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Real-Time Tuning of MEMS Gyro Dynamics

D. J. Kim and R. T. M’Closkey,Member, IEEE

Abstract— This paper reports real-time tuning of the JPL-
Boeing micromachined vibratory rate sensor. The ideal sensor
is designed to operate in a degenerate condition in which two
modes of vibration have equal resonant frequencies. This con-
dition achieves the best possible signal-to-noise ratio thereby
maximizing sensor performance. A frequency split between
the two modes, however, is inevitable in actual devices and
leads to degraded performance. To modify the sensor dynamics
to a desired condition, we have studied the bias potential
effect on the sensor dynamics and successfully implemented a
real-time tuning process via electrostatic forces to reduce the
frequency split to less than 0.1 Hz when the nominal modal
frequencies are near 4.4 kHz. A closed-loop identification
method is employed for rapid and precise empirical frequency
response estimates of the sensor dynamics. An LMI-based
parameter estimation scheme produces an excellent fit of the
model to the frequency response data and this enables the
successful implementation of a steepest descent algorithm.
Transformations for decoupling the MIMO sensor dynamics
are also motivated and demonstrated.

I. INTRODUCTION

The JPL-Boeing MEMS gyroscope, often referred to as
the JPL microgyro, is a vibratory rate sensor. The sensor
consists of a silicon micromachined plate suspended above
a set of electrodes - two electrodes are used for sensing, two
electrodes are used to apply electrostatic forces for actuation
or ”driving,” and another two electrodes are used to apply
bias potentials to the vibrating structure. A rigidly attached
central post forms a ”cloverleaf” assembly with the sensing
and driving electrodes. The post strongly couples two lightly
damped modes corresponding to rocking or tilting motion
of the plate, referred to as the rocking modes, via a Coriolis
term to render the device sensitive to rotational motion.
The excitations of the sensor’s lightly damped modes can
be accomplished by applying a potential to the driving
electrodes directly from a function generator or digital-
to-analog converter (DAC). The sensing electrodes use a
trans-impedance op-amp configuration to provide a buffered
output voltage that is proportional to the rate of change of
the gap between the electrodes and vibrating plate. More
detailed information on the design and fabrication of the
sensor may be found in [8].

This paper focuses on developing a real-time tuning
process for the microgyro. Ideally, the sensor achieves the
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Coriolis coupling between two rocking modes of equal nat-
ural frequency. Manufacturing imperfections and package-
induced stresses, however, are among various factors that
make actual devices deviate from the ideal sensor dynamics
and display an undesirable frequency split between the
rocking modes. The tested device shows a frequency split
of 5 Hz in the absence of bias potentials. This frequency
split leads to degraded overall sensor performance since the
degenerate modes are necessary for the sensor to achieve
the largest signal-to-noise ratio (SNR). For example, as
little as a 0.5 Hz difference in frequencies for these sensors
produces a 20 dB degradation in SNR. If the split can be
reduced below 0.1 Hz, the reduction in SNR is at most 5
dB - a tolerable figure. Therefore, post-fabrication tuning,
preceded by an accurate estimate of the sensor dynamics,
is an essential part of optimizing sensor performance.

This paper is organized as follows. Section II presents the
analytical model for the sensor’s rocking modes, generation
of frequency response data, and formulation of parameter
estimation problem using linear matrix inequalities (LMIs).
Section III discusses the bias potential effect on the sensor
dynamics, frequency split as a function of bias potentials,
and real-time tuning results. Section IV concludes the paper.

II. GYRO MODEL AND PARAMETER
ESTIMATION

A. Equation of Motion

The sensing electrodes of the JPL microgyro are not
collocated with the driving electrodes. In the generalized
sensor-fixed coordinates established by the sensing pick-
offs denotedx = [x1,x2]

T , a linearized equation of motion
describing the two lightly damped rocking modes can be
written as

Mẍ+Cẋ+ΩSẋ+Kx = Bu (1)

In this model,M, C, and K are real, positive definite 2 x
2 mass, damping, and stiffness matrices, respectively,S is
a skew-symmetric matrix modulated by the sensor angular
rate of rotationΩ, B is a real, non-singular 2x2 matrix that
specifies how forces applied by each drive electrode couple
into the sensor-fixed coordinate frame, andu = [u1,u2]

T is
the electrostatic forces created by the potentials appliedto
the pair of drive electrodes. The frequency split between
the rocking modes can be obtained from analyzing the
generalized eigenvalues ofM andK.

