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Abstract

Machine Learning Methods For The Detection Of Complex Patterns In

Biological Data

The biomedical field is being revolutionized by deep learning. The accumulation of more,

and more complex data opens the opportunity for the development of new advanced deep

learning models that can address fundamentally difficult question in biology. Nevertheless,

the integration of deep learning into the life sciences is complicated and necessitates a careful

strategy in order to tackle specific domain challenges while optimizing the vast quantities of

very heterogeneous data. This thesis addresses very different biological problems using deep

learning methods. A common theme to these problems is the complexity and richness of the

large data sets collected. In chapter 2, I introduce Scratch-AID, an exceptionally precise deep

learning-based system designed to automate the identification of mouse scratching in a con-

trolled environment. By employing a convolution recurrent neural network trained on video

data, this system attains a recall percentage of 97.6% and a precision percentage of 96.9%.

Therefore, Scratch-AID can be considered a feasible substitute for manual quantification

techniques in the context of pharmacological screenings and behavioral studies.

Following this, in Chapter 3, I address the problem of survival in cancer patients. I present

a deep learning framework called Genomic-Guided Hierarchical Attention Multi-Scale Pathol-

ogy Transformer (GG-HAMPT). I introduce an multi-level early data fusion strategy that

uses the co-attention paradigm to combine genomic data and 3 level representation of whole

slide Images (WSI) of cancer tissues. Employing the co-attention module, our model adeptly

discerns the significance of pathological patches in correlation with grouped genomic features.

In the context of predicting survival outcomes using multimodal data, including gigapixel

WSIs, our GG-HAMPT model outperformed existing other weakly supervised approaches.

Last, we examine the domain adaptation of pre-trained models for the purpose of classi-

fying digital pathology images through the implementation of the LoRA Vision Transformer

(LoRA-ViT). The model exhibits remarkable efficiency and accuracy. Furthermore, in a

6-class cell classification task, LoRA-ViT outperformed the native ResNet 50 model. In
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experiments conducted with constrained datasets, the LoRA-ViT model significantly out-

performed the ResNet 50, showing its superior generalizability compared to the baseline

model.
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Chapter 1

Introduction

This thesis explores the use of deep learning models in the biomedical field, taking ad-

vantage of the abundance of data available to tackle complex datasets that is difficult to

analyze using conventional methods. It will focus on how to design cutting-edge deep learn-

ing methods for biomedical applications.

1.1 Thesis overview

This thesis is structured as follows. Chapter 1 provides general motivation, background,

and a comprehensive overview of deep learning in the biomedical field. Additionally, it

introduces some definitions and notation of deep learning model structures that are necessary

for the subsequent chapters. The structure of the deep learning methodology introduction

follows the Dive into Deep Learning book (A. Zhang et al., 2023).

Chapter 2 presents a new approach to automating the recognition of mouse scratching

behavior with remarkable accuracy. This system, which uses a convolution recurrent neu-

ral network trained on high-quality video data, provides a viable replacement for manual

quantification techniques in both behavioral studies and pharmacological screenings.

Chapter 3 introduces the Genomic-Guided Hierarchical Attention Multi-Scale Pathology

Transformer (GG-HAMPT), a model that integrates genomic data with detailed pathol-

ogy information using a co-attention mechanism for enhanced cancer survival prediction,

outperforming other multimodal data-based weakly supervised methods.

Chapter 4 presents the LoRA Vision Transformer (LoRA-ViT), a model adept at adapting
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pre-trained models for digital pathology image classification, surpassing the baseline ResNet

50 in accuracy, especially when trained with limited datasets.

In the last chapter, a general summary is presented, along with some pertinent informa-

tion related to the thesis and potential paths for further exploration.

1.2 Deep learning background

Research in biology and medicine is rapidly transitioning and becoming a data-based

sciences. It is anticipated that in the next ten years, genomics will be on par with, or even

exceed, other data-driven fields such as social media, online multimedia, and related areas in

terms of data production and analysis needs (Ching et al., 2018). This surge of data brings

with it a plethora of possibilities, but also presents many new difficulties related to big data.

The solution to the challenge of big data in biology and medicine is to develop deep learning

algorithms that can successfully handle the large scale data that traditional methods cannot

evaluate. This could revolutionize the way we approach treatment, categorize patients, and

predict diseases, while still protecting privacy.

In recent years, deep learning has become a major approach to solving scientific problems

in data science. These methods have made considerable progress compared to traditional

machine learning algorithms in many areas. For example, in the last five years, these tech-

niques have revolutionized image recognition and voice processing. Furthermore, applications

of deep learning are not limited to these areas. Generic versions of these deep learning al-

gorithms, without much customization, have achieved accuracy values that are similar to

or even better than the best methods in the genomics area (Novakovsky et al., 2023, Zou

et al., 2019). Moreover, specialized versions are now being widely used in industrial settings

(Jumper et al., 2021).

1.2.1 Historical Background of Deep Learning

Deep learning dates back to the concept of artificial neural networks (ANNs), which has

its roots deep embedded in the mid-20th century, drawing inspiration from biological neural

networks found within the human brain. It was in 1943 that the pioneering work of Warren

McCulloch and Walter Pitts introduced the notion of an artificial neuron (McCulloch &

Pitts, 1943). Their proposal was not just revolutionary; it provided the rudimentary foun-
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dation for the subsequent development of neural networks. The model they postulated was

a computational representation that captured the essence of how biological neurons might

process information. After the seminal work of McCulloch and Pitts, the field experienced

several peaks and troughs of interest and development. One of the first notable milestones in

this journey was the perceptron, introduced by Frank Rosenblatt in the late 1950s (Rosen-

blatt, 1958). The perceptron was an algorithmic approach to pattern recognition based on

a two-layer network, and it generated significant interest in the potential of these networks.

However, when Marvin Minsky and Seymour Papert mathematically demonstrated the many

restrictions of two-layer feedforward neural networks, such as their inability to learn non-

linear functions or execute the Boolean exclusive OR (XOR) operation (Marvin & Seymour,

1969), the enthusiasm for the perceptron temporarily diminished. Interest in neural networks

was rekindled in the 1980s, with the invention of the backpropagation algorithm by David

Rumelhart, Geoffrey Hinton, and Ronald Williams (Rumelhart et al., 1986). This algorithm

enabled the training of multilayer neural networks, overcoming many of the earlier obstacles

and leading to the current era of deep learning.

Deep learning is a subfield of machine learning characterized by the use of layered ar-

chitectures that allow for complex model structures. Unlike traditional machine learning

methods, such as Support Vector Machines and Decision Trees, which require human ex-

pert for feature engineering, deep learning models are capable of automatically extracting

features from raw data through multiple layered architectures. This is why deep learning

models are referred to as ”deep” - they encompass numerous layers. These multi-layered

architectures enable deep learning models to identify intricate, nonlinear relationships in

data, something that was difficult for the perceptron or traditional algorithms. With the

increased power of computers and newly collected large datasets, deep learning models, par-

ticularly Convolution Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),

have become more successful than conventional models in areas such as image recognition

and natural language processing (LeCun, Bengio, et al., 2015b). The World Wide Web,

the emergence of companies providing services to hundreds of millions of users online, the

proliferation of low-cost, high-quality sensors, the availability of inexpensive data storage

(Kryder’s law), and the affordability of computing (Moore’s law) have drastically altered the
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landscape of data (Walter, 2005, Schaller, 1997). In particular, the development of graphic

processing units (GPU), initially designed for computer gaming, has revolutionized the field

of deep learning, making algorithms and models, previously thought to be computationally

impossible, achievable. This is best demonstrated in Table 1.1.

Decade Dataset Memory Floating point calcula-
tions per second

1970 100 (Iris) 1 KB 100 KF (Intel 8080)
1980 1 K (house prices in Boston) 100 KB 1 MFLOPS (Intel 80186)
1990 10 K (optical character

recognition)
10 MB 10 MFLOPS (Intel 80486)

2000 10 M (web pages) 100 MB 1 GFLOPS (Intel Core)
2010 10 G (advertising) 1 GB 1 TFLOPS (NVIDIA

C2050)
2023 1 T (social network) 100 GB 204.9 TFLOPS (NVIDIA

H100)

Table 1.1: Evolution of Dataset Size, Memory, and Computational Power over Decades (adapted
from A. Zhang et al., 2023)

1.2.2 The concept of Multilayer Perceptron (MLP) and Fully Con-

nected (FC) layers

Statistical models often rely on affine transformations, which are based on linear map-

pings from one vector space to another. These transformations typically presume a linear

relationship between input variables and the predicted output, implies monotonicity where

any increase (or decrease) in an input feature leads to a proportional increase (or decrease)

in the output, assuming the associated weight is positive (or negative).

However, this presumption of linear behavior can be overly simplistic, especially in com-

plex tasks such as image classification. For instance, consider the problem of distinguishing

between images of cats and dogs. A linear model might suggest that increasing the intensity

of a particular pixel would consistently affect the likelihood of the image being recognized as

a dog in a predictable manner. Yet, image classification is inherently non-linear and context-

dependent—a change in pixel intensity could mean something entirely different depending

on the overall pattern of pixels. Furthermore, factors such as texture, shape, and spatial

relationships between pixels are important. Simply put, inverting an image’s colors does not

alter the subject of the image, but a linear model might fail to recognize this due to its re-

liance on individual pixel values rather than the broader context they create together. Thus,

while linear models are powerful tools, their application is limited in scenarios that require
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Figure 1.1: An MLP with a hidden layer of five hidden units

the modeling of complex, non-linear relationships as seen in image recognition tasks.”

For more than a century, scientists have been exploring the challenge of dealing with

nonlinearity, such as the example mentioned above. Decision trees (Salzberg, 1994), Kernel

methods (Aronszajn, 1950), Nonparametric spline models (Wahba, 1990) and kernel meth-

ods combined with support vector machines (Schölkopf & Smola, 2002) are long-standing

techniques to identify nonlinear relationships. It should be noted that this kind of nonlinear

processing is also observed in the brain, where neurons transmit signals to other neurons,

forming a sequence of basic transformations.

In deep learning, we can overcome the limitations of linear models by incorporating one

or more hidden layers. The easiest way to do this is to stack many fully connected layers.

Each layer feeds into the next layer. Suppose we have L layers, we can think of the first L−1

layers as our representation and the final layer as our linear predictor. This architecture is

commonly called a multilayer perceptron, often abbreviated as MLP.

The structure of MLP was illustrated in Figure 1.1. MLP comprises input nodes, output

nodes, and a hidden layer consisting of hidden units. While the input layer serves as a

passive conduit for the raw data, computations are actively performed in the hidden and

output layers, making the total number of layers in this MLP two. Each layer is fully

connected, leading to the designation of MLPs as fully connected layers (FC layers). In

this architecture, every input node directly affects each neuron in the hidden layer, which
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subsequently influences each neuron in the output layer.

Now let’s mathematically define the MLP and fully connected (FC) layers. Consider a

data representation as X ∈ Rn×d, where we have a minibatch of n data points and each data

point has a d dimension vector (or feature). For a MLP with one hidden layer consisting

of h hidden units, the hidden and output layers are both fully connected, meaning that

the hidden-layer weights W(1) ∈ Rd×h and biases b(1) ∈ R1×h and output-layer weights

W(2) ∈ Rh×q and biases b(2) ∈ R1×q are present. This allows us to compute the outputs

O ∈ Rn×q of the one-hidden-layer MLP as follows:

H = XW(1) + b(1),

O = HW(2) + b(2).

At first glance, it might appear that simply stacking more of these layers would allow

the model to learn more complex representations. However, the reality is slightly counter-

intuitive. Without introducing some non-linearity between these layers, multiple affine trans-

formations can always be reduced to a single affine transformation, rendering the stacking

redundant. When we define W = W(1)W(2) and b = b(1)W(2) + b(2), we have:

O = (XW(1) + b(1))W(2) + b(2) = XW(1)W(2) + b(1)W(2) + b(2) = XW + b.

This brings us to a pivotal component in MLPs: non-linear activation functions. Pos-

sible activation functions include:

• ReLU (rectified linear unit):

σ(x) = max(0, x)

• Sigmoid function:

sigmoid(x) =
1

1 + exp(−x)

• Hyperbolic tangent function function:

tanh(x) =
1− exp(−2x)

1 + exp(−2x)
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• Parametrized ReLU (pReLU) function (K. He et al., 2015):

pReLU(x) = max(0, x) + αmin(0, x)

The ReLU (rectified linear unit) activation function has become increasingly popular due

to its simplicity and effectiveness (Nair & Hinton, 2010). Additionally, it is much easier to

optimize than the sigmoid or tanh functions. The use of ReLU was a major factor in the

resurgence of deep learning in the last decade. With the activation function σ, the fully

connected layer becomes:

H = σ(XW(1) + b(1))

Subsequent stacking of fully connected layer interspersed with non-linear activations

results in the traditional MLP architecture, e.g., H(1) = σ1(XW(1) + b(1)) and H(2) =

σ2(H
(1)W(2)+b(2)). Empirically, the model can approximate any highly complex functions,

thereby capturing intricate patterns and relationships inherent in the data (Simonyan &

Zisserman, 2014).

1.2.3 Deep Learning Model Training

The process underlying training a deep learning neural network is similar to that of

training classical statistic models. Yet, an untrained model, regardless of its complexity,

can be visualized as a blank slate, devoid of any ”intelligence.” Transforming this untrained

model into an adept predictor involves several steps:

1. Start with a model with randomly initialized parameters.

2. Acquire data samples, such as virus sequences, coupled with their corresponding labels.

3. Update the model’s parameters to enhance its performance on these samples.

4. Iteratively repeat steps (2) and (3) until the model’s performance reaches a satisfactory

threshold.

An example of designing a ”cat-dog detector” could be based on giving a deep learning

system many pictures of cats and dogs. Over time, the model will be able to recognize the
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unique characteristics of each. If we set the cat as positive labels, eventually, it would give

a large positive number for cat images and a pronounced negative number for dog images.

For images that are hard to classify, the model would likely output a value close to zero.

Supervised Learning Supervised learning is a type of machine learning where the goal

is to construct a predictive model based on a set of labeled training data. Each instance

in the training dataset consists of one feature vector, which is a collection of measurements

or observable characteristics, paired with a corresponding ’label’, which is the outcome or

category we aim to predict. For example, in a dataset for email classification, the features

could include the words in the email, while the label would indicate whether the email is

’spam’ or ’not spam’.

The process begins with the model learning patterns from the provided examples. This

learning phase involves adjusting the model’s parameters to minimize the difference between

its predictions and the actual labels—a process known as ’training’. Once the model is

trained, it can generalize from the patterns it has learned to make predictions on new,

unseen data.

Supervised learning models range from basic linear regression used for forecasting con-

tinuous results to complex deep neural networks that can manage intricate tasks such as

recognizing objects in images or translating text between languages. The success of super-

vised learning is not only dependent on the quality and amount of the training data, but also

on the model’s capacity to capture the underlying connections between features and labels

without overfitting to noise or anomalies in the training set.

Objective Function and Model Evaluation Deep learning is often described as ”learn-

ing from experience”. This means that the model is able to improve itself autonomously in

order to complete certain tasks. To measure the success of this improvement, a metric is

needed. This metric, which is usually defined by the user, is known as the objective func-

tion. As its main purpose is to minimize the cost of the model in order to achieve the best

performance, it is often referred to as the loss or cost function.

The value of the loss function depends on the model’s parameters, and the data it’s being

trained on. The goal during training is to adjust the model parameters to minimize this loss,

which indicates better performance and more accurate predictions. To reduce total loss,
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the model parameters are modified for a given dataset. This data set, which is made up of

samples used for training, is called the training dataset. However, a model that performs well

on the training data may not be as successful on a new dataset, known as the test dataset.

In the field of deep learning, this problem is called overfitting. Overfitting is reflected in a

model’s statistical metrics: it often has a low loss function because it fits the training data

well, but high loss function when predictions are made on new data.

Optimization and Gradient Descent In order to find the optimal parameters to mini-

mize the loss function, an algorithm is needed. In deep learning, gradient descent is the most

commonly used optimization algorithm. This algorithm evaluates each parameter at each

step and determines the direction of the least amount of loss when making small changes. It

then adjusts the parameters in that direction to reduce the loss.

Forward propagation Forward propagation is the process of calculating and storing in-

termediate variables (including outputs) for a neural network, beginning from the input

layer and ending at the output layer. This approach is similar to the one used in maximum

likelihood estimation (MLE), but while MLE computes the likelihood of an entire dataset,

forward propagation only computes the loss function for the current batch of data.

Back propagation Backpropagation is a technique to calculate the gradient of the pa-

rameters of the neural network. The algorithm stores any intermediate variables (partial

derivatives) necessary to calculate the gradient with respect to the parameters. This is

done by applying the chain rule and computing the gradient of each intermediate variable

and parameter in reverse order, starting with the final loss function and back towards all

intermediate parameters.

Network training When training neural networks, forward and backward propagation

are interdependent. After initializing the model parameters, we alternate between forward

and backpropagation, using the backpropagation gradients to update the model parameters.

Backpropagation reuses the intermediate results from forward propagation for all of the

layers to avoid repeating calculations. This means that these intermediate results must be

stored until backpropagation is complete. This is why training requires more memory than

prediction. Additionally, the memory size of the intermediate results is proportional to the
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number of layers in the network and the batch size (Mo et al., 2017). Therefore, training

deeper networks with larger batch sizes can easily lead to out-of-memory errors.

Mathematical formulation We can express the training procedure for a MLP model

using mathematical formulas. In the training of a MLP with one hidden layer, the forward

pass computes outputs using the following sequence of operations for input x ∈ Rd:

1. The hidden layer transformation without bias: z = W(1)x ∈ Rh, where W(1) ∈ Rh×d.

2. Applying the activation function ϕ: h = ϕ(z)Rh.

3. The output layer transformation: o = W(2)hRh, with weights W(2) ∈ Rq×h.

The regularization term s in the context of training a Multi-Layer Perceptron (MLP)

with ℓ2 regularization is defined as the sum of the squared Frobenius norms of the weight

matrices of the network. Specifically, for a MLP with one hidden layer, the term s is given

by:

s =
λ

2

(
∥W(1)∥2F + ∥W(2)∥2F

)
,

where λ is the regularization parameter, and ∥ · ∥F denotes the Frobenius norm of a

matrix.

The loss for a single example with label y is computed as L = l(o, y). Incorporat-

ing ℓ2 regularization parameterized by λ, the total regularized loss becomes J = L +

λ
2

(
∥W(1)∥2F + ∥W(2)∥2F

)
.

For backpropagation, the partial derivative of the total loss function J with respect to the

weight matrices can be derived by taking into account both the loss L and the regularization

term s. Gradients of J with respect to the output layer’s activation o and the regularization

term s are calculated as follows:
∂J

∂o
=
∂L

∂o
,

For the partial derivatives of the regularization term s with respect to the weight matrices:

The Frobenius norm of a matrix W is defined as the square root of the sum of the squares

of its elements. Mathematically, ∥W∥2F =
∑

i,j W
2
ij. When we differentiate this with respect

to W, we treat each element Wij as an independent variable. Therefore, the derivative of

∥W∥2F with respect to W is simply 2W (since the derivative of x2 with respect to x is 2x).
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So, the derivative of s with respect to W(1) is:

∂s

∂W(1)
=
λ

2
· 2W(1) = λW(1).

