). Radial Gaussians
are critical points for the Lp → Lq adjoint Fourier restriction inequalities if and only if
p = 2. Radial Gaussians are critical points for the L2 → LrtL

q
x Strichartz inequalities for all

admissible pairs (r, q) ∈ (1,∞)2.

This tells us that Gaussians are not extremizers for (1.44) if p 6= 2. It is a conjecture of
Foschi that Gaussians are extremizers if p = 2 and d > 1. As for the mixed norms, we can
mention that Carneiro [7] proved that Gaussians are extremizers for the L2 → L8

tL
4
x estimate

in dimension d = 1.
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Chapter 2

On extremizing sequences for the
adjoint restriction inequality on the
cone

It is known that extremizers for the L2 to L6 adjoint Fourier restriction inequality on
the cone in R3 exist. Here we show that nonnegative extremizing sequences are precompact,
after the application of symmetries of the cone. If we use the knowledge of the exact form
of the extremizers, as found by Carneiro, then we can show that nonnegative extremizing
sequences converge, after the application of symmetries.

2.1 Introduction

We study the properties of extremizing sequences for the Fourier restriction inequality on the
cone in dimension 3 for which the adjoint restriction inequality can be rewritten equivalently
as a convolution inequality. Carneiro [7], using the method developed by Foschi [20], found
the exact form of the extremizers for the adjoint Fourier restriction inequalities in dimensions
3 and 4 but there seems to be no mention in the literature as to whether extremizing sequences
are precompact after appropriate rescaling1. That is the question we try to answer in this
paper using the methods developed by Christ and Shao [9] to analyze the corresponding
inequality for the sphere in three dimensions.

We denote Γ2 = {(y, y′) ∈ R2×R : y′ = |y|}, the cone in R3. A function f on Γ2 can be
identified, and we will do so, with a function from R

2 to R. On Γ2 we consider the measure

1[17] answers this question in the nonendpoint case and appeared while this manuscript was being pre-
pared. We comment on that later in the introduction.
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σ(y, y′) = δ(y′ − |y|)dydy′|y| , that is, for a function f on the cone∫
Γ2

fdσ =

∫
R2

f(y)
dy

|y|
.

We will denote the Lp(Γ2, σ) norm of a function f as ‖f‖Lp(Γ2), ‖f‖Lp(σ) or ‖f‖p.
The extension or adjoint Fourier restriction operator for the cone is given by

Tf(x, t) =

∫
R2

eix·yeit|y|f(y)|y|−1dy (2.1)

where (x, t) ∈ R2 ×R and f ∈ S(R2). With the Fourier transform ĝ(ξ) =
∫
R3 e

−ix·ξg(x)dx

we see that Tf(x, t) = f̂σ(−x,−t).
A well known bound, [47], for Tf is given in the following theorem

Theorem 2.1. There exists C < ∞ such that for all f ∈ L2(Γ2) the following inequality
holds

‖Tf‖L6(R3) 6 C‖f‖L2(Γ2). (2.2)

Denote by C the best constant in (2.2), that is

C = sup
06=f∈L2(Γ2)

‖Tf‖L6(R3)

‖f‖L2(Γ2)

. (2.3)

The use of the Fourier transform allows us to write (2.2) in “convolution form”, namely

‖Tf‖3
L6(R3) = ‖(Tf)3‖L2(R3) = ‖(f̂σ)3‖L2(R3) = ‖(fσ ∗ fσ ∗ fσ)̂ ‖L2(R3)

= (2π)3/2‖fσ ∗ fσ ∗ fσ‖L2(R3), (2.4)

thus ‖T (f)‖L6 6 ‖T (|f |)‖L6 . This implies that if {fn}n∈N is an extremizing sequence then
so is {|fn|}n∈N.

In what follows we will restrict attention to nonnegative functions f ∈ L2(Γ2).

Definition 2.2. An extremizing sequence for the inequality (2.2) is a sequence {fn}n∈N of
functions in L2(Γ2) satisfying ‖fn‖L2(Γ2) 6 1, such that ‖Tfn‖L6(R3) → C as n→∞.

An extremizer for (2.2) is a function f 6= 0 which satisfies ‖Tf‖L6(R3) = C‖f‖L2 .

The main theorem of this chapter is

Theorem 2.3. Any extremizing sequence of nonnegative functions in L2(Γ2) for the ine-
quality (2.2) is precompact up to symmetries, that is, every subsequence of an extremizing
sequence has a sub-subsequence that converges in L2(Γ2) after the application of symmetries
of the cone.
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The symmetries of the cone we refer to are dilations and Lorentz transformations that
will be studied in Section 2.7, and Theorem 2.3 will be stated in a more precise form as
Theorem 2.29 below.

With the knowledge of the exact form of the extremizers to (2.2) given by Carneiro in
[7] one can improve Theorem 2.3 to obtain

Theorem 2.4. Any extremizing sequence of nonnegative functions in L2(Γ2) for the inequa-
lity (2.2) converges in L2(Γ2), after the application of symmetries of the cone.

Define the function g by its Fourier transform as ĝ(y) = f(y)|y|−1. Then

eit
√
−∆g(x) :=

1

(2π)2

∫
eix·yeit|y|ĝ(y)dy =

1

(2π)2
Tf(x, t), (2.5)

and
‖g‖

Ḣ
1
2 (R2)

= ‖f‖L2(Γ2),

where we used the Ḣ
1
2 (R2) norm

‖g‖2

Ḣ
1
2 (R2)

=

∫
R2

|ĝ(y)|2|y|dy.

We see that
(2π)−2‖Tf‖L6(R2)‖f‖−1

L2(Γ2) = ‖eit
√
−∆g‖L6(R3)‖g‖−1

Ḣ
1
2 (R2)

, (2.6)

and (2.2) is equivalent to

‖eit
√
−∆g‖L6

x,t(R
3) 6

C

(2π)2
‖g‖

Ḣ
1
2 (R2)

. (2.7)

From (2.6), {fn}n∈N is an extremizing sequence for (2.2) if and only if {gn}n∈N, with
ĝn(y) = fn(y)|y|−1, is an extremizing sequence for (2.7).

The problem of computing the best constant in (2.2) and the exact form of the extremizers
was solved by Carneiro in [7]. With the normalization of the Fourier transform discussed
earlier, Carneiro proves

Theorem 2.5 ([7]). For all f ∈ L2(Γ2),

‖f̂σ‖L6(R3) 6 (2π)5/6‖f‖L2(Γ2). (2.8)

and equality occurs in (2.8) if and only if f(y, |y|) = e−a|y|+b·y+c, where a, c ∈ C, b ∈ C2, and
|Re b| < Re a.
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We will use this result to prove Theorem 2.4.
Fanelli, Vega and Visciglia proved in [17] a general existence theorem for extremizers of

Strichartz inequalities. We state here the case of the cone, in its equivalent form via (2.5).
For d > 2 and 0 6 σ < d−1

2
the following Strichartz estimates hold (see [17, Example 1.1])

‖eit
√
−∆g‖

L

2(d+1)
d−1−2σ
t,x (Rd+1)

6 C‖g‖
Ḣ

1
2+σ(Rd)

. (2.9)

In [17], using “remodulation” (equation after [17, equation 2.12]) “rescaling” and “trans-
lation” ([17, equation 2.15]) the following theorem is proved,

Theorem 2.6 ([17]). Let d > 2 and 0 < σ < d−1
2

. Then there exists an extremizer for
(2.9). Moreover, extremizing sequences are precompact, after the application of symmetries:
“remodulation”, “rescaling” and “translation”.

We point out here that their method does not apply to the endpoint case studied in this
paper, σ = 0 and d = 2, because of the existence of further symmetries, Lorentz invariance,
as discussed in Section 2.7. The symmetries referred to in Theorem 2.6, when expressed in
the dual formulation for f ∈ L2(Γ2) are, in respective order:

• f(y) eis|y|f(y), s ∈ R,

• f(y) λ1/2f(λy), λ > 0 and

• f(y) eiy·y0f(y), y0 ∈ R2.

From the Lorentz invariance of inequality (2.2), and the fact that the Lorentz group is not
generated modulo a compact subgroup by the elements listed above, it follows that the final
conclusion of Theorem 2.6 cannot be true in the endpoint case d = 2, σ = 0. This indicates
that the proof in [17] likewise cannot apply to this endpoint case.

On the one hand, for d > 2, under admissibility conditions in (p, q) one has the Strichartz
estimates

‖eit
√
−∆g‖LptLqx(Rd+1) 6 C‖g‖

Ḣ
1
p−

1
q+

1
2 (Rd)

,

so that for the case of the Ḣ
1
2 (Rd) one needs p = q which then makes Theorem 1.1 in [17]

not applicable.
On the other hand, at the level of the proof of [17, Theorem 1.1], one sees that [17,

equation 2.12] does not hold for σ = 0 (or s = 1/2 as appears there) and d = 2. For this
we show that there are extremizing sequences {gn}n∈N such that ‖eit

√
−∆gn‖L∞t L4

x
→ 0 as

n→∞.
This is the same as having extremizing sequence {fn}n∈N such that ‖Tfn‖L∞t L4

x
→ 0 as

n → ∞. For this we use the Lorentz invariance and the characterization of extremizers for
the cone given in Theorem 2.5.
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From Section 2.7, ‖T (f ◦ L)‖L6(R3) = ‖Tf‖L6(R3), for every Lorentz transformation L
preserving Γ2. Let f be an L2-normalized extremizer, say f(x1, x2, x3) = c0e

−x3 . We take a
sequence of Lorentz transformations Ls and f ◦ Ls is also an L2-normalized extremizer. We
now compute ‖(Tf) ◦ Ls‖L∞t L4

x
. We have

Tf(x, t) =
2πc0√

(1− it)2 + |x|2
,

and

|Tf(x, t)|4 =
(2π)4c4

0

(1− t2 + |x|2)2 + 4t2
.

Now we use Ls(x, t) = ( x1+st
(1−s2)1/2

, x2,
t+sx1

(1−s2)1/2
) and note that by making the change of variables

u = (x1 + st)(1− s2)−1/2, v = x2 we obtain∫
|(Tf) ◦ Ls(x, t)|4dx = (1− s2)1/2

∫
|Tf(x1, x2, sx1 + t(1− s2)1/2)|4dx

Then, if s 6= 0

sup
t∈R

∫
R2

|(Tf) ◦ Ls(x, t)|4dx = (1− s2)1/2 sup
t∈R

∫
R2

|Tf(x1, x2, s(x1 + t))|4dx

= (2π)4c4
0(1− s2)1/2 sup

t∈R

∫
R2

dx1dx2

(1− s2(x1 + t)2 + x2
1 + x2

2)2 + 4s2(x1 + t)2

= (2π)4c4
0(1− s2)1/2 sup

t∈R

∫
R2

dx1dx2

(1− s2x2
1 + (x1 + t)2 + x2

2)2 + 4s2x2
1

.

It is not hard to show that for (s, t) ∈ [1/2, 1]×R∫
R2

dx1dx2

(1− s2x2
1 + (x1 + t)2 + x2

2)2 + 4s2x2
1

6 C,

with C independent of s and t. Therefore

sup
t∈R

∫
R2

|(Tf) ◦ Ls(x, t)|4dx 6 C(1− s2)1/2.

Hence lim
s→1−

‖T (f ◦ Ls)‖L∞t L4
x

= 0.

Notation: We will write X . Y or Y & X to denote an estimate of the form X 6 CY ,
and X � Y to denote an estimate of the form cY 6 X 6 CY , where 0 < c,C < ∞ are
constants depending on fixed parameters of the problem, but independent of X and Y .

When writing integrals, we will sometimes drop the domain of integration or the measure
when it is clear from context.
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2.2 The structure of the paper and the idea of the

proof

The proof of Theorem 2.3 follows the lines of the proof of precompactness of extremizing
sequences for the adjoint Fourier operator on the sphere S2 ⊂ R3 given in [9].

In Section 2.3 we give a (known [47], [44, Chapter 2]) proof of Theorem 2.1, with a view
towards a refinement in terms of a cap space, as used in [9] and proved in [18] for compact
surfaces in R3 of nonvanishing Gaussian curvature. In Section 2.4 we obtain bounds that we
will use in Section 2.5 to obtain the following cap estimate,

‖Tf‖L6(R3) . ‖f‖1−γ/2
L2(Γ2)

(
sup
C
|C|−1/4

∫
C
|f |3/2dσ

)γ/3
, (2.10)

where the supremum ranges over all “caps” C ⊂ Γ2 and γ > 0 is a small universal constant.
This is the analog of Lemma 6.1 in [9].

For a function satisfying ‖Tf‖L6(R3) > δC‖f‖L2 , the estimate in (2.10) allows the ex-
traction of a cap C with good properties:

|f(x)| 6 Cδ‖f‖2|C|−1/2χC(x), and ‖fχC‖2 > ηδ‖f‖2.

This is the content of Section 2.6. In Section 2.7 we discuss symmetries of the cone.
This includes dilations and Lorentz transformations and they allow us to take a cap C and
transform it into a cap C ′ with better properties: C ′ is contained in a bounded region,
independent of the extremizing sequence, and has big measure.

The existence of symmetries of (Γ2, σ) simplifies the argument, compared to [9]. Two
ways are possible, use the arguments of Fanelli, Vega and Visciglia contained in [18] and [17]
carried out in Section 2.8; or use the decomposition algorithm as done by Christ and Shao
and carried out in Section 2.9.

For the argument based on [18] and [17], a single extraction of a cap and the use of
symmetries is enough to prove precompactness. In the case of the argument based on [9], a
cap decomposition is needed. For an extremizing sequence, the cap decomposition is used
to show that after dilations and Lorentz transformations, the extremizing sequence has a
uniform L2-decay at infinity. The uniform decay plus a result inspired from [18] allows us to
complete the proof of precompactness.

In the last section, we prove that extremizing sequences converge, after the application of
symmetries of the cone. This is an easy task, that follows from the fact that the extremizers
for (2.2) are known and that the group of symmetries of the cone acts transitively in the set
of extremizers.
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2.3 The adjoint Fourier restriction inequality

Abusing notation we will write f(r, θ) = f(x), where x = (r cos θ, r sin θ), that is the polar
representation of x. Note that in polar coordinates the measure |y|−1dy becomes dr dθ.

In the proof of Theorem 2.1 we will need the following standard lemma.

Lemma 2.7 (Fractional integration). Let 1 < p, q <∞. Then for any g ∈ Lp(R), h ∈ Lq(R)
the following holds ∫

R

∫
R

|g(s)h(t)||t− s|−αdsdt 6 Cp,q‖g‖Lp‖h‖Lq ,

where α = 2− 1
p
− 1

q
and 1

p
+ 1

q
> 1.

From Lemma 2.7 we have

Lemma 2.8. Let 1 < p, q < ∞ with 1
p

+ 1
q
> 1 and let α = 2 − 1

p
− 1

q
. Then for any

g ∈ Lp([0, 2π]), h ∈ Lq([0, 2π]) the following holds∫ 2π

0

∫ 2π

0

|g(s)h(t)|| sin(t− s)|−αdsdt 6 Cp,q‖g‖Lp‖h‖Lq (2.11)

Proof. We split the integral in sixteen pieces according to [0, 2π] = [0, π/2] ∪ [π/2, π] ∪
[π, 3π/2] ∪ [3π/2, 2π], and then it will be enough to show that∫ (m+1)π/2

mπ/2

∫ (n+1)π/2

nπ/2

|g(s)h(t)|| sin(t− s)|−αdsdt 6 Cp,q‖g‖Lp‖h‖Lq ,

for all m,n ∈ {0, 1, 2, 3}. For this we use a simple change of variable that allows us to use
Lemma 2.7.

If t, s ∈ [jπ/2, (j + 1)π/2], for some j ∈ {0, 1, 2, 3}, then |t − s| 6 π/2 and we use that
2
π
|t− s| 6 | sin(t− s)| 6 |t− s|.

If s ∈ [0, π/2] and t ∈ [π, 3π/2] we can use the change of variables t′ = t − π so that
t′ ∈ [0, π/2]. We note that | sin(t− s)| = | sin(t′ − s)|.

If s ∈ [0, π/2] and t ∈ [π/2, π] we further split the intervals as [0, π/2] = [0, π/4] ∪
[π/4, π/2] and [π/2, π] = [π/2, 3π/4] ∪ [3π/4, π]. If s ∈ [0, π/4] and t ∈ [π/2, 3π/4] or
if s ∈ [π/4, π/2] and t ∈ [3π/4, π], then | sin(t − s)| > 1/

√
2 and the desired inequality

follows from an application of Hölder’s inequality. If s ∈ [π/4, π/2] and t ∈ [π/2, 3π/4], then
|t− s| 6 π/2 and we can use the inequality 2

π
|t− s| 6 | sin(t− s)| 6 |t− s| as in the first case

discussed. Finally, if s ∈ [0, π/4] and t ∈ [3π/4, π] we use the substitution t′ = t− π so that
t′ ∈ [−π/4, 0]. Since | sin(t− s)| = | sin(t′− s)| and |t′− s| 6 π/2 we can conclude as before.

The other cases follow in the same way.
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Proof of Theorem 2.1. We split f(y) =
∑

k∈Z fk(y) where fk(y) = f(y)χ2k−16|y|<2k . Then

(Tf)2(x, t) =
∑
k,k′∈Z

Tfk · Tfk′ .

Taking L3 norm in both sides, using the triangle inequality and Lemma 2.9 below we get

‖Tf‖2
L6 6 C

∑
k,k′

2−|k−k
′|/6‖fk‖L2(σ)‖fk′‖L2(σ).

To conclude we use the Cauchy-Schwarz inequality

‖Tf‖2
L6 6 C(

∑
k,k′

2−|k−k
′|/6‖fk‖2

L2(σ))
1/2(
∑
k,k′

2−|k−k
′|/6‖fk′‖2

L2(σ))
1/2 6 C‖f‖2

L2(σ).

Lemma 2.9. There exists a constant C <∞ with the following property. Let k, k′ ∈ Z and
f, g ∈ L2(Γ2) with f and g supported in the regions 2k−1 6 |y| < 2k and 2k

′−1 6 |y| < 2k
′

respectively, then
‖Tf · Tg‖L3 6 C2−|k−k

′|/6‖f‖L2‖g‖L2 . (2.12)

Proof. We can split

f(r, θ)g(r′, θ′) = f(r, θ)g(r′, θ′)(χr>r′ + χr<r′)(χθ>θ′ + χθ<θ′) for a.e (r, r′, θ, θ′).

Thus by the triangle inequality we can assume, without loss of generality, that θ > θ′ and
r < r′ in the support of f(r, θ)g(r′, θ′).

Using polar coordinates and Fubini’s Theorem we have

Tf · Tg(x, t) =

∫
R2

∫
R2

eix·(y+y′)eit(|y|+|y
′|)f(y)g(y′)|y|−1|y′|−1 dydy′

=

∫
eix·(r cos θ+r′ cos θ′,r sin θ+r′ sin θ′)eit(r+r

′)f(r, θ)g(r′, θ′) dθdθ′drdr′.

We make the following change of variables

(r, r′, θ, θ′) 7→ (u, s, %) = (r cos θ + r′ cos θ′, r sin θ + r′ sin θ′, r + r′, r),

which is injective in the region where θ > θ′, r < r′. The Jacobian of the transformation is

J−1 =
∂(u, s, %)

∂(r, r′, θ, θ′)
= rr′ sin(θ − θ′).

Using the change of variables
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Tf · Tg(x, t) =

∫
R

(∫
R3

eix·ueitsf(y)g(y′)Jduds
)
d%,

and by Minkowski’s inequality and Hausdorff-Young inequality,

‖Tf · Tg‖L3 6
∫
R

∥∥∥∫
R3

eix·ueitsf(y)g(y′)Jduds
∥∥∥
L3
d%

6 C

∫
R

(∫
|f(y)g(y′)J |3/2duds

)2/3

d%

= C

∫
R

(∫
|f(y)g(y′)|3/2(rr′)−

1
2 | sin(θ − θ′)|−

1
2Jduds

)2/3

d%.

We now use that r � 2k, r′ � 2k
′

and Hölder’s inequality to obtain

‖Tf · Tg‖L3 6 C(2k2k
′
)−1/3(2k)1/3

(∫
|f(y)g(y′)|3/2| sin(θ − θ′)|−

1
2Jdudsd%

)2/3

= C(2k2k
′
)−1/3(2k)1/3

(∫
|f(y)g(y′)|3/2| sin(θ − θ′)|−

1
2dθdθ′drdr′

)2/3

. (2.13)

On the other hand, by Lemma 2.8∫
|f(y)g(y′)|3/2| sin(θ − θ′)|−

1
2dθdθ′drdr′

6 C

∫ (∫
|f(r, θ)|2dθ

)3/4

dr ·
∫ (∫

|g(r, θ′)|2dθ′
)3/4

dr′

6 C(2k2k
′
)1/4
(∫
|f(r, θ)|2drdθ

)3/4(∫
|g(r′, θ′)|2dr′dθ′

)3/4

.

Then, as 2k 6 2k
′

‖Tf · Tg‖L3 6 C(2k2k
′
)−1/3 min((2k)1/3, (2k

′
)1/3)(2k2k

′
)1/6‖f‖L2

r,θ
‖g‖L2

r,θ

= C2−(k+k′)/6 min((2k)1/3, (2k
′
)1/3)‖f‖L2(σ)‖g‖L2(σ).

We note that 2−(k+k′)/6 min((2k)1/3, (2k
′
)1/3) = 2−|k−k

′|/6, so

‖Tf · Tg‖L3 6 C2−|k−k
′|/6‖f‖L2(σ)‖g‖L2(σ).

Proposition 2.10. There exists a constant C < ∞ with the following property. Let f ∈
L2(Γ2) and for k ∈ Z let fk(y) = f(y)χ{2k−16|y|<2k}. Then

‖Tf‖L6(R3) 6 C
(∑
k∈Z

‖fk‖3
L2

)1/3

.
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Proof. By rewriting ‖Tf‖3
L6(R3) as the L2 norm of a trilinear form and using the triangle

inequality we have

‖Tf‖3
L6 = ‖Tf · Tf · Tf‖L2 =

∥∥∥∑
i,j,k

Tfi · Tfj · Tfk
∥∥∥
L2
6
∑
i,j,k

‖Tfi · Tfj · Tfk‖L2 .

Now for each i, j, k, without loss of generality we can assume that |j − k| = max(|i′ − j′| :
i′, j′ ∈ {i, j, k}). Using Hölder’s inequality, Theorem 2.1 and Lemma 2.9 we get

‖Tfi · Tfj · Tfk‖L2 6 ‖Tfi‖L6‖Tfj · Tfk‖L3 6 C2−|j−k|/6‖fi‖L2‖fj‖L2‖fk‖L2 . (2.14)

Now, using the maximality of |j − k| we see that |j − k| > 1
3
|i− j|+ 1

3
|j − k|+ 1

3
|k− i|, and

hence from (2.14),

‖Tfi · Tfj · Tfk‖L2 6 2−|i−j|/182−|j−k|/182−|k−i|/18‖fi‖L2‖fj‖L2‖fk‖L2 .

Then

‖Tf‖3
L6 6 C

∑
i,j,k

2−|i−j|/182−|j−k|/182−|k−i|/18‖fi‖L2‖fj‖L2‖fk‖L2 ,

and a final application of Hölder’s inequality gives the desired conclusion

‖Tf‖3
L6 6 C

∑
i,j,k

2−|i−j|/182−|j−k|/182−|k−i|/18‖fk‖3
L2 6 C

∑
k∈Z

‖fk‖3
L2 .

2.4 Preliminaries for the cap bound for the adjoint

Fourier operator

Recall that in the computation of ‖(Tf)2‖L3 , in equation (2.13) with g = f , we came across
the expression ∫

|f(r, θ)f(r′, θ′)|3/2| sin(θ − θ′)|−1/2dθdθ′drdr′.

By assuming the angular support of f is contained in the region 0 6 θ 6 π
2
, that is

f(r, θ) = 0 if θ /∈ [0, π
2
], we can study instead the comparable expression∫

|f(r, θ)f(r′, θ′)|3/2|θ − θ′|−1/2dθdθ′drdr′.

Instead of using fractional integration in θ, θ′ and Hölder’s inequality in r, r′ we want to
obtain a “cap type” inequality for T of the form in Theorem 4.2 in [34].

Definition 2.11. By a cap C we mean a set C ⊂ Γ whose projection to the plane R2 × {0}
is of the form [2k−1, 2k] × J , when written in polar coordinates (r, θ), where k ∈ Z and
J ⊂ [0, 2π] is an interval. We will identify the cap C with its projection to the xy-plane and
write C = [2k−1, 2k]× J .
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For a cap C = [2k−1, 2k]×J , |C| := σ(C) = 2k−1|J |, and for any λ > 0, λC = [λ2k−1, λ2k]×
J , so σ(λC) = λσ(C).

Definition 2.12. Let 0 < α < 1 and p = 2/(2 − α). Define, for f, g ∈ Lp(R), the bilinear
operator

B(f, g) =

∫
R2

f(x)g(x′)|x− x′|−αdxdx′. (2.15)

Note that the kernel x ∈ R 7→ |x|−α has a strictly positive Fourier transform and thus B
is nondegenerate and satisfies the Cauchy-Schwarz inequality |B(f, g)|2 6 B(f, f)B(g, g).

Lemma 2.7 implies that |B(f, f)| 6 Cp‖f‖2
Lp(R). We can say more if we work with the

Lorentz spaces Lp,q(R) (see [46] for an introduction to Lorentz spaces). We have the following
bound for B [36]

|B(f, f)| . ‖f‖2
Lp,2(R).

This bound will allow us to prove the following

Proposition 2.13. Let 0 < α < 1 and p = 2/(2 − α). There exist constants C < ∞ and
δ ∈ (0, 2) such that for all f ∈ Lp(R) the following inequality holds,

B(f, f) 6 C‖f‖2−δ
Lp sup

k,I
‖fk‖δLp

( |Ek ∩ I|
|Ek|+ |I|

)δ
,

where I ranges over all compact intervals of R, Ek = {x ∈ R : 2k 6 |f(x)| < 2k+1} and
fk = fχEk , k ∈ Z.

Proof. We will use the following characterization of the Lp,2 norm. If we decompose f as
in the statement of the proposition, f =

∑
k∈Z fk where fk have disjoint supports, Ek, and

2kχEk 6 |fk| < 2k+1χEk , then

‖f‖2
Lp,2 �

∑
k

‖fk‖2
Lp . (2.16)

It follows from (2.16) that ‖f‖2
Lp,2 . ‖f‖

p
Lp supk ‖fk‖

2−p
Lp , from where the following bound

is obtained
|B(f, f)| . ‖f‖pLp sup

k
‖fk‖2−p

Lp .

