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Abstract

The successful use of molecular dyes for solar energy conversion requires e�cient

charge injection, which in turn requires the formation of states with su�ciently long

lifetimes (e.g. triplets). The molecular structure elements that confer this property

can be found empirically, however computational predictions using ab initio electronic

structure methods are invaluable to identify structure-property relations for dye sen-

sitizers. The primary challenge for simulations to elucidate the electronic and nuclear

origins of these properties is a spin-orbit interaction which drives transitions between

electronic states. In this work, we present a computational analysis of the spin-orbit

corrected linear absorption cross sections and intersystem crossing rate coe�cients for

a derivative set of phosphonated tris(2,2’-bipyridine)ruthenium(2+) dye molecules. Af-

ter sampling the ground state vibrational distributions, the predicted linear absorption
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cross sections indicate that the mixture between singlet and triplet states plays a cru-

cial role in defining the line shape of the metal-to-ligand charge transfer bands in these

derivatives. Additionally, an analysis of the intersystem crossing rate coe�cients sug-

gests that transitions from the singlet into the triplet manifolds are ultrafast with rate

coe�cients on the order of 1013 s�1 for each dye molecule.

Introduction

Dye sensitization of photovoltaic systems, such as traditional light harvesting1–3 and pho-

toelectrosynthesis cells,4–8 o↵ers the potential for the low-cost generation of solar energy.

These systems are constructed by coating a metal-oxide surface, such as TiO2, with a molec-

ular dye designed to absorb visible radiation and inject the excited electrons into a high

band gap semiconductor.9–11 Although significant design improvements are required to use

these systems at scale,12,13 current reports of power conversion e�ciencies for dye-sensitized

solar cells are between 10%–15% under direct sunlight and over 25% under ambient light-

ing.14–17 Employing dye molecules to promote the injection of electrons is beneficial since the

ligand framework can be specially designed to tune various structure-property relationships

resulting in greater power conversion e�ciencies.18–20

Extensive experimental21–25 and theoretical26–30 studies have been dedicated to the op-

timization and discovery of dye molecules. Of the many dye molecules proposed, ruthe-

nium polypyridyl complexes have emerged as promising candidates due to to their distinc-

tive metal-to-ligand charge transfer (MLCT) bands which are found in the 400 � 500 nm

region of the absorbance spectrum. The most studied molecule in this class is tris(2,2’-

bipyridine)ruthenium(2+) (RuBPY) where experiments and simulations probing the MLCT

band have been instrumental in understanding photoinduced phenomena such as inter-

system and internal conversion,31–34 electron and charge transfer dynamics,35–38 and the

influence of molecular vibrations and solvent/surface environment on excited electronic

states.39–43 RuBPY is typically tethered to a metal-oxide surface using functional groups and,
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Figure 1: A diagram illustrating some radiative and non-radiative transitions in RuBPY.
The radiative transitions include singlet-to-singlet and direct singlet-to-triplet absorption.
The nonradiative transitions include internal conversion (IC), intramolecular vibrational
energy redistribution (IVR), interligand electron transfer (ILET), and spin-orbit mediated
intersystem crossing (ISC) between singlet and triplet states. Some of the primary states
involved in the linear absorption and ISC (S7, S8 (blue) and T3 (red)) are highlighted.

while many groups have been proposed, phosphonated derivatives are particularly robust—

exhibiting considerably greater stability and higher conversion e�ciencies in comparison to

their alternatively-functionalized counterparts.44–48

One approach that improves the performance of dye molecules as photosensitizers is to

employ functional groups to tune the transitions between excited electronic states.49–54 An

illustration highlighting some competing transitions in RuBPY is shown in Fig. 1. After

an electron is excited from the ground singlet state into the singlet manifold, a series of

nonradiative relaxations, such as internal conversion,55,56 intramolecular vibrational energy

redistribution,57,58 and/or interligand electron transfer59,60 can drive transitions between the

singlet electronic states. Additionally, the electron may undergo intersystem crossing into

the triplet manifold where similar nonradiative pathways are possible.

Although the transitions between singlet and triplet states depends on the slow nuclear
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motion of the ligands, intersystem crossing is generally considered to be highly e�cient in

derivatives of RuBPY with �ISC reported between 0.5 and 1 in our recent analysis of spec-

troscopic data for solution phase dyes using kinetics methods.61,62 The intersystem crossing

is also ultrafast as confirmed by femtosecond fluorescence experiments where it is predicted

to be within 100 fs in solution.63–65 Although considerably faster than reported for the con-

densed phase, recent ab initio simulations on gas phase RuBPY predict similar time scales

with nearly 70% of the population in the excited singlet manifold undergoing intersystem

crossing within 30 fs.55

Employing ab initio quantum chemistry methods that include spin-orbit coupling (SOC)

can aid in elucidating the electronic and nuclear rearrangements that drive intersystem cross-

ing.66 Some of the more sophisticated and accurate variational approaches at the Hartree-

Fock and density functional level include spin-orbit coupling a priori when optimizing

the self-consistent field equations. Such methods include the two-component (X2C),67–71

Douglas-Kroll-Hess (DKH),72,73 and the zeroth-order regularization approximation (ZORA).74,75

For larger system sizes directly amenable to time-dependent density functional theory (TDDFT)

however, these variational approaches can become cost prohibitive.76 In such cases, simpler

approaches become appropriate where the Tamm-Danco↵ approximation (TDA) provides a

wavefunction-like approximation to spin pure states (i.e. those with integer total angular

momentum L and total spin S) which are then mixed together using perturbation theory.77

Alternatively, including spin-orbit coupling in designer excited state wavefunctions of the

multiconfigurational or complete active space type have been proposed which incorporate

both perturbative and variational approaches.78–81

In this work, TDDFT/TDA and perturbation theory were employed to analyze the in-

tersystem crossing rate coe�cients and assign the electronic transitions of the MLCT bands

for RuBPY and a set of phosphonated derivatives (labeled RuP, RuP2, and RuP3). The

objective of this work is to permit an in-depth understanding of the nuclear and electronic

rearrangements that underlie our prior kinetics analysis of the spectroscopic signatures of
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these dyes.53,61,62 The article is organized as follows: first, we outline a protocol for apply-

ing a SOC correction to TDDFT/TDA states. Then, the SOC states are used to calculate

corrected linear absorption cross sections and intersystem crossing rate coe�cients. The

analysis presented here highlights the distinct role that singlet-to-triplet transitions have on

the kinetics and linear absorption probabilities in these molecular dyes and validate several

rate coe�cients for the intersystem crossing steps that were reported in our previous study.

