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Real-Time Tuning of MEMS Gyro Dynamics
D. J. Kim and R. T. M’'CloskeyMember, |IEEE

Abstract— This paper reports real-time tuning of the JPL-  Coriolis coupling between two rocking modes of equal nat-
_Boelng micromachined _\/lbratory rate sensor. _The !deal .SEI’]SOI‘ ural frequency_ Manufacturing imperfections and package-
is designed to operate in a degenerate condition in which two induced stresses, however, are among various factors that

modes of vibration have equal resonant frequencies. This con- K tual devi deviate f the ideal d .
dition achieves the best possible signal-to-noise ratio thereby make actual aevices deviate from the ldeal sensor dynamics

maximizing sensor performance. A frequency split between and display an undesirable frequency split between the
the two modes, however, is inevitable in actual devices and rocking modes. The tested device shows a frequency split
leads to degraded performance. To modify the sensor dynamics of 5 Hz in the absence of bias potentials. This frequency
to a desired condition, we have studied the bias potential gyit |eads to degraded overall sensor performance sirece th

effect on the sensor dynamics and successfully implemented a d t d for th ¢ hi
real-time tuning process via electrostatic forces to reduce the egenerale modes are necessary Ior the sensor 1o achieve

frequency split to less than 0.1 Hz when the nominal modal the largest signal-to-noise ratio (SNR). For example, as
frequencies are near 4.4 kHz. A closed-loop identification little as a 0.5 Hz difference in frequencies for these sensor
method is employed for rapid and precise empirical frequency produces a 20 dB degradation in SNR. If the split can be
response estimates of the sensor dynamics. An LMI-based reduced below 0.1 Hz. the reduction in SNR is at most 5
parameter estimation scheme produces an excellent fit of the . ' L .
model to the frequency response data and this enables the dB - a tolerable figure. Therefore, post-fabrication t“““”g
successful implementation of a steepest descent algorithm. Preceded by an accurate estimate of the sensor dynamics,
Transformations for decoupling the MIMO sensor dynamics iS an essential part of optimizing sensor performance.
are also motivated and demonstrated. This paper is organized as follows. Section Il presents the
analytical model for the sensor’s rocking modes, genamatio

. INTRODUCTION of frequency response data, and formulation of parameter

The JPL-Boeing MEMS gyroscope, often referred to agstimation problem using linear matrix inequalities (LMIs
the JPL microgyro, is a vibratory rate sensor. The sens&ection Il discusses the bias potential effect on the senso
consists of a silicon micromachined plate suspended abodgnamics, frequency split as a function of bias potentials,
a set of electrodes - two electrodes are used for sensing, t@Bd real-time tuning results. Section IV concludes the pape
eIectrpdeS are used to apply electrostatic forces for tictua Il. GYRO MODEL AND PARAMETER
or "driving,” and another two electrodes are used to apply ESTIMATION
bias potentials to the vibrating structure. A rigidly atiad ) _
central post forms a "cloverleaf” assembly with the sensin§- Equation of Motion
and driving electrodes. The post strongly couples twolight The sensing electrodes of the JPL microgyro are not
damped modes corresponding to rocking or tilting motiomollocated with the driving electrodes. In the generalized
of the plate, referred to as the rocking modes, via a Coriolisensor-fixed coordinates established by the sensing pick-
term to render the device sensitive to rotational motioroffs denotedx = [x;,x;]", a linearized equation of motion
The excitations of the sensor’s lightly damped modes cattescribing the two lightly damped rocking modes can be
be accomplished by applying a potential to the drivingvritten as
electrodes directly from a function generator or digital- MX+Cx+ QSX+ Kx = Bu Q)
to-analog converter (DAC). The sensing electrodes usela
trans-impedance op-amp configuration to provide a buﬁer§£

output voltage that is proportional to the rate of change rr:(ass, damplP_g, an(: _stlffnedssl T?jtrl'fe;’] respectigely, |
the gap between the electrodes and vibrating plate. Mo SKEW-Symmetnc matrix modulated by the sensor anguiar

detailed information on the design and fabrication of théate Q.f rotation®, Bis a rgal, non-smgulgr 2x2 matrix that
: specifies how forces applied by each drive electrode couple
sensor may be found in [8]. . : ) T
This paper focuses on developing a real-time tunininto the sensor-fixed coordinate frame, angt [ug,Us]' is
9ne electrostatic forces created by the potentials apptied

process for the microgyro. Ideally, the sensor achieves trtlleie pair of drive electrodes. The frequency split between

