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EPIGRAPH

Debugging is twice as hard as writing the program, so if you write the

program as cleverly as you can, by definition, you won’t be clever enough to

debug it.

– Kernighan’s Law
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ABSTRACT OF THE DISSERTATION

Deterministic Replay using Processor Support and Its Applications

by

Satish Narayanasamy

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Brad Calder, Chair

The processor industry is at an inflection point. In the past, performance

was the driving force behind the processor industry. But in the coming many-

core era, improving programmability and reliability of the system will be at least

as important as improving raw performance. To meet this vision, this thesis

presents a processor feature that assists programmers in understanding software

failures.

Reproducing software failures is a significant challenge. The problem is

severe especially for multi-threaded programs because the causes of failure can

be non-deterministic in nature. The proposed processor feature continuously

logs a program’s execution while sacrificing very little performance ( 1%). If the

program crashes, the developer can use the log to debug the failure by determinis-

tically replaying every single instruction executed as part of the failed program’s

execution. Two key mechanisms enable this deterministic replay feature. One

is BugNet, a checkpointing technique, which logs all of the non-deterministic in-

put to a thread by logging the values of load instructions. The other is Strata,

a logging primitive for recording shared-memory dependencies in a snoop-based

or a directory-based shared-memory multi-processor. The former is sufficient

for uni-processor systems and the later is required for multi-processor systems.
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As a proof-of-concept, this thesis presents a software implementation of BugNet

replayer built using the Pin instrumentation tool.

To understand the space requirements of the BugNet recorder for debug-

ging, this thesis empirically quantifies how much of a program’s execution need

to be logged and replayed in order to understand the root cause of a majority

of bugs. Finally, to demonstrate the utility of the deterministic replay feature,

this thesis presents a software tool built using a deterministic replayer that finds

data race bugs in shared-memory multi-threaded programs and automatically

prioritizes them. The data race detection tool was built in collaboration with

Microsoft. It has been used to find and fix data race bugs in production code,

including Windows Vista and Internet Explorer.

xix
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Introduction

Debugging software is becoming increasingly challenging due to the in-

creasing complexity in the software and hardware systems. Leveraging the expo-

nential growth in processor’s performance over the last few decades, sophisticated

software systems have been built. If we consider the latest operating systems for

instance, Windows Vista’s code base contains about 40-50 million lines of source

code and Debian 3.1 contains over 200 million lines [101]. These mammoth

software systems purportedly contains thousands of bugs [52] and the number of

man-years required to develop a software system will keep increasing as the size of

these software systems continues to increase. The advent of many-cores (multiple

cores on the same processor chip) will further exacerbate the problem associated

with growing complexity of software systems [3], because future applications will

have to be parallelized to take advantage of a many-core processor. Traditionally,

developing and debugging a parallel system has been an onerous task, because

of the difficulty in understanding the non-deterministic interactions between the

parallel threads in a multi-threaded system. Ensuring correctness in the face of

growing system complexity, at both the hardware and software levels, is critical

to the evolution of computing systems.

Significant effort has already gone into developing tools and method-

1
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ologies for improving software engineering practices. To date, however, proces-

sors have offered very little support for developing robust software. This thesis

presents a processor feature that enables deterministic replay of a program’s ex-

ecution, which significantly enhances a programmer’s ability to understand and

debug software bugs.

I.A Deterministic Replay and its Uses

When a software system crashes, the programmer needs a mechanism

to determine the causes of the failure. Unfortunately, current systems provide

just the final state of the system (core dumps) [53, 63], and it is very challenging

to understand the causes of the crash by looking only at the final system state.

A solution to this problem is to provide system support for continuously

recording information during a program’s execution, which can be used by the

programmer to deterministically replay the last few seconds of the failed pro-

gram’s execution. A deterministic replayer is one that is capable of executing

exactly the same sequence of instructions with exactly same input and output

operands like in the original execution.

Providing system support for deterministic replay will improve the de-

bugging process in several ways. First, if the bug is non-deterministic in nature,

a deterministic replayer ensures that a programmer can reproduce the bug. This

property is especially important for the multi-threaded programs, which are prone

to non-deterministic bugs like data races. Second, a deterministic replayer can

be combined with an interactive debugger like gdb or Microsoft’s Visual Studio

to build a time travel debugger [42]. A time travel debugger will significantly

improve a programmer’s productivity. Third, any dynamic analysis can be per-

formed over the recorded program’s execution, offline during deterministic replay.

An offline dynamic analysis has an important advantage in that it is not limited
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by its performance overhead as it does not affect the behavior of a program’s exe-

cution. Examples for such dynamic analysis are intrusion detection [26], memory

leak detection [88], finding uninitialized variables etc. Chapter V presents a

dynamic analysis based on a deterministic replayer, which automatically finds

data races in the multi-threaded programs. Fourth, if the recorder is efficient,

software vendors can use them to capture a remote site failure and debug it by

deterministically replaying the failed execution.

Apart from debugging, system support for deterministic replay can also

be useful for providing fault tolerance [48] and developing architectural simula-

tors [59].

I.B Need for Processor Support for Deterministic Replay

Proving the correctness of even a small scale software system has re-

mained a holy grail for computer scientists. Even after extensive Quality As-

surance process, complex software built today still contain significant number

of bugs. Commercial pressure to reduce the time-to-market and the ability to

distribute patches over the Internet has only aggravated today’s software sys-

tems’ reliability. Tracking down and fixing bugs in production software can be a

nightmare, costing a significant amount of time and money. Bugs in production

software account for nearly 40% of computer system failures [51], and according

to NIST [97], they cost the U.S. economy an estimated $59.5 billion annually!

Reproducing and debugging a bug at a customer site is difficult due to

diversity in the hardware devices and the operating systems used by the cus-

tomers. Also, non-deterministic bugs such as the data race bugs are difficult to

reproduce and debug. To capture a bug at a customer site, we need an execution

recorder that incurs very little performance overhead but still supports deter-

ministic replay. Even during the testing process, a recorder with a prohibitive
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performance overhead will significantly affect the behavior of a program’s execu-

tion, which will significantly limit its use.

Existing software based replayers either do not support deterministic

replay of multi-processor systems [26, 42, 12, 81, 91] and/or incur a high per-

formance overhead [6] (on the order 15 times slowdown when compared to the

native execution). Processor support is absolutely essential to provide almost

zero overhead deterministic replay debugging solution, so that even the produc-

tion runs can be continuously logged. If the program crashes, the developer can

use the log to debug the failure by deterministically replaying the last second of

the program’s execution that preceded the crash.

This thesis has three main parts to it. First is BugNet [60, 61], a

checkpointing and logging solution for recording sufficient information to de-

terministically replay a program’s execution in a uni-processor system. Sec-

ond is Strata [57], a logging primitive for recording shared-memory dependen-

cies. Shared-memory dependencies are necessary for deterministically replaying

a multi-threaded program on a multi-processor system. The final part of this the-

sis demonstrates an application of deterministic replay in enabling offline analysis

to find data races in multi-threaded programs [58, 62]. The rest of this section

introduces each of these three parts.

I.C BugNet for Deterministic Replay of a Uni-Processor

Systems

To enable deterministic replay of a program’s execution in a uniprocessor

system, we need an ability to record the initial execution state of the program and

all the non-deterministic inputs read by the program. Non-deterministic input

include input from the external system such as I/O, DMA, processor clock, etc.

Prior deterministic replay solutions [104, 26, 91] employ a copy-on-write
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based checkpointing solution to capture the initial execution state (memory and

register state) of the program. In addition, they require additional support to

explicitly identify every source of non-deterministic input and to log the values

read from those sources. As there can be so many different sources of non-

deterministic input, it is tedious to implement a recorder and replayer using this

approach. Also, the recorder and replayer will be dependent on a particular

operating system or a system configuration, which makes it difficult to maintain

and port them. System independence is a necessary property for a processor-

based deterministic replay solution for it to be useful across diverse systems used

at the customer sites.

The key contribution in BugNet is the system-independent checkpoint-

ing and logging mechanism that supports deterministic replay of a program’s

execution on a uniprocessor system. BugNet logs the architectural register state

at the beginning of a checkpoint, and then logs a memory value when it is first

accessed by a load instruction. The same memory value is logged again only if

it has been modified by an external event. Thus, unlike traditional checkpoint-

ing mechanisms, BugNet avoids the complexity of capturing information about

system calls, I/O, interrupts, DMA, etc. As a result, BugNet can support deter-

ministic replay of only the application’s execution and the libraries it uses, but

not the full system. However, BugNet does support deterministic replay of user

code across all non-deterministic system events, including context switches and

interrupts. In addition, BugNet does not require a final core dump of the system

state for replaying, which significantly reduces the amount of data that must be

sent back to the developer.
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I.D Strata for Deterministic Replay of a Multi-processor

System

For debugging multi-threaded programs executing on a multi-processor

system, in addition to recording non-deterministic input from the external system,

we also need to record the non-deterministic interactions between the concurrent

threads. That is, for a shared-memory multi-threaded program, we need to cap-

ture the dependencies between the memory operations executed across concurrent

threads.

To accomplish this, the state-of-the-art deterministic replay solution for

a multi-processor system called the Flight Data Recorder (FDR) [104] determines

the shared memory dependencies by monitoring the coherence messages. To

record a shared memory dependency, FDR records the memory counts of the

dependent threads (point-to-point log). FDR implements the Netzer transitive

optimization [64] using processor support to reduce the number of shared-memory

dependencies that need to be recorded.

Instead of using a point-to-point log, this thesis proposes using a Stratum

log [57] to record the shared memory dependencies. A stratum consists of the

memory counts of all the threads at the time when it is logged. A stratum

separates all the memory operations that were executed in all the threads before

the time when it is recorded, from those that will be executed after it is recorded.

Using this property of Strata, we can implement a transitive optimization that is

12 times more effective than a point-to-point logging solution in terms of log size.

Also, unlike the earlier mechanisms, Strata can be used to capture multi-threaded

dependencies in a snoop-based multi-processor system. Further, Strata can be

recorded using 1/16th the hardware required for implementing a point-to-point

logging solution.
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I.E Deterministic Replay for Debugging

This thesis explores the use of deterministic replay for debugging. The

process of debugging with the help of a deterministic replayer is referred to as

Deterministic Replay Debugging (DRD). This thesis empirically quantifies certain

variables relevant to the DRD process. This includes an empirical analysis [58],

which quantifies how much of a program execution has to be logged and replayed,

in order to understand the root cause of a majority of bugs in the production

code. The result of this analysis shows that we can understand the root cause of a

majority of bugs in the open source programs if we have the ability to replay about

10 million instructions that precedes the crash. Further, we examine the potential

benefit of using dynamic slicing along with a deterministic replay debugger.

To illustrate the benefits of deterministic replay debugging, this thesis

describes an offline dynamic analysis tool based on a replayer, which automati-

cally finds harmful data races. This dynamic data race detection tool was built

in collaboration with the Microsoft Corporation. It is based on the replayer that

was independently developed at Microsoft [6].

Many concurrency bugs in multi-threaded programs are due to data

races. There have been many efforts to develop static [8, 32, 56] and dynamic

mechanisms [85, 25, 108, 66, 71, 1, 77] to automatically find the data races. How-

ever, most of the prior work has focused on finding the data races and eliminating

the false positives. Even if we manage to eliminate all the false positives, not all

of the remaining true data races are harmful. In fact, in the production code,

we found that only 10% of the true data races are actually harmful. The re-

maining 90% were all benign data races. They were benign in the sense that the

programmer was convinced that they do not affect the program’s correctness and

so the programmer intentionally chose to avoid the overhead of synchronization.

Thus, reporting all the true data races places a huge burden on the developers as
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they have to manually triage and eliminate a large number of benign data races.

Triaging data races is a time consuming and tedious exercise.

The replay-based dynamic analysis presented in this thesis [62] auto-

matically classifies the data races into two categories – the data races that are

potentially benign and the data races that are potentially harmful. We discuss

our experiences in using our dynamic race classification approach on an exten-

sively stress-tested build of Microsoft’s Windows Vista and Internet Explorer.

The proposed technique was able to automatically filter out over half of the real

benign data races, classifying them as potentially benign, which can be ignored

by the developers. In addition, all of the harmful data races were correctly clas-

sified as potentially harmful. They were reported to the developers, and they all

have been fixed in the production code.

I.F Contributions

This thesis makes the following contributions:

• Motivates the need for providing processor support for deterministic replay,

presents a comprehensive solution for supporting deterministic replay with

and without using processor support, and explores an application of deter-

ministic replay for debugging.

• Presents the BugNet checkpointing and logging solution that captures all the

non-deterministic input read by a thread of program’s execution by logging

the values of the load instructions. BugNet-based recorder and replayer are

easy to implement and maintain. Evaluation of the processor-based BugNet

recorder design is also presented.

• Presents Strata logging solution for recording the shared-memory multi-

threaded dependencies, which are necessary for replaying the execution of a
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multi-processor system. Strata logs are 12 times smaller, and requires 1/16th

the hardware when compared to the prior solution. Unlike earlier schemes,

Strata logs can be recorded in a snoop-based multi-processor system as well.

• Presents an analysis of the bugs in the open source programs to determine

the resource requirements of a recorder. This analysis introduces a notion

of replay window length for a bug, which is the number of instructions that

need to be replayed to understand the root cause of the bug.

• Makes an observation that not all the data races are harmful bugs. Presents

a unique replay-based dynamic analysis tool that automatically classifies

the benign and harmful data races. This tool has been used to find and

fix several bugs in Windows Vista and Internet Explorer, and continues to

be widely used at Microsoft. These applications demonstrate the need for

providing processor support for deterministic replay.

I.G Organization

Chapter II discusses in detail about deterministic replay, its applications

and existing software and processor based solutions. Chapter III presents the

BugNet checkpointing and logging technique. It also discusses the usage models

for BugNet and characterizes the replay window length for various open source

bugs. Chapter IV describes Strata and discusses how it can be recorded in both

snoop-based and directory-based multi-processor systems. Chapter V presents

a replay-based dynamic analysis tool that automatically classifies benign and

harmful data races. Chapter VI concludes with a discussion on the opportunities

for future work.
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Background and Related Work

Computer system trends have increased the importance of providing

efficient solutions to find and prevent software bugs. Lowering hardware costs

have significantly reduced hardware’s importance in terms of total computer

cost [34, 69]. Lower hardware costs and increasing software complexity has in-

creased the software’s component in the total cost of ownership of a system. In

addition, with the wide spread use of the Internet and how easy it is to release

patches, software is released with more potential bugs than in the past. The need

for multi-threaded programs for even desktop applications has never been as com-

pelling as it is today, as we step into the multi-core era. Multi-threaded programs

conventionally have been difficult to develop, debug, and maintain. Given these

trends it is just as important to examine efficient hardware support for software

correctness, security, and debugging as it is to increase the performance of the

next generation of processors.

This thesis proposes a processor feature that provides support for deter-

ministically replaying a program and demonstrates the utility of this feature for

debugging. In this section, we first define what deterministic replay is, motivate

its uses, and then discuss various challenges in implementing such a feature. This

is followed by a detailed discussion on prior software-based and hardware-based

10
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solutions for providing replay support. Finally, we discuss prior work on pro-

viding support for various other software-reliability oriented processor features,

including the debugging features that got implemented in real processors.

II.A Deterministic Replay

When a computer system crashes, the programmer needs a mechanism

to determine the causes of the failure. Unfortunately, current systems provide

just the final state of the system (core dumps) [53, 63], and it is very challenging

to understand the causes of the crash by looking only at the final system state.

However, if we can deterministically replay exactly what happened, then it will

help us understand the system crash.

Various layers of abstraction for a computer system executing a multi-

threaded program is shown in Figure II.1. A full system deterministic replay

should be able to replay all of the hardware and software components in a com-

puter system.

Deterministically replaying a hardware component in a system (eg: a

processor or a video card, which are shows as the outermost abstraction layer in

Figure II.1) would involve recording the hardware component’s internal state (by

reading from the JTAG ports) and replaying the electrical signals in these devices.

There have been works that focus on providing support for deterministically

replaying a hardware component of a computer system [83]. This is useful for

debugging bugs in hardware device.

However, to debug a software program, it is sufficient to determinis-

tically replay just the software. We say that we can deterministically replay a

software program, if we can replay exactly the same sequence of instructions with

exactly the same input and output values like in the original execution. To sup-

port deterministic replay of a software program, however, we need to record and
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Figure II.1: Layers of abstraction in a typical computer system.
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replay the values that are read from any external hardware device (that is, we

need to emulate the hardware device), which is one of the challenges in supporting

deterministic replay of a program’s execution.

This thesis focuses on providing support for debugging software. Hence,

the rest of the discussion in this section will focus on supporting deterministic

replay of just the software systems.

II.B Deterministic Replay Uses

This section discusses several applications of providing support for de-

terministic replay.

II.B.1 Deterministic Replay for Debugging

Providing system support for deterministic replay will improve the de-

bugging process in several ways.

Reproduce Non-Deterministic Bugs

Non-deterministic bugs or Heisenbugs are hard to reproduce. The reason

is that they are dependent not just on the input to the program but also on

the environment (operating system, run-time libraries, debugging environment,

processor speed etc.) in which the program is running. For example, a memory

allocator might randomly choose a location in the program’s address space to

allocate memory for a buffer. This can lead to non-deterministic buffer overflow

bugs. In a C program, a bug due to an un-initialized variable can be non-

deterministic. Another class of non-deterministic bugs are the data race bugs in

multi-threaded programs, which are dependent on the order in which threads are

executed.
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A non-deterministic bug encountered in a program’s execution is hard

to debug, because when a programmer executes the program in a debugger with

exactly the same input the bug might not appear again. With deterministic replay

support, however, conventional debuggers like gdb or Microsoft’s Visual Studio

can reproduce a bug encountered during a program’s execution any number of

times.

Reproduce Remote Site Failures

If the recorder is efficient, software vendors can use them to capture a

remote site failure and debug it by deterministically replaying the failed execution

any number of times. Customers and beta-testers will find such a mechanism

useful to report the software failures to the developers.

Time Travel Debugging

With deterministic replay support, an interactive debugger like gdb

or Microsoft’s Visual Studio can be enhanced to support a time travel debug-

ger [42, 6, 78]. A time travel debugger provides functionalities such as step

backward, reverse breakpoints and reverse watchpoints [7]. These features are

complementary to step forward, breakpoints and watchpoints found in commonly

used debuggers like gdb.

Using a breakpoint, a programmer can fast forward a program’s execu-

tion to a particular line in the source code. Reverse breakpoint on the other hand

allows a programmer to go back in program’s execution time till the execution

reaches a desired line in the source code. Watchpoints and reverse watchpoints

are similar to breakpoints and reverse breakpoints, except that watchpoints are

not set on a particular function or a source line, but on a variable.

The reverse debugging functionalities discussed above can be supported
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using the following approach based on deterministic replay support [42, 6]. A

recorder would create checkpoints at regular intervals. A program’s execution

can be replayed from the beginning from any of these intermediate checkpoints.

Let us say that the programmer wants to step back by one instruction. To reach

a desired point in the program’s execution, the debugger would start the replay

from the beginning of the checkpoint that contains the target instruction till the

replay reaches the target instruction. If the checkpoint interval lengths are small

enough, then stepping back would appear instantaneous to the programmer. The

recorder can use relatively longer checkpoint interval lengths for efficiency, and

more checkpoints can be created during replay to shorten the checkpoint interval

length. Reverse breakpoints and reverse watchpoints can be supported similar to

step backwards functionality. More details can be found here [7, 42, 6].

These reverse functionalities are very useful during cyclic debugging

when a programmer wants to examine a portion of a program’s execution over

and over again. With a conventional debugger like gdb, however, a program-

mer has to restart the program’s execution from the beginning, which is not a

productive way of using a programmer’s time. Thus, a time traveling debugger

significantly improves a programmer’s productivity. To build such a debugger we

need deterministic replay support.

Offline Dynamic Analysis

Dynamic analysis techniques can automatically find bugs in a program’s

execution. Valgrind [88] and Purify [35] are examples of dynamic analysis tools.

Such tools can automatically find memory access violations such as memory leaks,

uninitialized variables, data races [85], detection intrusions [26] etc. in a pro-

gram’s execution. However, dynamic analysis tools like Valgrind slows down a

program’s execution by a factor of 20 to even 100 times. As a result, they cannot



16

analyze an execution behavior of a program on a real machine. If we can record

a program’s execution without intruding the program’s behavior, then we can

perform the time consuming dynamic analysis during replay. Chapter V presents

a unique dynamic analysis based on a deterministic replayer, which automatically

finds data races in the multi-threaded programs.

Experience with Using Deterministic Replay Debugging

Microsoft has developed a software record and replay tool called iDNA [6]

in parallel with our BugNet work (BugNet is discussed later in Chapter III). It

is based on a load-based checkpointing mechanism like that of BugNet to enable

deterministic replay. Experiences of this dissertation author in using iDNA is

discussed in this section.

iDNA has been used to trace thousands of executions of Microsoft’s ap-

plications and these traces are stored in a centralized repository. At a developer’s

site, a developer can afford to allocate large disk spaces for replay logs, and so

even full execution of a program is recorded. In addition to iDNA, Microsoft

has also built dynamic tools that analyze these recorded program executions by

replaying them using the traces. Thousands of bugs (including very many non-

deterministic bugs like data races) in Microsoft’s applications like Windows Vista

and Internet Explorer have been automatically found using these tools. Also, the

testers and the users within the organization find it easier to report a bug in

a program’s execution to the developer through the logs that can replay that

execution, instead of having to write a detailed bug report. The author of this

dissertation built a dynamic analysis tool based on iDNA that automatically finds

data races bugs. The details of this tool are discussed in Chapter V.

However, iDNA is about 15x slower for computationally intensive pro-

grams and about 5x slower for interactive programs, when compared to their
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native executions. This is because it is a purely software-based implementation.

Because of the high performance overhead of iDNA, it cannot be used to capture

a natural behavior of a program’s execution (especially interactive applications

like Internet Explorer) on a real system. The processor-based BugNet support

presented in this thesis, however, incurs negligible performance overhead. There-

fore, developers can use BugNet for recording programs without altering their

behavior on a real system and debug them. Also, the customers can use BugNet

to capture the bugs even in the production runs and report them to the develop-

ers, which is not feasible with iDNA.

II.B.2 Deterministic Architectural Simulators

Simulators used for studying a processor architecture [9, 29] have to cor-

rectly execute a program to analyze the architectural characteristics for that par-

ticular program’s execution. Typically, architectural simulators use a functional

system emulator to correctly execute the system calls and interrupts invoked by

the program. These functional system emulators are complex to develop and

maintain. To emulate a system call, an emulator would invoke an equivalent sys-

tem call in the host system on which they are running. The values returned by

an emulator for a system call are dependent on the host system’s environment,

which can lead to non-deterministic behavior in the program being simulated.

Also, the simulation of a multi-threaded program on a multi-processor system

can be non-deterministic because of the synchronization and data races in the

multi-threaded program. Non-determinism in architectural simulations is an is-

sue, because it is hard to compare two architecture designs when a program’s

execution is not the same across the two simulations.

To avoid the complexity of developing and maintaining a functional

emulator, and to ensure deterministic simulation of a program’s execution, one
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can use a deterministic replayer instead of a functional emulator [59].

II.B.3 Fault Tolerance

System support for deterministic replay can also be useful for providing

fault tolerance. ExtraVirt [48] keeps a replicated copy of a virtual machine and

ensures deterministic replay in that replicated copy. The output from the original

execution and the replicated copy is compared to ensure fault tolerance against

transient faults.

II.C Overview of Prior Record and Replay Solutions

Figure II.1 shows the various layers in a typical computing stack. The

recorder and the replayer can be implemented at any of these layers - in the

virtual machine monitor [26], or the guest operating system [91], or the applica-

tion’s virtual machine such as the Java Virtual Machine [13], or by compiling or

instrumenting the application itself.

Recording a software system’s execution essentially involves two parts

- checkpointing and logging all the non-deterministic input read by the system

being recorded.

Checkpointing is necessary to retrieve the initial execution state of the

system from where we would like to replay. A checkpoint mainly constitutes

the memory state and the architecturally visible register states of the software

system. Most of the record and replay systems [42] create a new checkpoint at

regular intervals called checkpoint intervals, instead of just one checkpoint at the

beginning of a program’s execution. This is useful in two ways. One, if we run

out of space to hold the logs, we can discard the logs from the oldest checkpoint

and still be able to replay some parts of the program’s execution. Two, during

debugging, the programmer can fast forward to any intermediate instant in the
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program’s execution without having to replay from the beginning of the program’s

execution.

Checkpointing [28] is relatively an easy problem to solve. Some sys-

tems [26] just take a complete checkpoint of the software system’s memory and

register state at the beginning of the execution. However, this solution is in-

efficient and not useful for taking checkpoints at regular intervals. The most

common solution is to employ some form of a copy-on-write checkpointing mech-

anism [42, 7, 31, 91] to reduce the amount of information recorded and also to

reduce the performance overhead. It works as follows. Instead of logging the

values in all the memory locations at the beginning of a checkpoint interval, a

memory location’s value is logged only when it gets modified for the first time

within the checkpoint interval. The memory state of the process at the begin-

ning of a checkpoint interval can be rebuilt, during replay, by starting with the

process’s complete memory state at the end of the program’s execution and pro-

gressively restoring the values from the latest checkpoint log. This thesis presents

a checkpointing solution that is different from the copy-on-write mechanism. It

involves checkpointing just the register state. The memory state is captured

by logging the values of the load instructions, which also captures all the non-

deterministic input to the program. This means that the final complete memory

state (core dump) is not required for replay, which is necessary in a copy-on-write

based checkpointing mechanism to rebuild the memory state at the beginning of

a checkpoint. This solution will be discussed in detail in Chapter III.

The second part of a recorder involves logging all the non-deterministic

events that can influence the execution of the software system. Logging all the

non-determinism is the most difficult part of recording a software system’s ex-

ecution. Any value read from the system external to the recorded system is

considered to be non-deterministic. If the recorder is implemented in the appli-
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cation’s space, then any value read from the layers above the application state

shown in Figure II.1 is considered to be non-deterministic. This includes all the

system interactions such as the values read from the system calls, interrupts, in-

structions that read processor’s state such as processor’s clock (e.g.: rdtsc), all

the I/O including the memory-mapped I/O and DMA. Apart from these non-

deterministic system interactions, if the application is multi-threaded, then there

could be non-deterministic interactions between the threads reading and writing

from the shared memory locations.

If the recorder is implemented in the higher layer of abstraction such a

virtual machine monitor, then the only non-deterministic input in a uniprocessor

system can be from the external host operating system and the underlying hard-

ware. Though the decisions of the guest operating system and hence its thread

scheduling will be deterministic, to ensure deterministic execution of the virtual

monitor and its processes, we still need to take care of the system calls to the

host operating system, all the I/O including memory-mapped I/O, DMA and all

the non-deterministic instructions.

Capturing all these sources of non-deterministic interactions is what

makes it challenging in providing record and replay support. Providing this sup-

port in a way that the recorded execution can be replayed across different plat-

forms and processor architectures is even more challenging. Apart from being

accurate in capturing all the non-determinism, a recorder should also be efficient

in terms of both performance and space overhead. A recorder with a high per-

formance overhead can interfere with the program’s execution, making it difficult

to record and understand a program’s execution on a real system.
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II.D Prior Record and Replay Systems

In this section, we discuss various prior proposals for recording and re-

playing a program’s execution. We start with a description of a simple recorder

for a deterministic system. Then we discuss various solutions that provides sup-

port for recording non-deterministic system interactions such as system calls,

I/O and DMA. Then we discuss solutions for taking care of non-determinism in

multi-threaded programs executing on a uniprocessor system. This is followed

by a description of the software solutions for recording a multi-threaded program

running on a multi-processor system. Finally, we discuss how hardware support

can solve some of the limitations of the software-based solutions in replaying

multi-processor systems. We conclude with a discussion on the contribution of

this thesis and compare them with the prior solutions.

II.D.1 Replaying a Program’s Execution on a Deterministic System

IGOR: IGOR [31] is one of the earliest recorders that supported re-

play of a program’s execution (IGOR does not support operating system replay).

IGOR assumes that a program’s execution is completely deterministic. That is,

it does not handle non-determinism due to system interactions and races in the

multi-threaded programs. Therefore, it provides support for just taking a check-

point of the program’s memory and register state. IGOR’s checkpoint mechanism

is a form of copy-on-write checkpointing. IGOR is based on operating system sup-

port. The OS supports a system call that would determine the program’s virtual

pages that were modified after the last checkpoint. To create a checkpoint at a

particular instance in a program’s execution, the data in all the modified pages

are logged as part of the checkpoint. To replay from a particular dynamic in-

struction in a recorded program’s execution, IGOR first determines the most

recent checkpoint that precedes the starting point of replay. Then, the complete
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memory state is reconstructed for that particular checkpoint. This is done by

scanning the recorded log file backwards looking for the most recent log for each

virtual memory page. The program is replayed from the reconstructed memory

image using an emulator up-to the instruction specified by the user. The perfor-

mance overhead of the recording phase is between 50% to 400%, while the replay

overhead is on the order of 140 times when compared to the native execution.