A dual version of (1) may be written in which the co-
ordinates are established by the actuators (drive electrodes)
as shown below

M̃z̈+C̃ż+ K̃z = u
x = Rz

(2)
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Fig. 1. Wideband frequency response of the sensor dynamics from a pair
of driving electrodes (denotedD1 andD2) to a pair of sensing electrodes
(denotedS1 and S1). The first lightly damped mode near 2.7 kHz is the
linear translation mode. The next lightly damped mode is actually two
rocking modes near 4.4 kHz that cannot be individually resolved in this
scale. The remaining lightly damped modes above 5 kHz are other flexural
modes of the sensor’s elastic structure. The positive slope of the frequency
response magnitude is caused by capacitive coupling betweenthe drive
and the sense electrodes. The attenuation above 35 kHz is attributed to the
bandwidth of the signal conditioning amplifier.

where R represents the transformation relating the drive
electrode frame to the sense pick-off frame. The Coriolis
term has been omitted from (2). Converting from one
description to the other is a simple matter and which
description is selected for modeling purposes depends upon
the location of additional dynamics (at the sensor input or
output) introduced by signal conditioning preamps, antialias
filters, etc. It is obvious that (1) or (2) cannot fully explain
the wide-band dynamics of the sensor shown in Fig. 1. In
addition to the rocking modes near 4420 Hz, the sensor’s
elastic structure exhibits a linear translation mode near 2700
Hz and other flexural modes above 5000 Hz. Nevertheless,
it is quite adequate to describe the sensor dynamics by (1)
or (2) in a very narrow frequency band around the closely
spaced rocking modes. Further information on the wide-
band sensor dynamics may be found in [3].

B. Generation of Frequency Response Data

Our primary objective is to reduce the frequency split,
denoted∆ω, between the two modes of interest so an
estimate of∆ω must be produced. We have employed an
ARX modeling scheme [6] in the past to estimate various
sensor parameters, however, we have observed that the
standard deviation of∆ω is approximately 0.1 Hz as shown
in Fig. 2, which is on the order of the resolution we require
to obtain the full benefits of tuning (in order to make a fair
comparison, both the ARX models and frequency domain
models discussed in the sequel use approximately the same
amount of data with the input power concentrated in a
narrow band about the modes of interest). Furthermore,
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Fig. 2. Frequency split of identified ARX model (circle-dashed) vs.
parametric model (square-solid). For 20 data sets acquired approximately
1 minute apart under the same condition, the ARX modeling scheme
yields the standard deviation of∆ω over 0.1 Hz whereas the LMI-based
parameter estimation scheme (described in Section II-C) produces the
standard deviation of∆ω less than 0.01 Hz.

knowledge of the mass, stiffness, and damping matrices
are valuable to the sensor designer and so it is useful to
start with (1) as the basis for modeling instead of a more
general difference equation employed in the ARX approach.
In [3] we have developed a method for obtaining high
quality frequency response data from these sensors. In brief,
a closed-loop identification scheme is employed to reduce
the sensor’s inherent long settling time and the open-loop
frequency response is recovered from the closed-loop data.
In the following section, we will demonstrate that frequency
response data is in fact ideally suited for identifying models
like (1).

C. Parameter Estimation Problem

One approach for determining the (M, C, K, B) parame-
ters in (1) is to minimize maximum modeling error across
all frequency points represented in the data set,

min
M>0,C>0
K>0,B 6=0

max
k

σ(Z−1(ωk)B−Hk) (3)

whereZ(ωk) = −Mω2
k +K + jωkC, andHk andωk are the

kth frequency response data point and frequency, respec-
tively. This formulation is very much in the sprit of the
classical Sanathanan-Koerner algorithm [7], although the
positive definiteness constraints onM, C, andK complicate
matters. The main objection to this formulation, however, is
the undue emphasis placed on the frequencies and directions
with large magnitude (relative to the other data points).
This emphasis produces a poorer fit of the data at those
frequencies which possess more modest gain. This has
been recognized by other researchers and various ad hoc
weighting schemes have been devised to distribute the error
more fairly across the magnitude [1], [4]. The sensors
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Fig. 3. Sensor’s empirical frequency response (circle) vs. frequency
response of the identified model assuming input perturbations(dashed)
and output perturbations (solid). The sensing signals are passed through an-
tialias filters to ensure that the feedback system is insensitive to the higher
frequency dynamics. The drive signals are also passed through an identical
set of filters to compensate the phase lag introduced by the antialias filters.
While other phase perturbations remain uncertain, the model assuming
output phase perturbations fits the empirical frequency response data very
well whereas the model assuming input phase perturbations yields a very
poor fit.

