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A B S T R A C T

Background: Prenatal fish intake is a key source of omega-3 (ω-3) polyunsaturated fatty acids needed for brain development, yet intake is generally low,
and studies addressing associations with autism spectrum disorder (ASD) and related traits are lacking.
Objective: This study aimed to examine associations of prenatal fish intake and ω-3 supplement use with both autism diagnosis and broader autism-
related traits.
Methods: Participants were drawn from 32 cohorts in the Environmental influences on Child Health Outcomes Cohort Consortium. Children were born
between 1999 and 2019 and part of ongoing follow-up with data available for analysis by August 2022. Exposures included self-reported maternal fish
intake and ω-3/fish oil supplement use during pregnancy. Outcome measures included parent report of clinician-diagnosed ASD and parent-reported
autism-related traits measured by the Social Responsiveness Scale (SRS)-second edition (n ¼ 3939 and v3609 for fish intake analyses, respectively;
n ¼ 4537 and n ¼ 3925 for supplement intake analyses, respectively).
Results: In adjusted regression models, relative to no fish intake, fish intake during pregnancy was associated with reduced odds of autism diagnosis
(odds ratio: 0.84; 95% confidence interval [CI]: 0.77, 0.92), and a modest reduction in raw total SRS scores (β: �1.69; 95% CI: �3.3, �0.08). Estimates
were similar across categories of fish consumption from “any” or “less than once per week” to “more than twice per week.” For ω-3 supplement use,
relative to no use, no significant associations with autism diagnosis were identified, whereas a modest relation with SRS score was suggested (β: 1.98;
95% CI: 0.33, 3.64).
Conclusions: These results extend previous work by suggesting that prenatal fish intake, but not ω-3 supplement use, may be associated with lower
likelihood of both autism diagnosis and related traits. Given the low-fish intake in the United States general population and the rising autism prevalence,
these findings suggest the need for better public health messaging regarding guidelines on fish intake for pregnant individuals.

Keywords: fish, ω-3 supplement, pregnancy, autism, quantitative traits
Introduction

Autism spectrum disorder (ASD or, hereafter, autism) is a
neurodevelopmental condition with an etiology that is complex and not
well-understood. Evidence supports both genetic and environmental
contributions to autism, including prenatal nutrition [1]. Maternal fish
intake during pregnancy is a key source of essential nutrients, such as
omega (ω)-3 (n–3) PUFAs, critical for fetal brain development [2]. In
particular, fish is the primary source of the ω-3 PUFA DHA [3], the
most abundant fatty acid in the brain, and may represent a modifiable
factor in the risk for adverse neurodevelopmental outcomes. However,
evidence suggests that the fish and ω-3 PUFA intake in the United
States is low [4,5]. In results from nationally representative data [6],
95%–100% of pregnant and childbearing-age females consumed less
than the recommended amounts of fish and DHA. However, in addition
to neurodevelopmentally beneficial ω-3 PUFAs, certain contaminants,
including the known neurotoxicant methylmercury, are also present in
some fish species, suggesting potential risks as well. Although studies
have supported the benefits of fish intake even after accounting for
methylmercury exposure [7–12] and have not found associations be-
tween methylmercury and autism [13,14], concerns regarding coex-
posures may contribute to low intake [15] and reiterate the need for
clarity in associations.

A large number of studies have examined associations between
maternal prenatal fish intake and child neurodevelopmental outcomes
[10,16–19], with many suggesting that prenatal fish intake is generally
associated with higher developmental and cognitive scores among
offspring [12]. However, not all studies have shown benefits, and few
have addressed associations with autism. Despite some supportive
findings based on small samples and differing outcome assessments, a
systematic review performed in support of the 2020–2025 Dietary
Guidelines for Americans concluded that there is insufficient evidence
to determine whether seafood consumption during pregnancy is asso-
ciated with risk of autism-like traits, behaviors, or diagnosis in children
[12]. In addition, even fewer studies have shown associations of DHA
or ω-3 supplements with autism outcomes [12,20].