Methods

The following notation is used throughout this work: a spin-pure electronic state I with

integer spin S and spin projection M is denoted as | S,M

I
i. Occupied molecular orbitals are

denoted with indexes i and j and virtual orbitals are denoted using a and b. Lower-case

subscripts µ and ⌫ denote integrals over atomic orbital (AO) basis functions. In this work,

only spin pure singlet and triplet states generated from a restricted Kohn-Sham determinant

are considered.

Perturbative Spin-Orbit Coupling

The Breit-Pauli (BP) SOC Hamiltonian is a perturbative, two-electron relativistic correction

to the adiabatic electronic Hamiltonian. The benefit of using the BP Hamiltonian is that the

spin-orbit (SO) and spin-other-orbit (SOO) interactions from this two-electron Hamiltonian

are contracted into single terms.82,83 The BP Hamiltonian has the form:

ĤBP =
X

i

ĥ
SO(i) · ŝ(i) +

X

i 6=j

ĥ
SOO(i, j) ·

✓
ŝ(i) + 2ŝ(j)

◆
, (1)

where the one-electron SO operator is

ĥ
SO(i) ⌘ ↵

2

0

2

X

A

Z(A)

r̂
3

iA

(~̂riA ⇥ ~̂pi),
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and the two-electron SOO operator is

ĥ
SOO ⌘ ↵

2

0

2

1

r̂
3

ij

(~rij ⇥ ~̂pi),

where ↵0 is the fine structure constant, r̂iA is the distance between electron i and nucleus A,

r̂ij is the distance between electrons i and j, ŝi is the spin and p̂i is the momentum operator

of electron i, and ZA is the nuclear charge.

Matrix elements of the BP Hamiltonian are computed by contracting the integrals of

ĥ with one- and two-particle density matrices (labeled 1PDM and 2PDM respectively).

However, evaluating and contracting the two-electron SOO integrals is known to be a com-

putational bottleneck.84,85 To alleviate this cost, the SOO interactions are commonly ap-

proximated using e↵ective 1-electron SOC operators of the mean-field type.86 An alternative

approach, and the one used for this work, is to include the SOO interactions empirically in

the 1-electron SO operator through the use of an e↵ective nuclear charge:

H̃BP =
X

i

h̃(i) · ŝ(i) (2)

where the e↵ective 1-electron orbital angular momentum operator

h̃(i) ⌘ ↵
2

0

2

X

A

Ze↵(A)

r̂
3

i,A

✓
~̂ri,A ⇥ ~̂pi

◆
(3)

has the same form as in Eq. 1 except that the nuclear charge Z(A) has been replaced with

an empirical parameter Ze↵(A). Tabulated values for this parameter are available in the

literature where they have been fit to reproduce experimentally measured fine structure

splittings for each atom.87 The values used for Ze↵(A) in this work are provided in Table S2

of the supporting information.

Using first-order perturbation theory, matrix elements of the BP Hamiltonian in Eq. 2

can be calculated using the Wigner-Eckart theorem:
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h S
0
,M

0

I
| H̃BP | S

00
,M

00

J
i =

0,±1X

m

(�1)m

0

B@
S
00 1 S

0

M
00

m M
0

1

CAP
I,J

S0,S00 · h̃(m)
, (4)

which involves evaluating a Clebsch-Gordan (CG) coe�cient (expressed here as a 3-j symbol)

and contracting a 1PDM (PI,J

S0,S00) with the 1-electron orbital angular momentum integrals

(h̃m). 1 The 1-electron orbital angular momentum integrals:

h̃
(0)

µ⌫
= h̃

(z)

µ⌫
(5a)

h̃
(+1)

µ⌫
=

1p
2

✓
h̃
(x)

µ⌫
+ ih̃

(y)

µ⌫

◆
(5b)

h̃
(�1)

µ⌫
=

1p
2

✓
h̃
(x)

µ⌫
� ih̃

(y)

µ⌫

◆
, (5c)

are those from Eq. 3 which are evaluated over Cartesian AO basis functions and then ex-

pressed in the spherical tensor basis.

In the TDA, excitations are decoupled from de-excitations which enables a wavefunction-

like expression for the excited states.89 The singlet excited states have the following form:

| 0,0

I
i = 1p

2

X

ai

s
I

ai

✓
|�ā

ī
i+ |�a

i
i
◆

(6)

where s
I

ai
is the amplitude and |�ā

ī
i denotes a singly-excited determinant which is created

after promoting an electron from a � occupied spin orbital i to a � virtual orbital a. Likewise,

|�a

i
i (i.e. with no bar above i or a) denotes the promotion of an ↵ electron. The triplet

excited states have the form:
1Actually, the 1PDM is scaled by an inverse CG coe�cient as a result of evaluating a reduced matrix

element.88
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| 1,0

J
i = 1p

2

X

ai

t
J

ai

✓
|�ā

ī
i � |�a

i
i
◆

(7a)

| 1,1

J
i =

X

ai

t
J

ai
|�ā

i
i (7b)

| 1,�1

J
i =

X

ai

t
J

ai
|�a

ī
i , (7c)

where t
J

ai
denotes the triplet amplitudes which are independent of spin projection m.