tested by our group represent an extreme case in which the
frequency response can change by more than three orders
of magnitude within a few Hertz. In this circumstance we
have found that the following objective produces superior
models,

min
M>0,C>0
K>0,B 6=0

max
k

σ(Z(ωk)Hk −B) (4)

This problem has the fortune that the parameters appear
affinely within the maximum singular value. Using the
Schur complement formula, (4) may be rewritten as

min
γ>0,M>0
C>0,K>0

B 6=0

max
k

[
γI (Z(ωk)Hk −B)∗

Z(ωk)Hk −B γI

]

︸ ︷︷ ︸

=:Jk

> 0. (5)
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Fig. 4. Sensor’s empirical frequency response (circle) vs. frequency
response of the identified model assuming input perturbations(dashed)
and output perturbations (solid). In this case, the drive signals are not
re-sampled. Only a single channel from D2 to S2 is shown. The model
assuming output phase perturbations still estimates the empirical frequency
response very well and extra 90 degrees of phase lag are observed when
comparing to Fig. 3

When there areN frequency response data points available,
this optimization can be stated as the standard generalized
eigenvalue problem (GEVP) [2],

minimize: γ
subject to: γ > 0,M > 0,C > 0,K > 0

Jk > 0 for k = 1. . .N
(6)

that can be solved by several commercially available soft-
ware packages (Matlab’s LMI Control Toolbox is used in
this paper). In our formulation, the (1,1) element of the
mass matrix is normalized to 1 without loss of generality.
At this point there is nothing that recommends either
form of the model. The choice becomes critical, however,
when additional dynamics at the sensor input or output are
included. Let us first consider dynamics at the output of
the sensor, denotedHout , that can be used to capture the
effects of the sensor’s signal conditioning preamplifiers and
antialias filters.

In this case the error to be minimized isσ(HZ̃−HoutR)
where Z̃(ωk) = −M̃ω2

k + K̃ + jωkC̃. The specification of a
general form forHout , however, will render the computation
non-convex. In the present case though we are interested
in a narrow band of frequencies where the modes are
located. It is quite reasonable to assume that any additional
dynamics at the sensor output can be modeled by an FIR
filter. In fact, we often represent these extra dynamics as
constant magnitude and phase perturbations. For example,
our experiments use eight pole butterworth antialias filters
with 20 kHz corner frequencies that experience a 0.2 degree
change in phase and essentially a 0 dB change in magnitude
in a 10 Hz band containing the two modes of interest. In this
case, we can combineHoutR into a single, fixed complex
matrix R̂. This approach is pursued here and leads to the



optimization in (5) where

Jk =

[
γI (HkZ̃(ωk)− R̂)∗

HkZ̃(ωk)− R̂ γI

]

, (7)

and whereM̃ > 0, C̃ > 0, K̃ > 0, andR̂ ∈ C2×2.
An analogous argument can be made for dynamic per-

turbations acting at the sensor input (denotedHin) and in
this case we use (1) as the basis for modeling the sensor
dynamics. The error isσ(ZH −BHin) and if an assumption
can be made concerning the nearly constant magnitude and
phase ofHin in the tested frequency band, thenBHin can
be replaced with a single, fixed complex matrix whose
elements are to be determined in the optimization. In this
case, we replaceJk in (5) with

Jk =

[
γI (Z(ωk)Hk − B̂)∗

Z(ωk)Hk − B̂ γI

]