Similarily, the derivative of the Frobenius norm squared of W(2) with respect to W(2) is

2W(2). Hence, the derivative of s with respect to W(2) is:

∂s

∂W(2)
=
λ

2
· 2W(2) = λW(2).

Therefore, the gradient of the objective function with respect to the weights of the output

layer W(2) is given by:

∂J

∂W(2)
=
∂J

∂o
h⊤ + λW(2).

To propagate the gradient back to the weights of the hidden layer W(1), we first compute

the gradient with respect to the hidden layer outputs h:

∂J

∂h
= W(2)⊤∂J

∂o
.

Then we compute the gradient with respect to the pre-activation z:

∂J

∂z
=
∂J

∂h
⊙ ϕ′(z),

where ⊙ denotes elementwise multiplication and ϕ′(z) is the derivative of the activation

function.

Finally, we obtain the gradient with respect to the weights of the hidden layer W(1):

∂J

∂W(1)
=
∂J

∂z
x⊤ + λW(1).

These gradients are used to update the weights of the network in the direction that

minimizes the loss function, similar to the Newton Raphson method.

Generally, to train the deep learning model, we use Stochastic Gradient Descent (SGD)

to minimize the loss function by iteratively update the model’s parameters in the opposite
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direction of the gradient of the objective function with respect to the parameters. The

general update rule for a parameter θ (refers to all parameters of the model as a whole) at

iteration t is given by:

θt+1 = θt − ηt · ∇θJ(θt;x
(i), y(i)),

where: - θt is the parameter vector at iteration t, - ηt is the learning rate at iteration t, -

∇θJ(θt;x
(i), y(i)) is the gradient of the objective function J with respect to θ at iteration t,

computed using a single data point (or a mini-batch) (x(i), y(i)).

In our MLP model, SGD would update each weight matrix using the gradients computed

during backpropagation:

For the weights of the output layer:

W
(2)
t+1 = W

(2)
t − ηt ·

(
∂J

∂W(2)

)
t

,

For the weights of the hidden layer:

W
(1)
t+1 = W

(1)
t − ηt ·

(
∂J

∂W(1)

)
t

,

These updates are applied until convergence, that is, until the changes in the loss function

or the weights themselves are smaller than some pre-defined threshold, or a maximum number

of iterations is reached. The learning rate ηt can be constant or adaptively changed during

training using various strategies like learning rate decay, momentum, or more sophisticated

methods such as Adam (Kingma & Ba, 2014).

1.2.4 Convolution Neural Networks

The use of images necessitates the formation of spatial hierarchies, which are essential for

creating patterns and motifs that can be identified by both the human eye and machine learn-

ing algorithms. This has led to the development of Convolution Neural Networks (CNNs),

a type of neural network specifically designed for image data. CNNs were first introduced

in (LeCun, Jackel, et al., 1995) and have since revolutionized the field of computer vision.

By encapsulating local spatial relationship and expanding it to wider regions, CNNs have
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been able to accurately capture visual motifs. The computational efficiency, parallelization

support on modern GPUs, has been a major factor in the widespread use of CNNs (Chetlur

et al., 2014).

1.2.4.1 Convolution layer theory

Now let’s construct the convolution layer of a CNN. We can imagine that when we are

trying to detect an object in an image, it is reasonable to focus on the local relation between

the object and its neighboring pixels rather than the precise location of the object. This

principle suggests three operational guidelines:

1. In the earliest layers, the network should respond similarly to the same patch, regardless

of where it appears in the image. This is known as translation invariance.

2. The earliest layers should focus on local regions, without considering the contents of

the image in distant regions. This is the locality principle.

3. As we move deeper, the layers should be able to capture long-range relations of the

image, similar to higher-level vision in nature.

We can demonstrate these three operational guidelines by using MLPs with two-dimensional

images X as input. Hidden representations H are also two-dimensional tensors, which main-

tain the same dimension as X. We define [X]i,j as the pixel at location (i, j) in the input

image and [H]i,j as the hidden representation of that pixel, respectively.

To ensure every hidden representation [H]i,j is influenced by each input pixel, we transi-

tion from the usual weight matrices to fourth-order weight tensors W. If U is the bias, the

fully connected layer becomes: (k, l and a, b are reparameterization)

[H]i,j = [U]i,j +
∑
k

∑
l

[W]i,j,k,l[X]k,l

= [U]i,j +
∑
a

∑
b

[V]i,j,a,b[X]i+a,j+b

Here we set [V]i,j,a,b = [W]i,j,i+a,j+b. The values of a and b range from both positive and

negative numbers, covering the whole image. For any location (i, j) in [H]i,j, its value is a

summation over input pixels centered at (i, j), weighted by [V]i,j,a,b. It is important to take
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into account the computational complexity; A single layer mapping a 1000× 1000 image to

an identical hidden representation requires incredible 1012 parameters.

Building on the principle of translation invariance, a shift in the input X should equate

to a corresponding shift in the hidden representation H. This invariance implies that V and

U are not dependent on the specific location (i, j). Therefore, we can represent them as

[V]i,j,a,b = [V]a,b and U becomes a constant, which we’ll denote as u. This simplifies our

equation for H to:

[H]i,j = u+
∑
a

∑
b

[V]a,b[X]i+a,j+b.

[V]a,b requires significantly fewer parameters than [V]i,j,a,b because it’s not tied to a spe-

cific image location. Thus, the number of parameters drastically drops from the previously

mentioned 1012 to a more manageable 4× 106, given the range of a, b is (-1000, 1000).

By invoking the principle of locality, we can limit the complexity of the previous compu-

tation, setting all [V]a,b = 0 for |a| > ∆ or |b| > ∆.

[H]i,j = u+
∆∑

a=−∆

∆∑
b=−∆

[V]a,b[X]i+a,j+b.

This constraint reduces our parameters from 4 × 106 to 4∆2, with ∆ usually less than

10. Hence we have cut down parameters by four orders of magnitude, leading to the convo-

lution layer [H]. Networks containing such layers are termed Convolution Neural Networks

(CNNs), with V named as convolution kernel, convolution filter, or simply the weights. By

significantly reducing the number of parameters, the fixed convolution kernels in a sliding

window manner throughout all pixels of an image imparts CNNs with the property of trans-

lation invariance. This is because each kernel is limited to learning local patterns and is not

affected by the specific location of these patterns within the image space. The reduction of

parameters also facilitates the creation of more complex network architectures.

1.2.4.2 Construction of the convolution layer

We will now build convolution neural network using an example of image data. Image

data are typically represented in a three-dimensional format, comprising height, width, and

color channels. The first two dimensions correspond to the spatial resolution of the image
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(size of the image in pixels), while the depth is a 3 dimensional vector that represents color

channels such as red, green, and blue in a standard RGB image. For grayscale images, the

depth is just one number, since it only captures varying shades of gray.

2-D convolution layer Ignoring color channels for now and just considering 2-D image

data with 1 channel we can observe how the convolution layer works. In Figure 1.2, the

input is a two-dimensional 3×3 (or (3,3)) tensor with a height equal to 3 pixels and a width

equal to 3 pixels. Since the height and width of the kernel are 2 pixels, the shape of the

kernel window (or convolution window) is 2 × 2. In actual settings, the values will be real

numbers instead of integers, and the kernel tensors will be parameter of the model which

will be updated while training the model.

Figure 1.2: Two-dimensional convolution operation. The areas that are shaded represent the initial
output element, as well as the input and kernel tensors that are used to calculate the output.:
0× 0 + 1× 1 + 3× 2 + 4× 3 = 19

. Kernel will be the parameter to be updated while training.

We start by placing the convolution window in the upper-left corner of the input tensor

and then move it across the input tensor, both horizontally and vertically. At each position,

the input tensor within the window and the kernel tensor are multiplied element by element

and the resulting tensor is summed up to give a single scalar value. This result is the value

of the output tensor at the corresponding location. The output tensor has a height of 2 and

width of 2 and the four elements are obtained from the two-dimensional cross-correlation

operation.

Remarks: Actually the operation of the kernel in convolution neural network is cross-

correlation instead of convolution as defined in mathematics.
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Figure 1.3: Two-dimensional convolution layer with padding

0× 0 + 1× 1 + 3× 2 + 4× 3 = 19,

1× 0 + 2× 1 + 4× 2 + 5× 3 = 25,

3× 0 + 4× 1 + 6× 2 + 7× 3 = 37,

4× 0 + 5× 1 + 7× 2 + 8× 3 = 43

The size of the output tensor is slightly smaller than the input size along each axis because

we can only accurately compute the cross-correlation when the kernel fits completely within

the image. In general, the size of the output tensor is given by the input size nh × nw minus

the size of the convolution kernel kh × kw: (nh − kh + 1)× (nw − kw + 1). When kh and kw

are bigger than 1, the output layer size will be smaller than the input layer.

Padding Padding can be used to address the problem that the output size is smaller

than the input size. Without padding, each convolution layer is smaller than the previous

layer and bigger than the next layer. This is undesirable, as we wish to maintain the same

dimension in each convolution layer. Padding will add extra pixels around the boundary

of our input image, thus increasing the effective size of the image. Typically, one assigns a

value of zero to the extra pixels in the boundary of the input layer.

In Figure 1.3, we add padding to a 3 × 3 input (adding rows and columns of zeros),

increasing its size to 5 × 5. The output then grows to a 4 × 4 tensor. The shaded parts

are the first output element and the input and kernel tensor elements used for the output
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calculation: 0×0+0×1+0×2+0×3 = 0. Generally, if we add a combined total of ph rows

of padding, with approximately half of them at the top and the other half at the bottom,

and a combined total of pw columns of padding, with approximately half of them on the left

and the other half on the right, the output shape will be:

(nh − kh + ph + 1)× (nw − kw + pw + 1)

In many cases, we want to set ph to kh − 1 and pw to kw − 1 in order to make the input

and output have the same height and width, especially when constructing a deep neural

network.

Convolution kernel size CNNs often employ kernels with odd width and height values,

such as 1, 3, 5, or 7. This practice has the advantage of maintaining the same dimensions

when padding the same number of rows on the top and bottom, and the same number of

columns on the left and right. An odd-sized kernel has a central pixel, making it symmetric

around this point. This symmetry allows for a natural anchor point for the convolution oper-

ation, ensuring that each convolution operation has a well-defined spatial relationship to the

input. In other words, each output pixel is a transformed representation of a neighborhood

centered on a corresponding input pixel. With an even-sized kernel, there’s no central pixel,

complicating this spatial relationship.

Additionally, this approach of using odd kernels and padding to precisely maintain the

same dimensions offers a practical benefit. For any two-dimensional tensor X, when the

kernel size is odd and the number of columns and rows padding on all sides is equal, the

output Y [i, j] is calculated by cross-correlating the input and convolution kernel with the

window centered on X[i, j], resulting in an output with the same height and width as the

input. If the kernel size is an even number, applying padding with an equal number of rows

on the top and bottom, and an equal number of columns on the left and right, will not result

in the output layer having the same dimensions as the input layer.

Stride We refer to the number of rows and columns traversed per slide as stride. So far, we

have used strides of 1, both for height and width. Sometimes, we may want to use a larger

stride. Convolutions with a larger stride are a popular technique that can help reducing the
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dimensionality of the input layer drastically, either for computational efficiency or because

we wish to downsample.

Figure 1.4: Convolution layer with strides of 3 and 2 for height and width, respectively.

Figure 1.4 illustrates a two-dimensional convolution layer with a stride of 3 vertically

and 2 horizontally. The shaded areas represent the output elements as well as the input and

kernel tensor elements used for the output computation: 0× 0 + 0× 1 + 1× 2 + 2× 3 = 8,

0× 0 + 6× 1 + 0× 2 + 0× 3 = 6.

The example shows that when the convolution produces the second element of the first

column, the convolution window shifts down three rows. When the second element of the

first row is created, the convolution window moves two columns to the right. Notice that

in the absence of an additional column of padding, the convolution window is unable to

calculate the third column due to insufficient column space.

In general, when the stride for the height is sh and the stride for the width is sw, the

output shape is

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋.

If the height and width of the input tensor are divisible by the strides on the height and

width, then the output shape will be (nh/sh)× (nw/sw).

Multiple channels Channels can be generalized not only for colors, but as a hyperpa-

rameter for the CNN models. When the input data has multiple channels, we must create a

convolution kernel with the same number of input channels. This allows us to perform the
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convolution operation with the input data. For each channel, we can carry out a convolution

operation on the two-dimensional tensor of the input and the two-dimensional tensor of the

convolution kernel, and then add all the results together (summing over the channels) to

produce a two-dimensional tensor. Figure 1.5 provides an example of a two-dimensional

cross-correlation with two input channels. The shaded portions are the first output element

as well as the input and kernel tensor elements used for the output computation:

(1× 1 + 2× 2 + 4× 3 + 5× 4) + (0× 0 + 1× 1 + 3× 2 + 4× 3) = 56

Figure 1.5: Convolution layer with two input channels

Let ci and co denote the number of input and output channels, respectively, and kh and

kw the height and width of the kernel. To generate an output with multiple channels, we

can create a kernel tensor of shape ci × kh × kw for each output channel, resulting in a co

number of kh × kw-shaped outputs. We then stack those outputs in the output channel

dimension, resulting in a co×kh×kw-shaped output. Hence, those co independent kernels of

shape ci × kh × kw can be treated as a convolution kernel of shape co × ci × kh × kw. During

convolution operations, the result for each output channel i ∈ {1, 2, ..., co} is calculated from

the i-th convolution kernel associated with i-th output channel.

Channels enable us to take advantage of both MLPs (significant nonlinearities) and con-

volution (localized analysis of features). Channels allow processing multiple aspects of input

data, like edges and shapes, in parallel. Furthermore, channels offer a strategic compromise:
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they preserve the model’s complexity while still capitalizing on the efficiency gains from

the translation invariance and locality principles of convolutions. This balance ensures that

CNNs remain both computationally efficient and functionally powerful.

Maximum Pooling and Average Pooling Pooling layers are another important part

of CNN, which are composed of a fixed-sized window that is moved across all regions of the

input, with a stride size, to produce a single output for each location it passes through (also

known as the pooling window). Unlike convolution layers, pooling layers have no parameters

(no kernel). Instead, they are deterministic, usually calculating either the maximum or the

average value of the elements in the pooling window. These operations are called maximum

pooling (max-pooling) and average pooling, respectively. Average pooling is a technique

that has been used since the inception of CNN. It is similar to downsampling an image,

where instead of taking the value of every second (or third) pixel for the lower resolution

image, the adjacent pixels are averaged to obtain an image with better signal-to-noise ratio.

Max-pooling (Figure 1.6) was introduced in (Riesenhuber & Poggio, 1999) in the context of

cognitive neuroscience to explain how information can be aggregated hierarchically for object

recognition. In most cases, max-pooling is preferred over average pooling. Pooling layers,

similar to convolution layers, alter the output dimension. We can modify the operation to

get the desired output shape by padding the input and adjusting the stride.

Figure 1.6: Max-pooling with a pooling window shape of 2 by 2. The shaded portions are the first
output element as well as the input tensor elements used for the output computation.

1.3 Modern Convolution neural network designs

We’re now equipped with the essential components to construct a comprehensive CNN. In

this section, we’ll start with the foundational LeNet, progressing through the groundbreaking

AlexNet and ResNet, and culminating in the cutting-edge designs of modern convolution
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neural networks.

1.3.1 LeNet

Yann LeCun’s LeNet was the first convolution Neural Network (CNN) to gain widespread

attention for its performance on computer vision tasks. It was designed to recognize hand-

written digits in images (LeCun, Bottou, et al., 1998). At the time, LeNet outperformed

the then-dominant approach of Support Vector Machines (SVMs), achieving an error rate of

less than 1% per digit. Figure 1.7 illustrate the design of LeNet.

Figure 1.7: Model design of LeNet. The input is a handwritten digit, and the output is a probability
of the digit belonging to one of the ten possible outcomes.

The convolution block consists of convolution layers, sigmoid activation functions, and

average pooling operations. Each convolution layer uses a 5 × 5 kernel and a sigmoid acti-

vation function after the convolution layer to map spatially arranged inputs to a number of

two-dimensional feature maps (output of a previous layer in the network), usually increasing

the number of channels. The first convolution layer has 6 output channels, while the second

has 16. Each 2 × 2 pooling operation (stride 2) reduces the dimensionality by a factor of 4

through spatial downsampling. The output of the convolution block has a shape of (batch

size, number of channel, height, width). Note that ReLUs and max-pooling, which are more

effective, had not yet been discovered at the time.

In order to pass the output from the convolution block to the dense block, we must flatten

each example in the minibatch. This means transforming the four-dimensional input into

a two-dimensional input that is expected by fully connected layers. The two-dimensional

representation has the first dimension to index examples in the minibatch and the second

to give the flat vector representation of each example. LeNet’s dense block has three fully
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connected layers, with 120, 84, and 10 outputs, respectively. The 10-dimensional output

layer is the number of possible output classes for the classification task.

1.3.2 AlexNet

Figure 1.8: From LeNet (left) to AlexNet (right). Dark blue represent max pooling layer, light blue
represent convolution layer. Pad is padding. Parentheses indicate the channel number.

AlexNet (Krizhevsky et al., 2012), an 8-layer CNN, was a game-changer in the ImageNet

Large Scale Visual Recognition Challenge 2012, outperforming all other competitors by a

wide margin. This network demonstrated, for the first time, that features obtained through

learning can surpass those designed manually, thus overturning the existing paradigm in

computer vision. The architectures of AlexNet and LeNet are quite alike, as demonstrated

in Figure 1.8, but there are also significant differences between AlexNet and LeNet:

1. AlexNet is a much deeper network than LeNet-5, with eight layers: five convolution

layers, two fully connected hidden layers, and one fully connected output layer. The
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convolution kernel shape of the first layer is 11 × 11, as the images in ImageNet are

eight times larger in length and width. Second layer shape is reduced to 5 × 5, then

followed by 3×3. After the first, second, and fifth convolution layers, the network adds

max-pooling layers with a window shape of 3 × 3 and a stride of 2. AlexNet also has

ten times more convolution channels than LeNet (as indicated in parentheses). The

final fully connected layers of AlexNet also contains much more parameters than the

counterpart of LeNet.

2. AlexNet utilized the ReLU activation function in place of the sigmoid due to its sim-

pler computation, which does not require the exponentiation operation found in the

sigmoid activation function. Furthermore, the ReLU activation function makes model

training simpler when using different parameter initialization techniques. If the model

parameters are not initialized correctly, the sigmoid function may have a gradient close

to 0, making it difficult to train the model.

3. AlexNet controls the complexity of the fully connected layer by using dropout (Bishop,

1995), in contrast to LeNet which only applies weight decay (Krogh & Hertz, 1991).

Furthermore, the AlexNet training loop incorporates image augmentation techniques,

such as flipping, clipping, and color changes, to further increase the data set. This

makes the model more reliable and the larger sample size helps to prevent overfitting.