After expressing the singlet and triplet amplitudes from Eq. 6 and Eq. 7 as rectangular

matrices (tJ
vo

and s
I

vo
), the scaled 1PDM between the Kohn-Sham reference and an excited

triplet state is:

P
J,0

1,0
= Cvt

J

vo
C

†
o
, (8)

the singlet-to-triplet scaled 1PDM is:

P
I,J

1,0
= Cvt

I

vo
s
J†
vo
C

†
v
�Cos

J†
vo
t
I

vo
C

†
o
, (9)

and the excited triplet-to-triplet scaled 1PDM is:

P
I,J

1,1
=

p
2

✓
Cvt

I

vo
t
J†
vo
C

†
v
+Cot

J†
vo
t
I

vo
C

†
o

◆
, (10)

where Co and Cv are rectangular matrices which contain the occupied and virtual blocks of

the molecular orbital coe�cient matrix C.

In order to solve for the SOC states, the BP Hamiltonian is built, added to the TDDFT/TDA

Hamiltonian H0 which is expressed in the basis defined in Eq. 6 and Eq. 7, and diagonal-

ized.90,91 The resulting SOC eigenstates contain contributions from the ground state | 0,0

0
i,

a chosen number a excited singlet states | 0,0

I
i, and a chosen number of three-fold degenerate
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excited triplet states | 1,m

J
i with spin m = 0,±1. The SOC excited state wavefunction is:

| Ni = C
0
0
| 0,0

0
i+

NSX

I

CI | 0,0

I
i+

0,±1X

m

NTX

J

CJ,m | 1,m

J
i , (11)

where NS and NT denote the number of singlet and triplet states included in the perturbation

and CI and CJ,m are the amplitudes for the singlet and triplet contributions respectively.

When basis states from a restricted Kohn-Sham determinant are employed, the ground state

is:

| 0i = C0 | 0,0

0
i+

0,±1X

m

NTX

J

C
0
J,m

| 1,m

J
i , (12)

since the scaled 1PDM of Eq. 8 can only couple together excited states in the triplet manifold

to the singlet ground state,

Transition Dipole Integrals

Applying the BP correction to the linear absorption spectrum requires the transition dipole

moment integrals between the SOC states. Since the dipole operator is independent of both

spin and spin projection, the SOC corrected transition dipole integrals are:

h N | µ̂ | 0i = µ̂0,0 + µ̂S,0 + µ̂T,T , (13)

where the subscripts denote ground (0), singlet (S), and triplet (T) contributions. The

ground-to-ground state contribution is

µ̂0,0 ⌘ C
0⇤
0
h 0,0

0
| µ̂ | 0,0

0
iC0,

the ground-to-singlet excited state contribution is

µ̂S,0 ⌘
X

I

C
⇤
I
h 0,0

I
| µ̂ | 0,0

0
iC0,

9



and a triplet-to-triplet excited state contribution is

µ̂T,T ⌘
0,±1X

m

X

J 0J

C
0⇤
J 0,m h 1,m

J 0 | µ̂ | 1,m

J
iCJ,m,

which are simply the spin-pure transition dipole moment integrals weighted by the complex

amplitudes C0, CI and CJ,m.

Nuclear Ensemble Method

The linear absorption spectra were predicted using the nuclear ensemble method—which

is a simulation-based approach that samples the transition dipole integrals and excitation

energies from a ground vibrational state distribution.92,93 The main idea of this approach is

that the linear absorption cross section can be sampled stochastically:94

�(E) =
⇡E

3~✏0c
X

b

Z
⇢0

�
~R
�����µb0

�
~R
�����

2

g(�, �)d~R (14)

with

� ⌘ E � Eb0

�
~R
�
,

where ⇢0
�
~R
�
is the ground state vibrational distribution and Eb0(~R) are the ground-to-excited

state transition energies. The broadening function:

g(�, �) =

r
2

⇡

~
�
exp

✓
� 2�2

�2

◆
(15)

used here was chosen to be a Gaussian which contains an empirical parameter �.

Intersystem Crossing Rate Coe�cients

The intersystem crossing rate coe�cients (kISC) were calculated using Marcus theory:95,96
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k
IJ

ISC
=

1

~

✓
V

IJ

SOC

◆2r
⇡

�kBT
exp

✓
�(�+�G0)2

4�kBT

◆
(16)

where � denotes the reorganization energy, �G0 is the driving force, and

V
IJ

SOC
=

vuut
0,±1X

m

| h 0,0

I
| H̃BP | 1,m

J
i |2 (17)

is the spin-orbit coupling constant.97 The harmonic, parallel, and vertical gradient approx-

imations were employed for the reorganization energies and driving forces.98 Under these

approximations, the reorganization energy is defined as the sum of the individual normal

mode contributions:

� =
X

j

1

2µj!
2

j

✓
@EJ

@Qj

◆2

SI,min

(18)

where µj and !j denote the reduced mass and harmonic frequency of normal mode j, @EJ
@Qj

is the TDDFT/TDA energy gradient of the final triplet state J , and SI,min denotes that the

gradient is evaluated at the minimum energy configuration of the initial singlet state.

Computational Details

The excitation energies, SOC integrals, excited state amplitudes, and transition dipole in-

tegrals were calculated using a development version of the Q-Chem 6.1 software package.99

An investigation into the basis set and functional dependence of the MLCT transitions for

RuBPY was performed and the B3LYP/def2-SVP-PP level of theory was chosen for all

calculations since it had the lowest absolute error when compared with experiment. Fur-

ther details and electronic structure benchmarks are provided in Fig. S1 of the supporting

information.

Geometry optimizations were performed on the ground singlet state for each dye molecule.

At the optimized geometries, the BP Hamiltonian from Eq. 4 was expressed in a basis
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including the ground state, the lowest ten singlet states, and the lowest 30 triplet states (i.e.

the lowest ten three-fold degenerate triplet states) and diagonalized. As justified in Table

S1 of the supporting information, higher-lying states (i.e. those above the MLCT bands)

were found to be insignificant. In all dye molecules, SOC corrections to the ground state

were found to be negligible (i.e. |C0|2 = 1) which allowed the singlet and triplet percent

contribution of each excitation to be decomposed according to that of the final state:

PS =
NSX

I

|CI |2 (19a)

PT =
0,±1X

m

NTX

J

|CJ,m|2, (19b)

where the coe�cients CI and CJ,m are from Eq. 11. Likewise, the negligible SOC corrections

to the ground state allowed the orbital excitation character to be decomposed according to

the amplitudes of the final state:

��Xai

��2 =
NSX

I

��CIs
I

ai

��2 +
0,±1X

m

NTX

J

��CJ,mt
J

ai

��2 (20)

where Xai denotes the complex valued transition amplitude between an occupied molecular

orbital i and virtual orbital a.