, (8)

and whereM > 0, C > 0, K > 0, andB̂ ∈ C2×2.
Currently, there is no graceful way to handle simultane-

ous input and output perturbations: if an input perturbation
is present and we use (7) for obtaining the model para-
meters, the perturbation becomes ”buried” in theHkZ̃(ωk)
product and cannot be compensated by the additional
freedom present in̂R. Similarly, an output perturbation in
(8) is obscured by theZ(ωk)Hk product and cannot be
compensated byB̂. These claims are supported by our
optimization results using real frequency response data. Fig.
3 compares the results of fitting the model using (7) and (8).
The same termination criteria are used in each case. It is
quite evident that the model fit assuming input perturbations
is extremely poor while the formulation that assumes output
perturbations provides a very good fit. The matrix from the
latter case is

R̂ =

[
−20.47 −34.30
51.85 −65.25

]

+ j

[
−0.65 −1.37
1.87 −2.23

]

≈

[
e jθ1 0
0 e jθ2

][
−20.48 −34.33
51.89 −65.29

]

, (9)

which demonstrates that the channels’ phases are perturbed
by θ1 = 2.01 degrees andθ2 = 2.13 degrees. This is consis-
tent with measurements made at other frequencies. The data
used in this example had the effect of the antialias filters
removed by re-sampling the excitation signals with an iden-
tical bank of filters (so no relative delay is introduced). Ifwe
remove the re-sampling then the data contain additional lag.
In this case, the formulation assuming output perturbations
still produces a model that fits the data extremely well as
shown in Fig. 4.

III. ELECTRONIC TUNING

A. Bias Potential Effect on Sensor Dynamics

To illustrate the bias potential effect on the sensor dynam-
ics, a single degree-of-freedom (DOF) system is introduced.
For the single DOF system shown in Fig. 5, the electrostatic
force Fe between two capacitor plates is defined as

Fe = −ε0AV 2
b /2d2 (10)

m

k
s

k
es

V
b d

0
d

Fig. 5. Bias potential effect on a single DOF system. When the mass m
moves a small displacementd from the equilibrium position, the equivalent
spring constant becomeskeq = ks + kes.

whereε0, A, Vb, and d are the permittivity constant, elec-
trode area, bias potential, and the gap distance between
the plates, respectively. Let as shown, whered0 and δ are
the equilibrium gap distance between the plates and small
displacement fromd0, respectively. A linear approximation
of (10) yields a linearized electrostatic spring constantkes

as
kes = −ε0AV 2

b /d3
0 (11)

where the negative sign implies thatkes introduces a soft-
ening spring effect. The equivalent stiffnesskeq is then
computed as the sum of the mechanical stiffnessks of
the system and the electrostatic stiffnesskes created by the
applied bias voltage. Hence, the variation of bias potential
can shift the resonant frequency of the system. By analogy
with the single DOF case, the overall stiffness matrix for a
multiple DOF system can be represented as the sum of the
mechanical stiffness matrix and the electrostatic stiffness
matrix created by the applied bias potential. Since the JPL
microgyro is equipped with two bias electrodes, the overall
stiffness matrix of the sensor dynamicsKtotal becomes

Ktotal = K0 +KB(B1,B2) (12)

whereK0 is the elastic stiffness matrix of the system, and
KB is the symmetric electrostatic stiffness matrix created by
the bias potentialsB1 andB2. Therefore, we can control∆ω
between the two rocking modes by varyingB1 andB2.

B. Real-Time Tuning

It can be shown that∆ω2 is an analytic function of
bias potentials and that any minimum is global. Indeed, the
contours in Fig. 6 were generated by exhaustive testing of
the sensor at a grid of bias potentials; empirical frequency
response data is generated at every pair of potentials and
then a model is fit using (6) and (7). The frequency split
is extracted from the models and then used to create
Fig. 6. The desirable properties of∆ω2 as well as the
excellent models obtained by fitting the frequency response
data suggest that a robust method for reducing∆ω below
some tolerance is possible. This is indeed the case and
we have employed the method of steepest descent [5] for
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(1.95 V, 4.40 V) with∆ω = 0.045 Hz.

this purpose. Define∆ω2 = f (B1,B2), then the iterative
algorithm can be written as

~Bk+1 = ~Bk −αk∇ f (~Bk) (13)

where~B = [B1,B2]
T , αk is a nonsingular scalar minimizing

f (~Bk −αk∇ f (~Bk)). The gradient in (13) is computed with
the central difference approximations as

∂ f (B1,B2)