1.3.3 Block design in VGG

AlexNet provided evidence that deep convolution neural networks (CNNs) can be suc-

cessful, yet it did not provide a general template for future researchers to use when designing

new networks. The evolution of neural network architectures has, in many ways, mirrored

advancements in chip design. Just as chip engineers transitioned from manually arrang-

ing transistors to employing logical blocks, neural network design too has seen a transition

from a focus on individual neurons to layers, and now, to ”blocks” — repeating sequences

of layers with predefined patterns. This modular approach was popularized by the Visual

Geometry Group (VGG) at Oxford University in their namesake VGG network (Simonyan

& Zisserman, 2014).
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Before VGG, the basic unit encompassed a sequence of a convolution layer (often with

padding to preserve resolution), a nonlinear activation like ReLU, followed by a pooling

layer for resolution reduction. VGG’s groundbreaking insight was to introduce blocks, where

multiple convolution layers were stacked before a downsampling step. This approach allowed

for deeper and narrower networks. For example, two successive 3×3 convolutions would cover

the same area as one 5× 5 convolution, but with fewer parameters. Research conducted by

VGG showed that deep and narrow networks are more effective than shallower architectures.

This led to the development of deep networks with more than 100 layers, and the use of 3×3

convolutions became a standard design in subsequent deep learning models. The diagram

in Figure 1.9 shows how VGG used a block design to create a much deeper network than

AlexNet.

Figure 1.9: From AlexNet to VGG. VGG consists of blocks of layers, whereas AlexNet’s layers are
all designed individually.
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1.3.4 Network in Network: 1 by 1 convolution and Global average

pooling layer

LeNet, AlexNet, and VGG have a shared design pattern: they extract features through

a series of convolutions and pooling layers, followed by post-processing via fully connected

layers. Two major challenges are presented by this design. First, the fully connected layers

at the end of the architecture require a large number of parameters. Second, it is not possible

to add fully connected layers earlier in the network to increase the degree of nonlinearity,

which will require even more memory. The network in network (NiN) blocks (M. Lin et al.,

2013) offer a solution to both of these problems. This strategy is based on two simple ideas:

1. Use 1×1 convolutions to add local non-linearities across channel activations.

In fact, the convolution in CNN essentially involves operations between multi-channel

feature maps (the number of channels is the same as the number of filters) and multi-

channel convolution kernels. If a 1x1 convolution kernel is used, the resulting value will

be independent of the surrounding pixels. Therefore, this operation realizes a linear

combination of multiple feature maps, achieving a change in the number of channels

in the feature map. If not use the 1 × 1 convolution kernel, the only way is fully

connected layer, and that will add much more parameters. Cascading multiple 1x1

convolution kernels can implement nonlinear combinations of multi-channel feature

maps. Moreover, a 1x1 convolution kernel can be used to diminish the number

of channels and enlarge the kernel size, with fewer parameters than using fully

connected layers.

2. Leverage Global Average Pooling (GAP) layer to emphasize spatial hierar-

chies and category relationships with much fewer parameters. In the context

of CNNs, GAP serves as a strategic substitute for traditional fully connected layers.

The technique involves generating a feature map for each specific category within the

last convolution layer and then computing the average of every feature map, form-

ing a vector in the same shape. This vector, encompassing the averages, is directly

integrated into the softmax layer. The primary advantages of employing GAP are man-

ifold. Firstly, GAP is more native to the convolution structure to FC layer by enforcing
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correspondences between feature maps and categories. Thus the feature maps can be

easily interpreted as categories confidence maps. Secondly, GAP’s design eliminates

the need for optimizable parameters, inherently reducing overfitting risks. Finally,

by aggregating spatial information, GAP enhances the model’s resilience to spatial

variations, making the neural network more adaptable and robust.

The implementation of both 1×1 convolutions and global average pooling had a significant

influence on the advancement of subsequent convolution neural networks.

1.3.5 Batch normalization

Batch Normalization (BatchNorm) is a groundbreaking approach in deep learning, de-

signed to make the training of deep networks simpler and faster. Proposed by Ioffe and

Szegedy (Ioffe & Szegedy, 2015), its primary objective is to mitigate the challenges associ-

ated with the internal covariate shift. Internal Covariate Shift refers to the phenomenon in

deep learning where the distribution of each layer’s inputs changes during training, as the pa-

rameters of the previous layers change. The inception of BatchNorm has revolutionized the

realm of deep learning, rendering the training of networks with more than 100 layers signifi-

cantly more tractable. At its core, this normalization acts synergistically with optimization

algorithms, inherently aligning the scale of parameters.

The fundamental operation behind batch normalization is the normalization of layer

activations. Specifically, for every mini-batch, it standardizes the activations of the previous

layer, meaning it makes the activations have zero mean and unit variance. The technique

then introduces two learnable parameters, scale and shift (usually represented by γ and β

respectively), for each activation. The purpose of these parameters is to allow the model to

adjust the normalized activations as needed, preserving the network’s ability to represent a

wide range of functions and effectively learn from the data.

Mathematically, given a mini-batch of activations X, the batch normalization operation

can be denoted as:
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µ =
1

m

m∑
i=1

xi (Compute the mean of the mini-batch)

σ2 =
1

m

m∑
i=1

(xi − µ)2 (Compute the variance of the mini-batch)

x̂i =
xi − µ√
σ2 + ϵ

(Normalize the activations)

yi = γx̂i + β (Scale and shift)

Here, ϵ is a small constant added for numerical stability.

By consistently normalizing activations throughout the training process, batch normal-

ization offers several key benefits:

• Accelerated Training: It allows for the use of higher learning rates, as the risk of

divergence is reduced.

• Regularization Effect: The noise introduced by normalizing activations acts as a

form of regularization, reducing the need for other regularization techniques such as

dropout.

• Reduced Sensitivity to Initialization: With BatchNorm, initial weights become

less critical, mitigating the challenges of initializing very deep networks.

During the prediction phase, it is not possible to use the mean and variance of the

current batch for normalization because we predict for a single data point. Instead, we use

the moving averages of the mean and variance accumulated during training. These stored

statistics, treated as constants, provide a consistent basis for normalizing the activations.

Afterward, the learned scaling (gamma) and shifting (beta) parameters from the training

phase are applied to adjust the normalized activations, speeding up the convergence of the

model training. When we want to apply trained model for inference, these accumulated

statistics and learned parameters will be applied to BN layer, hence guarantee stable and

consistent predictions for inference data.
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1.3.6 ResNet and ResNext

ResNets (K. He et al., 2016a), also known as Residual Networks, have revolutionized the

design of deep neural architectures, providing solutions to the difficulties encountered when

training very deep networks. The core motivation behind ResNets is the observation that as

networks grow deeper, their ability to learn can be hampered, often leading to a degradation

problem where adding more layers results in a higher training error rate. ResNets introduce

”skip” or ”shortcut” connections that bypass one or more layers. The key insight is to allow

the network to learn residual mappings, which are the differences between the input and the

desired output, rather than attempting to learn the desired mapping directly.

Figure 1.10: For non-nested function classes, a larger area does not guarantee that we will be nearer
to the ”truth” function (f ∗). This is not the case with nested function classes.

Nested function To understand the power and efficacy of residual bypass, we first consider

the class of functions, F , that a specific network architecture, with its hyperparameters, can

attain. For every f ∈ F , there’s a corresponding set of parameters (e.g., weights and biases)

acquirable via training. The ultimate aspiration is the true function f ∗. If f ∗ is part of

F , we’re optimally positioned, but such scenarios are rare. More commonly, the goal is to

approximate f ∗ with f ∗
F , the best within F . This can be mathematically represented as: (L

is the loss function)

f ∗
F

def
= argmin

f
L(X,y, f) subject to f ∈ F .

Ideally, a superior architecture, F ′, should yield better results. However, if F ̸⊆ F ′, f ∗
F ′
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might not be better than f ∗
F . As delineated in Figure 1.10, unless larger function classes

encapsulate smaller ones, there is no assurance of increased network performance. Here Fi

with larger i represent the function space of the i-th layer.

Residual block Deep neural networks benefit when newly added layers can easily mimic

an identity function f(x) = x, preserving the efficacy of the original model while potentially

reducing training errors. The Figure 1.11 the right pannel shows the residual block of ResNet,

with a solid line carrying the layer input to the addition operator referred to as a residual

connection (or shortcut connection).

Figure 1.11: In a regular block (left panel), the network within the dotted-line box must learn the
mapping f (x) directly. On the other hand, in a residual block (right panel), the network within
the dotted-line box has to learn the residual mapping g(x) = f (x)− x, which makes it simpler to
learn the identity mapping f (x) = x.

ResNet has a full 3 × 3 convolution layer design, similar to VGG. The residual block

consists of two 3 × 3 convolution layers with the same number of output channels. Each

convolution layer is followed by a batch normalization layer and a ReLU activation function.

The two convolution operations are then bypassed and the input is added directly before

the final ReLU activation function. This design necessitates that the output of the two

convolution layers must be the same size as the input, so that they can be combined. To

alter the number of channels, an extra 1 × 1 convolution layer must be used to transform
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the input into the desired shape for the combination, as shown in Figure 1.12.

Figure 1.12: ResNet block with and without 1×1 convolution, which transforms the input into the
desired shape for the addition operation.

ResNet Model ResNet stands out from other architectures because the design of its initial

layers. While the inception model includes a 7×7 convolution layer with 64 output channels

(stride of 2) followed by a 3× 3 max-pooling layer (stride of 2) like other networks, ResNet

adds batch normalization after each convolution. In particular, the core of ResNet is made

up of four structured modules, each composed of identical residual blocks with the same

output channel numbers. The first module keeps the channel number from the input, since

the prior max-pooling layer has already reduced the dimensionality. The following modules

have a pattern: the first residual block in each module doubles the channels from the previous

one, while reducing the height and width by half. The network ends with a global average

pooling layer and a final fully connected layer. Excluding the convolution layers 1 × 1, the

model, with its initial convolution 7 × 7 and last fully connected layer, has 18 layers, thus

being called ResNet-18.

By adjusting the number of channels and residual blocks in the module, we can construct

various ResNet models, such as the 152-layer ResNet-152. Compared to VGG, ResNet has

a simpler and more flexible structure. This has led to its rapid and widespread adoption.

Figure 1.13 shows the full ResNet-18.
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Figure 1.13: Architecture of ResNet-18.

ResNeXt Model The design of ResNet presents a challenge in terms of the trade-off be-

tween non-linearity and dimensionality within a given block. ResNeXt (S. Xie et al., 2017)

is an improved version of ResNet that seeks to optimize deep learning performance. The

name ”ResNeXt” stands for ”ResNet with Next-Level aggregations,” and it is distinguished

from its predecessor by its cardinality, which is the number of parallel paths or transforma-

tions within a block. Rather than simply increasing the depth or width of the networks,

ResNeXt emphasizes the use of multiple pathways to increase the representational power.

This approach offers competitive or superior performance to other architectures with rela-

tively efficient computational resources. Additionally, the modular design of ResNeXt makes

it easier to scale and adapt, making it a key step forward in the development of deep learning

architectures.

Figure 1.14 shows the ResNeXt block with g groups, which are called grouped convolution.

The basic idea is to fragment a convolution from the ci to co channels into g groups. Each

group is of size ci/g and produces g outputs of size co/g. This adjustment leads to a reduction

in computational costs by a factor of g. More specifically, the computational burden drops

from O(ci · co) to O(ci · co/g). Furthermore, this methodology results in a reduction in

parameters for convolution, effectively decreasing the required parameters by a factor of g.

However, a limitation arises from this partitioning: the groups operate in isolation, with

no intergroup information sharing. The design of ResNeXt addresses this limitation by

integrating the grouped convolution with 3 × 3 kernels between two 1 × 1 convolutions.

The subsequent 1 × 1 convolution both corrects the number of channels and ensures cross-

group communication. This strategy strikes a balance between computational efficiency and

representational power, where the major computational load is shouldered by the 1 × 1
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Figure 1.14: Architecture of ResNeXt block with g groups.

convolutions, leaving the grouped 3 × 3 kernels to enhance the network capacity without

an excessive computational penalty. As depicted in Figure 1.14, the conventional residual

connection in ResNet is generalized in ResNeXt with a 1× 1 convolution, further enriching

the model’s expressiveness.

1.4 Recurrent Neural Networks

Many tasks need to process sequential data. This is especially evident in tasks such as

time series forecasting, video content analysis, and the extraction of musical patterns. Se-

quential data is not limited to these areas, in biology ordered structure of genomic sequences,

the intricate sequence-to-structure relationships in protein folding, and the time-dependent

patterns in ecological series all emphasize the importance of sequences. It is essential for a

model to be able to handle such sequential inputs effectively, recognizing the inherent order

and patterns.

Recurrent Neural Networks (RNNs) are deep learning models that use recurrent con-

nections to capture the dynamics of sequences. Unlike most feed-forward neural networks,
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which process data in a unidirectional manner, RNNs maintain a loop mechanism that al-

lows persistence of information. This cyclical structure endows RNNs with the capability

of remembering prior information and utilizing it in current computations, making them

particularly useful for time series forecasting, natural language processing, and other tasks

where temporal dynamics and sequence order are pivotal. As Figure 1.15 shows, RNNs

can be thought of as feedforward neural networks where the parameters of each layer (both

conventional and recurrent) are shared across time steps.

Figure 1.15: The illustration on the left depicts recurrent connections through cyclic edges. The
diagram on the right unfolds the RNN across a sequence of time steps, where recurrent edges
connect adjacent time steps.

1.4.1 RNN

Recurrent neural networks (RNNs) (Elman, 1990) are neural networks with hidden states.

Consider a given time step, t, with a minibatch of inputs denoted as Xt ∈ Rn×d. For a

minibatch comprising n sequential samples, each row in Xt represents a sample at time step

t. The hidden layer output at this time step is symbolized by Ht ∈ Rn×h.

In contrast to traditional MLP, in RNNs, we retain the hidden layer output, Ht−1, from

the preceding time step. This approach requires the introduction of an additional weight

parameter, Whh ∈ Rh×h, which illustrates how the output from the previous hidden layer

is used in the current time step. Formally, the hidden layer’s output at the current step is

computed as:

Ht = ϕ(XtWxh +Ht−1Whh + bh).

This equation highlights an important part of the RNN: the current hidden state, Ht, is
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a function of both the current input and the hidden state from the previous time step, Ht−1.

This dependency ensures that Ht encapsulates historical information from the sequential

data up to the current step, effectively acting as the network’s memory or state. Such an

output, due to its dependency on prior states, is aptly termed a hidden state. Layers

within RNNs that execute this recurrent computation are labeled recurrent layers.

Figure 1.16: RNN with a hidden state architecture

Figure 1.16 shows the computational logic of an RNN at three consecutive time steps.

At any time step t, the hidden state is calculated by combining the input Xt of the current

time step and the hidden state Ht−1 of the previous time step, and then feeding the result

into a fully connected layer with the activation function ϕ. The output of this layer is the

hidden state Ht of the current time step. The model parameters are the combination of Wxh

and Whh, and a bias of bh. The hidden state Ht of the current time step is used to calculate

the hidden state Ht+1 of the next time step and is also fed into the fully connected output

layer to calculate the output Ot of the current time step.

1.4.2 LSTM

RNNs have difficulty dealing with long-term dependencies due to vanishing and exploding

gradient problems (Bengio et al., 1994), making it difficult for them to remember informa-

tion from distant past steps. To address this, long short-term memory (LSTM) networks

(Schmidhuber, Hochreiter, et al., 1997) were developed, which incorporate memory cells in

the hidden layer of the network. The name of ”long short-term memory” is derived from

the idea that the network possess both long-term and short-term memory. The long-term
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memory is represented by the weights of the memory cell, which store general information

about the data. The short-term memory is represented by the transient activations that are

passed from one node to the next.

Gates and input node The data fed into the Long Short-Term Memory (LSTM) gates is

the input at the current time step and the hidden state of the previous time step, as shown

in Figure 1.17. Three fully connected layers with sigmoid activation functions are used to

calculate the values of the input, forget, and output gates. The sigmoid activation ensures

that all values of the three gates are in the range of (0, 1). Input node was used to transmit

memory, and the tanh activation function was typically employed to calculate it. The input

gate decides how much of the input node’s value should be added to the current memory

cell internal state. The forget gate decides whether to keep the current value of the memory

or discard it. Then the output gate determines whether the memory cell should affect the

output at the current time step.

Figure 1.17: Computing the input gate, input node, the forget gate, and the output gate in an
LSTM model.

Mathematically, given a batch size n, a number of hidden units h, and the input dimen-

sionality d, the input at time t can be represented as Xt ∈ Rn×d. Similarly, the prior hidden

state can be denoted as Ht−1 ∈ Rn×h. At any given time step t, the network incorporates

three essential gates: the input gate, It ∈ Rn×h; the forget gate, Ft ∈ Rn×h; and the output
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gate, Ot ∈ Rn×h. The mathematical formulations for these gates, given the input and the

prior hidden state, are:

It = σ(XtWxi +Ht−1Whi + bi),

Ft = σ(XtWxf +Ht−1Whf + bf),

Ot = σ(XtWxo +Ht−1Who + bo),

where the weight parameters, Wxi,Wxf,Wxo ∈ Rd×h and Whi,Whf,Who ∈ Rh×h, and

the bias parameters, bi,bf,bo ∈ R1×h. Then the input node (used to calculate the next

internal state), C̃t, can be defined as:

C̃t = tanh(XtWxc +Ht−1Whc + bc),

with the weight parameters Wxc ∈ Rd×h and Whc ∈ Rh×h, and the bias parameter

bc ∈ R1×h.

Internal State and Hidden State The internal state Ct ∈ Rn×h is updated by a combi-

nation of input gate, It, and the forget gate, Ft: (⊙ stands for element wise multiplication)

Ct = Ft ⊙Ct−1 + It ⊙ C̃t.

If the forget gate is always set to 1 and the input gate is always 0, the internal state of

the memory cell Ct−1 will remain unchanged over time. With this design, the model can

update the memory by the current state information with the control of forget gate.

The hidden state, Ht ∈ Rn×h, is the output of the memory cell, calculated by the output

gate, Ot:

Ht = Ot ⊙ tanh(Ct).

This mechanism ensures that Ht values are confined to the range (-1, 1). The modulating

action of the output gate allows LSTM to regulate when the internal memory impacts the

subsequent network layers. Consequently, LSTMs are equipped with the ability to selectively

propagate memory over extended temporal intervals, thus mitigating challenges such as the
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vanishing gradient problem prevalent in traditional RNNs. In RNNs, especially with long

sequences, the gradients can become exceedingly small as they are propagated back through

each timestep. This occurs due to the repeated multiplication of gradients through the

layers, which can lead to extremely small values if the gradients are less than 1. When

gradients vanish, the weights in the early layers of the network barely change, meaning that

the network doesn’t learn the long-range dependencies in the data. This severely limits the

model’s ability to learn from data where the context is far back in time. LSTM as shown

in Figure 1.18, provide additional memory state that can keep the long range dependencies,

therefore fix the vanishing gradient problem.

Figure 1.18: Computing the memory cell internal state and the hidden state in an LSTM model.

1.4.3 GRU

The Gated Recurrent Unit (GRU) (Cho et al., 2014) was created as a simplified version

of the Long Short-Term Memory (LSTM) model, with the intention of preserving the essen-

tial concept of incorporating an internal state and multiplicative gating mechanisms while

accelerating the computation process.

Figure 1.19 shows the architecture of the GRU, consisting the reset gate (Rt) and the

update gate (Zt). The mathematical formulations of these gates are:
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Figure 1.19: Architecture of a GRU model.