Given the gaps in our understanding of the relationships between
key sources of PUFAs with autism and autism-related traits and the
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need to identify modifiable factors to reduce associated challenges in
autism, we sought to examine these associations in a large United
States sample. Based on the biological importance of PUFAs in brain
development [2], and associations with broader neurodevelopment, we
hypothesized that both prenatal fish intake and ω-3 supplement use
would be inversely associated with autism and related traits.

Methods

Study population
The Environmental influences on Child Health Outcomes (ECHO)

Program is a large collaborative United States consortium focused on
early life environmental factors that impact child health [21,22].
Briefly, ECHO comprises 69 individual cohorts across the United
States, whose participants follow a common protocol to assess the
effects of exposures on child-focused outcomes, including neuro-
development. In this study, we analyzed data available from �32 co-
horts that enrolled children born before 2019, to allow time for
symptom development and reporting of diagnosis, which typically
occurs after age 3 [23]. We included singleton births and excluded
participants who were missing exposure or outcome information
(Supplemental Figure 1). We allowed the sample size to vary across
exposure-outcome analyses to maximize the sample size for each
analysis. Following exclusions, analyses of associations with autism
diagnosis included 3939 individuals for fish intake and 4537 in-
dividuals for ω-3 supplement use. Analyses of autism traits included
3609 individuals for fish intake and 3925 individuals for ω-3 supple-
ment use. A list of cohorts contributing to these analyses is provided in
Supplemental Table 1; 3 cohorts were drawn from samples that are
considered at higher risk of autism owing to family history [24] (co-
horts following younger siblings of a child with autism) or preterm
birth (which also increases the likelihood of autism) [25].

The study protocol was approved by each cohort’s local or the
single ECHO institutional review board. Written informed consent or
parent/guardian permission was obtained along with child assent as
appropriate, for ECHO-wide Cohort Data Collection Protocol partici-
pation and for participation in specific cohorts. This study followed the
STROBE reporting guideline for cohort studies.
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Exposure information
Information on maternal fish and seafood intake was collected

across cohorts through validated semiquantitative or quantitative food
frequency questionnaires (FFQs), including the Block FFQ (n ¼ 6
cohorts) [26], the Harvard/Willett FFQ (n¼ 2 cohorts) [27], the Dietary
History Questionnaire (n ¼ 1 cohort) [28], and dietary screeners
(remaining cohorts) (see the Supplemental Data for a list of fish and
seafood items and assessment methods by cohort), with most cohorts
collecting this information midpregnancy. Fish and seafood intake was
determined according to responses on these questionnaires and
harmonized by summing an individual’s overall intake of servings
across these questions and then categorizing servings as follows: none
or <once a month; >once per month but <weekly; weekly; and 2 or
more servings per week. Information on ω-3 supplements was collected
from maternal report on questionnaires, with most cohorts asking if
DHA or fish oil supplements were used during pregnancy (yes/no) and
a subset (n ¼ 20 cohorts, 42% of the participants) further querying
frequency of use. The majority of cohorts collected information pro-
spectively. Only 1 autism case–control study, ReCHARGE [29], was
included (Supplemental Table 1).

Covariate information
All information on covariates was collected via self-report ques-

tionnaires. All covariates included in the current analyses were
harmonized in common categories by the ECHO Data Analysis Center.

Outcome information

Autism diagnosis
We defined autism diagnosis based on parent/caregiver report of

physician-diagnosed ASD. In addition, several cohorts (including an
autism case–control study and familial autism cohorts) (Supplemental
Table 1) used clinical assessments and gold-standard measures to
confirm an autism diagnosis. We excluded individuals missing infor-
mation on autism diagnosis from the analyses of this outcome.

Social Responsiveness Scale
Autism-related traits were assessed using the Social Responsiveness