II.D.2 Recording Non-Deterministic System Interactions

A program gets its input values from the external system through sys-

tem calls (asynchronous interrupts), asynchronous interrupts and also memory-

mapped I/O. Some of the I/O activity can also get delegated by the operating

system to a DMA (Direct Memory Access) processor, which can modify the pro-

gram’s memory state concurrently with the program’s execution. Also, a program

can execute instructions that return non-deterministic values. For example, the

instruction RDTSC (ReaD TimeStamp Counter) in x86 reads the processor’s

clock and writes it to an architectural register that is part of the program’s regis-

ter state. All these are sources of non-deterministic input to a program. To ensure

deterministic replay of a program’s execution, all of these non-deterministic in-

put need to be recorded and replayed. In this sub-section, we discuss how prior

proposals addressed this problem. None of the tools described in this section

can record and replay a multi-threaded program’s execution on a multi-processor

system.

Boothe [7] developed a debugging tool to record and replay a pro-

gram’s execution. The tool supports reverse debugging features such as back-

ward stepping and reverse breakpoint. It is based on compile-time instrumen-

tation. The tool creates checkpoints at regular intervals and also captures the

non-deterministic input through the system calls. To create a checkpoint, the
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tool leverages the operating system’s copy-on-write based forking mechanism.

The tool instruments all the system calls in the program to record the return

values from the system calls. However, the semantics of of each system call could

vary in terms of how they return their values. That is, the specifications about

the memory and register state side-effects of a system call varies across the system

calls. Therefore, the tool has to explicitly take care of each of type of system call.

Boothe in his paper [7] acknowledges the complexity of this solution. The tool

supported only 35 out of 262 system calls in the UNIX system. It cannot han-

dle asynchronous interrupts, memory-mapped I/O and DMA. The performance

overhead is less than a factor of two when compared to the native execution.

Chapter III presents a system-independent BugNet solution. It automatically

captures the input values through all of the system calls, interrupts and DMA

without having to explicitly take care of each of these sources of non-determinism.

jRapture: In jRapture [94], Java API classes that interact with the

JVM and the underlying system through JNI calls are modified to record the

non-deterministic input from the external system. But jRapture only records the

values returned by the system call (both return by value and reference). It does

not capture the side-effects to the application’s memory state. Also, it does not

record the interrupts, memory-mapped I/O and the values read through DMA.

Tornado: Tornado [19] requires modifications to the Linux operating

system’s kernels to trace the values written to the user space in the kernel mode.

In Linux, the operating system can write to the user memory space only through

a few write primitives defined in the code. Tornado instrumented these write

primitives to keep track of the user memory locations that are modified by the

system call. At the end of the system call, the tracer operating in the user space

invokes ptrace() system call to obtain all the user memory locations modified

by the system call and records the values for those locations. The performance
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overhead of Tornado is less than a factor of two. Tornado, however, does not

handle asynchronous interrupts, memory-mapped I/O and DMA.

Flashback: Flashback [91] provides operating system support for

rolling back a program’s execution and replaying it. It does not record a pro-

gram’s execution permanently. To rollback a program’s execution, Flashback

implements the following checkpoint mechanism. To create a checkpoint of a

process, Flashback forks the process similar to Boothe’s checkpoint implemen-

tation [7]. One of the two process is called the shadow process. The program’s

execution can be rolled back by restoring the state from the shadow process at

any later point. To replay from a checkpoint, Flashback needs to record the non-

deterministic input values from the system. Similar to Boothe’s implementation,

Flashback provides special attention to every type of system call to capture their

return values. Interrupts are also recorded and replayed. However, it does not

handle read and write to the memory-mapped locations that are shared between

multiple processes. A simple copy-on-write checkpoint for the shared-memory

locations wouldn’t be sufficient, because it would require that we replay all the

processes sharing the memory. Flashback, however, provides support for rolling

back and replaying only the application program being debugged, and not the

full system. While Flashback provides support for rolling back all the threads

of a multi-threaded program, it does not support deterministic replay of all the

threads after rollback even on a uniprocessor system. This is because it does not

record and replay the thread scheduling order.

ReVirt: Unlike the other systems we have described so far, ReVirt [26,

42] takes care of all forms of non-determinism in a uniprocessor system. The

recorder and the replayer are built inside the virtual machine monitor (UM-

Linux). Unlike the previous systems we described, it supports complete deter-

ministic replay of the entire virtual process and all the guest operating systems
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and applications that are running inside the virtual process. To achieve this,

ReVirt takes a checkpoint consisting of the entire virtual disk and the state of

the virtual process (this checkpoint mechanism was later improved using a copy-

on-write policy in TTVM [42]). After taking a checkpoint, ReVirt records all

the non-deterministic events and input read from the host system on which the

virtual process is running. (The reader can refer to Figure II.1, which shows the

computing stack where the virtual machine monitor lies below the host proces-

sor, hardware devices and the host operating system). ReVirt assumes that there

cannot be any inter-process communication between the virtual process and the

other processes running in the host system. Therefore, ReVirt does not record

all the non-deterministic events in the host system, but only those that affect the

virtual process and the applications running inside the virtual process.

When an interrupt is delivered to the virtual process, ReVirt records it

using a timestamp. ReVirt uses the number of branches executed after since the

last interrupt as the timestamp, which is calculated from the performance coun-

ters of the host processor. In addition to recording the timestamp, architectural

register contents of the virtual process are also logged.

In addition to recording the asynchronous interrupts, ReVirt records

the input read from the host system. This is done by intercepting all the host

system calls that could potentially read values from the host system. Apart from

the host system calls, instructions such as rdtsc (read timestamp counter) and

rdpmc (read performance counter) can return non-deterministic values and need

to be logged. ReVirt configures the process control register (CR4) to generate

a trap to the virtual process when any of these non-deterministic instructions

are executed. On receiving a trap, the return values of the non-deterministic

instruction is logged.

During replay, ReVirt ensures that the interrupts are delivered to the
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virtual process exactly at the same instruction. Like in the recording phase, Re-

Virt uses the performance counters to keep track of the current timestamp value

(branch count). Replay can be performed only on the hosts with the same proces-

sor type as the one used for recording because the implementation is dependent

on the performance counters.

Earlier version of ReVirt [26] did not handle memory-mapped I/O, DMA

and input read through privileged instructions such as IN/OUT instructions. Lat-

est version of ReVirt called TTVM (Time Traveling Virtual Machine) [42], how-

ever, takes care of these non-determinism. The authors of TTVM modified the

host OS’s memory-mapping and DMA allocation routines to invoke equivalent

system calls in the host operating system. TTVM sets page protection to all

the virtual memory locations that are either memory-mapped or allocated for

DMA transfer. On receiving a trap, TTVM records the value read from these

locations. This mechanism might be slow as it generates a trap for every read

to a memory-mapped location or a DMA read, but fortunately there are not too

many memory-mapped and DMA accesses in the systems they evaluated. TTVM

also supports a faster copy-on-write based checkpointing mechanism. The per-

formance overhead is on the order of 10%-15% and the space overhead is about

85 KB/sec for SPECweb99.

ReVirt or TTVM handles multi-threaded programs running inside the

virtual machine. This is possible, because the virtual process itself is replayed and

therefore the thread schedule inside the virtual process is deterministic. However,

it cannot support multi-processors as that would require support for recording

the order between the memory operations executed in the concurrent threads.
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II.D.3 Replaying Multi-threaded Program on a Uniprocessor System

The threads in a shared-memory multi-threaded program communicate

by reading and writing to the shared memory locations in the program’s address

space. The order of the reads and writes across the threads is non-deterministic.

Therefore, to replay a multi-threaded program, in addition to dealing with the

non-deterministic system interactions, we should also be able to take care of

the non-deterministic shared-memory reads and writes. This problem is easier to

solve, if we assume that the multi-threaded program is running on a uni-processor

machine. Because in that case, it is sufficient if we just record the scheduler de-

cisions [13, 81]. In the previous section we discussed ReVirt [26], which also

takes care of deterministic replay of a multi-threaded program on a uniprocessor

system. ReVirt was able to provide that support without recording the thread

schedules, because it deterministically replayed the entire virtual process respon-

sible for scheduling the threads. In this section we describe tools that do not have

the capability for full system replay, but still manage to replay a multi-threaded

program by recording the thread scheduling order.

DejaVu: DejaVu [13] is a record and replay infrastructure based on

run-time instrumentation. It is built on top of IBM’s Java Virtual Machine for

servers called Jalapeno.

DejaVu instruments some of the input functions such as Date() to

record the non-deterministic values read by the application from the system out-

side of the JVM. However, it does not record all possible non-deterministic input

from the external system. For example, it does not discuss support for file I/O,

DMA etc.

Jalapeno cross-optimizes the application code, the instrumentation code

and the run-time system (such as garbage collector). Hence, DejaVu has to make

sure that the recorder and the replayer’s instrumentation code invoke symmetric
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behavior in the run-time system. Also, during replay, a programmer might want

to examine the application’s execution state. DejaVu also needs to make sure

that the JVM is not perturbed when the replay is halted and the application’s

state is probed. To ensure this, during replay, the JVM running the application is

executed under another remote JVM. The remote JVM halts both the application

and its JVM before probing their state.

To handle multi-threaded programs, DejaVu records the order in which

threads are scheduled. Though the application’s thread are scheduled by the

JVM, the behavior of JVM itself is non-deterministic as its decisions are based

on the wall clock time read from the external system. Therefore, DejaVu records

the order in which threads are scheduled. The order is recorded using the current

count of the yield points, which are the pre-determined points in a program’s

execution where there can be a context switch. However, this is not sufficient for

replaying races between the threads running on a concurrent system.

In summary, DejaVu can replay multi-threaded program’s on a unipro-

cessor system. DejaVu does not ensure deterministic replay for uni-processor

systems, however, as it does not handle file I/O, etc. Further, DejaVu does not

support intermediate checkpoints, and so the replay has to start from the begin-

ning of a program’s execution. Therefore, time travel debugging is not possible.

RSA: Repeatable Scheduling Algorithm (RSA) [81] also focuses on

recording the order in which threads are scheduled to record a shared-memory

multi-threaded program executing on a processor machine. RSA is based on op-

erating system support (Mach OS) for capturing the context switches. It also

requires compile-time instrumentation to keep track of the instruction count (up-

dated at every backwards branch), which is used to record the time of a context

switch. This approach incurs an overhead of 10-15%, higher than DejaVu which

uses yield counts instead of the instruction counts for recording the thread sched-



29

ules. RSA does not discuss any support for reproducing non-deterministic input

read from the external system such as from the I/O devices, clocks, etc. Also,

like DejaVu, it does not provide intermediate checkpointing support necessary

for time travel debugging.

II.D.4 Recording Multi-threaded Programs on a Multi-Processor Sys-

tem

All the approaches that we have described so far cannot replay a multi-

threaded program’s execution on a multi-processor system. The basic require-

ment to solve this problem is that the races (both synchronization and data races)

in multi-threaded programs are recorded and replayed. In this sub-section, we

discuss techniques that address this problem.

Recap: Recap [68] instrumented every shared read at compile-time

and recorded its value during the program’s execution. This solution can replay

a multi-threaded program. But still it does not provide the order between the

memory operations executed across all the threads. Also, tracing the value of

every shared-memory read is prohibitively expensive in terms of both log size

and performance overhead [18].

InstantReplay: Instead of recording the values of shared-memory

reads, InstantReplay [44] recorded the order in which the shared-memory objects

were read and written by the threads. This was achieved by forcing every shared-

memory access to a shared object through a procedure/stub. The stub acquires

the lock for accessing the shared object, updates the version number if the access

is a write, and then records the version number in the log file. InstantReplay

is suitable for systems where the objects are shared at a coarser level (through

monitors and message queues). However, performance degradation and space

overhead when the program uses fine-grained shared memory accesses can be
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severe. Also, it relies on the assumption that the shared accesses will acquire

locks in the proper order. If there are data races, however, they will not be

recorded and replayed correctly. Netzer [64] proposed an optimization to reduce

the number of logs by using the transitivity property. That is, an order is not

recorded if that order is transitively implied by the earlier logs. We will discuss

this technique in more detail in Chapter IV.

RecPlay and JaRec : The size of the logs containing the order be-

tween the shared-memory operations was further reduced using Lamport clocks

per objects in RecPlay [79]. RecPlay uses a JIT to instrument the synchroniza-

tion operations. It records only the order between the synchronization operations.

Therefore it cannot deterministically replay the data races. JaRec [33] imple-

mented a similar to solution that efficiently logs the order between the shared-

memory access within a JVM. Neither RecPlay nor JaRec can deterministically

replay a multi-threaded program with data races.

TraceBack: TraceBack [4, 96] is a static instrumentation based tool

that collects and reconstructs control flow information of multi-threaded appli-

cations. It cannot replay a program. However, a programmer can trace through

the control flow of the program. TraceBack collects a trace containing the con-

trol flow information for each thread separately. The traces collected in all the

threads are ordered using timestamps (processor’s clock is used as a timestamp).

A timestamp is recorded at every synchronization point in the program’s ex-

ecution. If any two execution regions in two threads are not ordered by any

synchronization, then TraceBack will not be able to order the records collected

for those two execution regions. This limitation might make it difficult to under-

stand the data race bugs. TraceBack’s performance overhead is about 5%-60%,

when compared to all other software-based tools, it is more suited for tracing and

debugging production runs on multi-processors. However, since TraceBack does
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not support replay, it cannot support many functionalities of deterministic replay

such as time travel debugging, offline dynamic analysis, etc., that we discussed

in Section II.B.

II.D.5 Hardware Support for Replaying Multi-Processor Systems

One of the first hardware techniques for supporting deterministic replay

for a program executing in a multi-processor system was proposed by Bacon

and Goldstein [5]. Their design was for a bus based system. They observed

that dependencies between the threads executing in a multi-processor system

can be captured by monitoring the coherence messages on the bus. However,

they recorded all the coherence traffic on the bus, which resulted in prohibitive

space overhead. Also, their system cannot handle non-determinism due to the

system interactions.

The amount of information that needs to be logged to record the mem-

ory access ordering can be reduced by applying the Netzer’s transitive optimiza-

tion [64]. FDR [104, 106] is a hardware design that implements the Netzer transi-

tive optimization in a directory based system. FDR adopts the SafetyNet [89], a

copy-on-write checkpoint mechanism, for retrieving a consistent full system state

corresponding to a prior instance in time. Additionally, it records all the inputs

coming into the system (I/O, interrupts, DMA transfers) to enable replaying.

With this recorded information, starting from the retrieved full system state, the

original program execution can be replayed.

ReEnact provides an approach for rolling back and replaying the execu-

tion using thread level speculation support [74]. Its main goal is to dynamically

detect data races. CORD [73] extends ReEnact to efficiently capture some, but

not all, of the RAW dependencies in a snoop based system in order to detect data

races.
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II.D.6 Discussion

There is a long history of research to support record and replay of a

program’s execution mainly to support debugging. However, very few systems

supported complete deterministic replay in the presence of system calls, inter-

rupts, DMAs, memory-mapped I/O and races in multi-threaded programs.

ReVirt [26, 42] based on virtual machine support achieves accurate de-

terministic replay for a uni-processor system. Also, it is efficient both in terms

of space and run-time overhead for recording and replaying. However, it has to

take care of all the corner cases that could lead to non-deterministic behavior

in the virtual process and the applications running inside the virtual processor

(eg: DMA, memory-mapped I/O, instrument every system call that could read

input from the system, privileged instructions that read non-deterministic input

from the external system etc.). As a result, much of the implementation is tied

to the specific guest and the host operating system and even the processor type.

In theory, it is possible to use the same solution and port the system. However,

in practice, it is a tedious exercise, because each system configuration can give

rise to unique sources of non-determinism and the system needs to take care of

them. Also, ReVirt does not support multi-processor replay.

FDR [104, 106] is a hardware design that primarily focuses on captur-

ing the order between the shared memory operations to support multi-processor

replay. The non-deterministic input from the system is recorded using a solu-

tion that is pretty much same as in ReVirt, in that every possible source of

non-determinism is identified and recorded. For a hardware-based solution, it is

desirable to have a solution that is completely system-independent so that the

processor feature can be used across diverse system environments. Also, a system

independent solution will enable replay of a recorded execution across different

system environments, which is important for replaying remote system failures.
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This thesis proposes a logging and checkpointing solution that is system-

independent. It is based on efficiently recording the values of the load instruc-

tions. Our load-based checkpoint mechanism is operating system independent.

Therefore, it is relatively easy to develop and maintain. Also, it naturally handles

DMA, memory-mapped I/O and other such system interactions. Further, it can

deterministically replay multi-threaded programs running on a multi-processor

system. We discuss the hardware implementation of this checkpointing and log-

ging solution in Chapter III. The software implemenation of this solution can be

found here [58]. In parallel with our development of BugNet, Bhansali et al. [6] at

Microsoft developed a tool called iDNA to support deterministic replay using a

load-based checkpointing scheme. However, they did not focus on precisely cap-

turing the shared memory dependencies, which we can capture using our BugNet

software tool. This thesis discusses a dynamic analysis tool that we built based

on iDNA in Chapter V. The tool can automatically find data races and prioritize

them by filtering out the potentially benign data races.

This thesis also proposes a solution to record the shared-memory de-

pendencies efficiently using processor support in Chapter IV. Unlike FDR [104],

the proposed strata-based solution is applicable for snoop-based systems and the

log sizes are 12 times smaller.

II.E Processor Support for Debugging and Software Cor-

rectness

Historically, processors have in fact provided support for debugging and

detecting programming errors. Myers talks about architectural features for im-

proving software reliability in his book published in 1978 [55]. His book discusses

architectural support for detecting uninitialized variables, type violations, access-

right violations, checking if the value of a variable is within an expected range,
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etc. Some of these features were actually implemented in the Burroughs B1700

processor [67].

Johnson [40] discussed the requirements for architectural support for

debugging, primarily for designing interactive debuggers. He discussed a range of

features for implementing an interactive debugger with breakpoints and watch-

points. In this section, we first discuss about the support that exist in modern

processors for efficiently implementing breakpoints and watchpoints in an inter-

active debugger. Then we discuss the recent research proposals for providing

processor support for dynamically checking the correctness of the program’s ex-

ecution.

II.E.1 Support in the Modern Processors for Breakpoints and Watch-

points

One common support that is found in many current day processors [39,

41, 90] is the support for breakpoints and watchpoints which are used in inter-

active debuggers like gdb [92]. Breakpoints and watchpoints enable the user to

control the execution of the program and monitor the execution state. Using

breakpoints, the debugger can stop the program execution when the execution

reaches a particular point in the source code. Watchpoints on the other hand are

useful to monitor accesses to arbitrary memory locations. Hardware can enable

efficient implementations of these breakpoints and watchpoints by providing a set

of dedicated registers that can hold the addresses of the instructions (to support

breakpoints) or the memory locations (to support watchpoints). Whenever an

instruction is executed, the address of the instruction or the address of the mem-

ory operand is compared against the contents of the special registers. If there is

a match, then the control is transferred to the debugger and eventually to the

user.
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Unfortunately, current processors support only a limited number of reg-

isters for this purpose and hence the number of breakpoints or watchpoints that

can be implemented using them are also limited. If the user needs more break-

points or watchpoints, then the debugger has to single step through the program.

Single stepping involves context switching to the debugger after executing every

instruction of the program that is being debugged. The debugger is responsi-

ble for making the address comparisons once it gets back the control. Clearly,

single stepping would incur a very high performance overhead and affects the

inter-activeness of the debugger.

Another drawback of the existing hardware schemes is that they do

not support conditional breakpoints and watchpoints. In the case of conditional

breakpoints and watchpoints, it is just not enough to compare the addresses

before stopping program execution, but in addition, a user specified condition

needs to be satisfied. Existing hardware mechanisms cannot check these user

conditions and hence, the control has to be transferred to the debugger whenever

an address match is found.

Recently, Corliss et al. [17] proposed a hardware mechanism called DISE

to implement a number of conditional breakpoints and watchpoints that can be

used to implement fast interactive debuggers.

II.E.2 Processor Support for Software Correctness

Apart from providing support for offline debugging through breakpoints

and watchpoints, it is also important to develop techniques to debug those bugs

that occur at the customer site. The reason for this is that, even after extensive

Quality Assurance process, a complex software system built today still contains

significant number of bugs. These software bugs account for nearly 40% of com-

puter system failures [51] and according to NIST [97] they cost the U.S. economy
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an estimated $59.5 billion annually!

While we may have to live with the fact that bugs are unavoidable

in complex software, we can try to ameliorate the problem by incorporating

safety checks and dynamic bug detection mechanisms during production runs.

Obviously, the performance overhead due to these mechanisms should be minimal

if we want them to be used in production runs and here is where hardware can

play an important role.

Software reliability can be improved by dynamically monitoring the pro-

gram execution and verifying various properties. The goal is to dynamically de-

tect a bug so that we can prevent the bug from corrupting the system state and

potentially even recover to a consistent system state [69, 89]. Memory access vio-

lations are considered to be the most common form of bugs [95], especially in the

case of unsafe languages like C/C++. Hence, there has been considerable interest

in providing architecture support to detect memory related bugs [111, 110, 76].

iWatcher [111] provides sophisticated watchpoints to debug applications. It as-

sociates tags with memory locations, and when these locations are accessed, a

specific function is executed to perform monitoring. SafeMem [76] and Acc-

Mon [110] are other recent proposals that provide architectural support to catch

memory violations dynamically during program execution.

Apart from causing incorrect program behavior for certain inputs, mem-

ory related bugs also open up opportunities for attackers to subvert the security

of the system [102]. For example, if the accesses to arrays or in general pointer

accesses are not guarded properly then they can be exploited by an attacker to

launch buffer overflow attacks which are the most common form of attacks [82].

Software based solutions such as PointGuard [20], StackGuard [21] try to pre-

vent buffer overflow attacks with the goal of improving software security but they

cannot protect against all buffer overflow attacks. Recently Tuck et al. [99] pro-
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posed architecture support to improve PointGuard. There are several architecture

mechanisms focused on just preventing buffer overflow attacks [45].



III

BugNet: Deterministic Replay of

a Uni-Processor System

Chapter II described what deterministic replay of a software system is,

and motivated the need for supporting deterministic replay. Section II.C dis-

cussed various challenges in supporting deterministic replay. First challenge is

to provide an efficient mechanism for creating checkpoints at regular intervals

during a program’s execution. The second challenge is to capture all forms of

non-deterministic input read from the system that is external to the recorded soft-

ware system. The third main challenge is to record and replay the synchronization

and data races in a multi-threaded program that is running on a multi-processor

system. This chapter provides a processor-based checkpointing and logging solu-

tion called BugNet that solves the first two problems. Chapter IV will address

the third challenge.

The BugNet checkpointing and logging solution presented in this chap-

ter assumes processor support. BugNet primarily focuses on deterministically

replaying the instructions executed in the user code and the shared libraries, and

not the full system. BugNet, however, allows replaying an application across in-

38
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terrupts and system calls. Deterministic replay of the user code and the libraries

is sufficient for debugging a significant number of application-level bugs. The

processor-based BugNet solution incurs less than 1% overhead when compared

to the native execution, and therefore is useful for recording even the production

runs.

This chapter is organized as follows. Section III.A discusses Flight Data

Recorder’s (FDR) [104] checkpointing and logging solution for capturing non-

deterministic system input. We choose to compare our solutions with FDR, be-

cause to our knowledge, FDR is the only system that attempts to provide support

for deterministic replay in the presence of all forms of non-determinism, includ-

ing support for multi-processor replay. Also, FDR’s performance overhead is low

enough that it is suitable for capturing bugs even in the production runs, which

is one of our goals. Section III.B presents the BugNet architecture. Section III.C

quantifies how much a program’s execution need to be recorded to debug a major-

ity of the bugs. Also, it analyzes the space and performance overhead of BugNet’s

solution, and compares BugNet with FDR. Section III.D presents a few of ex-

tensions to the BugNet architecture for handling self-modifying code, handling

interactive applications with frequent interrupts and supporting deterministic re-

play of operating system code. Section III.E discusses how and when BugNet logs

would be collected. It also discusses an implementation of a replayer based on

BugNet’s logs and how it would be used for debugging. Section III.F concludes

this chapter.

III.A Flight Data Recorder

The goal of FDR [104] is to provide architectural support for determin-

istically replaying the last one second of the full system execution that preceded a

system crash. FDR supports full system replay. That is, it can replay the execu-
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tion of the operating system code in addition to the user code and shared libraries.

This includes deterministic replay of interrupts and system call routines.

FDR continuously records three kinds of information:

• Checkpoint Information - FDR creates checkpoints at regular intervals (let

us call it checkpoint intervals) during a program’s execution. To create

a checkpoint, FDR uses the SafetyNet checkpoint mechanism [89]. The

checkpoint provides a consistent main memory state from where one could

start the replay. SafetyNet is a copy-on-write mechanism for checkpointing

the state of the main memory. To create a checkpoint, instead of taking

a snapshot of the entire main memory state, just the registers of all the

processor context is logged. After that, whenever a memory location is

modified for the first time, the value that is the over-written is logged. Using

the final main memory state and the checkpoint logs, it is possible to rebuild

the entire state of the main memory at the beginning of the checkpoint

interval. Note that this would require a snapshot of the final state of the

entire memory state.

• Interrupts and External Inputs - To deterministic replay the execution from

the beginning of a checkpoint interval, FDR records all the interrupts (with

a timestamp), input read from all the I/O devices, and DMA transfers.

Separate hardware buffers are used to record values read from each input

device. Like we pointed out in Section II.D, such an approach is complex to

implement because of the several possible sources of non-determinism. Also,

an implementation of such a solution would be dependent on the particular

operating system and external hardware devices.

• Memory Races - To replay a multi-processor system, order of memory ac-

cesses across all the processors is recorded using an additional Memory Race
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Buffer (MRB). This is based on Netzer’s transitive optimization [64]. Chap-

ter IV in this thesis discusses an alternative solution based on Strata.

On average, the combined size of all of the FDR’s logs is about 34

MB [104] (after compression using LZ compressor [112]) to replay 1 sec of exe-

cution of a processor node. The amount of hardware state required to collect all

the required information to enable full system replay is about 1.3 MB of on-chip

hardware and 34 MB of main memory space. In addition, the final snapshot

of the entire physical memory image is required to rebuild the initial state of a

checkpoint interval. This could be on the order of 1 GB depending on the mem-

ory footprint of the application and the size of the main memory chip used in

the system. BugNet, however, does not require the final snapshot of the entire

memory state. Also, the on-chip hardware required to support BugNet’s check-

point and logging solution is lesser (on the order of 48 KB). More importantly,

BugNet solution based on recording the values of load instructions is a system

independent solution. Therefore, BugNet’s implementation can be used to record

execution on any operating system and system configuration, which is important

for a processor-based feature. Also, a program recorded on a particular operating

system can be replayed on any other operating system as the logging and replay

solution is system-independent.

III.B BugNet Architecture

This section first gives an overview of the BugNet architecture, and then

discusses each component of the BugNet architecture in detail.

III.B.1 BugNet Architecture Overview

BugNet is a checkpointing and logging solution for supporting deter-

ministic replay. It focuses on recording the execution of the user code and shared
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Figure III.1: BugNet Architecture.

libraries, which is sufficient for debugging a significant number of bugs in the ap-

plication code. BugNet does support deterministic replay of the user code across

interrupts and system calls. But, the developer will not be able to analyze what

goes on during the execution of these interrupts and systems call routines because

they are not executed during deterministic replay of the user code. Section III.D.3

discusses how BugNet can be extended to support deterministic replay of oper-

ating system code as well.

BugNet logs sufficient information to capture all forms of non-deterministic

input read by the user code and the shared libraries from the external sys-

tem (through system calls, interrupts, DMA, memory-mapped I/O, and non-

deterministic instructions). If a thread in a shared-memory multi-threaded pro-

gram reads a value written by another thread, that value is also logged. Only

the order between the memory operations executed in concurrent threads is not

logged by BugNet. Chapter IV discusses a solution to solve this problem.