The SOC excitation energies and oscillator strengths were used to calculate the linear

absorption cross sections. At the optimized ground state geometry for each dye molecule, a

harmonic frequency analysis was performed and the resulting normal modes were employed to

sample ⇡ 2000 configurations from a T = 300K Wigner distribution. A Gaussian broadening

function was chosen (see Eq. 15) with the broadening parameter � = 0.1 eV. Further analysis

of this parameter is provided in Fig. S8 of the supporting information. For comparison, the

experimental linear absorption cross sections for RuBPY were obtained from Ref. 100 and
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the experimental linear absorption cross sections for RuP, RuP2, and RuP3 were obtained

from Ref. 61 and Ref. 62.

The spin-pure TDDFT/TDA excitation energies and the SOC constants from Eq. 17

were used to calculate the intersystem crossing rate coe�cients. For these calculations, the

geometries of four excited singlet states S5 - S8 were optimized. The e↵ects of internal

conversion were included using a state following algorithm which optimizes the geometry of

the excited state based on orbital excitation character.101 Using state following allows the

geometry optimization to ”jump” electronic states based o↵ of the character of the molecular

orbitals. Therefore, the optimized excited-state geometries are those that best represent the

orbital excitation character from the ground state configuration. The lower-lying electronic

states S1 - S4 were not included due to their negligible oscillator strengths.

At the minimum on each excited state potential energy surface, frequency calculations

were performed to obtain the excited state harmonic frequencies and reduced masses. All

frequencies were found to be real and positive except for the S8 excited state of RuBPY

which had one imaginary frequency (! = 185i cm�1). This frequency and corresponding

normal mode were removed from the calculation (see Fig. S7 of the supporting information).

The reorganization energies were calculated according to Eq. 18 and the driving forces were

calculated as a sum (or di↵erence) of the excitation energies of the initial singlet state and

the vertical excitation (or de-excitation) energies of the final triplet states (see Fig. S6). The

calculation of the driving force and reorganization energy were performed in the gas phase

and solvent e↵ects were neglected. The mode-specific reorganization energies, spin-orbit

coupling constants, and driving forces are provided in the supporting information (ISC.xlsx).

Results and Discussion

The B3LYP/def2-SVP-PP optimized geometries of RuBPY and the three phosphonated

derivatives are shown in Fig. 2. Of the derivatives, RuBPY is the only one with point group
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RuBPY RuP

RuP2 RuP3

Figure 2: The B3LYP/def2-SVP-PP optimized geometries of the ruthenium polypyridyl
dye molecules. The geometry of RuBPY (top left), RuP (top right), RuP2 (bottom left) and
RuP3 (bottom right). The hydrogen atoms on the bipyridine ligands have been removed for
clarity. The atom color coding is gray (C), blue (N), green (Ru), yellow (P), white (H), and
red (O).

symmetry (D3) where three bipyridine ligands are attached to a central ruthenium atom.

The structures RuP, RuP2, and RuP3 have two phosphonic acid groups attached to one,

two, and three of the bipyridine ligands, respectively. The optimized geometries correspond

to minimum energy configurations—as confirmed by a harmonic frequency analysis—on the

singlet ground state potential energy surfaces. The optimizations, and all subsequent calcula-

tions, were performed in the gas phase with a +2 charge. There were no counter ions present.

Although there is a low-lying C2 isomer for RuBPY,102 the minimum energy configuration

was confirmed to have D3 point group symmetry.

The frontier molecular orbitals of RuBPY are shown in Fig 3. In the occupied space, the

pyridine orbitals transform according to the a1 and e irreducible representations. The highest

occupied molecular orbital (HOMO) has a1 symmetry, and although there is a pyridine

orbital with a1 symmetry that is allowed to mix, the HOMO has primarily ruthenium 4dz2

14
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Ru(4dz2,a1)
-0.410 au
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d

Ru(dπ1
,e) Ru(dπ2

,e)
-0.416 au -0.416 au

BPY(L*,a2)
-0.284 au

BPY(Lπ*,e)
1

BPY(Lπ*,e)
2

-0.280 au

Figure 3: The frontier molecular orbitals of RuBPY. Orbital energies (in au) and symme-
tries (D3) are displayed below each orbital. The occupied orbitals are a degenerate pair of
⇡-type orbitals (labeled d⇡1 and d⇡2) with e symmetry and the a1 symmetry HOMO orbital
which has primarily ruthenium 4dz2 character. In the virtual space, the LUMO is a ligand-
only orbital (labeled L

⇤ with a2 symmetry) followed by a degenerate pair of e symmetry
⇡
⇤-type orbitals (labeled L⇡⇤

1
and L⇡⇤

2
). The isosurface value is ±0.05 au.

character. Close in energy is a degenerate pair of e symmetry ⇡-type orbitals (labeled d⇡1 and

d⇡2) which also have primarily ruthenium 4d character. In the valence space, the pyridine

orbitals transform according to the a2 and e irreducible representations; however, there is

no a2 symmetry ruthenium 4d orbital. As a result, the lowest-unoccupied molecular orbital

(LUMO) is a ⇡
⇤-type orbital (labeled L

⇤) which is bonding between the pyridine ligands but

otherwise has no interaction with the ruthenium. Close in energy to the LUMO is another

pair of degenerate e symmetry ⇡
⇤-type orbitals (labeled L⇡⇤

1
and L⇡⇤

2
) which have mixed

metal and ligand character. Similar frontier orbitals were found for the dye molecules RuP,

RuP2, and RuP3 which can be found in Fig. S2-S5 of the supporting information.