Scale (SRS)-second edition, one of the most widely used quantitative
measures of the autism-related phenotype [30,31]. The SRS is a 65-item
informant-report tool yielding a continuous total score ranging from 0 to
195, with higher scores indicating greater expression of the autism
phenotype and greater social-communication deficits. Scores can also be
converted into normed T-scores (with a mean of 50 and SD 10) to
facilitate clinical interpretation; scores >65 tend to be consistent with
moderate ASD-related traits and those >75 with clinically impairing
traits. The SRS has well-established psychometric properties, capturing
traits in both the general population and clinical settings [32,33], with
high-internal validity, reliability, and reproducibility [31,34,35], and
strong agreement with gold-standard diagnostic measures of autism [34,
35]. Age-appropriate forms (preschool, school age, and adult) allow for
trait measurement across a wide age range. A short form, including 16 of
the 65 items, has also been developed using item response theory and
validated in several samples [36,37]. For this analysis, SRS forms were
collected at ages 2.5–18 y via parent/caregiver reports, and total raw
scores were used as suggested by the publisher for population-level
analyses. Approximately 20% of the analytic sample used preschool
forms; 80% used school age forms; and 8% used 16-item SRS forms,
with scores equated to full 65-item scores using equipercentile equating.
Previous work supports strong agreement between short and full 65-item
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scores [36,37] and the stability of SRS scores over these ages, particu-
larly for the school-aged form [33,38].

Statistical analyses
We first examined prenatal fish intake and ω-3 supplement use by

demographic characteristics of study participants. Next, we used lo-
gistic regression to estimate crude and adjusted odds ratios (ORs) for
autism associated with categories of fish intake and ω-3 supplement use
(yes/no), separately. We parameterized fish intake as binary (any/none)
and in the above-described 4 categories. We also examined supplement
use as a binary variable, following the same modeling strategy used for
fish intake. Adjusted analyses included maternal age, prepregnancy
BMI, race and ethnicity, education, smoking status, and child’s sex
assigned at birth, and year of birth as covariates. Adjustment for cohort
was included as a random effect. Adjustment for additional covariates
was tested in sensitivity analyses as described further. We imputed data
on missing covariates using multiple imputation with chained
equations.

Analyses of SRS scores followed the exposure parameterization
and covariate adjustment strategy outlined for autism diagnosis but
used linear regression for our primary analyses. As a secondary
approach, we used quantile regression to examine effect sizes across
quantiles of SRS. Quantile regression is a flexible modeling approach
that handles nonnormally distributed outcomes while allowing for
examination of effects across different quantiles of the outcome mea-
sure [39,40]. In addition, we ran secondary models using SRS T-scores
(rather than raw scores used in primary models) to facilitate clinically
relevant interpretations.

We also fitted a series of secondary models and conducted sensi-
tivity analyses to test the robustness of our results. First, in models
addressing associations with autism, we tested differences by cohorts
with differing baseline level risk of autism (preterm birth and family-
based cohorts) and examined potential differences in associations by
child’s sex (given the much higher prevalence of autism in males), in
stratified models. Next, for supplement use, we examined potential
differences by frequency of supplement use (none, 1–3 times/wk, 4–6
times/wk, or daily or more) in the subset of participants with this in-
formation (n ¼ 1884). To test the robustness of our primary findings,
we adjusted primary models for additional covariates by individually
adding household income to the primary adjusted model, which may
relate to both fish and supplement intake and access to autism diag-
nostic resources, with coadjustment for the other exposure (e.g., fish for
supplement use and vice versa). We also tested adjustment for prenatal
vitamin use, which has been linked to autism in a previous work.
Adjustment for preterm birth, which could lie on the pathway between
these exposures and outcomes, was also explored as a simple test of
potential mediation. Finally, we conducted analyses leaving out indi-
vidual cohorts one at a time for associations with our primary outcome,
autism diagnosis, to confirm if any 1 cohort (or specific assessment
methods or sample characteristics) was driving the results. All statis-
tical analyses were conducted in SAS, version 9.4.

Results

The basic characteristics of our study population are summarized in
Table 1. Approximately 20% of all participants reported no fish intake,
and most (65%–85% depending on the analytic sample) reported no
ω-3 supplement use. Child participants were born between 1999 and
2019. Owing to the inclusion of several cohorts following younger
siblings of a child with autism and a case–control study, the autism



TABLE 1
Basic characteristics of the study population.