Rt = σ(XtWxr +Ht−1Whr + br), (1.1)

Zt = σ(XtWxz +Ht−1Whz + bz). (1.2)

The candidate hidden state(H̃t) emerges as a fusion of the input in the current time

step and the previous hidden state modulated by the reset gate, represented as:

H̃t = tanh(XtWxh + (Rt ⊙Ht−1)Whh + bh). (1.3)

The final hidden state is a linear combination of the previous state and the candidate

state, guided by the update gate:

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t. (1.4)

This design allows GRUs to adeptly manage short-term sequences dependencies by reset

gates, and long-term sequence dependencies by update gates. In comparison to LSTM

networks, GRUs can achieve similar performance but require less computational power.
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1.5 Attention Mechanisms and Transformers

The visual system of primates receives a vast amount of sensory input, far exceeding

what the brain can fully process (Thorpe et al., 1996). However, not all stimuli are treated

equally. The convergence and focus of consciousness allow primates to direct their attention

towards objects of interest in complex visual environments, such as prey and predators. The

ability to access only a small fraction of information is evolutionarily significant, enabling

humans to survive and thrive (Campbell & Kulikowski, 1966). It is this notion of selective

attention that influenced the creation of Attention Mechanisms, leading to the development

of the Transformer by (Vaswani et al., 2017). This architecture demonstrated exceptional

performance, and by 2018, the Transformer had emerged in most state-of-the-art natural

language processing models.

At present, the majority of natural language processing projects are based on the Trans-

former architecture. The prototypical methodology for any new task is to use a pre-trained

Transformer model, such as BERT (Devlin et al., 2018). The output layers are then adapted

to the specific task and the model is fine-tuned with the relevant data. In recent years,

OpenAI’s large language models, such as GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI,

2023), have been the focus of much attention. These large language models have demon-

strated remarkable success in a variety of NLP tasks such as text generation, document

classification, and automatic translation, highlighting their versatility and superiority.

Simultaneously, in the computer vision domain, the Vision Transformer has emerged

as the archetypal model for a multitude of tasks, ranging from image recognition to super-

resolution, as highlighted in (Dosovitskiy et al., 2020) and (Z. Liu et al., 2021). Furthermore,

the applicability of Transformers transcends beyond NLP and computer vision. Their ef-

fectiveness has been demonstrated in speech recognition (Gulati et al., 2020), reinforcement

learning (L. Chen et al., 2021) and predicting complex protein structures (Jumper et al.,

2021) among others.

1.5.1 Attention

In the attention mechanism, we have three important parts: query, key and value. Imag-

ine you’re a researcher walking into a library with a specific question in mind. This question
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Figure 1.20: The attention mechanism calculates a linear combination of the values vi through
attention pooling, with the weights determined by the similarity between the query q and the keys
ki . It combines query and keys to achieve a attention weight towards values

is your ”query.” It’s what you’re actively looking to find more information about. In the

library, each book has a unique title and subject matter. These are like the ”keys” in the

attention mechanism. Just as a book’s title and summary give you an idea of what informa-

tion it contains, the keys in a model provide a way to match with relevant queries. Finally,

once you find books with titles and summaries (keys) that seem to match your query, you’ll

actually delve into these books to extract information. In the attention mechanism, this

refers to the ”value.” It’s the actual content or the detailed information you extract from the

data that is relevant to your query.

Here we present the general math formulation. Given a database represented as D def
=

(k1,v1), . . . (km,vm) consisting of m tuples of keys and values. Let q be a designated query.

The attention over D is defined as:

Attention(q,D)
def
=

m∑
i=1

α(q,ki)vi,

Here, the scalar attention weights, α(q,ki) ∈ R for i = 1, . . . ,m, play a pivotal role. This

operation is generally termed as attention pooling. The significance of the term ”attention”

is derived from the fact that higher weight value α corresponds to higher attention. As

a result, the attention over D essentially computes a linear combination of the database’s

values.
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For ensuring a summation of weights to unity, normalization is typically applied:

α(q,ki) =
α(q,ki)∑
jα(q,kj)

.

In particular, to ensure that the weights are also nonnegative, we can use exponentiation.

α(q,ki) =
exp(a(q,ki))∑
j exp(a(q,kj))

,

To guarantee that the variance of the attention function stays at 1 regardless of vector

length, we employ the scaled dot product attention scoring function. This rescales the dot

product by 1/
√
d, leads to the commonly used attention function that is used in Transformers

(Vaswani et al., 2017).

a(q,ki) = q⊤ki/
√
d

Integrating the above dot product attention scoring function into the softmax operation:

α(q,ki) = softmax

(
q⊤ki√
d

)
=

exp(q⊤ki/
√
d)∑

j=1 exp(q
⊤kj/

√
d)
.

In practice, we usually consider minibatches for efficiency, hence the scaled dot product

attention of query Q ∈ Rn×d, key K ∈ Rm×d, and value V ∈ Rm×v can be expressed as

follows:

softmax

(
QK⊤
√
d

)
V ∈ Rn×v.

‘

1.5.2 Transformer

The Transformer model represents a paradigm shift in model architecture for language

based tasks, abandoning recurrent neural network architecture in favor of a fully attention-

based approach. This method focuses on leveraging attention mechanisms to establish global

relationships between input and output elements.
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Multihead Attention Given query q in Rdq , key k in Rdk , and value v in Rdv , each

attention head hi (i = 1, . . . , h) is computed as

hi = f(W
(q)
i q,W

(k)
i k,W

(v)
i v) ∈ Rpv ,

where W
(q)
i ∈ Rpq×dq , W

(k)
i ∈ Rpk×dk , and W

(v)
i ∈ Rpv×dv are learnable parameters

and f is a scaled dot product attention. The output of the multi-head attention is a linear

transformation via learnable parameters Wo ∈ Rpo×hpv of the combination of h heads:

Wo


h1

...

hh

 ∈ Rpo .

This design allows each head to access different parts of the input, enabling more complex

functions than a simple weighted average. When the query q in Rdq , key k in Rdk , and value

v in Rdv are the same, it is called multihead self-attention. The multihead self-attention

design allows the model to model more complex patterns.

Positional Encoding Given an input representationX ∈ Rn×d which contains d-dimensional

embeddings for n tokens of a sequence, the positional encoding outputs X+P with a posi-

tional embedding matrix P ∈ Rn×d of the same dimension. The elements of the matrix are

determined by the following equations: pi,2j = sin
(

i
100002j/d

)
and pi,2j+1 = cos

(
i

100002j/d

)
for

the row ith and the column (2j)th or (2j + 1)th.

Transformer Architecture The Transformer model can process the input and output

sequences in parallel rather than sequentially. As illustrated in Figure 1.21, The model

consists of an encoder and a decoder. The source and target sequence embeddings are

augmented with positional encoding before being fed into the encoder and decoder, which

are composed of modules based on self-attention. The “add norm” component in Figure 1.21

is a residual connection immediately followed by layer normalization. Layer normalization

is the same as batch normalization except that the former normalizes across the feature

dimension, thus enjoying benefits of scale independence and batch size independence.

The Transformer encoder is composed of multiple identical layers, each of which has two
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Figure 1.21: The Transformer architecture. FFN means feed forward network, which is fully
connected layer.

sublayers. The first is a multi-head self-attention pooling and the second is a positionwise

feed-forward network. The queries, keys, and values for the self-attention are all taken from

the outputs of the previous encoder layer. The ResNet (K. He et al., 2016a) is the inspiration

for the residual connection that is used around both sublayers. For any input x ∈ Rd at any

position of the sequence, the output of the sublayer must be sublayer(x) ∈ Rd so that the

residual connection x+sublayer(x) ∈ Rd is possible. This is followed by layer normalization.

The Transformer decoder is composed of multiple identical layers with residual connec-

tions and layer normalizations. Additionally, it has a third sublayer, known as the encoder–

decoder attention, between the two sublayers described in the encoder. In the encoder–

decoder attention, queries come from the outputs of the decoder’s self-attention sublayer,
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Figure 1.22: (Left) Self-attention process. (Right) Multi-head attention.

while the keys and values are from the Transformer encoder outputs. In the decoder self-

attention, queries, keys, and values are all from the outputs of the previous decoder layer.

However, the masked attention feature ensures that each position in the decoder can only

access all positions in the decoder up to that position. This preserves the autoregressive

property, meaning that the prediction only depends on the output tokens that have been

generated.

1.6 Interpretability of Convolution models in transcrip-

tion factor analysis

Predicting transcription factor binding sites constitutes a central thrust in cancer ge-

nomics research (Alipanahi et al., 2015). Among the computational tools employed for this

prediction task, Convolution Neural Networks (CNNs) have consistently demonstrated su-

perior efficacy. In contrast to traditional, non-deep learning computational techniques that

typically rely on k-mers and position weight matrices, CNNs have emerged as more accurate

predictive tools. As in other fields, the precise rationale underlying the augmented perfor-

mance of deep learning models over their traditional counterparts remains an area of active

investigation.

Koo and his colleagues conducted a thorough investigation into how deep convolution
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neural networks (CNNs) extract information from sequence motifs and compared the results

across different CNN architectures (Koo & Eddy, 2019). It has been speculated that the first

convolution layer is mainly responsible for motif representations and that subsequent deeper

layers integrate and process these initial representations, leading to the identification of more

complex patterns, known as regulatory grammars (Quang & X. Xie, 2016, Kelley et al., 2016).

To explore this hypothesis, Koo and his team examined the relationship between the internal

convolution kernel representation and the overall network architecture. They proposed that

the filters in the convolution layer(s) may be functionally similar to position-weight matrices,

suggesting that these filters can interpret sequences in a manner similar to how position-

weight matrices work. Based on their findings, which are discussed in more detail in the

following sections, Koo and his colleagues concluded that the motif representations identified

by CNN filters are significantly affected by certain aspects of the CNN model’s design and

hyperparameters, such as convolution filter size, filter stride, max-pooling size, and max-

pooling stride. This conclusion emphasizes the importance of understanding how model

architectures and their hyperparameters influence learning and representation.

To test their proposed hypothesis, Koo and colleagues conducted experiments using syn-

thetic datasets. These datasets were derived from 25 position weight matrices, each rep-

resenting binding motifs of 12 distinct transcription factors. For clarity, a position weight

matrix quantitatively illustrates the binding motifs of transcription factors, providing a prob-

abilistic measure of the nucleotides present at each position in a binding site. In addition

to synthetic data, they also utilized real ChiP-seq data from the DeepSEA dataset (J. Zhou

& Troyanskaya, 2015). One salient finding from their experiments was the pronounced in-

fluence of max-pooling size on the motif representations acquired by the initial convolution

layer’s kernel. In neural networks, max-pooling refers to a downsampling strategy, and its

size dictates the dimensions of the region considered when selecting the maximum value.

In their experiments, they discovered that keeping other hyperparameters constant, using

a larger max-pooling size (10 or more) enabled the convolution kernel in the first layer to

identify more than 90% of the ground truth motifs. Conversely, when the max-pooling size

was reduced to 4 or less, this identification rate drastically fell to below 25%. This implies

that the kernel in the initial layer can, to some extent, distinguish a motif based on the size
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of the max-pooling.

In their study, the impact of the stride parameter in the max-pooling layer on the ability

of the first convolution layer’s kernel to represent motifs was examined. They compared a

stride of 2, which allows the max-pooling kernel to overlap, with a stride of 50, which does

not. In both scenarios, more than 90% of the ground truth motifs were accurately identified.

However, the model with the smaller stride produced a more cohesive representation of the

entire motif. These findings suggest that the overlapping of the max-pooling filter, along

with the subsequent convolution layer’s filter, improves the model’s capability to create

comprehensive kernel representations from the initial layer, thereby enhancing the overall

quality of motif representation. Additionally, they observed that even when the initial layer’s

kernel representation did not match the ground truth, the second layer could still detect

motif patterns. It is important to note that while the models are informative, they are still

relatively basic, so it may be too ambitious to apply the same insights to more complex

models.

Koo and his research team investigated the trade-offs between the complexity of deep

learning models and their interpretability Koo, Qian, et al., 2019. They used two synthetic

datasets with either 30,000 or 10,000 sequences, which either contained known sequence

motifs (Mathelier et al., 2016) or did not, to test the potential of robust training methods

such as regularization, data augmentation with random noise, and adversarial training. To

measure the interpretability of the models, they used the area under the receiver-operator

characteristic curve (AU-ROC) and the area under the precision-recall curve (AU-PR). They

found that while deeper neural networks had better prediction accuracy, this added depth

decreased the clarity of motif representations, which is essential for understanding the biolog-

ical implications of model outputs. They also discovered that a model’s prediction accuracy

is not intrinsically tied to its interpretability. Notably, while both single-layer and multi-layer

CNN models achieved comparable accuracies (0.96), the former boasted significantly higher

AU-ROC and AU-PR metrics. This suggests that CNN models with simpler architecture are

more interpretable. The team hypothesized that this discrepancy in interpretability might

be due to the nature of the neural network’s complexity, as deeper neural networks might

adapt to more intricate and potentially ”noisier” functions, making them less amenable to
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interpretations. They also observed the pronounced effect of regularization techniques on

model interpretability, as the application of such techniques improved the transparency of

single-layer neural networks, even though there was a small loss in the accuracy. Further-

more, they noted the utility of input perturbation methods, such as Gaussian noise injection,

in enhancing interpretability. These perturbation techniques effectively highlight the robust

features the model relies on, thereby aiding in model interpretation. Lastly, the authors

discussed the potential of adversarial training (W. Zhu & X. Xie, 2016) as a method to

increase the transparency of multi-layer CNN models. The conclusion here was that adver-

sarial training can expose and subsequently strengthen the model against subtle features

that could lead to incorrect interpretations, thus making the model’s internal workings more

transparent and reliable.

Koo’s work mostly focus on interpretation model in transcription factor analysis, and the

next section will introduce more about deep learning in biology and medicine.

1.7 Opportunities and obstacles for deep learning in

biology and medicine

The paper by Ching et al., 2018 delves into the potential of deep learning in the realms of

biology and medicine, scrutinizing both the challenges and opportunities inherent in applying

these models in such complex fields. The authors investigate whether deep learning can

bring about a transformative impact on the study of human diseases. Their analysis includes

examples where deep learning has effectively tackled problems previously deemed challenging

or labor-intensive. They concluded that deep learning holds significant promise, having

already made notable strides in these areas. However, they emphasize that interpretability

remains a crucial hurdle. The ability to understand the patterns that these models learn is

as vital as their performance in fitting the data. This point underscores the importance of

incorporating domain-specific knowledge to ensure accurate data representation. Reflecting

on my study of cancer, where we didn’t collaborate with a pathologist but still managed to

enhance prediction accuracy, it becomes evident that integrating expert knowledge can be

a valuable asset in refining these models, even in instances where direct collaboration with

domain experts is not feasible.
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1.7.1 Disease and patient categorization

In Chapter 3, we focus on the challenge of cancer survival and patient categorization. The

critical issue here is the precise classification of diseases and their subtypes. Deep learning

models provide a data-driven approach that could potentially reveal new disease classes or

shared mechanisms. However, it’s important to be cautious about the capability of these

models for diagnosis. The models often rely on post-diagnosis data, which is essential for

training but can introduce biases if not handled correctly. The current literature shows that

deep learning is already contributing to the discovery of novel categories, but there’s a need

to address challenges like data availability and proper labeling (Ching et al., 2018).

Shifting to the contributions of this thesis in medical imaging, deep learning has sig-

nificantly advanced imaging applications in healthcare. These methods have improved the

classification and detection of lesions and nodules in medical images. A major challenge,

however, is the scarcity of consistent and well-labeled datasets, a stark contrast to the ex-

tensive collections like ImageNet (Russakovsky et al., 2015). Medical images often vary in

resolution and pixel sizes, necessitating the development of task-specific models. Researchers

have employed data augmentation (Dhungel et al., 2017) and adversarial training (W. Zhu

& X. Xie, 2016) to enrich the diversity of medical images. For instance, Roth et al., 2015

demonstrated the superiority of 2.5D CNN models (2D CNN model with a branch for spatial

prior) over 3D models in abnormal detection from CT scans due to shorter training times

and the availability of pretrained models. In contrast, Nie et al., 2016 highlighted the effec-

tiveness of multimodal and multichannel 3D models in learning features of brain tumors from

MRI datasets. Furthermore, D. Wang et al., 2016 developed a model for detecting metastatic

breast cancer in WSIs of sentinel lymph node biopsies, and Rakhlin et al., 2018 successfully

applied deep neural networks with data augmentation techniques for breast cancer detection

from small datasets. These studies are particularly relevant to my work in Chapter 3 as they

provide insights into effective methodologies and highlight the importance of deep learning

in cancer diagnosis.

The most difficult aspect of patient categorization is the lack of ground-truth labels

and the limited size of datasets. Deep learning classification models require ground-truth

labels for training, but in the biomedical field, assigning such labels can be costly and time-
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consuming (Zheng et al., 2017). Even for well-resourced national consortia with expert-

validated labelled data, such as the eMERGE consortia and PheKB database (Kirby et

al., 2016), they may only contain a few hundred patients, which is too small to train deep

learning models. To address these challenges, (X. Wang et al., 2017) developed a deep neural

network model based on automatically generated weak labels, even though these labels are

not verified by human experts and are of limited accuracy. They first used NLP models

to extract all diseases mentioned in the associated chest X-ray radiological reports, and

then applied NegBio (Peng et al., 2018) to filter out negative and equivocal findings in those

reports. With these unified weakly supervised labels and the associated X-ray image dataset,

the authors were able to successfully train a model to classify and detect common thoracic

diseases accuracy?.

Other authors have combined automated label generation with human oversight. In

Iglovikov et al., 2018, the author employed an iterative process to obtain high-quality semi-

automatic labels. Initially, they manually labeled 100 of the 12,600 unlabeled radiographs,

and then used the labeled ones to predict the labels for the remaining images. Subsequently,

experts inspected the results and discarded the poor-quality predictions, while the correct

predictions were added back to the training set. After six iterations, they achieved good-

quality segmentation labeling for all radiographs except for a few cases. This semi-automatic

annotation procedure significantly reduced human labor and improved the performance of

deep learning models. what type of images/data?

1.7.2 Transfer learning

Due to the limited number of samples or labels in biomedical datasets, deep learning

models are prone to overfitting when trained on these small datasets. To address this issue,

transfer learning, also known as domain adaptation, can be used to extract features between

different datasets. This approach involves training a model on a baseline task with a large

dataset, and then fine-tuning the trained model for the target problem or relatively small

datasets. As the model was trained with a large number of observations, it can extract better

feature representations and reduce overfitting, thus improving performance compared to a

model trained on the smaller dataset directly using random initialization. In image anal-

ysis, W. Zhang et al., 2016 and Zeng et al., 2015 have shown that transfer learning using
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pre-trained models can be a good generic feature extractor for biological images, however

the transferability of these features decreases as the distance between the base task and the

target task increases (Yosinski et al., 2014). Additionally, there is no theory to guarantee

the feature transferability. Therefore, fine-tuning on the final small dataset is essential to

improve the prediction accuracy. The Basset package (Kelley et al., 2016) can accurately

predict on new datasets by leveraging a model pre-trained on previous datasets, and another

model, DeepEnhancer (Min et al., 2016), successfully trained based on the experimentally

validated FANTOM5 permissive enhancer datasets, and then fine-tuned on ENCODE en-

hancer datasets, outperforming the state-of-the-art results.