This work was supported by NSF grant ECS-9985046 and thenBoei the roc!<|ng mOdeS can be obtained from analyzing the
Aerospace Company via UC-MICRO 03-060. generalized eigenvalues bf andK.
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this model,M, C, andK are real, positive definite 2 x
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i ] ] ] Fig. 2.  Frequency split of identified ARX model (circle-dadhers.
Fig. 1. Wideband frequency response of the sensor dynanaiosdrpair  parametric model (square-solid). For 20 data sets acquirgthximately

of driving electrodes (denoteld; andD>) to a pair of sensing electrodes 1 minute apart under the same condition, the ARX modeling scheme
(denotedS; and Sp). The first lightly damped mode near 2.7 kHz is the yields the standard deviation #w over 0.1 Hz whereas the LMI-based

linear translation mode. The next lightly damped mode is agtualo  parameter estimation scheme (described in Section II-C) pexdthe
rocking modes near 4.4 kHz that cannot be individually remwlin this  standard deviation ofiw less than 0.01 Hz.

scale. The remaining lightly damped modes above 5 kHz are othenél
modes of the sensor’s elastic structure. The positive slbigedrequency
response magnitude is caused by capacitive coupling bettheedrive . . .
and the sense electrodes. The attenuation above 35 kHzilmid to the Knowledge of the mass, stiffness, and damping matrices

bandwidth of the signal conditioning amplifier. are valuable to the sensor designer and so it is useful to
start with (1) as the basis for modeling instead of a more

) . _ general difference equation employed in the ARX approach.
where R represents the transformation relating the drive, [3] we have developed a method for obtaining high
electrode frame to the sense pick-off frame. The Corioli§, )ity frequency response data from these sensors. Ify brie
term has been omitted from (2). Converting from ongy closed-loop identification scheme is employed to reduce

description to the other is a simple matter and whichy,o sensors inherent long settling time and the open-loop
description is selected for modeling purposes depends UpgR, ency response is recovered from the closed-loop data.

the location of additional dynamics (at the sensor input g, yhe foliowing section, we will demonstrate that frequenc
output) introduced by signal conditioning preamps, aratl

response data is in fact ideally suited for identifying mede

filters, etc. It is obvious that (1) or (2) cannot fully explai Iikep(l) y fying
the wide-band dynamics of the sensor shown in Fig. 1. In '
addition to the rocking modes near 4420 Hz, the sensors, Parameter Estimation Problem
elastic structure exhibits a linear translation mode n&a02 One approach for determining thel(C, K, B) parame-
Hz and other flexural modes above 5000 Hz. Nevertheless, ~ . PP L ng 1 B) P
L . . : rs in (1) is to minimize maximum modeling error across
it is quite adequate to describe the sensor dynamics by ( : .

. all frequency points represented in the data set,
or (2) in a very narrow frequency band around the closely

spaced rocking modes. Further information on the wide- min_ maxa (Z~(c)B— Hy) 3)

band sensor dynamics may be found in [3]. lonz ¢

B. Generation of Frequency Response Data whereZ(awy) = —Ma2+K + jaC, andHy and c are the

Our primary objective is to reduce the frequency splitk" frequency response data point and frequency, respec-
denotedAw, between the two modes of interest so arively. This formulation is very much in the sprit of the
estimate ofAw must be produced. We have employed arlassical Sanathanan-Koerner algorithm [7], although the
ARX modeling scheme [6] in the past to estimate varioupositive definiteness constraints bh C, andK complicate
sensor parameters, however, we have observed that thatters. The main objection to this formulation, howeer, i
standard deviation diw is approximately 0.1 Hz as shown the undue emphasis placed on the frequencies and directions
in Fig. 2, which is on the order of the resolution we requiravith large magnitude (relative to the other data points).
to obtain the full benefits of tuning (in order to make a fairThis emphasis produces a poorer fit of the data at those
comparison, both the ARX models and frequency domaifiequencies which possess more modest gain. This has
models discussed in the sequel use approximately the sab®en recognized by other researchers and various ad hoc
amount of data with the input power concentrated in aeighting schemes have been devised to distribute the error
narrow band about the modes of interest). Furthermorejore fairly across the magnitude [1], [4]. The sensors
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When there ar&l frequency response data points available,