Variable, n (%) Fish consumption Supplement use

Autism sample (n ¼ 3939) SRS sample (n ¼ 3609) Autism sample (n ¼ 4537) SRS sample (n¼3925)

Cohort type
ASD familial study 123 (3.1) 190 (5.3) 35 (0.8) 113 (2.9)
Preterm birth study NA NA 258 (5.7) 240 (6.11)
Other/general population study 3816 (96.9) 3419 (94.7) 4244 (93.5) 3572 (91.0)

Maternal age at child’s birth (y)
<18–28 1506 (38.2) 1111 (30.8) 1805 (39.8) 1302 (33.2)
29–34 1529 (38.8) 1515 (42.0) 1733 (38.2) 1599 (40.7)
35–40 817 (20.7) 871 (24.1) 894 (19.7) 894 (22.8)
41þ 87 (2.2) 112 (3.1) 99 (2.2) 120 (3.1)
Missing 0 (0) 0 (0) 6 (0.1) 10 (0.3)

Maternal race and ethnicity
Non-Hispanic White 1528 (38.8) 1980 (54.9) 2083 (45.9) 2380 (60.6)
Non-Hispanic Black 1125 (28.6) 625 (17.3) 1242 (27.4) 694 (17.7)
Non-Hispanic Asian 311 (7.9) 260 (7.2) 175 (3.9) 141 (3.6)
Hispanic 793 (20.1) 600 (16.6) 825 (18.2) 532 (13.6)
Non-Hispanic other race 176 (4.5) 135 (3.7) 205 (4.5) 165 (4.2)
Missing <10 (<0.2) <10 (<0.3) 7 (0.2) 13 (0.3)

Annual household income ($)
<30,000 835 (21.2) 478 (13.2) 989 (21.8) 539 (13.7)
30,000–49,999 288 (7.3) 198 (5.5) 332 (7.3) 190 (4.8)
50,000–74,999 348 (8.8) 243 (6.7) 307 (6.8) 191 (4.9)
75,000–99,999 217 (5.5) 155 (4.3) 121 (2.7) 63 (1.6)
�100,000 504 (12.8) 396 (11.0) 242 (5.3) 128 (3.3)
Missing 1747 (44.4) 2139 (59.3) 2546 (56.1) 2814 (71.7)

Maternal education
<High school 277 (7.0) 150 (4.2) 332 (7.3) 202 (5.2)
High school degree or equivalent 828 (21.0) 564 (15.6) 954 (21.0) 626 (16.0)
Some college 896 (22.8) 811 (22.5) 970 (21.4) 825 (21.0)
Bachelor degree 1097 (27.9) 1124 (31.1) 1250 (27.6) 1195 (30.5)
Master, professional, or doctoral degree 822 (20.9) 899 (24.9) 1009 (22.2) 1014 (25.8)
Missing 19 (0.5) 61 (1.7) 22 (0.5) 63 (1.6)

Maternal prepregnancy BMI (kg/m2)
<18.5 113 (2.9) 95 (2.6) 134 (3.0) 101 (2.6)
18.5–24.9 1466 (37.2) 1529 (42.4) 1684 (37.1) 1677 (42.7)
25–29.9 882 (22.4) 841 (23.3) 953 (21.0) 871 (22.2)
30 or more 896 (22.8) 777 (21.5) 975 (21.5) 790 (20.1)
Missing 582 (14.8) 367 (10.2) 791 (17.4) 486 (12.4)

Maternal smoking during pregnancy
Yes 200 (5.1) 164 (4.5) 293 (6.5) 230 (5.9)
No 3612 (91.7) 3237 (89.7) 4174 (92.0) 3618 (92.2)
Missing 127 (3.2) 208 (5.8) 70 (1.5) 77 (2.0)

Child’s sex assigned at birth
Male 2056 (52.2) 1884 (52.2) 2359 (52.0) 2049 (52.2)
Female 1883 (47.8) 1725 (47.8) 2178 (48.0) 1876 (47.8)

Gestational age
<37 wk (preterm) 313 (8.0) 262 (7.3) 639 (14.1) 532 (13.6)
�37 wk (term) 3623 (92.0) 3345 (92.7) 3896 (85.9) 3392 (86.4)
Missing <5 (<0.1) <5 (<0.1) <5 (<0.1) <5 (<0.1)