We can improve the previous estimate. For this, let η > 0, S = {k : ‖fk‖p > η‖f‖p}, and
g =

∑
k∈S fk. Then |B(f − g, f − g)| . η2−p‖f‖2

Lp . Since ‖f‖pLp =
∑

k ‖fk‖
p
Lp we obtain that

|S| 6 η−p. Therefore, by Cauchy-Schwarz

|B(g, g)|1/2 6
∑
k∈S

|B(fk, fk)|1/2 6 |S|max
k∈S
|B(fk, fk)|1/2 6 η−p max

k∈S
|B(fk, fk)|1/2.
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We deduce that

|B(f, f)|1/2 6 |B(f − g, f − g)|1/2 + |B(g, g)|1/2 6 η(2−p)/2‖f‖Lp + η−p max
k∈S
|B(fk, fk)|1/2,

and squaring we obtain that for all η > 0

|B(f, f)| . η2−p‖f‖2
Lp + η−2p max

k∈S
|B(fk, fk)|.

Optimizing in η gives
|B(f, f)| . max

k
|B(fk, fk)|δ/2‖f‖2−δ

Lp , (2.17)

for some δ ∈ (0, 1) (the optimization gives δ = 2(2− p)/(2 + p)). Thus it is then enough to
obtain a bound on B(f, f) where f = χE.

Lemma 2.14. There exist C < ∞ and γ ∈ (0, 1) with the following property. For every E
subset of R of finite measure

B(χE, χE) 6 C‖χE‖2
Lp

(
sup
I

|E ∩ I|
|E|+ |I|

)γ
, (2.18)

where the supremum ranges over all compact intervals I of R.

Proof. Let {Ikj }j∈Z be a partition of the real line into intervals of equal length 2k. Then

B(χE, χE) =

∫∫
χE(x)χE(y)

|x− y|α
dxdy =

∑
k

∫∫
{2k−16|x−y|<2k}

χE(x)χE(y)

|x− y|α
dxdy

�
∑
k

∑
j

2−kα|E ∩ Ikj ||E ∩ Ĩkj |

.
∑
k

∑
j

2−kα|E ∩ Ĩkj |2

where Ĩkj has the same center as Ikj and double length. From now on we will rename Ĩkj by
Ikj .

Now we fix k and estimate
∑

j 2−kα|E ∩ Ikj |2. Let n be such that 2n 6 |E| < 2n+1. We
will divide the analysis into the cases where k 6 n and k > n. Recall that p = 2/(2 − α),
and let γ ∈ (0, 1) be a number to be determined later. We first consider the case k 6 n. We
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have ∑
j

2−kα|E ∩ Ikj |2 6
∑
j

|E ∩ Ikj |2−kα sup
i
|E ∩ Iki |

. |E|2−kα
(

sup
i

|E ∩ Iki |
|E|+ |Iki |

)γ
2k(1−γ)|E|γ

� |E|1+γ2k(1−α−γ)
(

sup
i

|E ∩ Iki |
|E|+ |Iki |

)γ
= |E|2−α|E|−1+α+γ2k(1−α−γ)

(
sup
i

|E ∩ Iki |
|E|+ |Iki |

)γ
. ‖χE‖2

Lp2
−(n−k)(1−α−γ)

(
sup
i

|E ∩ Iki |
|E|+ |Iki |

)γ
.

Now if k > n we will have∑
j

2−kα|E ∩ Ikj |2 6
∑
j

|E ∩ Ikj |2−kα sup
i
|E ∩ Iki |

. |E|2−kα
(

sup
i

|E ∩ Iki |
|E|+ |Iki |

)γ
2kγ|E|1−γ

� |E|2−γ2−k(α−γ)
(

sup
i

|E ∩ Iki |
|E|+ |Iki |

)γ
= |E|2−α|E|α−γ2−k(α−γ)

(
sup
i

|E ∩ Iki |
|E|+ |Iki |

)γ
. ‖χE‖2

Lp2
−(k−n)(α−γ)

(
sup
i

|E ∩ Iki |
|E|+ |Iki |

)γ
.

Thus if we choose γ > 0 smaller than min(1 − α, α) we obtain the desired conclusion after
adding over k

B(χE, χE) . ‖χE‖2
Lp

(
sup
I

|E ∩ I|
|E|+ |I|

)γ
.

By combining Lemma 2.14 and (2.17) we obtain that for f ∈ Lp

B(f, f) . ‖f‖2−δ
Lp sup

k,I
‖fk‖δLp

( |Ek ∩ I|
|Ek|+ |I|

)δγ/2
,

that implies (after we rename δγ/2 by δ)

B(f, f) . ‖f‖2−δ
Lp sup

k,I
‖fk‖δLp

( |Ek ∩ I|
|Ek|+ |I|

)δ
,

since ‖fk‖p/‖f‖p 6 1 and so (‖fk‖p/‖f‖p)δ 6 (‖fk‖p/‖f‖p)δγ/2.
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We note that supk,I ‖fk‖δLp
(
|Ek∩I|
|Ek|+|I|

)δ
is bounded by

(
supI |I|−1+1/p

∫
I
|f |
)δ

. Indeed, we

have

sup
k,I
‖fk‖δLp

( |Ek ∩ I|
|Ek|+ |I|

)δ
.
(

sup
k,I
|I|−1+1/p

∫
I

|fk|
)δ
.

To see this, we rewrite ‖fk‖δLp � 2kδ|Ek|δ/p and
∫
I
|fk| � 2k|Ek ∩ I|. It suffices to show

that for all k, I

|Ek|δ/p
( |Ek ∩ I|
|Ek|+ |I|

)δ
6 |I|(−1+1/p)δ|Ek ∩ I|δ,

which is equivalent to |Ek|δ/p|I|δ 6 |I|δ/p(|Ek|+ |I|)δ. This holds trivially in the case |Ek| 6
|I|, while in the case |Ek| > |I| we rewrite the inequality as

1 6
(

1 +
|I|
|Ek|

)δ( |I|
|Ek|

)δ(−1+1/p)

,

which holds because −1 + 1/p < 0.
We have proved the following proposition

Proposition 2.15. Let 0 < α < 1 and p = 2/(2 − α). There exist C < ∞ and δ ∈ (0, 2)
with the following property. For all f ∈ Lp(R)

B(f, f) 6 C‖f‖2−δ
Lp(R)

(
sup
I
|I|−1+1/p

∫
I

|f |dx
)δ
. (2.19)

where I ranges over all compact intervals of R.

Using the Cauchy-Schwarz inequality for B and a decomposition as in Lemma 2.8 we
obtain the corollary,

Corollary 2.16. Let 0 < α < 1 and p = 2/(2− α). There exist C <∞ and δ ∈ (0, 2) such
that for all f ∈ Lp([0, 2π]),∫

[0,2π]2
f(x)f(y)| sin(x− y)|−αdxdy 6 C‖f‖2−δ

Lp([0,2π])

(
sup
I
|I|−1+1/p

∫
I

|f |dx
)δ
,

where I ranges over all intervals of [0, 2π].

We now consider the operator we will use to control the adjoint Fourier operator T .

Definition 2.17. Let 0 < α < 1 and p = 2/(2 − α). We define the bilinear operator
Q : Lp(R2)× Lp(R2)→ R by

Q(f, g) =

∫
(R2)2

f(r, x)g(r′, x′)|x− x′|−αdxdx′drdr′, (2.20)
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Note that we can write Q(f, f) = B(
∫
f(r, x)dr,

∫
f(r′, x′)dr′).

For f ∈ Lp(r, x) with ‖
∫
f(r, x)dr‖Lpx <∞ we use (2.19) to obtain

Q(f, f) .
∥∥∥∫ |f(r, x)|dr

∥∥∥2−δ

Lpx

(
sup
I
|I|−1+1/p

∫
I

∫
|f(r, x)|drdx

)δ
. (2.21)

Suppose that f(r, x) is supported where 2k−1 6 r < 2k, then
∫
I

∫
f(r, x)drdx =

∫
C f(r, x),

where C = [2k−1, 2k]× I, and ‖
∫
f(r, x)dr‖Lpx 6 2(k−1)(1−1/p)‖f‖Lp(r,x). Thus, it follows from

(2.21) that

Q(f, f) . 22k(1−1/p)‖f‖2−δ
Lp(r,x)

(
sup
C
|C|−1+1/p

∫
C
|f(r, x)|drdx

)δ
, (2.22)

where we used 2k−1|I| = |C|.
In the case we are interested in we will need to estimate Q(f

3/2
k , f

3/2
k ) with the support

of fk as before and fk ∈ L2, with α = 1/2 and p = 4/3.

Corollary 2.18. There exist C <∞ and δ ∈ (0, 2) with the following property. Let k, k′ ∈ Z
and f, g ∈ L4/3(R2) and suppose that f(r, x), g(r, x) are supported in the regions [2k−1, 2k]×R
and [2k

′−1, 2k
′
]×R respectively. Then

|Q(f, g)|2 6 C 22(k+k′)/4‖f‖2−δ
L4/3(r,x)

‖g‖2−δ
L4/3(r,x)

(
sup
C
|C|−1/4

∫
C
|f |
)δ(

sup
C
|C|−1/4

∫
C
|g|
)δ
.

(2.23)

Proof. This follows from (2.22) and the Cauchy-Schwarz inequality for Q,

Q(f, g)2 6 Q(f, f)Q(g, g).

For fk, fk′ ∈ L2(R2
(r,x)) supported where 2k−1 6 r < 2k and 2k

′−1 6 r < 2k
′

respectively
we obtain

Q(|fk|3/2, |fk′ |3/2)2 . 22(k+k′)/4‖fk‖3(2−δ)/2
L2(r,x) ‖fk′‖

3(2−δ)/2
L2(r,x)

·
(

sup
C
|C|−1/4

∫
C
|fk|3/2

)δ(
sup
C
|C|−1/4

∫
C
|fk′ |3/2

)δ
. (2.24)

The use of the Cauchy-Schwarz inequality for Q, and a decomposition as in Lemma 2.8
implies that for fk, fk′ ∈ L2(Rr×[0, 2π]x) supported where 2k−1 6 r < 2k and 2k

′−1 6 r < 2k
′

the following estimate holds(∫
|fk(r, x)fk′(r

′x′)|3/2| sin(x− x′)|−1/2dxdx′drdr′
)2

. 22(k+k′)/4‖fk‖3(2−δ)/2
L2(r,x) ‖fk′‖

3(2−δ)/2
L2(r,x)

·
(

sup
C
|C|−1/4

∫
C
|fk|3/2

)δ(
sup
C
|C|−1/4

∫
C
|fk′ |3/2

)δ
. (2.25)
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2.5 The cap bound for the adjoint Fourier restriction

operator

Proposition 2.19. There exist C < ∞ and δ ∈ (0, 2) with the following property. Let
k, k′ ∈ Z and f, g ∈ L2(Γ2), with f and g supported in the regions 2k−1 6 |y| < 2k and
2k
′−1 6 |y| < 2k

′
respectively, then

‖Tf · Tg‖L3 6 C 2−
1
6
|k−k′|‖f‖

1
2

(2−δ)
L2(Γ2) ‖g‖

1
2

(2−δ)
L2(Γ2)

(
sup
C
|C|−1/4

∫
C
|f |

3
2

) δ
3
(

sup
C
|C|−1/4

∫
C
|g|

3
2

) δ
3
.

(2.26)

Proof. Recall from Section 2.3, equation (2.13), that we have the inequality

‖Tf · Tg‖L3 6 C(2k2k
′
)−1/3 min(2k, 2k

′
)1/3

·
(∫
|f(y)g(y′)|3/2| sin(θ − θ′)|−1/2dθdθ′drdr′

)2/3

.

From (2.25) we obtain

‖Tf · Tg‖L3 . (2k2k
′
)−1/3 min(2k, 2k

′
)1/32(k+k′)/6‖f‖(2−δ)/2

L2(Γ2) ‖g‖
(2−δ)/2
L2(Γ2)

·
(

sup
C
|C|−1/4

∫
C
|f |3/2

)δ/3(
sup
C
|C|−1/4

∫
C
|g|3/2

)δ/3
,

which as in the proof of Lemma 2.9 can be rewritten as

‖Tf · Tg‖L3 . 2−|k−k
′|/6‖f‖(2−δ)/2

L2(Γ2) ‖g‖
(2−δ)/2
L2(Γ2)(

sup
C
|C|−1/4

∫
C
|f |3/2

)δ/3(
sup
C
|C|−1/4

∫
C
|g|3/2

)δ/3
.

Corollary 2.20. There exist C < ∞ and δ > 0 with the following property. If f ∈ L2(Γ2)
and fk = fχ2k−16|y|<2k , k ∈ Z, then

‖Tf‖2
L6(R3) 6 C

∑
k∈Z

‖fk‖2−δ
L2(Γ2)

(
sup
C
|C|−1/4

∫
C
|fk|3/2dσ

)2δ/3

. (2.27)

Proof. We start by writing ‖Tf‖2
L6 = ‖Tf · Tf‖L3 and Tf =

∑
k∈Z Tfk, so the triangle

inequality gives

‖Tf · Tf‖L3 6
∑
k,k′

‖Tfk · Tfk′‖L3
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that together with Proposition 2.19 gives

‖Tf‖2
L6 .

∑
k,k′

2−|k−k
′|/6‖fk‖(2−δ)/2

L2(Γ2) ‖fk′‖
(2−δ)/2
L2(Γ2)(
sup
C
|C|−1/4

∫
C
|fk|3/2

)δ/3(
sup
C
|C|−1/4

∫
C
|fk′ |3/2

)δ/3
.

The desired conclusion follows by the Cauchy-Schwarz inequality.

By using Proposition 2.19 instead of Lemma 2.9 we can obtain an analog of Proposition
2.10, that is

Proposition 2.21. There exist C < ∞ and δ ∈ (0, 2) with the following property. Let
f ∈ L2(Γ2) and for k ∈ Z let fk(y) = f(y)χ{2k−16|y|<2k}. Then

‖Tf‖L6(R3) 6 C
(∑
k∈Z

‖fk‖3−3δ/2

L2(Γ2)

(
sup
C
|C|−1/4

∫
C
|fk|3/2dσ

)δ)1/3

. (2.28)

Proposition 2.22 (Cap estimate). There exist C < ∞ and δ ∈ (0, 2) such that for all
f ∈ L2(Γ2) the following estimate holds

‖Tf‖L6(R3) 6 C‖f‖1−δ/2
L2(Γ2)

(
sup
C
|C|−1/4

∫
C
|f |3/2dσ

)δ/3
, (2.29)

Proof. From Proposition 2.21 we have

‖Tf‖L6 .
(∑

k

‖fk‖3−3δ/2

L2

(
sup
C
|C|−1/4

∫
C
|fk|3/2dσ

)δ)1/3

.

For each k, using that δ 6 2/3 (δ can be taken as small as desired by changing the corres-
ponding implicit constants C in the inequalities) we have

‖fk‖3−3δ/2

L2

(
sup
C
|C|−1/4

∫
C
|fk|3/2dσ

)δ
= ‖fk‖2

L2‖fk‖1−3δ/2

L2

(
sup
C
|C|−1/4

∫
C
|fk|3/2dσ

)δ
6 ‖fk‖2

L2‖f‖1−3δ/2

L2

(
sup
C
|C|−1/4

∫
C
|f |3/2dσ

)δ
.

Then, adding over k,

‖Tf‖L6 . ‖f‖1−δ/2
L2

(
sup
C
|C|−1/4

∫
C
|f |3/2dσ

)δ/3
.
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2.6 Using the cap bound

We will prove the analog of [9, Lemma 2.6].

Lemma 2.23. For any δ > 0 there exist Cδ <∞ and ηδ > 0 with the following property. If
f ∈ L2(Γ2) satisfies ‖Tf‖6 > δC‖f‖2 then there exists a decomposition f = g+ h and a cap
C satisfying

0 6 |g|, |h| 6 |f |, (2.30)

g, h have disjoint supports, (2.31)

|g(x)| 6 Cδ‖f‖2|C|−1/2χC(x), for all x, (2.32)

‖g‖2 > ηδ‖f‖2. (2.33)

Proof. For convenience, normalize so that ‖f‖L2(Γ2) = 1. By Proposition 2.22 there exists a
cap C such that ∫

C
|f |3/2drdθ > 1

2
c(δ)|C|1/4.

Let R > 1 and define E = {x ∈ C : |f(x)| 6 R}. Set g = fχE and h = f − fχE. Then
g, h have disjoint supports, g+h = f , g is supported on C, and ‖g‖∞ 6 R. Since |h(x)| > R
for almost every x ∈ C for which h(x) 6= 0 we have∫

C
|h|3/2 6 R−1/2

∫
C
h2 6 R−1/2‖f‖2

2 = R−1/2.

If we choose R by setting R−1/2 = 1
4
c(δ)|C|1/4, then∫

C
|g|3/2 =

∫
C
|f |3/2 −

∫
C
|h|3/2 > 1

4
c(δ)|C|1/4.

By Hölder’s inequality, since g is supported on C,

‖g‖2 > |C|−1/6
(∫
|g|3/2

)2/3

> c′(δ) = c′(δ)‖f‖2 > 0.

We note that the conditions |g(x)| 6 Cδ‖f‖2|C|−1/2χC(x) and ‖g‖2 > ηδ‖f‖2 easily imply
a lower bound on the L1 norm of g.

Lemma 2.24. Let g ∈ L2(Γ2) satisfying |g(x)| 6 a|C|−1/2χC(x) and ‖g‖2 > b, for some
a, b > 0 and C ⊂ Γ2. Then there is a constant C = C(a, b) > 0 such that

‖g‖L1(Γ2) > C|C|1/2.

Proof. The hypotheses on g imply that |a−1|C|1/2g(x)| 6 χC(x) 6 1 and thus ‖a−1|C|1/2g‖2
2 6

‖a−1|C|1/2g‖1. Therefore

‖g‖1 > a−1|C|1/2‖g‖2
2 > a−1b2|C|1/2.
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2.7 Using the group of symmetries

A Lorentz transformation, L, in R3 is an invertible linear map that preserves the bilinear
form

A(x, y) = x1y1 + x2y2 − x3y3,

x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3, i.e.

A(x, y) = A(Lx, Ly), for all x, y ∈ R3.

Examples of Lorentz transformations are Lt, M t and Rθ given next. For t ∈ (−1, 1) we
define the linear map Lt : R3 → R

3 by

Lt(x1, x2, x3) =
(x1 + tx3√

1− t2
, x2,

x3 + tx1√
1− t2

)
.

{Lt}t∈(−1,1) is a one parameter subgroup of Lorentz transformations. Similarly,

M t(x1, x2, x3) =
(
x1,

x2 + tx3√
1− t2

,
x3 + tx2√

1− t2
)

is a Lorentz transformation.
One computes that Lt and M t preserve the cone for all t ∈ (−1, 1), that is, Lt(Γ2) =

M t(Γ2) = Γ2. For λ > 0 we define the dilation Dλ : R3 → R
3 by Dλ(x) = λx that clearly

satisfies Dλ(Γ
2) = Γ2 for every λ > 0. For θ ∈ [0, 2π] we denote by Rθ the rotation in R3 by

angle θ about the x3-axis

Rθ(x1, x2, x3) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ, x3).

Rθ preserves the cone for all 0 6 θ 6 2π.
Associated to Lt, M t, Dλ, Rθ are the operators Lt∗, M t∗, D∗λ and R∗θ acting on a function

f ∈ L2(Γ2) by

Lt∗f = f ◦ Lt, M t∗f = f ◦M t, D∗λf = λ1/2f ◦Dλ, R
∗
θf = f ◦Rθ, (2.34)

where “◦” denotes composition. We also define Lt =
√

1− t2Lt = D√1−t2L
t and L∗t by

L∗tf(x1, x2, x3) = (1− t2)1/4f ◦ Lt(x1, x2, x3) = (1− t2)1/4f(x1 + tx3,
√

1− t2 x2, x3 + txx).

The measure σ is invariant under the action of Lorentz transformations that preserve the
cone, and in fact is the only one with that property, up to multiplication by constant; for
this we refer to [39] where the case of the cone in R4 is considered. In this paper we only
need to know that for every t ∈ (−1, 1), Lt and M t preserve the measure σ and this can be
done directly using the change of variables formula and seeing that the Jacobians work out.
We write it in the next proposition and include the proof for completeness.
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Proposition 2.25. For any t ∈ (−1, 1) the linear maps Lt, M t are invertible, preserve Γ2,
that is Lt(Γ2) = M t(Γ2) = Γ2, and preserve σ, that is, for any f ∈ L1(Γ2)∫

Γ2

f ◦ Ltdσ =

∫
Γ2

f ◦M tdσ =

∫
Γ2

fdσ.

Proof. Letting P (x1, x2, x3) = (x2, x1, x3) we see that M t = P ◦ Lt ◦ P and so it is enough
to prove the statements for Lt. The inverse of Lt is L−t. That Lt(Γ2) ⊆ Γ2 follows from the
equality (x3 + tx1√

1− t2
)2

=
(x1 + tx3√

1− t2
)2

+ x2
2

and the inequality
x3 + tx1√

1− t2
> 0

whenever x2
3 = x2

1+x2
2 and x3 > 0. Since the same is true for L−t, it follows that Lt(Γ2) = Γ2.

For the invariance of the measure, let f ∈ L1(Γ2). We have∫
f ◦ Lt(x1, x2, x3)dσ(x1, x2, x3) =

∫
R2

f
(y1 + ty3√

1− t2
, y2,

y3 + ty1√
1− t2

) dy1dy2√
y2

1 + y2
2

where y3 =
√
y2

1 + y2
2. We use the change of variables u = y1+ty3√

1−t2 =
y1+t
√
y21+y22√

1−t2 , v = y2. We
note that the Jacobian is

∂(u, v)

∂(y1, y2)
=

1√
1− t2

(
1 +

ty1√
y2

1 + y2
2

)
,

or equivalently
∂(y1, y2)

∂(u, v)
=
√
y2

1 + y2
2

√
1− t2√

y2
1 + y2

2 + ty1

.

Now, since Lt(y1, y2, y3) lies in Γ2 we also have

√
u2 + v2 =

y3 + ty1√
1− t2

.

It follows that the Jacobian factor can be rewritten as

∂(y1, y2)

∂(u, v)
=

√
y2

1 + y2
2√

u2 + v2
.

Therefore, letting w =
√
u2 + v2,∫

R2

f
(y1 + ty3√

1− t2
, y2,

y3 + ty1√
1− t2

) dy1dy2√
y2

1 + y2
2

=

∫
R2

f(u, v, w)
dudv√
u2 + v2

or equivalently, ∫
f ◦ Ltdσ =

∫
fdσ.
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The Lorentz invariance of the measure implies invariance of the L2 norm, for f ∈ L2(Γ2)

‖Lt∗f‖L2(σ) = ‖M t∗f‖L2(σ) = ‖D∗λf‖L2(σ) = ‖R∗θf‖L2(σ) = ‖L∗tf‖L2(σ) = ‖f‖L2(σ). (2.35)

Using the Lorentz invariance of σ it is direct to check that for all p ∈ [1,∞] the Lp norm
of Tf does not change under Lorentz transformations in the sense that

‖T (f ◦ L)‖Lp(R3) = ‖Tf‖Lp(R3). (2.36)

Indeed, writing

Tf(x, t) =

∫
eix·yeity

′
f(y, y′)dσ(y, y′) =

∫
eiA((x,−t),(y,y′))f(y, y′)dσ(y, y′),

thus

T (f ◦ L)(x, t) =

∫
eiA((x,−t),(y,y′))f ◦ L(y, y′)dσ(y, y′)

=

∫
eiA(L(x,−t),L(y,y′))f ◦ L(y, y′)dσ(y, y′)

=

∫
eiA(L(x,−t),(y,y′))f(y, y′)dσ(y, y′).

Since for a Lorentz transformation L, | detL| = 1, (2.36) follows by change of variables in
the case p ∈ [1,∞). When p =∞, (2.36) follows since L is invertible.

We can use the group of symmetries to widen caps, that is, we have

Lemma 2.26. Let C ⊂ [1/2, 1] × [0, 2π] be a cap in Γ2. Then there exist t ∈ [0, 1) and
θ ∈ [0, 2π] such that L−1

t R−1
θ (C) satisfies

σ(L−1
t R−1

θ (C)) > 1

2
, and L−1

t R−1
θ (C) ⊆ [1/4, 1]× [0, 2π]. (2.37)

Proof. Let θ ∈ [0, 2π] be such that R−1
θ C = [1/2, 1]× [−ε, ε], for some ε ∈ [0, π]. The measure

of C is σ(C) = |C| = ε, and so we can assume ε < 1/2, otherwise we are done by taking t = 0.
The inverse of Lt is L−1

t = (1− t2)−1/2L−t and the measure of L−1
t R−1

θ (C) is

σ(L−1
t R−1

θ (C)) = σ((1− t2)−1/2L−tR−1
θ (C)) = σ((Lt)−1R−1

θ ((1− t2)−1/2C))
= σ((1− t2)−1/2C) = (1− t2)−1/2σ(C),

where we used the invariance of σ under Lorentz transformations and that σ(λC) = |λ|σ(C)
for any λ ∈ R.

Let t be such that σ(L−1
t R−1

θ (C)) = 1, that is t = (1 − |C|2)1/2 = (1 − ε2)1/2. Now we
write R−1

θ C = {(r cosϕ, r sinϕ, r) : 1/2 6 r 6 1,−ε 6 ϕ 6 ε} , so that

L−1
t R−1

θ (C) =
{
r(1− t2)−1/2

( cosϕ− t
(1− t2)1/2

, sinϕ,
1− t cosϕ

(1− t2)1/2

)
: 1/2 6 r 6 1,−ε 6 ϕ 6 ε

}
.
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Note that for 1/2 6 r 6 1 and −ε 6 ϕ 6 ε we have

r(1− t2)−1/2 | cosϕ− t|
(1− t2)1/2

6
1− t
1− t2

=
1

1 + t
6 1

because cosϕ > cos ε > t. Similarly

r(1− t2)−1/2| sinϕ| 6 sin ε

ε
6 1

and
1

4
6

1

2(1 + t)
=

1− t
2(1− t2)

6 r
1− t cosϕ

1− t2
6 1

Then t = (1− ε2)1/2 gives the desired conclusion.

Corollary 2.27. Let {fn}n∈N be a sequence of nonnegative functions in L2(Γ2) with
‖fn‖L2(Γ2) = 1 and such that there exists a cap Cn ⊂ [1/2, 1]× [0, 2π] with the property∫

Cn
fndσ > c|Cn|1/2, (2.38)

where c > 0 is independent of n. Then there exist sequences {tn}n∈N ⊂ [0, 1) and {θn}n∈N ⊂
[0, 2π] such that {L∗tnR

∗
θn
fn}n∈N satisfies that every weak limit in L2(Γ2) is nonzero.

Proof. L∗t and R∗θ preserve the L2(Γ2) norm thus ‖L∗tR∗θfn‖L2(Γ2) = 1 for any t ∈ [0, 1) and
θ ∈ [0, 2π]. It follows that for any sequences {tn}n∈N ⊂ [0, 1) and {θn}n∈N ⊂ [0, 2π], the set
of L2-weak limits of {L∗tnR

∗
θn
fn} is nonempty.

Under the action of L∗tR
∗
θ the integral of a function f changes according to∫

L∗tR
∗
θfdσ = (1− t2)−1/4

∫
R∗θfdσ = (1− t2)−1/4

∫
fdσ. (2.39)

By Lemma 2.26, for each n there exist tn ∈ [0, 1) and θn ∈ [0, 2π] such that

σ(L−1
tn R

−1
θn

(Cn)) >
1

2
and L−1

tn R
−1
θn

(Cn) ⊆ [1/4, 1]× [0, 2π].