In BugNet, a new checkpoint is created at the beginning of each check-

point interval to allow execution to be replayed starting at the first instruction of

the interval. Therefore, a checkpoint interval represents a window of committed
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instructions that is captured by the checkpoint being logged. During tracing, a

maximum size (number of committed instructions) is specified for the checkpoint

interval. When this limit is reached, a new checkpoint interval is initiated. But

a checkpoint interval can be prematurely terminated on encountering an inter-

rupt or a context switch. During a checkpoint interval, enough information is

recorded in a log to start the replay of the program’s execution at the start of

that checkpoint interval.

BugNet is built on the observation that a program’s execution is es-

sentially driven by the values read when executing load instructions. Hence, in

order to replay a checkpoint interval, one needs to record just the initial register

state and then record the values of load instructions executed in that interval.

During a checkpoint interval, the memory values could have been modified by

the interrupts, especially the I/O interrupts and the DMA transfers. In the case

of shared-memory multi-threaded programs, the shared memory could have also

been modified by other threads during a checkpoint interval. However, by log-

ging the load values, we ensure that we have recorded information required for

deterministic replay. The recorded information include any memory values that

were updated by the interrupt handlers or by other threads in a shared memory

processor.

Figure III.1 shows the major components in the BugNet architecture.

Components shaded in gray are the new additions to the baseline architecture

of a modern processor. BugNet operates by creating checkpoints at the begin-

ning of checkpoint intervals. At the start of a checkpoint interval, a snapshot of

the architectural state is recorded in the Checkpoint Buffer (CB). The recorded

architectural state includes the program counter and register values. After ini-

tialization, whenever a load instruction is executed, a new log entry is created to

record the load value. All this is stored in the CB.
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Recording the result value of every load instruction would clearly be

expensive in terms of both space and performance overhead. But we note that

a load value needs to be recorded only if it is the first access to the memory

location in the checkpoint interval. The result value of the other loads can be

trivially generated during replay. To support this optimization, BugNet uses a

bit with every word in the cache. The bit is set when the word is accessed for

the first time and the value is logged. Later accesses to the word are not logged

as the bit would be set. When applying this optimization, special care needs to

be taken to handle interrupts and shared memory accesses by remote threads. If

a memory address is modified by these external entities in the system, BugNet

makes sure that the future load reference to that address is logged. In order

to further optimize the trace size, BugNet uses a dictionary based compressor,

which is shown in the Figure III.1. The compressor exploits the frequent value

locality in load values [107].

The log that contains the load values and the initial architectural state

information for a checkpoint interval is referred to as the First-Load Log (FLL).

The information recorded in the FLL for a checkpoint interval is sufficient to

replay that interval. This allows us to re-execute the instructions with exactly the

same input and output register and memory values as in the original execution.

This is true even in the case of multi-threaded programs, because the FLL for a

thread contains the necessary information to replay each thread independent of

the other threads. In order to debug data races between these threads, we need

to record additional information to reproduce the ordering of memory operations

across the threads. We use the Memory Race Buffer (MRB) to record such

information in a log called Memory Race Logs (MRL). Chapter IV discusses how

the memory ordering information is recorded in the MRB.

The CB and MRB are FIFO queues that are memory backed to al-
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low the collection of larger logs than can be stored in these dedicated hardware

buffers. The operating system provides support for managing the memory space

that needs to be allocated for BugNet’s use. The goal is to continuously log

program execution. If the allocated memory space is exhausted, some recorded

information need to be discarded so that part of the memory can be freed up

and used for recording the latest execution of the program. However, while free-

ing up the memory we need to make sure that whatever log that is left is still

usable for replaying a portion of program’s execution. Thus, BugNet creates

checkpoints at regular intervals. When the allocated memory space fills up, the

logs corresponding to the oldest checkpoint for a thread are discarded.

In Section III.C we analyze the bugs in the open source programs and

determine that an ability to replay the last 10 million instructions before a pro-

gram’s crash is sufficient for debugging a majority of the bugs. The allocated

memory/disk space for recording a program’s execution should be able to hold

sufficient information for replaying at least 10 million instructions. This ensure

that when the program crashes, we would have mostly likely captured adequate

information for debugging the crash.

The space allocated for recording BugNet logs can be increased by

spilling over the logs from the main memory to the disk. That is, instead of

discarding the logs corresponding to the oldest checkpoint, when the allocated

main memory space is full, those old logs can also be written to a disk in the

system.

When the operating system detects that a program has encountered

a fault, before terminating the application, the OS first records the instruction

count of the current checkpoint interval and the program counter of the faulting

instruction in the current FLL and then stores all the logs collected for that

application to a persistent storage device. The logs would be then sent back to
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the developer for debugging. BugNet is also useful for recording a program’s

execution at the developer’s site during testing and development. Deterministic

replay enables travel debugging capabilities and offline dynamic analysis discussed

in Chapter II.B.

III.B.2 Checkpoint Scheme

For checkpointing, the program’s execution is divided into multiple

checkpoint intervals, where the interval length is specified in terms of the number

of instructions executed. At the end of a program interval, the current checkpoint

is terminated and a new one is created. In addition, interrupts and system calls

can also terminate a checkpoint interval, which we will describe later. Finally, an

exception in the execution would terminate the checkpoint interval and initiate

the collection of logs. The logs would then be sent back to the developer for

debugging.

A new checkpoint is recorded by creating a new FLL delimiter in the

Checkpoint Buffer (CB) and initializing the checkpoint interval’s FLL with the

following header information:

• Process ID and Thread ID - are required to associate the FLL with the

thread of execution for which it was created.

• Program Counter and Register File contents - are needed to represent

the architectural state at the beginning of the checkpoint interval. This

information will later be used by the replayer to initialize the architectural

states before beginning to replay the program execution using the recorded

load values.

• Timestamp - is the system clock timer when the checkpoint was created.

This is useful for ordering the FLLs collected for a thread according to their

time of creation.
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The FLL after getting initialized with the above information will be

appended with the output values of the load instructions executed during the

checkpoint interval.

III.B.3 Tracking Load Values

Within a checkpoint interval, a load accessing a memory location needs

to be logged only if it is the first access to that memory location. The values of

other loads can be re-generated during replay. Logging just the “first-loads” to a

memory location will significantly reduce the number of load values that need to

be recorded. In order to do this optimization, we associate a first-load bit with

every word in the L1 and L2 caches. At the start of a checkpoint interval all

these bits are cleared. When a load accesses a word for which the bit is not set,

then the load value will be logged in the Checkpoint Buffer, and the bit is turned

on. If the bit is set for a word in the cache, then it implies that the value of that

word has already been logged, and hence, future load accesses to it need not be

logged.

This approach is adapted from FDR [104]. FDR’s goal was to track

the first store to a particular location during a checkpoint interval, and to log

the value that is overwritten while executing the first store. FDR focused on

stores, because it uses the store values to repair the final core image to retrieve

the memory state at the start of a checkpoint interval. For BugNet, if the first

access to a particular memory location is a store then we would set the bit and

not log the value of the store. The future load accesses to this memory location

would not be logged as well, as the bit would be set. The store values are not

logged, and this mechanism works, because the stores and their values will be

reproduced during replay.

When a cache block is replaced from the L2 cache, all the first-load bits
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associated with the words in that cache block will be cleared. Therefore, logged

values for addresses (blocks) evicted from the L2 will be re-logged when the block

is brought back in and those same addresses are accessed again. The first-load

bits in the L2 cache are used to initialize the first-load bits in the L1 cache when

bringing in a block to the L1 from the L2. When an L1 block is evicted, its

first-load bits are stored into the first-load bits of the L2 cache.

The above first-load optimization will be effective for long checkpoint

intervals. This is because the greater the number of loads/stores executed, the

higher the probability that a memory location has already been logged. As a

result, the amount of information recorded to replay an instruction will decrease

with longer checkpoint intervals.

During replay, we need to determine whether the value for a load in-

struction is recorded in the log or not. If it is recorded, then the load executed

during replay needs to get its value from the FLL. If it was not recorded then

it is certainly not the first access to the memory location that it is accessing.

By simulating memory state during replay, the value can be obtained by reading

from the simulated memory state. To determine when to consume a load value

during replay, as part of each log entry we have a field to specify the number

of load instructions that were skipped since the last load instruction was logged.

The following is the format of each log entry in the checkpoint to record the

information for the load instruction:

(LC-Type, Reduced/Full L-Count,

LV-Type, Encoded/Full Load-Value )

The second field, Reduced/Full L-Count, represents the number of load

instructions skipped (not logged) between the current load instruction being

logged and the last load instruction logged. To record the full L-Count value,

one would require log(checkpoint interval length) bits, since the L-Count
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cannot be greater than the maximum checkpoint interval size used. We found

that the majority of L-Count values can be represented using just 5 bits. Hence,

we record L-Count using 5 bits whenever its value is less than 32. If the L-Count

value exceeds 32, then we resort to recording the full L-Count value. The logs

that contain the full L-Count values are distinguished from the logs that contain

the 5-bit L-Count values by using one additional bit, the LC-Type.

The fourth field, Encoded/Full Load-Value, is used to record the load

value. Again, we try to avoid recording the full 32-bit load value. To achieve

this, we use a 64-entry dictionary that captures the most frequently occurring

load values. If the load value is found in the dictionary, then we use 6 bits to

represent the position of the value in the dictionary. If the load value is not

found, then the full 32-bit value is recorded. LV-Type is the bit that is used to

distinguish between the two cases.

To track load instructions we just record their output values in the log.

Neither the effective address nor the address of the PC of the load instruction is

logged, since they can be produced during replay of the thread’s execution. In

Section III.E we describe the replaying mechanism in detail.

Dictionary-based Compressor

In BugNet, the load values are compressed using a dictionary based

compression scheme. It has been shown in [107] that the load values exhibit

frequent value locality. That is, over 50% of all the load values can be captured

using a small number of frequently occurring values. In addition, value predictors

have been shown to provide impressive compression ratios [11].

In our approach, a 64-entry fully associative table, called the Dictionary

Table, is used to capture these frequently occurring load values. The dictionary

table is emptied at the beginning of the checkpoint interval and is updated with
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the execution of each load instruction. Before logging a load value into the

FLL, the value is looked up in the dictionary table. If there is a hit, instead of

storing the full 32-bit value, we will store a 6-bit encoding. The 6-bit encoding

corresponds to the rank of the value in the dictionary table. In our design, the

rank corresponds to the index into the dictionary table used to find the matching

value.

In a checkpoint interval, the dictionary table will be continuously up-

dated as load instructions are executed. As a result, the position of a value in

the dictionary table can keep changing during an interval. Therefore, the en-

coding that we use to compress a value can change over the course of a FLL.

This is valid since we simulate the dictionary state during replay. During replay

we know the initial dictionary state (which is the empty state) at the start of

a checkpoint interval, and all the subsequent executed load instructions update

the table. Therefore, at any instant of time, while executing a load instruction

during the replay, the state of the dictionary table will be the same as its state

during the original execution.

For every load that gets executed within the interval, the dictionary

table will be updated as follows. Each entry in the table has a 3-bit saturating

counter to keep track of the frequency of the value stored in the entry. When a

load value is found in an entry in the dictionary table, the 3-bit saturating counter

corresponding to that entry is incremented until it saturates. If the updated

counter value is greater than or equal to the counter value of the previous entry

in the table, then the two values will swap their positions (rankings) in the table.

This ensures that very frequently occurring values will percolate to the top of

the table. When a load value is not found in the dictionary table, then it is

inserted into the entry with the smallest counter value. If there are multiple

candidates, then the entry occupying the lowest position in the table is chosen
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for replacement.

III.B.4 Handling Interrupts and Context Switches

Interrupts can be either asynchronous or synchronous. Asynchronous

interrupts are caused by sources external to the executing application code, like

I/O and timer interrupts. On the other hand, synchronous interrupts (also com-

monly referred to as traps) are triggered while executing program instructions.

Reasons for traps include arithmetic overflow exceptions, invoking a system call

or an event like a page fault.

Since our goal is to replay and debug only the application code, we

do not record what goes on during any interrupts. So we do not record the

output of load instructions executed as part of the interrupt handler and operating

system routines servicing the interrupts. Nevertheless, we need to track how the

interrupt affects the execution of the application. Interrupts are likely to modify

the memory state (e.g. I/O interrupt) and they can even change the architectural

state of the program’s execution by modifying the program counter or registers.

A straight forward solution is to solve this problem by prematurely

terminating the current checkpoint interval on encountering an interrupt and

create a new one when the control returns to the application code. If we create a

new checkpoint after servicing the interrupt, we are guaranteed to have the right

program counter value, as it will be initialized in the header of the new FLL.

Also, the bits used to track the first-loads would have been reset, thus ensuring

that the necessary load values are logged to replay the instructions that were

executed after the interrupt. The architecture that we model while discussing

our results in Section III.C assumes this approach.

A more aggressive solution would be to allow the first-load bits to be

tracked across the checkpoints and interrupts. This would help in reducing the
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number of load instructions logged, when restarting a new checkpoint after the

interrupt. The solution needs to make sure that the first-load bits are correctly

invalidated when the memory state is updated during the interrupt or context

switch. This approach is discussed in more detail in Section III.D.3 along with

a solution for recording and replaying the execution of operating system code as

well.

III.B.5 Handling External Input

The mechanism described in the previous section to handle interrupts

is adequate to handle I/O interrupts as well. A memory mapped I/O mechanism

works by mapping the address space of a device to the program’s virtual address

space. The values are read from the device through load instructions using the

virtual address corresponding to the program’s address space. These memory

locations will not be cached in the processor. Therefore, the value of every load to

a memory-mapped I/O device is logged. Similarly, the values of all non-cacheable

loads are also logged.

The OS can initiate a DMA transfer to service an I/O system call. In

such cases, the control will return to the application code but the DMA transfer

can proceed in parallel. Like in FDR [104], we assume that a DMA write would

use the underlying cache coherency protocol and invalidate the cache block in

the processor executing the application. This would ensure that the bits used for

the first-load optimization are reset. Thus, the values in the modified memory

location would be recorded later when they get referenced by an application load.

Our scheme of recording only the first-load values avoids logging the data

copied into the process’s address space until it is referenced in the application.

Even though a large amount of data can get copied into the process’s address

space, not all of it will necessarily be used by the program execution preceding
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the crash. Our scheme ensures that we log just the necessary values that are in

fact consumed by those instructions that need to be replayed later.

III.B.6 Support for Multi-threaded Applications

We assume a shared memory multiprocessor system to execute multi-

threaded programs. In shared memory multi-threaded applications, remote threads

executing on other processors can modify the shared data within a checkpoint

interval. This problem is the same as the one that we discussed regarding DMA

transfers. When a shared memory location is modified by a remote thread, the

corresponding cache block will be invalidated before the update. This would reset

all the bits used to track first-loads to that cache block. As a result, future load

references to the same cache block would result in recording the value written by

the remote thread in the FLL.

The FLL corresponding to a checkpoint interval is sufficient to replay

the instructions executed in that interval. This is true even in the case of multi-

threaded applications. Any thread can be replayed independent of the other

threads as we would have recorded all the input values required for executing

that thread. However, in order to assist debugging data races one would require

an ability to infer the order of instructions executed across the threads. Chap-

ter IV discusses the solutions to record the order between the memory operations

executed in concurrent threads. This information is recorded as the Memory

Race Log (MRL) in the Memory Race Buffer (MRB) shown in Figure III.1. In

this section we describe only how BugNet’s FLL checkpoint logs and MRL logs

are collected and correlated during replay.

FDR’s [104] checkpoint mechanism uses barrier synchronization to sup-

port shared memory multi-threaded applications. The mechanism ensures that

the checkpoint intervals across all the threads start at the same instant of time.
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This approach is not desirable in our BugNet architecture because of its over-

head in terms of performance, especially when we want to create checkpoints

with a smaller interval length. Moreover, we want to have the flexibility of ter-

minating a checkpoint independent of other threads, like when interrupt events

are encountered. Hence, we allow the threads to create and terminate check-

points intervals independent of the other threads. As a result, the checkpoint

intervals across different threads may not start at the same time. To support

asynchronous checkpoints across threads, we record checkpoint identifiers as part

of every memory race log entry, as described in the next section.

Memory Race Log

The purpose of the Memory Race Log (MRL) is to log the shared

memory dependencies between the threads in a multi-threaded program. Chap-

ter IV discusses how MRL is collected in directory-based and snoop-based multi-

processor systems.

III.B.7 Memory Backing

The First-Load Logs stored in the Checkpoint Buffer and the Memory

Race Logs stored in the Memory Race Buffer (MRB) are memory backed at two

different locations in memory. The amount of memory space devoted for this

purpose is managed by the user and/or the operating system to ensure that the

performance impact is within tolerable limits. The amount of memory space and

disk space devoted for BugNet logs will determine the number of instructions

that can be replayed.

The contents in the on-chip buffers are lazily written back to the main

memory whenever the memory bus is idle. Since we compress the log entries as

they are generated, the contents in the buffer are lazily written back to memory
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at any point. This memory backed solution can potentially impact the memory

bandwidth requirements due to extra traffic to main memory. When the processor

is accessing main memory on encountering a cache miss, it will most probably be

stalled waiting for data to be obtained from the main memory. Thus, the rate at

which loads are logged in the FLL will be reduced. We found when simulating

the SPEC benchmarks that there is sufficient bandwidth to write the logs back

to memory when the memory bus is idle, and the on-chip buffers need to be only

large enough to hold bursts in the logging.

III.B.8 On Detecting a Fault

The operating system will know when the program executes an instruc-

tion that causes the thread to be terminated. An arithmetic exception due to

division by zero or a memory operation accessing an invalid address are some

examples that can trigger the program to crash. Once the operating system de-

tects that the program has executed a faulting instruction, it records the current

instruction count and the program counter of the faulty instruction in the FLL.

This is used to determine when to stop replaying and to correctly identify the

faulty instruction. Then, the OS collects the FLLs and MRLs corresponding to

the application from the main memory and hardware buffers. It scans through

the headers of all the logs and uses the process identifier in the header to identify

the logs that correspond to the application. These logs are more useful for de-

bugging than the traditional core dumps that today’s operating systems collect

when a program crashes. The usage models for BugNet logs for debugging are

discussed in Section III.E.
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III.C Results

BugNet is based on the principle that the bugs can be reproduced,

isolated and fixed by replaying a window of the program’s execution that imme-

diately preceded the crash. Though debugging by replaying the program is con-

sidered to be an effective technique in the software engineering community [7, 78],

there has been no study on the length of the replay window of execution required

to capture a majority of the bugs. In this section, we first quantify this length

by studying popular desktop applications. This study reveals that replaying 10

million instructions is adequate to debug a significant number of bugs. Based on

this result, this section analyzes the trace sizes and the amount of hardware re-

sources that need to be allocated for BugNet. This section also compares BugNet

with FDR [104].

III.C.1 Methodology

To evaluate BugNet, we use a handful of programs from the SPEC 2000

suite to evaluate the online compressor and to analyze the size of the log required

for different interval sizes. These include art, bzip, crafty, gzip, mcf, parser

and vpr. These programs were compiled on x86 platform using -O3 optimizations.

We also provide results for five programs used in the AccMon [110]

study, and a handful of other programs that are in the top 100 programs down-

loaded from the sourceforge.net web site. The AccMon programs used are bc,

gzip, ncompress, polymorph, tar. The single threaded sourceforge programs

are ghostscript, gnuplot, tidy and xv. We also analyze a bug napster, which

a multi-threaded program that we obtained from sourceforge.

We make use of Pin [49], an x86 binary rewriting tool to create the

BugNet logs.
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III.C.2 Replay Window Length

Using BugNet only a portion of a program’s execution can be captured

due to the limited memory and disk space available on a system. Our premise is

that, in order to fix a bug, one needs to examine only a window of a program’s

execution that immediately precede a crash. However, it is not clear what the

size of this window has to be in order to fix a majority of the bugs. We now

quantify the replay window size required for fixing bugs, by matching the execu-

tion histories of the correct and the incorrect program executions corresponding

to several open source bugs.

We define the replay window length for a bug to be the number of

dynamic instructions executed between the source of a bug and the point where

the buggy program crashes. We identify the source of the bug in a program’s

execution using a heuristic that identifies the bug source as the point in the

buggy program’s execution where its output starts to deviate from those of the

correct program’s execution. One use of this measurement is that it helps us to

understand the log space requirements of the BugNet logger. Thus, it helps us

to analyze the efficacy of the deterministic replay debugging technique.

Following is the methodology we used to quantify the replay window

length for a bug. In order to determine the replay window length for a bug,

we take the two binaries corresponding to two versions of the same program.

One binary corresponds to the source code that contains the bug. Another bi-

nary corresponds to the same source code with the bug fixed. We execute these

two binaries with the same input that exposes the bug in the buggy program’s

execution.

Figure III.2 shows the buggy behavior of a version of gzip program with

respect to the correct program’s execution. The x-axis represents the buggy

program’s execution time. The y-axis represents the magnitude of the difference
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Figure III.2: Replay Window Length showing a buggy program’s execution be-
havior relative to the correct program’s execution for gzip.

in the store output values between the correct program’s output and the buggy

program’s output, averaged over intervals of 10,000 instructions.

We found that the two executions follow similar execution path up until

a point. After a point in the buggy program’s execution, which is really the

starting point of the source of the bug, the buggy program’s execution starts

to deviate from the correct program’s execution. We define the source of the

bug to be this deviation point in the buggy program’s execution. In order to fix

this bug, a developer needs to examine what happened at that deviation point

and also the execution of the program after that point. Therefore, we define our

replay window length to be the number of dynamic instructions executed in the

buggy program between this deviation point and the end of the buggy program’s

execution (that is, the point of crash).

In order to find the deviation points for several bugs automatically, we

used the following algorithm. For each bug, we collected the memory traces for

the buggy program’s execution as well as the correct program’s execution. The
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memory trace is a trace of store instructions’ effective addresses and values. We

then do a longest subsequence matching between these two traces to determine

where they start to deviate focusing on the store values. Our algorithm is similar

to the one used by the popular vimdiff utility that is used to compare the

textual differences between any two files. Once we have matched between the

two traces as much as possible, we then determine the deviation point of the

buggy program’s execution as follows. We compute the number of store output

values that differ in the two executions for every interval of 10,000 instructions

in the buggy program’s execution. This plotted data looks like the graph shown

in Figure III.2. We can find the point of deviation by finding the first point of

inflection in the graph where the number of differences in store values exceed

30. The number of instructions executed after the deviation point till the end of

buggy program’s execution is the replay window length.

Note, our approach for calculating the replay window length is not useful

for debugging the program. That is, it does not automatically identify the source

of a bug in a program, as it assumes that we have the correct version of the

program. It is only used to quantify a bound on the replay window length that

lets us determine how much of a program’s execution need to be logged.

Figure III.3 presents the replay window length required to analyze the

bugs in the Siemen benchmark suite [38]. The y-axis shows the number of instruc-

tions from the point of deviation until either the program crashed or it terminated

with a wrong result. Each point in the x-axis represents a bug examined for a

benchmark suite. The number of bugs analyzed for each benchmarks are sev-

eral 100s to 1000s. The result shows that the point of deviation (root cause)

for a majority of bugs (inputs) occurred within the last 1 million instructions of

execution.

We also studied the bugs found in some popular open source programs.
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Figure III.3: Replay window length required to analyze the bugs in the Siemen
benchmark suite.

Table III.1: Open source programs with known bugs. The first 5 programs are
from the AccMon study [110], and the rest of the programs are from source-
forge.net

Application Bug Location Bug Description

bc 1.06 storage.c line 176
Misuse of bounds variable corrupts
heap objects

gzip 1.2.4 gzip.c line 1009
1024 byte long input filename over-
flows global variable

ncompress- 4.2.4 compress42.c line 886
1024 byte long input filename cor-
rupts stack return address

polymorph-0.4.0 polymorph.c lines 193, 200
2048 byte long input filename cor-
rupts stack return address

tar 1.13.25 prepargs.c line 92
Incorrect loop bounds leads to heap
object overflow

ghostscript-8.12
ttinterp.c line 5108, tto-
bjs.c line 279

A dangling pointer results in a mem-
ory corruption

gnuplot-3.7.1 pslatex.trm line 189
A buffer overflow corrupts the stack
return address

tidy 34132 istack.c at line 31 Null pointer dereference

xv-3.10a
xvbrowse.c line 956,
xvdir.c line 1200

A long file name results in a buffer
overflow

napster-1.5.2 nap.c line 1391
Dangling pointer corrupts memory
when resizing terminal
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The bugs that we studied are listed in Table III.C.2. The second column in the

table gives the details about the location in the source code of the applications

that needed to be changed in order to fix the bug. The third column describes

the nature of the bug. The set of bugs listed in the Table III.C.2 covers a large

variety of bugs. It includes memory corruption bugs like dangling pointer accesses

(ghostscript), buffer overflow (gzip) and null pointer dereferences (gnuplot).

Replay window lengths for these open source programs are again deter-

mined using the approach we described in Section III.C.2. Figure III.4 presents

the replay window length required to analyze these real bugs. We can note that

in the common case the length of the replay window is less than 10 million in-

structions. The worst case is ghostscript for which the replay window length

is over 100 million instructions.

We now show the amount of log size (without compression) that needs

to be collected in order to analyze the open source bugs in Figure III.5. For

ghostscript we require about 10 MB of BugNet’s log size to capture its replay

window length of over 100 million instructions (The bug in ghostscript requires

the longest replay window length).

Dynamic slicing [98, 109] is a powerful technique to ease the job of

debugging. One can integrate dynamic slicing into a replayer, so that the pro-

grammer can choose to analyze the execution of only those instructions that

produce the value for the instruction that resulted in a crash instead of examin-

ing the entire replay window. The second bar Figure III.4 shows the number of

dynamic instructions that are on just the dynamic slice. Dynamic slicing results

in about one-third reduction in the number of instructions that are required to be

examined within the replay window to potentially fix the bug. We also study the

number of memory locations touched by the programs within the replay window.

Results for this study are shown in Figure III.6. This shows the number of unique
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Figure III.4: Replay window length required to analyze the bugs in open source
programs.
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Figure III.5: Log size required to capture the replay window.
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Figure III.6: Memory footprint touched within the replay window.
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memory bytes touched in the replay windows for both the full replay window and

just the dynamic slice. Using the dynamic slice can reduce the amount of memory

locations that might need to be examined by about a half.

The replay window size is a knob that can be tuned by the operating

system or the user. The replay window size is essentially dependent on the

amount of main memory space that can be allocated for storing all of the FLLs

and MRLs used to capture the desired number of instructions for replay. The

user should be able to specify a desired replay window size and the maximum

performance penalty that they are willing to pay for it. Based on this input, the

operating system can dynamically tune the memory space allocation. If the OS

can determine that the applications running at a particular instant of time are

not memory intensive and that considerable amount of free space is available,

then it can increase the memory space allocation to BugNet. On the other hand,

if the performance degradation goes above the tolerable limits it can tune down

the space allocated. In addition, the customer using the application can specify

a minimal replay window size that can capture a majority of the bugs. In We

showed that a replay window of size 10 million instructions is enough to capture

the majority of bugs. If a bug occurred, but not enough state was kept to track

down the bug, then the customer may be asked to increase the replay window

size.

DRAM and disk sizes have seen exponential growth over the last few

decades dramatically reducing the unit cost for storage. This is an encouraging

trend for using BugNet feature to record executions. Introduction of Phase-

Change RAM (PCRAM) [46] technology is likely to sustain this trend. Unlike,

DRAM, PCRAM is a persistent-storage device. It is expected to be as fast as

DRAM, but only 1/4th of DRAM’s cost. Therefore, PCRAM could be used

as a substitute for DRAM main memory or perhaps as another level in the
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cache/memory/disk hierarchy. A good usage for the cheap space available in

fast persistent-storage technology like PCRAM would be recording BugNet logs.

While using BugNet at the developer’s site for debugging space is of a

lesser concern as the developer can afford to allocate more disk space for recording

a a test run.

III.C.3 Sensitivity Analysis

In this section we will discuss how the FLL sizes varies based upon the

checkpoint interval lengths and the replay window lengths. Also, we will study

the efficiency of the dictionary based compression algorithm that we discussed in

Section III.B.3. For this study we use SPEC programs, since they have standard

inputs, which are well analyzed.

Figure III.7 presents the FLL sizes collected for a replay window of 100

million instructions (the longest replay window length that we observed among all

the open source bugs that we analyzed in Section III.C.2) using different check-

point interval lengths ranging from 10K to 100 million instructions represented

along the x-axis. Clearly, as the interval size increases, FLL sizes decrease. This is

a result of applying our “first-load” optimization described in Section III.B.3. For

longer checkpoint interval lengths, it is more probable that a particular memory

location referenced by a load has already been recorded and hence the frequency

of recording a load instruction decreases resulting in smaller FLL sizes.