Child year of birth
1999–2004 636 (16.2) 558 (15.5) 646 (14.2) 563 (14.3)
2005–2009 567 (14.4) 398 (11.0) 564 (12.4) 394 (10.0)
2010–2014 1751 (44.5) 1654 (45.8) 2303 (50.8) 2167 (55.2)
2015þ 985 (25.0) 999 (27.7) 1024 (22.6) 801 (20.4)

Autism diagnosis
Yes 345 (8.8) 166 (4.6) 356 (7.9) 171 (4.36)
No 3594 (91.2) 2318 (64.2) 4181 (92.1) 2612 (66.6)
Missing (not in autism analyses)1 NA 1125 (31.2) NA 1142 (29.1)

SRS score available
Yes 2484 (63.1) 3609 (100.0) 2783 (61.3) 3225 (100.0)
Missing (not in SRS analyses) 1455 (36.9) NA 1754 (38.7) NA

Fish intake during pregnancy
Never 664 (16.9) 713 (19.8) 991 (21.8) 894 (22.8)
<1 a week 1373 (34.9) 1290 (35.7) 1626 (35.8) 1419 (36.2)
�1–2 per week 1167 (29.6) 1054 (29.2) 1078 (23.8) 936 (23.9)
More than 2 per week 735 (18.7) 552 (15.3) 624 (13.8) 516 (13.2)

(continued on next page)
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TABLE 1 (continued )

Variable, n (%) Fish consumption Supplement use

Autism sample (n ¼ 3939) SRS sample (n ¼ 3609) Autism sample (n ¼ 4537) SRS sample (n¼3925)

Missing (not in fish intake analyses) NA NA 218 (4.8) 160 (4.1)
Fish oil/ω-3 supplement use during pregnancy
Yes 390 (9.9) 333 (9.2) 643 (14.2) 555 (14.1)
No 2588 (65.7) 2400 (66.5) 3894 (85.8) 3370 (85.9)

Missing (not in supplement use analyses) 961 (24.4) 876 (24.3) NA NA

ASD, autism spectrum disorder; SRS, Social Responsiveness Scale.
1 See also Supplemental Figure 1 for study flow chart and final sample sizes used in each analysis; sample size floats across exposure/outcome analyses owing

to data availability. Multiple imputation was used in analyses of associations between exposures and outcomes.
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prevalence was higher in our analytic samples (4%–9%) than that in the
general population (~1.5%–2%) [41]. The mean SRS raw score was
~33 (SD¼ 22) and mean T-score 50 (SD¼ 9). Participants in our study
population are broadly representative of those included in a recent
summary of fish intake and supplement use in ECHO that did not
exclude participants on the basis of ASD outcome information [42],
although our sample had a somewhat higher proportion of White
participants. Participants included in this study were also broadly
representative of ECHO pregnant participants on education and income
[22], although our study sample had a somewhat lower proportion of
Hispanic participants than ECHO overall, and race varied somewhat
across our analytic samples as presented in Table 1.

We observed an inverse association of fish intake with risk of autism
diagnosis, comparing any fish intake to none. This association was
similar with adjustment for potential confounders (adjusted OR: 0.84;
95% CI: 0.77, 0.92) (Table 2). In analyses of categorical, rather than
binary (any), fish intake, we did not observe stronger associations with
higher amounts of fish intake; instead, all categories of fish intake were
associated with reductions in odds of ~20% compared with no fish
intake (Table 2). The results were similar when stratified by cohort type
(Supplemental Table 2), although point estimates were further below
the null—and with wider CIs—in the cohorts enriched for autism risk.
Results stratified by child sex suggested somewhat stronger (more in-
verse) associations in females and more attenuated associations in
males (adjusted OR for any fish intake: 0.67; 95% CI: 0.52, 0.86 for
females, and adjusted OR: 0.90; 95% CI: 0.73, 1.12 for males); how-
ever, CIs across strata overlapped and overall patterns were consistent
with primary analyses.