∂B1
≈

f (B1 +h,B2)− f (B1−h,B2)

2h
∂ f (B1,B2)

∂B2
≈

f (B1,B2 +h)− f (B1,B2−h)

2h

(14)

where h is chosen to be 0.1V and is weighted by∆ω
when∆ω < 1 Hz for better estimation of the local gradient.
Next, a Fibonacci line search [5] is used to determine the
minimum along the gradient direction within set limits on
the bias electrode potentials (10 V in our case). The iteration
stops once the dynamics are nearly degenerate: the modes
are tuned to within 0.1 Hz to obtain the highest SNR during
sensor operation. Different tuning paths from four different
starting points are shown in Fig. 7. The tuning process is
evidently convergent in searching for the optimum set of
bias potentials. Fig. 8 shows the frequency response data
and the identified models during a typical tuning run.

C. Channel Decoupling

Even though the sensor is tuned there may still exist
a large amount of cross channel coupling. This is evi-
dent in Fig. 8 where the off-diagonal frequency response
magnitudes are comparable to the diagonal terms. This
degree of coupling is undesirable because during operation
one channel is driven to a constant amplitude sinusoidal
response at the tuned resonant frequency while the other
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Fig. 7. Tuning from different starting bias points.Case 1: (0 V, 2 V)
with ∆ω = 3.04 Hz→ (1.98 V, 4.33 V) with∆ω = 0.079 Hz. Case 2:(0
V, 0 V) with ∆ω = 4.99 Hz→ (1.70 V, 4.58 V) with∆ω = 0.32 Hz→
(1.99 V, 4.41 V) with∆ω = 0.027 Hz. Case 3: (-5 V, 5 V)with ∆ω =
8.09 Hz→ (2.08 V, 4.71 V) with∆ω = 0.25 Hz→ (1.93 V, 4.40 V) with
∆ω = 0.063 Hz. Case 4: (4 V, -5 V) with ∆ω = 11.82 Hz→ (3.31 V,
4.59 V) with ∆ω = 1.11 Hz→ (2.11 V, 4.48 V) with∆ω = 0.094 Hz.

channel is regulated to zero (ideally) with a high gain loop
(for example, see [3] for a description as to why vibra-
tory rate sensors are operated in this manner). The threat
from large cross channel coupling comes from the fact
that the high gain channel can be saturated. Reducing the
channel coupling, that is creating a sensor with essentially
a diagonal transfer function, eliminates this potential for
saturation. Decoupling can be achieved by determining two
2x2 constant-gain input and output transformations, denoted
Tin and Tout respectively, that render diagonally dominant
sensor dynamics. The sensor’s mass and stiffness matrices
may be simultaneously diagonalized asV T MV andV T KV
whereV is the matrix whose columns are the generalized
eigenvectors ofM andK. If we let z = V y and multiply the
both sides byV T , (2) becomes

V T M̃V ÿ+V TC̃V ẏ+V T K̃V y = V T u (15)

and (15) impliesTout = (RV )−1 and Tin = V−T . Fig. 9
illustrates the decoupled sensor dynamics. The modes are
tuned to within 0.1 Hz and the sensor’s empirical fre-
quency response has a 0.1 Hz frequency resolution over
the displayed range. It is evident that the transformations
decouple the rocking modes into separate channels and
the peak gain in the diagonal channels is higher than the
peak gain in the off diagonal channels by an order of
magnitude. The condition numbers ofTin andTout are 1.39
and 1.42, respectively, indicating that any modeling erroris
not exacerbated by the transformations.

IV. CONCLUSIONS

We have presented a real-time tuning scheme for the JPL
microgyro. We have successfully implemented the tuning
process to achieve the frequency split less than 0.1 Hz. One
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Fig. 8. Empirical frequency response and the identified modelsduring a
typical tuning run; diamonds, triangles, and, circles are empirical frequency
response data corresponding to the starting, intermediate,and final set of
biases with a frequency split of 5 Hz, 3 Hz, and 0.08 Hz, respectively;
and dotted, dashed, and solid traces are the identified models.

appealing aspect of post fabrication tuning is that it is a
very cost effective method to improve sensor performance.
The tuning process discussed in this paper has a great
practicality since it can be applied to many rate gyros with
a wide range of dynamic responses.
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