Transitions between the frontier molecular orbitals account for nine singlet and 27 triplet
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Figure 4: A comparison between the spin-pure excitation energies (y-axis) and the spin-
orbit coupled excitation energies (x-axis) of the lowest nine singlet (blue circles) and 27 triplet
states (red squares) evaluated at the ground-state optimized geometries. The excitation
energy comparison of RuBPY (top left), RuP (top right), RuP2 (bottom left), and RuP3
(bottom right). All energies are in eV. The impulse plots correspond to the SOC corrected
oscillator strengths with values shown on the y2-axis.

excited states which underlie the MLCT band. Comparisons between the spin-pure and SOC

transition energies, evaluated at the optimized geometry of each dye molecule, are shown in

Fig. 4. Although there are regions where the transition energies overlap (e.g. in the 2.5�2.8

eV range), the triplet manifolds generally lies lower in energy than the singlet manifolds.

The SOC oscillator strengths identify that weak transitions, S5 and S6, are present and the

brightest transitions are S7 and S8 which is consistent for each dye molecule. For RuBPY
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Table 1: A comparison between the SOC excitation energies (eV), oscillator strengths,
percent characters, and assignments evaluated at the optimized geometries. The orbital
excitation character (|Xai|2) is shown in the last two columns. The percent characters are
defined as d⇡ = d⇡1 + d⇡2 and L⇡⇤ = L⇡⇤

1
+ L⇡⇤

2
.

Peak Energy (eV) fosc PT PS d⇡ ! L⇤ d⇡ ! L⇡⇤

RuBPY

S5 2.797 0.009 6% 94% 72% 25%
S6 2.801 0.007 12% 88% 70% 25%
S7 2.961 0.126 2% 98% 24% 72%
S8 2.962 0.125 2% 98% 24% 72%

RuP

S5 2.799 0.003 11% 89% 37% 58%
S6 2.810 0.016 5% 95% 53% 44%
S7 2.938 0.178 2% 98% 32% 63%
S8 2.970 0.123 2% 98% 13% 83%

RuP2

S5 2.756 0.003 42% 58% 37% 54%
T9 (m=±1) 2.759 0.003 58% 42% 29% 59%

S6 2.807 0.021 9% 91% 44% 52%
S7 2.920 0.165 2% 98% 29% 66%
S8 2.964 0.122 2% 98% 13% 82%

RuP3

S5 2.752 0.007 14% 86% 73% 23%
S6 2.787 0.017 5% 95% 53% 44%
S7 2.924 0.173 2% 98% 26% 69%
S8 2.942 0.160 2% 98% 17% 78%

the bright transitions are degenerate, however breaking the symmetry with phosphonation

splits these transitions in the other derivatives. The results are a slightly brighter S7 and

slightly weaker S8 transition. At these geometries, the e↵ect of SOC on the linear absorption

is incredibly weak with negligible oscillator strengths attributed to direct singlet-to-triplet

absorption.

A breakdown of the singlet/triplet and orbital excitation character of these transitions

is provided in Table 1. Since the bright S7 and S8 transitions are well separated from the
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triplet manifold, SOC is relatively weak with PS = 98% for all the dye molecules. SOC is

slightly stronger for the S5 and S6 transitions with triplet characters that range between 5%

and 14% for RuBPY, RuP, and RuP3. Although the oscillator strength for the S5 transition

of RuP2 is relatively weak (fosc = 0.003), there is a significant SOC which results from a near

degeneracy with the T9 (m = ±1, contributing equally each with 23% character) transitions.

In general, the bright transitions are assigned to two types of orbital excitations. The S7

and S8 transitions are d⇡ ! L⇡⇤ excitations with percent characters ranging from 63%–

83%. The weaker transitions, S5 and S6, have mixed d⇡ ! L
⇤ and d⇡ ! L⇡⇤ character

with values ranging from 37% for S5 in RuP and RuP2 to 72%–73% for RuBPY and RuP3.

Interestingly, since the valence L⇡⇤ orbitals contain significantly mixed metal and ligand

character, the MLCT band is not simply constructed from metal-to-ligand transitions but is

better described as metal-to-metal-ligand transitions.

Comparisons between the simulated and experimental linear absorption cross sections are

shown in Fig. 5. After Wigner sampling of the vibrational degrees of freedom, a significant

SOC contribution to the line shape is observed. The SOC contribution can be quantified by

summing the singlet and triplet components independently, revealing that SOC accounts for

⇡ 20% of the total contribution which is consistent across all four dye molecules. Since many

of the triplet states are lower in energy than the singlet states, the singlet contributions define

the higher-energy region of the line shape, while the triplet contributions define the broader,

lower-energy region. In general, the agreement between the simulations and experiments is

quite good particularly in the lower-energy region of the band.

Although the lower energy line shape is defined by triplet contributions, the SOC correc-

tion to the linear absorption cross sections is greater in the intermediate region, as shown in

the di↵erence plots of Fig. 6. Here, a negative di↵erence indicates a greater SOC correction.

Generally, the SOC corrections for RuBPY and RuP3 are smaller compared to those for RuP

and RuP2. At the lower and higher energy regions of the band, the di↵erences are negative,

indicating that SOC increases the linear absorption cross section. The SOC correction is
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Figure 5: A comparison between the experimental and simulated linear absorption cross
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right). All energies are in (eV). The singlet (blue shaded) and triplet (red shaded) con-
tributions are defined as �S = PS� and �T = PT�. The dashed brown line is the sum of
the singlet and triplet contributions. The experimental linear absorption cross sections are
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most significant for RuP and RuP2, occurring in the 2.8eV–2.9eV region, where the singlet

and triplet manifolds overlap. In this region, the transition energies are significantly modu-

lated by the vibrational degrees of freedom. The width of the di↵erence cross section, which

is a metric for the range of overlapping transitions, is broadest for RuP which suggests that

SOC is greatest for this dye molecule.

The calculated intersystem crossing rate coe�cients are presented in Table 2. The rate

coe�cients, out of each singlet state, were weighted by their respective normalized oscillator

strengths (fosc) reported in Table 1 and summed over the nine states in the triplet manifold.