Suppose that for a subsequence (that we call the same) L∗tnR
∗
θn
fn ⇀ f , as n → ∞, for

some f ∈ L2(Γ2). Using (2.38) and (2.39) we have∫
[1/4,1]×[0,2π]

L∗tnR
∗
θnfndσ > (1− t2n)−1/4

∫
Cn
fndσ

> c(1− t2n)−1/4|Cn|1/2 = c(σ(L−1
tn R

−1
θn

(Cn)))1/2 >
c√
2
. (2.40)

From (2.40) and the weak convergence it follows that∫
[1/4,1]×[0,2π]

fdσ >
c√
2
> 0

and so f 6= 0.
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2.8 The proof of the precompactness

In this section we prove that up to symmetries of the cone, an extremizing sequence is
precompact.

We will give two proofs. In this section the proof will be based on [18] and [17]; the other
will be based on [9] with a modification coming from [18] and is given in Section 2.9.

Recall that C, given in (2.3), denotes the best constant in the inequality (2.2), in other
words, C = ‖T‖, the norm of the operator T as a map from L2(Γ2) to L6(R3).

We start by stating Proposition 1.1 of [18] for the cone.

Proposition 2.28 ([18]). Let T : L2(Γ2, σ) → L6(R3) be the Fourier extension operator
defined in (2.1). Let {fn}n∈N ⊂ L2(Γ2) such that:

(i) lim
n→∞

‖fn‖2 = 1;

(ii) lim
n→∞

‖Tfn‖L6(R3) = C;

(iii) fn ⇀ f 6= 0;

(iv) Tfn → Tf a.e. in R3.

Then fn → f in L2(Γ2), in particular ‖f‖2 = 1 and ‖Tf‖L6(R3) = C.

We have changed slightly condition (i) in Proposition 1.1 of [18] from ‖fn‖2 = 1 to
limn→∞ ‖fn‖2 = 1, but the proposition as stated here is easily shown to be equivalent to the
one in [18] by considering fn/‖fn‖2.

We now restate the precompactness theorem, Theorem 2.3, in a more precise way,

Theorem 2.29. Let {fn}n∈N be an extremizing sequence for (2.2) of nonnegative functions
in L2(Γ2). Then there exist sequences {tn}n∈N ⊂ (−1, 1), {θn}n∈N ⊂ [0, 2π] and {λn}n∈N ⊂
(0,∞) such that {L∗tnR

∗
θn
D∗λnfn}n∈N is precompact, that is, any subsequence has a convergent

sub-subsequence in L2(Γ2).

Proof. Since {fn}n∈N is an extremizing sequence, for all n large enough ‖Tfn‖6 > C
2
‖fn‖2.

By Lemma 2.23 with δ = 1/2 there exists C <∞ and η > 0, a decomposition fn = gn + hn
and a cap Cn satisfying (2.30), (2.31), (2.32) and (2.33). Using that ‖fn‖L2 → 1, as n→∞,
and Lemma 2.24 for gn gives

‖gn‖L1(Γ2) > C|Cn|1/2,

where C is independent of n.
Now there exists {λn}n∈N ⊂ (0,∞) such that λ−1

n Cn ⊂ [1/2, 1]× [0, 2π] and λ−1
n Cn is a cap

as in Definition 2.11. By dilation invariance {D∗λnfn}n∈N is also an extremizing sequence,
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with ‖D∗λnfn‖2 = ‖fn‖2. The decomposition for fn gives a decomposition for D∗λnfn, D∗λnfn =
D∗λngn +D∗λnhn, and ∫

λ−1
n Cn

D∗λnfndσ > ‖D
∗
λngn‖L1(Γ2) > C|λ−1

n Cn|1/2.

We now apply Corollary 2.27 to {D∗λnfn}n to obtain sequences {tn}n∈N ⊂ [0, 1) and {θn}n∈N ⊂
[0, 2π] such that every weak limit of {L∗tnR

∗
θn
D∗λnfn}n in L2(Γ2) is nonzero.

In view of Proposition 2.28 the theorem is proved if we show that, after passing to a
subsequence, if L∗tnR

∗
θn
D∗λnfn ⇀ f , as n → ∞, then TL∗tnR

∗
θn
D∗λnfn → Tf a.e. in R3. We

will do this by using the following proposition.

Proposition 2.30. Let {un}n∈N be a uniformly bounded sequence in L2(Γ2), i.e.,
supn ‖un‖2 =: c < ∞. Suppose there exists u ∈ L2(Γ2) such that un ⇀ u as n → ∞.
Then, there exists a subsequence {unk}k∈N such that Tunk → Tu a.e. in R3.

Proof. The proof of this is contained in the proof of Theorem 1.1 in [17]. We repeat it here
for the convenience of the reader (and the author). We start by defining vn(y) by its Fourier
transform

v̂n(y) = un(y)|y|−1,

and v̂(y) = u(y)|y|−1.
Since ‖un‖2

L2(Γ2) =
∫
R2 |un(y)|2 dy|y| 6 c2 we see that ‖vn‖2

Ḣ1/2(R2)
=
∫
R2 |v̂n(y)|2|y|dy 6 c2.

The operator T applied to un equals eit
√
−∆vn. Fix t ∈ R, by the continuity of eit

√
−∆ in

Ḣ1/2(R2), we have

eit
√
−∆vn ⇀ eit

√
−∆v

weakly in Ḣ1/2(R2), as n→∞. Then, by the Rellich Theorem ([11, Theorem 1.5]), for any
R > 0

eit
√
−∆vn → eit

√
−∆v

strongly in L2(B(0, R)), as n→∞. Denote by

Fn(t) :=

∫
|x|<R

∣∣∣eit√−∆(vn − v)
∣∣∣2 dx = ‖eit

√
−∆(vn − v)‖2

L2(B(0,R)).

By Hölder’s inequality and Sobolev embedding, Ḣ1/2(R2) ⊂ L4(R2), we obtain

Fn(t) 6 CR‖eit
√
−∆(vn − v)‖2

Ḣ1/2(R2)
6 2CR,

consequently, by the Fubini and dominated convergence Theorems we have that∫ R

−R
Fn(t)dt =

∫ R

−R

∫
|x|<R

∣∣∣eit√−∆(vn − v)
∣∣∣2 dxdt→ 0
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as n→∞. This implies that, up to a subsequence,

eit
√
−∆(vn − v)→ 0 a.e. in B(0, R)× (−R,R).

Repeating the argument on a discrete sequence of radii Rn such that Rn → ∞, as n → ∞
we conclude, by a diagonal argument, that there exists a subsequence vnk of vn such that

eit
√
−∆(vnk − v)(x)→ 0 a.e. for (x, t) ∈ R2 ×R,

or equivalently, in terms of the sequence {un}n∈N,

Tunk − Tu→ 0 a.e. in R3.

This concludes the proof of Theorem 2.29. For the proof of Theorem 2.29 using the
Christ-Shao argument we will need the next proposition, an analog of Proposition 2.28,
which of course follows from Propositions 2.28 and 2.30, but the idea is to give an alternative
approach.

We denote B(0, R)c := {x ∈ R2 : |x| > R}, the complement of the ball B(0, R).

Proposition 2.31. Let T : L2(Γ2, σ)→ L6(R3) be the Fourier extension operator defined in
(2.1). Let {fn}n∈N ⊂ L2(Γ2) such that:

(i) lim
n→∞

‖fn‖2 = 1;

(ii) lim
n→∞

‖Tfn‖L6(R3) = C;

(iii) fn ⇀ f 6= 0;

(iv) sup
n∈N
‖fn‖L2(B(0,R)c) 6 Θ(R), where Θ(R)→ 0 as R→∞.

Then fn → f in L2(Γ2), in particular ‖f‖2 = 1 and ‖Tf‖L6(R3) = C.

Proof. Our proof follows that of Proposition 1.1 in [18]. We will denote by on(1) a quantity
depending on n only that satisfies limn→∞ on(1) = 0. We will allow on(1) to change from
line to line without changing its name.

LetR > 0. Note that because of the weak convergence we also have ‖f‖L2(B(0,R)c) 6 Θ(R).
Denote fR = fχB(0,R) and fRn = fnχB(0,R). Because of the weak convergence and the compact
support of fR and fRn , we have

T (fRn )→ T (fR), a.e. in R3,

and because of the continuity of T ,

‖T (fn − fRn )‖6, ‖T (f − fR)‖6 6 CΘ(R). (2.41)



CHAPTER 2. ON EXTREMIZING SEQUENCES FOR THE CONE 47

Thus by triangular inequality, using that ‖TfRn − TfR‖6 6 C for all n and the binomial
expansion

‖Tfn − Tf‖6
6 6 (‖Tfn − TfRn ‖6 + ‖T (fRn − fR)‖6 + ‖T (fR − f)‖6)6

6 ‖TfRn − TfR‖6
6 + CΘ(R), (2.42)

and similarly
‖TfRn − TfR‖6

6 6 ‖Tfn − Tf‖6
6 + CΘ(R). (2.43)

Using the Brézis and Lieb Lemma as in [18] we get

‖TfRn − TfR‖6
6 = ‖TfRn ‖6

6 − ‖TfR‖6
6 + on,R(1), (2.44)

where on,R(1) → 0 as n → ∞, when we keep R fixed. Using (2.41), (2.42) and (2.44) we
obtain

|‖Tfn − Tf‖6
6 − (‖Tfn‖6

6 − ‖Tf‖6
6)| 6 on,R(1) + CΘ(R), (2.45)

By the weak convergence

‖fn − f‖2
2 = ‖fn‖2

2 − ‖f‖2
2 + on(1) (2.46)

or equivalently
lim
n→∞

‖fn − f‖2
2 = 1− ‖f‖2

2. (2.47)

Using that {fn}n∈N is a maximizing sequence for T we get

‖T‖2 =
‖Tfn‖2

6

‖fn‖2
2

+ on(1) 6
(‖Tfn − Tf‖6

6 + ‖Tf‖6
6 + on,R(1) + CΘ(R))1/3

‖fn − f‖2
2 + ‖f‖2

2 + on(1)
+ on(1) (2.48)

6
‖Tfn − Tf‖2

6 + ‖Tf‖2
6 + on,R(1) + CΘ(R)

1
3

‖fn − f‖2
2 + ‖f‖2

2 + on(1)
+ on(1), (2.49)

where we used the inequality

(a+ b+ c)t 6 at + bt + ct, for all a, b, c > 0 and 0 6 t 6 1.

The continuity of T and (2.49) imply

‖T‖2 6
‖T‖2‖fn − f‖2

2 + ‖Tf‖2
6 + on,R(1) + CΘ(R)

1
3

‖fn − f‖2
2 + ‖f‖2

2 + on(1)
+ on(1),

and hence

‖T‖2(‖fn − f‖2
2 + ‖f‖2

2 + on(1)) 6 ‖T‖2‖fn − f‖2
2 + ‖Tf‖2

6 + on,R(1) + CΘ(R)
1
3 ,
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that after canceling terms implies

‖T‖2(‖f‖2
2 + on(1)) 6 ‖Tf‖2

6 + on,R(1) + CΘ(R)
1
3 .

Since we also have the inequality ‖Tf‖2
6 6 ‖T‖2‖f‖2

2 we can take the limit as n→∞ in the
previous inequality followed by a limit as R→∞ to obtain

‖Tf‖6 = ‖T‖‖f‖2. (2.50)

Note that this implies that f is an extremizer for T since f 6= 0 by hypothesis. It remains
to prove that fn → f in L2(Γ2). Using (2.49) and (2.50) we get

‖T‖2 6
‖T‖2‖f‖2

2 + ‖Tfn − Tf‖2
6 + on,R(1) + CΘ(R)

1
3

‖fn − f‖2
2 + ‖f‖2

2 + on(1)
+ on(1),

which as before implies

‖T‖2(‖fn − f‖2
2 + on(1)) 6 ‖Tfn − Tf‖2

6 + on,R(1) + CΘ(R)
1
3 . (2.51)

and by continuity of T
‖Tfn − Tf‖2

6 6 ‖T‖2‖fn − f‖2
2. (2.52)

Using (2.51), (2.52) and (2.47) we can take the limit as n→∞ and then the limit as R→∞
to obtain

lim
n→∞

‖Tfn − Tf‖2
6 = ‖T‖2(1− ‖f‖2

2).

Now, using this last equality together with (2.45) and the fact that {fn}n∈N is an L2-
normalized extremizing sequence gives

‖T‖6 = lim
n→∞

‖Tfn‖6
6 = ‖T‖6(1− ‖f‖2

2)3 + ‖T‖6‖f‖6
2,

therefore
(1− ‖f‖2

2)3 + ‖f‖6
2 = 1 and ‖f‖2 6 1.

This easily implies that either ‖f‖2 = 1 or ‖f‖2 = 0. The latter case does not hold since
f 6= 0 by assumption. Thus ‖f‖2 = 1 and fn → f in L2(Γ2).

2.9 The Christ-Shao concentration compactness argu-

ment

We are now ready to use the Christ-Shao concentration compactness argument to gain control
over extremizing sequences. We follow the same lines as in [9] so many of the arguments
are the same. We will indicate when changes are needed, but will not go over the entire
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argument. We note that there will be one part we will do in a different way, namely we will
not study “cross terms”, section 14 in [9], but instead we will use an argument in [18] that
to the author seems much easier. In this way we avoid the need of the use of Fourier integral
operators (sections 7.3 and 7.4 in [9]).

We now state the results from [9] of interest for us. We indicate the changes needed in
our case and if we just state the result without proof is because it is exactly as in [9] with
the possible exception of changing norms from L4 in their case to L6 in our case.

Definition 2.32. A nonzero function f ∈ L2(Γ2) is said to be a δ-nearly extremal for (2.2)
if

‖Tf‖L6(R3) > (1− δ)C‖f‖L2(Γ2).

Lemma 2.33. Let f = g + h ∈ L2(Γ2). Suppose that g ⊥ h, g 6= 0, and that f is a δ-nearly
extremal for some δ ∈ (0, 1

4
]. Then

‖h‖2

‖f‖2

6 C max
(‖Th‖6

‖h‖2

, δ1/2
)
. (2.53)

Here C <∞ is a constant independent of g, h.

Let M be the set of all caps modulo the relation C ∼ C ′ if there exists k ∈ Z such that
C, C ′ ⊆ [2k−1, 2k]× [0, 2π]. We define the following metric on M.

Definition 2.34. For any two caps C, C ′ ⊆ Γ2,

%([C], [C ′]) = |k − k′| (2.54)

where C = [2k−1, 2k] × J and C ′ = [2k
′−1, 2k

′
] × J ′ and [C] denotes the equivalent class

[C] = {[2k−1, 2k]× I : I ⊆ [0, 2π] and I is an interval }.

We will also write %(C, C ′) = %([C], [C ′]).
The equivalent of [9, Lemma 7.5] is the bilinear estimate in Lemma 2.9. We restate it in

the language of caps.

Lemma 2.35. Let f, g ∈ L2(Γ2) supported in the caps C, C ′ respectively, then

‖Tf · Tg‖L3 6 C2−%(C,C′)/6‖f‖2‖g‖2,

in particular
‖TχC · TχC′‖L3 6 C2−%(C,C′)/6|C|1/2|C ′|1/2.

Here C <∞ is a universal constant.
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We now move to the decomposition algorithm, [9, Section 8]. Note that the decomposition
algorithm does not depend on the specific manifold we are dealing with, it just requires
Lemma 2.23.

Given a nonnegative function f ∈ L2(Γ2), the decomposition algorithm gives, in brief, a
sequence of disjoint caps {Cν}ν∈N, constants {Cν}ν∈N, nonnegative functions fν supported
on Cν and nonnegative functions Gν , whose support is disjoint from f0 + · · · + fν−1, such
that fν 6 Cν |Cν |−1/2χCν , f =

∑N−1
ν=0 fν + GN , for all N > 0, and f =

∑∞
ν=0 fν , where the

sum is L2(Γ2)-convergent, [9, Lemma 8.1].
Other useful properties can be obtained if f is nearly extremal for (2.2). Lemmas 8.2,

8.3 and 8.4 in [9] have exact analogs for the cone. We mention here the ones we will use.
The analog of Lemma 8.3 in [9] for the cone implies

Lemma 2.36. There exists a sequence of positive constants γν → 0 and a function N :
(0, 1

2
] → Z

+ satisfying N(δ) → ∞ as δ → 0 such that for any nonnegative f ∈ L2(Γ2) that
is δ-nearly extremal, the functions {fν , Gν}ν∈N obtained from the decomposition algorithm
satisfy

‖Gν‖2, ‖fν‖2 6 γν‖f‖2 for all ν 6 N(δ).

This lemma will be used in the following way: given ε > 0 we can find ν(ε) such that
γν < ε3 for all ν > ν(ε). If we let δ(ε) be such that N(δ) > ν0 for all δ 6 δ(ε) it follows
that an inequality ‖GN‖2 > ε3 applied to a 1

2
δ(ε)-nearly extremal f whose decomposition

is {fν , Gν}ν∈N, implies N 6 N(δ(ε)) or N > N(1
2
δ(ε)). The fact that {‖Gν‖2}ν∈N is a

nonincreasing sequence discards the second possibility, hence N 6 N(δ(ε)) =: Mε.
From Lemma 2.23, the analog of Lemma 8.4 in [9] follows

Lemma 2.37. For any ε > 0 there exist δε > 0 and Cε < ∞ such that for every δε-nearly
extremal nonnegative function f ∈ L2(Γ2), the functions fν , Gν and the caps Cν associated
to f via the decomposition algorithm satisfy fν 6 Cε‖f‖2|Cν |−1/2χCν and ‖fν‖2 > δε‖f‖2

whenever ‖Gν‖2 > ε‖f‖2.

We now move to the analog of [9, Lemma 9.2]. The only difference in the proof compared
to that in the Christ-Shao paper is that we need to replace the L4 norm by the L6 norm.

Lemma 2.38. For any ε > 0 there exists δ > 0 and λ <∞ such that for any 0 6 f ∈ L2(Γ2)
which is δ-nearly extremal, the summands fν produced by the decomposition algorithm and
the associated caps Cν satisfy

%(Cj, Ck) 6 λ whenever ‖fj‖2 > ε‖f‖2 and ‖fk‖2 > ε‖f‖2. (2.55)

Proof. It suffices to prove this for all sufficiently small ε. Let f be a nonnegative L2 function
which satisfies ‖f‖2 = 1 and is δ-nearly extremal for a sufficiently small δ = δ(ε), and let
{Gν , fν}ν∈N be associated to f via the decomposition algorithm. Set F =

∑N
ν=0 fν .
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Suppose that ‖fj0‖2 > ε and ‖fk0‖2 > ε. Let N be the smallest integer such that
‖GN+1‖2 < ε3. Since ‖Gν‖2 is a nonincreasing function of ν, and since ‖fν‖2 6 ‖Gν‖2,
necessarily j0, k0 6 N . Moreover, from the comment after Lemma 2.36, there exists Mε <∞
depending only on ε such that N 6 Mε. By Lemma 2.37, if δ is chosen to be a sufficiently
small function of ε then since ‖Gν‖2 > ε3 for all ν 6 N , fν 6 θ(ε)|C|−1/2χC for all such ν,
where θ is a continuous, strictly positive function on (0, 1].

Now let λ < ∞ be a large quantity to be specified. It suffices to show that if δ(ε) is
sufficiently small, an assumption that %(Cj, Ck) > λ implies an upper bound, which depends
only on ε, for λ.

There exists a decomposition F = F1 +F2 =
∑

ν∈S1
fν +

∑
ν∈S2

fν where [0, N ] = S1∪S2

is a partition of [0, N ], j0 ∈ S1, k0 ∈ S2, and %(Cj, Ck) > λ/2N > λ/2Mε for all j ∈ S1 and
k ∈ S2. Certainly ‖F1‖2 > ‖fj0‖2 > ε and similarly ‖F2‖ > ε. The cross term satisfies

‖TF1 · TF2‖3 6
∑
j∈S1

∑
k∈S2

‖Tfj · Tfk‖3 6M2
ε γ(λ/2Mε)θ(ε)

2,

where γ(λ)→ 0 as λ→∞ by Lemma 2.9. Expand

‖TF · TF‖3
3 6 ‖TF1‖6

6 + ‖TF2‖6
6 + 15‖(TF1)2 · TF2‖2

2 + 15‖TF1 · (TF2)2‖2
2

+ 20‖TF1 · TF2‖3
3 + 6‖(TF1)5 · TF2‖1 + 6‖TF1 · (TF2)5‖1.

By using Hölder’s inequality

‖TF · TF‖3
3 6 ‖TF1‖6

6 + ‖TF2‖6
6 + 20‖TF1 · TF2‖3

3

+ 6(‖TF1‖4
6 + ‖TF2‖4

6)‖TF1 · TF2‖3

+ 15(‖TF1‖2
6 + ‖TF2‖2

6)‖TF1 · TF2‖2
3,

and using that T is continuous and denoting C = ‖T‖ we get

‖TF · TF‖3
3 6 C6(‖F1‖6

2 + ‖F2‖6
2) + 20‖TF1 · TF2‖3

3

+ 6C4(‖F1‖4
2 + ‖F2‖4

2)‖TF1 · TF2‖3

+ 15C2(‖F1‖2
2 + ‖F2‖2

2)‖TF1 · TF2‖2
3,

Since F1 and F2 have disjoint supports, ‖F1‖2
2 + ‖F2‖2

2 6 ‖f‖2 = 1 and consequently

‖F1‖4
2 + ‖F2‖4

2 6 max(‖F1‖2
2, ‖F2‖2

2) · (‖F1‖2
2 + ‖F2‖2

2) 6 (1− ε2) · 1 = 1− ε2,

‖F1‖6
2 + ‖F2‖6

2 6 max(‖F1‖2
2, ‖F2‖2

2)2 · (‖F1‖2
2 + ‖F2‖2

2) 6 (1− ε2)2 · 1 = (1− ε2)2.

Thus

‖TF · TF‖3
3 6 C6(1− ε2)2 + 20(M2

ε γ(λ/2Mε)θ(ε)
2)3

+ 6C4(1− ε2)M2
ε γ(λ/2Mε)θ(ε)

2

+ 15C2(M2
ε γ(λ/2Mε)θ(ε)

2)2.
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On the other hand repeating the previous calculations with F1 = F and F2 = f − F and
using that ‖f‖2 = 1, ‖f − F‖2 6 ε3 < 1 we get

(1− δ)6C6 6 ‖Tf · Tf‖3
3 6 ‖TF · TF‖3

3 + C‖f‖2‖f − F‖2

6 ‖TF · TF‖3
3 + Cε3.

Hence

(1− δ)6C6 6 Cε3 + C6(1− ε2)2 + 20(M2
ε γ(λ/2Mε)θ(ε)

2)3

+ 6C4(1− ε2)M2
ε γ(λ/2Mε)θ(ε)

2 + 15C2(M2
ε γ(λ/2Mε)θ(ε)

2)2.

Since γ(t) → 0 as t → ∞, for all sufficiently small ε > 0 this implies an upper bound,
which depends on ε, for λ, as was to be proved.

Proposition 2.39. There exists a function Θ : [1,∞) → (0,∞) satisfying Θ(R) → 0 as
R → ∞ with the following property. For any ε > 0 there exists δ > 0 such that any
nonnegative function f ∈ L2(Γ2) satisfying ‖f‖2 = 1 which is δ-nearly extremal may be
decomposed as f = F +G where F,G are nonnegative with disjoint supports, ‖G‖2 < ε, and
there exists k ∈ Z such that∫

|x|>2kR

|F (x)|2dσ(x) 6 Θ(R) ∀R > 1,∫
|x|<2kR−1

|F (x)|2dσ(x) 6 Θ(R) ∀R > 1.

Remark 2.40. It will be clear from the proof of Lemma 2.41 that if there exists a cap
C ⊂ [2k0 , 2k0+1]× [0, 2π] such that g := fχC satisfies

|g(x)| 6 C‖f‖2|C|−1/2χC, ∀x and

‖g‖2 > c‖f‖2

for C, c universal constants, then we can take k = k0, and F > g.

Lemma 2.41. There exists a function Θ : [1,∞)→ (0,∞) satisfying Θ(R)→ 0 as R→∞
with the following property. For any ε > 0 and R̄ ∈ [1,∞) there exists δ > 0 such that
any nonnegative function f ∈ L2(Γ2) satisfying ‖f‖2 = 1 which is δ-nearly extremal may be
decomposed as f = F +G where F,G are nonnegative with disjoint supports, ‖G‖2 < ε, and
there exists k ∈ Z such that for any R ∈ [1, R̄]∫

|x|>2kR

|F (x)|2dσ(x) 6 Θ(R) , and (2.56)∫
|x|<2kR−1

|F (x)|2dσ(x) 6 Θ(R). (2.57)
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Proof that Lemma 2.41 implies Proposition 2.39. Let Θ be the function promised by the
lemma. Let ε, f be given, and assume without loss of generality that ε is small. Assuming
as we may that Θ is a continuous, strictly decreasing function, define R̄ = R̄(ε) by the
equation Θ(R̄) = ε2/2. Let k, δ = δ(ε, R̄(ε)) along with F,G satisfy the conclusions of the
lemma relative to ε, R̄(ε). Define χ to be the characteristic function of the set of all x ∈ R2

which satisfy |x| > 2kR̄ or |x| < 2kR̄−1. Redecompose f = F̃ + G̃, where F̃ = (1− χ)F and
G̃ = G + χF . Then ‖G̃‖2 < 2ε, while F̃ satisfies the required inequalities. For R > R̄ we
have F̃ = 0, and if R 6 R̄, then,∫

|x|>2kR

|F̃ (x)|2dσ(x) 6
∫
|x|>2kR

|F (x)|2dσ(x) 6 Θ(R),

and similarly for the other integral.

We now prove Lemma 2.41, the analog of Lemma 10.1 of [9]

Proof. Let η : [1,∞) → (0,∞) be a function to be chosen below, satisfying η(t) → 0 as
t→∞. This function will not depend on the quantity R̄.

Let R̄ > 1, R ∈ [1, R̄], and ε > 0 be given. Let δ = δ(ε, R̄) > 0 be a small quantity to be
chosen below. Let 0 6 f ∈ L2(Γ2) be a δ-nearly extremal, with ‖f‖2 = 1.

Let {fν}ν∈N be the sequence of functions obtained by applying the decomposition al-
gorithm to f . Choose δ = δ(ε) > 0 sufficiently small and M = M(ε) sufficiently large to
guarantee ‖GM+1‖2 < ε/2 and that fν , Gν satisfy the conclusions of the analog of Lemma
8.4 and Lemma 8.3 in [9] for ν 6M . Set F =

∑M
ν=0 fν . Then ‖f − F‖2 = ‖GM+1‖2 < ε/2.