Figure III.8 shows the sizes of FLLs that are needed to replay a window

of 10 million to 1 billion instructions. For these results we assume a constant

checkpoint interval length of 10 million instructions. On an average, FLLs of size

225 KB are required to replay 10 million instructions and about 18.86 MB for

replaying 1 billion instructions.

The results presented so far assume a 64-entry dictionary table for com-
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pression. We will now discuss the efficiency of our compression technique de-

scribed in the Section III.B.3. Figure III.9 shows the percentage of values that

were compressible (found in the table) using our dictionary table approach vary-

ing the dictionary size. A dictionary of size 64 is capable of compressing 50% of

the values on average, which is the size used for the rest of the results in this

paper.

Figure III.10 shows the compression ratio of FLLs we achieve for various

dictionary sizes. On average, we achieve about a 50% compression using a 64-

entry dictionary. While a larger dictionary table results in higher compression

ratio, it would increase the hardware costs, especially given that the dictionary

table is fully associative.

Finally, we used SimpleScalar x86 [10] to examine the performance over-

head of BugNet and found it to be less than 0.01% for these SPEC programs.

We found for the SPEC programs that the overhead of BugNet is less than 0.01%

due to (a) the fact that we use an incremental compression scheme that allows

us to lazily write the compressed log entries to memory when the bus is free, and

(b) the SPEC programs do not have a lot of interrupts or system calls.

III.C.4 Complexity of FDR Vs BugNet

FDR’s proposal is to have the ability to replay the last 1 second of

execution, which can be approximated to a replay window of length one billion

instructions, which will vary depending on the processor speed and also the IPC

of the program. For a fair comparison with FDR, we discuss using the BugNet

architecture to also capture 1 billion instructions. But from the results shown in

the Table III.C.2, a replay interval of 10 million instructions should be sufficient

to fix many of the bugs in the applications we examined. We therefore also discuss

using BugNet to generate logs to replay 10 million instructions.
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For the rest of this section all the results presented for BugNet assume a

checkpoint interval of size 10 million instructions. Note, a checkpoint interval is

different from a replay window. To replay a window of execution, we will use the

logs from multiple checkpoints if the checkpoint interval length is less than the

desired replay window length. Also on encountering an interrupt we terminate

and create a new checkpoint as described in Section III.B.4.

Log Size Complexity

Table III.2 compares the sizes of BugNet and FDR logs. We compare

the amount of memory storage required for replaying 10 million and 1 billion

instructions in BugNet. The result for replaying 1 billion instructions in FDR

corresponds to replaying one second of execution [104]. If an entry is NIL in the

table, then it implies that the log is not used in the mechanism.

The FLL sizes required to replay 10 million and 1 billion instructions

are about 225 KB and 18.86 MB on average for the SPEC applications. This

assumes a checkpoint interval length of 10 million. In addition, to debug data

races we will require memory race logs which will be discussed in Chapter IV.

FDR to support replaying 1 billion instructions would require 18 MB of

cache and memory logs as described in [104], plus memory race logs of size 2 MB.

The combined size of these is roughly the same as the sizes of using FLLs for

capturing 1 billion instructions. However, FDR requires additional information to

enable full system replay. FDR records Interrupt, I/O and DMA logs whose sizes

may vary widely depending on the nature of the application. For I/O intensive

applications, these logs might have prohibitive sizes. In addition, FDR requires

a core dump image whose size can range up-to 1GB, based on the application’s

memory footprint and the main memory size.

Our results show that a log of size 225 KB can replay 10 million in-
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Table III.2: Comparison of log sizes in FDR and BugNet. Interrupt, Program
I/O and DMA log sizes will depend on the characteristic of the program. I/O
intensive applications will require large sizes for these logs.

Log size BugNet Vs FDR
BugNet:10M BugNet:1B FDR:1B

FLL 225 KB 18.86 MB NIL
Memory Race log Strata IV Strata IV 2 MB
Cache Chk-pnt Log NIL NIL 3 MB
Mem Chk-pnt log NIL NIL 15 MB
Core Dump NIL NIL 128MB-1 GB
Interrupt Log NIL NIL Depends
Prg I/O Log NIL NIL Depends
DMA Log NIL NIL Depends

Table III.3: Comparison of hardware complexity in FDR and BugNet. For
BugNet we consider support for replaying 10 million instructions as it is ade-
quate to capture the replay window for most of the programs in Table III.C.2.
Hardware complexity is also shown for BugNet to capture a 1 billion replay win-
dow, which is the window size assumed for FDR.

Hardware Complexity: BugNet Vs FDR

BugNet:10M BugNet:1B FDR:1B
CB 16 KB 16 KB NIL
MRB 32 KB 32 KB 32 KB
Compression 64-entry CAM 64-entry CAM LZ HW
Chk-pnt Interval 10M instr 10M instr 1/3 sec.
Cache Chk-pnt Buf NIL NIL 1024 KB
Mem Chk-pnt Buf NIL NIL 256 KB
Interrupt Buffer NIL NIL 64 KB
Input Buffer NIL NIL 8 KB
DMA Buffer NIL NIL 32 KB
Total HW Area 48 KB 48 KB 1416 KB
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structions of an application’s execution. This should be enough to reproduce

and debug a majority of the bugs, at least for the program’s we examined. In

addition, BugNet’s small traces (sometimes on the order of only hundreds of KB)

should encourage users to communicate the logs back to the developer.

Hardware Complexity

Table III.3 compares the hardware complexity of BugNet and FDR [104].

Like in the previous section, here again we compare the configuration of BugNet

to capture 10 million and 1 billion instructions.

The main hardware structures used in BugNet are the CB, MRB hard-

ware buffers and a fully associative 64-entry dictionary table as shown in the

Figure III.1. The size of the CB needs to be only large enough to tolerate bursts

in our logging. In addition, we perform incremental compression of each log en-

try, which allows us to lazily write the logs into main memory and free up space

in the CB. The sizes of the CB, MRB and dictionary table will be a constant

irrespective of the length of replay window that we are trying to capture, since

the logs are memory backed.

In comparison, FDR requires about 1416 KB of on-chip hardware to

record enough information for full system replay. FDR assumes hardware imple-

mentation of LZ [112] compression. The LZ compressor is block-based, so the

hardware buffer size needs to be large enough to collect a block of information

before compressing and storing it back to main memory, and it also needs to be

large enough to tolerate bursts. Cache and Memory checkpoint buffers are used

to record information required by the SafetyNet checkpoint mechanism, whose

sizes are 1 MB and 256 KB respectively. Since FDR aims to achieve full system

replay it has to record all the external inputs for which it requires three additional

buffers - 64 KB interrupt buffer to record interrupts, 8 KB input buffer to record
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program I/O and a 32 KB DMA buffer to record DMA writes. In summary, the

total on-chip hardware requirement for BugNet is about 48 KB, whereas FDR

requires 1416 KB.

III.D BugNet Extensions for Handling Self-Modifying Code

and Frequent Interrupts

In this section we present three extensions to the BugNet architecture

described in Section III.B. First, we describe a few issues with the baseline

BugNet approach in reproducing code regions, and discuss how by logging code

regions we can handle self-modifying codes easily. Second, we examine the ef-

fectiveness of the baseline BugNet logging approach in the presence of interrupts

and system calls, and present a solution to allow efficient logging in the presence

of frequent interrupts and system calls. Finally, we discuss how BugNet can be

extended to record and deterministically replay operating system code as well.

III.D.1 Extending BugNet to Record Code Regions

In this section we describe a few issues with the BugNet approach in

dealing with reproducing the code regions, and discuss solutions to address those

issues.

BugNet’s Approach to Logging Code Locations

In addition to data, BugNet also needs to make sure that information

about the code executed during logging is recorded. In Section III.B, we assumed

the support of an operating system device driver that records such information

into a Code Log. Code Log contains information about the loading of all code

(static binaries and dynamic libraries) for a program being monitored. Each
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entry in the code log contains (a) the name and path of the binary or library

loaded, (b) a checksum to represent the version of the binary/library, and (c)

the starting address where it was loaded. This information is required during

replay. A replayer would load the same exact code into the same exact location

as occurred during logging, which is needed to provide deterministic replaying.

When BugNet is enabled for a program’s execution, the device driver

logs the above information for the binary and shared libraries currently loaded.

In addition, as new shared libraries are loaded, they will be logged. The code log

is kept as long as the program’s execution is monitored with BugNet.

Advantages of Logging Code

There are two disadvantages if we chose to assume that the developer

has access to the binaries to perform deterministic replay debugging.

The first issue is that it does not support replaying of self modifying

code. In the BugNet architecture, only up to the last second of execution before

the crash would be available for replaying. Therefore, if code was dynamically

generated before that, there would be no record of this new code in the log even

if the dynamically generated code was used during the checkpoint interval. If you

tried to use logs with the original binaries, incorrect execution would of course

occur. To address this we examine logging the code as well as data.

The second issue in only having the original BugNet Code Log is that

during debugging it requires having the exact same set of system and shared

libraries available to replay execution. If the developer is only interested in tracing

through the application level code, they would still have to find and set up the

exact same shared library environment in which the bug occurred. Logging code

provides an important advantage here, in that it allows deterministic replaying

without having any access to any of the original binaries or the shared libraries.
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Therefore, a developer needs to have access to the source code of only the binaries

and the shared libraries that they want to actually examine during debugging.

Logging Code to Support Self Modifying Code

Code regions can be logged similar to the data regions. When an instruc-

tion is first accessed in a checkpoint, the instruction is logged and the first-load

bit is set for that instruction in the instruction cache. If the instruction is ac-

cessed again and the bit is set, then it does not need to be logged. The first-load

bits are reset in exactly the same way they are reset for data, and at the L2 cache

level, the data and code blocks are of course treated the same.

When logging the instruction, we log (1) the number of instructions

executed since the last instruction was logged, and (2) the instruction word. The

PC is not logged, since it will be deterministically regenerated during replay. The

instruction difference is used to indicate exactly which dynamic instruction needs

to consume the logged instruction bits during replay. While creating a log, since

we do not log every instruction, in addition to the instruction we also need to log

the number of instructions that were skipped between the last log entry and the

current log entry. Instead of using the instruction counts, we use branch counts

which serves the same purpose as instruction counts, but is more efficient to keep

track of branch counts during replay.

If a code region was modified in a self-modifying program before a check-

point, the modified code would be logged as part of the checkpoint code log when

it is accessed for the first time in the checkpoint interval. If there is any code gen-

erated during the checkpoint, then it will be correctly stored to memory during

replay and consumed as code during replay.
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Code Logging Results

The first bar in Figure III.12 shows the log size for the BugNet approach

described earlier in Section III.B. The y-axis shows the number of megabytes of

log required to record 1 million instructions. This result assumes a checkpoint

interval of length 1 million instructions. The second bar shows the log size for

logging both the code and the data for SPEC programs. Compared to the size

of the data logs, the amount of extra logging required is negligible for the SPEC

programs. The reason for this is that these programs have good code locality and

spend most of their execution in a few loops. Thus, resulting in a high cache hit

ratios, and therefore small log sizes required to capture the code. The same is

not true for the interactive programs we examined, shown in Figure III.13. For

these programs we see an average overhead of 39% for logging the code when

compared to baseline BugNet. We next show how we significantly reduce the log

size overhead for interactive applications by applying our interrupt optimization.

III.D.2 Efficient Logging Across Interrupts

This sub-section first motivates the need for providing efficient sup-

port for handling system calls and interrupts. Then it discusses an extension

to BugNet architecture described in Section III.B to efficiently log a program’s

execution even in the presence of frequent interrupts and system calls.

Frequency of Interrupts

BugNet architecture described in Section III.B addresses the problem

of logging the values in the application that are changed during an interrupt or a

system call by prematurely terminating the checkpoint interval when an interrupt

or system call is invoked. When a new checkpoint is created, all the first-load bits

in the cache of the processor executing the application is reset. This ensures that
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any memory address modified by the interrupt service routine will be re-logged

when the application reads it later in the execution.

This works fine for computationally intensive programs, which do not

have a lot of interrupts/system calls. For the SPEC programs we examined, 8 of

the programs had zero system calls during the 5 billion instructions of execution

we examined, and 3 programs (equake, gcc, and vortex) had the most number

of system calls with 1 system call being invoked every 1 million instructions.

Figure III.11 shows the number of instructions between system calls and

interrupts on the y-axis that were executed by user interactive programs. The

figures shows that an interrupt occurred on average every 20,000 instructions.

Restarting a checkpoint on every interrupt creates a significant amount of logging

overhead for BugNet, because it will not be able to benefit as much from the first-

load optimization.
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Figure III.11: Number of instructions executed between two system
calls/interrupts for the interactive programs.

BugNet Architecture Extension for Handling Frequent Interrupts

Current architectures allow data to stay cached across system calls and

interrupts to benefit from the data locality across quick system events. Therefore,

a lot of the first-load information should still be in the cache between interrupts,

which we should be able to exploit to reduce the BugNet log sizes. This is espe-
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cially necessary for the interactive applications with frequent interrupts shown in

Figure III.11.

To address the problem of frequent interrupts, we propose to have the

architecture assign the first-load bits for a cache to a specific thread ID. Therefore,

a set of first-load log bits for a cache would be owned by a specific thread ID.

Whenever that thread accesses a cache block it uses the first-load bit as we

described in Section III.B to filter the amount of logging for load accesses.

When BugNet is invoked to monitor a process, the OS knows the set of

threads for which it needs to record the logs. When we assign one of these threads

to a processor node, if its thread ID is different than the one that currently owns

the first-load bits, then the first load-bits are cleared. Then this new thread

becomes the owner of those bits. If any other thread that is not being monitored

by BugNet is scheduled on that processor node, then the architecture will reset

the first-load bit only when a block is evicted by this other thread or when this

other thread writes to an existing block.

In addition, operating system support is used to note when a thread

is running in user mode, versus in the operating system. When running in the

system mode, any writes that hit in the cache will also clear that block’s first-load

bit. This allows first-load bit information to be used across the interrupts as long

as the data stays in the cache unmodified for the thread ID that the bits are

currently assigned to.

Supporting Multiple Threads with First-Load for a Cache :

The architecture described so far provides support for assigning one thread ID

to a given set of load bits maintained in a cache. This can easily be extended to

support multiple threads that are being monitored, where the hardware would

support up to N sets of load bits. Each set of load bits would be assigned to a

thread being monitored. Any write hit by a thread would clear all of the other
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load bits for that cache block. When a new thread to be monitored is assigned

a set of first-load bits, all of those bits are cleared. This could be useful when

multiple threads are sharing the same cache (for example, a shared L2 cache in a

multi-core processor). But, for our results we model having only one set of load

bits per cache.

Interrupt Logging Results
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Figure III.12: Log size comparison for SPEC programs.

The third bar of figures III.12 and III.13 show the results of applying

our interrupt optimizations on the log sizes for SPEC and interactive programs

respectively. For the SPEC programs, the log sizes are reduced by 23% when

compared to logging the code and text and resetting the FLL bits after each

interrupt and system call. The impact is even greater for the interactive programs

due to the large number of interrupts present in their execution. An average

of 44% in log size reduction is obtained when applying the optimization. The

reduction is proportional to the number of system calls present in each program.

Note that after applying our two optimizations, the log size of both code and

data combined is smaller than the log size of the baseline BugNet architecture

that only logs the data.
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Figure III.13: Log size comparison for interrupt intensive programs.

III.D.3 Extending BugNet for Enabling Deterministic Replay of Op-

erating System Code

BugNet’s checkpointing and logging solution described in Section III.B

can deterministically replay only the user code and the shared libraries. However,

it can be be extended in future to record and replay operating system and driver

code as well to overcome this limitation. Section III.D.1 discussed the benefits of

logging the code regions. If we capture the code regions, then the system code

can also be easily recorded using the following approach.

When there is an interrupt or a system call invoked, in addition to

terminating the checkpoint of the application, a new checkpoint would be created

to capture the execution of the service routine. That checkpoint will have the FLL

and the code log necessary for replaying the service routine. Similarly, whenever

an operating system routine gets context switched in, a new checkpoint will be

created for that routine. The header of the FLL has the timestamps that orders

all the checkpoint logs. Thus, the application code and the operating system

routines can be replayed in the same order as the original execution.

Operating system routines might execute privileged instructions that

read the machine state. For example, rdtsc instruction reads the processor clock

and writes it to the register. Care must be taken to log the register values written

by all such non-deterministic instructions in addition to the first-load logs and
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the code log.

III.E Using BugNet for Deterministic Replay Debugging

This section first discusses how and when a program’s execution would

be recorded using BugNet. It is followed by a discussion on the BugNet replayer

that we implemented using the Pin instrumentation tool [49]. Finally, this section

discusses how the BugNet deterministic replayer can be used for debugging a

program.

III.E.1 Collecting BugNet Logs

To report a failure that a customer encounters in their environment to

the developer, today, the customer has to file a bug report. A bug report typically

contains a verbal description of the actions that were taken by the user before

the failure along with the final core dump. Microsoft’s Dr. Watson tool [53] and

Mozilla’s Talkback [63] are examples of the current solutions to automatically

generate these bug reports.

However, it is very difficult for a developer to reproduce the bug speci-

fied in a bug report. The developer has to set up a system environment (operating

system, shared libraries etc.) that replicates that of the customer’s environment.

In particular, non-deterministic bugs (like the data races) are very difficult to

reproduce. Using BugNet, however, a customer can record the buggy execution

and send the BugNet logs to the developer. Customers can afford to record an

execution in their environment, because the BugNet recorder is efficient both in

terms of space and performance overhead. In Section III.C we showed that with

about 225KB of FLL we can record about 10 million instructions on average.

Also, the performance overhead of the processor-based BugNet solution is negli-

gible (less than 1%). Thus, BugNet is useful for recording even the production
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runs, and so we can capture the bugs that manifest at the customer site. These

days software vendors do a limited release of their software to a selected group of

users for beta-testing. Beta-testers could turn on the BugNet feature to record

their test runs. On encountering a software failure, the operating system would

send the recorded BugNet logs to the developer. The developer would use the

BugNet logs to deterministically replay the buggy execution and debug it.

In addition to the customers, developers too would find BugNet useful

for recording their test runs during the development of a program. They could

record an execution of their test run using BugNet and use the BugNet log for

debugging. Recording a program’s execution using a software-based solution like

iDNA [6] (iDNA implements BugNet-like checkpointing and logging solution us-

ing an instrumentation tool, which can record multi-threaded program’s even on

multi-processor systems) would be 5 to 15 times slower than the native execution.

Because of the high performance overhead, a software-based recorder like iDNA

cannot capture a natural behavior of a program’s execution (especially interac-

tive applications like Internet Explorer) on a real system. The processor-based

BugNet support, however, incurs negligible performance overhead. Therefore,

BugNet would be useful to developers for recording a program’s execution with-

out altering their behavior on a real system.

In the following sections, we describe an implementation of the BugNet

replayer that can replay a program’s execution using the BugNet logs collected

by customers and developers. We also discuss how the developers can use the

BugNet replayer for debugging.

III.E.2 BugNet Replayer

We first describe an implementation of the BugNet replayer. In the next

sub-section we describe how it can be used for debugging. We implemented a
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prototype of a replayer as a proof of concept for BugNet using the Pin dynamic

instrumentation tool [49]. For our study, we collected the BugNet logs for an in-

terval of a program’s execution using the Pin Dynamic Instrumentation tool [49].

Now we describe the implementation of our BugNet replayer to deterministically

replay a checkpoint interval.

To replay a checkpoint interval using BugNet’s FLL and code log, the

replayer (which is a dynamic instrumentation tool built using Pin) first reserves

the region of memory that was read/written by the application’s data and code

regions during logging. The replayer keeps track of two counts - an instruction

count (number of instructions replayed) and a load count (number of load in-

structions replayed). The instruction count is initialized with the counter value

read from the first entry in the code log, and the load count is initialized with

the counter value read from the first entry in the FLL.

The replayer then uses the header information in the FLL to initialize

the register values and the program counter. This is done by using the Exe-

cuteAt() API of Pin. The ExecuteAT() API of Pin starts the program’s execu-

tion from the instruction specified by the program counter. Once replay starts,

all the instructions replayed updates the register and the memory state of the

application’s execution state just like in a normal execution. Thus, the replayer

deterministically replays a sequence of instructions.

The replay breaks before the execution of every load instruction and

every branch instruction to keep track of the load count and the instruction count

respectively. When the instruction count matches the instruction stride specified

in the next entry of the code log, the instruction code from the log entry is

copied into the application’s memory space. The address for the application’s

memory space is specified by the current program counter value. The instruction

count maintained by the replayer is then reset and the counter starts again from
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zero. Similarly, while replaying a load instruction, if the replayer’s load count

matches the load count of the next entry in the FLL, the value from FLL is copied

to the application’s memory space. The address for the application’s memory

space would be the effective address of the load instruction. Effective address

computation is part of any load instruction’s executions. Therefore, the replayer

would be able to compute the effective address for the load instruction, because

the replayer reproduces the input values for the effective address computation

just like it reproduces the input values for executing any other instruction.

To retrieve the load value from the FLL, the replayer has to decompress

the log entry in the FLL. The format of an FLL log entry was described in

Section III.B.3. In Section III.B.3, we described a dictionary based compression

for compressing the load values recorded in FLL. Using the bit LC − type, the

replayer determines if the recorded value should be retrieved from the FLL itself

or from the dictionary.

If the load value is to come from the log entry (that is, the LV − Type

bit is set), we use the next full 32-bit value in the log entry. If not, the next 6-

bits in the log entry specifies an index to the dictionary. To generate the correct

values in the dictionary table during replay, the replayer updates the dictionary

with the value of every replayed load instruction exactly in the same way as it

would have been updated during logging (explained in Section III.B.3). Using

the index read from the FLL entry, the corresponding dictionary entry is then

read and that value read is returned for the load.

During replay, all the interrupts (including system calls) are turned

into NOPs, since we need not simulate what goes on during an interrupt. To

replay past the interrupt, we just continue replaying the next checkpoint interval

recorded for the thread’s execution. If the replay reaches the end of a checkpoint

interval, then replayer starts replaying from the checkpoint log for the following
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interval.

The replayer can also replay a thread of a multi-threaded program’s

execution using the same algorithm described above. The FLL and the code

log collected for an interval of a thread’s execution has sufficient information to

replay that interval of the thread’s execution. However, to debug multi-threaded

programs we also need to be able to retrieve a valid sequential order of memory

operations across all the threads. This is possible using the information logged in

the MRLs. Chapter IV presents a solution to record the memory order in MRL

and it also discusses how to replay the order between memory operations using

the log.

III.E.3 Using BugNet Replayer for Debugging

The BugNet replayer can deterministically replay a program’s execution

using the BugNet logs recorded at a customer’s site or at a developer’s site. In

this section, we discuss how the BugNet replayer can be used for debugging.

Time Travel Debugging Using BugNet Replayer

The BugNet deterministic replayer is useful for building a time travel

debugger [6, 42, 7] that we described in Section II.B. Using a time travel debugger,

a programmer can go to any point in a program’s execution time within the replay

window by stepping forward/backwards, using breakpoints, reverse breakpoints,

watchpoints and reverse watchpoints.

After reaching a particular point in program’s execution, the program-

mer can examine the execution state (memory and register states) of the program

at that point. Note that BugNet logs do not contain a core dump containing the

final state of the entire system/main memory. As a result, the replayer cannot

construct the complete state of the memory state. Therefore, the programmer
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would be able to examine only those memory state that are either read or writ-

ten within the recorded replay window length of the program’s execution. This

might cause slight inconvenience for the programmer in inferring the cause of a

bug. However, it would not prevent the user from isolating the bug, because we

expect that the memory addresses untouched by the program’s execution preced-

ing the crash are most likely not to be responsible for the buggy behavior. That

said, optionally, the BugNet system can be made to collect the core dumps as

well. The core dump the values of all the memory locations, including those un-

touched within the recorded replay window. Using this information, the BugNet

replayer can construct the entire state of the memory at any point within the

replay window length.

Limitations of BugNet based Time Travel Debugging

There are few limitations of BugNet, however. First, the programmer

can examine the program’s state only at an instant within the replay window

length, but not before that. As we showed in Section III.C, replay window length

of 10 million instructions is sufficient for debugging a majority of the bugs. While

using BugNet during testing and development, however, programmers can afford

to capture potentially the entire execution of a program, which would overcome

this limitation.

The second limitation of the BugNet checkpoint and logging approach

described in Section III.B is that it enables replay of only the user code and the

shared libraries, but not the full system. This is sufficient for debugging the user

code that does not have complex interactions with the operating system routines

like the drivers and the interrupt handlers. But, BugNet would not be useful to

debug the drivers or the operating system, or the complex interactions between

these and the user code.
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Even though BugNet cannot replay the system code, it still provides de-

terministic replay of a program’s execution before and after servicing interrupts

and context switches. Hence, the user can examine the values of the parame-

ters passed to an interrupt, and the modified values loaded and consumed after

servicing the interrupt. This can allow the user to debug some bugs that are

dependent on operating system interactions. Also, we replay all of the operat-

ing system shared library code. The user code along with the OS library code

comprise a significant portion of a program’s execution, and therefore BugNet

logs should be sufficient to track down a majority of the application-level bugs.

However, it is possible to support deterministic replay of the operating system

code as well using the BugNet extension we described in Section III.D.3.

The third limitation that BugNet cannot detect a bug that produces

incorrect results. It can detect a bug only when the operating system or the ap-

plication itself can identify that the program has encountered a fault or exception

(eg: floating point exception, assertion failure, invalid memory access, etc.). As a

result, some of the bugs producing incorrect results might not be captured at the

customer site. Detecting a bug at the customer site is necessary, because only the

log for last 1 sec or so of a program’s execution is recorded at the customer site.

Since BugNet cannot detect a bug producing incorrect results, it does not know

the right time to dump the logs to a persistent storage and capture the replay

window necessary to capture such a bug. Future work could address this problem

to automatically detect bugs that cause the program to produce incorrect results.

Automatic Debugging Using BugNet Replayer

Section II.B described how a deterministic replayer is useful for analyz-

ing a program’s execution offline. A BugNet’s replayer can be used to replay a

program’s execution. During replay, the program’s execution can be analyzed
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to automatically find bugs such as memory leaks, uninitialized variables, buffer

overflows etc. Chapter V presents a novel dynamic analysis tool built on top on

a deterministic replayer to automatically find data race bugs in multi-threaded

programs.

III.F Summary

BugNet is a checkpointing and logging solution that captures the non-

deterministic system input read during an application’s execution. BugNet fo-

cuses on replaying only the user code and the shared libraries to find application

level bugs. To achieve this, BugNet’s logs for a checkpoint interval contain the

register state at the start of the interval and a log of memory values (code and

data) when they are first accessed. This is enough information to achieve de-

terministic replay of a program’s execution, without having to replay what goes

on during interrupts and system calls. This results in small log sizes - FLL

size of around 225KB is enough to capture a replay window size of 10 million

instructions. We also showed that 10 million instructions are sufficient for de-

bugging a majority of the bugs in the open source programs. We found that

BugNet incurs performance overhead, and the area overhead is around 48 KB

for the hardware buffers required to record the log. More importantly, BugNet is

a system-independent solution. If supported in a processor, the BugNet feature

can be used to record an application’s execution on any operating system. Also,

the logs collected for a program’s execution on a particular system can be used

to replay that program’s execution on any other system.
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IV

Strata: Deterministic Replay of a

Multi-Processor System

In Chapter III we presented the BugNet checkpoint and logging mech-

anism for supporting deterministic replay of a program’s execution in the pres-

ence of all forms of non-determinism, including system interactions (system calls,

interrupts, memory mapped I/O, DMA, reading processor clocks, and context

switches). BugNet is useful for recording a shared-memory multi-threaded pro-

gram as well. BugNet records each thread separately, and if a thread reads a

value written by another thread it records them (refer Section III.B.6). Thus,

using BugNet we can deterministically replay each thread in a shared-memory

multi-threaded program.

However, to debug a multi-threaded program, a programmer would like

to replay the order between the memory operations executed by all the threads.

This is necessary for understanding non-deterministic bugs like data races in

multi-threaded programs. Thus, to make a deterministic replayer complete, in

addition to BugNet we need an ability to replay the memory order, which is the

focus of this chapter.

88
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One of the first hardware support for deterministic replay of a shared-

memory multi-processor system was proposed by Bacon and Goldstein [5]. Their

design was for a bus based system. They observed that memory order can be

captured by recording the coherence messages on the bus. However, they recorded

all the coherence traffic on the bus, which can result in a large log size. Also,

their system cannot handle non-determinism due to the system interactions.

The amount of information that needs to be logged to record the mem-

ory access ordering can be reduced by applying the Netzer’s transitive opti-

mization [64]. Flight Data Recorder (FDR) [104] is a recent hardware proposal

that implements the Netzer transitive optimization in a directory based multi-

processor system with a sequentially consistent memory model.