200 20 this optimization can be stated as the standard generalized

S2/D1

eigenvalue problem (GEVP) [2],
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minimize: y
subject to: y>0,M >0,C>0,K >0 (6)
J>0fork=1...N

s aazz asa adze aazs aas0 o a2 aaa aaze aizs aao  that can be solved by several commercially available soft-
Freauency (12 Freauency (1) ware packages (Matlab’s LMI Control Toolbox is used in

Fig. 3. Sensor's empirical frequency response (circle) wsqiency this paper). In our formulation, the (1,1) element of the
response of the identified model assuming input perturbatidashed) mass matrix is normalized to 1 without loss of generality.
and output perturbations (solid). The sensing signalsassetl through an- - At thjs point there is nothing that recommends either
tialias filters to ensure that the feedback system is inseaso the higher . "
frequency dynamics. The drive signals are also passed thraugdentical fOrm of the model. The choice becomes critical, however,
set of filters to compensate the phase lag introduced by thadiastiilters.  when additional dynamics at the sensor input or output are

While other phase perturbations remain uncertain, the modginziag included. Let us first consider dynamics at the output of
output phase perturbations fits the empirical frequencyoresp data very
well whereas the model assuming input phase perturbatiofdsyeevery the sensor, denotedoy, that can be used to capture the

poor fit. effects of the sensor’s signal conditioning preamplifiard a
antialias filters.
In this case the error to be minimizedﬁE{HZ— HoutR)
tested by our group represent an extreme case in which fiere 7 () = ~MZ 4+ K+ jaC. The specification of a
frequency response can change by more than three ordgeseral form foHq, however, will render the computation
of magnitude within a few Hertz. In this circumstance Wenon-convex. In the present case though we are interested
have found that the following objective produces superiohy a narrow band of frequencies where the modes are

Phase (deg)
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models, . B located. It is quite reasonable to assume that any additiona
Wwmin  maxg(Z(w)Hx — B) (4)  dynamics at the sensor output can be modeled by an FIR
K>0,8£0 filter. In fact, we often represent these extra dynamics as

This problem has the fortune that the parameters appeg@nstant magnitude and phase perturbations. For example,
affinely within the maximum singular value. Using theOUr experiments use eight pole butterworth antialias iter

Schur complement formula, (4) may be rewritten as with 20 kHz corner frequencies that experience a 0.2 degree
change in phase and essentially a 0 dB change in magnitude
min max v (Z(w)Hk —B)* >0. (5) in a 10 Hz band containing the two modes of interest. In this
poveo i | Z(adH—B 4 case, we can combineq,R into a single, fixed complex

B0 =3 matrix R. This approach is pursued here and leads to the



optimization in (5) where mn

- I (4 () I i O I e . —°
J= HiZ () — R “ Vi ) (7) Levf---- ----

and whereM >0, € > 0, K > 0, andR e €22, L

An analogous argument can be made for dynamic per- V,,(__) k, % % k,, dy d
turbations acting at the sensor input (denokgg) and in

this case we use (1) as the basis for modeling the sensor
dynamics. The error i5(ZH —BHi) and if an assumption
can be made concerning the nearly constant magnitude and
phase ofHj, in the tested frequency band, th&H;, can

be replaced with a single, fixed complex matrix Whos%

. . L Fig. 5. Bias potential effect on a single DOF system. When thesmmas
elements are to be determined in the optimization. In thigoyes a small displacemenfrom the equilibrium position, the equivalent

case, we replacé in (5) with spring constant becomégy = ks + Kes.
_ yl (Z(w)Hk—B)*
W)k where g, A, Vp, andd are the permittivity constant, elec-
and whereM >0, C > 0, K > 0, andB € (2*2, trode area, bias potential, and the gap distance between