The m = 0,±1 sub levels of the triplet states were included using Eq.17. For each dye

molecule, the fastest intersystem crossing occurs out of the S7 state where the most significant
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Table 2: A comparison between the weighted sum of the intersystem crossing rate coe�-
cients (s�1) from each excited singlet state (SI) into each state in the triplet manifold. The
total intersystem crossing rate coe�cient (Total) is the sum of each column.

kISC RuBPY RuP RuP2 RuP3

S5 ! TJ 3.07E+12 2.49E+12 1.19E+12 2.44E+12

S6 ! TJ 2.83E+12 4.57E+12 6.09E+12 3.61E+12

S7 ! TJ 9.79E+12 2.18E+13 1.46E+13 6.61E+12

S8 ! TJ 1.31E+12 5.93E+12 1.12E+13 5.70E+12

Total 1.70E+13 3.48E+13 3.31E+13 1.84E+13

coe�cients are kISC= 2.18⇥ 1013 s�1 for RuP and kISC= 1.46⇥ 1013 s�1 for RuP2. Although

one might expect the fastest crossing from S5 and S6 since they are closer in energy to

the triplet states and have a greater SOC, the much weaker oscillator strength inhibits

intersystem crossing from these states. The total intersystem crossing rate coe�cients (Total)

are, however, predicted to happen ultrafast with rate coe�cients on the order of 1013 s�1
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for each dye molecule. The rate coe�cients are slightly faster for RuP and RuP2 which is

consistent with the greater SOC in the overlapping regions of the linear absorption spectrum.

A state-specific table of the weighted rate coe�cients is provided in Table S3 of the supporting

information.

For each dye molecule, the fastest intersystem crossing rate coe�cients were found to

occur out of the S7 state. According to the rate coe�cients in Table S3, the intersystem

crossing can be mostly attributed to single transitions. An analysis of the natural transition

orbitals (NTOs) underlying these transitions is presented in Fig. 7. The NTOs for the

S7 state identify two primary orbital contributions which account for greater than 98% of

each transition. The corresponding orbital contributions have d⇡1 ! L⇡⇤
1
and a d⇡2 ! L⇡⇤

2

character. For RuBPY, RuP, and RuP3 the final triplet state is T3 which correspond to a

single NTO pair with 4dz2 ! L⇡⇤
2
character. For RuP2, the final triplet state also corresponds

to a single NTO pair, however this pair is T1 with 4dz2 ! L⇡⇤
1
character. The fastest

intersystem crossing rate coe�cients correspond to excitations that di↵er by a single occupied

NTO. For the triplet state this is the highest-occupied 4dz2 and for the singlet state this is

the d⇡1 NTO. This result can be explained since the BP Hamiltonian is a sum of 1-electron

operators and Slater-Condon rules indicate that this 1-electron operator can only couple

together determinants that di↵er by a single spin orbital.

The intersystem crossing rate coe�cients reported here are in excellent agreement with

the kinetics analysis of the spectroscopy that we presented in Ref. 61. In that work,

we extracted intersystem rate coe�cients kISC= 4.0 ⇥ 1013 s�1 for RuP and RuP2 and

kISC= 2.0 ⇥ 1013 s�1 for RuP3 which clearly have the same magnitude and even follow the

same trend as the rate coe�cients reported in this work. However, unlike the sums of expo-

nentials analysis that was performed in Ref. 54, the rate coe�cients reported in the kinetics

analysis in Ref. 61 correspond cleanly to a mechanism. In that study, the simplest possible

assumption was made that the singlet-to-triplet intersystem crossing involved one primary

singlet state. Treating the closely spaced transitions S7 and S8 as one, the present study
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Figure 7: The natural transition orbitals with assignments for the fastest intersystem
crossing transitions in RuBPY (top left), RuP (top right), RuP2 (bottom left), and RuP3
(bottom right). The rate coe�cients correspond to transitions from d⇡ ! L⇡⇤ singlet states
into 4dz2 ! L⇡⇤ triplet states. The percent character for each natural transition orbital pair
is shown below the arrows. The isosurface value is ±0.05 au.

supports that assumption, and also reveals that the ultrafast intersystem crossing can be

assigned to transitions between occupied 4dz2 and d⇡1 orbitals. The magnitudes reported

here also support our previous conclusion in Ref. 61 that a second process—ultrafast nonra-
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diative relaxation back to the ground state—is competitive with intersystem crossing which

we needed to invoke in order to have quantitative agreement with the spectral data. On

the basis of early studies103 it is widely assumed that intersystem crossing is 100% e�cient,

however we found that this is only true when the dye is supported on a solid.

Conclusions

In this work, TDDFT/TDA and the perturbation theory was employed to study the e↵ects

that SOC has on the absorption cross sections and intersystem crossing rate coe�cients of

a set of ruthenium polypyridyl dye molecules (RuBPY, RuP, RuP2, and RuP3). While at

the optimized ground-state geometries SOC was found to have a negligible e↵ect on the

transition energies and oscillator strengths, two transitions S7 and S8 were identified which

carried significant oscillator strength. The SOC was found to have a negligible e↵ect on

these transitions since they are well separated from the triplet manifold. Although it may

be expected that the MLCT band is defined by metal-to-ligand transitions, an analysis of

the electronic structure of the excited states suggests that the valence orbitals contain both

metal and ligand character. The analysis presented here identified that this mixed character

is significant throughout many of the excited states.

When sampling electronic transitions from the vibrational degrees of freedom, the simu-

lations identified a significant SOC e↵ect on the MLCT line shapes. Comparisons were made

in Fig. 5 between the experimental and simulated linear absorption cross sections which were

generally in good agreement. The simulated cross sections were decomposed into singlet and

triplet contributions which revealed that SOC has a nearly 20% contribution to the overall

line shape. Additionally, the di↵erence cross sections revealed that the SOC correction was

greatest for RuP with a broad di↵erence line shape which indicates significant overlap with

transitions from the triplet manifold. The SOC correction to the cross sections for RuBPY

and RuP3 were found to be much less significant in comparison.
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Finally, the intersystem crossing rate coe�cients were analyzed and found to occur within

1013 s�1 for each dye molecule in good agreement with rate coe�cients extracted from spec-

troscopic data using a kinetics analysis. The intersystem crossing rate coe�cient corre-

sponding to the fastest singlet-to-triplet transitions were identified and the corresponding

natural transition orbitals were analyzed. We found that the fastest transitions occur be-

tween singlet and triplet states that di↵er by a single spin orbital. Although the simple

analysis provided reasonable intersystem crossing rate coe�cients for these dyes, explicit

dynamic e↵ects such as anharmonicity and nonadiabaticity were ignored in these models.