FDR [104] logs the shared memory dependencies in a Memory Race Log

(MRL), which is maintained for each processor node. FDR uses Bacon and Gold-

stein [5]’s observation to detect the shared memory dependencies for a thread by

monitoring its coherence messages. In order to reduce the size of the memory

race logs, FDR proposed a hardware design for supporting the Netzer optimiza-

tion [64]. We refer to the logging method used by FDR as the point-to-point

logging approach, because to capture a dependency, it logs the instruction counts

of both the dependent operations.

In this chapter, we propose capturing the shared memory dependencies

using Strata [57]. A stratum is logged when a shared memory dependency needs

to be captured. It consists of the memory counts of all the threads at the time

when it is logged. A stratum separates all the memory operations that were

executed in all the threads before the time when it is recorded, from those that

will be executed after it is recorded. Since the stratum is recorded just before

the execution of the dependent memory operation, the stratum separates that

memory operation from the earlier memory operation in which it is dependent
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on.

The benefits of using strata are (1) it enables us to design a hardware

solution for logging shared memory dependencies in both snoop-based and di-

rectory based systems, whereas the previous point-to-point logging solution only

supported directory based systems, (2) the strata logging approach does not re-

quire us to log the shared memory write-after-read (WAR) dependencies, which

can be determined during replay, (3) a single stratum can capture many different

dependencies and as a result the strata logging approach reduces the number of

memory dependencies logged even more than the prior Netzer optimization for

point-to-point logging solution, and (4) the hardware required to create the strata

log is smaller than what is required for implementing the point-to-point logging

solution [104].

This chapter is organized as follows. Section IV.A provides a brief de-

scription of the FDR’s point-to-point logging approach [104]. This is our baseline

for comparison. Section IV.B introduces Strata and discusses the algorithmic

aspects of using strata for capturing the shared-memory dependencies. This in-

cludes a transitive optimization to reduce the size of the strata logs. Section IV.C

presents a hardware design for recording strata in a snoop-based multi-processor

system, while Section IV.D provides a solution for a directory-based system. Sec-

tion IV.E evaluates the proposed strata-based hardware design and Section IV.F

concludes this chapter.

IV.A Baseline: The Point to Point Approach to Log Shared

Memory Dependences

To replay and debug multi-threaded applications we need to record the

memory dependencies that exist across all the threads. To accomplish this, the

prior techniques used the point-to-point logging approach proposed by Flight
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Figure IV.1: Netzer Transitive Optimization [64].

Data Recorder(FDR) [104]. In this section, we discuss FDR’s algorithm and its

hardware design to capture the shared-memory dependencies.

IV.A.1 Point-to-Point Logging and Netzer Optimization

FDR captures all forms of shared-memory dependencies: read-after-

write (RAW), write-after-write (WAW), and write-after-read (WAR) dependen-

cies. These dependencies are logged in the Memory Race Logs. Logging every

dependency seen during execution is impractical, because it would lead to un-

manageable memory race log sizes.

In order to reduce the log sizes, FDR implemented the Netzer optimiza-

tion [64] in hardware. FDR’s hardware design assumed a directory-based system

with a sequentially consistent memory model. We briefly explain the Netzer

algorithm [64] used by FDR here with an example.

The Netzer algorithm works by exploiting the transitive property in a

system that assumes sequential consistency. A simple example for two threads,

T1 and T2, is shown in Figure IV.1, where each thread executes a write and a

read. The subscripts represent the address locations.

FDR records the dependency Wb→Rb in a memory race log. The de-

pendency between the two threads is recorded using the two instruction counts

of the dependent threads, which is a form of time-stamp used in FDR. This is
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sufficient because all that we need to know while replaying is that T1 should have

been executed at least until the memory operation Wb, before T2 can execute its

memory operation Rb. Later, when we observe the second dependency Ra→Wa

between T1 and T2, it does not have to be recorded, because it is transitively

implied by the previously recorded dependency.

We call the logging approach used in FDR as the point-to-point logging

approach, because each dependency is logged by explicitly logging the instruction

counts of the two dependent memory operations executed in two different threads.

IV.A.2 Hardware support for Point-to-Point Logging

In order to capture all the shared-memory dependencies between the

threads, we should first be able to detect them when the program is executing.

FDR [104] records shared-memory dependencies between the processor nodes

(and not the threads). We believe that this is sufficient information, because we

can map the recorded dependencies between processor nodes back to the threads

during replay. This requires that we know which thread was executing on a

processor node at a given time. This is required in BugNet, as it can replay only

user level code, and hence cannot reproduce the thread scheduling orchestrated

by the operating system.

Intra-node dependencies (dependencies within the same processor node)

need not be logged, because they are trivially revealed by the program order. To

detect dependencies between the processor nodes, FDR uses an observation [5]

that the shared-memory dependencies are revealed by the coherence messages in

a multi-processor system. There can be a cross-node shared-memory dependency

(dependency between two different processor nodes), only when a processor node

encounters a read/write cache miss to a cache block. If there are processor nodes

in the system that have a read/write permission to the cache block, then the
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appropriate dependency (RAW or WAW or WAR) with those processor nodes is

detected. If none of the processor nodes in the system have read/write permission

for the memory block (in other words, the block is not cached anywhere), then the

directory entry would have the information about the last writer to the memory

block. If the last writer is different from the processor node that generated

the read/write miss, then a cross-node dependency is detected. In the MESI

directory protocol, when a clean block is evicted, the directory is not informed

(silent eviction). The directory entry would continue to hold information about

the readers in the system (sharers) for the cache block, until a processor executes

a write to that cache block. At that instant, the cross-node WAR dependencies

are detected between the current writer and the past readers (including those

that silently evicted the cache block sometime in the past).

However, for a system based on a snoopy protocol, there is no directory

to hold the last writer information and the list of readers for the blocks that have

been evicted from the cache. Hence, additional support is required in snoop-based

systems, which this is not addressed in the prior proposals [104]. In Section IV.C,

we present a hardware design to record strata for capturing the shared-memory

dependencies.

For a directory based system, there is still a corner case, which was not

addressed in the prior FDR and BugNet proposals [104]; one that is related to

paging. If a physical page is swapped out, then future accesses to that page

would not find correct shared-memory dependencies, because the directory does

not hold information for the swapped out page. As a result, information about

the processor nodes that last accessed the swapped out memory blocks is lost.

This is not a problem in our strata logging approach, which is explained in detail

in Section IV.B.3.
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Hardware support for Implementing Netzer Algorithm

Going back to our example, assume that FDR [104], by observing the

cache coherence messages, detects the dependency Wb→Rb between the two pro-

cessors P1 and P2 executing the threads T1 and T2 respectively (the threads are

shown in Figure IV.1). This dependency is recorded in the Memory Race Log in

the processor node P2 in which T2 is running. The dependency is recorded using

the instruction counts corresponding to the memory operations Rb and Wb.

When the second dependency between the processors P1 and P2 is de-

tected due to the dependency Ra→Wa, FDR needs to determine, if the depen-

dency can be transitively implied by the previous log entry or if has to be logged

again in the P2’s memory race log. In order to do so, P2 needs to know that the

instruction count of the previous write access to the location “a” in the processor

P1 is less than the instruction count that was last recorded in P2 for the processor

P1 .

Thus, to implement the Netzer optimization for point-to-point logging

approach, the time-stamp information (instruction count) is kept track of along

with each cache block. The instruction count of a cache block tells the logging

mechanism, when the block was last accessed by the processor node. To keep

track of this information, about 6.25% [104] of L1 and L2 cache area is required,

which translates to about 128KB area overhead for a 2MB L2 cache. Further,

the memory race log is buffered locally in a 32KB Memory Race Log Buffer in

each processor node as described in FDR [104]. The hardware implementation

of the strata logging approach is less complex, and also the strata log size is 5.8x

smaller without compression and 12x with compression than that of the memory

race log.
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IV.B Using Strata to Determine Shared Memory Depen-

dencies

In this section, we discuss an algorithm to capture the shared memory

dependencies across the threads of an application. The hardware implementation

of the algorithm described here is presented later in Sections IV.C and IV.D.

IV.B.1 Capturing Shared Memory Dependencies using Strata

We assume a sequentially consistent memory model. In a sequentially

consistent memory model there exists a total order between the memory opera-

tions executed across all the threads. All the threads’ memory operations should

be consistent with that total order, which means a thread’s read must get the

value of the most recent write in the total order. The total order must also respect

a thread’s program order.

Our goal is to record sufficient information during a program’s execu-

tion, which would allow us to replay the total order observed during a program’s

execution.

To capture a dependency between two shared memory operations, in the

point-to-point logging approach that we discussed in Section IV.A, the memory

counts of the two dependent memory operations are logged. Instead, we propose

using a logging primitive called a stratum. A stratum consists of the execution

states in terms of the memory counts of all the running threads at the time

when it is recorded. A memory count for a processor node is the number of

memory operations executed since the beginning of the checkpoint interval. To

capture a shared memory dependency, we record a stratum just before executing

the succeeding memory operation. If two memory operations are dependent on

each other, we refer to the memory operation that occurred earlier in time as the

preceding memory operation or simply the predecessor. The one that occurred
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later in time is referred to as the successor. The recorded stratum separates all

the memory operations across all the threads, executed before the time when the

stratum was recorded, from those that were executed after it was recorded. Since

the stratum is recorded just before the succeeding memory operation is executed,

it separates the predecessor and the successor in time (that is, it captures the

dependency between the two dependent operations).

Figure IV.2 shows the memory operations executed in three threads.

The subscripts of the read and write memory operations identify them. The

fields inside the braces, show the address and the output value for a memory

operation. The strata are represented as horizontal lines. For instance, strata S1

separates the successor W2 from the predecessor W1.

One advantage of using the strata to capture the shared memory de-

pendencies is that, we can apply an effective dynamic transitive optimization to

reduce the size of the strata log. Also, the hardware required to implement the

transitive optimization for strata is significantly less than what is required for im-

plementing a similar optimization for the point-to-point logging approach [104].

We further reduce the strata log size by not logging information for the

WAR dependencies. This is based on our following observation: To reproduce

the total order during replay, it is sufficient to capture just the cross-thread

RAW and WAW dependencies using strata. We show how the cross-thread WAR

dependencies can be determined through an offline analysis during replay. We

also do not have to record strata to capture the intra-thread RAW and WAW

dependencies, because those are trivially revealed by a thread’s program order.

Therefore, the discussion in this section focuses on capturing only the cross-thread

(inter-thread) RAW and WAW dependencies using strata.
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Figure IV.2: Recording Strata Log. The strata that are logged are shown as
solid horizontal lines. The strata that are not logged by applying the transitive
optimization are shown with dotted rectangular boxes. The RAW dependencies
are shown as solid arrows and the WAW dependency is shown as a dotted arrow.
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IV.B.2 Optimizing Strata Log Size

We call the log containing the strata as the Strata Log (SL). We use the

example shown in the Figure IV.2 to explain how a strata log is created. We do

not have to record anything for the intra-thread dependencies. In the example,

W1→R1 is an intra-thread RAW dependency, which is revealed during replay by

thread T1’s program order.

In a naive implementation, the SL has a stratum recorded for every

cross-thread RAW and WAW dependency. However, the offline analysis algorithm

only requires that, for each observed cross-thread RAW or WAW dependency,

there is at-least one stratum in the strata log that separates the predecessor and

the successor. This means that one stratum can be used to separate more than

one cross-thread RAW or WAW dependency.

In the example shown in Figure IV.2, the stratum S1 is logged when

the WAW dependency W1→W2 is observed during a program’s execution. The

recorded stratum allows us to determine that the write W1 has to be executed

before the write W2 during replay. Similarly, the stratum S2 is logged to capture

the W2→R2 dependency.

However, when the RAW dependency W2→R4 is observed, we do not

have to log an additional stratum. The reason is that, the stratum S2 is sufficient

for us to determine that W2 preceded R4 in time. For the same reason, we do not

have to log a stratum for the RAW dependency W3→R3. S1 or S2 is sufficient to

capture the RAW dependency W3→R3. Also note that the memory operations,

W3 and R3, involved in the RAW dependency are accessing a memory location

different from the one that triggered the creation of the strata S1 and S2.

For the RAW W4→R5 dependency, we have to log an additional stratum

S3, because none of the earlier strata separate W4 and R5 in time. Thus, a stra-

tum for a cross-thread WAW or RAW dependency is logged only if the preceding
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operation in the dependency gets executed after the last recorded stratum.

IV.B.3 Advantages of Strata

We now describe the advantages of using strata to record cross-thread

RAW and WAW dependencies.

Efficient Transitive Optimization

A stratum consists of the current memory counts of all the threads.

In the point-to-point logging approach used in FDR [104], to record a depen-

dency, the memory count for the time when the preceding memory operation

was executed is logged along with the memory count of the succeeding memory

operation. Logging the memory count for the predecessor is less “strict” than

logging the current memory counts of all the threads. Therefore, a single stratum

can potentially capture many RAW and WAW dependencies. Thus, the transi-

tive optimization used to reduce the SL size is more efficient than the Netzer

transitive optimization used for point-to-point logging [104].

No WAR Logging

Capturing shared memory dependencies using strata allows us to ignore

WAR dependencies while logging and determine them offline. Not capturing

WAR, reduces the strata log size and the hardware support required for recording

them using strata.

Efficient Hardware Implementation

The amount of hardware required to implement the transitive optimiza-

tion to reduce the strata log size is significantly less than what is required to

implement the Netzer optimization in FDR [104].
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Supports Snoop Based Systems

In a directory system, when a dirty block is evicted, the directory main-

tains the information about the processor that last accessed that block. However,

in a snoop based system that information is lost, which is a problem for the point-

to-point logging approach used in the prior works [104]. This problem is solved

if we use the strata for logging RAW and WAW dependencies, because we do not

require precise information about the predecessors during replay. We just need

to know whether there is a RAW or WAW dependency due to the evicted cache

blocks or not. We detect dependencies with evicted dirty blocks by keeping track

of the set of evicted blocks in a bloom filter (a bit vector indexed by the hash

of an address). The hardware implementation for a snoop-based system will be

described in detail in Section IV.C.

Handles Paging

In Section IV.A, we pointed out a limitation of the point-to-point solu-

tion in handling paging in the middle of recording a program’s execution. When

a page is swapped out, all the information about who accessed what block and

when it was accessed is lost, as it can be found neither in the private caches of

the processor nodes nor in the directory (the directory does not maintain any

information for the memory blocks in the swapped-out pages).

To address this problem, we log one additional stratum when a physi-

cal page is re-mapped. The recorded stratum separates the memory operations

executed before and after the paging activity, which is sufficient for the offline

analysis to determine the dependencies. Since the paging activity is less frequent,

when compared to the frequency at which we create strata during normal exe-

cution, additional strata logged due to paging constitute a small portion of the

strata log.



101

IV.B.4 Off-line Analysis to Determine a Total Order

In this section we discuss a replayer can determine a total order between

the memory operations. Assume for now that the replayer knows all the memory

operations executed in each thread along with their addresses. Assume that the

replayer also knows their program order. We postpone the discussion on how

to get this information during replay for the BugNet approach (described in the

previous chapter III and the FDR [104] approach to Sections IV.B.4 and IV.B.4

respectively.

Assuming that a replayer has the above information, using the strata

log, the replayer can infer the total order between the memory operations ob-

served during logging. We use the example shown in Figure IV.2 to explain our

algorithm. Figure IV.2 shows the memory operations along with their addresses

and output values. But for our offline analysis we do not require information

about the output values.

We define a strata region to consist of all the memory operations exe-

cuted across all of the threads between two strata. Figure IV.2 has three strata

regions: S0 − S1, S1 − S2 and S2 − S3. There is a total ordering between the

strata regions because the strata are ordered by time. Therefore, if we order the

memory operations executed in each strata region in isolation, and then order all

the memory operations across strata, we will get a total order for all the memory

operations. We first discuss how to order the memory operations executed within

a strata region.

The memory operations executed in a thread are ordered by the program

order. For the example shown in Figure IV.2, we know that W4 was executed

after R4. Hence, we have to determine only the cross-thread dependencies. How-

ever, within a strata region, there cannot be any cross-thread RAW or WAW

dependency. This is true because the strata log is created in such a way that
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there is at-least one stratum that separates the memory operations involved in a

cross-thread RAW or WAW.

The above property simplifies our job to finding the cross-thread WAR

dependencies within a strata region. Since we are assured that there is no cross-

thread RAW dependency within a strata region, if we find a read and a write

in two different threads, such that the addresses for both the operations are the

same, then we are guaranteed that the write has to be executed after the read

during replay (WAR dependency). For example, in Figure IV.2, both R2 and

W4 access the same memory location and they are within the same strata region

S2 − S3. If R2 was executed after W4 during logging, a stratum would have

been logged between the two operations. Since there is no stratum separating

the two, we know that the dependency between those two operations is a WAR

dependency, R2→W4.

Once we have identified all the cross-thread WAR dependencies for a

strata region, we can determine a valid total order for the memory operations of a

strata region. While determining the total order, we make sure that the program

order is preserved in addition to the inferred WAR dependencies. For example,

a valid total order for the memory operations of the strata region S2− S3 is the

following: R2→R3→R4→W4. For the strata regions S0−S1 and S1−S2 there

are no cross-thread WAR dependencies. Hence, for those regions we just need to

make sure that the program order is preserved. A valid total order for the strata

region S0− S1 is W1→R1→W3.

Now that we have determined a total order for the memory operations

of each strata region, we can order all the memory operations using the recorded

total order for the strata regions. For example, we know that S0− S1 happened

before S1 − S2, S1 − S2 happened before S2 − S3 and so on. Therefore, the

memory operations of the strata region S0−S1 should precede the memory oper-
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ations of the strata region S1−S2 in the total order. We can therefore determine

a total order for all the memory operations within these three strata regions. In

our example, a valid total order is W1→R1→W3→W2 →R2→R3→R4→W4.

However, we obtained this total order based on the assumption that we have

knowledge of all the memory operations and the addresses that they accessed.

The next two sections explain how to obtain this information during replay using

the checkpoint logs of BugNet (described in Chapter III) and FDR [104].

Replaying Total Order in BugNet Replayer

The BugNet’s First Load Log (FLL) (refer Chapter III) is created for

each thread. It captures the values of the load instructions executed in a thread,

which is sufficient to deterministically replay that thread. It is sufficient even

in the presence of shared-memory updates, because a load accessing an address

written by another thread will notice that the address’ value has changed, and

will log that value in the its FLL.

By deterministically replaying each thread individually, we create a re-

play trace for each thread. In the replay trace of a thread, we have information

about all the memory operations executed by that thread in the program order

along with the addresses that they accessed. Using this information, and the of-

fline analysis described earlier, we can derive a total order between all the memory

operations. The Pin [49] based BugNet replayer that we discussed in Section III.E

replays the threads concurrently, but at the same time preserves the total order

deduced from the strata logs. To enforce the order, for each thread, the replayer

keeps track of the memory count starting from the beginning of the checkpoint

interval for the thread. When a thread reaches the memory count specified in the

next entry in the strata log, it is stalled until all the other threads also reach their

respective memory counts specified in the strata log entry. Thus, a programmer
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would be able to see the dependencies between the memory operations during

replay.

Replaying Total Order for a Copy-On-Write based Replayer

FDR [104] uses a copy-on-write checkpoint scheme along with a redo log

to deterministically replay the full system. In a copy-on-write checkpoint scheme,

whenever a memory location is updated, the old value residing in the memory

location is logged. In addition, the final state of all the memory locations is logged

at the end of a checkpoint. Using the final state, and the log of memory updates,

one can determine the memory values at the beginning of a checkpoint. With

this information, one can start replaying. However, during replay, we also have

to reproduce all the system interactions and the shared memory dependencies.

To reproduce the system interactions (like interrupts, system calls and DMA

transfers) FDR explicitly logs such information in what we call a redo log.

In order to deterministically replay using the FDR checkpoint logs, we

need information about the shared memory dependencies. The strata log that we

described earlier can be used for this purpose. We can deterministically replay

the full system using the FDR’s copy-on-write logs and the strata log as follows.

We start the replay from the first strata region in the checkpoint and

then proceed to replay the following strata regions in order. However, it is not

straightforward to replay from the start to the end of a strata region without the

knowledge of potential WAR dependencies that may exist within the strata re-

gion. We solve this problem by performing a search through the possible memory

orderings for a strata region.

We first begin the replay for a strata region without assuming any WAR

dependency and the only order we preserve is the program order. During the

search, we may observe a read and a write executed in two threads with the
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same address. We know for sure that this is a WAR dependency and not a RAW

dependency, because during logging, we create strata in such a way that there are

no RAW or WAW dependencies within a strata region. However, in our replay

experiment, while searching for a correct memory ordering for the strata region,

we might have executed the write before the read. If so, we take note of the WAR

dependency and start replaying again from the start. In the subsequent replay

experiments to find a correct memory ordering, we enforce the WAR dependences

that were found in the earlier replay experiments.

During replay, we are guaranteed to not wander down a control path

that is different from the recorded program execution. For that to happen, some

load would have to have read an incorrect value written by another thread during

the replay. However, that would be a cross-thread RAW dependency, which is

not valid, since there cannot be any RAW dependencies within a strata region.

During replay, if we find a RAW dependency, then this means that this is really a

WAR dependency, and we take note of this newly found dependency and restart

replay from the beginning of the strata region. In that replay and the subsequent

replays, we will not allow the write to execute till the dependent predecessor

read in the other thread has executed. For example, consider the strata region

S2− S3 in Figure IV.2. During our replay search for a correct memory order, it

is possible that the write W4 is executed before the read R2. After noting this

WAR dependency, in our subsequent replays, if we reach W4 before executing

R2, we will stall the thread T1 till R2 in thread T3 has executed.

We continue the above process till we are able to replay up to the next

stratum without encountering a RAW dependency. This gives us a final memory

ordering for the strata region, and that is used for deterministic replay debugging.

This ordering lists instructions in the same order as observed during program

execution.
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IV.B.5 Correlating Strata Logs to BugNet/FDR Checkpoint Logs for

Replay Debugging

In Section III.B we mentioned about Memory Race Logs (MRL) that

record the shared-memory dependencies. Strata log serves the purpose of MRL.

The strata log needs to be correlated and used in conjunction with the checkpoint

logs of BugNet. If FDR’s copy-on-write checkpointing mechanism is used for

capturing system interactions, then strata logs need to be correlated with FDR’s

checkpoint logs. The following approach takes care of this problem.

A strata log is created at the same instant in all the processors. Sec-

tion IV.C and Section IV.D describes how this is done for snoop-based and

directory-based systems respectively. When a strata log is created in a pro-

cessor, the first entry is initialized with the memory counts of all the processors.

The memory count of a processor is the total number of memory operations that

the processor has executed since the logging process began. Each processor keeps

track of its private memory count. We assume a 32-bit counter for the results in

this thesis.

When a new checkpoint is created in FDR [104] or BugNet, the current

memory count value is stored in the new checkpoint header. In the case of

BugNet, like we described in Section III.B, a checkpoint with then FLL for a

thread running in a processor node is created independent of the other threads

in the system. We described the contents of FLL in Section III.B. In addition, to

those contents, the current running memory count of the processor is recorded in

the FLL. Unlike BugNet, in the case of FDR, a global checkpoint is created. The

checkpoint header of the global checkpoint contains the memory count of all the

processor nodes. Thus, the header of the checkpoint log (FLL in the checkpoint

log case of BugNet) is initialized with the memory count.

As we replay the memory operations in a checkpoint interval, the mem-
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ory counts of those memory operations can be derived from the initial memory

count recorded in the checkpoint header. Also, each entry in the strata log con-

tains the memory counts of all the processor nodes. Thus, an entry in a strata

log containing the memory counts can be mapped to the corresponding memory

operations during replay.

To reduce the strata log size we examine a compression technique that

logs the difference between memory counts in 16-bit values. Instead of logging

the 32-bit memory count value, we just log the difference between the memory

count for the processor in the immediately preceding stratum and the current

memory count for that processor. Even when we log just the stride values, it

is still possible to correlate the strata logs with the checkpoint logs of FDR and

BugNet, because at the beginning of the strata log we log the full memory count

values of all the processor nodes. If we start a new strata log, the header of the

new strata log would contain the current memory count of all the processors.

This allows us to correctly map the strata log entries with the FDR and BugNet

checkpoint log headers.

With the above information we can replay the program’s execution for

deterministic replay debugging using the BugNet/FDR checkpoint logs in com-

bination with the strata logs, as long as we have a little more information about

system events. For BugNet, the only other piece of information needed for deter-

ministic replay is the order of thread context switching. To address this, BugNet

has a context switch log to record the time of the context switch using the mem-

ory count of the processor, as well which thread is context switched in and which

thread is context switched out for the processor. For FDR [104], it does not need

a context switch log, since it can deterministically replay the operating system

thread scheduling, but it does need the redo log, which provides the ability to

replay all of the inputs to the system.
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Since these systems provide deterministic replay, and we now have a

total order for the memory operations, they can be used to single step through

multi-threaded execution for debugging. This allows the developer to observe the

interaction between the threads through the shared memory reads and writes,

which is useful to track down bugs due to data races.

IV.B.6 Processor Effects on the Logging

We now discuss how to handle logging at the block level, prefetching,

and how out-of-order execution affects the strata logs.

Capturing Dependencies at the Cache Block Level

We detect the shared memory dependencies at the granularity of cache

blocks. This is because, we detect dependencies by observing the cache coherence

messages, which operate at the granularity of the cache blocks. As a result, we

might detect a false shared memory dependency (due to two processors accessing

different words in the same cache block), and log a stratum for it.

However, the above is not an issue for our offline analysis. When a false

dependency is detected, in the worst case, one additional stratum is logged. This

is not issue, because the additional stratum just specifies a much stricter (but

still a valid) ordering between memory operations.

Prefetching and Out-of-Order Execution

A hardware prefetcher or a software prefetch instruction can bring a

memory block into the cache which might not be eventually used (read or written)

by the processor. This might result in unnecessary strata being logged. However,

additional strata do not compromise correctness.

Non-blocking caches and out-of-order execution in modern processors
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can send or receive a coherence request/reply for a cache block out-of-order (out

of program order). In systems implementing aggressive speculation, a cache block

may be accessed even before its coherence is done. However, even in these sys-

tems, if the processor supports sequential consistency (which is what we assume

and model), then it makes sure that the cache access and the coherence activity

appears to be in the commit order of the instructions (program order). There-

fore, our strata logs and coherence messages associated with the strata logs are

consistent with the program commit order.

IV.C Hardware Implementation for Snoop-based Systems

This section discusses support for creating Strata Logs (SLs) in snoop-

based multi-processor systems. As we discussed in Section IV.A, the previous

Point-to-Point approach [104] does not provide a solution for snoop-based sys-

tems.

IV.C.1 Detecting Cross-Node RAW and WAW for Cached Blocks

To explain our approach, let us assume for now that the caches are of

infinite size. This means, once a processor node accesses a memory block, it stays

in its private cache till another processor writes to it. If another processor writes

to the block, then it gets invalidated. Therefore, a memory block once fetched into

some processor’s cache resides in at least one of the processors’ caches throughout

the lifetime.

Our goal is to detect cross-node RAW and WAW dependencies. We

achieve this by monitoring the coherence messages. Whenever a processor node

encounters a read or a write miss for a memory block, it places a request on the

bus. If any other processor node has a dirty copy of the memory block, which

means the processor wrote to the block, then there exists a RAW or a WAW
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dependency. Therefore, when the owner of the block replies on the bus, the reply

is piggybacked with a log stratum bit, whose value is set. The log stratum bit

instructs other processor nodes in the system to log a stratum. Each processor

node, logs their current memory count in their strata log. Our design ensures

that the memory count logged for the processor that generated the read or write

miss, corresponds to the memory operation executed prior to the read or write.

This ensures that the stratum separates that read or write from all the prior

memory operations.

Note that the memory count for each processor representing the stratum

is logged into each processor’s own strata log. Therefore, we need to be able

to construct a global strata log from the individual per processor strata logs.

However, we create the strata logs in all the processor nodes at the same time

like we described in Section IV.B.5. They are initialized with the full 32-bit

memory count values of the respective processor nodes at the time of creation.

Thus, the strata logs across all the processor nodes always stay synchronized.

That is, the first entry in a processor’s strata log corresponds to the first entry

in every other processor’s strata log, and it is the same case for the rest of the

entries in the strata logs as well.

IV.C.2 Detecting Cross-Thread RAW and WAW for Evicted Blocks

The previous section assumed infinite caches. Let us now waive this

assumption. With finite size caches, there exists an issue for the snoop-based

protocol when a dirty block is evicted from the cache. When a memory block is

evicted out of the cache, information about the last writer to that block is lost.