We did not observe an association between ω-3 supplement use and
autism diagnosis (adjusted OR: 1.14; 95% CI: 0.83, 1.57) (Table 2). No
TABLE 2
Association of maternal fish intake and ω-3 supplement use during pregnancy wit

n1

Fish intake
No 664
Yes 3275

Fish intake categories
Never 664
<1�/wk 1373
1–2�/wk 1167
>2�/wk 735

ω-3/Fish oil supplement use
No 3894
Yes 643

Crude and adjusted odds ratios (ORs) and 95% CIs from logistic regression mode
1 Sample sizes for fish and supplement use analyses differed, owing to differen
2 Adjusted for maternal race and ethnicity, maternal age, maternal education, prep

random effect.
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evidence was found for modification by cohort type, and although the
results stratified by child sex suggested increased odds of autism in
girls, but not in boys, with supplement use, estimates were not statis-
tically significant and CIs overlapped across these strata (Supplemental
Tables 2 and 3). In secondary analyses that examined the frequency of
ω-3 supplement use (Supplemental Table 4), the estimate for daily
supplement use was similar to the primary analysis relying on any use.
Of note, most participants reporting any supplement use were regular
users (nearly 90% reported 4 times/wk or more).

In analyses with our quantitative trait measure of autism-related
phenotype, we observed modest reductions of ~2 points in raw SRS
scores with any fish intake (β for any fish intake: �1.69; 95% CI: �3.3,
�0.08) (Table 3). Higher fish intake was not associated with reductions
in SRS scores. Moreover, ω-3 supplement use was associated with a
modest increase in SRS scores (β: 1.98; 95% CI: 0.33, 3.64) (Table 3),
counter to our hypothesis. Overall, no strong differences were detected in
these results across quantiles of the SRS (Supplemental Figure 2) in the
quantile regression analyses. Results using SRS T-scores were similar to
primary analyses of raw scores, albeit of smaller magnitude given the
constrained distribution of the T score (Supplemental Table 5).
Furthermore, in post hoc analyses testing SRS results stratified by sex
and cohort type (parallel to those run for autism diagnosis), we did not
see evidence of differences in associations across these strata.

In the sensitivity analyses, adjustment for other factors, including
income, exposure coadjustment, prenatal vitamin use, or preterm birth,
did not materially alter the findings (Supplemental Table 6). In the
analyses that left out individual cohorts, we did not observe evidence
that any 1 cohort drove the results of the autism diagnosis analyses
(Supplemental Figures 3 and 4). Thus, the general pattern of results
across cohorts remained consistent with the primary analyses.
h child autism diagnosis.

Crude OR (95% CI) Adjusted OR (95% CI)2

1.0 (referent) 1.0 (referent)
0.83 (0.77, 0.90) 0.84 (0.77, 0.92)

1.0 (referent) 1.0 (referent)
0.82 (0.73, 0.91) 0.81 (0.71, 0.92)
0.86 (0.73, 1.02) 0.89 (0.75, 1.06)
0.82 (0.72, 0.92) 0.84 (0.73, 0.97)

1.0 (referent) 1.0 (referent)
1.09 (0.81, 1.48) 1.14 (0.83, 1.57)

ls.
t numbers of participants with data available on these exposures.
regnancy BMI, smoking status, child’s sex, child year of birth, and cohort as a



TABLE 3
Associations of maternal fish intake and ω-3 supplement use during pregnancy with child Social Responsiveness Scale scores (raw score).

n Crude β coefficient (95% CI) Adjusted β coefficient (95% CI)1

Fish intake
No 713 (Referent) (Referent)
Yes 2896 �2.01 (�3.86, �0.17) �1.69 (�3.3, �0.08)

Fish intake categories
Never 713 (Referent) (Referent)
<1�/wk 1295 �2.07 (�3.58, �0.55) �1.95 (�3.47, �0.44)
1–2�/wk 1051 �2.34 (�4.77, 0.10) �1.67 (�3.72, 0.39)
>2�/wk 550 �1.26 (�3.52, 1.00) �1.06 (�3.05, 0.93)

ω-3/Fish oil supplement use
No 3370 (Referent) (Referent)
Yes 555 �0.45 (�2.4, 1.5) 1.98 (0.33, 3.64)

Results from linear regression; comparison results using quantile regression are shown in Supplemental Figure 2.
1 Adjusted for maternal race and ethnicity, maternal age, maternal education, prepregnancy BMI, smoking status, child’s sex, child year of birth and cohort as a

random effect.
CI, confidence interval.
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Discussion

In this large study of the association between autism-related out-
comes and prenatal fish intake and ω-3 supplement use in the United
States ECHO program, we observed a reduction in the likelihood of an
autism diagnosis and autism-related traits associated with maternal fish
intake during pregnancy. In contrast, supplement use was not associ-
ated with an autism diagnosis and was associated with a modest in-
crease in autism-related traits. Given that fish intake serves as a key
source of nutrients critical for fetal neurodevelopment and maternal
health and is consumed at lower than recommended levels in the United
States population [12,23,42], these findings suggest the need for
improved supports in translating guidelines for pregnant people in the
United States into practice.