1.7.3 Multimodal learning

Multimodal learning is a popular approach that combines information from various types

of inputs, such as histology images, text, and genomic datasets. Ngiam et al., 2011 showed

that generative graphical models, such as restricted Boltzmann machines, deep Boltzmann

machines, and deep belief networks, can successfully learn a joint probability distribution

from inputs of images or videos when jointly learned with other deep learning models fo-

cusing on audio or text. Furthermore, when there is not enough labeled data, these models

can be pre-trained unsupervised and then fine-tuned on a smaller dataset with labels. Jha

et al., 2017 designed a feed-forward neural network trained on RNA-seq data with additional

sets of CLIP-seq, knockdown, and over-expression based input features, and showed that the

integrated model achieved a large improvement for alternative splicing event estimation com-

pared to non-integrated models. Chaudhary et al., 2018 trained a deep autoencoder model

integrating the RNA-seq, miRNA-seq, and methylation data from the TCGA dataset to pre-

dict survival subgroups of hepatocellular carcinoma (HCC) patients, and their multimodal

approach outperformed both traditional principal component analysis and deep learning

models using single-omic data. They also found that the integration of clinical information

in the multimodal did not improve performance, possibly because the correlated genomic

features learned by the model included the clinical information. M. Liang et al., 2014 used

deep belief networks (DBNs) to jointly extract unsupervised representation features from

cancer datasets, including gene expression, DNA methylation, and miRNA expression data.

Their approach allowed for the integration of correlations in different modalities and thus
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performed better than traditional k-means clustering methods. FIDDLE Eser & Churchman,

2016 applied multimodal learning with convolution neural networks (CNNs) to predict tran-

scription start sites, where a collection of individual networks took NET-seq, MNase-seq,

CHIP-seq, RNA-seq, and raw DNA sequences as input. Each network learned represen-

tations from different datasets and then concatenated them in the fully connected layers.

They demonstrated that the combined model greatly improved performance over separately

trained single dataset networks, suggesting that multimodal learning can gain knowledge of

relationships between datasets.

1.7.4 Multi-task learning

An alternate deep learning approach to transfer learning is multi-task learning. This

framework involves one model that is responsible for multiple tasks, with shared features.

In J. Zhou & Troyanskaya, 2015, the authors proposed a multi-task deep learning model,

DeepSEA, which can learn diverse chromatin factors from raw DNA sequence. This model

shared the DNA sequence feature in recognizing the binding of a specific transcription factor

and another physically interacting transcription factor. H.-J. Yoon et al., 2016 showed that

a multi-task model predicting the primary cancer site along with the cancer laterality signifi-

cantly improved the performance of the latter task. This result demonstrated that multi-task

learning can improve the model performance by leveraging the commonality between differ-

ent tasks with a shared representation extraction. W. Zhang et al., 2016 combined transfer

learning and multitask learning for the annotation of biological images in different domains,

which showed that multitask learning, multimodal learning and transfer learning can work

together, leveraging relationships between various inputs and task objectives. In the biomed-

ical field, transfer learning, multimodal learning, and multitask learning have demonstrated

their potential with the adoption of methodology from image, language and audio analysis,

but medical domain challenges still exist. There are no theoretically sound guidelines for pre-

training and fine-tuning for transfer learning, and the performance of such models depends

greatly on the experience of researchers to choose hyper parameters wisely. Researchers can

only access the relation between different medical datasets and different tasks by trial and

empirical evaluation, and negative results may not be reported. Further investigation of

theoretical guarantees of transferability of features and different medical learning tasks is
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still needed.

1.7.5 Model interpretability

While deep learning models often exhibit superior performance compared to traditional

methods in biology and medicine, their interpretability remains a significant concern. Biolo-

gists and doctors, who rely on these models, seek a clearer understanding of the underlying

data patterns — a task that is challenging when dealing with opaque, black-box models.

The imperative for interpretability is not just intellectual curiosity; it’s also about ensuring

that deep learning models are reflecting genuine biological or clinical patterns rather than

identifying spurious relationships in the dataset. To tackle the issues of interpretability, two

approaches have been suggested:

1. Example-specific Importance Scores Method: This involves calculating an im-

portance score for every observation within each input. Two prevalent approaches

underpin this method:

• Perturbation-based approaches: These approaches modify segments of the input

to gauge the resulting impact on the model’s output. For instance, LIME, as

introduced in Ribeiro et al., 2016, generates a local linear model to emulate the

neural network results based on altered versions of the input, thereby determining

the significance scores.

• Backpropagation-based approaches: These methods determine importance scores

by backpropagating from the output neuron to the input layer or by computing

the partial derivative of the output with respect to the input. A prime exam-

ple is the saliency map presented by Simonyan, Vedaldi, et al., 2013. Numerous

adaptations have been developed to address inherent challenges like non-linearity

in deep neural networks. Some notable examples include Grad-CAM (Selvaraju

et al., 2017a), deconvolution networks (Zeiler et al., 2010), and integrated gradi-

ents (Sundararajan et al., 2017). A distinct advantage of backpropagation-based

methods is that they do not necessitate a separate forward propagation for collect-

ing output importance scores; they can be performed concomitantly with model
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training. Intriguingly, Lundberg & S.-I. Lee, 2016 observed that many of these

importance score techniques can be viewed as approximations to the Shapley val-

ues (Shapley, 1953) from game theory, which allocate contributions to players in

cooperative games.

2. Activation Maximization Method (Erhan et al., 2009): This strategy aims to opti-

mize the activation of specific neurons. Post-training, for a designated class or neuron,

the method iteratively seeks an input that maximizes the score for that class. However,

a limitation is its potential lack of information. Given that neural networks typically

learn extensive distributed representations, results from activation maximization might

be insufficiently descriptive, particularly for image-centric models.

The scientific community is striving to close the gap between the impressive abilities of

deep learning models and the urgent requirement for them to be interpretable so that they

can be used responsibly and knowledgeably in essential areas such as biology and medicine.

1.8 Multimodal machine learning in precision health

The review article: Multimodal machine learning in precision health: A scoping review

(Kline et al., 2022) explores the application of machine learning in health, particularly fo-

cusing on its use in clinical decision-support through the fusion of multimodal data. His-

torically, machine learning in health has primarily relied on single-modal data. This review

highlights the shift towards integrating diverse data types, such as imaging and electronic

health records (EHR), to enhance prediction accuracy and emulate clinical decision-making

processes. The article notes an average 6.4% increase (mean improvement in AUC) in pre-

dictive when employing data fusion compared to unimodal approaches, underscoring the

robustness of multimodal machine learning (Kline et al., 2022). However, it also acknowl-

edges challenges, including scalability issues and the complexity of information concatenation

(L. V. Rasmussen, Brandt, et al., 2019, Zhong et al., 2018, L. V. Rasmussen, Hoell, et al.,

2020).

The study emphasizes the importance of data fusion, a process underpinned by informa-

tion theory that merges different data sources to create a comprehensive information state.
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Data fusion is expected to improve predictive power in machine learning, making results

more robust by incorporating a variety of information factors (Castanedo et al., 2013). How-

ever, it also introduces complexities in model specification and reduces result interpretability

(Blasch et al., 2021). Addressing data heterogeneity is crucial, as clinical data from various

sources often differ in naming conventions, units of measure, and local population biases

(Kohane et al., 2021). Effective data fusion requires harmonization techniques to ensure

quality control and interoperability. The paper notes innovative applications of data fusion

in areas like heart failure (Ahmad et al., 2022), where multidisciplinary research is essential

for integrating deep phenotypic and trans-omic information (Luo et al., 2017).

The paper categorizes data fusion into three types: early, intermediate, and late fusion.

Early fusion converts multiple data sources into a single information space, often through

vectorization or numerical conversion. Intermediate fusion allows for more flexible model

architecture, combining features from different data types to create a new, more expressive

representation. Late fusion typically involves training multiple models for each data source,

akin to ensemble learning, to obtain a more accurate decision. The paper’s definition of

early fusion is not the same with our early fusion of co-attention model in Chapter 3. Our

co-attention module should be classified as intermediate fusion based on the defninition of

this review paper.

The paper also highlights that neurology and oncology are the most common health areas

using multimodal methods (Koutsouleris et al., 2021, S.-C. Huang et al., 2020, Xiong et al.,

2022), with a particular emphasis on Alzheimer’s disease research (El-Sappagh et al., 2021,

L. Yang et al., 2021). The review further identifies the challenges in model validation, the

need for diverse data representation (Colubri et al., 2019), and the common limitations in

the current studies, such as small sample sizes and biased models (P. Lin et al., 2020). It

also outlines future research gaps, emphasizing the need for more studies in underrepresented

areas like medication/drug topics and advocating for the use of machine learning to improve

clinical decision-making and outcomes (Kinreich et al., 2021). It also stresses the importance

of addressing data management tenets like Findability, Accessibility, Interoperability, and

Reuse (FAIR) of datasets (Wilkinson et al., 2016).
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Chapter 2

Scratch-AID, a deep learning-based

system for automatic detection of

mouse scratching behavior with high

accuracy

2.1 Abstract

Mice are frequently used as the primary animal model for investigating itch-related phe-

nomena and for the advancement of pharmacological interventions that target itch. To

evaluate the level of itch, several laboratories employ manual quantification of the mouse

scratching behavior. The aforementioned procedure is characterized by a high demand for

manual work and imposes constraints on conducting extensive genetic or drug testing on a

large scale. Here, we present the development of a novel system, Scratch-AID (Automatic

Itch Detection), designed to accurately detect and quantify mouse scratching behavior in

an automated manner. The system utilized a specially built enclosure for video recording,

aiming to maintain consistent and superior quality in the capture of mouse behavior. Addi-

tionally, a deep learning network (convolution recurrent neural network) was employed, which

had been trained using videos of mice engaged in scratching behavior. This behavior was

produced by administering chloroquine through a nape injection. The highest-performing

network attained a recall rate of 97.6% and a precision rate of 96. 9% when evaluated in test

movies that had not been encountered during training. Significantly, Scratch-AID demon-
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strated consistent efficacy in detecting scratching activity in many prominent mice’s itch

models, such as the acute cheek model, the histaminergic model and a chronic itch model.

Furthermore, our method has identified notable disparities in the act of scratching between

the control group and the group of mice who received treatment with an anti-itch medication.

In conclusion, we have developed an innovative deep learning system that has the potential

to supplant manual quantification methods in the assessment of mouse scratching behavior

in various scratching models and in the context of drug screening.

2.2 Introduction

Itching is a vexing symptom that is commonly observed in the context of dermatolog-

ical conditions, immunological dysregulation, systemic diseases, and psychiatric disorders

(Stander et al., 2007; Hong et al., 2011; Cevikbas & Lerner, 2020; Kremer et al., 2020).

The prevalence of chronic itch in the community is estimated to be around 13%-17% (Mat-

terne et al., 2009; Weisshaar & Dalgard, 2009). This condition significantly deteriorates the

overall quality of life experienced by individuals affected by it. Regrettably, the available

therapeutic modalities for various chronic itch disorders remain restricted (H. Yu et al., 2021;

Yosipovitch, Rosen, et al., 2018).

Mice are widely used as model organisms in the field of itch research, serving as valuable

tools for investigating itch processes and facilitating the development of novel preclinical

antiitch medications (Q. Liu, Z. Tang, et al., 2009; Solinski et al., 2019; Sun & Z. F. Chen,

2007; L. Han et al., 2013). The feeling of irritation is characterized by an unpleasant feeling

that elicits the need to scratch (Ikoma et al., 2006). To measure the degree of itch, re-

searchers have used scratching activity as an indicator in mice (Q. Liu, Z. Tang, et al., 2009;

Morita et al., 2015). Up until this point, the quantification procedure has mostly included

observation of movies and manual tallying of scratching episodes or the overall duration of

scratching. This approach is laborious and time-consuming, leading to inevitable human mis-

takes and biases, and imposing constraints on the feasibility of conducting extensive genetic

or pharmacological testing.

Various research groups have made attempts to automate this process, recognizing its

biological significance and evident necessity. These efforts have involved the exploration of
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different strategies, such as the utilization of an acoustic recording method (Elliott et al.,

2017), the implementation of a method employing magnetic fields and metal rings to detect

paw movement (Mu et al., 2017), as well as the adoption of several approaches based on

video analysis (Bohnslav et al., 2021; Kobayashi et al., 2021; Sakamoto et al., 2022; Park

et al., 2019). However, the utilization of these techniques has not been widely accepted by

other scientific laboratories. This could be attributed to the unknown efficacy of trained

models in varying laboratory settings, the need for specific equipment, and/or insufficient

validation of these approaches in other mice itch models.

In recent years, the science of artificial intelligence has witnessed significant advance-

ments, leading to the widespread use of deep learning techniques in numerous domains of

scientific inquiry. Convolution neural networks (CNN) are extensively used in the field of

computer vision for tasks related to visual recognition (Gu et al., 2018). On the other hand,

recurrent neural networks (RNNs) have been specifically designed for the analysis of tem-

poral dynamic data (Graves, 2013). Furthermore, there has been a significant advancement

in computing power, particularly in the capacity of graphics processing units (GPUs). This,

coupled with the emergence of new open-source deep learning libraries such as PyTorch

(Paszke et al., 2019), Keras (Gulli & Pal, 2017) and Tensorflow (Abadi et al., n.d.), has

greatly expedited the widespread adoption and utilization of deep learning techniques.

The use of deep learning has proven to be advantageous in the field of animal behavior

analysis. An illustration of this may be seen in the work of DeepLabCut, which is capable of

accurately monitoring and identifying various anatomical landmarks on the bodies of animals

in unrestricted motion. This technology is particularly useful in the field of behavior analysis

(Mathis et al., 2018). The DeepEthogram has been developed to effectively identify and

classify various behavioral patterns shown by mice and flies, as documented in the study by

the authors (Bohnslav et al., 2021). These examples provide evidence that deep learning is

an effective approach for automating the study of animal behavior, thereby demonstrating

its proof-of-principle. However, to substitute human observers in studying animal behavior,

such as mouse scratching, a unique approach is necessary that can reach high levels of

sensitivity, specificity, and generalization.

In order to address this particular difficulty, a novel system called Scratch-AID (Auto-
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matic Itch Detection) was created. This system utilizes deep learning techniques and has

demonstrated a remarkable ability to accurately quantify mouse scratching activity in an

automated manner. Initially, a videography apparatus was developed with the purpose of

capturing mouse activity in a consistent setting, ensuring the acquisition of superior-quality

recordings. A total of 40 movies were captured, featuring a cohort of 10 wild-type adult

mice (comprising 5 males and 5 females). Mice were subjected to nape injection of a nonhis-

tamine pruritogen known as chloroquine (CQ). Subsequently, all frames within the recorded

videos were meticulously annotated by hand, serving as a reference for further analysis.

Subsequently, a convolution recurrent neural network (CRNN) was developed by integrat-

ing convolution neural network (CNN) and recurrent neural network (RNN) architectures.

The CRNN was trained using a data set consisting of 32 movies that capture scratching

behavior, collected from a cohort of 8 mice selected at random. A set of prediction models

was generated employing various training parameters and, afterwards, these models were

evaluated using test videos. Test vi consisted of eight previously unknown recordings taken

from the remaining two mice. The highest performing model achieved a recall rate of 97.6%

and an accuracy rate of 96.9% when evaluated on test videos, which aligns closely with the

quantification findings obtained from manual analysis. Interestingly, Scratch-AID demon-

strated the ability to accurately measure scratching behavior in several models of acute and

chronic itch, in addition to its impressive performance. Finally, the Scratch-AID technique

was implemented in a screening paradigm for anti-itch drugs, and it was observed that the

technique consistently identified the presence of drug-induced effects. In conclusion, a novel

approach has been developed for the precise and automated measurement of mouse scratch-

ing activity. On the basis of the observed results, it can be concluded that Scratch-AID has

the potential to serve as a viable alternative to manual quantification in mice itch models,

as well as in pharmacological or genetic tests.

2.3 Data and methods

The method used in the development of a novel system for the detection and measurement

of mouse scratching behavior encompasses four primary phases, as illustrated in figure 2.1

part A. 1) The behavior of the mice scratching in response to an acute nape itch model
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Figure 2.1: The overview of construction of a customized videotaping box for the record-
ing of mouse scratching behavior.. (A) A flow chart illustrating the process of developing a
system based on deep learning for the automatic detection and quantification of rodent clawing
behavior. (B) An image of the videotaping enclosure designed to capture high-quality video of the
clawing behavior of the mouse. The scale bar measures 5 cm. (C) Caricature depicting the acute
itching model induced by injection of chloroquine (CQ) into the nape, followed by video recording
in the custom video recording box. (D) Images illustrating the various phases (P1–P4) of a striking
train (upper). The red arcs represent the clawing rear paw. A cartoon depicting the dynamic
movement of a scratching train’s rear hand (bottom). In a scratching train, the cycle of clawing
bout (P2) and lapping (P3) can occur multiple times. Scale bar, 1 cm. Each video contains a total
number of scraping trains. (F) The distribution of the duration of the scratching trains (n = 1135
scratching trains). The inset is a magnified version of the red rectangle.
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was recorded on a videotape. 2) The process of manually annotating scratching frames

in all recorded videos was conducted to create training and test data sets. The objective

is to develop a deep learning neural network architecture. This network will be trained

using a set of randomly selected training videos while adjusting various training parameters.

Subsequently, the performance of the built neural networks will be assessed using test videos.

4) Assess the applicability of the trained neural network in several itch models and a drug

screening paradigm.

2.3.1 Videotaping apparatus setting

The utilization of high-quality videos captured within a replicable setting is of utmost

importance in ensuring the consistent performance of trained prediction models and facil-

itating their adoption by other research laboratories. Therefore, a mouse videotaping box

was built for the aforementioned objective. The structure consisted of two boxes with white

acrylic walls that were connected by a clear acrylic floor (Figure 2.1 part B). The upper

compartment, known as the ”mouse” box, has dimensions of 14.68 cm in length, 14.68 cm in

width and 5 cm in height. This box was equipped with a cover that facilitated access for the

mice. The lower compartment, with dimensions of 14.68 cm in length, 14.68 cm in width,

and 23.6 cm in height, was equipped with a door to facilitate access to the Logitech C920e

Business Webcam.

In order to reduce the impact of external visual cues, the walls and lid of the box were de-

signed to be non-transparent. The walls were permeated with ambient light, which provided

adequate lighting for the purpose of recording behavior. The top box allowed unrestricted

movement for a mouse, while a camera situated at the bottom captured the mouse’s ac-

tivities at a rate of 30 frames per second. Unlike the top or side perspectives, the bottom

view offers a distinct advantage in capturing the essential anatomical components involved in

scratching activity, including the hind paw used for scratching, the mouth, and other relevant

body parts. Furthermore, this vantage point allows for a more comprehensive examination

of the intricate motions associated with scratching behavior. The magnification, quality, and

brightness of the video may be modified by the camera recording software (Logitech C920e

Business Webcam driver and software) to create consistent video recording. The recording

parameters were adjusted using Logitech Capture 2.06.12 software. The brightness was set
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to 170, the contrast to 0, the resolution to 720X720, and the frame rate to 30 fps. Consis-

tent lighting may be achieved by adjusting the brightness and contrast in accordance with

ambient light conditions. In summary, this specialized video recording apparatus enables

the capture of high-fidelity videos depicting mouse scratching and other behavioral patterns

inside a controlled and replicable setting.