We solve the above problem for a snoop-based system using a separate

bloom filter [87] in each processor node. Our bloom filter is a bit vector indexed

by a hash of the memory address. Since we are interested in detecting only the
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cross-node RAW and WAW dependencies, we must keep track of the fact that

there was a writer to this memory block. Hence, whenever a dirty block is written

back (evicted) to main memory over the bus, all the other processor nodes snoop

the bus, and set the bit in their private bloom filters by indexing them using the

hash of the physical address of the memory block that is being written back.

If a processor node encounters a read or write miss for a memory block,

it checks its private bloom filter to see if, in the past, some other processor node

had written to that memory block. If the bit for the block is set in the bloom

filter of the processor that encountered the read miss, then we know that there

may be a potential cross-node RAW or WAW dependency. Hence, a stratum has

to be logged. To log the stratum, we piggyback the coherence request message

(generated by the processor that encountered the read/write miss) with the log

stratum bit set to true. All the processors snooping the bus will see a set stratum

bit. This forces each processor node to log its current memory count in its strata

log. Whenever a new stratum is logged, all the processors clear all of the bits in

their bloom filters. We can clear all of the bloom filters, because the recorded

stratum separates all the reads and writes that follow the stratum from those

writes that were executed in the past. Essentially, by clearing the bloom filters

we are implementing the transitive optimization for the writes to the uncached

blocks.

The bloom filter essentially predicts whether an uncached block was

written after the last recorded stratum. The bloom filter guarantees that there

are no false negatives. That is, we will not miss any RAW or WAW dependency

due to aliasing in the hash indexed bit vector. However, there could be false

positives, which means that we may end up logging a few more strata than we

need to. For our results, we use a bloom filter of size 128 bytes (1024 entries, one

bit per entry) per processor-node, which resulted in less than 1% of additional
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strata for most programs we examined.

IV.C.3 Implementing Transitive Optimization for Cached Blocks

When we detect a cross-node RAW or WAW dependency, we do not have

to log a stratum if the write operation involved in the dependency was executed

before the last recorded stratum. Earlier, we explained how this optimization is

implemented for uncached blocks by just clearing the bloom filter bits when a

stratum is logged. If the dirty block is cached in one of the processor nodes, then

we need a way to know if the write to that block occurred before or after the last

recorded stratum.

Unlike the Netzer transitive optimization used in the previous Point-

to-Point proposal [104], which required storing the instruction count with each

cache block, in our approach all we do is associate a single bit with each cache

block. We call this bit the dependence bit. The dependence bit for a cache block

indicates whether the cache block was written before or after the last recorded

stratum. The dependence bit for a cache block is set whenever there is a write

to the cache block and is reset whenever a stratum is logged.

When we have a read or write miss, and a dirty block is found in another

processor’s cache, then this means that there is a RAW or WAR dependency, but

we log a stratum only if the dependence bit is set for that cache block. Also, while

evicting a dirty cache block, the bloom filters of the processor nodes are updated

only if the dependence bit for the evicted cache block is set. If the dependence bit

was not set for the dirty block, we do not need to keep track of it in the bloom

filter nor log a stratum. This is because a stratum has already been logged since

the last time the block was modified.

Whenever we log a stratum, in addition to clearing the bloom filters for

all the processor nodes, we also clear all the dependence bits in all the caches.
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This is valid, because all the writes that were executed before logging the stratum

are separated from the memory operations that are going to be executed after

recording the stratum.

IV.C.4 Complexity Advantage of not Logging WAR

We need to capture just the RAW and WAW dependencies like we de-

scribed in Section IV.B.4. However, in our experimental evaluation to be dis-

cussed in Section IV.E, we studied the size of the strata log required to capture all

the shared memory dependencies, including the WAR dependencies. We briefly

discuss here, the additional hardware required to capture the WAR dependencies.

To capture the WAR dependencies, first, we need to be able to detect

the WAR dependencies. This is straight-forward as long as the blocks are cached.

However, if a block read by a processor is evicted, we need to keep track of it

similar to how we tracked the dirty block evictions. This requires a broadcast on

the bus even when a clean cache block is evicted, which is not normally required

in a MESI protocol. Each processor node snoops the broadcast message to set

the corresponding bit in the private read bloom filter. Note that this bloom filter

is an addition to the write bloom filter already used for tracking the evicted dirty

blocks. Also, we need an additional dependence bit that tells us whether the

block was read by the processor before or after the last recorded stratum.

Because of this additional hardware complexity, our primary solution

focuses on recording strata for only RAW and WAW, and determining RAW

using offline analysis as described in Section IV.B.4.

IV.C.5 Hardware Comparison to Point-To-Point Logging

The additional logic added to our architecture are the bloom filter per

processor, and one dependence bit per cache block in the private caches of each
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processor. In our scheme, we do not have to tag each memory block with the

instruction count like in the prior work [104] to record the shared memory depen-

dencies. We therefore avoid the additional 6.25% area overhead in the L1 and L2

caches used in the prior techniques.

IV.D Hardware Implementation for Directory Based Sys-

tems

In this section, we discuss how we can capture the shared memory de-

pendencies using the Strata Log for directory based systems. Figure IV.3 shows

the changes required in a directory based system to record the strata log. It

shows one processor node in the multi-processor system. It also shows the direc-

tory controller where we record the strata log. For our simulations, we use an 8

KB hardware buffer to buffer the writing of the stratum to the strata log in the

main memory. We also keep track of a memory count vector in the directory,

dependence bits in the directory and also in the private cache of each processor

node. The functions of these architectural extensions to support recording strata

logs in a directory-based system in discussed in this section.

IV.D.1 Capturing RAW/WAW using the Strata Log

To explain our approach, let us assume a system with a centralized

directory, and that the directory knows for each block if it has been written

since the last stratum was logged. We will waive these assumptions later in this

section. Since the processor nodes are not connected by a common bus like in the

snoop-based systems, it is not efficient to create the strata logs in the processor

nodes. We instead chose to create the strata log in the directory controller.

When a cross-node RAW or WAW dependency is observed at the direc-

tory, a stratum has to be logged by the directory controller. To log a stratum, the
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Figure IV.3: Strata logging support in a directory based system.

directory controller needs to know the current execution states (memory counts)

of all the processor nodes. One way to achieve this is by polling all the processor

nodes for their current memory counts. However, this incurs a heavy communi-

cation cost. To avoid this communication cost, we instead propose to have each

directory controller keep track of a vector of memory counts (MVector), one for

each processor node in the system. Each count represents the last time the pro-

cessor accessed the directory. A stratum is logged using these memory counts.

The vector of memory counts is updated as follows. Every time a processor node

performs a read or a write request to the directory due to a cache miss, it piggy-

backs its current memory count along with the coherence request. Also, when a

dirty block is written back to memory, the current memory count is also piggy-

backed in the write update coherence message. We update the MVector for the

processor each time the memory count is piggybacked on a coherence message.

In this scheme, some of the memory counts in the vector can be stale

(not up-to-date) when a stratum is logged, relative to the current memory counts

on all of the processors. This is fine, since the memory counts that the directory

sees can be used to log a stratum across all of the processors, which is valid
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in terms of capturing the shared memory dependencies. Consider the example

shown in Figure IV.4. The example shows four processor nodes. The read and

write operations are shown along with their addresses. The RAW and WAW

dependencies are also shown using arrows. In the figure, assume that the stratum

S0 has been logged due to some previous dependency. The processor nodes

P3 and P4 update their memory counts in the directory controller when they

encounter read misses (due to R1 and R2) for the address C. Later, when P1

sends a write miss request for W2, a WAW dependency is detected with P2, which

currently has a dirty copy of the memory block (written by W1). A stratum is

logged to capture this W1→W2 WAW dependency. The directory controller logs

the stratum S1 using the memory counts in its MVector. Note that the memory

counts for the processor nodes involved in the dependency are always up-to-date

when the stratum for the dependency is logged. In our example, the memory

counts of P1 and P2 are up-to-date when the stratum S1 is logged. Since the

stratum will separate the dependent operations in time, the memory count logged

for the processor node P1 is one less than the memory count corresponding to

the write operation W2.

After logging the stratum S1, the processor node P2 encounters a write

miss for W5 and updates the memory count in the MVector. Later, the RAW

dependency W3→R4 is observed between P4 and P3, when P3 encounters a read

miss for R4. The directory controller logs the stratum S2 to capture this RAW

dependency. Note that the memory counts are up-to-date for P3 and P4 while

logging the stratum S2. However, it is not the same case for P1 and P2. In fact,

for P1, the memory count logged in S2 is same as the memory count that was

updated when P1 sent a coherence request for the write W2.

In spite of using stale memory counts while logging the strata, the fol-

lowing two properties that are essential for our offline analysis are still preserved:
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(1) There exists at least one stratum between the memory operations involved

in a cross-node RAW or WAW dependency. Thus, a strata region cannot have

any cross-node RAW or WAW dependencies. (2) The strata regions are non-

overlapping, because the value of a memory count in the MVector either increases

or stays the same. These properties allows us to consider one strata region at a

time during offline analysis, and determine a total order for the memory opera-

tions executed with a strata region.
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R2 (C)

W5 (D)
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W4(C)

R5 (D) R6 (C)

Figure IV.4: Example of a Strata log in a directory based system.

IV.D.2 Determining RAW and WAW Dependencies in the Directory

Similar to our snoop-based implementation, we use a dependence bit

per cache block to determine if a dependency needs to be logged. We also have a

dependence bit for each directory entry in the directory cache. The dependence

bit in the processor’s cache is set whenever the processor writes to the cache

block. In the directory systems, the dependence bit in the directory cache is set

whenever a dirty block is written back to the memory and that dirty cache block

has its dependence bit set.
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Figure IV.5: Strata log collected in a system with two directories.
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Figure IV.6: Combined strata log created from the strata logs of two different
directories during replay.
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While servicing a processor’s read or write miss request for a cache

block, a potential RAW or WAW can exist if some processor node in the system

has exclusive access to the cache block. In that case, the directory controller

sends a data fetch request to the processor node that has exclusive access. The

processor node with exclusive access to the cache block, piggybacks the value

of that block’s dependence bit on the coherence reply message to the directory.

We detect a RAW or WAW dependency only if the dependence bit information

received through the coherence reply is set to true (that is, the owner had written

to the cache block).

In case when the block in not cached in any of the processor node, while

servicing a processor’s read or write miss request for a cache block, we detect a

RAW or WAW dependency if the dependence bit is set for the directory entry of

the cache block. If the bit is set, we log a stratum to separate the dependency.

If the directory cache cannot keep track of every block in memory, and we get

a miss in the directory cache for the memory block, then we conservatively log

a stratum on a directory cache miss. Thus, the dependence bits in the private

caches of the processor nodes and in the directory cache allows us to detect the

RAW and WAW dependencies and log a stratum appropriately to capture them.

When a directory logs a stratum, the dependence bits for all the entries

in that directory can be cleared. This is because, any write that had set a

dependence bit in the directory entry earlier is ordered by the stratum that

the directory is currently logging. To reduce the amount of logging as much

as possible, we would also like to clear the dependence bits in the processor

caches, whenever a stratum is logged. We would only be able to do that for all

of the processors, if the stratum contained the current memory counts for all

the processor nodes. However, this would require additional coherence messages

between the directory and every other processor node in the system. Therefore,
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we chose to reset the dependence bits only for the two processor nodes that

are involved in the RAW/WAW dependency that triggered the creation of the

stratum. This is valid because the new stratum contains the up-to-date memory

counts for those two dependent processor nodes. Hence, all the writes executed

in those two processors before logging the stratum are ordered by the recorded

stratum.

Consider again the example shown in Figure IV.4. Assume that after the

write W5, the dirty block (with address D) was immediately written back to the

memory. This sets the dependence bit in the directory entry corresponding to the

memory block with address D. When the stratum S2 is logged, the dependence

bits in the directory are reset. This includes the dependence bit for the block

D. Later, when R5 accesses the same block, a new stratum is not logged, even

though there is a cross-node RAW dependency (W5→R5), because the stratum

S2 already separates W5 and R5.

Now let us explain another example to show how the dependence bits in

the caches are used. The processor node P3 executes the write W4 to the address

C and sets the dependence bit in its cache block. The cache block remains in

the dirty state until the time when processor node P2 executes the read R6.

Clearly, there is a cross-node RAW dependency W4→R6 between P3 and P2.

However, when the stratum S2 was created for the RAW dependency W3→R4,

the dependence bits in the private caches of P3 and P4 would have been reset.

As a result, the dependency information piggybacked along with the coherency

reply from P3, to service the read miss for R6 W4→R6, tells the directory that

a new stratum to capture the RAW dependency W4→R6 is not required. Thus,

a stratum is not logged for the RAW dependency W4→R6.
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IV.D.3 Strata for a Distributed Directory

In this section, we relax the assumption of a centralized directory and

show that our approach is applicable for distributed directories as well. In the case

of distributed directories, each directory controller captures the dependencies for

the addresses that it services using a strata log. So we have multiple strata logs,

which are combined into one unified strata log during offline analysis. Figure IV.5

shows an example of two strata logs, collected in a distributed directory system

with two directories. The solid strata are collected in one directory and the dotted

ones are the strata collected for the other directory.

A strata log collected in a directory serves the purpose of determining

the dependencies between the memory operations accessing the addresses mapped

to that directory. Therefore, we are still guaranteed that each cross-node RAW

and WAW dependency is separated by at least one stratum in one of the strata

logs. In Figure IV.5, addresses A and A′ are assumed to be mapped to one

directory (the strata log for this directory is shown using solid lines). The address

B is mapped to the other directory. It can be seen that the solid strata S1 and

S2 separate W1→R1 and W3→W4 dependencies respectively, while the dotted

stratum S0 captures the W2→R2 dependency.

However, unlike in a centralized directory, the strata regions in the strata

logs collected in different directories can be overlapping. The reason for this is

that the MVectors used to log the strata across the directories are not updated

in the same way. An entry for a processor node in the MVector is updated only

when that processor node communicates with that directory to resolve a miss or

when it is writing back a dirty cache block.

Overlapping strata regions are an issue, because in the offline analysis

that we described in Section IV.B.4, one strata region is analyzed at a time. To

solve this problem, in our offline analysis, we first combine the multiple strata
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logs for the different directories such that there are no overlapping regions in the

combined strata log. When combining the strata logs, we look to see if there are

any two strata that are intersecting. A stratum in each log contains the memory

counts for each processor when the stratum was recorded in the directory, and

from these counts we can easily determine if two strata are intersecting. If there

are two intersecting strata, we use their memory counts to make non-overlapping

equivalent strata, which are put into the combined strata log. For example, in

Figure IV.5 the strata S0 and S1 are intersecting. For these two strata, we create

three strata S ′0, S ′1 and S ′2 in the combined log in such a way that none of the

new strata intersect, and these new strata still separate the regions of memory

operations that the two strata were originally created to separate. Figure IV.6

shows the combined strata log. It is stricter because the number of strata, between

any two dependent memory operations, is either the same as before removing

the intersections or greater. For example, in Figure IV.6, the reads and writes

involved in a RAW or a WAW dependency are still separated by at least one

stratum. There are two strata S ′0 and S ′1 that separate the cross-node RAW

dependency, W1→R1, whereas in the strata log shown in Figure IV.5 there is only

one stratum S1 to separate those dependent operations. The RAW dependency

W2→R2 (observed in the second directory) is captured by the stratum S ′2.

Once we have the strata log with non-overlapping strata regions, we can

use the offline analysis that we described in Section IV.B.4 to determine a total

order for all the memory operations.

IV.D.4 Complexity Advantage of Not Logging WAR

If we wanted to also capture WAR shared memory dependencies with

our strata approach, we additionally need to have read dependence bits in the

processors’ caches and in the directory cache. These additional dependence bits
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are required to determine whether there was a read to a memory block after the

last recorded stratum. When there is a write miss, we can detect if there is a

WAR dependency, and using the read dependence bit information we can decide

whether to log a stratum or not. We use this approach for analyzing the log

size overhead of capturing all the shared-memory dependencies in Section IV.E.

However, like we described in Section IV.B.4, we do not have to record WAR

dependencies because they can be determined using an offline algorithm.

IV.D.5 Hardware Requirements

The additional hardware states required for creating the strata log is just

one dependence bit per cache block in each processor node and one dependence

bit per directory entry in the directory.

IV.E Results

In this study, we used Simics [50] to record the logs as well as to model

the architecture support required for logging. In Simics, we modeled a four node

CMP processor with 64KB L1 caches and a 2MB L2 cache, and modeled both

directory and snoop protocols.

To evaluate our shared memory dependency logging improvements, we

used data parallel programs from the Splash benchmark suite [103]. We could

only get five of the main benchmarks to compile, and we provide results for all of

these, which are barnes, ocean, radiosity, raytrace and water. We focus on

these for tracking shared memory dependencies, since they represent a workload

which will stress the shared memory dependency logging. We ran each program

configured with 5 threads on a 4 processor node system. Each program was run

until the total number of memory operations across all the threads reached 400

million memory operations per program. We found this to roughly execute about
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100 million memory operations per thread.

IV.E.1 Logging Performance Overhead

In terms of performance overhead, we found that the logging incurs only

a 1% slowdown due to the extra memory traffic from logging, which is consistent

to the low (few percent) overhead reported in FDR [104]. This is because the logs

are written to 8KB memory race buffer and so they do not pollute the caches at

all. Also, logs are written back to the main memory with a low priority.

IV.E.2 Strata Logging Results

In Figure IV.7, we present results for the number of log entries to cap-

ture shared memory dependencies. The x-axis represents the programs and the

y-axis represents the number of log entries generated by the point-to-point (P2P)

scheme with Netzer optimization, our new Strata directory and Strata snoop ar-

chitectures. Results are shown in terms of the average number of log entries for

1 million memory operations. The figure shows five bars. We first concentrate

on the first, second and fourth bars, representing P2P, Strata for Directory and

Snoop cache coherence protocols. A log entry for P2P is created for every RAW,

WAW and WAR shared memory dependency. The log entry for our Strata re-

sults represent the number of logged strata, when logging strata for only RAW

and WAW. The results show that Strata has significantly less log entries when

compared to P2P. For our directory approach we require 10.5x less number of

logs than P2P, and for snoop based system the number of log entries is reduced

by a factor of 9.9x.

The reasons for these savings are two-fold. First, Strata only records

RAW and WAW dependencies, therefore saving all log entries related to WAR de-

pendencies. More importantly, our scheme implements a transitive optimization,
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which yields significant savings in reducing the number of strata to be logged.

Strata Snoop does slightly worse than Strata Directory because of aliasing in the

bloom filters.

In Figure IV.7, the third and fifth bars (All) show the number of strata

log entries if we create a stratum for logging all shared dependencies (includ-

ing WAR). The mechanism to record WAR using strata was described in Sec-

tion IV.C.4 and Section IV.D.4. Strata logs for recording WAR dependencies

incur an overhead of 25% additional log entries when compared to logging only

RAW and WAW dependencies. In addition, it requires the extra hardware ex-

plained in Sections IV.C.4 and IV.D.4, in order to monitor whether reads occurred

after the last logged stratum. From the results, we see that most of the savings,

in terms of the number of log entries come from our stricter (and more efficient)

strata transitive optimization. The transitive optimization results in significantly

fewer log entries when compared to the point-to-point (P2P) Netzer optimization.

Figure IV.8 shows the log sizes in terms of bytes for every 1 million

memory operations (y-axis) for each approach. The first bar shows the P2P ap-

proach. It requires 9 bytes to record a shared memory dependency [104]. The

second and the fourth bars show the log sizes for recording only RAW and WAW

dependencies using our Strata Directory and Strata Snoop designs. The third

and the fifth bars show the log sizes for logging strata for recording RAW, WAW,

and WAR. For every stratum four words are logged, one word is required for the

memory count of each processor. These are our uncompressed results. When

compared to P2P, our shared memory dependency logs are 6x and 5.6x smaller

on average for the directory and snoop-based systems respectively. If all the de-

pendencies are logged using strata (which is not needed unless one wants to avoid

the overhead of offline algorithm during replay), the ratios go down to 4.5x and

4.4x for the directory and snoop-based systems respectively. Figure IV.8 shows
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a 25% reduction in log size for not having to log WAR dependencies with Strata.

It has be noted that the main advantage of recording only WAW and RAW and

figuring out the WAR off-line is that, we avoid the hardware complexity required

to capture the WAR dependencies (refer Section IV.C.4 and Section IV.D.4).

Figure IV.9 shows the results for Strata log sizes without and with com-

pression. We show results for logging only the RAW and WAW dependencies,

since the same trend holds for logging all dependencies as well. Without com-

pression, the Strata approach logs 4 words for each stratum logged, as described

before. For the compressed results, instead of logging a full 32-bit memory op-

eration count for each processor, we log only 16-bits if the memory count stride

(difference between the previous stratum memory count and the current stratum

memory count for a processor) can be expressed using 16-bits. If 16-bites are not

sufficient to log the stride, then we log the full 32-bits. To distinguish between

these two formats, we need one bit for each memory count entry per processor.

Therefore, we approximately have two words per log entry after compression.

The first two bars show the results for the Strata Directory approach without

and with compression, and the last two for the Strata Snoop approach without

and with compression. The results show that with the simple form of compression

that we described, our log sizes are 47% smaller than not using the compression.

When using compression, the Strata log sizes are on average 12x times smaller

than P2P.

Overall, the results show that the storage overhead of logging the shared

memory dependencies for 1 million operations is roughly 24KB in the case of P2P

approach [104]. Whereas, for strata-based approach it is 4.1KB in a directory-

based system and 4.4KB for a snoop-based system without using compression.

With compression, the sizes are 2.2KB and 2.3KB for the directory and snoop-

based systems. To put these log sizes in perspective with the rest of the logging
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done for BugNet, for these programs, the First Load Log (FLL) size required

to capture the execution for 1 million memory operations is 26.6 KB on average

without compression. Therefore, the Strata logs account for about 15% of the

total log storage needed to provide deterministic replay with BugNet for these

programs.

Another interesting observation is that the Snoop approach results in

more log entries than the Directory approach. This is especially perceivable for

the program ocean in Figure IV.7. This is due to aliasing in the bloom filters,

which result in false positives when detecting dependencies with uncached blocks.

We set an entry in the bloom filter when a dirty copy of a block is written back

to the main memory. However, if another entry aliases to the same bloom filter

entry, then on a miss, we would detect a false dependency between two operations,

and log a stratum. Note that this is not a correctness issue. It just results in

redundant strata log entries, and hence larger log sizes. To measure the effects

of aliasing in our schemes, we measured how many strata were logged due to

aliasing. For all benchmarks except ocean less than 1% of the strata were logged

due to aliasing. For ocean however, 64% of the strata logged are due to false

positives. This is because of the large number of dirty block evictions encountered

during execution, resulting in heavy use of the bloom filters for this particular

benchmark.

IV.E.3 Bandwidth Overhead

We also collected results for the overheads of our approach in terms of

communication bandwidth. For calculating this overhead, we accounted for the

extra bytes transmitted on the bus for recording the shared memory dependencies.

The baseline bandwidth is computed as the number of bytes transmitted on the

bus to serve the read and write misses, plus the size of coherence messages that
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handled those misses. For the P2P approach, the bandwidth overhead is due

to the instruction counts piggybacked on the write update reply messages and

invalidation reply messages. The overhead is about 10% extra bandwidth. For

our approach for directory-based systems, the overhead is due to the memory

operation counts piggybacked on the messages sent to the directory as a result of

the write misses, read misses and write evicts. Also, the coherence replies from

the exclusive owners in response to data fetch request need to be piggybacked

with the dependence bit. The bandwidth overhead our strata based approach

in a directory-based system is about 12%, which is 2% higher than what P2P

requires.

In a snoop-based system, the coherence reply and the request mes-

sages are piggybacked with one additional bit that instructs the processor nodes

whether to log a stratum or not. This is the source of additional bandwidth over-

head. In addition, before paging, an additional message is broadcast on the bus

instructing all the processor nodes to log a stratum. For the programs we exam-

ined, we found that these do not incur any appreciable communication overhead

- both in terms of number of bytes communicated and in terms of the number of

messages communicated.

IV.E.4 Scalability

We finally point out some aspects regarding the scalability of our strata

approach. Note that the number of entries in a strata log is proportional to the

number of processor nodes, and not threads. Therefore, logging overhead would

scale linearly with the number of processor nodes in the system. However, for

our directory approach, since we clear the dependence bits of only the dependent

processor nodes, our transitive optimization to reduce the number of strata logs

may not be as efficient when the number of processors increase. In P2P, as the
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number of processor nodes increase, the number of point-to-point dependencies

also potentially increase. In our case, the size of each stratum increases with

the number of processors, but so does the benefit of our transitive optimization.

Because, one stratum capture dependencies across all the processors, and not just

the dependent processors.

IV.F Conclusion

This chapter proposed a new logging mechanism called Strata, which

complements the BugNet architecture discussed in the previous Chapter III. Us-

ing strata, we can capture the shared-memory dependencies in both snoop-based

and directory-based system. Using this information we can replay the memory

order in a multi-threaded program, which helps in debugging concurrency bugs

such as data races.

A stratum is logged across all of the processors every time a shared mem-

ory dependency needs to be captured. We log a stratum only to capture the RAW

and WAW dependencies. The WAR dependencies are determined through offline

analysis. A stratum provides a strict time ordering between memory operations

that occurred before and after the stratum executed across all the processors.

We found that the strata log is 5.8x smaller without compression and 12x smaller

with compression when compared to the log size required in the previous point-

to-point logging approach [104]. Another advantage is that our strata approach

requires less hardware than the point-to-point approach. In addition, based on

the notion of strata, we were able to design a shared memory dependency log-

ging solution for snoop-based architectures, which the previous proposals did not

address.

The techniques presented in this chapter assumed a sequentially con-

sistent memory model. Recently, Xu et al. [106] proposed an extension to their
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FDR design to support systems with a weaker Total Store Ordering (TSO) model.

Future work could extend the strata-based approach presented in this thesis to

support weaker memory models.
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V

Replay-based Automatic Data

Race Detection

In Chapters III and IV we presented processor-based solutions for record-

ing and replaying a program’s execution. We provided a comprehensive solution

to deal with all forms of non-determinism including non-deterministic system

interactions and also non-deterministic races in multi-threaded programs.

Deterministic replay support has several uses, some of which we briefly

discussed in Section II.B. One of the uses of deterministic replay is that we

can perform any dynamic analysis over the recorded program’s execution during

replay to automatically find bugs. Unlike traditional dynamic analysis, offline

dynamic analysis does not intrude with a program’s execution as the underlying

deterministic replayer ensures that the program’s execution is exactly same as

the one observed during recording. As an example, this chapter presents an

offline dynamic data race detection tool based on a deterministic replayer to

automatically find concurrency bugs in the multi-threaded programs. The novel

aspect of this tool is that it automatically classifies the data races detected into

potentially benign and potentially harmful categories.

132
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The data race detection tool presented here is based on a software im-

plementation of BugNet-like checkpointing and logging mechanism. We have

developed a software-based recorder and replayer based on the BugNet check-

pointing and logging mechanism [58]. Microsoft has also independently devel-

oped a software-based recorder and replayer called iDNA [6], which also uses a

BugNet-like checkpointing and logging mechanism. The tool presented in this

chapter was developed by the dissertation author in collaboration with Microsoft

using iDNA.

The rest of the chapter is organized as follows. Section V.A motivates

the need for a data race detection tool and introduces the key functionalities of

the tool. This tool is based on a recorder and replayer tool called iDNA [6],

which implements a BugNet-like checkpointing and logging mechanism discussed

in Chapter III. A brief overview about iDNA is presented in Section V.B. Sec-

tion V.B also discusses a happens-before relation based mechanism to find data

races during replay. Section V.C describes the details of our offline analysis

tool that automatically classifies if a data is potentially benign or harmful. Sec-

tion V.D discusses some of our experiences in using the tool to find bugs in

Microsoft’s applications and Section V.F concludes this chapter.

V.A Introduction

We would like to demonstrate the utility of deterministic replay support

for performing offline dynamic analysis. As an example, we present a novel

dynamic analysis tool that automatically finds the most harmful data races.

Automatically detecting data races in shared-memory multi-threaded

programs is a very hard problem. Data race detection tools, even the dynamic

analysis tools, tend to report a large number of data races. However, only a

handful of them are harmful. A harmful data race is one that is a source of a
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concurrency bug, which can affect the correctness of a program’s execution. A

developer will consider fixing only the harmful data races. Ideally, an automatic

race detection tool should report only the harmful data races to a developer.