Few studies have examined prenatal fish intake in association
with an autism diagnosis. The Nurses’ Health Study II (317 ASD
cases of >17,000 participants) did not find an association with re-
ported autism and fish intake before and during pregnancy, although
an inverse association with total dietary maternal polyunsaturated fat
intake was observed [43]. Similarly, results from the United States
Markers of Autism Risk in Babies-Learning Early Signs study re-
ported an inverse association with ω-3 fatty acid concentrations
based on reported dietary intake but did not examine fish intake
specifically [44]. In a small case–control study (108 cases) conducted
in China, an inverse association of maternal carp intake with autism
was reported, but intake focused on the periconceptional period [45].
In the United Kingdom-based Avon Longitudinal Study of Parents
and Children cohort, no association between white fish, oily fish, or
shellfish and autism was found, although the sample included about
half the number of cases as in our analysis, and some suggestive
findings for autism-related traits were reported [46]. Our results
extend these previous findings in a larger sample (including ~350
children with an autism diagnosis) and by assessing total fish intake
during pregnancy. Previous work has not examined potential dif-
ferences in these associations by sex. Our results of secondary ana-
lyses stratified by sex suggesting somewhat stronger associations
with ASD in females may align with some evidence for stronger links
between prenatal PUFA intake and ASD with co-occurring intel-
lectual disability [47], and documentation of higher diagnosis of
ASD with co-occurring intellectual disability in females [48] as well;
however, these differences by sex and co-occurring diagnoses require
further study.
588
Compared with studies that have assessed autism diagnosis, a larger
number of studies have examined associations between prenatal fish
intake and broader traits related to autism. No association between
maternal fish intake and SRS scores (according to a subset of 18 items)
was found in the Generation R cohort [49]. In a previous work that
included 426 children drawn from 2 United States prospective preg-
nancy cohorts (one of which also participates in ECHO), no significant
associations were found between overall fish intake during pregnancy
and child SRS scores [50]. However, a greater intake of shellfish and
large fish was associated with higher SRS scores, whereas a greater
intake of salmon was associated with lower autism-related traits. In
addition, stronger associations were observed for fish intake in the
second half of pregnancy (a period that represents a high uptake of
PUFAs in the developing brain). Additionally, a study within the
Spanish Childhood and Environment Project (Infancia y Medio
Ambiente) [51], including ~2000 mother–child pairs, also reported
modest reductions in autism-related traits, as measured by the Child-
hood Asperger Syndrome Test, with prenatal fish intake. The results
accounted for child seafood intake, or methylmercury concentrations,
and were attenuated but persisted. Our analyses of SRS scores are
consistent with these previous studies, suggesting modest inverse as-
sociations between fish intake and autism-related traits. Our study also
suggests that these associations are consistent with the direction of
association with an autism diagnosis and thus contributes important
findings on United States fish intake to the existing literature.

Few studies have addressed prenatal ω-3 supplement use and
autism-related outcomes. In both the United States–based Nurses’
Health Study II and a study in Norway, no associations were reported
between prenatal ω-3 fish oil supplement use and offspring autism,
although use was very low in the former study population [43,52]. A
recent meta-analysis of observational studies of neurocognitive
developmental outcomes suggested no benefit of prenatal DHA sup-
plement use on these outcomes overall and insufficient evidence for
autism [12]. These previous results, along with our main null findings
for supplement use, are also consistent with a majority of randomized
trials that examined associations of prenatal maternal supplementation
with offspring cognitive outcomes [53–55]. However, we also
observed a minor increase in SRS scores with supplement use. Po-
tential explanations for discrepancies across the results for fish intake
and supplement use could relate to the bioavailability of fatty acids,
differences in mitigating effects of coexposures that may increase risks
such as additives or contaminants in supplements compared with those
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in fish, unmeasured confounding, or, perhaps, the role of other bene-
ficial nutrients in fish, such as selenium, iodine, iron, or vitamin D,
acting alone or in combination with PUFAs.