The occurrence of spontaneous scratching in mice is infrequent in typical circumstances.

The perception of itch and the act of scratching are often elicited by several itch models

employed in the study. The classification of common mouse itch models encompasses many

categories, including cheek or nape, histaminergic or non-histaminergic, and acute or chronic.

These classifications are based on the specific body site where the sensation of itch is elicited,

the kind of pruritogen used, and the length of the sensation of itch that results (Ikoma et al.,

2006; Q. Liu & Dong, 2015; Shimada & LaMotte, 2008; Thurmond et al., 2008). The initial

approach was the use of a nape itch model characterized by acute symptoms, generated

by the administration of a non-histaminergic pruritogen known as chloroquine (CQ). This

particular pruritogen was chosen due to its ability to cause prompt and vigorous scratching

activity in mice (Q. Liu, Z. Tang, et al., 2009). After administration of chloroquine (CQ)

by intradermal injection at a dosage of 200 µg in 15 µl of saline solution, a 20-minute video

recording was performed utilizing a specifically designed video recording apparatus (Figure

2.1 part C).

Mice scratched the affected skin area with their ipsilateral hind paw after receiving the

CQ injection. Multiple episodes of scratching were observed in mice that were provoked,

but these were interspersed with periods of silence. Each scratching instance, referred to as

a scratching bout, typically consisted of four distinct phases: initiation (elevating the hind

paw involved in scratching toward the affected area), scratching bout (repetitive motion

of the hind paw against the affected area), paw licking (placing the scratching hind paw

into the mouth and licking it) and termination (returning the scratching hind paw to the

ground) (Figure 2.1 part D). The occurrence of scratching bouts and paw licking in mice can

vary, with the cycle potentially happening once or being repeated numerous times. This is

dependent on factors such as the strength of the itch and the internal state of the mouse.

The duration of a specific scratching train is defined as the period from its initiation until its
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completion. The cumulative duration of the scratching trains, known as the total scratching

time, serves as a valuable metric for quantifying the scratching behavior and evaluating the

level of scratching.

2.3.2 Video annotation

A total of 40 movies capturing scratching behavior were collected from a sample of

10 wild-type adult C57 mice, consisting of 5 males and 5 females. Mice were between

2-3 months old. The details of this data can be seen in (Table 2.3). Two approaches

were employed to annotate mouse scratching activity in movies for the purposes of neural

network training, testing, and performance comparison with manual quantification. The

initial approach employed for annotation was to see the movies at their regular speed of

1X (30 frames per second) and to identify the specific time periods, converted into frame

numbers, that marked the beginning and end of each instance of scratching behavior in the

trains. This approach aligns with the established methodology in the field to manually assess

mouse scratching activity. The findings of manual annotation were obtained by participating

in ten human observers, therefore providing an average measure of precision for the manual

quantification method. The second approach, known as reference annotation or ground-

truth annotation, involved a meticulous analysis of each video frame to precisely identify the

beginning and end of each scratching episode. The training and test data sets consisted of

40 videos, with reference annotations utilized for this purpose. Quantification of the total

number of scratching train occurrences in each film and analysis of the distribution of the

lengths of the scratching train were performed (Figure 2.1 part E and part F, Table 2.4).

The initiation of a scratching bout was characterized by the mouse initiation of lifting

its hind paw and assuming a preparatory stance at the onset of a scratching bout. There

were two scenarios seen for the conclusion of a train scratching. If the mouse did not lick its

hindpaw after its most recent scratching episode, the conclusion of the sequence would occur

when the mouse reestablished contact between its hindpaw and the ground. Conversely, if

the mouse engaged in licking its hind paw after the aforementioned scratching session, the

conclusion of the sequence would transpire when the mouse proceeded to place its hind paw

into its mouth. During the manual annotation process, all the videos were seen by human

annotators at the standard playback speed of 1X, which corresponds to 30 frames per second.
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The beginning and final time points of each scratching train were documented manually and

then transformed into frame numbers (30 frames per second) for further analysis. To generate

the reference annotation, the videos were initially transformed into separate frames utilizing

the OpenCV Python program (Open Source Computer Vision Library) (Bradski, 2000).

The initiation and termination of each scratching train was set frame-by-frame. The frames

within a train that were characterized by scratching actions were referred to as ”scratching”

frames, whereas frames that did not include scratching were referred to as ”non-scratching”

frames. In the model assessment, extended lickings (>60 frames) seen during scratching

trains were marked as non-scratching frames for CQ cheek acute itch video 2 and SADBE

chronic itch video 5. The annotation process for the group comparison was conducted in a

double-blind fashion.

2.3.3 Deep learning neural network methodology

The scratching behavior of the mouse exhibited distinctive dynamic (temporal) and

static (spatial) characteristics, which were emphasized by tracking the main body parts with

DeepLabCut (Mathis et al., 2018) (Figure 2.11).The rhythmic movement of the scratching

hindlimb was one of the most obvious dynamic characteristics (Figure 2.11 A, B). Some

unique static characteristics included relative positional relationships between the scratch-

ing rear limb and other body parts (Figure 2.11 C, D, E, F). To thoroughly capture these

dynamic and static features, we designed a convolution recurrent neural network (CRNN)

to take advantage of the various strengths of CNN and RNN (Figure 2.2 A and Figure 2.3

A). The CRNN contained a CNN (ResNet-18 (K. He et al., 2016b)) (Figure 2.3 B) that

extracts static features, such as the relative position of different body parts, an RNN (two-

layer bidirectional gated recurrent unit (GRU) (K. He et al., 2016b)) (Figure 2.3 C) that

extracts dynamic features, such as the rhythmic movement of the scratching ResNet-18’s

CNN, was modified by replacing the final FC layer with a 256 embedding FC layer, as we

only use CNN as a feature extractor. The RNN was composed of two bidirectional GRU

layers with a hidden vector size of 512. The FC component was composed of two FC layers

with embedding size 256 and ReLu activation, and embedding size 2 for the final prediction.

In the final output vector, the prediction results were transformed into the utmost possible

value.
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The PyTorch framework was utilized to train the model (Paszke et al., 2019). Hyperpa-

rameters for model training included setting the batch size as 16 or 32, depending on the size

of the input. The maximum number of epochs was defined as 20. The ADAM optimizer was

used in this study, with an initial learning rate of 10-4. The learning rate was then reduced

by a factor of 0.3 every 5 epochs. The loss function employed was binary cross entropy. The

dropout rate for the fully connected (FC) layer was configured to be 0.2. The model training

was carried out on a bespoke desktop computer equipped with an Intel i9-10900k central

processing unit (CPU) purchased from the online retailer Newegg. The system was further

enhanced with 64 gigabytes (GB) of random access memory (RAM), specifically the COR-

SAIR Vengeance LPX 64GB variant also obtained from Newegg. Additionally, the desktop

was equipped with an NVIDIA GeForce RTX 3090 graphics processing unit (GPU) boasting

a 24 GB memory capacity, which was acquired from the popular online marketplace Amazon.

In the context of predicting models for new videos, the process of preparing the input

was akin to that of the training dataset, with the exception that the neighboring inputs

were limited to a separation of just 1 frame. The classification of each individual frame was

determined as either ”scratching” or ”non-scratching” using the following rule: the prediction

for the middle frame of each input was assigned the same label as the input prediction. The

frames located at the initial or final positions of each video, which are unable to serve as

the central frame of an input due to the length of the input N, were classified as either

”scratching” or ”nonscratching” by utilizing the prediction from the first or last input.

In order to generate the saliency map, the gradient value of each pixel was computed, and

only the positive gradients were retained. Subsequently, the values were rescaled within the

range of 0 to 1, using the methodology described in a previously published article (Selvaraju

et al., 2017b). Next, we proceeded to build the heat map by utilizing the gradient values.

Specifically, any value below 0.1 was assigned transparency, values ranging from 0.1 to 0.6

were represented by a gradient from light blue to dark blue, and values over 0.6 were depicted

as dark blue. Finally, we superimposed the heatmap on the original frame.
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Figure 2.2: Design and training of neural networks using deep learning. (A) cartoon de-
picting the architecture of a deep learning neural network comprised of convolution neural networks
(CNN), recurrent neural networks (RNN), and a classifier. (B) A cartoon depicting the compilation
of training dataset inputs. N consecutive frames were chosen as one training input. Four to ten
frames separated two adjacent inputs in a video. (C) The sample training and test datasets’ infor-
mation. During the training procedure with various input lengths (N = 3, 5, 7, 13, 23, 45 frames),
the training loss decreased (D) while accuracy increased (E). The inset is a magnified portion of
the figure.
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Figure 2.3: The architecture of deep learning neural network.(A) Image illustrating the
structure of a convolution recurrent neural network (CRNN). First, convolution neural networks
(CNN, ResNet-18) were provided the input, followed by a two-layer bidirectional gated recurrent
unit (GRU). The results of the binary prediction were derived from the final full connection layer
(FC). (B) Information about the modified ResNet-18 network. The final FC layer was altered
to output frame-wise embedding as opposed to classificationmangel. convolution layer, or Conv;
Batch norm, stratum of batch normalization; ReLU, rectified linear unit; +, vector element-wise
addition. (C) Specifics of one GRU of the bidirectional, two-layer GRU. The unit connected to
the embedding of the frame t(xt) used the output of the previous unit as input and produced a
new output (ht). Inside the unit there were three yellow squares representing the reset gate, the
update gate, and the candidate activation vector. x represents the Hadamard product for vectors;
+ represents the vector plus.
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2.4 Results

2.4.1 Model training procedure

We divided the 40 videos into two groups. Specifically, we assigned 80% of the recordings

(32 videos from 8 mice) to the training dataset, while we assigned the remaining 20% (8

videos from 2 mice) to the test data set (Figure 2.2 C). We converted each movie into

separate frames and then classified each frame as either ”scratching” (occurring inside a

scratching train) or ”non-scratching” (occurring outside of a scratching train) based on our

reference annotation. To prepare the training dataset, we altered a parameter to choose

N consecutive frames. We did this to optimize the performance of the model and capture

the dynamic aspects of scratching, as shown in Figure 2.2 B. To avoid extensive duplication

within the training dataset, we deliberately separated 4 to 10 frames between two consecutive

inputs (Figure 2.2 B). We classified the input as ”scratching” (class 1) if more than 50%

frames (N/2) in the input showed scratching behavior. Otherwise, we classified it as ”non-

scratching” (class 0) (Figure 2.2 B).

For cross-validation, we subjected the training and test videos to rotation. We categorized

the test videos into five groups, namely V1-V8, V9-V16, V17-V24, V25-V32, and V33-V40.

We assign the remaining films for training. Our approach to generating input for model

training was as follows: We first convert the videos into discrete frames. Then we selected a

set of N consecutive frames (where N could be 3, 5, 7, 13, 23, or 45) as a single input. Our

selection method ensured a consistent spacing of 4-10 frames between each adjacent input.

We then classified each input as ”scratching” (class 1) if the number of frames showing

scratching behavior exceeded half of the total frames. On the other hand, we classified

inputs as ”non-scratching” (class 0) if the number of scratching frames did not exceed half

of the total frames.

We converted the frames inside each input into grayscale images and resized them to

dimensions of 300x300. After that, we applied a square-shaped crop ranging from 288X288

to 300X300. We then executed a stochastic operation that involved horizontal and vertical

flipping, setting the probability of occurrence at 0.5. After this, we modified the frames to

have a resolution of 256X256 before integrating them into the CRNN network.

The input length training parameter (N frames) is vital because the dynamic properties
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of the scratching behavior span multiple frames. In the CQ-induced acute nape itch model,

we observed that the average duration of a single cycle of scratching and paw licking was

around 30 frames, as seen in Figure 2.12 A, B. We conducted experiments to assess the

efficacy of training the model using input sequences of various lengths, ranging from 3 to

45 frames. Throughout our training process, we noticed a significant decrease in the loss.

Furthermore, the prediction accuracy, measuring the correct identification of both scratching

and nonscratching frames out of all frames, increased (Figure 2.2 D, E). After completing 10

epochs, which means that the training process covered the entire training data set once, the

accuracy of the model reached a plateau, as seen in Figure 2.2 E. The prediction precisions for

all input lengths were above 0.98, with a slight improvement observed as the input length

increased (Figure 2.2 E). The results of our study show that the CRNN network, as we

constructed it, effectively captures the unique characteristics of scratching and accurately

identifies scratching activity within the training data set.

2.4.2 The assessment of model performance on test datasets

The performance of the prediction models that were trained was evaluated using a set of

8 test videos that had not been previously seen. Similarly to the aforementioned description,

each test video was transformed into inputs including a certain number of frames denoted

”N”. It is important to note that the same value of ”N” was utilized for both the training and

test phases. However, it should be highlighted that the two consecutive inputs were separated

by a mere single frame. Furthermore, the neural network that underwent training successfully

made predictions for each input, classifying them as either ”scratching” or ”nonscratching”.

To transform the prediction from a composite input consisting of N frames into individual

frame predictions, we used the following approach: the forecast for the middle frame within

each input was assigned identical values as the prediction for the entire input. For instance,

in the event that an input is classified as ”scratching,” the frame in the middle of this

input would correspond to a ”scratching” frame. The aforementioned analysis successfully

classified each frame of the tested videos as either ”scratching” or ”nonscratching,” with the

exception of a small number of frames located at the start or conclusion of a movie. Please

refer to the methodology section for further details on how missing data was handled in this

context. Furthermore, the recall, precision and F1 score evaluation metrics were calculated.

68



Recall is defined as the ratio of properly predicted scratching frames to the number of

reference scratching frames. Precision is the ratio of correctly predicted scratching frames to

the total number of predicted scratching frames. F1 score is a measure that combines recall

and precision, calculated as 2 times the product of recall and precision divided by their sum.

Compared to the general accuracy metric, the recall, precision, and F1 score provide a more

comprehensive and detailed assessment of the performance of a model, particularly in cases

where scratching is infrequent within a video (Powers, 2020).

In order to exclude the potential influence of a specific pairing of training and test data

sets on the favorable performance of our models, we implemented a cross-validation approach

by rotating the training and test movies. F1 scores for all various combinations of training

and test videos consistently exceeded 0.9, as seen in Figure 2.13 A, B. This observation

provides evidence for the consistent and superior performance of our prediction models.

Furthermore, it can be observed that the prediction model exhibited improved performance

when the input length was extended, as depicted in Figure 2.13 C. The model that exhibited

the highest performance, namely the one trained using videos 1-32 with an input length of

45 (N=45), was chosen for further analysis and experimentation.

The top model exhibited an average recall of 97.6% and precision of 96. 9% in the eight

test movies (Figure 2.4 A). Furthermore, the recall and precision for individual videos above

95% in the majority of cases (Figure 2.4 B). The performance of the automated annotation

system was comparable to, or maybe even superior to, that of manual annotation. Manual

annotation achieved an average recall of 95.1% and an average precision of 94. 2% (Figure

2.4 C, D). When evaluating the scratch duration with respect to the reference annotation,

the prediction of the model exhibited an average disparity of 1. 9%, while the manual

annotation showed a discrepancy of 2.1% (Figure 2.4 E). The correlation coefficient between

the model’s prediction and the reference annotation was found to be 0.98, which is consistent

with the findings obtained from the manual annotation (Figure 2.4 F). Upon analyzing the

probability traces of the model’s predictions and the reference annotation, it was observed

that the model exhibited a high level of accuracy in identifying the majority of scratching

trains in the test videos. Furthermore, the model predictions regarding the initiation and

termination of each scratching train were found to be in good agreement with the reference
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Figure 2.4: The top model’s performance on test videos. The top model’s average recall,
precision, and F1 score (A) or in individual videos (B). The average recall, precision, and F1 score
of manual annotation (C) or for specific videos (D). Comparison between model prediction, manual
quantification, and reference annotation. Red line indicates that the reference annotation has been
normalized to 100 percent. Correlations between model prediction or human quantification and
reference annotation. Pearson’s correlation coefficient, R2. (G) An illustration of a scratching
probability trace predicted by the model and aligned with the reference annotation (green bar).
(H) The two zoomed-in portions of figure (G) demonstrating the excellent alignment between the
model prediction and the reference annotation.
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annotation. This is illustrated in Figure 2.4 G and H. Collectively, these findings provide

evidence of the robustness and precision of our methodology to identify and measure mouse

scratching behavior in recently recorded videos.

2.4.3 Neural network recognized mouse scratching by focusing on

the hind paw

In what manner did the trained neural network model discern mouse scratching behavior

and differentiate it from other behaviors? Deep learning neural networks are often per-

ceived as black boxes due to their complex internal workings. However, saliency maps have

been shown to provide valuable information (Selvaraju et al., 2017b). These maps visually

represent the areas of each frame (pixels) that were mostly utilized throughout the model

prediction process. The primary focal points of interest were observed in relation to the

scabby hindpaw within the scratching frames (Figure 2.5 , indicating that the prediction

model prioritized the characteristics associated with the scabby hindpaw. In certain scratch-

ing frames, additional body components were also emphasized, specifically the two front

paws (Figure 2.5 B). This observation suggests that the model also incorporated the spatial

connection of these body parts to identify scratching activity. In contrast, with regard to

other mouse activities that do not involve scratching, such as wiping, grooming, rearing and

locomotion, the significant aspects did not show a distinct connection with certain regions of

the body of the mouse (Figure 2.5 C-F and Figure 2.17 B-E). As a whole, these saliency maps

demonstrate that the neural network, after being trained, has the ability to prioritize both

the dynamic and static characteristics of scratching in order to accurately predict mouse

scratching activity.

2.4.4 Analysis of Prediction Errors for the CRNN model

To gain a deeper understanding of the performance of the best trained neural network

model, we comprehensively examined its prediction errors in 8 test videos (Figure 2.6) and

contrasted them with those from manual quantification (Figure 2.14) and other trained mod-

els (Figure 2.15). Type 1, false positive (nonscratching region was predicted as a scratching

train); Type 2, false negative (a real scratching train was not recognized); Type 3, blurred

boundary (the prediction of the start or end of a scratching train was shifted); Type 4, missed
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Figure 2.5: For scratching behavior identification, the prediction model focused on the
scratching hind paw. (A, B) Saliency map displaying the gradient value of each pixel of clawing
frames during the best model’s prediction of mouse scratching behavior. The model highlighted
the scratching rear paw (A, B) as well as other body regions, such as the front claws (B).Scale bar
measures 2 cm. Saliency map displaying the gradient value of each pixel during mouse clawing
behavior prediction during cleaning (C), grooming (D), rearing (E), and locomotion (F) frames.
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interval (two or more adjacent scratching trains were predicted as one scratching train); and

Type 5, split scratching train (one scratching train was predicted as two scratching trains).

We found that the predominant prediction error of the trained neural network model was a

type 3 error, accounting for approximately 3% of the total scraping frames (Figure 2.6 B),

followed by Type 2 and Type 5 errors, each accounting for approximately 1%. For manual

quantification, Type 3 and Type 4 represented 10% and 8%, respectively, of the total number

of scraping frames (Figure 2.14 A).