LetN ∈ {0, 1, 2, . . . } be the minimum ofM , and the smallest number such that ‖fN+1‖2 <
η. N is bounded above by a quantity which depends only on η. Set F = FN =

∑N
k=0 fν . It

follows from Lemma 8.4 in [9], that

‖F −F‖2 < γ(N) where γ(η)→ 0 as η → 0. (2.58)

This function γ is independent of ε, R̄.
To prove the lemma, we must produce an integer k and must establish the existence of

Θ. To do the former is simple: To f0 is associated a cap C0 ⊂ [2k0−1, 2k0 ]× [0, 2π] such that
f0 6 C|C0|−1/2χC0 , for some universal constant C. k = k0 is the required integer. Note that
by Lemma 2.23, ‖f0‖2 > c for some positive universal constant c. This implies, by Lemma
2.24, that ‖f0‖1 > c′|C0|1/2, for some universal constant c′. This last remark will be of use
after rescaling.

Suppose that functions R 7→ η(R) and R 7→ Θ(R) are chosen so that

η(R)→ 0 as R→∞,
γ(η(R)) 6 Θ(R) for all R.

Then by (2.58), F − F already satisfies the desired inequalities in L2(Γ2), so it suffices to
show that F(x) ≡ 0 whenever |x| > 2k0R or |x| 6 2k0R−1.
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Each summand satisfies fk 6 C(η)|Ck|−1/2χCk , where C(η) <∞ depends only on η, and
in particular, fk is supported in Ck. ‖fk‖2 > η for all k 6 N , by definition of N . Therefore
by Lemma 2.38, there exists a function η 7→ λ(η) <∞ such that if δ is sufficiently small as
a function of η then %(Ck, C0) 6 λ(η) for all k 6 N . This is needed for η = η(R) for all R
in the compact set [1, R̄], so such a δ may be chosen as a function of R̄ alone; conditions
already imposed on δ above make it a function of both ε, R̄. The independence from ε is
needed since for δ < δ′, if f is a δ′-nearly extremal then is is also a δ-nearly extremal.

Let τk ∈ Z be such that Ck ⊂ [2τk , 2τk+1]× [0, 2π]. Then |τk−k0| 6 λ(η), so 2τk 6 2k02λ(η)

and 2τk > 2k02−λ(η). Choosing R 7→ η(R) so that 2λ(η(R)) 6 R gives F(x) ≡ 0 when
|x| > 2k0R and when |x| 6 2k0R−1.

We are now ready to give a proof of Theorem 2.29 based in the Christ-Shao concentration
compactness argument.

Alternative proof of Theorem 2.29. Let {fn}n∈N be an extremizing sequence. We start as in
the proof of Theorem 2.29 by using Lemma 2.23 with δ = 1/2 to decompose fn = gn + hn
and to obtain a cap Cn satisfying the conclusions of Lemma 2.23. We then find {λn}n∈N,
{tn}n∈N and {θn}n∈N such that the support of L∗tnR

∗
θn
D∗λngn is contained in a bounded region

independent of n and has measure comparable to 1.
Define f̃n = L∗tnR

∗
θn
D∗λnfn, g̃n = L∗tnR

∗
θn
D∗λngn, h̃n = L∗tnR

∗
θn
D∗λnhn and C̃n = L−1

tn R
−1
θn
D−1
λn
Cn.

Then g̃n and h̃n have disjoint supports, g̃n is supported on C̃n ⊂ [1/4, 1]× [0, 2π], σ(C̃n) > 1
2

and there exist 0 < c,C <∞ independent of n such that

|g̃n(x)| 6 C‖f̃n‖2|C̃n|−1/2χC̃n(x), and ‖g̃n‖2 > c‖f̃n‖2. (2.59)

We now apply Proposition 2.39 to {f̃n}n∈N with εn = 1/n, n > 1, to obtain a subsequence of
{f̃n}n∈N (that we call the same), that satisfies the following. Each f̃n can be decomposed as
f̃n = Fn + Gn, with Fn, Gn nonnegative with disjoint supports, ‖Gn‖2 <

1
n

and Fn satisfies
both (2.56) and (2.57) for certain k = kn ∈ Z.

Denote by Ωn := suppFn the support of Fn. For all n large enough so that 1/n < c/8
and ‖f̃n‖2 > 1/2 we have Ωn ∩ C̃n 6= ∅ and ‖g̃nχΩn‖2 >

c
4
. Then ‖FnχC̃n‖2 = ‖g̃nχΩn‖2 >

c
4

and |FnχC̃n(x)| = |g̃nχΩn(x)| 6 C|C̃n|−1/2χC̃n∩Ωn
(x) 6 2CχC̃n∩Ωn

(x). The lower bound in the

L2 norm of FnχC̃n imply |C̃n ∩ Ωn| > c′ > 0 for c′ independent of n. As in Lemma 2.24 this
implies ∫

C̃n
|Fn|dσ > c′′ > 0, (2.60)

with c′′ independent of n.
The conditions ‖FnχC̃n‖2 >

c
4
, C̃n ⊂ [1/4, 1]× [0, 2π] together with the L2-decay estimates

(2.56) and (2.57) imply that |kn| 6 C ′ <∞ for a constant C ′ independent of n.
As ‖Gn‖2 → 0 as n→∞, {Fn}n∈N is an extremizing sequence of nonnegative functions.

After passing to a subsequence Fn ⇀ F for some F ∈ L2(Γ2) and F 6= 0 since the Fn’s
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satisfy (2.60). Therefore {Fn}n∈N satisfies all the conditions in Proposition 2.31 and thus
Fn → F in L2(Γ2) and also f̃n → F in L2(Γ2).

This shows that {fn}n∈N is precompact up to symmetries of the cone as needed.

2.10 On convergence of extremizing sequences

In this section we prove Theorem 2.4. We start with a general discussion.
Let (X,B, µ) be a measure space and let G be a group acting on L2(X), with an action

that preserves the L2 norm, that is ‖g∗f‖L2(X) = ‖f‖L2(X) for all g ∈ G and f ∈ L2(X). For
an element f ∈ L2(X) we consider its orbit under G, G(f) := {g∗f : g ∈ G}.

Proposition 2.42. Let f ∈ L2(X) and {fn}n∈N a sequence in L2(X) with the property that
every subsequence has an L2-convergent subsequence whose limit lies on G(f). Then there
exists a sequence {gn}n∈N ⊂ G such that g∗nfn → f in L2(X), as n→∞.

Proof. For each n let gn ∈ G be such that

‖g∗nfn − f‖L2(X) 6 inf
g∈G
‖g∗fn − f‖L2(X) +

1

n
.

We show that {g∗nfn}n∈N converges to f by showing that every subsequence has a further
subsequence that converges to f . Take a subsequence (that we call the same), {g∗nfn}n∈N.
By hypothesis, fn has a convergent subsequence (that we call the same) to an element in
G(f). That is fn → g∗f , as n → ∞, for some g ∈ G. By the definition of gn and the
invariance of the norm under the action of G we get

‖g∗nfn − f‖L2(X) 6 ‖(g−1)∗fn − f‖L2(X) +
1

n
= ‖fn − g∗f‖L2(X) +

1

n
→ 0

as n→∞.

From Theorem 2.5 the extremizers for (2.2) are all of the form

g(x1, x2, x3) = e−ax3−bx2−cx1+d, (2.61)

where a, b, c, d ∈ C and |(Re b,Re c)| < Re a, and here x3 =
√
x2

1 + x2
2. As indicated

in [20], any extremizer can be obtained from g0(x1, x2, x3) = e−x3 by applying Lorentz
transformations and dilations.

We define G as the group generated by Lt,M s and Dr, s, t ∈ (−1, 1), r > 0 under
composition. The action of G is given by the action of the generators as in (2.34) : Lt∗f =
f ◦ Lt, M s∗f = f ◦M s and D∗rf = r1/2f ◦ Dr. That G preserves the L2(Γ2) norm follows
from the Lorentz invariance of σ.

Lemma 2.43. The set of real, L2-normalized extremizers for inequality (2.2) equals the orbit
of g0(y) = π−1/2e−|y|, y ∈ R2, under the group G.
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Proof. A computation shows

Lt ◦M s(x1, x2, x3) =
(x1 + t x3+sx2

(1−s2)1/2

(1− t2)1/2
,
x2 + sx3

(1− s2)1/2
,

x3+sx2
(1−s2)1/2

+ tx1

(1− t2)1/2

)
.

Then

g0 ◦Lt ◦M s ◦Dr = r
1
2π−

1
2 exp

(
− rx3

(1− s2)1/2(1− t2)1/2
− srx2

(1− s2)1/2(1− t2)1/2
− trx1

(1− t2)1/2

)
.

For given a > 0 and b, c ∈ R with |(b, c)| < a we want to solve the equations

r

(1− s2)1/2(1− t2)1/2
= a,

sr

(1− s2)1/2(1− t2)1/2
= b,

tr

(1− t2)1/2
= c.

Since a 6= 0 and |b| < a we have b/a = s ∈ (−1, 1). Also c/a = t(1−s2)1/2, so t = c
a(1−s2)1/2

=
c

(a2−b2)1/2
and we see that |t| < 1. Finally r = a(1−s2)1/2(1−t2)1/2 = (a2−b2−c2)1/2. The L2-

norm is preserved by the action of G thus a normalized, real extremizer g(y) = e−a|y|−by2−cy1+d

can be obtained from g0 by composing with Lt ◦M s ◦Dr for the computed values of t, s and
r.

Proof of Theorem 2.4. From the previous discussion we have that the group G gives all real
extremizers as the orbit of g0. Proposition 2.42, Theorem 2.3 and Theorem 2.5 give a proof
of Theorem 2.4.
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Chapter 3

Nonexistence of extremals for the
adjoint restriction inequality on the
hyperboloid

We study the problem of existence of extremizers for the L2 to Lp adjoint Fourier res-
triction inequalities on the hyperboloid in dimensions 3 and 4, in which cases p is an even
integer. We will use the method developed by Foschi in [20] to show that extremizers do not
exist.

3.1 Introduction

For d > 1 let Hd denote the hyperboloid in Rd+1, Hd = {(y,
√

1 + |y|2) : y ∈ Rd}, equipped

with the measure σ(y, y′) = δ(y′ −
√

1 + |y|2) dydy′√
1+|y|2

defined by duality as∫
Hd

g(y, y′)dσ(y, y′) =

∫
Rd

g(y,
√

1 + |y|2)
dy√

1 + |y|2
.

for all g(y, y′) ∈ C0(Hd).
A function f : Hd → R can be identified with a function fromRd toR and in what follows

we will do so. We will denote the Lp(Hd, σ) norm of a function f as ‖f‖Lp(Hd), ‖f‖Lp(σ) or
‖f‖p.

The extension or adjoint Fourier restriction operator for Hd is given by

Tf(x, t) =

∫
Rd

eix·yeit
√

1+|y|2f(y)(1 + |y|2)−
1
2dy (3.1)

where (x, t) ∈ Rd × R and f ∈ S(Rd). With the Fourier transform in Rd+1 defined to be

ĝ(ξ) =
∫
Rd+1 e

−ix·ξg(x)dx, we see that Tf(x, t) = f̂σ(−x,−t).
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It is known, [47], that there exists Cd,p < ∞ such that for all f ∈ L2(Hd) the following
estimate for Tf holds

‖Tf‖Lp(Rd+1) 6 Cd,p‖f‖L2(Hd) (3.2)

provided that
2(d+ 2)/d 6p 6 2(d+ 1)/(d− 1), if d > 1

6 6p <∞, if d = 1.
(3.3)

For p satisfying (3.3) we will denote by Hd,p the best constant in (3.2),

Hd,p = sup
06=f∈L2(Hd)

‖Tf‖Lp(Rd+1)

‖f‖L2(Hd)

.

We will also look at the two sheeted hyperboloid H̄d = {(y, y′) ∈ Rd×R : y′2 = 1+ |y|2}.
We endow it with the measure σ̄ = σ+ + σ− where

σ+(y, y′) = σ(y, y′) = δ(y′ −
√

1 + |y|2)
dydy′√
1 + |y|2

,

σ−(y, y′) = δ(y′ +
√

1 + |y|2)
dydy′√
1 + |y|2

.

We denote by T̄ the corresponding adjoint Fourier restriction operator, T̄ f = f̂σ+ + f̂σ−. If
(d, p) satisfies (3.3), then the following constant is finite,

H̄d,p = sup
f∈L2(H̄d)

‖T̄ f‖Lp(Rd+1)

‖f‖L2(H̄d)

. (3.4)

Definition 3.1. An extremizing sequence for the inequality (3.2) is a sequence {fn}n∈N of
functions in L2(Hd) satisfying ‖fn‖L2(σ) 6 1, such that ‖Tfn‖Lp(Rd+1) → Hd,p as n→∞ .

An extremizer for (3.2) is a function f 6= 0 which satisfies ‖Tf‖Lp(Rd+1) = Hd,p‖f‖L2(σ).

An analogous definition of extremizing sequence and extremizer will be used for (3.4).
We will be interested in the following pairs of (d, p): (2, 4), (2, 6) and (3, 4), which are

the only cases for d > 1 where p is an even integer. The main result of this chapter is:

Theorem 3.2. The values of the best constants are, H2,4 = 23/4π, H2,6 = (2π)5/6 and
H3,4 = (2π)5/4. In each of the three cases of pairs (d, p) extremizers do not exist.

For the two sheeted hyperboloid the best constants are, H̄2,4 = (3/2)1/4H2,4, H̄2,6 =
(5/2)1/3H2,6 and H̄3,4 = (3/2)1/4H3,4. Here extremizers do not exist either.
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We normalize the Fourier transform in Rd as

ĝ(ξ) =

∫
Rd

e−ix·ξg(x)dx.

With this, the convolution and L2(Rd) norm satisfy

f̂ ∗ g = f̂ ĝ, and ‖f̂‖L2(Rd) = (2π)d/2‖f‖L2(Rd).

When p is an even integer we can write (3.2) in “convolution form”. If p = 2k then

‖Tf‖kL2k(Rd+1) = ‖(Tf)k‖L2(Rd+1) = ‖(f̂σ)k‖L2(Rd+1) = ‖(fσ ∗ · · · ∗ fσ)̂ ‖L2(Rd+1)

= (2π)(d+1)/2‖fσ ∗ · · · ∗ fσ‖L2(Rd+1), (3.5)

where fσ ∗ · · · ∗fσ is the kth-fold convolution of fσ with itself. Therefore, for p even integer,
(3.2) is equivalent to

‖fσ ∗ · · · ∗ fσ‖1/k

L2(Rd+1)
6 (2π)−(d+1)/(2k)Cd,2k‖f‖L2(Hd), for all f ∈ S(Rd).

For reference, we write here the best constants in convolution form,

sup
f∈L2(H2)

‖fσ ∗ fσ‖1/2

L2(R3)‖f‖
−1
L2(H2) = π1/4,

sup
f∈L2(H2)

‖fσ ∗ fσ ∗ fσ‖1/3

L2(R3)‖f‖
−1
L2(H2) = (2π)1/3,

sup
f∈L2(H3)

‖fσ ∗ fσ‖1/2

L2(R4)‖f‖
−1
L2(H3) = (2π)1/4.

It would be interesting to analyze the case d = 1 for even integers greater or equal to 6.
Our argument relies on the explicit computation of the nth-fold convolution of the measure
σ with itself and this seems to be computationally involving if n > 3.

Interpolation shows that for d = 2 and p ∈ [4, 6] we have H2,p 6 Hθ
2,4H

1−θ
2,6 , where

1
p

= θ
4

+ 1−θ
6

. We do not know whether extremizers exist for p ∈ (4, 6) as our method needs
p to be an even integer.

One could consider, for s > 0, the hyperboloid Hd
s = {(y,

√
s2 + |y|2) : y ∈ Rd} equipped

with the measure

σs(y, y
′) = δ(y′ −

√
s2 + |y|2)

dydy′√
s2 + |y|2

. (3.6)

As we mention in Section 3.2 this measure is natural since it is the only Lorentz invariant
measure on Hd

s. Let Tsf(x, t) = f̂σs(x, t). For (d, p) satisfying (3.3) the estimate

‖Tsf‖Lp(Rd+1) 6 Hd,p,s‖f‖L2(Hds) (3.7)
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holds, where

Hd,p,s := sup
f∈L2(Hds)

‖Tsf‖Lp(Rd+1)

‖f‖L2(Hds)

. (3.8)

is a finite constant.
Simple scaling, as shown in Appendix 1, relates Hd,p,s and Hd,p:

Hd,p,s = s(d−1)/2−(d+1)/pHd,p. (3.9)

Moreover {fn}n∈N is a extremizing sequence for (3.2) if and only if {s−(d−1)/2fn(s−1·)}n∈N is
an extremizing sequence for the inequality for Ts, s > 0. Thus for the problem of extremizers
and properties of extremizing sequences it is enough to study s = 1.

For any ρ ∈ (0,∞) we can consider the truncated hyperboloid Hd
s,ρ = {(y,

√
s2 + |y|2) :

y ∈ Rd, |y| 6 ρ} endowed with the measure which is the restriction of σs to Hd
s,ρ. We denote

by Tρ the corresponding adjoint Fourier restriction operator, Tρf = Tf for f ∈ L2(Hd
s,ρ).

Since one has the estimate ‖Tρf‖L∞(Rd) 6 C‖f‖L2(Hds,ρ), it follows that for d > 1 and p >
2(d+ 2)/d the estimate

‖Tρf‖Lp(Rd+1) 6 C‖f‖L2(Hds,ρ) (3.10)

holds for some constant C = C(d, p, s, ρ) <∞.
A theorem of Fanelli, Vega and Visciglia in [18] implies that if d > 1 and p > 2(d+ 2)/d,

then complex valued extremizers for (3.10) exist. There are nonnegative extremizers if p
is an even integer as can be seen from the equivalent “convolution form” of (3.10). This
shows that for (d, p) = (2, 6) and (d, p) = (3, 4) there are extremizers for (3.10). The case
(d, p) = (2, 4) does not follow from the result in [18] since it is the endpoint. Our argument
here shows that in this case extremizers do not exist.

3.2 The Lorentz invariance

The Lorentz group is defined as the group of invertible linear transformations in Rd+1 pre-
serving the bilinear form (x, y) ∈ Rd+1 × Rd+1 7→ x · Jy, where J is the (d + 1) × (d + 1)
matrix Ji,j = 0 if i 6= j, Ji,i = −1 if 1 6 i 6 d and Jd+1,d+1 = 1.

Let us denote by L+ the subgroup of Lorentz transformations in Rd+1 that preserve Hd
s.

It is known that σs is invariant under the action of L+ and moreover is the unique measure
on Hd

s invariant under such Lorentz transformations, up to multiplication by scalar; for this
we refer to [39] where the case d = 3 is considered, but the same argument can be adapted
to d > 2.

For t ∈ (−1, 1) we define the linear map Lt : Rd+1 → R
d+1 by

Lt(ξ1, . . . , ξd, τ) =
( ξ1 + tτ√

1− t2
, ξ2 . . . , ξd,

τ + tξ1√
1− t2

)
.

{Lt}t∈(−1,1) is a one parameter subgroup of Lorentz transformations, contained in L+.
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For i, j ∈ {1, . . . , d} we let Pi,j be the linear transformation that swaps the ith and jth

components of a vector in Rd+1.
For any orthogonal matrix A ∈ O(d,R) the transformation (ξ, τ) 7→ RA(ξ, τ) = (Aξ, τ)

belongs to L+.
By composing the transformations Pi,j and Lt for suitable i, j’s and t’s it is not hard

to see that if (ξ, τ) ∈ Rd+1 satisfies τ > |ξ|, then there exists L ∈ L+ such that L(ξ, τ) =
(0,
√
τ 2 − ξ2). Alternatively, this can be achieved by using the transformations RA and Lt:

we first find A ∈ O(d,R) such that Aξ = (|ξ|, 0, . . . , 0). We take t = −|ξ|τ−1 and note that
Lt(RA(ξ, τ)) = Lt(|ξ|, 0, . . . , 0, τ) = (0,

√
τ 2 − |ξ|2).

For p ∈ [1,∞], L ∈ L+ and f ∈ Lp(Hd
s) we define

L∗f = f ◦ L,

where “◦” denotes composition. The invariance of the measure σs under the action of L+

implies that for all p ∈ [1,∞) we have ‖f‖Lp(Hds) = ‖L∗f‖Lp(Hds), and the equality for p =∞
holds since Lorentz transformations are invertible. It is also direct to check that for p ∈ [1,∞]
we have ‖Ts(L∗f)‖Lp(Rd+1) = ‖Tsf‖Lp(Rd+1). Therefore, if {fn}n∈N is an extremizing sequence
for (3.7) and {Ln}n∈N ⊂ L+, then {L∗nfn}n∈N is also an extremizing sequence for (3.7).

The Lorentz transformations we will use in this paper are the Pi,j, RA and Lt. The
invariance of σs with respect to these transformations can be seen directly by using the
change of variables formula and seeing that the Jacobians work out.

3.3 On Foschi’s argument

For ease of writing we will define ψs : R→ R by

ψs(x) =
√
s2 + x2.

We let ψ := ψ1. We will abuse notation and write ψs(y) to mean ψs(|y|), for y ∈ Rd.
For measures µ, ν in Rd, their convolution is defined by duality as∫

gd(µ ∗ ν) =

∫
g(x+ y)dµ(x)dν(y),

for all g ∈ C0(Rd).
For a measure µ in Rd and n > 1 we will denote µ(∗n) = µ∗· · ·∗µ, the nth-fold convolution

of µ with itself.
The measure σs on Hd

s satisfies that the nth-fold convolution σ
(∗n)
s is supported in the

closure of the region Pd,n = {(ξ, τ) : τ >
√

(ns)2 + |ξ|2}. For any fixed (ξ, τ) ∈ Pd,n we
define the measure on (Rd)n by

µ(ξ,τ) = δ

(
τ − ψs(x1)− · · · − ψs(xn)

ξ − x1 − · · · − xn

)
dx1 . . . dxn.
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With the Dirac delta, δ0, on Rd ×R defined as

〈δ0, f〉 = f(0), for all f ∈ S(Rd ×R),

µ(ξ,τ) is the pullback of δ0 on Rd ×R by the function Φ(ξ,τ) : (Rd)n → R
d ×R given by

Φ(ξ,τ)(x1, . . . , xn) = (ξ − x1 − · · · − xn, τ − ψs(x1)− · · · − ψs(xn)).

As discussed in [20], the pullback is well defined as long as the differential of Φ(ξ,τ) is
surjective at the points where Φ(ξ,τ) vanishes. The differential of Φ(ξ,τ) is surjective at a
point (x1, . . . , xn) if and only if x1, . . . , xn are not all equal. Now Φ(ξ,τ)(x, . . . , x) = 0 if and
only if τ 2 = (ns)2 + |ξ|2, that is, at the boundary of Pd,n. Thus, the pullback is well defined
on Pd,n.

For each (ξ, τ) ∈ Pd,n we define the inner product 〈·, ·〉(ξ,τ) and norm ‖ · ‖(ξ,τ) associated
to µ(ξ,τ) as

〈F,G〉(ξ,τ) =

∫
(Rd)n

F (x1, . . . , xn)G(x1, . . . , xn) dµ(ξ,τ)(x1, . . . , xn),

‖F‖2
(ξ,τ) =

∫
(Rd)n

|F (x1, . . . , xn)|2 dµ(ξ,τ)(x1, . . . , xn),

What connects this inner product with inequality (3.2) is the following identity. For
f1, . . . , fn ∈ L2(Hd

s)

f1σs ∗ · · · ∗ fnσs =

∫
(Rd)n

f1(x1) . . . fn(xn)

ψs(x1) . . . ψs(xn)
δ(ξ − x1 − · · · − xn)·

δ(τ − ψs(x1)− · · · − ψs(xn)) dx1 . . . dxn

=

∫
(Rd)n

f1(x1) . . . fn(xn)

ψs(x1) . . . ψs(xn)
dµ(ξ,τ)(x1 . . . xn)

= 〈F,G〉(ξ,τ),

where F (x1, . . . , xn) = f1(x1)...fn(xn)

ψs(x1)1/2...ψs(xn)1/2
and G(x1, . . . , xn) = 1

ψs(x1)1/2...ψs(xn)1/2
.

Lemma 3.3. Let f ∈ S(Rd), then the nth-fold convolution of fσs with itself satisfies

‖(fσs)(∗n)‖L2(Rd) 6 ‖σ(∗n)
s ‖1/2

L∞(Rd)
‖f‖nL2(Hds). (3.11)

Moreover, for f 6= 0, for equality to hold in (3.11) it is necessary that σ
(∗n)
s (ξ, τ) = ‖σ(∗n)

s ‖L∞(Rd)

for a.e. (ξ, τ) in the support of (fσs)
(∗n).
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Proof. Let g ∈ S(Rd+1), then by definition of the convolution we have

〈g, fσ(∗n)
s 〉 =

∫
g(x1 + · · ·+ xn, ψs(x1) + · · ·+ ψs(xn))

f(x1) . . . f(xn)

ψs(x1) . . . ψs(xn)
dx1 . . . dxn

=

∫
g(x1 + · · ·+ xn, ψs(x1) + · · ·+ ψs(xn))

ψs(x1)1/2 . . . ψs(xn)1/2

f(x1) . . . f(xn)

ψs(x1)1/2 . . . ψs(xn)1/2
dx1 . . . dxn

6
∣∣∣∫ g2(x1 + · · ·+ xn, ψs(x1) + · · ·+ ψs(xn))

ψs(x1) . . . ψs(xn)
dx1 . . . dxn

∣∣∣ 12 ∣∣∣∫ f(x1)2 . . . f(xn)2

ψs(x1) . . . ψs(xn)
dx1 . . . dxn

∣∣∣ 12
= 〈g2, σ(∗n)

s 〉1/2‖f‖nL2(Hds)

6 ‖g‖L2(Rd)‖σ(∗n)
s ‖1/2

L∞(Rd)
‖f‖nL2(Hds), (3.12)

which proves (3.11) by taking the supremum over g ∈ L2(Rd+1).
Now if

‖fσ(∗n)
s ‖L2(Rd) = ‖σ(∗n)

s ‖1/2

L∞(Rd)
‖f‖nL2(Hds),

then, taking g = fσ
(∗n)
s , we must have equality in (3.12)

〈(fσ(∗n)
s )2, σ(∗n)

s 〉 = ‖fσ(∗n)
s ‖2

L2(Hds)‖σ
(∗n)
s ‖L∞(Rd),

which occurs if and only if
σ(∗n)
s (ξ, τ) = ‖σ(∗n)

s ‖L∞(Rd)

for a.e. (ξ, τ) in the support of fσ
(∗n)
s .

From Lemma 3.3 and (3.5) we obtain

Corollary 3.4. Let (d, p) satisfy (3.3) and suppose p = 2k is an even integer. Then

‖Tsf‖Lp(Rd+1) 6 (2π)(d+1)/p‖σ(∗k)
s ‖1/p

L∞(Rd+1)
‖f‖L2(Hds), (3.13)

and thus
Hd,p,s 6 (2π)(d+1)/p‖σ(∗k)

s ‖1/p

L∞(Rd+1)
. (3.14)

In the three cases of pairs (d, p) that interest us in this paper, (3.14) gives

H2,4,s 6 (2π)3/4‖σs ∗ σs‖1/4

L∞(R3),

H2,6,s 6 (2π)1/2‖σs ∗ σs ∗ σs‖1/6

L∞(R3), and

H3,4,s 6 2π‖σs ∗ σs‖1/4

L∞(R4).