Currently, there is no graceful way to handle simultanethe plates, respectively. Let as shown, whéseand 5 are
ous input and output perturbations: if an input perturbatiothe equilibrium gap distance between the plates and small
is present and we use (7) for obtaining the model paralisplacement frontp, respectively. A linear approximation
meters, the perturbation becomes "buried” in #he/(wy) Of (10) yields a linearized electrostatic spring constiagt
product and cannot be compensated by the additiona$
freedom present iflR. Similarly, an output perturbation in kes = —£0AVZ /d3 (11)
(8) is obscured by theZ(aa()HF product and cannot be where the negative sign implies thiat introduces a soft-
compgnsgted byB. Th_ese claims are supported b_y Ourening spring effect. The equivalent stiffnekg, is then
optimization results using real frequency response déga. F

3 th its of fitting th del usi - 48 omputed as the sum of the mechanical stiffnkssof
compares the resufts ot fitting the mode! using (7) and ( e system and the electrostatic stiffnésscreated by the
The same termination criteria are used in each case. It

. . : e . éf)plied bias voltage. Hence, the variation of bias poténtia
quite evident that the model fit assuming input perturbatloncan shift the resonant frequency of the system. By analogy

s extremely poor v_vhile the formulatiqn that assumes cmtp%ith the single DOF case, the overall stiffness matrix for a
perturbations provides a very good fit. The matrix from th?nultiple DOF system can be represented as the sum of the

latter case is mechanical stiffness matrix and the electrostatic stiffne
R — [ —2047 —3430 ] i { —-065 -137 ] matrix created by the applied bias potential. Since the JPL
5185 6525 187 -223 microgyro is equipped with two bias electrodes, the overall
[ et 0 } [ —2048 —34.33 } stiffness matrix of the sensor dynamikg:a becomes

6 _ C)
_ 0 e >189 6529 Kiotal = Ko+ Kg(B1,B2) 12)
which demonstrates that the channels’ phases are perturbed ) . .
by 6, — 2.01 degrees anf, — 2.13 degrees. This is consis- whereKg is the elastic stiffness matrix of the system, and

tent with measurements made at other frequencies. The d4fa S the symmetric electrostatic stiffness matrix created by
used in this example had the effect of the antialias filterd€ Pias potentialg, andB,. Therefore, we can contrdiw
removed by re-sampling the excitation signals with an ider*2etween the two rocking modes by varyiBg and By.

tical bank of filters (so no relative delay is introduced)w  B. Real-Time Tuning

remove the re-sampling then the data contain additional lag It can be shown thah? is an analytic function of

In_ this case, the formulation _assuming output perturbatiorbias potentials and that any minimum is global. Indeed, the
still produces a model that fits the data extremely well aSontours in Fig. 6 were generated by exhaustive testing of

shown in Fig. 4. the sensor at a grid of bias potentials; empirical frequency
[1l. ELECTRONIC TUNING response data is generated at every pair of potentials and

A. Bias Potential Effect on Sensor Dynamics _then a model is fit using (6) and (7). The frequency split
is extracted from the models and then used to create

To illustrate the bias potential effect on the sensor dynan?:-ig 6. The desirable properties dw? as well as the

ics, a single degree-of-freedom (DOF) system is Ir]tmduce%xceIIent models obtained by fitting the frequency response

For the single DOF system shown in Fig. 5, the electrostati ata suggest that a robust method for redudiag below

force Fe between two capacitor plates s defined as some tolerance is possible. This is indeed the case and
Fe= fsoAVbz/Zdz (10) we have employed the method of steepest descent [5] for

~
~
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on frequency split data fdB; and B, from -10 V to 10 V with a step of With Aw =3.04 H_Z—’ (1.98 V, 4.33 V) withAw = 0.079 H_Z- Case 2:(0
1 V. Tuning from (81782) = (_7 vV, -7 V) with Aw = 15.16 Hz reaches V, 0 V) with Aw = 4.99 Hz— (170 V, 4.58 V) withAw = 0.32 Hz—

(5.63V,4.75V) with Aw = 2.81 Hz after the 1st iteration and (2.14 V, 5.54 (1.99 V, 4.41 V) withAw = 0.027 Hz. Case 3:(-5 V, 5 V)with Aw =