For the Type 1 error of the prediction of the model (Figure 2.6 C1-C3), the durations

of all false positive scratching trains were less than 10 frames (0.3 s) (Figure 2.6 C2) and

momentarily close to a real scratching train (within 30 frames, 1 s) (Figure 2.6 C3). They

were not confused with other behaviors such as wiping, grooming, rearing, locomotion, or

resting (Figure 2.15). Type 1 errors were also rare during manual annotation (Figure 2.14

B).

The models might overlook brief scratching trains, hence causing the Type 2 error. In

fact, every delayed scraping train was less than 40 frames (1.3 s) (Figure 2.6 D1, D2). 18.5%

of all scraping trains lasting less than 30 frames (1 second) were not predicted by the model.

This percentage dropped to 2.7% for scraping trains lasting between 30 and 60 frames (1-2

seconds). Scratching trains that were longer than 60 frames (> 2 s) were not missed (Figure

2.6 D3). The correlation between the Type 2 error and the input length (N) of the prediction

models was positive. It became zero or very close to zero when models were trained with

input lengths of 3, 13, and 23 frames (Figure 2.16 A-C). For manual annotation, the Type

2 error was not common (Figure 2.14 C1, C2).

The type 3 error (Figure 2.6 E1-E3) predominated the other four types of errors (Figure

2.6 E1-E3). The average start and end frame shift for the model prediction was 2.2 and 7.0

frames (Figure 2.6 E3), while they were 11.5 and 12.8 frames for the manual annotation (Fig-

ure 2.14 D1, D2). The start and end frame shifts of manual quantification were comparable

(350 ms), likely reflecting the processing latency of the human visual system in real time.

Temporal shifts were smaller for model prediction, which was a post-event, frame-by-frame

process, than for human visual processing. In addition, the model recognized the beginning

of a striking train more accurately than its conclusion (Figure 2.6 E3). This may repre-
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sent the characteristic of striking trains. It was relatively easy to determine when a mouse

started a scratching train by lifting its hind paw, but it was more difficult to determine when

a mouse completed a scratching train by placing its hind paw back on the floor. There was

no correlation between the start and end shift and the duration of a scraping train (Figure

2.16 D). Consequently, the relative error (percentage of error frames) would decrease as the

duration of a scratching train grew. In fact, the precision of the prediction (as indicated

by the F1 score) was positively correlated (R2 = 0.5723) with the average duration of the

scraping train in a video (Figure 2.16 E).

The type 4 error occurred when two adjacent scratching trains were too close together

and were incorrectly predicted as a single scratching train (Figure 2.6 F1-F3). All missed

intervals were less than 30 frames (1 s) (Figure 2.6 F2). On the contrary, 51. 4% of the

intervals between adjacent scraping trains shorter than 30 frames were not recognized. All

intervals that exceeded thirty frames were identified (Figure 2.6 F3). Type 4 errors were

more prevalent in manual annotations than in model predictions (Figure 2.13 E1, E2).

An error of type 5 occurred when one scratching train was predicted as two or more

scratching trains with incorrectly predicted intervals separating them. The average length of

these incorrectly predicted intervals was approximately 10 frames based on model prediction

and approximately 40 frames based on manual annotation (Figure 2.6 G1, G2, and Figure

2.14 F). More than 80% of these intervals were within or partially overlapped with a paw

lick phase (Figure 2.6 G3), especially when the paw lick phase lasted more than 30 frames

(Figure 2.16 F). Consequently, it appears probable that the model predicted some extended

lapping frames within a scratching train as ”nonscratching.” The errors of types 4 and 5

reflect the inherent complexity of the clawing behavior. Human definitions and consensus

in the field, such as using 2 seconds as the threshold between two adjacent scratching trains

(Darmani & Pandya, 2000), would aid in the reduction of these types of errors.

Therefore, we have developed a novel system that combines a customized video recording

box and a well-trained CRNN neural network (N45) to accurately and autonomously identify

and quantify mouse clawing behavior. We call it Scratch-AID system.
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Figure 2.6: Analysis of the top prediction model’s error rates. (A) Cartoon depicting five
prediction mistakes. Red curves showed the predicted scratching probability from the model, while
green bars showed the reference scratching trains. (B) The incidence rate of each type of mistake,
obtained by dividing the total frames in each error by the total scratching frames of 8 test videos.
SEM error bar. A real example of false positive prediction (C1), the duration of all false positive
scratching trains (C2), and the frequency distribution of distances between them and the next real
scratching train (C3). A actual false negative prediction (D1), the duration of all false negative
scratching trains (D2), and the Type 2 error rate for scratching trains of different lengths (D3).
Real example of blurred boundary prediction (E1), distribution (E2), and start/end shift average
lengths (E3). SEM error bar. Actual missed interval (F1), duration of all missed intervals (F2),
and Type 4 error rate for intervals of varying durations (F3). A actual split scratching train (G1),
split frame length (G2), and Type 5 error distribution from paw licking (G3).
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2.4.5 Performance of the Scratch-AID system on other major

acute itch models

In addition to the nape, the cheek is another prevalent site for inducing itching in mice

(Shimada & LaMotte, 2008). To test whether the Scratch-AID system trained by the nape

CQ model could also recognize and quantify the scratching behavior of the cheek model, the

collaborator injected 200 g of CQ in 15 l of saline into the cheeks of 5 wild-type mice (3

males and 2 females) and recorded 7 videos (Figure 2.7 A). Then we compared the Scratch-

AIDuantification of scratching behavior with manual annotation. ScratchAID’s prediction

had 93.4% recall, 94.8% precision, and an F1 score of 0.941 (Figure 2.7 B), while manual

quantification recall, precision, and F1 score were 96.0%, 88.6%, and 0.919 (Figure 2.7 C).

Figures 2.7 D, E illustrate the correlation between the Scratch-AID prediction and the refer-

ence annotation, which was 0.9926, and that of the manual quantification, which was 0.9876.

The total scratching time in individual recordings predicted by a model and manually an-

notated was comparable to the reference annotation (Figure 2.7 F). These findings indicate

that the Scratch-AID system can reliably identify and quantify clawing behavior induced by

an acute irritation sensation in the cheek.

Different pruritogens administered to the same body site elicit clawing behaviors with

different dynamic characteristics (Wimalasena et al., 2021). Therefore, we examined whether

the Scratch-AID system could recognize clawing behavior induced by a distinct pruritogen,

histamine, when trained with CQ injections. 100 g of histamine (in 15 µl of saline) was

injected intradermally into the nape and four videos were captured (Figure 2.7 G). The recall,

precision, and F1 score of the Scratch-AID prediction were 96.6%, 90.91%, and 0.936 (Figure

2.7 H), while they were 96.3%, 80.5% and 0.877 (Figure 2.7 I) for manual annotation. Figure

2.7 J, K illustrates the correlation between the Scratch-AID prediction and the reference

annotation, which is 0.9707, and that of the manual quantification, which is 0.9895. The total

scratching time in individual recordings of both model prediction and manual annotation was

similar to that of reference annotation (Figure 2.7 L). Although trained only with the CQ

nape acute itch model, our Scratch-AID system can recognize and quantify the scratching

behavior of acute itch models induced at different skin locations or triggered by different

pruritogens, and its prediction accuracy is comparable to that of manual annotation.
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Figure 2.7: The Scratch-AID (Automatic Itch Detection) performance on other acute
itch models. (A) A cartoon showing an acute itch model induced by chloroquine (CQ) injection in
the mouse cheek. Average recall, precision, and F1 score of Scratch-AID (B) or manual annotation
(C). Error bar, standard error of the mean (SEM). The correlation between model prediction (D)
or manual quantification (E) and reference annotation. R2, Pearson correlation coefficient. (F)
The comparison among model prediction, manual quantification, and reference annotation. The
reference annotation is normalized to 100% shown as the red line. (G) Cartoon showing an acute
itch model induced by histamine injection in the mouse nape. Average recall, precision, and F1
score of Scratch-AID (H) or manual annotation (I). Error bar, SEM. The correlation between model
prediction (J) or manual quantification (K) and reference annotation. R2, Pearson correlation
coefficient. (L) The comparison among model prediction, manual quantification, and reference
annotation. The ref between annotation is normalized to 100% shown as the red line.
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2.4.6 Performance of the Scratch-AID system on a chronic itch

model

Figure 2.8: The Scratch-AID performance on a chronic itch model. The cartoon in (A)
illustrates a squaric acid dibutylester (SADBE) induced chronic itch model. The performance of
Scratch-AID (B) and manual annotation (C) is evaluated by the average recall, precision, and F1
score, with the standard error of the mean (SEM) shown as error bars. The correlation between
model prediction (D) and manual quantification (E) with the reference annotation is measured by
the Pearson correlation coefficient (R2). (F) compares the model prediction, manual quantification,
and reference annotation, with the reference annotation normalized to 100%. (G) shows an example
of the scratching probability trace (red curve) predicted by the model and aligned with the reference
annotation (green bar). A zoom-in (right panel) of the blue square part reveals a good alignment
of the model prediction with the reference annotation.

Chronic itching is a debilitating symptom that has a detrimental impact on patient

quality of life (Yosipovitch & Fleischer, 2003; H. Yu et al., 2021). It is essential to investigate

the underlying mechanisms using the mouse model in order to develop novel treatments for

chronic itching caused by a variety of conditions. To determine whether the Scratch-AID

system could be used to study mouse chronic itch models, the collaborator created a model of

chronic contact dermatitis itch induced by squaric acid dibutylester (SADBE) (Beattie et al.,

2022; Qu et al., 2015) and recorded 9 videos from 3 wild-type mice (Figure 2.8 A). Affected

78



mice demonstrated spontaneous clawing of the cranium and / or nape. In particular, the

dynamic features of spontaneous scratching behavior under this chronic itch condition were

different from those exhibited by the CQ acute itch model: the total scratching time was

shorter for the same time period (20 min) (Figure 2.9 A), and the average duration of the

scratching trains was shorter (53 frames on average) than the CQ-induced acute scratching

behavior (280 frames on average) (Figure 2.9 B and Figure 2.1 F). Despite these substantial

differences, the recall, precision, and F1 score of Scratch-AID prediction were 84.1%, 88.5%,

and 0.862, respectively (Figure 2.8 B, C), compared to 84.1%, 66.3% and 0.740 for manual

annotation. The dominant brief clawing trains in this chronic itch model (Figure 2.9 B)

likely contributed to the decreased recall and accuracy of both model prediction and manual

annotation. The correlation between the prediction of the model and the reference annotation

was 0.9845 (Figure 2.8 D), which was comparable to the correlation between the manual

annotation and the reference annotation (0.9887; Figure 2.8 E). The model’s estimate of the

total etching time was marginally more precise than the manual annotation (Figure 2.8 F).

The Scratch-AID system was able to capture brief low-frequency scratch trains based on

prediction traces (illustrated in Figure 2.8 G).

Figure 2.9: Different dynamic features of chronic and acute itch models. (A) The percent-
age of scratching and non-scratching frames in the squaric acid dibutylester (SADBE) chronic itch
model (n = 9 videos) and chloroquine (CQ) nape acute itch model (n = 40 videos). (B) Frequency
distribution of scratching train duration of SADBE chronic itch model and CQ nape acute itch
model.
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2.4.7 Application of the Scratch-AID system in anti-itch drug

screening

Finally, we examined whether the Scratch-AID system could be used to evaluate antiitch

medications. The collaborator used the histaminergic acute itch nape model and pretreat-

ment with Benadryl (Loew et al., 1946), an FDA-approved antihistaminergic itch medica-

tion. 1 hour before intradermal injection of histamine (200 g in 15 l of saline), Benadryl or a

placebo lotion was administered topically to the nape skin of mice. Six wild-type C57 mice

(2 male, 4 female) in the Benardryl-treated group and seven wild-type C57 mice (2 male,

5 female) in the control group scratched for 20 minutes (Figure 2.10 A). Quantification of

the total clawing time (frames) using Scratch-AID demonstrated a significant reduction with

Benardryl treatment (Figure 2.10 B). Figure 2.10 C shows that manual annotation yielded

comparable results. These results suggest that the Scratch-AID system is sensitive enough

to detect the change in clawing behavior after an antiitch drug treatment, highlighting the

potential application of the Scratch-AID system in large-scale, high-throughput antiitch drug

assays.

Figure 2.10: Application of the Scratch-AID (Automatic Itch Detection) system in a
drug screening paradigm. (A) A diagram showing the experimental design of an anti-itch
drug test. Quantification of scratching behavior in anti-itch cream treated group or control group
by Scratch-AID (B) or manual annotation (C). Error bar, standard error of the mean (SEM).
Differences between the two groups were analyzed using unpaired two-tailed Student’s t-test, **
p < 0.01.
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2.5 Discussion

Scratching is a behavior unique to itch, and the mouse is the primary model animal

used to investigate itch mechanisms and develop new anti-itch medications. In this study,

we created a new system, Scratch-AID, consisting of a customized video recording box and

a well-trained neural network, for highly accurate automatic quantification of mouse claw

behavior. Its efficacy is comparable to the manual annotation on main itch models and an

anti-itch drug screening paradigm. To the best of our knowledge, this is the first system

based on deep learning that can achieve such high accuracy and generalization.

It is remarkable that a model trained with videos of CQ-induced acute nape itch could

reliably recognize scratching behavior in other itch models, regardless of body sites (nape

vs. cheek) or the dynamics of scratching behavior (e.g., acute vs. chronic itch, distinct

pruritogens). The remarkable performance and generalization of the Scratch-AID system is

likely attributable to the high quality and reproducible video recording, the large number

of high quality training datasets with frame-by-frame annotation, the efficient design of the

CRNN deep learning neural network, and the optimizations of training parameters. Variable

video recording conditions are a significant barrier that has prevented various laboratories

from adopting a trained neural network. Videos captured under different conditions (illu-

mination, field size, image resolution, magnification of rodents, image angle, backgrounds,

etc.) typically do not perform well with trained models. To provide a reproducible and

high-quality recording environment, we built a custom video recording enclosure (Figure 2.1

B). This helps to standardize the video recording procedure, reduce noise, and facilitate the

stable performance of trained deep learning models. Meanwhile, this video recording device

is simple to install, scale, and use. Using a well-trained prediction model with performance

comparable to manual quantification, Scratch-AID is prepared to supplant manual quan-

tification. However, it must be pointed out that when the camera used for shooting, the

shooting environment, or the lighting changes, the accuracy of the model will decrease. This

emphasizes the importance of maintaining consistent conditions during video recordings to

ensure the utmost accuracy of the model predictions. Any significant deviation from the

camera setup, environment, or lighting can potentially lead to misinterpretations or false

predictions. Therefore, users of Scratch-AID need to be cautious and aware of these limita-
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tions. We will come back to discuss how to solve this problem in a future work part.

The quantity and quality of training datasets are crucial for building a highly accurate

and generalized model. The efficacy of a prediction model is typically proportional to the

extent of the training data set. The CQ-induced acute nape itch model, which elicited robust

clawing behavior in rodents, was selected for model training and evaluation in this study.

The large number of scratching videos and the high frequency of desired behavior in each

video provided a high-quality training set. In addition, the precise definition of scraping

train and frame-by-frame annotation of videos were essential for training, testing, and error

analysis.

Our research demonstrates that ResNet and GRU are an effective combination of deep

learning architectures to analyze animal behavior. In addition, our network architecture

is efficient so that the accuracy plateau was reached after only 10 training epochs. There

is still potential for improvement in the efficacy of our forecasting models. To improve

Scratch-AID’s capacity to capture short scratching trains, we could train the CRNN neural

network with recordings of chronic itch models scratching. In addition, optimizing training

parameters could help improve prediction precision. Changing the input length resulted in

various types of error (Figure 2.6 B and Figure 2.16 A-C). The number of Type 2 and Type

4 errors increased as the input length increased, while the number of Type 1, Type 3, and

Type 5 errors decreased. Consequently, optimizing and selecting the optimal input length

for various irritation models is a trade-off. Increasing the extent of the training dataset

may also help in the development of more accurate prediction models. By checking the

videos with relatively low prediction accuracy, such as video number 5 (V5) in the chronic

itch model (Figure 2.8 F), we discovered that the missed scratch frames could be due to

a rare posture during scratching behavior in which the hind paw scratching was partially

obscured by the tail. Therefore, with more training videos comprising uncommon scratching

postures, trained neural network models could be more ”knowledgeable” about the diversity

of scratching behavior.

Understanding the underlying molecular, cellular, and circuit mechanisms requires the

quantification of animal behavior. Automatic deep learning analysis will not only increase

efficiency and accuracy compared to manual analysis, but will also reduce human bias and
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errors. Along these lines, we created the Scratch-AID system to automatically quantify the

scratching behavior of rodents. Our research also contributes to the development of new

deep learning neural network models to automate the analysis of other animal behaviors.

2.6 Future work

1. Exploration with 3D CNN: While our current model leverages a convolution recur-

rent neural network (CRNN) for video-based behavior quantification, a promising avenue of

exploration is the use of 3D convolution neural networks (3D CNNs). These networks have

the potential to effectively capture spatiotemporal features within video data, providing a

rich understanding of the motion dynamics of the scratching behavior of mice. We aim to

train a 3D CNN from scratch and subsequently compare its performance with our existing

CRNN model. Such an analysis will offer insights into the relative strengths and weaknesses

of both architectures in capturing and quantifying mouse behavior.

2. Harnessing Foundation Models in Visual Tasks: The rise of foundation models, par-

ticularly those built on the transformer architecture, has reshaped the landscape of compu-

tational tasks. The Vision Transformer (ViT) and its subsequent iterations, such as ViT-G

and models like CoCa, which integrate convolution and transformer layers, have shown ex-

emplary performance in various visual tasks. However, applying these models to different

domains such as our mouse itch detection poses significant challenges. Their massive size

demands considerable resources, and their generic training often makes them unsuitable for

specialized tasks without extensive tuning. However, we see potential in harnessing their

capabilities.

One of the promising methodologies to address the aforementioned challenges is the

low-rank adaptation (LoRA) technique. Developed by Microsoft Research, LoRA presents

an innovative approach to model fine-tuning. Instead of updating the entire model, LoRA

focuses on updating a specialized bypass layer, drastically reducing the number of parameters

to be modified. This method could potentially enable us to capitalize on the foundational

knowledge of these transformer-based models while ensuring that they are specialized enough

for our specific tasks. We believe LoRA’s adaptation strategy can be a game-changer, offering

an efficient way to bridge the gap between large-scale foundation models and the specific
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requirements of our tasks.

2.7 Data Availability

The training and test videos generated during the current study can be downloaded from

DRYAD:

(https://datadryad.org/stash/share/IszMIeDQoqXYne6DA01lcyPO0IZwdRsJRCdKQEvmjow).