For the nonexistence of extremizers we will be using the following result,
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Corollary 3.5. Let (d, p) satisfy (3.3) and suppose p = 2k is an even integer. Suppose that

Hd,p = (2π)(d+1)/p‖σ(∗k)‖1/p

L∞(Rd+1)
and that σ(∗k)(τ, ξ) < ‖σ(∗k)‖L∞(Rd+1) for a.e. (ξ, τ) in the

support of σ(∗k). Then extremizers for (3.2) do not exist for the pair (d, p).

Proof. This is direct from the last assertion in Lemma 3.3.

Lemma 3.6. Let f ∈ S(Rd), then the nth-fold convolution of fσs with itself satisfies

‖fσ(∗n)
s ‖2

2 6
∫

(Rd)n

f 2(x1) . . . f 2(xn)

ψs(x1) . . . ψs(xn)
σ(∗n)
s (x1 + · · ·+ xn, ψs(x1) + · · ·+ ψs(xn)) dx1 . . . dxn.

(3.15)

Proof. We will prove the case n = 2 as the general case is analogous requiring only more
notation. Following Foschi’s argument we write

fσs ∗ fσs(ξ, τ) =

∫
(Rd)2

f(x)f(y)

ψs(x)ψs(y)
δ(ξ − x− y)δ(τ − ψs(x)− ψs(y)) dx dy

=

∫
(Rd)2

f(x)f(y)

ψs(x)ψs(y)
dµ(τ,ξ)(x, y). (3.16)

From Cauchy-Schwarz, for (ξ, τ) ∈ Pd,2,

|fσs ∗ fσs(τ, ξ)| 6
∥∥∥ f(x)f(y)

ψs(x)
1
2ψs(y)

1
2

∥∥∥
(τ,ξ)

∥∥∥ 1

ψs(x)
1
2ψs(y)

1
2

∥∥∥
(τ,ξ)

. (3.17)

Now ∥∥∥ 1

ψs(x)
1
2ψs(y)

1
2

∥∥∥2

(τ,ξ)
= σs ∗ σs(ξ, τ) (3.18)

as can be seen from (3.16) by taking f ≡ 1. Then,

‖fσs ∗ fσs‖2
2 6

∫
Pd,2

∥∥∥ f(x)f(y)

ψs(x)
1
2ψs(y)

1
2

∥∥∥2

(τ,ξ)
σs ∗ σs(ξ, τ)dτ dξ

=

∫
Pd,2

∫
(Rd)2

f 2(x)f 2(y)

ψs(x)ψs(y)
δ

(
τ − ψs(x)− ψs(y)

ξ − x− y

)
σs ∗ σs(ξ, τ) dx dy dτ dξ

=

∫
(Rd)2

f 2(x)f 2(y)

ψs(x)ψs(y)

∫
Pd,2

δ

(
τ − ψs(x)− ψs(y)

ξ − x− y

)
σs ∗ σs(ξ, τ) dτ dξ dx dy

=

∫
(Rd)2

f 2(x)f 2(y)

ψs(x)ψs(y)
σs ∗ σs(x+ y, ψs(x) + ψs(y)) dx dy.
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3.4 Nonexistence of extremizers

In this section we prove Theorem 3.2. We start with the computation of the double and
triple convolution of σs with itself.

Lemma 3.7. Let d = 2, s > 0 and σs the measure on H2
s given in (3.6). Then, for (ξ, τ) ∈

R
2 ×R

σs ∗ σs(ξ, τ) =
2π√

τ 2 − |ξ|2
χ{τ>
√

(2s)2+|ξ|2}, (3.19)

σs ∗ σs ∗ σs(ξ, τ) = (2π)2
(

1− 3s√
τ 2 − |ξ|2

)
χ{τ>
√

(3s)2+|ξ|2}. (3.20)

In particular, ‖σs ∗ σs‖L∞(R3) = π
s

and for all (ξ, τ) in the interior of the support of σs ∗ σs
we have σs ∗ σs(ξ, τ) < ‖σs ∗ σs‖L∞(R3).

Also, ‖σs ∗ σs ∗ σs‖L∞(R3) = (2π)2 and for all (ξ, τ) ∈ Rd+1, σs ∗ σs ∗ σs(ξ, τ) < ‖σs ∗ σs ∗
σs‖L∞(R3).

Proof. It is easy to compute the convolution,

σs ∗ σs(0, τ) =

∫
R2

δ(τ − 2
√
s2 + |y|2)

dy

s2 + |y|2
= 2π

∫ ∞
0

δ(τ − 2
√
s2 + r2)

rdr

s2 + r2
.

Let u = 2
√
s2 + r2, then

σs ∗ σs(0, τ) = 2π

∫ ∞
2s

δ(τ − u)
du

u
= 2πχ(τ > 2s)

1

τ
.

By Lorentz invariance we obtain

σs ∗ σs(ξ, τ) =
2π√

τ 2 − |ξ|2
χ{τ>
√

(2s)2+|ξ|2}.

For the triple convolution we use the expression we just obtained for the double convolution,

σs ∗ σs ∗ σs(0, τ) =

∫
R2

σ ∗ σ(τ −
√
s2 + |y|2,−y)

dy√
s2 + |y|2

= (2π)2

∫ ∞
0

χ(τ −
√
s2 + r2 >

√
(2s)2 + r2)

((τ −
√
s2 + r2)2 − r2)1/2

rdr√
s2 + r2

.

Let u =
√
s2 + r2, then

σs ∗ σs ∗ σs(0, τ) = (2π)2χ{τ>3s}

∫ τ2−3s2

2τ

s

du√
(τ − u)2 − (u2 − s2)

= (2π)2χ{τ>3s}

∫ τ2−3s2

2τ

s

du√
τ 2 − 2τu+ s2

= (2π)2
(

1− 3s

τ

)
χ{τ>3s}.
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By Lorentz invariance,

σs ∗ σs ∗ σs(ξ, τ) = (2π)2
(

1− 3s√
τ 2 − |ξ|2

)
χ{τ>
√

(3s)2+|ξ|2}.

A different proof of Lemma 3.7 is given in Appendix 2.

Lemma 3.8. Let d = 3 and s > 0. Then for (ξ, τ) ∈ R3 ×R

σs ∗ σs(ξ, τ) = 2π
(

1− 4s2

τ 2 − |ξ|2
)1/2

χ{τ>
√

(2s)2+|ξ|2}. (3.21)

In particular, ‖σs ∗ σs‖L∞(R4) = 2π and for all (ξ, τ) ∈ R4, σs ∗ σs(ξ, τ) < ‖σs ∗ σs‖L∞(R4).

Proof.

σs ∗ σs(0, τ) =

∫
R3

δ(τ − 2
√
s2 + |y|2)

dy

s2 + |y|2
= 4π

∫ ∞
0

δ(τ − 2
√
s2 + r2)

r2dr

s2 + r2
.

Let u = 2
√
s2 + r2, then

σs ∗ σs(0, τ) = 2π

∫ ∞
2s

δ(τ − u)

√
u2 − 4s2

u
du = 2π

√
τ 2 − 4s2

τ
χ{τ>2s}

= 2π
(

1− 4s2

τ 2

)1/2

χ{τ>2s}.

Therefore, by the Lorentz invariance,

σs ∗ σs(ξ, τ) = 2π
(

1− 4s2

τ 2 − |ξ|2
)1/2

χ{τ>
√

(2s)2+|ξ|2}.

A different proof of Lemma 3.7 is given in Appendix 3. From Corollary 3.4, Lemma 3.7
and Lemma 3.8 we obtain

Corollary 3.9. We have the following upper bounds for the best constants,

H2,4 6 23/4π, H2,6 6 (2π)5/6, and H3,4 6 (2π)5/4.

For the lower bound for the best constants we will exhibit explicit extremizing sequences.

Lemma 3.10. Let d = 2 and s > 0. For a > 0 we let fa(y) = e−a
√
s2+|y|2, y ∈ R2. Then

lim
a→∞
‖Tsfa‖L4(R3)‖fa‖−1

L2(H2
s)

=
23/4π

s1/4
, (3.22)

lim
a→0+

‖Tsfa‖L6(R3)‖fa‖−1
L2(H2

s)
= (2π)5/6. (3.23)
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A proof of this can be found in Appendix 2. For the case d = 3 we have an analogous
result.

Lemma 3.11. Let d = 3 and s > 0. For a > 0 let fa(y) = e−a
√
s2+|y|2, y ∈ R3. Then

lim
a→0+

‖Tsfa‖L4(R4)‖fa‖−1
L2(σs)

= (2π)5/4.

For a proof of Lemma 3.11 see Appendix 3.
Note that Corollary 3.9, Lemma 3.10 and Lemma 3.11 imply that for (d, p) = (2, 4)

the sequence {fa/‖fa‖L2(σs)}a>0 is an extremizing sequence as a → ∞, for (d, p) = (2, 3)
{fa/‖fa‖L2(σs)}a>0 is an extremizing sequence as a → 0+ and for (d, p) = (3, 6),
{fa/‖fa‖L2(σs)}a>0 is an extremizing sequence as a→ 0+.

Proof of the first part of Theorem 3.2. Combining Corollary 3.9, Lemma 3.10 and Lemma
3.11 we obtain the first part of Theorem 3.2, namely the value of the best constants,

H2,4 = 23/4π, H2,6 = (2π)5/6, and H3,6 = (2π)5/4.

That extremizers do not exist is a consequence of Corollary 3.5 and the last assertions about
the infinity norm of the double and triple convolution of σ with itself, contained in Lemma
3.7 and Lemma 3.8.

We now prove the assertion given in the introduction about extremizers for the truncated
operator Tρ for d = 2 and p = 4.

Proposition 3.12. Let (d, p) = (2, 4) and s > 0. For any ρ > 0, the best constant in (3.10)
equals 23/4 π

s1/4
and there are no extremizers for (3.10).

Proof. The nonexistence of extremizers follows from the nonexistence for (3.2) if we prove
that the best constant for the truncated hyperboloid equals the best constant for the entire
hyperboloid, H2,4,s. For this we need a lower bound.

Since the extremizing sequence {fa/‖fa‖2}a>0 given in Lemma 3.10 concentrates at y = 0
as a→∞, one easily sees that for the sequence {faχ|y|6ρ/‖faχ|y|6ρ‖2}a>0,

Tρ(faχ|y|6ρ/‖faχ|y|6ρ‖2)→ 23/4π/s1/4 , as a→∞,

giving the desired lower bound.

3.5 On extremizing sequences

We are interested here in properties of extremizing sequences for (3.2). The Lorentz inva-
riance of σs implies that given an extremizing sequence {fn}n∈N for (3.2), and a sequence of
Lorentz transformations {Ln}n∈N preserving Hd

s, then {fn ◦ Ln}n∈N is also an extremizing
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sequence. Even though there is this symmetry group we can obtain some general properties
concerning concentration of extremizing sequences.

Consider first the case d = 2 and p = 6. From Lemma 3.10 it follows that the sequence of
functions {fa/‖fa‖2}a>0 is an extremizing sequence as a→ 0+. This particular extremizing
sequence concentrates at spatial infinity, that is, for any ε, R > 0 there exists a0 > 0 such
that for all 0 < a < a0, ‖fa/‖fa‖2‖L2(B(0,R)) < ε, where B(0, R) = {y ∈ R2 : |y| < R}. Next
we show that this is the case for any extremizing sequence.

Proposition 3.13. Let {fn}n∈N be an extremizing sequence for (3.2) in the case (d, p) =
(2, 6), then for any ε, R > 0 there exists N ∈ N such that for all n > N

‖fn‖L2(B(0,R)) < ε,

that is, the sequence concentrates at spatial infinity.

Proof. Let ε, R > 0 be given. From the proof of Lemma 3.6 and from Lemma 3.7, for the
inequality in convolution form, we have

‖fnσs ∗ fnσs ∗ fnσs‖2
L2(R3) 6

∫
P2,3

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)
σs ∗ σs ∗ σs(τ, ξ)dτdξ

= (2π)2

∫
P2,3

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)

(
1− 3s√

τ 2 − |ξ|2
)
dτdξ

= (2π)2‖fn‖6
L2(σs)

− (2π)2

∫
P2,3

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)

3s , dτdξ√
τ 2 − |ξ|2

.

Since ‖fnσs ∗ fnσs ∗ fnσs‖2
L2(R3) → (2π)2 as n→∞ we obtain∫

P2,3

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)

dτdξ√
τ 2 − |ξ|2

→ 0 as n→∞, (3.24)

and thus there exists N ∈ N such that for all n > N∫
P2,3

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)

dτdξ√
τ 2 − |ξ|2

<
ε

3
√
s2 +R2

.

From Lemma 3.6 the expression in the left hand side can be written as∫
P2,3

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)

dτdξ√
τ 2 − |ξ|2

=

∫
f 2
n(x)f 2

n(y)f 2
n(z)

ψs(x)ψs(y)ψs(z)

∫
P2,3

δ

(
τ − ψs(x)− ψs(y)− ψs(z)

ξ − x− y − z

)
dτdξ√
τ 2 − |ξ|2

dx dy dz

>
∫

f 2
n(x)f 2

n(y)f 2
n(z)

ψs(x)ψs(y)ψs(z)

∫
P2,3

δ

(
τ − ψs(x)− ψs(y)− ψs(z)

ξ − x− y − z

)
1

τ
dτdξ dx dy dz

>
∫

(B(0,R))3

f 2
n(x)f 2

n(y)f 2
n(z)

ψs(x)ψs(y)ψs(z)

dx dy dz

ψs(x) + ψs(y) + ψs(z)
.
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If x, y, z ∈ B(0, R), then 3s < ψs(x) + ψs(y) + ψs(z) 6 3ψs(R) = 3
√
s2 +R2. Therefore, for

all n > N

ε

3
√
s2 +R2

>

∫
P2,3

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)

dτdξ√
τ 2 − |ξ|2

>
1

3
√
s2 +R2

‖fn‖6
L2(B(0,R)),

and so, sup
n>N
‖fn‖L2(B(0,R)) < ε as desired.

We now turn to the case d = 3 and p = 4. Here we can also prove that extremizing
sequences must concentrate at spatial infinity, the analog of Proposition 3.13.

Proposition 3.14. Let {fn}n∈N be an extremizing sequence for (3.2) in the case (d, p) =
(3, 4), then for any ε, R > 0 there exists N ∈ N such that for all n > N

‖fn‖L2(B(0,R)) < ε,

that is, the sequence concentrates at spatial infinity.

Proof. The proof follows the same lines as the one for Proposition 3.13. Using the convolution
form of the inequality we obtain the analog of equation (3.24),∫

P3,2

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)

(
1−

(
1− 4s2

τ 2 − |ξ|2
)1/2)

dτdξ → 0 as n→∞.

If we use the bound 1−
(
1− 4s2

τ2−|ξ|2
)1/2
> 1−

(
1− 4s2

τ2

)1/2
and 0 < ψs(x)+ψs(y) 6 2ψs(R)

whenever |x|, |y| 6 R we obtain∫
P3,2

∥∥∥ fn(x)fn(y)fn(z)

ψs(x)
1
2ψs(y)

1
2ψs(z)

1
2

∥∥∥2

(τ,ξ)

(
1−

(
1− 4s2

τ 2 − |ξ|2
)1/2)

dτdξ

>
(

1−
( R2

R2 + s2

)1/2)
‖fn‖2

L2(B(0,R)).

The conclusion follows as in the proof of Proposition 3.13.

We now analyze the last case (d, p) = (2, 4). Since σs ∗ σs(ξ, τ) = ‖σs ∗ σs‖L∞(R3)

whenever τ =
√
s2 + |ξ|2, that it, at the boundary of the support, it is not hard to see that

there are extremizing sequences that concentrate at any given point in H2
s. For the example

of extremizing sequence given in Lemma 3.10, the concentration occurs at the vertex of the
hyperboloid, (ξ, τ) = (0, s) =: P . We want to show that any extremizing sequences must
concentrate.

Since one can have extremizing sequences concentrating at any point in the boundary it
is possible to construct an extremizing sequence that concentrates on a dense set of H2

s in
the sense that given a sequence {yn}n∈N ⊂ H2

s there exists {fn}n∈N ⊂ L2(H2
s), extremizing
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sequence, with the property that for any ε > 0 and r > 0 there exists N ∈ N such that for
all n > N ∫

|y−yn|>r
|fn(y)|2 dσs(y) 6 ε. (3.25)

Equivalently, by taking a Lorentz transformation Ln ∈ L+ with L−1
n (yn) = (0, s) = P and

using the Lorentz invariance of the measure, (3.25) can be written as∫
|Ln(y−P )|>r

|L∗nfn(y)|2 dσs(y) 6 ε,

where L∗nfn(y) = fn(Lny). We show that this is the only possibility for an extremizing
sequence.

Proposition 3.15. Let {fn}n∈N be an extremizing sequence for (3.2). Then there exists a
sequence {Ln}n∈N ⊂ L+ satisfying that for any ε, r > 0 there exist N ∈ N such that for all
n > N ∫

|y−P |>r
|L∗nfn(y)|2 dσs(y) 6 ε, (3.26)

where P = (0, s) is the vertex of the hyperboloid H2
s.

For the proof of the proposition we will need to introduce the function ds : R2×R2 → R

given by the formula

ds(x, y) =
1

2s
((ψs(x) + ψs(y))2 − |x+ y|2)1/2 − 1.

Elementary properties of ds are contained in the next lemma whose proof is left to the reader.

Lemma 3.16.

(i) For all x, y ∈ R2, ds(x, y) = ds(y, x) > 0 and ds(x, y) = 0 if and only if x = y.

(ii) For all x ∈ R2, lim
|y|→∞

ds(x, y) =∞.

(iii) For every R > 0 there exists 0 < C1(R), C2(R) <∞ such that

C1(R)|x− y|2 6 ds(x, y) 6 C2(R)|x− y|.

for all x, y with |x|, |y| 6 R.

Property (ii) implies that for given y ∈ R2, the ds-ball of radius R > 0 and center y,
Bds(y,R) := {x ∈ R2 : ds(x, y) 6 R}, is a bounded set. Property (iii) relates the ds-ball
with the Euclidean ball, for y with |y| 6 R and r > 0

B(y, cr) ⊂ Bds(y, r) ⊂ B(y, c′
√
r), (3.27)

for some constants c, c′ depending on R and r only.
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Proof of Proposition 3.15. The first task is to find a sequence {yn}n∈N ⊂ H2
s such that an

analog of (3.25) is satisfied. It will be convenient, for notation only, to identify functions
from H

2
s to R with functions R2 to R and points in H2

s with points in R2. This is done via
the projection of H2

s onto R2 × {0}.
From Lemma 3.6 and from Lemma 3.7, for the inequality in convolution form, we have

‖fnσs ∗ fnσs‖2
L2(R3) 6

∫
P2,2

∥∥∥ fn(x)fn(y)

ψs(x)
1
2ψs(y)

1
2

∥∥∥2

(τ,ξ)
σs ∗ σs(τ, ξ)dτdξ

=
π

s

∫
P2,2

∥∥∥ fn(x)fn(y)

ψs(x)
1
2ψs(y)

1
2

∥∥∥2

(τ,ξ)

2s√
τ 2 − |ξ|2

dτdξ

6
π

s
‖fn‖4

L2 .

Since ‖fnσs ∗ fnσs‖2
L2(R3) →

π
s

as n→∞ we obtain∫
P2,2

∥∥∥ fn(x)fn(y)

ψs(x)
1
2ψs(y)

1
2

∥∥∥2

(τ,ξ)

2s√
τ 2 − |ξ|2

dτdξ → 1 as n→∞, (3.28)

Similarly as in the proof of Lemma 3.6 the expression in the left hand side can be written as∫
P2,2

∥∥∥ fn(x)fn(y)

ψs(x)
1
2ψs(y)

1
2

∥∥∥2

(τ,ξ)

2s√
τ 2 − |ξ|2

dτdξ

=

∫
(R2)2

f 2
n(x)f 2

n(y)

ψs(x)ψs(y)

∫
P2

δ

(
τ − ψs(x)− ψs(y)

ξ − x− y

)
2s√

τ 2 − |ξ|2
dτdξ dx dy

=

∫
(R2)2

f 2
n(x)f 2

n(y)

ψs(x)ψs(y)

2s

((ψs(x) + ψs(y))2 − |x+ y|2)1/2
dx dy

=

∫
(R2)2

f 2
n(x)f 2

n(y)

ψs(x)ψs(y)
Ks(x, y)dx dy.

Observe that ∫
(R2)2

f 2
n(x)f 2

n(y)

ψs(x)ψs(y)
dx dy = ‖fn‖2

L2(H2
s)

= 1

and

Ks(x, y) :=
2s

((ψs(x) + ψs(y))2 − |x+ y|2)1/2
=

1

ds(x, y) + 1
6 1

for all x, y ∈ R2. Equation (3.28) implies that∫
(R2)2

f 2
n(x)f 2

n(y)

ψs(x)ψs(y)
Ks(x, y)dx dy → 1 as n→∞.
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Denote hn(y) = fn(y)2/ψs(y), so that
∫
R2 hn(y)dy = 1. For ε > 0 we can write∫

(R2)2
hn(x)hn(y)Ks(x, y)dx dy =

∫
ds(x,y)6ε

hn(x)hn(y)Ks(x, y)dx dy

+

∫
ds(x,y)>ε

hn(x)hn(y)Ks(x, y)dx dy

6 ‖hn‖2
L1(R2) −

(
1− 1

ε+ 1

)∫
ds(x,y)>ε

hn(x)hn(y)dx dy.

Then, as the left hand side tends to 1 as n→∞ we conclude that

lim
n→∞

∫
ds(x,y)6ε

hn(x)hn(y)dx dy = 1.

Using the Fubini Theorem we can write∫
ds(x,y)6ε

hn(x)hn(y)dx dy =

∫
R2

hn(y)

∫
ds(x,y)6ε

hn(x)dxdy

6 ‖h‖1 sup
y∈R2

∫
ds(x,y)6ε

hn(x)dx.

Then

lim
n→∞

sup
y∈R2

∫
Bds (y,ε)

hn(x)dx = 1. (3.29)

Fix a continuous function γ : (0,∞) → (0, 1) satisfying γ(t) → 0 as t → 0+. Then (3.29)
implies that there exists N(ε) ∈ N such that for all n > N(ε)

sup
y∈R2

∫
Bds (y,ε)

hn(y)dy > 1− γ(ε),

and so there exists {yεn}n>N(ε) ⊂ R2 such that∫
Bds (yεn,ε)

hn(y)dy > 1− 2γ(ε).

In this way, each ε > 0 we have a number N(ε), and a sequence {yεn}n>N(ε).
The construction of the sequence {yn}n∈N will be obtained by a diagonal process. We

take a strictly decreasing sequence {εk}k∈N with εk → 0 as k → ∞. This gives a sequence
{N(k)}k∈N and {ykn}n>N(k),k>0. We can assume that the sequence {N(k)}k∈N is strictly
increasing. For each n > N(1) we let l(n) = inf{k : N(k) 6 n}

Define {yn}n∈N by

yn =

{
y
l(n)
n , if n > N(1)

y0 , if n < N(1)
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where y0 ∈ R2 is arbitrary, but fixed.
Now let ε > 0 be given. Take k such that εk < ε. For n > N(k) we have l(n) > k, so

εl(n) 6 εk < ε and ∫
Bds (y

l(n)
n ,εl(n))

hn(y)dy > 1− 2γ(εl(n)),

and hence ∫
Bds (yn,ε)

hn(y)dy >
∫
Bds (y

l(n)
n ,εl(n))

hn(y)dy > 1− 2γ(εl(n)) > 1− 2γ(ε).

Since γ(ε)→ 0 as ε→ 0+ we have just proved that for any ε, r > 0 there exists N ∈ N such
that for all n > N ∫

Bds (yn,ε)

fn(y)
dy√

s2 + |y|2
> 1− ε. (3.30)

To finish we need to use the Lorentz invariance. This is better done without the iden-
tification of H2

s with R2 that we have been using, so we now lift everything to H2
s. Let

Ds : {(ξ, τ) ∈ R2 ×R : τ > |ξ|} → R be defined by

Ds((ξ1, τ1), (ξ2, τ2)) = (2s)−1((τ1 + τ2)2 − |ξ1 + ξ2|2)1/2 − 1,

and observe that for every L ∈ L+, Ds(L(ξ1, τ1), L(ξ2, τ2)) = Ds((ξ1, τ1), (ξ2, τ2)).
Let zn = (yn, ψs(yn)) ∈ H2

s. We can write (3.30) equivalently as∫
Ds(z,zn)>r

|f(z)|2dσ(z) < ε.

By the Lorentz invariance of Ds and σ, for Ln ∈ L+ such that L−1
n (zn) = (0, s) = P we have

that for every ε, r > 0 there exists N ∈ N such that for all n > N∫
Ds(z,P )6r

|L∗nf(z)|2dσ(z) > 1− ε

which implies ∫
|z−P |6

√
r

|L∗nf(z)|2dσ(z) > 1− ε

for all r > 0 sufficiently small, independent of ε and n, proving the proposition.

3.6 The two sheeted hyperboloid

In this section we consider the two sheeted hyperboloid

H̄
d
s = {(y, y′) ∈ Rd ×R : y′2 = s2 + |y|2}
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with measure

σ̄s(y, y
′) = δ(y′ −

√
s2 + |y|2)(s2 + |y|2)−

1
2dydy′ + δ(y′ +

√
s2 + |y|2)(s2 + |y|2)−

1
2dydy′

and adjoint Fourier restriction operator defined by T̄sf = f̂ σ̄s, for f ∈ S(Rd+1).
H̄
d
s is the union of the two sheets

H
d,±
s = {(y, y′) ∈ Rd ×R : y′ = ±(s2 + |y|2)1/2}.

What in this section we are calling Hd,+
s is what before we denoted by Hd

s (that change of
notation is convenient here). In the previous section we proved that for Hd,+

s (and thus also
for Hd,−

s ) extremizers do not exist for the cases (d, p) = (2, 4), (2, 6) and (3, 4). Here we show
that extremizers for H̄d

s do not exist either and compute the best constants.
The adjoint Fourier restriction operator on Hd,+

s is denoted by Ts and the one on Hd,−
s

will be denoted T−s . For s = 1 we will drop the subscript s.
For sets A,B ⊂ Rd we denote A + B = {a + b : a ∈ A, b ∈ B}, the algebraic sum of A

and B, and −A = {−a : a ∈ A}. We start with the following lemma.

Lemma 3.17. For d > 1 we have

H
d,+
s +Hd,+

s ⊂ {(ξ, τ) ∈ Rd ×R : τ >
√

(2s)2 + |ξ|2}, (3.31)

H
d,+
s +Hd,−

s ⊂ {(ξ, τ) ∈ Rd ×R : |τ | 6
√

(2s)2 + |ξ|2}, (3.32)

H
d,−
s +Hd,−

s ⊂ {(ξ, τ) ∈ Rd ×R : τ 6 −
√

(2s)2 + |ξ|2}. (3.33)

Proof. The first assertion was already proved when we computed the double convolution
σs ∗ σs. We do it again. If ξ = x+ y and τ = ψs(x) + ψs(y), then τ > 2s > 0 and squaring

τ 2 = (ψs(x) + ψs(y))2 = 2s2 + |x|2 + |y|2 + 2(s2 + |x|2)1/2(s2 + |y|2)1/2.