However, many existing tools report data races that can never occur at all. Such

data races are false positives. Even if we manage to eliminate all the false posi-

tives, not all of the remaining true data races are harmful. In fact, in production

code, we found that only 10% of the true data races are actually harmful. The

remaining 90% were all benign data races. They were benign in the sense that the

programmer was convinced that they do not affect the program’s correctness and

so the programmer intentionally chose to avoid the overhead of synchronization.

Thus, reporting all the true data races places a huge burden on the developers as

they have to manually triage and eliminate a large number of benign data races.

Triaging data races is a time consuming and tedious exercise.

The offline dynamic analysis tool presented in this chapter serves two

of our goals. Our first goal is to improve programmer productivity by finding

and reporting only the harmful data races. To achieve this, we propose an of-

fline dynamic analysis tool that automatically classifies the true data races into

potentially benign and potentially harmful data races. This allows developers to

prioritize the data races that need be triaged.

We find that reporting accurate information about the potentially harm-

ful data races is very important because triaging a data race bug is a tedious

exercise. Triaging a data race bug is difficult for the following reasons:

• Requires Domain Expertise: The effects of a data race are hard to

discern, as understanding them involves analyzing multiple program states

across multiple threads. Domain expertise is usually required to understand

if a data race is benign or harmful in our production code.

• Time Consuming: The number of true data races is too large for the
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developers to go through and triage them all. It can be very time consuming

for a developer to triage a data race.

• Hard to Figure Out: Even if someone with domain expertise examines

the data race, they tend to incorrectly believe it is benign when it is actually

harmful, or vice versa.

Besides finding the harmful data races accurately, another problem is

generating information that will help convince the developer about the existence

of a data race bug. Therefore, our second goal is to generate a concrete, repro-

ducible scenario for a potentially harmful data race. The reproducible scenario

helps the programmer in debugging as it enables one to understand the harmful

effects of the data race reported.

The offline data race detection tool based on a deterministic replayer

presented in this chapter meets the above two goals. It can automatically clas-

sify the data races into potentially benign and potentially harmful categories.

An integral part of our solution is the ability to record a program’s execution

in a replay log and replay the program’s execution using the log. The proposed

dynamic data race detection analysis is performed offline, during replay. In ad-

dition to finding the potentially harmful data races, the analysis also produces

useful information for each data race. Using that information, a developer can

replay a program execution in two different ways – the original execution order

and an alternative order. In the alternative order, which has the order of the

two memory operations involved in the data race reversed. The two replays help

the developer understand how a potentially harmful data race can produce dif-

ferent results based on the different interleavings between the two racing memory

operations.

Data Race Detection: We focus on building a race detection tool

with no false positives. Our definition of a data race is dependent on the happens-
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before relationship [43]. We determine that there is a data race between two

memory operations executed in two different threads if (a) at least one of them

is a write, and (b) there is no synchronization operation executed between the

two memory operations (that is, there is no happens-before relation to provide

an order for the two operations). Going by this strict definition of what a data

race is, a happens-before based algorithm does not report any false positives.

However, a happens-before algorithm still reports a large number of data races,

out of which many are benign. In order for our tool to be used in practice, we

need to prioritize the data races so that a developer can focus on fixing and

understanding the potentially harmful data race bugs.

Data Race Classification: Our approach automatically classifies

data races by leveraging the ability to replay the program’s execution. The key

concept behind our analysis is as follows. For a data race, the checker analysis

tool replays the execution twice for the two different orders between the memory

operations involved in the data race. If the two replays produce the same result,

then the checker determines that the data race is potentially benign. Otherwise,

it classifies the data race as potentially harmful. The data races that our tool

marks as potentially benign are not examined by the developers, but only those

marked as potentially harmful are examined. We keep track of the results of this

analysis for each pair of memory operations involved in a data race. There can

be many instances of the same data race during a program’s execution and across

several different executions. By analyzing these instances we can observe several

effects of the data race. Thereby, we get a much clearer picture about how to

classify the data race.

The tool might incorrectly classify some data races. It might classify

a data race as potentially benign when it could be harmful or vice versa. If we

classify a benign data race as potentially harmful, then we end up using precious
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developer’s time. But once those races are manually identified as benign, they are

marked as benign to prevent them from being classified as potentially harmful

in the future analysis. If we classify a harmful data race as benign, they will

not be examined by the developer. However, later on, when analyzing a different

test case, the analysis may find an instance of the data race that exposes it

as potentially harmful. The data race’s classification will then be corrected as

potentially harmful, and reported to the developer. Thus, the more the number of

test cases analyzed, the more likely a harmful data race will be discovered (which

is true for any dynamic analysis tool). This is a trade-off between coverage and

accuracy that we make during development. We strive to reduce the number of

data races reported to the developer, because there are just too many true data

races found, and most of them are benign.

Data Race Report: At the end of our analysis, we provide the

developer with precise information about the effects of each potentially harmful

data race. The information includes the replay log and the two memory orders

that were analyzed by the checker for the data race. One of the replays will

produce the correct result and the other will produce a different result. Thus,

a developer has the precise information about the memory operations involved

in the data race, and also has the ability to replay the program in two different

ways (two ways are the original execution order and the alternative order that

is possible due to the data race) and understand the effects of the data race.

If the same data race had occurred multiple times within the same or different

execution scenario, we provide information for all of those instances to help the

developer understand the various possible effects of a particular data race.

iDNA and Usage Model: We perform our dynamic data race anal-

ysis using the replay tool called iDNA developed by Bhansali et al. [6]. iDNA

implements BugNet-like checkpointing and logging mechanism that we described
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in Chapter III. iDNA provides the ability to record a program’s execution in a

replay log. Using the replay log, iDNA can replay a multi-threaded program’s

execution, even in the presence of all forms of non-determinism, including system

interactions (system calls, interrupts, DMAs etc.) and multi-processor interac-

tions. We extend iDNA to provide the ability to replay with two different thread

interleavings for a data race, and provide the ability to examine the results of

both orderings to see if they result in the same execution. In using our approach

in a development environment, iDNA is first used to gather the replay logs for

the product’s test scenarios, with an overhead of about 10x on average [6]. We

then run our off-line replay analysis to find all of the data races, and the off-line

analysis classifies the data races into potentially benign or potentially harmful.

For the potentially harmful ones, we provide at least two replay scenarios that

will show how the data race can result in two different outcomes. This infor-

mation, coupled with the ability to do reverse execution (also called time travel

debugging) using iDNA [6] for the replays, provides a powerful platform for the

developers to examine the potentially harmful data races.

We discuss our experiences in using our dynamic race classification ap-

proach on an extensively stress-tested build of Microsoft’s Windows Vista and

Internet Explorer. Our proposed technique was able to automatically filter out

over half of the real benign data races, classifying them as potentially benign,

which can be ignored by the developers. In addition, all of the harmful data

races were correctly classified as potentially harmful. They were then reported to

the developers, and they all have been fixed in the production code. Experiences

with this offline data race detection tool has demonstrated the utility of providing

support for deterministic replay debugging support.
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V.B Finding Happens-before Replay Data Races

In this section, we provide a brief overview of the iDNA’s [6] record

and replay mechanism. It implements a checkpointing and logging mechanism

similar to the BugNet mechanism (described in Chapter III) using a dynamic

instrumentation tool. We then discuss a happens-before based data race detection

algorithm that we implemented by extending the iDNA replayer. The happens-

before based data race detector presented here does not report false positives at

all. That is, if our detector finds a data race in a program’s execution, then it is

guaranteed that there is at least one instance of the data race in the execution,

where two memory operations (read-write or write-write) not ordered by any

synchronization operation.

V.B.1 iDNA Recorder

iDNA [6] provides the ability to record a multi-threaded program’s ex-

ecution in a replay log, which can be used to replay the execution. Here we will

briefly discuss how iDNA works. More details can be found in [6].

iDNA uses a load-based checkpointing scheme (described in Chapter III)

to record a program’s execution. Let us first consider a single threaded applica-

tion. At the beginning of a checkpoint interval, iDNA records the architectural

state consisting of the values in the registers and the program counter. And

then during the program execution, iDNA dynamically instruments the load in-

structions and records their values. The log size generated is reduced using a

compression mechanism. The compression mechanism is a software implementa-

tion of the first-load optimization that we presented in Chapter III. More details

on the software implementation can be found here [6].

Just like in BugNet, recording the values of load instructions executed

by a program automatically takes care of all forms of non-determinism, including
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system interactions (system calls, interrupts, DMAs) and multi-threaded inter-

actions (even when multiple threads are executing on multiple processors). For

example, if a system call or an interrupt modifies a memory location, the program

needs to load the value from the memory location before it can use the value.

Therefore, recording the values of the load instructions is sufficient to capture

the system interactions. Even DMAs that concurrently modify the program’s

memory state can be taken care of by logging the load values. Also, in the case

of multi-threaded programs, multiple threads may concurrently modify a shared

memory location, but as long as we record the load values for a particular thread,

we can replay that thread.

Note, iDNA does not log every load value. Just like in BugNet, it records

only the load that accesses a memory location for the first time. In addition, if

a memory value is modified by the external system (DMA, system call, another

thread, etc.) outside of the thread, then the value of the subsequent load to

that location is logged. iDNA also correctly deals with the dynamically loaded

libraries and self-modifying code. A detailed explanation on how all this is done

efficiently can be found in [6]. A more direct software-based implementation of

BugNet’s checkpointing and logging mechanism can be found here [58].

V.B.2 Sequencers for Multi-Threaded Programs

In the case of multi-threaded programs, a replay log is recorded for each

thread individually. As we described above and in Section III.B.6, the replay log

for a thread contains the initial architectural state of the thread and all the load

values that are necessary to replay that thread correctly. Even if other threads

are concurrently modifying the shared memory locations, it does not affect how

a thread is replayed. Because, iDNA logs the values of all the required load

instructions in the replay log. Thus, using the replay log of a thread, we can
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replay the thread exactly how it was executed during the original execution.

However, to aid interactive debugging during replay and to enable multi-

threaded program analysis, we want the ability to replay the thread interactions

observed during the original execution. Instead of using Strata that we described

in Chapter IV, iDNA provides this functionality by recording what are called Se-

quencers. A sequencer log consists of a global time-stamp value that is maintained

by iDNA (one global time-stamp counter maintained across all the threads). The

global time-stamp is incremented whenever a sequencer is logged in the replay

log of any thread.

A sequencer is recorded when a synchronization instruction or a system

call is executed. iDNA dynamically instruments the instructions with the lock

prefix to recognize the synchronization operations. Whenever a synchronization

operation is executed by a thread, a sequencer is logged. Since each sequencer

consists of a time-stamp that is incremented monotonically, there exists a total

order between all the sequencers recorded across all the threads. Figure V.1 shows

an example for how sequencers are recorded in the replay log of each thread. The

sequencers are labeled as S1, S2, etc. For the example, assume that Si > Sj if

i > j. With this log, we can determine that all the memory operations that were

executed before the sequencer S1 in the thread T2, should have been executed

before all the memory operations that were executed after the sequencer S3 in

the thread T1 (because time-stamp for S3 is greater than S1).

V.B.3 iDNA Replayer

To replay a thread using a replay log, iDNA uses a dynamic instru-

mentation based replayer like the one we described in Section III.E. First the

architectural state of a thread comprising of the registers and the program counter

are initialized with the information read from the log. iDNA records both the
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Figure V.1: Happens-before based race detection during replay using sequencers
in the replay log.

code and the data that is read by a thread. So during replay, the execution starts

from the instruction pointed to by the program counter. The load instructions

are then dynamically instrumented so that the iDNA replayer can make sure that

replayed loads return the correct values as recorded in the replay log.

In the case of multi-threaded programs, one sequencing region is re-

played at a time. A sequencing region consists of the sequence of instructions

executed between two consecutive sequencers logged in an iDNA log for a thread.

For the example in Figure V.1, the instructions executed between S3 − S5 con-

stitute a sequencing region. One sequencing region is replayed at a time and it

is chosen from one of the thread as follows. The sequencing region that has the

smallest starting sequencers among all the sequencing regions that are yet to be

replayed is chosen for replay. For example, in the Figure V.1, the sequencing

region S1 − S4 is replayed before S2 − S6. After replaying S2 − S6, the region
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S3− S5 is replayed and so on.

V.B.4 Finding Happens-Before Data Races

Using iDNA, we replay a multi-threaded program’s execution using the

above sequencers. We modified iDNA to analyze the program’s execution to find

data races between sequence regions during replay.

To find the data races, we use the sequencers recorded in the iDNA

traces. Using the sequencers, we can determine the overlapping sequencing re-

gions across different threads in a multi-threaded program execution. For exam-

ple, in the Figure V.1, the instructions executed between S3 − S5 constitute a

sequencing region. It overlaps with the sequencing regions S1− S4 and S4− S7

in the thread T2, and also with the sequencing region S2 − S6 in the thread

T3. In other words, there is no happens-before relationship between the memory

operations executed in the overlapping sequencing regions.

We then detect a data race using the following happens-before algo-

rithm. If we find two memory operations in two overlapping sequencing regions,

and at-least one of them is a write, then we consider that the two memory op-

erations to be involved in a data race. There is a data race between those two

memory operations, because there is no sequencer separating the two in time to

specify an order between them. If there is no sequencer between two memory

operations, then it implies that there was no synchronization operation that was

executed during the program’s execution to guard the shared memory accesses.

Therefore, there is a data race between the two memory operations.

V.C Classifying Data Races by Replaying Both Orderings

In the previous section, we described how we find a set of data races in a

given program’s execution by looking for memory operations that are not ordered
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by a happens-before relation. In this section, we present a replay-based dynamic

analysis algorithm that automatically classifies data races as either potentially

benign and potentially harmful.

V.C.1 Overview

Consider a data race between two memory operations executed in a

particular execution of a multi-threaded program. The two memory operations

involved in the conflict would have been executed in a particular order during

the original execution recorded by iDNA.

During replay, there are two possible orders between the two memory

operations involved in the data race. (If we consider more than two data races at

a time, then there could be more than two orders between the memory operations,

but in this study, we consider only one data race at a time). In our analysis, we

replay the program’s execution twice for both of those two orders and compare

the memory and register live-outs of the two replays. If the live-outs are the same,

then we classify the analyzed dynamic instance of the data race as potentially

benign. Otherwise, it is classified as potentially harmful.

Figure V.2 shows a piece of code to illustrate how the proposed analysis

works. This is a sanitized example of one of the harmful data races found during

our analysis on production code. The example code essentially decrements a

reference counter value. Then, it reads the reference counter value. If the value

is zero it frees the memory pointed to by the variable “foo”. Assume that there are

two threads executing the same piece of code in parallel and that the programmer,

by mistake, did not use any synchronization operations to guarantee the correct

parallel execution.

The figure also shows two possible orderings for the memory operations

when this piece of code is concurrently executed by two threads. The values of
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             free(foo); 
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Figure V.2: Race Detection Example

the memory operations are shown inside the parenthesis. Figure V.2(a) shows

the order observed during recording. Fortunately, for this ordering, the atomicity

of the operations was not violated and hence the program executes correctly.

However, during our dynamic analysis, we will detect data races between the

read and the write operations executed in the two threads. For example, there is

a data race between the read R2 in thread T1, and the write W2 in thread T2.

During dynamic analysis, we can replay for the two possible orders between these

two memory operations. One replay will be the same as the one observed during

the original execution that was recorded as shown in Figure V.2(a). Another

possible order is shown in Figure V.2(b). In the latter order, the R2 is replayed

after W2. During that replay, we will catch a null pointer violation, when the

replay tries to free the location “foo” in the thread T1. Thus, we determine that

the data race is potentially harmful.

In contrast, when we examine the two orderings and both evaluate to

the same result, then we classify that instance of the data race as potentially

benign. However, if even one of the instance of the data race was found to be
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potentially harmful, then we classify the data race to be potentially harmful.

We next describe how we perform our replay analysis to determine if the two

orderings arrive at the same result or not.

V.C.2 Mechanism for Alternative Replay

The above discussion assumes that it is possible to replay the two pos-

sible memory orders. We had to add the following support to provide this func-

tionality on top of the iDNA replayer.

Our algorithm analyzes each data race in isolation. For a given data

race, the goal is to replay the two possible memory orders between the two mem-

ory operations involved in the data race. The two memory operations involved

in the data race are part of two sequencing regions in two different threads (a

sequencing region constitutes the instructions executed between two sequencers

in a thread, which we described in Section V.B).

By replaying the program’s execution, we can determine all the instruc-

tions executed in each of the two sequencing regions that contain the data race.

Using this information, we know which two dynamic instructions are the data

race being considered, and we can examine both orders of those two instructions

during replay. We replay both threads for the region up until we get to the data

race instruction in each thread. We then replay the two orders to examine the

differences exhibited by the data race. The first order is called the original order,

since it matches the values seen during the original logged execution. The second

order is called the alternative order. In our current implementation, we replay

only till the end of the sequencing regions in the two threads.

In order to execute the instructions in the two sequencing regions for the

two orders, we added to the iDNA replayer an ability to create a virtual processor.

The virtual processor allows us to start with a set of sequences across the threads
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and execute multiple different realities starting at that set of sequences. A virtual

processor is created to execute the original and alternative replay orders. The

virtual processor is initialized with the live-in memory values and the register

states of the two threads. We orchestrate the execution of the two threads in

the virtual processor to obey the ordering for the instructions involved in the

data race. Whenever a memory location is read for the first time in the virtual

processor, the virtual processor copies the value from the live-in memory. Then

from that point on, the reads and writes to that memory location will be to the

local copy in the virtual processor.

Alternative Replay Failure

While executing the alternative ordering, the replayer may come across

a memory reference to an address not seen when the original log was taken, or it

may come across a control flow change. The address may not have been logged

or it may have been changed during replay, so we do not know what the value is.

For the control flow change, it may jump to a piece of code that was not recorded

as part of the logging or to an illegal address. In our current implementation,

we classify all of these as replay failures. They are an indication that execution

has changed enough from the alternative order that the data race is potentially

harmful.

V.C.3 Classifying Data Races

After we have replayed the original and alternative orderings in the

virtual processors, we compare the register and memory live-outs at the end of

the sequencing regions to classify the data race as potentially benign or potentially

harmful.

A data race between two memory operations may occur many times
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during our analysis, and we examine each of those as a separate data race instance.

Our current approach flags a data race instance as potentially benign only if the

two replays result in exactly the same application state (both memory live-outs

and register state) at the end of the replay. Otherwise, the data race instance is

considered to be potentially harmful. The potentially harmful consist of the data

races where the alternative replay resulted in different state, and also those that

had a replay failure as described above.

After all of the instances for a data race have been examined, we classify

the data race as potentially benign only if all of its instances are classified as

potentially benign. Otherwise, the data race is classified as potentially harmful.

The data races classified as potentially benign are guaranteed to be

benign for the test scenarios we examined, but they are not guaranteed to be

benign for all possible scenarios. Another instance of the data race not captured

in our replay logs between the same two memory operations may prove to be

harmful. To add more confidence to our classification, several instances of the

same data race should try to be found in the same execution or across the different

test scenarios. If the replay analysis determines the data race to be potentially

benign in all those instances, then we will have greater confidence that the data

race is probably benign. The greater the number of instances studied, the greater

is the confidence that a data race is benign.

For those data races that are classified as potentially harmful the two

replays will enable the developer to have a better understanding of the effects

of the data race that is reported. The two replays will show the differences in

the outcomes of the program for the two different memory orders between the

memory operations involved in the data race.
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V.C.4 Advantages

Following are some of the key advantages of our offline replay-based

data race detection and classification tool:

• Our analysis is at the instruction level and is not dependent on the specific

synchronization methods. As a result, it is applicable to programs written

in any language as it is agnostic to the synchronization methods used in

the language. Our instruction based happens-before analysis does incur a

heavy performance overhead. However, this is not a serious concern for our

approach because we perform our analysis off-line during replay. An offline

analysis does not interfere with the program’s execution as the underly-

ing replayer ensures that the execution is same as the one observed during

recording. Therefore, our dynamic analysis can take more time to do the

dynamic analysis.

• Unlike traditional approaches where it is hard to determine the possible

effects of a data race, we will have two possible executions for the data race

and produce the output for those executions. The ability to replay and see

the differences in output between the two executions is of great value for the

developer to understand the potential data race.

V.C.5 Future Work

Tools that produce a significant number of false positives tend not to get

used by developers. So our goal in this study has been to reduce false positives

as much as possible and for a data race that we find to be potentially harmful

provide an example that clearly shows the effects of the data race. But coverage

can also be improved in several different ways.

We used a data race detection mechanism based on the happens-before
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relation, which does not have any false positives but has less coverage (that is

more false negatives). However, our replay-based analysis can also be used to

classify false positives in a data race algorithm that uses locksets [85] as poten-

tially benign.

Another way to increase the coverage is to analyze the effects of many

data races at the same time instead of analyzing one data race at a time. When

we consider more data races together, we will have more than two memory orders

to replay. If the live-outs of any two replays mismatch, we would classify the data

race to be potentially harmful.

Our current implementation replays an alternative order that is sequen-

tially consistent. If we consider a weaker memory consistency model, however,

we will get more orders between the memory operations. Analyzing more orders

between the memory operations will improve coverage.

The solution presented here can also be extended to be more precise in

eliminating the potentially benign data races. Instead of comparing the live-outs

of the two replays to classify a data race, we can classify based on whether we

detect a perceivable bug in one of the two possible replays for the data race.

Perceivable bugs are those that can be automatically detected when there is a

memory access violation or assertion failure or any other exception. Thus, the

harmful data races found will be guaranteed to be 100% correct.

V.D Results

In this section, we discuss our experiences in using our offline data race

detection and classification tool. We found several harmful data race bugs in

Microsoft’s applications. They all were reported to the developers and have

been fixed in the production code. Thus, the tool has clear value in assisting

programmers in the debugging process.
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Table V.1: Data Race Classification

Potentially Benign Potentially Harmful
Real Real Real Real Total

Benign Harmful Benign Harmful

No State Change 32 0 - - 32
State Change - - 15 2 17
Replay Failure - - 14 5 19

Total 32 0 29 7 68

However, the performance overhead of the dynamic analysis tool is high

(280 times slower when compared to the native execution), because it performs

many computations to find and classify the data races. Nevertheless, the anal-

ysis is performed offline and so it does not affect the execution behavior of the

program. Therefore, we are able to tolerate the high performance overhead of

our analysis tool. These results clearly demonstrate the utility of a deterministic

replayer in building sophisticated dynamic analysis tools.

V.D.1 Methodology

We collected replay logs for 18 different executions of various services in

Windows Vista and the Internet Explorer using iDNA recorder that we described

in Section V.B. Among the 18 executions that we studied, the happens-before

based algorithm that we described in Section V.B returned 16,642 instances of

data race conflicts. Out of these 16,642 instances there were only 68 unique data

races. The reason is that a data race (between the same two memory instructions

in different threads) occurred more than once in the same execution or in different

scenarios. For this study, we went through the painstaking effort to manually

examine every single data race to determine if it was actually benign or harmful.

All of the data races that were identified as truly harmful have been fixed in the

production code.
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The average log size for the replay logs collected using iDNA was about

0.8 bit per instruction. The total storage space required for the logs was 3.1 GB,

which captured 33 billion instructions executed across all the different executions

that we studied (about 96 MB to record a billion instructions). By compressing

the log sizes using the Windows zip utility, we reduced the log sizes to about 0.3

bit per instruction.

To get an estimate for the time overhead for recording, replaying and

analyzing programs we studied an execution of Internet Explorer, where we ac-

cessed a web site and browsed through a few pages. This study was carried out on

a Pentium 4 Xeon 2.2GHz processor with 1GB RAM. The runtime performance

overhead to collect the replay logs using iDNA [6] was about 6x when compared

to the native execution. The iDNA replayer can replay the recorded execution

with a performance overhead of 10x on average (relative to the native execu-

tion). However, using processor-based BugNet implementation we can reduce

this performance overhead to less than 1% like we described in Chapter III. The

execution had spawned 27 threads. When we ran our happens-before based race

detection analysis, we found 2,196 instances of various data races. The overhead

of executing the off-line happens-before race detection analysis was about 45x.

The overhead of executing the replay analysis that we described in Section V.C

to classify the data races was about 280x when compared to the native execution.

We are able to tolerate the high performance overhead of our dynamic analysis,

because it is incurred offline during replay where the program’s execution is not

affected.

V.D.2 Data Race Classification Results

We now described the accuracy of our tool in classifying the detection

data races into potentially harmful and potentially benign categories.
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Outcomes of Replay Analysis

We performed the replay-based data race classification analysis that we

described in Section V.C over all the instances of the data races that were found

using the happens-before algorithm. There are three possible outcomes when

we perform the replay based analysis for an instance of a data race. The two

replays for an instance may produce the same live-out. We call this outcome

No-State-Change, because the memory order does not affect the state of the

program’s execution. Another possible outcome is that the two replays might

produce different live-outs. We call this outcome State-Change. Finally, for some

instances of data races we may encounter a replay failure while replaying for the

alternative order for the reasons that we described in Section V.C. We call this

outcome Replay-Failure. Note, that a replay failure is a good indicator that the

data race is likely to cause a change in the program’s state (in other words, the

outcome is similar to State-Change).

There can be many instances for a given unique (static) data race. The

final classification for a data race classifies the data race as No-State-Change only

if all of its instances are No-State-Change. If, for any instance of the data race,

the outcome was a State-Change, then we place the data race in the State-Change

group. All of the remaining unique data races are classified as Replay-Failure.

These are the data races for which none of the instances were classified as State-

Change and at least one of the instances was classified as Replay-Failure.

Data Race Classification

Table V.1 presents the classification for all the unique static data races

(a data race between the same two static instructions) that we studied. The rows

in the table correspond to one of the three outcomes of the automatic replay

analysis that we just described.
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Based on the outcomes of the replay analysis for all the instances of

a data race, our replay checker classifies the data race as either Potentially-

Benign or Potentially-Harmful. These two classifications are shown in the table

as the two aggregate columns. All data races classified as No-State-Change are

potentially benign, and all data races classified as State-Change or Replay-Failure

are classified as potentially harmful.

Table V.1 splits the potentially benign and harmful columns further into

two groups: Real-Benign and Real-Harmful. The sub-columns correspond to the

manual classification. In addition to the automatic classification, we also man-

ually triaged each data race to determine if they were really benign or harmful.

This was done to determine the accuracy of the automatic classification.

Potentially Benign Data Races

Table V.1 shows that out of the total 68 data races that we studied,

32 data races fell into the No-State-Change group. Since none of the instances

of these data races can cause a state change or a replay failure, our automatic

analysis classified these 32 data races as potentially benign. We manually verified

each of these data races and found that they were all indeed benign.

Potentially Harmful Data Races

The data races accounted for in the second and the third rows in the

Table V.1 were classified as potentially harmful. The reason behind this classifi-

cation is that, in at-least one instance of a data race, if the outcome of the replay

analysis was either a state change or a replay failure then it has the potential to

be harmful. Based on this classification the automatic replay analysis classified

36 data races (17+19) to be potentially harmful.

Seven among the 36 data races were found to be harmful through
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manual inspection, as listed in the sub-column named Real-Harmful under the

Potentially-Harmful column. The automatic analysis correctly classified all the

real harmful data races that it analyzed as potentially harmful. Two of these

harmful data races are similar to the reference counting example that we dis-

cussed in Section V.C.

However, as we can see from the table not all of the potentially harmful

races were found to be harmful in our manual classification. The sub-column

named Real-Benign under the Potentially-Harmful column shows that 29 data

races that were classified as potentially harmful are actually benign. The follow-

ing are the two main reasons for the misclassification.

Misclassification Due to Approximate Computation: By man-

ually inspecting these 29 data races, we found that 23 of them actually affect the

execution of the program. As a result, our replay analysis will find a state change

or a replay failure for most of the instances of these data races. Therefore, they

were classified as potentially harmful. We took these potentially harmful data

races to the developers. They described that these data races were left in the pro-

duction code, because they chose to tolerate the effects of the data race rather

than synchronize the code and lose performance. A good example where this

kind of optimization is possible is the code region that was used to update a data

structure maintaining statistics. In that case, the programmer consciously chose

to gather approximate statistics and avoid the performance overhead required to

accurately gather them. Another example is where the variable’s value is used

to make decisions that can affect only the performance and not correctness (e.g.,

time-stamp value used for making decisions on what to replace from a software

cache). To optimize the synchronization overhead, programmers may choose to

not synchronize operations on values such as time-stamps and statistics wherever

appropriate. Since these data races were intended by the programmers, the are
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classified as Real-Benign, even though they can change the program’s execution.

Misclassification Due to Replayer Limitation: We now focus on

the remaining 6 Real-Benign data races of the 29 data races that were incorrectly

classified as Potentially-Harmful. When we manually triaged the six data races,

we found them to be benign. Unlike the other 23 data races that we discussed

earlier, these six data races did not affect the output or the state of the program.