In our analyses, we did not observe evidence of a trend or stronger
inverse associations with greater fish intake across our analysis. This
finding of an overall benefit with any intake could be due to the rela-
tively low overall fish intake in our study population relative to United
States dietary guidelines for pregnancy [56,57], with reduced power in
higher intake categories, as trends have been noted in other studies of
autism-related and cognitive outcomes in populations with higher fish
intake [51,58]. Alternatively, it is also possible that a “threshold” effect
may exist, whereby minimum concentrations of PUFAs are needed
during development. Only 4 studies to date have examined associations
between autism and prenatal or neonatal concentrations of PUFAs, with
inconsistent findings [45,47,49,59]. The mixed evidence with
measured PUFA concentrations could relate to differences in study
populations across United States and European studies or differences in
the timing of PUFA measurements. Fish intake, and in particular
PUFAs, may impact neurodevelopmental outcomes through multiple
mechanisms, including direct effects on neurogenesis and differentia-
tion [60] and influences on inflammatory processes. Future work
should seek to further resolve biomarker associations and mechanistic
pathways.

Our study has many strengths, including its large sample size, the
assessment of both autism diagnosis and an autism-related quantitative
trait measure, and the ability to adjust for key confounders and to
explore potential differences across differing cohort types. However,
several limitations should be noted. First, we were not able to examine
associations by type of fish or to assess the role of potential co-
occurring pollutants or toxicants in fish. Different fish not only
contain differing concentrations of beneficial PUFAs but also carry
differing levels of contamination [61,62]. Although existing evidence
does not support independent associations of methylmercury with
autism [13,51,58] and support for other chemical exposures, such as
perfluoroalkyl substances and polychlorinated biphenyls, is inconsis-
tent for associations with autism [63–66], future work should further
assess adjustment for cocontaminants to better understand overall
benefits of fish [67]. Second, owing to limited data on timing across all
cohorts, we did not conduct analyses by trimester of pregnancy or
intake during lactation/early postnatal life. Third, our analyses of
supplement use did not address dose, which should be explored in
future work. Fourth, we relied on self-reported data, and we cannot rule
out the potential for measurement error in exposure data. Although
existing biomarker-based studies of PUFAs have some commonalities
in findings with studies based on fish intake, the ideal future study
design would be to incorporate both. Fifth, although we adjusted for a
range of covariates, we cannot rule out potential residual confounding,
such as by other health-related behaviors such as physical activity or
avoidance of other chemical/toxicant exposures that could be associ-
ated with both diet and neurodevelopment. Sixth, as noted earlier, fish
intake in the United States is lower than that in many other countries,
and our results may not generalize to other countries with differing
intake patterns. We also cannot rule out the potential for selection bias
by factors related to availability of exposure and outcome information
required for inclusion in analyses in this study, although as noted,
participants were broadly representative of ECHO pregnant individuals
and results were fairly robust to sensitivity analyses. Finally, our autism
diagnoses were based on parent report of a clinician diagnosis, rather
than direct assessment in all participants; however, several cohorts did
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conduct gold-standard diagnostic assessments, and the results did not
differ in our leave-1-out analyses that assessed the impact of individual
cohorts on findings. Despite these limitations, our findings were robust
to several sensitivity analyses and broadly consistent across outcome
measures.

In summary, our study contributes to a growing body of evidence
supporting a role of prenatal diet in offspring autism-related outcomes.
In particular, the results from this national study suggest that maternal
fish intake, but not ω-3 supplement use, during pregnancy is associated
with reductions in the likelihood of autism and autism-related traits.
Our findings are consistent with current dietary guidelines that support
fish intake during pregnancy and support continued public health ef-
forts to encourage fish intake, accounting for types of fish with the
lowest risk of toxicants.
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