On the other hand,
|ξ|2 = |x+ y|2 = |x|2 + |y|2 + 2x · y.

Using x · y = |x||y| cos θ, with θ the angle between x and y we see that (3.31) is equivalent
to the inequality for real numbers a, b, s > 0

(s2 + a2)1/2(s2 + b2)1/2 > s2 + ab (3.34)

which is easily shown to hold, by squaring both sides.
We proceed in a similar way for the second part. Let ξ = x + y and τ = ψs(x)− ψs(y).

Then
τ 2 = 2s2 + |x|2 + |y|2 − 2(s2 + |x|2)1/2(s2 + |y|2)1/2.

As before we see that (3.32) is equivalent to

−(s2 + |x|2)1/2(s2 + |y|2)1/2 6 s2 + x · y,
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which in turn is equivalent to the easy to verify inequality for real numbers a, b, s > 0

(s2 + a2)1/2(s2 + b2)1/2 > ab− s2.

As for (3.33), it follows from (3.31) by observing that Hd,−
s = −Hd,+

s .

Lemma 3.18. Let d > 1, then

H
d,+
s +Hd,+

s +Hd,+
s ⊆ {(ξ, τ) ∈ Rd ×R : τ >

√
(3s)2 + |ξ|2}, (3.35)

H
d,−
s +Hd,−

s +Hd,−
s ⊆ {(ξ, τ) ∈ Rd ×R : τ 6 −

√
(3s)2 + |ξ|2}, (3.36)

H
d,+
s +Hd,+

s +Hd,−
s ⊆ {(ξ, τ) ∈ Rd ×R : τ > −

√
(3s)2 + |ξ|2}, (3.37)

H
d,+
s +Hd,−

s +Hd,−
s ⊆ {(ξ, τ) ∈ Rd ×R : τ 6

√
(3s)2 + |ξ|2}. (3.38)

Proof. We know from Lemma 3.17 that

H
d,+
s +Hd,+

s ⊂ {(ξ, τ) : τ >
√

(2s)2 + |ξ|2}.

We start with (3.35). Let ξ = x+ y and τ > ψ2s(x) + ψs(y) > 0. By squaring,

τ 2 > 5s2 + |x|2 + |y|2 + 2(4s2 + |x|2)1/2(s2 + |y|2)1/2.

Then (3.35) would follow from

(4s2 + |x|2)1/2(s2 + |y|2)1/2 > 2s2 + x · y,

which is equivalent to the easy to verify inequality for real numbers a, b, s > 0

(4s2 + a2)1/2(s2 + b2)1/2 > 2s2 + ab.

We now establish (3.37). Let ξ = x+y, τ > ψ2s(x)−ψs(y). If τ > 0 we are done, so suppose
that 0 > τ > ψ2s(x)− ψs(y), then

τ 2 6 5s2 + |x|2 + |y|2 − 2(4s2 + |x|2)1/2(s2 + |y|2)1/2,

and (3.37) would follow from

−(4s2 + |x|2)1/2(s2 + |y|2)1/2 6 2s2 + x · y,

which is equivalent to show

(4s2 + a2)1/2(s2 + b2)1/2 > ab− 2s2

for all a, b, s > 0 and this last inequality holds.
Both (3.36) and (3.38) can be proved in a similar way.
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For a function f ∈ L2(H̄d
s) we can write f = f+ + f−, where f+ is supported on Hd,+

s ,
and f− on Hd,−

s . One then has ‖f‖2
L2(H̄ds)

= ‖f+‖2

L2(Hd,+s )
+ ‖f−‖2

L2(Hd,−s )
.

Proposition 3.19. Let d ∈ {2, 3} and s > 0. Then

H̄d,4,s = (3/2)1/4Hd,4,s,

and extremizers for the L2(H̄d
s) to L4(Rd) adjoint restriction inequality on H̄d

s do not ex-
ist. Moreover, if {fn}n∈N is an extremizing sequence for T̄ then {fn,+/‖fn,+‖2}n∈N and
{fn,−/‖fn,−‖2}n∈N are extremizing sequences for Ts and T−s in Hd,+

s and Hd,−
s respectively.

Proof. We want to show

sup
06=f∈L2(H̄ds)

‖T̄sf‖4
L4‖f‖−4

L2(H̄ds)
=

3

2
H4
d,4,s. (3.39)

For the inequality ‖T̄sf‖4
L4‖f‖−4

L2(H̄ds)
6 3

2
H4
d,4,s we use the argument in [20, pg. 754-755].

We will restrict attention to the case s = 1, but the other cases follow in the same way, or
by the use of scaling. Observe that

‖T̄ f‖4
L4 = ‖Tf+ + T−f−‖4

L4 = ‖(Tf+ + T−f−)2‖2
L2

= ‖(Tf+)2 + (T−f−)2 + 2(Tf+)(T−f−)‖2
L2 .

Using that product transforms into convolution under the Fourier transform we see that
the Fourier transforms of (Tf+)2, (T−f−)2 and (Tf+)(T−f−) are supported on H

d,+ +
H
d,+, Hd,−+Hd,− andHd,++Hd,− respectively. Those three sets have intersection of measure

zero by Lemma 3.17, therefore

‖T̄ f‖4
L4 = ‖Tf+‖4

L4 + ‖T−f−‖4
L4 + 4‖(Tf+)(T−f−)‖2

L2 (3.40)

6 H4
d,4(‖f+‖4

L2 + ‖f−‖4
L2 + 4‖f+‖2

L2‖f−‖2
L2) (3.41)

6
3

2
H4
d,4(‖f+‖2

L2 + ‖f−‖2
L2)2 (3.42)

=
3

2
H4
d,4‖f‖4

L2 , (3.43)

where we have used the sharp inequality (as in [20])

X2 + Y 2 + 4XY 6
3

2
(X + Y )2, X, Y > 0 (3.44)

where equality holds if and only if X = Y . Thus,

‖T̄ f‖4
L4‖f‖−4

L2(H̄d)
6

3

2
H4
d,4. (3.45)
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To establish (3.39) in the case s = 1, let {fn,+}n∈N be an extremizing sequence for T .
By identifying a function on Hd,± with a function from R

d to R we let fn,−(y) = fn,+(y),
y ∈ Rd, that is, the complex conjugate of fn,+. Then fn = 1√

2
(fn,+ + fn,−) is an extremizing

sequence for T̄ on H̄d since (3.42) becomes equality and (3.41) becomes equality in the limit
n→∞.

To prove the nonexistence of extremizers we note that for f 6= 0 there is equality in (3.45)
if and only if there is equality in (3.41) and (3.42). There is equality in (3.42) if and only if
‖f+‖2 = ‖f−‖2. There is equality in (3.41) if and only if

‖Tf+‖L4 = Hd,4‖f+‖L2(Hd,+) , ‖T−f−‖L4 = Hd,4‖f−‖L2(Hd,−), (3.46)

and |Tf+| = |T−f−| a.e. in Rd.
By Theorem 3.2 we know that (3.46) can not hold for nonzero f+ and f− proving the

nonexistence of extremizers for the L2(H̄d) to L4(Rd) adjoint restriction inequality on H̄d.
Now let {fn}n∈N be an extremizing sequence for T̄ , i.e. ‖fn‖2 6 1 and lim

n→∞
‖T̄ fn‖L4(Rd) =

(3/2)1/4Hd,4. For the decomposition fn = fn,+ + fn,−, we see that

lim
n→∞

(‖fn,+‖4
L2 + ‖fn,−‖4

L2 + 4‖fn,+‖2
L2‖fn,−‖2

L2) =
3

2
.

This implies that if limn→∞ ‖fn,+‖L2 and limn→∞ ‖fn,−‖L2 exist then they must be equal, and
so equal to 1/

√
2. Therefore any subsequence has a convergent subsequence with limit 1/

√
2.

This implies the existence of both limits and limn→∞ ‖fn,+‖L2 = limn→∞ ‖fn,−‖L2 = 1/
√

2.
If we write ‖Tfn,+‖4 = anHd,4‖f+‖L2(Hd,+) and ‖T−fn,−‖4 = bnHd,4‖f−‖L2(Hd,−). Then,

as before, limn→∞ an‖fn,+‖2 = 1√
2
, and so limn→∞ an = 1, and similarly limn→∞ bn = 1.

Hence, {fn,+/‖fn,+‖2}n∈N and {fn,−/‖fn,−‖2}n∈N are extremizing sequences for Ts and
T−s in Hd,+

s and Hd,−
s respectively.

Proposition 3.20. Let d ∈ {1, 2} and s > 0. Then

H̄2,6,s = (5/2)1/3H2,6,s, (3.47)

and extremizers for the L2(H̄d
s) to L6(Rd) adjoint restriction inequality on H̄d

s do not ex-
ist. Moreover, if {fn}n∈N is an extremizing sequence for T̄ then {fn,+/‖fn,+‖2}n∈N and
{fn,−/‖fn,−‖2}n∈N are extremizing sequences for Ts and T−s in Hd,+

s and Hd,−
s respectively.

Proof. A proof of this is contained in [20, pg. 758-760]. It follows the same lines as Proposition
3.19. One first writes ‖T̄sf‖6

L6(R3) = ‖(T̄sf)3‖2
L2(R3) and f = f+ + f−. Expanding (T̄sf+ +

T̄sf−)3 and using Plancherel’s Theorem together with Lemma (3.18) plus Hölder’s inequality
one obtains

‖T̄sf‖6
L6‖f‖−6

L2(H̄ds)
6

25

4
H6
d,6,s,

proving H̄2,6,s 6 (5/2)1/3H2,6,s. The reverse inequality in (3.47), the nonexistence of extrem-
izers and the property of extremizing sequences stated in the proposition are handled as in
the proof of Proposition 3.19. We skip the details.
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Proposition 3.19 and Proposition 3.20 give the proof of the second part of Theorem 3.2.

3.7 Appendix 1: Scaling

Here we record the scaling for the family of operators {Ts}s>0. Recall from the introduction
that for s > 0, Hd

s := {(y,
√
s2 + |y|2) : y ∈ Rd} equipped with the measure σs(y, y

′) =

δ(y′ −
√
s2 + |y|2) dydy′√

s2+|y|2
.

The operator Ts defined on S(R2) by

Tsf(x, t) = f̂σs(−x,−t) =

∫
Rd

eix·yeit
√
s2+|y|2f(y)

dy√
s2 + |y|2

.

We want to show that Hd,p,s defined in (3.8) satisfies (3.9). If we make the change of
variables v = sy in the expression defining Tf(x, t), then

Tf(x, t) =

∫
Rd

eix·yeit
√

1+|y|2f(y)
dy√

1 + |y|2

=

∫
Rd

eis
−1x·yeit

√
1+s−2|y|2f(s−1y)

s−ddy√
1 + s−2|y|2

= s−d+3/2

∫
Rd

eis
−1x·yeis

−1t
√
s2+|y|2s−1/2f(s−1y)

dy√
s2 + |y|2

from where sd−3/2Tf(sx, st) = Ts(s
−1/2f(s−1·))(x, t) and it follows that

sd−3/2−(d+1)/p‖Tf‖Lp(Rd+1) = ‖Tss−1/2f(s−1·)‖Lp(Rd+1).

On the other hand∫
Rd

|f(y)|2 dy√
1 + |y|2

=

∫
Rd

|f(s−1y)|2 s−ddy√
1 + s−2|y|2

= s−d+2

∫
Rd

|s−1/2f(s−1y)|2 dy√
s2 + |y|2

that is ‖f‖L2(σ) = s−(d−2)/2‖s−1/2f(s−1·)‖L2(σs), thus

s(d−1)/2−(d+1)/p‖Tf‖Lp(Rd+1)‖f‖−1
L2(σ) = ‖Tss−1/2f(s−1·)‖Lp(Rd+1)‖s−1/2f(s−1·)‖−1

L2(σs)
,

and it follows that for all s > 0

Hd,p,s = s(d−1)/2−(d+1)/pHd,p. (3.48)
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3.8 Appendix 2: some explicit calculations for the case

d = 2

The exponential integral function Ei(x), for x 6= 0, is defined by

Ei(x) = −
∫ ∞
−x

e−t

t
dt =

∫ x

−∞

et

t
dt (3.49)

where the principal value is taken for x > 0.

Lemma 3.21. Let a > 0 and fs(y) = e−a
√
s2+|y|2, y ∈ R2. Then

‖Tsfa‖6
L6(R3)‖fa‖−6

L2(σs)
= (2π)5(1− 6as− 36a2s2e6as Ei(−6as)), and (3.50)

‖Tsfa‖4
L4(R3)‖fa‖−4

L2(σs)
= 23π

4

s
(−4ase4as Ei(−4as)). (3.51)

Proof of Lemma 3.10. Using the expressions in Lemma 3.21

lim
a→0+

‖Tsfa‖6
L6‖fa‖−6

L2(σs)
= lim

a→0+
(2π)5(1− 6as− 36a2s2e6as Ei(−6as)) = (2π)5

and

lim
a→∞
‖Tsfa‖4

L4‖fa‖−4
L2(σs)

= lim
a→∞

23π
4

s
(−4ase4as Ei(−4as)) = 23π

4

s
.

Remark 3.22.

1. It is not hard to see that the function a 7→ 1− a+ a2ea Ei(−a) is a strictly decreasing
function for a ∈ [0,∞) which tends to 0 as a → ∞ and to 1 as a → 0+. Then
‖Tsfa‖6

L6‖fa‖−6
L2(σs)

is a strictly decreasing function of a, for each fixed s.

2. The function a 7→ −aea Ei(−a) is strictly increasing for a ∈ [0,∞), tends to 0 as
a→ 0+, and to 1 as a→∞. Then ‖Tsfa‖4

L4‖fa‖−4
L2(σs)

is a strictly increasing function
of a, for each fixed s.

Proof of Lemma 3.21. We first compute the L2(σs)-norm of fa,

‖fa‖2
L2(σs)

=

∫
R2

e−2a
√
s2+|y|2 dy√

s2 + |y|2
= 2π

∫ ∞
0

e−2a
√
s2+r2 r√

s2 + r2
dr

= 2π

∫ ∞
s

e−2ardr =
π

a
e−2as.

The formulas in (3.50) and (3.51) are easier to compute in their equivalent convolution form.
Let ga(ξ, τ) = e−aτ and observe that faσs ∗ faσs = gaσs ∗ gaσs and faσs ∗ faσs ∗ faσs =
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gaσs ∗gaσs ∗gaσs. Then, because ga is the exponential of a linear function, gaσs ∗gaσs(ξ, τ) =
ga(ξ, τ)σs ∗ σs(ξ, τ) and gaσs ∗ gaσs ∗ gaσs(ξ, τ) = ga(ξ, τ)σs ∗ σs ∗ σs(ξ, τ), therefore

‖faσs ∗ faσs ∗ faσs‖2
L2(R3) =

∫
R×R2

e−2aτ (2π)4
(

1− 3s√
τ 2 − |ξ|2

)2

χ{τ>
√

(3s)2+|ξ|2}dτdξ

= (2π)5

∫ ∞
3s

∫ √τ2−(3s)2

0

e−2aτ
(

1− 3s√
τ 2 − r2

)2

rdrdτ

= (2π)5

∫ ∞
3s

∫ √τ2−(3s)2

0

e−2aτ (r + (3s)2 r

τ 2 − r2
− 6s

r√
t2 − r2

)drdτ

= (2π)5

∫ ∞
3s

e−2aτ (1
2
(τ 2 − (3s)2) + (3s)2(log τ − log(3s))− 6s(τ − 3s))dτ

= (2π)5
(1

2

∫ ∞
3s

e−2aττ 2dτ + (3s)2

∫ ∞
3s

e−2aτ log τdτ

− 6se−6as

∫ ∞
0

e−2aττdτ −
(9

2
s2 + (3s)2 log(3s)

) ∫ ∞
3s

e−2aτdτ
)

= (2π)5
(e−6as(1 + 6as(1 + 3as))

8a3
+ (3s)2 e

−6as log(3s)− Ei(−6as)

2a
− 6se−6as

4a2

−
(9

2
s2 + (3s)2 log(3s)

)e−6as

2a

)
.

Rearranging the terms we have

‖faσs ∗ faσs ∗ faσs‖2
L2(R3) = (2π)5e−6as

( 1

8a3
− (3s)2 Ei(−6as)e6as

2a
− 6s

8a2

)
.

Then

‖faσs ∗ faσs ∗ faσs‖2
L2(R3)‖fa‖−6

L2(σs)
= (2π)5π−3a3

( 1

8a3
− (3s)2 Ei(−6as)e6as

2a
− 6s

8a2

)
= (2π)2(1− 6as− 36a2s2e6as Ei(−6as)).

For the case of L4,

‖faσs ∗ faσs‖2
L2(R3) =

∫
R×R2

e−2aτ (2π)2

τ 2 − |ξ|2
χ{τ>
√

(2s)2+|ξ|2}dτdξ

= (2π)3

∫ ∞
2s

∫ √τ2−(2s)2

0

e−2aτ r

τ 2 − r2
drdτ

= (2π)3
(e−4as log(2s)− Ei(−4as)

2a
− log(2s)

e−4as

2a

)
= −(2π)3 Ei(−4as)

2a
.
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Then

‖faσs ∗ faσs‖2
L2(R3)‖fa‖−4

L2(σs)
= −(2π)3ae4asEi(−4as)

2π2

=
π

s
(−4ase4as Ei(−4as)).

Our aim now is to give an alternative proof of Lemma 3.7.

Lemma 3.23. Let d = 2 and s > 0. For a > 0 let fa(y) := e−a
√
s2+|y|2, y ∈ R2. Then

Tsfa(x, t) = 2π
e−s
√

(a−it)2+|x|2√
(a− it)2 + |x|2

. (3.52)

Proof. To compute the function Tsfa(x, t) we use polar coordinates where the polar axis is
parallel to x, so that x · y = |x||y| cos θ, with θ the polar angle.

Tsfa(x, t) =

∫
eix·yeit

√
s2+|y|2e−a

√
s2+|y|2 dy√

s2 + |y|2

=

∫ ∞
0

∫ 2π

0

ei|x|r cos θeit
√
s2+r2e−a

√
s2+r2 r√

s2 + r2
dθdr.

Now from [33, pg. 26] we have that for b > 0∫ 2π

0

eib cos θdθ = 2πJ0(b),

where J0 is the Bessel function of the first kind of order zero. Thus

Tsfa(x, t) = 2π

∫ ∞
0

eit
√
s2+r2e−a

√
s2+r2J0(|x|r) r√

s2 + r2
dr

= 2π

∫ ∞
0

e−(a−it)
√
s2+r2J0(|x|r) r√

s2 + r2
dr

= 2π

∫ ∞
s

e−(a−it)uJ0(|x|
√
u2 − s2) du

which is the Laplace transform of the function J0(|x|
√
u2 − s2). It is known ,[35, pg. 129],

that the Laplace transform of J0(a
√
u2 − b2), for a, b > 0, is given by∫ ∞

b

e−λuJ0(a
√
u2 − b2)du =

e−b
√
λ2+a2

√
λ2 + a2

. (3.53)

for λ with Re(λ) > 0, and the branch of the square root is the one that is real in the positive
real line. For a derivation of this formula we refer the reader to [49, pg. 416].
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Using (3.53) we conclude that

Tsfa(x, t) = 2π
e−s
√

(a−it)2+|x|2√
(a− it)2 + |x|2

.

and the lemma is proved.

Alternative proof of Lemma 3.7. Let a > 0 be fixed and fs(y) = e−a
√
s2+|y|2 . From Lemma

3.23 we have

Tsfs(x, t) = 2π
e−s
√

(a−it)2+|x|2√
(a− it)2 + |x|2

.

We note that if we let g(ξ, τ) = e−aτ , then gσs ∗ gσs ∗ gσs(ξ, τ) = g(ξ, τ) · σs ∗ σs ∗ σs(ξ, τ) =
fsσs ∗ fsσs ∗ fsσs(ξ, τ), and thus

(Tsfs(x, t))
3 = (gσs ∗ gσs ∗ gσs)̂ (x, t).

Applying the inverse Fourier transform gives

g(ξ, τ) · σs ∗ σs ∗ σs(ξ, τ) = ((Tsfs)
3)̌ (ξ, τ)

from where
σs ∗ σs ∗ σs(ξ, τ) = eaτ ((Tsfs)

3)̌ (ξ, τ).

From the explicit expression for Tsfs,

(Tsfs(x, t))
3 = (2π)3 e−3s

√
(a−it)2+|x|2

(
√

(a− it)2 + |x|2)3

and on the other hand, if Re b > 0∫ ∞
3s

∫ ∞
λ

e−bλ
′
dλ′dλ =

e−3sb

b2

so then

(2π)3

∫ ∞
3s

∫ ∞
λ

e−λ
′
√

(a−it)2+|x|2√
(a− it)2 + |x|2

dλ′dλ = (2π)3 e−3s
√

(a−it)2+|x|2

(
√

(a− it)2 + |x|2)3
= (Tsfs(x, t))

3

and thus

(2π)2

∫ ∞
3s

∫ ∞
λ

Tλ′fλ′(x, t)dλ
′dλ = (Tsfs(x, t))

3. (3.54)

Using the representation of Tλ′fλ′ in terms of the Fourier transform gives

(2π)2

∫ ∞
3s

∫ ∞
λ

Tλ′fλ′(x, t)dλ
′dλ = (2π)2

∫ ∞
3s

∫ ∞
λ

f̂λ′σλ′(x, t)dλ
′dλ (3.55)
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Combining (3.54) and (3.55) and using Fubini’s theorem gives

((Tsfs)
3)̌ (ξ, τ) = (2π)2

∫ ∞
3s

∫ ∞
λ

δ(τ −
√

(λ′)2 + |ξ|2)e−a
√

(λ′)2+|ξ|2 dλ′dλ√
(λ′)2 + |ξ|2

= (2π)2

∫ ∞
3s

δ(τ −
√

(λ′)2 + |ξ|2)(λ′ − 3s)e−a
√

(λ′)2+|ξ|2 dλ′√
(λ′)2 + |ξ|2

.

We now make the change of variables v =
√

(λ′)2 + |ξ|2, so dv√
v2−|ξ|2

= dλ′√
λ′2+|ξ|2

to get

((Tsfs)
3)̌ (ξ, τ) = (2π)2

∫ ∞
√

(3s)2+|ξ|2
δ(τ − v)(

√
v2 − |ξ|2 − 3s)

e−av√
v2 − |ξ|2

dv

= (2π)2
(

1− 3s√
τ 2 − |ξ|2

)
e−aτχ{τ>

√
(3s)2+|ξ|2}.

It follows that

σs ∗ σs ∗ σs(ξ, τ) = (2π)2
(

1− 3s√
τ 2 − |ξ|2

)
χ{τ>
√

(3s)2+|ξ|2}.

The case of the double convolution can be done in the same way using
∫∞

2s
e−bλdλ = e−2sb

b
,

for all b with Re b > 0.

Remark 3.24. For any n > 1 and b with Re b > 0 we have∫ ∞
λn+1

· · ·
∫ ∞
λ2

e−bλ1dλ1 . . . dλn =
e−bλn+1

bn

and thus we can compute, in the same way as before, the nth-fold convolution σ
(∗n)
s for any

n > 1.

3.9 Appendix 3: some explicit calculations for the case

d = 3

Proof of Lemma 3.11. For the L2 norm we have

‖f‖2
L2(σs)

=

∫
R3

e−2a
√
s2+|y|2 dy√

s2 + |y|2
= 4π

∫ ∞
0

e−2a
√
s2+r2 r2 dr√

s2 + r2

= 4π

∫ ∞
s

e−2au
√
u2 − s2du =

4π

a2

∫ ∞
as

e−2x
√
x2 − (as)2dx.
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Then

lim
a→0+

a2

π
‖f‖2

L2(σs)
= 1.

Using the convolution form of the inequality, our goal is to show

lim
a→0+

a4‖fσs ∗ fσs(ξ, τ)‖2
L2(R4) = 2π3.

As in the proof of Lemma 3.21

‖faσs ∗ faσs(ξ, τ)‖2
L2(R4) =

∫
R×R3

e−2aτ (2π)2
(

1− 4s2

τ 2 − |ξ|2
)
χ{τ>
√
|ξ|2+(2s)2}dτdξ

= (2π)24π

∫ ∞
2s

∫ √τ2−(2s)2

0

e−2aτ
(

1− 4s2

τ 2 − r2

)
r2drdτ

= 16π3

∫ ∞
2s

e−2aτ
(1

3
(τ 2 − (2s)2)

3
2 + 4s2((τ 2 − (2s)2)

1
2 − τ log(

τ +
√
τ 2 − (2s)2

2s
)
)
dτ

=
16π3

a

∫ ∞
2as

e−2τ
( 1

3a3
(τ 2 − (2as)2)

3
2 +

4s2

a
((τ 2 − (2as)2)

1
2 − τ

a
log(

τ +
√
τ 2 − (2as)2

2as
)
)
dτ.

Multiplying by a4 and taking the limit as a→ 0+ gives

lim
a→0+

a4‖faσs ∗ faσs(ξ, τ)‖2
L2(R4) =

16π3

3

∫ ∞
0

e−2ττ 3dτ = 2π3.

Alternative proof of Lemma 3.8. The two fold convolution of σs with itself can be computed
directly by using changes of variables. We will use the method of an earlier version of Foschi’s
paper [20], available on the arXiv. Given ξ ∈ R3 \ {0} we can use spherical coordinates
adapted to ξ, that is, we can write η ∈ R3 as

η = (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ)

where ρ = |η| > 0, θ ∈ [0, π] is the angle between η and ξ and ϕ ∈ [0, 2π] is an angular
variable. Then

dη = ρ2 sin θ dρdθdϕ.