The reason why these six data races still got classified as Potentially-Harmful is

that for at-least one of their instances, the outcome of the replay analysis was

Replay-Failure. The replay failure was to due to the reasons that we described in

Section V.C.2. When we manually analyzed these 6 replay failures, we actually

found that the execution of the program wouldn’t have been affected had the

replays proceeded without failing. By adding additional support in iDNA to

execute down unseen control paths, we should be able to correctly classify these

six data races as no-state change and thereby classify them as potentially benign.

In conclusion, our approach classified 47% of the data races as poten-

tially benign and they were all benign (none of them were harmful). Out of the

other 53% of the data races that were classified as potentially harmful, only 20%

of the 53% were found to be harmful.

V.D.3 Results for Each Dynamic Data Race Instance

Let us now discuss the results for the each of the instances that we

analyzed for every static data race. We will also discuss the type of outcome that

we obtained from the replay analysis for each instance.

Figure V.3 shows the number of instances that we analyzed for each

of the 32 data races that were of the type No-State-Change, which we classified

as Potentially-Benign. The number of instances for each unique data race varied

from about 50 instances to just one instance. The greater the number of instances



157

1

10

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Unique data races

Nu
m

be
r o

f i
ns

ta
nc

es Total Instances

Figure V.3: Statistics for the unique data races classified as Potentially-Benign.
Every instance of these data races resulted in No-State-Change and were actually
Real-Benign. Total number of instances for each such data race are shown.
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Figure V.4: Statistics for the unique data races that were classified as Potentially-
Harmful and they were found to be Real-Harmful. Results are shown for total
number of instances, and also for the number of instances that resulted in a
State-Change or Replay-Failure.
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Figure V.5: Statistics for the unique data races that were classified as Potentially-
Harmful, but they were actually Real-Benign. Results are shown for total number
of instances, and also for the number of instances that resulted in a State-Change
or Replay-Failure.

that we analyze and classify as No-State-Change, the greater the confidence we

have in classifying them as Potentially-Benign.

Figure V.4 shows the number of instances that we analyzed for each

harmful data race. As we can see, for some of the harmful data races we analyzed

several thousand instances. However, only one in ten of those instances caused

a replay failure or a state change. This shows that it is important to see those

data races multiple times in order to catch them as Potentially-Harmful.

Figure V.5 shows the number of instances that we studied for the data

races that we considered to be Potentially-Harmful, but when we analyzed them

manually we found them to be Real-Benign. The main cause for this misclassifi-

cation are the data races due to approximate computation, which we described

in Section V.D.2.
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V.D.4 Reasons for Benign Data Races

In this section, we describe the categories of benign data races that we

were able to automatically classify as potentially benign.

1. User Constructed Synchronization: Programmers may construct their

own synchronization primitives without using fences or the atomic opera-

tions provided in the instruction set architecture. For example, a garbage

collector can maintain the reference counts for concurrent objects without

using locks [23]. It is difficult to automatically infer the user constructed

synchronization operations and so iDNA does not log a sequencer for a user

constructed synchronization operation during the logging run. Because of

this reason, the happens-before algorithm, will incorrectly classify a race be-

tween two user constructed synchronization operations, which is essentially

correct synchronization, as a data race.

2. Double Checks: Double checks are used to optimize the synchronization

overhead. A typical example for a double check is:

if(a) { lock (..) { if(a) ... } }

The read in the first check is not synchronized and so there can be a data

race involving the read, but the data race is benign.

3. Both Values are Valid: Let us consider a data race between a read and

a write operation. We found many instances where it is correct for the read

operation to return either the old or the updated value (old value is the

value in memory before the write and updated value is the value in memory

after the write).
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For example, when a buffer is shared between the producer and the consumer

it can be correctly synchronized without using synchronization primitives.

The producer writes to a buffer and increments the number of writes. The

consumer reads the number of writes, and if it is greater than the number

of entries it has consumed so far (referred to by a local variable), then it

consumes an entry from the buffer. After consuming a value it updates its

local variable representing the number of entries consumed. Without explicit

synchronization, it is possible that the consumer might read a stale value

for the buffer size. But that is fine, since it will just force the consumer to

wait longer.

In another example, a shared variable was checked to decide which of the two

versions of a function need to be used for doing a particular computation.

Both the functions do exactly the same computation, but with different per-

formance characteristics. The shared variable is written by another thread

to specify the version of the function to be used. However, the read and the

write need not be synchronized, because both versions will produce correct

results, though one version might perform slower than the other.

Similar to this, we found the case where it just mattered if the memory

value was zero or non-zero. The code was valid for multiple writers setting

the memory value to non-zero without any synchronization, and it did not

matter if the non-zero value written was the same.

4. Redundant Writes: If a write operation writes the same old value that

already resides in the memory location then the data race between the write

and a read operation in another thread will be benign (thus it can be consid-

ered as a special case of the previous category in the sense that both the old

and the updated values are correct values to return for a read operation).

In one of the programs we studied, we found that a thread was writing its
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Table V.2: Benign Data Races.

# Races

User Constructed Synchronization 8
Double Checks 3
Both Values Valid 5
Redundant Writes 13
Disjoint bit manipulation 9

Approximate Computation 23

process identifier returned by a system call to a shared variable read by an-

other thread. The writes were redundant and did not affect the correctness

of the program execution.

5. Disjoint Bit Manipulation: There can be data races between two mem-

ory operations where the programmer knows for sure that the two operations

use or modify different bits in a shared variable. Programmers tend to use

multiple bits in the same variable in order to optimize for performance.

Table V.2 shows the number of data races that we studied for each of

the above categories of benign data races. It also shows that there were 23 data

races that were due to approximate computation, which were mis-classified by the

replay analysis. As we mentioned in Section V.D.2, there were six other benign

data races that were misclassified as Potentially-Benign. These six were due to

those benign data races that can affect the control flow of the program’s execution.

The rest of the benign data races were correctly classified as Potentially-Benign

and the reasons for why they were benign are shown in Table V.2.
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V.E Prior Work

The focus of this chapter is to provide an example for a dynamic analysis

tool that can benefit from a deterministic replayer. The presented tool automat-

ically finds data races and classifies them into potentially benign and potentially

harmful categories.

The reader should refer Chapter II for a discussion on prior works that

attempted to provide support for replaying a program’s execution. In this section,

we focus our discussions on prior work that dealt with race detection techniques,

and compare the utility of our proposed replay-based data race detection tool

with those techniques.

We classify prior work on data race detection into solutions based on

static analysis and solutions based on dynamic analysis. We discuss both static

and dynamic analysis tools in the following sections. Apart from data races,

atomicity violations are another form of concurrency bugs. This section also

discusses techniques that find atomicity violations.

V.E.1 Static Analysis

Data races can be found using type-based static analysis techniques [8,

32]. A type-based technique requires the programmer to specify the type of the

synchronization operations [8, 32]. Automatically inferring information about

the synchronization operations is difficult and there are some techniques that

address this problem [84]. Static analysis can also be done using model checking

techniques like BLAST [36] and KISS [75]. Model checking techniques can han-

dle various synchronization idioms and can also produce counterexamples. The

limitation of the model checking techniques is that the analysis algorithm does

not scale well for large programs, which can limit their use.

There are techniques that statically implement a lockset [85] based al-
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gorithm [93, 30, 72]. Naik et al. [56] recently proposed an analysis method that

consists of a set of techniques that are applied in series like reachability and alias

analysis to reduce the number of false data races.

The primary limitation of the static analysis techniques is their accuracy

in terms of the number of false positives reported. Also, an even bigger problem

(which is true even for existing dynamic analysis techniques) is that, among the

true data races reported, a large proportion of them are benign data races. Benign

data races are very hard to distinguish from the harmful data races during static

analysis. For example, in one of the very recent proposals [56], for one program

jdbm, the analysis returned 91 true (not false positive) data races. However,

only 2 of them were found to be harmful. Static analysis techniques address

this problem with manual annotations, but they require the programmer to get

the annotation right, and there is a significant amount of existing code existing

without annotations.

Dynamic analysis technique presented in this chapter can significantly

reduce the number of candidate data races that need to be examined. The trade-

off of course is that, the coverage will be lower than the static techniques. Also,

our replay-based analysis can generate different replay scenarios for a data race

found during a dynamic analysis. The user can use this information to understand

the possible effects of the data race on a program’s execution.

V.E.2 Dynamic Analysis

Dynamic analysis can be done either on-line or off-line. On-line anal-

ysis is one where the analysis is performed during the execution of a program.

Whereas, off-line analysis is one that is performed offline during replay. Of course,

the latter approach requires replay support for multi-threaded programs.

We first examine the trade-offs between the two approaches. We then
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describe the dynamic race detection techniques in more detail and place our

analysis tool in context.

When the Analysis is Performed: On-line Versus Off-line Analysis

A program’s execution can be analyzed on-line when the program is

executing to detect the data races. This approach incurs runtime overhead, and

hence the dynamic analysis needs to be efficient in terms of performance. A ma-

jority of prior dynamic race detection techniques have focused on detecting data

races on-line, either with the instrumentation support [85] or with the hardware

support [1, 77]. There has also been attempts to ameliorate the performance cost

of dynamic analysis using static optimizations [25, 108, 66, 71].

Alternatively, if we can efficiently record sufficient information about a

program’s execution to allow us to deterministically replay the execution, then we

can do off-line analysis. The advantage of off-line analysis over on-line analysis

is that the analysis itself does not have to be as performance efficient as it is

has to be for on-line analysis. Only the recording part needs to be efficient.

We can perform (many) sophisticated time consuming dynamic analysis over a

recorded program’s execution off-line. Also, the result of the analysis can enable

the developer to examine the source of the data race by replaying the program.

There have been a few techniques that looked at doing off-line analy-

sis [16, 79] to detect data races. Like we described in Chapter II, both Race-

Frontier [16] and RecPlay [79] do not attempt to record the non-deterministic

interactions between the threads. As a result, they are limited in their analysis

in that they are able to detect only the first data race in the recorded pro-

gram execution. In contrast, we use the iDNA [6] infrastructure that implements

BugNet-like checkpointing mechanism, which enables us to replay multi-threaded

programs across all forms of non-determinism, including non-deterministic shared
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memory multiprocessor interactions. This allows us to examine all the data races

in the recorded program execution.

How the Analysis is Performed: Happens-Before Versus Lockset

Dynamic race detection algorithms can be broadly classified into happens-

before based algorithms [43, 64, 1, 15, 24, 22, 86, 70, 80, 54], lockset based algo-

rithms [85, 100, 65, 2] and hybrid algorithms that combine the two [25, 108, 66,

71].

One class of data race detectors use the lockset algorithm. The lock-

set algorithm checks whether each shared variable in a program is consistently

guarded by at least one lock. Eraser [85] implements the lockset algorithm using

instrumentation to dynamically find the data races during a program’s execution.

This algorithm has been extended to object-oriented languages [71] and improved

for precision and performance [2, 65, 100, 14]. The lockset algorithm is essentially

a heuristics based algorithm and hence reports data races that can never occur at

all (that is, it can report false positives). A recent work [47] reports that a lockset

algorithm resulted in thousands of false positives for scientific applications.

There are race detectors that use the happens-before algorithm. The

happens-before algorithm checks whether conflicting accesses to shared variables

in a program are ordered by an explicit synchronization operation or not. Many

dynamic race detectors implement the happens-before algorithm in software [80]

. Hardware [54, 74] and Distributed-Shared-Memory [70, 77] implementations

were also proposed to reduce the runtime overhead of these detectors. A recent

hardware based proposal called ReEnact [74] detects data races using happens-

before relation on-the-fly. Upon detection of a data race, it can rollback to a

previous checkpoint and replay the execution. During replay, it tries to avoid the

data race detected in the previous execution. The advantage of using a happens-



166

before algorithm is that it can detect the data races with no false positives because

the analysis is based on whether there are two unordered conflicting memory

operations or not. However, the resulting coverage can be less than the lockset

algorithm.

It is also possible to combine these two algorithms [25, 108, 66, 71] to get

coverage close to a lockset algorithm, and at the same time reduce false positives

using happens-before relations.

These prior dynamic data race detectors did not focus on classifying

real data races as potentially benign versus harmful data races. For example,

RaceTrack [108] found 48 warnings in CLR regression test suite out of which there

were 8 false positives. But more importantly, 32 were benign data races and only

8 were found to be harmful during manual inspection. Distinguishing between

the benign and the harmful data races is a hard problem. To our knowledge no

prior work has attempted to automatically identify the potentially benign data

races, which is possible using our analysis tool. If can do that, then we can direct

the developer’s effort towards triaging the potentially harmful data races.

The focus in building our tool was to provide as much accurate informa-

tion as possible. That is why we chose to use a happens-before based data race

detection algorithm, since it does not report any false positive. Nevertheless, our

analysis can also be used for analyzing the data races reported by a lockset based

algorithm and its variations. The analysis should be able to filter out the benign

data races and also the false positives produced by those algorithms.

V.E.3 Atomicity Violation Detection

There have also been work on finding concurrency bugs by checking for

atomicity violations [2, 27, 105, 47]. If we can know which regions of code need to

be executed atomically, then we can verify the atomicity properties either stati-
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cally [2] or dynamically [27, 105, 47]. Also, there has been work on inferring the

set of locks that need to be acquired to enforce the atomicity specified by the

programmer [37]. Any violation of atomicity is a source of a bug, but every data

race is not necessarily harmful. So checking for atomicity violations is more ef-

fective than finding data races. However, determining the atomic regions in itself

is a significant challenge. Many techniques require the programmer to explicitly

specify the atomic regions through annotations [2, 27, 37]. In SVD [105] and

AVIO [47], the authors used heuristics to infer the atomic regions automatically.

These methods are heuristic based, and, as a result, they report a high number

of false positives when a code region is incorrectly determined to be atomic.

V.F Conclusion

Traditionally, dynamic analysis tools cannot afford to spend a lot of time

on analyzing a program’s execution because they are done in real time and more

analysis would mean that the execution behavior of the program would be af-

fected. However, using a deterministic replayer, we can perform any sophisticated

dynamic analysis offline, during replay. The overhead of the dynamic analysis

tool would not affect the execution of the program as the underlying replayer

would ensure that the replay is exactly same as the one observed in the original

execution when it was recorded. If the recorder is efficient (which is indeed the

case for BugNet), we can record a program’s execution without interferring with

its behavior. Then during replay we can perform any number of sophisticated

dynamic analysis.

As a proof-of-concept, this chapter presented an offline dynamic analysis

tool that automatically detected data races and prioritized the most harmful

data races. This tool was built using the iDNA recorder and replayer. iDNA is

based on BugNet-like checkpointing and logging mechanism that we described in
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Chapter III.

Our replay-based analysis tool finds data races in a recorded program’s

execution using happens-before relation. We showed that 90% of real data races

found in the production code are benign. To reduce the triage effort, the tool

automatically identified and filtered the data races that are potentially benign.

To automatically find out if a data race is potentially benign or not, the tool

replays the execution twice, once for each possible order between the conflicting

memory operations. If the two replays for the two orders produce the same result,

then the tool classifies the data race as potentially benign.

In addition to reporting harmful data races, the analysis also produces

very useful information to assist a programmer in debugging the data race. For

every data race, the tool dumps out the replay log along with the memory orders

corresponding to the data race. Using that information, a programmer can replay

the program in two different ways and understand the effects of different memory

orders that are possible due to the data race. This information can be a significant

aid to the developer.

We discussed our experiences in using our dynamic race classification

approach on an extensively stress-tested build of Microsoft’s Windows Vista and

Internet Explorer. Our proposed technique was able to automatically filter out

over half of the real benign data races, by classifying them as potentially benign,

allowing the developers to ignore them. In addition, all of the real harmful data

races were correctly classified as potentially harmful. The harmful data races that

we found were reported to the developers, and all of them have been fixed in the

production code. These results clearly demonstrate the utility of a deterministic

replayer in building sophisticated dynamic analysis tools.
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VI

Conclusion and Future Work

As we enter the many-core era, where we may have a processor with

100s of cores, harnessing parallelism through multi-threaded programming will

be very important. However, until now, mostly only the expert programmers

have been writing multi-threaded programs. This trend is set to change, because

in the future, every programmer has to learn multi-threaded programming to take

advantage of the many-cores. Therefore, it is important that we develop adequate

programming methodologies and tools to support program development.

Until now, processor industry’s focus has primarily centered around im-

proving the performance of their processors. To address the future challenges

in developing software for many-core processors, however, we need to provide

processor support for program development.

This thesis identifies the need for deterministic replay support. Provid-

ing an ability to reproduce non-deterministic bugs (such as data race bugs in the

multi-threaded programs), and the bugs that occur at the customer sites is an

important problem. Deterministic replay support can solve this problem, but it

would require an efficient implementation of a recorder. This thesis presents a

processor-based solution for recording all forms of non-determinism that could in-

fluence a program’s execution, and thereby we support deterministic replay. We

170
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also demonstrate the utility of the deterministic replay support for automated

debugging through a novel replay-based data race detection tool that finds con-

currency bugs in the multi-threaded programs. This tool is currently being used

at Microsoft for finding data race bugs in their applications. Many of the bugs

found using the tool have already been fixed in their software systems such as

Windows Vista and Internet Explorer.

In this section, we summarize our deterministic replay solutions, which

mainly consists of two parts - BugNet for replaying non-deterministic system

interactions, and Strata for replaying a multi-threaded program on a multi-

processor system. We also summarize the key techniques used in the replay-based

data race detection tool. Finally, we discuss how the deterministic replay solu-

tion presented in this work can be improved, describe some open problems, and

also provide suggestions for developing new applications for deterministic replay

support.

VI.A Summary

This section provides a summary of the solutions presented in this thesis

for providing deterministic replay support.

VI.A.1 BugNet for Replaying Non-deterministic System Interactions

We focus on replaying just the user code and the shared libraries. There-

fore, we have to record any non-deterministic input read from the operating

system and the hardware layers below the operating system. Identifying and

recording each source of non-determinism in the system is a complex solution to

implement. We overcome this problem using a simple observation that we need

to record just the input read by the application through the load values. Thus,

BugNet’s logs for a checkpoint interval contains the register state at the start of
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the interval and a log of memory values (code and data) when they are first ac-

cessed. This is enough information to achieve deterministic replay of a program’s

execution, without having to replay what goes on during interrupts and system

calls. More importantly, BugNet is a system-independent solution. If supported

in a processor, the BugNet feature is useful for recording an application’s execu-

tion on any operating system. Also, the logs collected for a program’s execution

on a particular system can be used to replay that program’s execution on any

other system.

Log size overhead is about 225KB for recording 10 million instructions.

The performance overhead of our processor-based solution is less than 1%. We

also showed that 10 million instructions are sufficient for debugging a majority of

the bugs in open source programs. Thus, BugNet should be useful for recording

a program’s execution even during the production runs at a customer site.

VI.A.2 Strata for Replaying Non-deterministic Shared-Memory Multi-

threaded Interactions

The threads in a shared-memory multi-threaded program running on

a multi-processor communicate through the shared memory. These communica-

tions need to be synchronized. However, using the conventional synchronization

primitives that are available today, the order of the memory operations across

the threads is undefined. That is, the order of the memory operations executed

across the threads is non-deterministic, and hence need to be recorded in order

to replay a multi-threaded program’s execution.

This thesis proposed a logging mechanism called Strata, which comple-

ments the BugNet architecture. Using strata, we can capture the shared-memory

dependencies in both snoop-based and directory-based systems. A stratum pro-

vides a strict time ordering between the memory operations that occurred before
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and after the stratum executed across all the processors. Using this information

we can replay the memory order in a multi-threaded program, which helps in

debugging concurrency bugs such as data races.

We found that for a directory-based system, the strata log is 5.8x smaller

without compression and 12x smaller with compression when compared to the

log size required in the previous point-to-point logging approach [104]. Another

advantage is that our strata approach requires less hardware than the point-to-

point approach. Also, unlike previous proposals [104, 106], strata is useful for

recording a snoop-based multi-processor’s execution.

VI.A.3 Applications of Deterministic Replayer for Automated De-

bugging

This thesis also demonstrated the utility of deterministic replay support

for automated debugging. Dynamic bug detection tools such as Valgrind [88]

cannot afford to spend a lot of time on analyzing a program’s execution. This

is because, Valgrind performs the analysis during a program’s execution. As a

result, the computation performed in the analysis code changes the behavior of

the program that is analyzed by Valgrind.

One use of deterministic replay support is that we can record a program’s

execution and postpone all the dynamic analysis to the replay phase. If the

recorder is efficient (which is indeed the case for BugNet), then we can capture

the realistic behavior of a program running on a real system.

As a proof-of-concept, this thesis presented an offline dynamic analysis

tool that automatically detected data races and prioritized the most harmful data

races. One important result that we derived from using the tool to analyze real

world applications is that, we found 90% of the true data races to be benign.

Using a replay-based dynamic analysis, the tool automatically identified and fil-
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tered the data races that are potentially benign. This analysis involved replaying

an execution twice for each data race, once for each possible order between the

racing memory operations. This was a useful analysis that reduced the number

of data races that programmers have to analyze by 50%, and also found several

harmful data race bugs in Internet Explorer and Windows Visa. All of those

bugs have been fixed in the production code. Thus this tool has been shown to

be very useful, but, as the analysis requires multiple replays, it incurs significant

performance overhead, on average about 280 times when compared to the native

execution. Such a high performance overhead in a dynamic analysis tool cannot

be tolerated during a real program’s execution without significantly affecting the

program’s behavior. However, deterministic replay support for offline dynamic

analysis made it a viable solution.

VI.B Future Work

VI.B.1 Compressing BugNet’s Logs

One of the limitation of BugNet and Strata is that the replay window

length is limited by the amount of memory space available and the amount of logs

generated. A straight-forward solution to ameliorate this problem is to compress

the logs, and thereby increase the replay window length. In this thesis, we used

a simple compression method based on frequent value locality in the programs

(described in Chapter III). It reduced the BugNet logs by a factor of two.

However, if we assume that there will be idle cores in a many-core

processor, then those cores can be used to continuously compress the logs collected

in the active cores. We could execute a compression thread on an idle core that

would compress BugNet’s FLL (First Load Log) for a checkpoint interval. We

have found that, if we employ a perfect first-load optimization [59] instead of
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approximating it by using first-load bits in a finite sized cache, we can significantly

reduce the log sizes (on average, we need only about 22 MB to capture a full

execution of a SPEC benchmark that will have over 100 billion instructions,

which is at least 10 times smaller than the log sizes we observed). Therefore, we

can use a compression thread that would replay a checkpoint interval on an idle

core, and during replay, it would keep track of a shadow memory for the entire

memory state touched by the application. Thereby, it can perform a perfect first-

load-optimization enabling us to capture much longer replay window lengths or

significantly reduce the memory space allocated for BugNet.

VI.B.2 Reducing the Complexity of Strata and Supporting Relaxed

Memory Models

Strata described in Chapter IV required non-trivial modifications to the

coherency protocol and the memory sub-system to capture the shared-memory

dependencies. However, we believe that this solution can be simplified using the

following approach. In Section IV.B.4 we explained how using BugNet’s First

Load Log (described in Chapter III) for a thread we can deterministically replay

that thread. Thus, we can determine the memory operations, their program or-

der, their addresses, and their values using just the BugNet’s logs. Using this

information, we should be able to determine the order between the memory op-

erations using a replay-based offline analysis. Perhaps, to bound the complexity

of the offline algorithm we can log stratum-based hints (a hint is a stratum that

contains the timestamps of all the threads) at pre-determined intervals. With

the stratum-based hints, we just have to order the memory operations between

two strata instead of ordering all the memory operations executed in the replay

window.

We believe that the above offline analysis can also be extended to deter-
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mine the memory order for a program executed on a multi-processor system with

a weaker memory model. Using the values of the memory operations determined

from the BugNet logs, we could determine the producer write operation for every

read operation, and thereby determine the partial order between the memory

operations.

VI.B.3 Using Virtual Machine Support with Strata

ReVirt [26] is a record and replay system based on Virtual Machine

Monitor support. It is efficient (incurs about 10% performance overhead) and

also it does not require processor support. However, a limitation of ReVirt is

that it cannot support multi-processor replay. We believe there exists a hybrid

solution, where we can use Strata-like support for recording multi-processor non-

determinism and use ReVirt for recording non-deterministic system interactions.

This approach could further reduce hardware requirements for deterministic re-

play, which would make it an even more attractive option for processor manufac-

turers to support deterministic replay.

VI.B.4 Open Problems in Supporting Deterministic Replay

One important problem that need to be addressed is non-technical in

nature - a business incentive for providing support for debugging features. We

need to think about a business incentive that would make it feasible for processor

manufacturers to supports features like deterministic replay support. From the

results in this thesis, it is quite clear that, to provide efficient replay support for

multi-processor we need processor support. Also, it is clear that deterministic

replay support is very useful for debugging non-deterministic concurrency bugs.

Without deterministic replay support, multi-threaded programming would be

pretty hard. Though such a feature would advance the computing field, it is still
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not clear how a processor manufacturer might be able to increase their profit by

supporting this feature. That said, in the past, processor manufacturers have

indeed provided support for breakpoints and watchpoints. To bring many-cores

and multi-threaded programming to the masses, features like deterministic replay

are not a luxury but a necessity.

Privacy

Gathering information about a program’s execution at the customer

site and sending that to the developer to debug bugs in production code can

be an effective strategy, except for one main issue for the customer - privacy.

The recorded execution might contain sensitive information pertaining to the

customer. One possible approach could be use an offline replay-based program

analysis that would obfuscate the sensitive data but still makes sure that the

execution is reproducible. This approach might not guarantee complete privacy,

because any information that can be inferred about a program’s execution can

be considered a privacy leak. However, it could provide a reasonable solution,

where it can make it hard for a developer to infer any sensitive information from

the BugNet and Strata logs.

Detecting Incorrect Results

While using the deterministic replay feature at the customer site, we

need an ability to detect the occurrence of a bug. The solutions we presented in

this thesis can capture only those bugs that result in a crash. If the bug leads

to an erroneous output, the proposed deterministic replay mechanism will not be

able to detect the problem and collect timely information. To ensure software

correctness and capture bugs at the customer site, architecture research is needed

into providing low overhead hardware support to find bugs that lead to wrong
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answers. At a developer’s site, however, one can trace the full execution of a

program, and so this might not be an issue.

One potential approach is to provide hardware support to allow develop-

ers to leave software checks in their code, which can trigger asserts or violations if

an error occurs. Examples of these types of software checks include programmer

defined asserts, bounds checking, dangling pointer checks, etc. Currently software

vendors do not leave these software checks in their code because of the prohibitive

execution overhead. Special instructions and hardware support should be able to

provide a low overhead solution for this.

Another potential approach is to use hardware support to check for

bug signatures that can occur during a program’s execution. Current network

systems detect worms and viruses based on anomalous patterns in the packets.

Similarly, to track down software bugs during a program’s execution, we may

be able to use hardware support to classify a program behavior to be erroneous

based on signature based anomaly detection. For example, a processor fault or a

software bug might induce a program’s execution to go down an infeasible path

or trigger a spurious memory access pattern that is significantly different from

a normal execution behavior. Such program level anomalies can be captured by

detecting the anomalous patterns in processor events like branch mispredictions

and cache misses. A key challenge here is to be able to monitor processor events

and combine them to detect incorrect executions. 3D die stacking technology

holds the promise for providing the required bandwidth to monitor the processor

events. Hypervisor support can be used for analyzing the events and supporting

recovery.
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VI.B.5 More Applications of Deterministic Replay

In Section V.C.5 we discussed several possible extensions to our replay-

based data race detection tools. Apart from data race detection, deterministic

replay support can be used to build more dynamic analysis tools. For example,

we can build tools that detect if a software system violates a privacy agreement,

detect intrusions, perform performance optimizations, etc.

Dual Modular Redundancy for Multi-core Processors

To provide fault tolerance against transient errors, current systems such

as IBM’s zSeries and HP’s Non-stop employ lock-stepping, where each logical

processor has two microprocessors operating in lock-step. A fault is detected

when their outputs mismatch. However, the cost of this dedicated hardware

solution is very high. Moreover, lock-stepping two cores in future many-core

processors will be impractical due to non-deterministic architectural optimiza-

tions (e.g. voltage scaling) that can alter the execution behavior of two cores.

Without support for lock-stepping, one would require an ability to reproduce the

input to a program’s execution, so that the program can be re-executed and its

output compared with the original execution. However, in a multi-core system

executing a multi-threaded program, a thread’s execution is dependent on the

non-deterministic interactions with the other threads in the system. Therefore,

we would require support like Strata to reproduce the memory order and validly

compare the two executions in a dual modular redundant system.
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