An area of future direction will be to incorporate the e↵ects of SOC into some of our recent

TDDFT/TDA quasi-classical molecular dynamics approaches.104 The calculations reported

here were on gas phase molecules and in condensed phase other perturbations can accelerate

these transitions. Another area of future direction will be to incorporate condensed phase

e↵ects (e.g. using polarizable continuum models)105 into these calculations.

Associated Content

The supporting information provides e↵ective nuclear charges used in the BP Hamiltonian,

definitions employed in the kinetics model, a table of the state-specific intersystem crossing

rate coe�cients, and some additional orbital, vibrational structure, SOC, and transition anal-

ysis (pdf). The mode-specific reorganization energies, driving forces, and spin-orbit coupling

constants are provided (xlsx). Cartesian coordinates at the minimum energy geometries on

the ground and excited electronic states of RuBPY, RuP, RuP2, and RuP3 are also provided

(xyz).
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Electronic Structure Benchmarks

An investigation into the basis set and functional dependence of the MLCT transitions for

RuBPY is presented in Fig. S1. The experimentally measured peak energy (�E = 2.883 eV)1

was used as a benchmark. The lowest energy pair with the greatest oscillator strength (see

inset) was analyzed against a set of generalized gradient (GGA), global hybrid (h-GGA),

and range-separated hybrid (rsh-GGA) density functionals. The SG-2 grid was used for

all calculations.2 In general, the density functionals from each rung follow a similar trend.

The GGA tends to underestimate the MLCT excitation energy while range-separated and

hybrid functionals tend to overestimate this quantity. The lowest absolute error was found

with B3LYP and this functional was used for all calculations. The selection of the B3LYP

functional reflects its superior performance for this problem. This can seen from the excellent

agreement between the calculated and measured linear absorption spectrum in the main

text. In general this is not the case and previous work comparing TDDFT excitations across

di↵erent rungs of density functionals show that B3LYP has an RMSE of 0.467 eV for singlet

excitations and 0.399 eV for triplet excitations.3

Perturbative Calculations

For each of the dye molecules studied here, the triplet manifold is lower in energy than the

singlet manifold. The higher-lying states (i.e., S10 and T10) are ⇡ 0.5 eV higher in energy

than the overlapping transitions in the MLCT bands. A table of the spin-pure and SOC

transition energies is shown in Table S1. Since these states do not couple through SOC

to each other or to other states in the MLCT band, as evidenced by the near degeneracies

between the spin-pure and SOC transition energies, all states above them were excluded

from the BP calculations.

The e↵ective nuclear charges (in a.u.) used in the BP Hamiltonian are provided in

Table S2. The e↵ective charge for ruthenium was calculated following the procedure outlined

in Ref. 4. The main group element e↵ective charges were taken from the table in Ref. 5.
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Fig. S1: Comparison between the calculated def2-SVP-PP MLCT excitation energies and ex-

periment for RuBPY. Three di↵erent rungs of density functionals were benchmarked including

generalized gradient (GGA), global hybrid (h-GGA), and range-separated hybrid (rsh-GGA). The

configuration interaction singles (CIS) value is shown in purple. The inset shows the B3LYP oc-

cupied ⇡ (bottom) and virtual ⇡⇤
(top) orbitals involved in the transition. The isosurface value is

±0.05 au.
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Table S1: Excitation energies at the equilibrium ground electronic state geometries

for S10 and T10. The first two columns contain the spin-pure transitions (i.e., the

transitions not including SOC). Note that the spin-pure triplet transition energies are

three-fold degenerate. The last two columns contain the SOC transitions.

spin-pure SOC

Dye S10 (eV) T10 (eV) S10 (eV) T10 m = 0,±1 (eV)

RuBPY 3.4169 3.3076 3.4206 3.3150, 3.3127, 3.3118

RuP 3.4145 3.2851 3.4157 3.2870, 3.2868, 3.2865

RuP2 3.4064 3.2665 3.4072 3.2678, 3.2678, 3.2676

RuP3 3.4083 3.2643 3.4092 3.2657, 3.2656, 3.2654

Table S2: The screened nuclear charges (a.u.) used for the perturbative Breit-Pauli

spin-orbit calculations.

Atom Charge

Ru 206.24

C 3.90

N 4.90

P 180.0

O 6.00

H 1.00

Additional Orbital Analysis

Some additional orbital and SOC analysis for RuBPY, RuP, RuP2, and RuP3 is provided

in Figs. S2 – S5 respectively. The right panels show the frontier molecular orbitals for each

dye. The left panels compare the spin-pure excitation energies (i.e., not including SOC) on

the y-axis against the SOC excitation energies. There are nine singlet states with m = 0 and

27 triplet states (i.e., nine three-fold degenerate spin-pure triplet states with m = 0,±1).

The impulse plots are the SOC oscillator strengths (with numerical values on the y2 axis)

which have been color-coded and assigned to primary orbital transitions. Each dye follows a

similar trend with the bright oscillator strengths corresponding to d⇡ ! ⇡⇤ transitions and
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the much weaker oscillator strenghts assigned to d⇡ ! L⇤ transitions.
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correspond to the spin-orbit coupled oscillator strengths which are shown on the y2-axis. All

excitation energies are in eV. The frontier molecular orbitals of RuBPY (right). Orbital energies

(in au) and symmetries (D3) are displayed below each orbital. The color bars represent the primary

contributing orbital transitions. The isosurface value is ±0.05 au.

Intersystem Crossing Rate Coe�cients

The state-specific weighted intersystem crossing rate coe�cients (s�1) calculated using Eq.