If we let ς = |ξ − η|, then

ς2 = |ξ − η|2 = |ξ|2 + ρ2 − 2|ξ|ρ cos θ

and changing variables from θ to ς gives 2ςdς = 2|ξ|ρ sin θdθ. The Jacobian of the change of
variables η 7→ (ρ, ς, ϕ) is

dη =
ρς

|ξ|
dρdςdϕ.
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The variables ρ and ς are subject to the conditions |ρ− ς| 6 |ξ| 6 ρ + ς. With this we can
write

σs ∗ σs(τ, ξ) =

∫
R3

δ(τ −
√
s2 + |ξ − η|2 −

√
s2 + |η|2)√

s2 + |ξ − η|2
√
s2 − |η|2

dη

=
2π

|ξ|

∫
|ρ−ς|6|ξ|
ρ+ς>|ξ|

δ(τ −
√
s2 + ς2 −

√
s2 + ρ2)

√
s2 + ς2

√
s2 + ρ2

ρς dρdς

=
2π

|ξ|

∫
Rs

δ(τ − u− v) du dv,

where u =
√
s2 + ρ2, v =

√
s2 + ς2 and Rs is the image of the region {(ρ, ς) ∈ R2

+ : |ρ− ς| 6
|ξ| , ρ + ς > |ξ|} under the transformation (ρ, ς) 7→ (u, v). Using the change of variables
a = u− v, b = u+ v, so that 2du dv = da db, we get

σs ∗ σs(τ, ξ) =
π

|ξ|

∫
R̃s

δ(τ − b) db da.

where R̃s is the image of Rs under the map (u, v) 7→ (a, b). Now it is not hard to see that
R̃s is contained in the region {(a, b) : |a| 6 |ξ|, b >

√
(2s)2 + |ξ|2}. Computing the region

R̃s gives the explicit formula for σs ∗ σs,

σs ∗ σs(ξ, τ) =
2π

|ξ|
|τ − 2u(ξ, τ)|χ{τ>√|ξ|2+(2s)2},

where u(ξ, τ) is implicitly defined by the equation τ = u(ξ, τ)+((
√
u(ξ, τ)2 − s2−|ξ|)2+s2)1/2

and u(ξ, τ) > s. Note that simple algebraic manipulation shows that

(τ − 2u(ξ, τ))2 = |ξ|2
(

1− 4s2

τ 2 − |ξ|2
)
.

This implies

σs ∗ σs(τ, ξ) = 2π
(

1− 4s2

τ 2 − |ξ|2
)1/2

χ{τ>
√
|ξ|2+(2s)2}.
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Chapter 4

Gaussians rarely extremize adjoint
Fourier restriction inequalities for
paraboloids

This chapter is joint work with Michael Christ.

4.1 Introduction

Let Pd−1 be the paraboloid in Rd,

Pd−1 = {(y′, yd) ∈ Rd−1 ×R : yd = 1
2
|y′|2}.

Equip Pd−1 with the appropriately dilation-invariant measure σ on Rd defined by∫
Rd

f(y′, yd) dσ(y′, yd) =

∫
Rd−1

f(y′, 1
2
|y′|2) dy′,

where dy′ denotes Lebesgue measure on Rd−1.
The adjoint Fourier restriction inequality states that for a certain range of exponents p,

‖f̂σ‖Lq(Rd) ≤ C‖f‖Lp(Pd−1,σ) (4.1)

for some finite constant C = C(p, d), where q = q(p) is specified by

q−1 =
d− 1

d+ 1
(1− p−1). (4.2)

This inequality is known to be valid for 1 ≤ p ≤ p0 for a certain exponent p0 > 2 depending
on d, and is conjectured to be valid for all p ∈ [1, 2d

d−1
).
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The case p = 2 is of special interest, since it gives a space-time upper bound for the
solution of a linear Schrödinger equation with arbitrary initial data in the natural class
L2(Rd−1). While the cases p 6= 2 also give such bounds, they are expressed in terms of less
natural norms on initial data.

The more general Strichartz inequalities (4.3) are phrased in terms of mixed norms. For
simplicity we restrict our discussion of mixed norm inequalities to the case p = 2. For
R
d, adopt coordinates (x, t) ∈ Rd−1 × R. For r, q ∈ [1,∞), for u : Rd

x,t → C, define

‖u‖LrtLqx = (
∫

(
∫
|u(x, t)|q dx)r/q dt)1/r. The Strichartz inequalities state [48] that

‖f̂σ‖LrtLqx ≤ C‖f‖L2(Pd−1,σ) (4.3)

for all r, q, d satisfying q, r ≥ 2 and

2

r
+
d− 1

q
=
d− 1

2
(4.4)

with the endpoint q =∞ excluded for d = 3.
By a radial Gaussian we mean a function f : Pd−1 → C of the form f(y, |y|2/2) =

c exp(−z|y − y0|2 + y · v) for y ∈ Rd−1, where 0 6= c ∈ C, y0 ∈ Rd−1, and v ∈ Cd−1 are
arbitrary, and z ∈ C has positive real part. Radial Gaussians on Pd−1 are simply restrictions
to Pd−1 of functions F (x) = ex·w+c where w = (w′, wd) ∈ Cd satisfies Re(wd) < 0.

Radial Gaussians extremize [20] inequality (4.1) for p = 2 in the two lowest-dimensional
cases, d = 2 and d = 3. More than one proof of these facts is known. It is natural to ask
whether these are isolated facts, or whether Gaussians appear as extremizers more generally.
Additional motivation is provided by recent work of Christ and Shao [9],[10], who have
shown the existence of extremizers for the corresponding inequalities for the spheres S1 and
S2. Their analysis relies on specific information about extremizers for the paraboloid, which
can be read off from explicit calculations for Gaussians, but which has not been shown to
follow more directly from the inequality itself. If Gaussians were known to be extremizers
for Pd−1, it should then be possible to establish the existence of extremizers for Sd−1.

In this paper, we discuss a related question: Are radial Gaussians critical points for the
nonlinear functionals associated to inequalities (4.1) and (4.3)? These functionals are defined
as follows.

Φ(f) = Φp,d(f) =
‖f̂σ‖qq
‖f‖qp

, (4.5)

where q = q(p, d) is defined by (4.2) and

Ψ(f) = Ψq,r,d(f) =
‖f̂σ‖r

LrtL
q
x

‖f‖r2
. (4.6)

Φ is defined for all 0 6= f ∈ Lp(Pd−1, σ), while Ψ is defined for all 0 6= f ∈ L2(Pd−1, σ). (4.1)
and (4.3) guarantee that Φp,d,Ψq,r,d are bounded functionals, for the ranges of parameters
indicated.
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By a critical point of Φ is of course meant a function 0 6= f ∈ Lp(Pd−1) such that for any
g ∈ Lp(Pd−1),

Φ(f + εg) = Φ(f) + o(|ε|) as ε→ 0. (4.7)

Here ε ∈ C. For d ≥ 3, there is a range of exponents for which Φp,d is conjectured to be
bounded but for which this is not known [2],[28]. But Φp,d(f) is well-defined and finite for any
Schwartz function, so we may still ask whether (4.7) holds whenever f is a radial Gaussian
and g is an arbitrary Schwartz function. This gives a definition of critical point which is
equivalent whenever the functional is bounded.

It is a simple consequence of symmetries of these functionals that for fixed p, q, r, d, one
radial Gaussian is a critical point if and only if all are critical points. Our main result is as
follows.

Theorem 4.1. Let d ≥ 2, let 1 < p < 2d/(d − 1), and set q = q(p, d). Radial Gaussians
are critical points for the Lp → Lq adjoint Fourier restriction inequalities if and only if
p = 2. Radial Gaussians are critical points for the L2 → LrtL

q
x Strichartz inequalities for all

admissible pairs (r, q) ∈ (1,∞)2.

For spheres Sd−1, the situation is different; constant functions are critical points for the
analogues of both functionals.

4.2 Euler-Lagrange equations

We will show that extremizers must satisfy a certain Euler-Lagrange equation, then check
by explicit calculation whether radial Gaussians satisfy this equation. In this section we
formulate and justify the Euler-Lagrange equations.

Let g∨ denote the inverse Fourier transform of g.

Proposition 4.2. Let d ≥ 2, let 1 < p < 2d/(d− 1), and set q = q(p, d). A complex-valued
function f ∈ Lp(Pd−1) with nonzero Lp(Pd−1) norm is a critical point of Φp,d if and only if
there exists λ > 0 such that f satisfies the equation(

|f̂σ|q−2f̂σ
)∨∣∣∣

Pd−1
= λ|f |p−2f almost everywhere on Pd−1. (4.8)

For Sd−1, the same equation likewise characterizes critical points, except of course that
the restriction on the left-hand side is to Sd−1, and q can take on any value in [q(p, d),∞).

λ is determined by ‖f‖p and Φ(f); multiply both sides of (4.8) by f̄ and integrate with
respect to σ.

Both exponents q − 1, p− 1 are strictly positive, and q − 2 > 0. Moreover, since f ∈ Lp,
f̂σ ∈ Lq, and therefore |f̂σ|q−2f̂σ ∈ Lq/(q−1)(Rd). Therefore by the Fourier restriction ine-

quality, the restriction to Pd−1 of
(
|f̂σ|q−2f̂σ

)∨
is a well-defined element of Lp/(p−1)(Pd−1, σ).

Thus the left-hand side of (4.8) is well-defined for any f ∈ Lp(Pd−1, σ).
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Proposition 4.3. Let (q, r, d) satisfy the necessary and sufficient conditions (4.4) for the
Strichartz inequalities. A nonzero complex-valued function f ∈ L2(Pd−1) is a critical point
of Ψp,d if and only if there exists λ > 0 such that f satisfies the equation(

f̂σ(x, t)|f̂σ(x, t)|q−2‖f̂σ(·, t)‖r−q
Lqx

)∨
= λf a.e. on Pd−1. (4.9)

The Euler-Lagrange equation for Sd−1 takes the corresponding form. It follows at once
that constant functions are critical points for Sd−1, because σ̂|σ̂|q−2 is a radial function, the
inverse Fourier transform of any radial function is radial, and the restriction of any radial
function to Sd−1 is constant.

Propositions 4.2 and 4.3 will follow from the following elementary fact.

Lemma 4.4. For any exponents q, r ∈ (1,∞), there exists γ > 1 with the following property.
Let F,G ∈ LrtLqx of some measure space(s), and assume that ‖F‖LrtLqx 6= 0. Let z ∈ C be a
small parameter. Then

‖F + zG‖rLrtLqx = ‖F‖rLrtLqx + r

∫∫
‖Ft‖r−q|F (x, t)|qRe(zG(x, t)/F (x, t)) dx dt+O

(
|z|γ
)

(4.10)
as z → 0.

Here Ft(x) = F (x, t) and ‖Ft‖q =
∫
|F (x, t)|q dx. The constant implicit in the remainder

term O
(
|z|γ
)

does depend on the norms of F,G. It is a consequence of Hölder’s inequality
that the double integral is absolutely convergent.

An immediate consequence is:

Proposition 4.5. Let T be a bounded linear operator from Lp to LrtL
q
x where p, q, r ∈ (1,∞).

For 0 6= f ∈ Lp define Φ(f) = ‖Tf‖rLrLq/‖f‖rp. Then any critical point f of Φ satisfies the
equation

T ∗
(
Tf(x, t) |Tf(x, t)|q−2 ‖Tf(·, t)‖r−q

Lqx

)
= λ|f |p−2 f (4.11)

for some λ ∈ [0,∞).

Again, it is a consequence of Hölder’s inequality that the indicated function belongs to
the domain Lr

′
t L

q′
x of the transposed operator T ∗.

Proof of Lemma 4.4. Let ε > 0 be a small exponent, to be chosen below. Assume throughout
the discussion that |z| ≤ 1. Write Ft(x) = F (x, t), Gt(x) = G(x, t), ‖Ft‖ = ‖F (·, t)‖Lqx , and
‖Gt‖ = ‖G(·, t)‖Lqx . Define

Ωt = {x ∈ Rd−1 : |zG(x, t)| ≤ |z|ε|F (x, t)| and F (x, t) 6= 0} (4.12)

ω = {t : ‖Ft‖ 6= 0 and |z| ‖Gt‖ ≤ |z|ε‖Ft‖}. (4.13)
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Fix ρ ∈ (0, q − 1). For x ∈ Ωt, expand

|1 + zG(x, t)/F (x, t)|q = 1 + qRe(zG(x, t)/F (x, t)) +O(|zG(x, t)/F (x, t)|1+ρ)

to obtain∫
Ωt

|(F + zG)(x, t)|q dx =

∫
Ωt

|F (x, t)|q dx+ q

∫
Ωt

|F (x, t)|qRe(zG(x, t)/F (x, t)) dx

+O
(
|z|1+ρ‖Ft‖q−1−ρ‖Gt‖1+ρ

)
.

The contribution of Rd−1 \ Ωt is negligible, because of the following three bounds:∫
Rd−1\Ωt

|F (x, t)|q dx ≤
∫
Rd−1\Ωt

|z|(1−ε)q|G(x, t)|q dx = |z|(1−ε)q‖Gt‖q; (4.14)

similarly ∫
Rd−1\Ωt

|F (x, t)|q|Re(zG(x, t)/F (x, t))| dx ≤ C|z|q−Cε‖Gt‖q; (4.15)

and ∫
Rd−1\Ωt

|F (x, t) + zG(x, t)|q dx ≤ 2q
∫
Rd−1\Ωt

(
|F (x, t)|q + |z|q|G(x, t)|q

)
dx

≤ C|z|q−Cε‖Gt‖q.
(4.16)

Define
H(t) = ‖Ft‖+ ‖Gt‖.

Then
∫
R
H(t)r dt < ∞. We have shown that if ε > 0 is chosen to be sufficiently small,

depending on q, then∫
Rd−1

|F (x, t) + zG(x, t)|q dx

= ‖Ft‖q + q

∫
Rd−1

|F (x, t)|qRe(zG(x, t)/F (x, t)) dx+O
(
|z|1+σ‖Gt‖1+σH(t)q−1−σ) (4.17)

for all sufficiently small σ > 0.
Suppose that t ∈ ω. For any |z| � 1,

|z|1+σ‖Gt‖1+σ‖Ft‖−qH(t)q−1−σ ≤ |z|(1+σ)ε‖Ft‖1+σ−qH(t)q−1−σ = O(|z|(1+σ)ε)� 1.

Similarly, by Hölder’s inequality,

‖Ft‖−q
∫
Rd−1

|F (x, t)|qRe(zG(x, t)/F (x, t)) dx = O
(

min(|z|‖Gt‖‖Ft‖−1, |z|ε)
)
� 1. (4.18)
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Therefore for all sufficiently small z ∈ C,

‖Ft‖−r(
∫
Rd−1

|F + zG|q dx)r/q =
(

1 + q‖Ft‖−q
∫
Rd−1

|F (x, t)|qRe(zG(x, t)/F (x, t)) dx

+O(|z|1+σ‖Gt‖1+σ‖Ft‖−qH(t)q−1−σ)
)r/q

= 1 + r‖Ft‖−q
∫
Rd−1

|F (x, t)|qRe(zG(x, t)/F (x, t)) dx

+O(|z|1+σ‖Gt‖1+σH(t)−1−σ)

+O
(
‖Ft‖−q

∫
Rd−1

|F (x, t)|q|zG(x, t)/F (x, t)| dx
)2

= 1 + r‖Ft‖−q
∫
Rd−1

|F (x, t)|qRe(zG(x, t)/F (x, t)) dx

+O(|z|1+σ‖Gt‖1+σ‖Ft‖−1−σ),

provided that σ < 1, using (4.18) to deduce the final line. Provided that σ is chosen to
satisfy σ < min(r − 1, 1), an application of Hölder’s inequality now yields∫

ω

(

∫
Rd−1

|F + zG|q dx)r/q

=

∫
ω

‖Ft‖r + r

∫
ω

‖Ft‖r−q
∫
Rd−1

|F (x, t)|qRe(zG(x, t)/F (x, t)) dx+O
(
|z|1+σ

)
. (4.19)

It remains to verify that the contribution of R \ ω is negligible. If t /∈ ω then ‖Ft‖ ≤
|z|1−ε‖Gt‖, so

(

∫
Rd−1

|F (x, t) + zG(x, t)|q dx)1/q ≤ C|z|1−ε‖Gt‖ (4.20)

and consequently∫
R\ω

(

∫
Rd−1

|F (x, t) + zG(x, t)|q dx)q/r dt ≤ C|z|(1−ε)r
∫
R\ω
‖Gt‖r dt = O(|z|(1−ε)r); (4.21)

in the same way, ∫
R\ω
‖Ft‖r dt ≤

∫
R\ω
|z|(1−ε)r‖Gt‖r dt = O(|z|(1−ε)r). (4.22)

Finally∫
R\ω
‖Ft‖r−q

∫
Rd−1

|F (x, t)|q|Re(zG(x, t)/F (x, t))| dx dt ≤ |z|
∫
R\ω
‖Ft‖r−1‖Gt‖ dt

≤ |z|r−Cε
∫
R\ω
‖Gt‖r dt

= O(|z|r−Cε).

(4.23)
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In conjunction with (4.19), the three bounds (4.21),(4.22),(4.23) complete the proof once ε
is chosen to be sufficiently small.

4.3 The case p = 2 and q = r

Functions in Lp(Pd−1, σ) may be identified with functions in Lp(Rd−1) via the correspon-
dence f(y, |y|2/2) = g(y) for y ∈ Rd−1. We will often make this identification without
further comment. Thus a function g ∈ Lp(Rd−1) is said to satisfy the equation (4.8), if
the corresponding function f(y, |y|2/2) = g(y) does so. We will sometimes write gσ, for
g ∈ Lp(Rd−1), as shorthand for fσ, where f, g corresponding in this way.

Lemma 4.6. Fix p, d and let q = q(p, d). Suppose that f ∈ L2(Rd−1) satisfies the Euler-
Lagrange equation (4.8). Then so does the function y′ 7→ ρf(rAy′ + v)eiy

′·w for any r > 0,
ρ ∈ C \ {0}, A ∈ O(d− 1), and v, w ∈ Rd−1.

The proof is left to the reader. To prove our main result, it suffices to consider henceforth
the radial Gaussian f(y) = e−|y|

2/2, y ∈ Rd−1, for which f̂σ(x, t) = u(x, t) takes the form

u(x, t) = f̂σ(x, t) =

∫
e−ix·ye−it|y|

2/2e−|y|
2/2 dy

= (2π)(d−1)/2(1 + it)−(d−1)/2e−|x|
2/2(1+it).

(4.24)

Throughout the discussion we will encounter real powers of 1 ± it and of q − 1 − it. These
are always interpreted as the corresponding powers of log(1 ± it) and of log(q − 1 − it)
respectively, where the branch of log is chosen so that log(1) = 0 and log(1 + it) is analytic
in the complement of the ray {is : s ∈ [1,∞)}, while log(1 − it) and log(q − 1 − it) are
both analytic in the complement of the ray {−is : s ∈ [1,∞)}, with values 0 and log(q − 1)
respectively when t = 0. Thus

|u|q−2u = (2π)(q−1)(d−1)/2(1 + t2)−(d−1)(q−2)/4(1 + it)−(d−1)/2e
−|x|2

(
1−it
1+t2

+ q−2

1+t2

)
/2

= (2π)(q−1)(d−1)/2(1 + t2)−(d−1)(q−2)/4(1 + it)−(d−1)/2e−|x|
2(q−1−it)/2(1+t2).

We now begin to analyze the inverse Fourier transform
∫∫

eix·ye
1
2
it|y|2|u(x, t)|q−2u(x, t) dx dt

by calculating the integral with respect to x ∈ Rd−1.∫
Rd−1

eix·ye
−1

2
|x|2 q−1−it

1+t2 dx = (2π)(d−1)/2
(q − 1− it

1 + t2

)−(d−1)/2

e−
1
2
|y|2 1+t2

q−1−it .

Thus(
|u|q−2u

)∨
(y, |y|2/2) = (2π)q(d−1)/2∫
R

eit|y|
2/2(1 + t2)−(d−1)(q−2)/4(1 + it)−(d−1)/2

(q − 1− it
1 + t2

)−(d−1)/2

e−
1
2
|y|2 1+t2

q−1−it dt
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which simplifies to

(2π)q(d−1)/2

∫
R

(1+it)−(d−1)(q−2)/4(1−it)−
1
4

(d−1)(q−2)+
1
2

(d−1)(q−1−it)−(d−1)/2e
1
2
|y|2
(
it− 1+t2

q−1−it

)
dt.

(4.25)
Consider first the case p = 2. Then q = 2(d+1)/(d−1) = 2+ 4

d−1
, so (d−1)(q−2)/4 = 1

and the integral with respect to t ∈ R becomes

(2π)q(d−1)/2

∫
R

(1 + it)−1(1− it)(d−3)/2(q − 1− it)−(d−1)/2ea
(
it− 1+t2

q−1−it

)
dt

where a = |y|2/2. This may be evaluated by deformation of the contour of integration
through the upper half-plane in C. In the upper half-plane, the integrand is meromorphic
with a single pole at t = i. Therefore the integral equals

(2πi)(2π)q(d−1)/2i−12(d−3)/2q−(d−1)/2ea
(
i·i− 1+i2

q−1−i·i

)
= (2π)d+22(d−3)/2q−(d−1)/2e−a

= (2π)d+22(d−3)/2q−(d−1)/2e−|y|
2/2 = (2π)d+22(d−3)/2q−(d−1)/2f(y).

Since p = 2, f ≡ |f |p−2f for p = 2 and thus the Euler-Lagrange equation (4.8) is indeed
satisfied.

Now consider the general mixed-norm case. The Euler-Lagrange equation is modified via
the factor ‖f̂σ(·, t)‖r−q

Lqx
. By (4.24),

‖f̂σ(·, t)‖r−q
Lqx

=
(2π)

1
2

(r−q)(d−1)(1+1/q)

q(d−1)(r−q)/2q (1 + t2)−
1
4q

(d−1)(r−q)(q−2).

Set

J(a) =

∫
R

(1 + it)−
r
4q

(d−1)(q−2)(1− it)−
r
4q

(d−1)(q−2)+ 1
2

(d−1)

· (q − 1− it)−
1
2

(d−1)ea(it− 1+t2

q−1−it )dt. (4.26)

Since p = 2, the Euler-Lagrange equation (4.9) is satisfied if and only if J(a) is a constant
multiple of e−a. Using the equation (4.4) which relates q to r, J(a) simplifies to

J(a) =

∫
R

(1 + it)−1(1− it)
1
2

(d−3)(q − 1− it)−
1
2

(d−1)ea(it− 1+t2

q−1−it )dt,

which was shown above to be a constant multiple of e−a.
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4.4 The case p 6= 2

We will use the following simple lemma.

Lemma 4.7. Let H(t) : C → C be holomorphic on the upper half plane {Im(t) > 0} and
continuous in its closure, and suppose that |(1+ it)γH(t)| = O(|t|−1−δ) as |t| → ∞, for some
δ > 0. Then for γ > −1,∫

R

(1 + it)γH(t)dt = −2 sin(γπ)

∫ ∞
0

yγH(i+ iy)dy,

and for γ = −1 ∫
R

(1 + it)γH(t)dt = 2πH(i).

This is obtained via contour integration in the region {Im(t) > 0} \ {iy : y ∈ [1,∞)}.
As a consequence of Lemma 4.7 we have the following: Suppose that H is real-valued,
nonnegative when restricted to the imaginary axis, and satisfies H(i) > 0. If γ > −1, then∫
R

(1 + it)γH(t)dt = 0 if and only if γ > 2 is an integer.
Define I : [0,∞)→ C by

I(a) =

∫
R

(1 + it)−
1
4

(d−1)(q−2)(1− it)−
1
4

(d−1)(q−2)+ 1
2

(d−1)(q− 1− it)−
1
2

(d−1)ea(it− 1+t2

q−1−it )dt (4.27)

where d > 2, and q > 2d
d−1

is defined by (4.2). The integrand is

O(t−
(d−1)(q−2)

2 e
−a(q−1) 1+t2

(q−1)2+t2 )

and since q > 2 and (d−1)(q−2)
2

> 1, it belongs to L1(R) for all a > 0. We note that I(1
2
|y|)

equals the expression in (4.25) up to constant.
Our goal is to demonstrate:

Lemma 4.8. As a function of a ∈ [0,∞), the function I is a constant multiple of e−(p−1)a

only if p = 2.

Proof. Case 1 : p < 2. Consider

eaI(a) =

∫
R

(1 + it)−
1
4

(d−1)(q−2)(1− it)−
1
4

(d−1)(q−2)+ 1
2

(d−1)(q − 1− it)−
1
2

(d−1)ea
(q−2)(1+it)
q−1−it dt.

Expanding the exponential in power series and interchanging integral and sum gives

eaI(a) =
∞∑
k=0

ak

k!
(q − 2)kIk,



CHAPTER 4. GAUSSIANS RARELY EXTREMIZE 95

where

Ik =

∫
R

(1 + it)k−
1
4

(d−1)(q−2)Hk(t)dt,

with
Hk(t) = (1− it)−

1
4

(d−1)(q−2)+ 1
2

(d−1)(q − 1− it)−k−
1
2

(d−1).

Hk satisfies the hypothesis of Lemma 4.7, and Hk(iy) > 0 for all y > 0.
Now eaI(a) is a constant multiple of e−(p−2)a if and only if there exists c ∈ C such that

for all k > 0,

Ik = c
(2− p
q − 2

)k
. (4.28)

Let k0 = d(d−1)(q−2)/4e, the smallest integer > (d−1)(q−2)/4, and consider any k > k0.
By Lemma 4.7,

Ik = −2 sin(αkπ)

∫ ∞
0

yk−
1
4

(d−1)(q−2)Hk(i+ iy)dy

where αk = k − (d− 1)(q − 2)/4.
Suppose first that p is such that (d − 1)(q − 2)/4 is not an integer, so Ik 6= 0. Now

sin(αk+1π) = − sin(αkπ) and thus Ik is alternating while c(2 − p)k(q − 2)−k is not. If p is
such that (d − 1)(q − 2)/4 is an integer (necessarily > 2 as p 6= 2) and (4.28) holds we get
that c = 0 since Jk = 0 for k > k0. On the other hand, k0 − 1 > 1 and Ik0−1 6= 0, for

Ik0−1 = π2−
1
4

(d−1)(q−2)+ 1
2

(d−1)+1q−k0−
1
2

(d−1)+1,

by Lemma 4.7.
Case 2: p > 2. It is now convenient to work with

e(p−1)aI(a) =∫
R

(1 + it)−
1
4

(d−1)(q−2)(1− it)−
1
4

(d−1)(q−2)+ 1
2

(d−1)(q − 1− it)−
1
2

(d−1)ea(p−1+it− 1+t2

q−1−it )dt;

we need to show that this expression is not constant, as a function of a ∈ [0,∞). For

2 < p 6 2d/(d− 1), (d−1)(q−2)
4

= d−1
4(p−1)

− d−3
4

lies in [1/2, 1). Therefore the integrand has an
integrable singularity at t = i, so we may expand the exponential factor in the integrand in
power series to obtain an analogue of Ik:

e(p−1)aI(a) =
∞∑
k=0

ak

k!
I ′k

where

I ′k =

∫
R

(1 + it)−
1
4

(d−1)(q−2)H ′k(t)dt,
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with

H ′k(t) = (1− it)−
1
4

(d−1)(q−2)+ 1
2

(d−1)(q − 1− it)−k−
1
2

(d−1)(pq − p− q + (q − p)it)k.

H ′k satisfies the hypothesis of Lemma 4.7, is real when restricted to the imaginary axis
and nonnegative at least when k is an even integer.

Lemma 4.7 gives

I ′k = 2 sin(1
4
(d− 1)(q − 2)π)

∫ ∞
0

y−
1
4

(d−1)(q−2)Hk(i+ iy)dy. (4.29)

Since (d − 1)(q − 2)/4 ∈ [1
2
, 1), the factor sin(1

4
(d − 1)(q − 2)π) is nonzero. If k is an

even positive integer, then the integrand is nonnegative, so the integral in (4.29) is likewise
nonzero.
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Chapter 5

Introduction to the joints problem

The joints problem is a problem in incidence geometry. Let d > 2 and L a collection
of lines in Rd. A joint of L is a point that is the intersection of d lines in L, not all in a
common hyperplane. We will call J the set of joints determined by L.