V) with Aw = 0.91Hz after the 2nd iteration. Finally, the process stops af-09 Hz— (2.08 V, 4.71 V) withAw = 0.25 Hz— (1.93 V, 4.40 V) with
(1.95 V, 4.40 V) withAw = 0.045 Hz. Aw = 0.063 Hz. Case 4:(4 V, -5 V) with Aw = 11.82 Hz— (3.31 V,

4.59 V) withAw = 1.11 Hz— (2.11 V, 4.48 V) withAw = 0.094 Hz.

this purpose. Defind\w? = f(B1,B), then the iterative

algorithm can be written as channel is regulated to zero (ideally) with a high gain loop

(for example, see [3] for a description as to why vibra-
Biy1 = Br— a0 (By) (13) tory rate sensors are operated in this manner). The threat

~ from large cross channel coupling comes from the fact
whereB = [By,Bo]", a is a nonsingular scalar minimizing that the high gain channel can be saturated. Reducing the

f(Bx — akf(Bk)). The gradient in (13) is computed with channel coupling, that is creating a sensor with esseptiall

the central difference approximations as a diagonal transfer function, eliminates this potential fo
0f(B1,B2)  f(By+h,By)— f(Bi—h,By) saturation. Decoupling can be achieved by determining two
B, ~ N 2x2 constant-gain input and output transformations, dahot

9%(B1,B2)  f(B1,Bo+h)— f(By,Bs—h) (14) T, and Tou respectively, that ,render diagonally dominant
9B ~ oh sensor dynamlcs. The sensor's mass and stiffness matrices
2 may be simultaneously diagonalized\A5MV andVTKV
where h is chosen to be 0.1V and is weighted By whereV is the matrix whose columns are the generalized
whenAw < 1 Hz for better estimation of the local gradient.eigenvectors oM andK. If we let z=Vy and multiply the

Next, a Fibonacci line search [5] is used to determine thigoth sides by T, (2) becomes
minimum along the gradient direction within set limits on T e 3T e T -
the bias electrode potentials (10 V in our case). The iw@mati V' MVy+V'CVy+V ' KVy=V'u (15)
stops once the dynamics are nearly degenerate: the modeg (15) impliesToy = (RV)~! and Tin =V~ T. Fig. 9

are tuned to within 0.1 Hz to obtain the highest SNR duringjystrates the decoupled sensor dynamics. The modes are
sensor operation. Different tuning paths from four différe {yned to within 0.1 Hz and the sensor's empirical fre-
starting points are shown in Fig. 7. The tuning process i§uency response has a 0.1 Hz frequency resolution over
evidently convergent in searching for the optimum set ofe displayed range. It is evident that the transformations
bias potentials. Fig. 8 shows the frequency response dajacouple the rocking modes into separate channels and
and the identified models during a typical tuning run.  the peak gain in the diagonal channels is higher than the
peak gain in the off diagonal channels by an order of
magnitude. The condition numbers §f and Ty are 1.39
Even though the sensor is tuned there may still exignd 1.42, respectively, indicating that any modeling eisor

a large amount of cross channel coupling. This is eVinot exacerbated by the transformations.
dent in Fig. 8 where the off-diagonal frequency response

magnitudes are comparable to the diagonal terms. This IV. CONCLUSIONS

degree of coupling is undesirable because during operationWe have presented a real-time tuning scheme for the JPL
one channel is driven to a constant amplitude sinusoidaiicrogyro. We have successfully implemented the tuning

response at the tuned resonant frequency while the othgnocess to achieve the frequency split less than 0.1 Hz. One

C. Channel Decoupling
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Fig. 8. Empirical frequency response and the identified modietsng a
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appealing aspect of post fabrication tuning is that it is
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Fig. 9.  Empirical frequency response estimate of decoupletsose
dynamics (the decoupling transformations are applied dyréctthe fre-
quency response data generated with a 0.1 Hz resolutioe) nfdgnitude
and phase are the solid and dotted traces, respectivelyiitbal sensing
electrodes and driving electrodes, dendsadD, are related to the native
electrodes bys= Ty SandD = T;,,D, respectively. The dominant diagonal
channels display decoupled sensor dynamics.
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a

very cost effective method to improve sensor performance.
The tuning process discussed in this paper has a great

practicality since it can be applied to many rate gyros wit
a wide range of dynamic responses.
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