16 of the main text are provided in Table S3. The SOC oscillator strengths are listed as fosc.

The rate coe�cients are weighted by the normalized oscillator strengths including only S5 –

S8 for each dye molecule. The total rate for each dye molecule is the sum of the normalized

oscillator strength weighted columns. A depiction of the variables used in Eq. 16 and Eq.

18 of the main text, under the harmonic, vertical, and parallel gradient approximations, is

shown in Fig. S6.

A single imaginary mode was removed from the the rate coe�cient calculations on S8

for RuBPY. The first justification for removing this mode was that it was found to have a

small vibrational frequency (! = 185i cm�1). As shown in Fig. S7, the potential energy
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Fig. S3: The MLCT transitions of RuP (left). The spin-pure excitation energies (y-axis) and the

spin-orbit coupled excitation energies (x-axis) for the lowest nine singlet (blue circles) and 27 triplet

states (red squares) evaluated at the minimum energy geometries. The impulse plots correspond to

the spin-orbit coupled oscillator strengths which are shown on the y2-axis. All excitation energies

are in eV. The frontier molecular orbitals of RuP (right). Orbital energies (in au) are displayed

below each orbital. The color bars represent the primary contributing orbital transitions. The

isosurface value is ±0.05 au.
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Fig. S4: The MLCT transitions of RuP2 (left). The spin-pure excitation energies (y-axis) and the

spin-orbit coupled excitation energies (x-axis) for the lowest nine singlet (blue circles) and 27 triplet

states (red squares) evaluated at the minimum energy geometries. The impulse plots correspond to

the spin-orbit coupled oscillator strengths which are shown on the y2-axis. All excitation energies

are in eV. The frontier molecular orbitals of RuP2 (right). Orbital energies (in au) are displayed

below each orbital. The color bars represent the primary contributing orbital transitions. The

isosurface value is ±0.05 au.
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Fig. S5: The MLCT transitions of RuP3 (left). The spin-pure excitation energies (y-axis) and the

spin-orbit coupled excitation energies (x-axis) for the lowest nine singlet (blue circles) and 27 triplet

states (red squares) evaluated at the minimum energy geometries. The impulse plots correspond to

the spin-orbit coupled oscillator strengths which are shown on the y2-axis. All excitation energies

are in eV. The frontier molecular orbitals of RuP3 (right). Orbital energies (in au) are displayed

below each orbital. The color bars represent the primary contributing orbital transitions. The

isosurface value is ±0.05 au.

Table S3: The weighted intersystem crossing rate coe�cients in s�1
for RuBPY, RuP,

RuP2, and RuP3. The oscillator strengths have been normalized such that the sum is

unity. The rate coe�cients are color coded according to the fastest (red) and slowest

(green). The total rate is the sum of the weighted columns. For the S8 column of

RuBPY, one imaginary frequency and mode was removed from the calculations (see

below).

2.25E+12 2.20E+12 1.91E+12 4.50E+10 1.67E+12 3.62E+12 4.39E+12 2.29E+10 9.46E+11 4.49E+12 1.14E+13 8.65E+12 1.75E+12 3.04E+12 1.43E+12 1.34E+12

7.81E+11 6.10E+11 1.22E+05 1.62E+10 8.05E+11 9.03E+11 9.66E+08 3.51E+01 2.41E+11 1.50E+12 6.94E+06 1.42E+01 6.82E+11 5.29E+11 7.97E+03 9.71E+03

1.77E+10 5.64E+06 6.04E+12 6.96E+00 2.54E+07 1.66E+08 1.18E+13 7.65E+11 8.28E+06 3.74E+09 6.87E+07 7.03E+09 1.59E+08 3.78E+07 3.56E+12 2.96E+12
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6.85E+09 5.58E+09 4.41E+08 1.20E-02 8.02E+09 2.58E+10 8.80E+11 5.57E+05 3.25E+09 3.52E+10 1.80E+09 6.67E+10 6.55E+09 1.95E+10 1.18E+08 7.70E+07
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Fig. S6: The definition of the driving force �G0 and the reorganization energy � for intersystem

crossing between an initial singlet state SI and a final triplet state TJ . ↵ denotes the excitation

(or de-excitation) energy. (a) The case when ↵ is positive. (b) The case when ↵ is negative.

surface along this mode is symmetric around the saddle point and the energy increases for

displacements greater than Q = ±0.02Å. The energy di↵erence is �E = E(Q = ±0.02) -

E(Q = 0.0) = 0.002 kcal/mol which suggests that this mode may result as a numerical artifact

of the electronic structure calculations (i.e., the mode possibly arises from a grid/threshold

error).

Linear Absorption Cross Section Analysis

The cross sections reported in main text have not been shifted and the harmonic oscillator

Wigner parameters (i.e., the harmonic frequencies and reduced masses) were calculated using

B3LYP (without scaling factors) from the optimized ground-electronic state geometries. The

width of the cross sections are controllable with the parameter � from Eq. 15 of the main

text. This was set to � = 0.1 eV following Ref. 6, however this is a conservative estimate of

the FWHM of the underlying Gaussian transitions. In our previous work on the kinetics of

these dyes (from the analysis in Ref. 7), we estimated that the FWHM was ⇡ 0.2 eV. For

comparison, plots of the cross sections with � = 0.2 eV are shown in Fig. S8.
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Fig. S7: (a) The potential energy surface along the imaginary mode (! = 185i cm
�1

) on the

S8 electronic state of RuBPY. A depiction of the mode is shown in the inset. The mode can be

described as a an out-of-plane (OOP) wagging motion the first bipyridine ligand (labeled BP-1 (b))

and a symmetric stretching of two pyridine ligands (labeled BPY-2 (c) and BPY-3 (d)).
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Fig. S8: A comparison between the experimental and simulated linear absorption cross sections

(Å
2
) with � = 0.2 eV for RuBPY (top left), RuP (top right), RuP2 (bottom left) and RuP3 (bottom

right). All energies are in (eV). The experimental linear absorption cross sections are shown with

open circles.
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