The joints problem asks the following: what is the maximum number of joints determined
by a set of lines in Rd of a given cardinality?

The problem is interesting if d > 3 as for d = 2 one easily gets |J | 6 |L|2 and this upper
bound is sharp in the sense that there are sets of n lines such that |J | & n2. For instance, a
set of n/2 vertical lines and n/2 horizontal lines gives |J | = n2/4. Similarly, in Rd one has
the trivial bound |J | 6 |L|d. A much better upper bound exists.

For a lower bound, we can do as in the two dimensional case. Consider a set of d · nd−1

lines, divided in d sets L1, . . . , Ld of the same cardinality nd−1, where the lines in Li are
pairwise parallel, orthogonal to the coordinate plane {(x1 . . . , xd) ∈ Rd : xi = 0}. We
arrange them so that for each (z1, . . . , zd) ∈ Zd satisfying 1 6 zi 6 n for all 1 6 i 6 d,
there exist `1 ∈ L1, . . . , `d ∈ Ld such that z = ∩di=1`i . Then the number of joints equals
|J | = nd = (nd−1)d/(d−1) = d−d/(d−1)|L|d/(d−1). Therefore the maximum number of joints
determined by a set of n lines in Rd is Ω(nd/(d−1)).

Here we discuss different developments that lead to the proof of the upper bound,

Theorem 5.1 ([29],[38]). Let L be a collection of lines in Rd. Then the cardinality of the
set of joints of L, J satisfies |J | = O(|L|d/(d−1)).

This theorem was proved by the author in [38] and independently by Kaplan, Sharir and
Shustin in [29] (the two papers appeared on the arXiv the same day).

5.1 A bit of a history of the problem

The problem seems to appear for the first time in [8], and it was considered in the three
dimensional case only until [29] and [38] appeared and gave the optimal upper bound in all
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dimensions. For the three dimensional case the optimal bound is |J | . |L|3/2. Partial results
are:

1. In [8] it was proved that |J | = O(|L|7/4).

2. This was improved by Sharir in [43] who obtained |J | = O(|L|23/14 log31/14 |L|), which
is O(|L|1.643).

3. Later, Feldman and Sharir [19] obtained |J | = O(|L|112/69 log6/23 |L|), which is
O(|L|1.6232).

The problem also appears in the book “Research Problems in Discrete Geometry” [5], in
Chapter 7.1, problem 4.

It was recently that Guth and Katz [23] gave an affirmative answer for the three dimen-
sional case,

Theorem 5.2. The number of joints defined by a set of n lines in space is O(n3/2).

Their proof uses the ideas from [13] for the finite field Kakeya problem that we discuss in
the next section where we also mention the result of Bennett, Carbery and Tao, that proves
a weaker result by using a multilinear Kakeya estimate.

Our proof for n > 3 also uses the polynomial method of Dvir, but in a different way.
On one more development for the three dimensional case, Elekes, Kaplan and Sharir [14]

simplified the proof of Guth and Katz and extended their techniques to obtain a bound on
I(J ′, L), the number of incidences between an arbitrary subset J ′ of J and L,

Theorem 5.3. Let L be a set of n lines in R3 and J ′ be a set of m joints of L. Then

I(J ′, L) = min{O(m1/3n), O(m2/3n2/3 +m+ n)}.

The bound is tight in the worst case.

5.2 A relation with the Kakeya problem

A Kakeya set E ⊂ Rd is a compact set containing a unit line segment in every direction,
that is, for all e ∈ Sd−1 there exists x ∈ Rd such that x + te ∈ E for all t ∈ [0, 1]. The
Kakeya conjecture states,

Conjecture 5.4. A Kakeya set in Rd has Hausdorff dimension equal to d.

We refer to [50] for a survey on this problem. In [50] the following finite field analog of
the Kakeya problem is proposed:



CHAPTER 5. INTRODUCTION TO THE JOINTS PROBLEM 99

Let Fq be the field with q elements and let V be a d-dimensional vector space
over Fq. Let E be a subset of V which contains a line in every direction, that is

∀ 0 6= e ∈ V, ∃x ∈ V : x+ te ∈ E , for all t ∈ Fq.

Does it follow that |E| > Cd q
d?

After several partial results, Dvir [13], gave a very simple proof of this finite field Kakeya
problem. His method uses the following linear algebra result,

Lemma 5.5. For d, n > 1 let N =
(
d+n
n

)
− 1, and u1, . . . , uN ∈ Fdq. Then there exists a

nontrivial polynomial P : Fd → F of degree degP 6 n that vanishes on all u1, . . . , uN ,

and his idea is to study the properties of a polynomial that vanishes on every point of a
Kakeya set.

Dvir’s method suggests the introduction of tools from algebraic geometry, properties of
polynomials and their zero set, to treat incidence geometry problems and this has been
developed by different authors, some examples being in [15], [14], [16], [23], [24].

A stronger statement than Conjecture 5.4 is the Kakeya maximal operator conjecture, a
survey can be found in [30]. For 0 < δ � 1 we let a δ-tube denote a tube in Rd of length 1
and cross section of radius δ.

Conjecture 5.6. Let T = {Ti : i ∈ I} be any collection of δ-tubes in Rd, whose orientations
are δ-separated in Sd−1. Then∥∥∥∑

T∈T

χT

∥∥∥
Ld/(d−1)

6 Cεδ
−ε
(∑
T∈T

|T |
)(d−1)/d

. (5.1)

Inequality (5.1) can be written equivalently as∥∥∥(∑
T∈T

χT

)d∥∥∥
L1/(d−1)

6 Cεδ
−ε(δd−1|T|

)(d−1)
,

from where a multilinear version can be deduced.
It was Bennett, Carbery and Tao who proposed in [3] a multilinear version of the Kakeya

problem. Suppose T1, . . . ,Td are families of δ-tubes in Rd and assume that for each 1 6 i 6
d, the tubes in Ti have the long sides pointing in directions belonging to some sufficiently
small but fixed neighborhood of the ith standard basis vector ei ∈ Sd−1. We will refer to
such family of tubes as transversal. In [3] it was proved

Theorem 5.7. If d/(d− 1) < q 6∞, then there exists a constant C, independent of δ and
the transversal family of tubes T1, . . . ,Td, such that∥∥∥ d∏

j=1

( ∑
Tj∈Tj

χTj

)∥∥∥
Lq/d(Rd)

6 C

d∏
j=1

δd/q|Tj|. (5.2)
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Furthermore, for each ε > 0 there is a similarly uniform constant C for which∥∥∥ d∏
j=1

( ∑
Tj∈Tj

χTj

)∥∥∥
L1/(d−1)(Rn)

6 Cδ−ε
d∏
j=1

δd−1|Tj|. (5.3)

The proof is based on the monotonicity of the inequalities under the heat flow. Using
Theorem 5.7, they obtained a nearly optimal bound for joints in R3 under the assumption of
transversality. More precisely, for 0 < θ 6 1, we say that the lines `1, `2, `3 are θ-transverse if
the parallelepiped generated by unit vectors parallel to the lines has volume at least θ. A θ-
transverse joint of a collection of lines L is a joint that is the intersection of three θ-transverse
lines in L.

Theorem 5.8. For any 0 < θ 6 1, the number of θ-transverse joints is

Oε(|L|3/2+εθ−1/2−ε)

for any ε > 0, where the subscript of the O by ε means that the implicit constant can depend
on ε.

The endpoint case of Theorem 5.7, q = d/(d−1), without the ε loss, was settled by Guth
in [22]. Note that by scaling (5.3) is equivalent to the inequality∥∥∥ d∏

j=1

( ∑
Tj∈Tj

χTj

)∥∥∥
L1/(d−1)(Rn)

6 Cδ−ε
d∏
j=1

|Tj|,

where the tubes T are “unit” cylinders, that is, have cross section of radius 1 and infinite
length.

For 0 < θ 6 1 we will say that the families of cylinders T1, . . . ,Td are θ-transverse if any
collection of lines `1, . . . , `d with `i parallel to some tube in Ti, is θ-transverse, that is, the
volume of the d-dimensional box generated by unit vectors parallel to the lines has volume
at least θ.

Theorem 5.9 ([22]). Let 0 < θ 6 1 and let T1, . . . ,Td be a collection of θ-transverse unit
cylinders. Then ∥∥∥ d∏

j=1

( ∑
Tj∈Tj

χTj

)∥∥∥
L1/(d−1)(Rd)

6 Cnθ
−1/(d−1)

d∏
j=1

|Tj|.

Guth makes use of what can be seen as the continuum version of the polynomial method
of Dvir. The correspondence can be seen reflected in the next proposition, the polynomial
ham sandwich theorem,

Proposition 5.10. Let N =
(
d+n
n

)
− 1 and U1, . . . , UN be finite volume open sets in Rd.

Then there exists a polynomial P : Rd → R of degree degP 6 n such that the algebraic
hypersurface Z = {x ∈ Rd : P (x) = 0} bisects each of the sets U1, . . . , UN .
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Compared to Lemma 5.5, we change points by open sets of finite volume, and vanishing
at the points by bisecting the open sets.

Using Proposition 5.10 and the pigeonhole principle only, Guth proved a weaker version
of Theorem 5.9, namely

Proposition 5.11. Let T1, . . . ,Td be transverse families of unit cylinders in Rd of equal
cardinality A. Let I be the set of points that belong to at least one cylinder in each direction,
i.e.

I =
d⋂
j=1

⋃
Tj∈Tj

Tj,

then V ol(I) 6 CnA
d/(d−1).

A much stronger tool than Proposition 5.10 is needed for the general case and the tech-
niques involve the use of algebraic topology. If Proposition 5.11 follows from Proposition
5.10 which is the analog of Lemma 5.5, then Theorem 5.9 can be said to be a consequence
of the continuum analog of the following lemma

Lemma 5.12. Let d,N > 1, u1, . . . , uN ∈ Fdq and m1, . . . ,mN ∈ N. Then there exists a

nontrivial polynomial P : Fdq → Fq of degree degP . (
∑N

j=1m
d
j )

1/d that vanishes on all
u1, . . . , uN at degree m1, . . . ,mN respectively.

The problem of counting joints can be seen as a discrete analog of Proposition 5.11. The
families of tubes gets replaced by a single family of lines L, and the set I by the set of joints
J . The condition on transversality is translated in the definition of J , we only count those
intersection than come from “transverse” lines, lines not lying in the same hyperplane. The
volume of I, V ol(I), is replaced by the cardinality of J , |J |. The upper bound for both
is exactly the same. Moreover, the proof of Theorem 5.1 given by the author in [38] was
inspired by the proof of Proposition 5.11 and in its original form followed the same lines. A
simplification to the proof was later pointed out by Fedor Nazarov.

Different problems can be suggested based on this analogy between joints and multilinear
Kakeya. For a collection of lines L in Rd, J the set of joints and for x ∈ J we define I(x) to
be the number of lines in L passing through x and B(x) to be the number of ways in which
x can be written as the intersection ∩di=1`i with `1, . . . , `d ∈ L not all lying in a common
hyperplane, up to permutations. Note that I(x) 6 d ·B(x) 6

(
I(x)
d

)
.

Problem 1. Are the following true?∑
x∈J

I(x)d/(d−1) . |L|d/(d−1) ? (5.4)

∑
x∈J

B(x)d/(d−1) . |L|d/(d−1) ? (5.5)
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Chapter 6

The joints problem in Rn

We show that given a collection of A lines in Rn, n > 2, the maximum number of their
joints (points incident to at least n lines whose directions form a linearly independent set)
is O(An/(n−1)). An analogous result for smooth algebraic curves is also proved.

6.1 Introduction

In a recent paper, Katz and Guth [23] proved that the number of joints determined by a
given collection of A lines in R3 is O(A3/2), where a joint (in R3) is a point which is incident
to at least three noncoplanar lines of the given collection. Lately, Elekes, Kaplan, and Sharir
[14] extended the results in [23] to obtain a bound on the number of incidences between
a collection of lines and a given subset of their joints, in R3, which implies the result on
the number of joints (they also consider a more general situation where joints are replaced
by an arbitrary set of points satisfying that no plane contains more that O(A) points and
each point is incident to at least three lines). Both results make use of algebraic geometric
properties of polynomials in three variables, which bound the number of critical lines (lines
where the polynomial and its gradient both vanish) a polynomial can have in terms of its
degree. For more references on this problem, consult [23] and [14].

Our proof does not require the algebraic geometric considerations in [23] and [14] about
polynomials in n variables but just the fact that given m points in Rn, there exists a nonzero
polynomial Q ∈ R[x1, . . . , xn] such that Q vanishes on all the given m points and whose
degree is bounded by d . m1/n. The method can be seen as, and was largely inspired
by, an adaptation of the methods in [22] to the discrete case, more precisely the result in
the section “warmup to multilinear Kakeya” of [22], together with the application of the
polynomial method as in [13].

We point out that an independent proof of the bound on the number of joints, due to
Kaplan, Sharir, and Shustin [29], appeared at the same time as the one presented in the first
version of this work. Our proof has some similarities with the proof in [29] (for example,
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compare Lemma 6.2 and the “Differentiating” step in the proof of Theorem 1 in [29]).

6.2 The main result

For a given collection of lines L in Rn consider the set J of points of the form ∩ni=1`i, where
`i ∈ L for all 1 6 i 6 n and the directions of the lines `1, . . . , `n are linearly independent.
We will refer to J as the set of transverse intersections, or joints, of L.

Notation. In this section the letters L and J will always be used with the same meaning,
a set of lines in Rn and the set of joints determined by the set of lines, respectively. We
will denote by |S| the cardinality of the set S. We also use the notation X . Y , Y & X,
Y = Ω(X), or X = O(Y ) to denote any estimate of the form X 6 CY , where C is a
constant that depends only on the dimension n. We use X = Θ(Z) to denote X = O(Z)
and Z = O(X).

Our main theorem is the following.

Theorem 6.1. Let L be a collection of lines in Rn. Then the cardinality of the set of joints
of L, J satisfies |J | . |L|n/(n−1).

We start by proving the following lemma.

Lemma 6.2. Let J ′ be a subset of J with the property that every line ` ∈ L with ` ∩ J ′ 6= ∅
contains at least m points of J ′, that is, |` ∩ J ′| > m for some given constant m. Then
|J ′| > Cnm

n, where Cn is a constant depending on n only.

Proof. By contradiction, assume there exists an arrangement of lines L and points J ′ as in
the statement of Lemma 6.2, where |J ′| 6 mn

K
, where K is a big constant depending on n

only that we will choose later. Let Q ∈ R[x1, . . . , xn] be a nonzero polynomial that vanishes

on every point of J ′. We can choose Q of degree deg(Q) 6 c(n)|J ′|1/n 6 c(n)

K1/nm (because the

space of polynomials of degree 6 d has dimension
(
d+n
d

)
= Θ(dn)). Choosing K sufficiently

big depending on n only we can ensure that deg(Q) < m. The restriction of Q to any line of
L which intersects J ′ is a polynomial in one variable of degree < m that vanishes on at least
m points, hence it vanishes identically. From Q|` = 0 we obtain ∇Q · v|` = 0, where v is
the direction of `. Therefore at each point of J ′, ∇Q is orthogonal to a linearly independent
set of n vectors, so it is zero. Now every component of ∇Q vanishes on J ′ and has degree
deg(∇Q) < deg(Q) < m. We can apply the same argument to every component of ∇Q, so
inductively we obtain ∂αQ

∂xα
= 0 on J ′ for every multi-index α ∈ Nn. From here it follows that

Q is identically zero, which is a contradiction.

Following the initial publication of this work, Fedor Nazarov observed that the proof of
Theorem 6.1 follows immediately from Lemma 6.2.
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Proof of Theorem 6.1. Let m = K|J |1/n, where K satisfies KnCn > 1 and Cn is the constant
in the conclusion of Lemma 6.2 (hence K depends on n only). We start an iterative process
to remove lines from L having a control in the number of joints removed at each step. Let
L(0) = L and J (0) = J . Suppose that L(i) ⊆ L, L(i) 6= ∅ has been defined, and let J (i) ⊆ J
denote the set of joints determined by L(i). With the choice of m, there must be a line
`i ∈ L(i) that contains no more than m points of J (i); otherwise, by Lemma 6.2, we would
have |J | > |J (i)| > Cnm

n = KnCn|J | > |J |, which is a contradiction.
Define L(i+1) = L(i)\{`i} and let J (i+1) be the set, possibly empty, of joints of L(i+1),

which are necessarily contained in J . In this way we have |J (i)| 6 |J (i+1)|+m.
Since for i > |L| − (n − 1) we have J (i) = ∅, we conclude that |J | = |J (0)| 6 m|L| =

O(|J |1/n|L|), whence we obtain |J | . |L|n/(n−1).

6.3 The case of algebraic curves

A bound similar to the one in Theorem 6.1 can be proven if we replace lines by algebraic
curves. By a smooth curve γ we mean a curve such that its tangent vector γ̇ exists at every
point of γ and is nonzero. Given a collection C of smooth curves we define the set of joints,
J , determined by C as the set of incidences of at least n curves in C such that the tangent
vectors of the curves at the intersection are linearly independent.

We start by considering a special case of algebraic curves. Let C be a set of smooth
curves, each parametrized by polynomials; that is, if γ ∈ C, we can parametrize it as γ(t) =
(P1(t), . . . , Pn(t)), where each Pi is a polynomial in one variable of degree at most d for a
given constant d. We let J denote the set of joints determined by C.

A minor modification of Lemma 6.2 gives the following.

Lemma 6.3. Let C and J be as in the previous paragraph, and let J ′ be a subset of J with
the property that |γ ∩ J ′| > m for every curve γ ∈ C with γ ∩ J ′ 6= ∅ for some given constant
m. Then |J | = Ω(mn/dn).

The conclusion follows as in the case of lines, and the bound on the number of joints is
|J | 6 Cn|C|n/(n−1)dn/(n−1), where Cn is a constant depending on n only.

More generally, if we consider an irreducible, smooth algebraic curve γ of degree d, and
if Q ∈ R[x1, . . . , xn] has degree < m/d, and its zero locus intersects γ on at least m different
points, then the curve is contained in the zero set of Q, that is, Q|γ ≡ 0, by an application
of Bezout’s theorem (see, for example, Chapter 1 in [25] or Chapter 3 in [41]). Hence the
same conclusion as in Lemma 6.3 holds if we let C consist of irreducible, smooth algebraic
curves of degree at most d. Therefore we have the following theorem.

Theorem 6.4. Let C be a collection of irreducible, smooth algebraic curves of degree at most
d in Rn. Let J denote the set of joints determined by C. Then the cardinality of J satisfies
|J | 6 Cn|C|n/(n−1)dn/(n−1) for some constant Cn depending on n only.
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6.4 The original proof of Theorem 6.1

We include here the original proof we had of Theorem 6.1. We derive the following conse-
quence from Lemma 6.2. Let c : J → L be a function satisfying x ∈ c(x) for all x ∈ J , that
is, for each x, c selects a line incident at x. Note that for each x ∈ J we have at least n
transverse lines intersecting at x. Thus at each x we have at least n different lines to choose
from. We call such a function a coloring of J .

Proposition 6.5. There exists a coloring c of J such that for every line ` ∈ L,
|{x ∈ ` ∩ J : c(x) = `}| = O(|J |1/n).

Short proof, sketch. We will use the same method as in the proof of Theorem 6.1. With the
notation as in the proof of Theorem 6.1 we know that for i > |L| − (n− 1) we have J (i) = ∅.
Let i0 6 |L| − (n− 1) be the first time J (i) is empty. We let `i ∈ L be the line deleted at the
i−th step, that is `i ∈ L(i)\L(i+1). Every point in J is contained in some line `i, 1 6 i 6 i0.
For x ∈ J let i(x) be the first time a line containing x is deleted, ie, x ∈ `i(x) and x 6= `i for
i < i(x). Define c(x) = `i(x). Since `i is such that the number of joints of L(i) contained in
`i is less than or equal to m, it follows that |{x ∈ J : c(x) = `i}| 6 m, and the proposition
is verified.

The original proof. Let m = |J | and note that for any coloring c of J , W (`) := |{x ∈ `∩ J :
c(x) = `}| satisfies W (`) 6 |` ∩ J |. We use an inductive method to define the coloring c.
Choose an ordering J = {x1, . . . , xm}. By a provisional coloring cν on Jν := {x1, . . . , xν} we
mean a function cν : Jν → L with x ∈ cν(x) for all x ∈ Jν . Given a provisional coloring cν
we define the provisional counting function, Wν , on L by Wν(`) = |{x ∈ `∩ Jν : cν(x) = `}|.
We will say that the provisional coloring cν is acceptable if Wν(`) 6 Km1/n for all ` ∈ L, for
a given big constant K depending only on n that we will choose later. The Proposition is
proven if we can find an acceptable coloring cm.

Define the provisional coloring cν on {x1, . . . , xν} inductively by setting c1(x1) = `1, for
an arbitrarily selected line `1 ∈ L intersecting x1. It follows that W1(`1) = 1, W1(`) = 0, for
all ` 6= `1, which is acceptable if we choose K > 1.

We will show that if cν is an acceptable coloring on {x1, . . . , xν} then, by possibly modi-
fying cν , we can obtain an acceptable coloring cν+1 on {x1, . . . , xν+1}.

Suppose cν is an acceptable coloring on {x1, . . . , xν}. The good case is the following: there
is a line `ν+1 intersecting xν+1 such that Wν(`ν+1) + 1 6 Km1/n. In this case we let cν+1 on
{x1, . . . , xν , xν+1} be defined by cν+1(xi) = cν(xi) for all 1 6 i 6 ν, and cν+1(xν+1) = `ν+1 .
It follows that Wν+1(`) = Wν(`) for all ` 6= `ν+1, and Wν+1(`ν+1) = Wν(`ν+1) + 1, so that
cν+1 is acceptable.

We now turn to the complementary case, the bad one. Here we have Wν(`) > 1
2
Km1/n

(the 1
2

is just because Km1/n may not be integer), for all ` ∈ L incident at xν+1, and we
note that there are at least n such lines with linearly independent directions. Now look at
each point xi ∈ ` ∩ Jν with cν(xi) = `, where ` is a line incident at xν+1. If we can change
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the value of cν(xi) to say cν(xi) = `′, for `′ 6= `, for some i, without violating the restriction
on Wν(`

′) (that is Wν(`
′) + 1 6 Km1/n), then we are done, as we define cν+1(xj) = cν(xj)

for j 6 ν and xj 6= xi, cν+1(xi) = `′, cν+1(xν+1) = `. If we can not find such xi this means
that for any ` incident at xν+1, for any point xi ∈ `∩ Jν with cν(xi) = `, and any `′ incident
at xi we have Wν(`

′) > 1
2
Km1/n.

We let

I(1) = {x ∈ J : x ∈ ` ∩ Jν , for some ` incident at xν+1 and cν(x) = `}

and if I(σ) is defined we let

I(σ+1) = {x ∈ Jν : there exists x′ ∈ I(σ) and ` incident at x′ s.t. x ∈ ` and cν(x) = `}.

We note that, similarly as we did for points in I(1), if x ∈ I(σ) and ` is such that cν(x) = `
and there exists `′ 6= ` incident at x such that Wν(`

′) + 1 6 Km1/n, then by modifying cν
on the corresponding points on I(1) ∪ · · · ∪ I(σ), we can obtain an acceptable coloring cν+1

on {x1, . . . , xν+1} as desired.
If this is not the case, that means that for any x ∈

⋃∞
σ=1 I

(σ) =: J ′ and any ` ∈ L of the
at least n transverse lines incident at x we have Wν(`) > 1

2
Km1/n. Note that I(σ+1) = I(σ)

for all sufficiently large σ, since these are nested subsets of the finite set J . We let L′ denote
the set of lines of L incident to some point of J ′. Thus for all ` ∈ L′ we have

1

2
Km1/n 6 Wν(`) 6 |` ∩ J ′|, (6.1)

where the second inequality comes from the inclusion {x ∈ ` ∩ Jν : cν(x) = `} ⊆ ` ∩ J ′, that
we show now. We first note that if x ∈ I(σ) is such that cν(x) = `, then any x′ ∈ `∩ Jν with
cν(x

′) = ` is in I(σ). Now for ` ∈ L′ we have ` ∩ J ′ 6= ∅, so let xi0 ∈ ` ∩ J ′. For xi0 we have,
xi0 ∈ J ′ hence xi0 ∈ I(σ) for some σ > 1, then any x ∈ ` ∩ Jν with cν(x) = ` is in either
in I(σ) or in I(σ+1) (depending whether cν(xi0) = ` or not), thus x ∈ J ′ and the inclusion
follows.

Now use Lemma 6.2 together with (6.1) applied to L′ and J ′, to obtain

|J ′| > C(n)(
1

2
Km1/n)n =

1

2n
C(n)Knm.

We now choose K big enough, depending on n only so that 1
2n
C(n)Kn > 1. Hence we obtain

|J | > |J ′| > m = |J | which is a contradiction. This means that in the bad case we can
always modify cν to obtain an acceptable coloring cν+1. Therefore the Proposition is proved,
by induction.

For those familiar with [22], a coloring as in Proposition 6.5 is the analog in “warmup to
multilinear Kakeya” in [22] to finding directions vj(k),a(k) such that for the k-th cube Qk, the
directed volume VZ∩Qk(vj(k),a(k)) is large (VZ∩Qk(vj(k),a(k)) & 1). The next proposition follows
exactly as in the last paragraphs in the mentioned section of [22].
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Proof of Theorem 6.1. By Proposition 6.5 there exists a coloring c satisfying |{x ∈ ` ∩ J :
c(x) = `}| = O(|J |1/n) for all ` ∈ L. For each x ∈ J we have a distinguished line, namely
c(x). We have just associated a line to any point x ∈ J . There are in total |L| lines and
|J | points. By the pigeonhole principle, there is a line, `∗, associated to & |J |/|L| different
points, therefore |{x ∈ `∗ ∩ J : c(x) = `∗}| & |J |/|L|.

On the other hand |{x ∈ `∗ ∩ J : c(x) = `∗}| . |J |1/n. From here it follows that
|J | . |L|n/(n−1).
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1.2 (1984), pp. 109–145. issn: 0294-1449.

[33] Wilhelm Magnus and Fritz Oberhettinger. Formulas and Theorems for the Special
Functions of Mathematical Physics. Translated by John Wermer. Chelsea Publishing
Company, New York, N.Y., 1949, pp. viii+172.

[34] Adela Moyua, Ana Vargas, and Luis Vega. “Restriction theorems and maximal opera-
tors related to oscillatory integrals in R3”. In: Duke Math. J. 96.3 (1999), pp. 547–574.
issn: 0012-7094.

[35] Fritz Oberhettinger and Larry Badii. Tables of Laplace transforms. New York:
Springer-Verlag, 1973, pp. vii+428.

[36] Richard O’Neil. “Convolution operators and L(p, q) spaces”. In: Duke Math. J. 30
(1963), pp. 129–142. issn: 0012-7094.
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