The codes for model training and testing can be downloaded from GitHub:

(https://github.com/taimeimiaole/Scratch-AID)
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Block name Layer name input size output size channels parameters stride

Input
conv1 7x7 256, 256 128,128 64 3,136 2
max pool 3x3 128, 128 64, 64 64 0 2

Residual 1
conv1.1 3x3 64, 64 64, 64 64 36,864 1
conv1.2 3x3 64, 64 64, 64 64 36,864 1

Residual 2
conv2.1 3x3 64, 64 64, 64 64 36,864 1
conv2.2 3x3 64, 64 64, 64 64 36,864 1

Residual 3
conv3.1 3x3 64, 64 32, 32 128 73,728 2
shortcut 1x1 64, 64 32, 32 128 8,192 2
conv3.2 3x3 32, 32 32, 32 128 147,456 1

Residual 4
conv4.1 3x3 32, 32 32, 32 128 147,456 1
conv4.2 3x3 32, 32 32, 32 128 147,456 1

Residual 5
conv5.1 3x3 32, 32 16, 16 256 294,912 2
shortcut 1x1 32, 32 16, 16 256 32,768 2
conv5.2 3x3 16, 16 16, 16 256 589,824 1

Residual 6
conv6.1 3x3 16, 16 16, 16 256 589,824 1
conv6.2 3x3 16, 16 16, 16 256 589,824 1

Residual 7
conv7.1 3x3 16, 16 8, 8 256 589,824 2
shortcut 1x1 16, 16 8, 8 256 65,536 1
conv7.2 3x3 8, 8 8, 8 256 589,824 1

Residual 8
conv8.1 3x3 8, 8 8, 8 256 589,824 1
conv8.2 3x3 8, 8 8, 8 256 589,824 1

Output Block Avg pooling 8, 8 1 256 0 1
FC layer 256 256 65,792

Table 2.1: Residual model parameters, total parameters 11M

Layer Input size Output size Parameters
ResNet (23,256,256) (23,256) 526 M
GRU Layer 1 (23,256) (23,512*2) 118 k
GRU Layer 2 (23,512*2) (23,512*2) 944 k
FC layer 1 1024 256 262 k
FC layer 2 256 2 512

Table 2.2: Model parameters, total parameters 526 M
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Figure 2.11: Dynamic and static features of scratching behavior in the chloroquine (CQ)
nape acute itch model., B) The scratching hind paw (red arrow in A) vibrated rhythmically
during scratching behavior, but the contralateral hind paw did not (B). Distance between scratching
hind paw and nose (C) or mouth (D), angle formed by nose, scratching hind paw, and ipsilateral
front paw (E), and angle formed by scratching hind paw, mouth, and tail (F) in scratching or
non-scratching frames (N = 1756 for non-scratching, 2214 for scratching). Standard error of the
mean (SEM) error gauge. The differences between the two groups were analyzed using an unpaired
two-tailed Student’s t-test with a significance level of 0.001.
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Figure 2.12: Distribution of scratching episode duration and paw licking in the nape
acute itch model induced by chloroquine (CQ). The frequency distribution of scratching bout
(A) or paw lapping (B) duration. The figure inset is a magnification of the red square portion.
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Figure 2.13: Cross-validation and parameter tuning for the prediction models. (A) Cross-
validation of the trained prediction models through the rotation of the training and test datasets
across 40 videos. The F1 rating was determined using the eight evaluation videos. (B) The optimal
performance of models trained with N=45 inputs and various combinations of training and test
datasets. (C) Simulate outputs with varying input lengths.
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Figure 2.14: Error analysis for the manual annotation. (A) The incidence rate of each
category of manual annotation error, calculated as the ratio of the total number of frames containing
each type of error to the total number of scratching frames in eight test videos. Standard error of
the mean (SEM) error gauge. (B) The length of time for all false-positive scratching trains. The
duration of all false negative trains (C1) and the Type 2 error rate for scratching trains with varying
durations (C2). The distribution (D1) and average length (D2) of shift start and end durations.
The duration of all missed intervals (E1) and the Type 4 error rate for intervals with different
duration (E2). The duration of divided frames.
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Figure 2.15: Other mouse behaviors that were not identified as scratching. The predicted
probabilities of scratching behavior during wiping (A), grooming (B), rearing (C), locomotion (D),
and resting (E).
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Figure 2.16: Relationship between prediction errors and the length of the input or the
extent of the scratching train. (A–C) The five type error rates of models trained with varying
lengths of input data. Standard error of the mean (SEM) error gauge. The relationship between the
duration of the scratching train and the length of the start shift, end shift, or start shift plus end
shift. The correlation between the average scratching train duration in a video and the accuracy
of the prediction (F1 score). (F) Frequency distribution of all durations of paw lapping and those
associated with Type 5 error.
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Figure 2.17: Prediction saliency map of mouse scratching and other activities. Additional
saliency maps displaying the gradient value of every pixel for frames of scratching (A), wiping
(B), grooming (C), rearing (D), and locomotion (E) during the best model’s scratching behavior
prediction.
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Video No. Mouse No. Injection site (nape) Sex Weight Age

V1 M1 Left 1 F 20.6g 8-12 week
V2 Left 2
V3 Right 1
V4 Right 2
V5 M2 Left 1 F 21.1g
V6 Left 2
V7 Right 1
V8 Right 2
V9 M3 Left 1 F 23.3g
V10 Left 2
V11 Right 1
V12 Right 2
V13 M4 Left 1 F 21.2g
V14 Left 2
V15 Right 1
V16 Right 2
V17 M5 Left 1 F 21.4g
V18 Left 2
V19 Right 1
V20 Right 2
V21 M6 Left 1 M 25.2g
V22 Left 2
V23 Right 1
V24 Right 2
V25 M7 Left 1 M 25.5g
V26 Left 2
V27 Right 1
V28 Right 2
V29 M8 Left 1 M 21.5g
V30 Left 2
V31 Right 1
V32 Right 2
V33 M9 Left 1 M 27.8g
V34 Left 2
V35 Right 1
V36 Right 2
V37 M10 Left 1 M 25.9g
V38 Left 2
V39 Right 1
V40 Right 2

Table 2.3: Mouse information used in the recording of the training and test videos
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Table 2.4: Scratching behavior summary in the 40 training and test videos (reference annotation)

Video No. Scratching trains Scratching frames Scratching time (s) Scratching (%)

V1 13 9785 326 27.2
V2 19 7511 250 20.9
V3 27 10359 345 28.8
V4 28 11022 367 30.6
V5 47 8932 298 24.8
V6 57 12519 417 34.8
V7 47 8532 284 23.7
V8 37 9790 326 27.2
V9 24 6349 212 17.6
V10 36 7964 265 22.1
V11 43 10615 354 29.5
V12 66 7877 263 21.9
V13 1 371 12 1.0
V14 16 8381 279 23.3
V15 34 8935 298 24.8
V16 15 7356 245 20.4
V17 11 4123 137 11.5
V18 37 11965 399 33.2
V19 20 6000 200 16.7
V20 26 10794 360 30.0
V21 20 8226 274 22.8
V22 21 10071 336 28.0
V23 47 12872 429 35.8
V24 23 7306 244 20.3
V25 11 4137 138 11.5
V26 25 7152 238 19.9
V27 29 10103 337 28.1
V28 31 10424 347 29.0
V29 7 2402 80 6.7
V30 11 7559 252 21.0
V31 22 5559 185 15.4
V32 24 7595 253 21.1
V33 19 6900 230 19.2
V34 40 7525 251 20.9
V35 19 4418 147 12.3
V36 44 7538 251 20.9
V37 28 8005 267 22.2
V38 33 8078 269 22.4
V39 26 5998 200 16.7
V40 50 6168 206 17.1
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Chapter 3

Cancer survival prediction using

multilevel multimodal co-attention

deep learning model

3.1 Introduction

Cancer is one of the most important challenges in modern healthcare. With global death

estimates reaching approximately 10 million annually, it is poised to become the leading cause

of mortality in the 21st century (Bray, 2018). The medical field is facing a growing challenge

with the increasing number of cancer cases and deaths, making accurate prognosis predictions

essential for making the right clinical choices and treatments (Kourou et al., 2015). Survival

analysis – the prediction of time-to-event outcomes such as cancer recurrence or death - is

fundamental in oncology. It provides a compass for patients navigating the uncertainty of

their diagnosis and offers critical insights to clinicians, researchers, and policy makers and

can inform treatment choices and policy directions (Mariotto, 2014).

Cui et al., 2023 introduced how recent works demonstrated significant success in employ-

ing deep learning methods for diagnosis and prognosis multimodal data (both image and

non-image data). For one patient, image data is classified into radiology, pathology, and

camera images. These images are further divided into two types: pixel-aligned data, which

can be spatially registered and overlaid, and pixel-not-aligned data, where the pixels in dif-

ferent images do not correspond spatially and may even vary in dimensionality (such as 2D,

3D, and 4D). Non-image data includes structured data like genomic sequences and blood test
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results, as well as clinical data comprising demographic tabular data or free text in lab re-

ports. The diverse nature of these image and non-image data presents significant challenges

in multimodal learning, which involves a set of machine learning algorithms. Furthermore,

image data are generally larger and denser (containing millions of pixels), in contrast to the

more sparse, lower-dimensional non-image data. This heterogeneity in formats (including

various dimensions, images, free text, and tabular data) necessitates distinct preprocessing

and feature extraction methods. Different types of information also require fusion techniques

that effectively capture both shared and complementary information for improved diagnosis

and prognosis.

3.1.1 Traditional cancer survival analysis: Cox proportional haz-

ards (CPH) model

In the context of cancer, survival analysis focuses on the time between diagnosis and

death from the disease. The goal is to estimate the time until this event occurs. However,

in practical scenarios, some patients might be lost to follow-up before the event is observed,

or they may pass away from causes unrelated to the cancer, thus the event times for these

cases are not fully known; we only know that they have survived for at least a certain

period. Such instances, where the event of interest has not been observed at the last known

follow-up, are termed censored. Predictions for data that are right-censored are based on a

collection of characteristics x = (x1, ..., xp)
T ∈ Rp, which may vary over time. Even though

censored observations do not reveal the complete event time, they are still informative for

statistical models since the censoring time provides a minimum estimate of the patient’s

survival duration.

The semi-parametric Cox Proportional Hazards (CPH) model is a widely used statistical

technique for analyzing survival data with censored observations (Cox, 1972). This model

focuses on the hazards instead of the survival function, which is expressed as h(t|x) =

h0(t)exp(β
Tx). Here, t is time, x = (x1, ..., xp)

T is the covariates of dimension p, β =

(β1, ..., βp)
T is a vector of regression parameters, and h0(t) is the baseline hazard. The

function f(x) = βTx is also referred to as the risk function. The regression parameters can

be estimated by minimizing the negative log partial likelihood, where n is the number of

patients, ti is the censored or observed survival time for patient i, and δi is an indicator for
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whether the survival time is censored or observed:

l(β) = −
n∑

i=1

δi

βTxi − log
∑

j∈R(ti)

exp(βTxj)


This method is widely used (S. W. Grant et al., 2019), but has two main limitations.

First, the CPH model is based on a linear model, meaning it is unable to capture non-linear

relationships between the input data and the risk of death. If the covariates are nonlinear

with the risk function, this model would not be effective. Second, it assumes that the effect

of the patient’s features is constant over time, meaning the predictions for different patients

are proportional and only differ by scaling the baseline hazard with a factor that is constant

over time. This implies that the predicted survival curves for different patients do not cross,

which is not always realistic. Furthermore, the selection of covariates for survival prediction

is largely based on the subjective interpretation and intuition of a clinician (Hui, 2019). This

reliance on subjective judgments has raised questions about the accuracy and reproducibility

of survival predictions, raising doubts about their true efficacy and reliability (Cheon, 2016).

3.1.2 Deep learning survival models

The healthcare system is undergoing a major transformation, moving from a population-

based approach—where treatments are designed for the average patient—to a personal-

ized model, where decisions are based on the individual’s characteristics and peculiarities

(Giunchiglia et al., 2018). This shift has been greatly accelerated by the remarkable progress

in the field of Deep Learning (Esteva, 2019, Norgeot et al., 2019). Recently, there has been

a surge of enthusiasm among scholars to use deep learning techniques to carefully examine

survival data. Deep Learning, especially through the use of artificial neural networks, offers a

major benefit: it can make predictions from raw input data, eliminating the need for manual

feature engineering (LeCun, Bengio, et al., 2015a). This not only increases the accuracy of

the analysis, but also reduces the bias that comes with subjective assessments.

The initial integration of the Cox Proportional Hazards (CPH) model with deep learning

(DL) was achieved through a basic feed-forward neural network for single-mode data inputs,

as described in the study Faraggi & Simon, 1995. With the advent of big data in medicine,

particularly in precision medicine, there’s been a surge in various types of clinical data.
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This diversity of complex data has highlighted the necessity for more sophisticated modeling

techniques, leading to the development of DL-based methods. Building on this, advanced DL

models have been proposed for the CPH framework, such as DeepConvSurv (X. Zhu et al.,

2016), which introduced a deep convolutional neural network to enhance the CPH model’s

capacity to analyze pathology images, a step beyond the traditional use of handcrafted

features. This innovation was proven to be more effective by extensive testing on datasets

like the National Lung Screening Trial (NLST) for lung cancer. To address the limitations

of the CPH model, such as its linearity and proportionality assumptions, new methods have

been introduced. Cox-Time (Kvamme et al., 2019) model, incorporates time as an additional

input to examine its relationship with other variables. RNN-SURV (Giunchiglia et al., 2018)

employs recurrent neural networks to dynamically track the influence of covariates over time,

providing interpretable risk scores through a linear combination of time-sensitive estimates.

Meanwhile, DeepSurv (Katzman, 2018) automatically computes the interaction between

treatments and covariates, eliminating the need to predefine these interactions, unlike in the

traditional CPH model. These DL models refine and extend the structure of the CPH model

to accommodate the complexities of modern medical data.

Other deep learning methods rely on discretization schemes of the measured time and

output predictions for a set of predetermined time intervals. One method employs the

multi-task logistic regression (MTLR) model as its foundation, integrating it with the core

of the deep learning architecture (Fotso, 2018), while another method, DeepHit (C. Lee,

Zame, et al., 2018) leverages a deep neural network to directly learn the distribution of

survival times and handle scenarios with competing risks (more than one possible event

of interest). Building upon the foundation laid by DeepHit, Dynamic-DeepHit (C. Lee, J.

Yoon, et al., 2019) refines the approach by parameterizing the probability mass function of

the survival distribution and integrating a ranking component into the loss function. DRSA

(Ren et al., 2019) combines a series of long short-term memory (LSTM) units, allowing for

the prediction of survival probabilities without the need for traditional event probability

assumptions or segmented data approaches. In another study (Zadeh & Schmid, 2020), the

authors compared various loss functions applied within different discretization schemes. They

observed that substituting the commonly used cross-entropy loss with a loss function derived
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from the negative log-likelihood of a discrete time-to-event model resulted in significantly

improved predictions.

3.1.3 Multi-instance learning for whole slide images

The growing prevalence of high-dimensional multimodal data, encompassing advanced

clinical, imaging and molecular data sets, underscores the need to amalgamate them through

the lens of deep multimodal representation learning (W. Guo et al., 2019, Baltrusaitis et al.,

2019). The Cancer Genome Atlas (TCGA), a project financed through public endowments,

leverages microarray and next-generation sequencing technologies to meticulously profile the

cancer genome. Data includes gene expression, copy number variations, mutations, DNA

methylation, and whole-slide imaging (Tomczak et al., 2015). Deep learning paradigms

have evolved to seamlessly integrate diverse data modalities, including clinical data, digital

pathology imagery, and different genomic modalities such as gene and microRNA expres-

sion. These advances are designed to predict the prognosis of cancer in a spectrum of 20

distinct cancer entities (Cheerla & Gevaert, 2019). Although the profusion of big data and

the requisite for assimilating emergent data modalities champion multimodal deep learning

methodologies, they are not without inherent practical challenges.

High-dimensionality emerges as a primary challenge in the realm of multimodal data

analysis. Notably, whole slide images (WSIs), which are digital scans of entire pathology

slides, epitomize this challenge. WSIs, central to digital pathology, empowering pathologists

and researchers to meticulously dissect tissue samples, paving the way for precision diagnoses

and avant-garde research (Farahani et al., 2015). However, juxtaposed against conventional

image classifications with dimensions hovering around 256 × 256 pixels, WSIs are behe-

moths, spanning multi-gigabytes and boasting resolutions reaching 150,000 × 150,000 pixels.

Compounded by the high morphological variability and the diverse tissue types that they en-

capsulate, WSIs defy the straightforward deployment of traditional deep learning paradigms

(Dimitriou et al., 2019). Addressing the cancer survival conundrum, the imperative is to

distill patient-centric insights from an ensemble of WSIs, necessitating a granular visual

recognition approach. Such an approach must grapple with intricate interplays amongst di-

verse visual constructs, be it the labyrinthine interweaving of stroma, tumor conglomerates,

immune cells, or other nuanced visual entities (H. Chen, X. Qi, et al., 2016, Saltz et al.,
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2018, Hosseini et al., 2019).

Given the large gigapixel resolutions of WSIs, traditional image-based survival method-

ologies have predominantly chosen to select discriminative patches from manually annotated

Regions of Interests (ROIs), subsequently extracting hand-crafted features for predictions

(H. Wang et al., 2014, S. Wang et al., 2016, Yao, S. Wang, et al., 2016). This approach,

while feasible, is susceptible to overlooking crucial discriminatory patterns associated with

survival, especially when only a handful of tiles are selected from the highly heterogeneous

pathological slides. In response to this challenge and with the intent of harnessing the full

potential of WSIs, numerous strategies have embraced the multiple instance learning-based

(MIL) approach. Within this paradigm, the initial phase involves gleaning instance-level

feature representations from an assortment of randomly selected image patches within the

WSI. Subsequently, the second phase employs global aggregation techniques to synthesize

an overall representation of the slide, setting the stage for subsequent supervision.

In the study by Hou et al., 2016, a novel strategy is proposed for handling the com-

putational complexities in training Convolution Neural Networks (CNNs) on Whole Slide

Images (WSIs). This approach focuses on patch-level classifiers, combining their predictions

through a decision-fusion model. Additionally, an Expectation-Maximization-based method

is introduced to identify and utilize discriminative patches, which is specifically effective in

refining the classification of different cancer subtypes, not limited to just one subtype. In

contrast, (Wulczyn et al., 2020) developed a weakly supervised deep learning framework

to predict disease-specific survival rates in patients with 10 different types of cancer, us-

ing histopathology images. This marks a significant advancement in the field of medical

imaging and cancer prognosis. Further contributing to this area of research, Yao, X. Zhu,

et al., 2019 presented a multi-instance fully convolution networks model (MI-FCN). This

model, grounded in deep multiple instance learning, excels at extracting intricate patterns

from WSIs. It has shown promising results in enhancing prognostic accuracy, particularly

for Lung and Brain cancers. However, it remains unclear if this model was tested on other

cancer types or if its effectiveness was confined to just these two malignancies.

Incorporating multimodal fusion mechanisms into weakly-supervised learning to forecast

survival poses an additional obstacle owing to the substantial disparity in data heterogeneity
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between genomics and WSIs. Genomic features are frequently represented as a single tabular

attribute, whereas WSIs are packaged as tens of thousands of image patches. Consequently,

numerous methodologies rely on delayed fusion mechanisms to integrate features, thereby

impeding the acquisition of crucial multimodal interactions (M. Liang et al., 2014, Yao, X.

Zhu, et al., 2019, Vale-Silva & Rohr, 2021)

3.1.4 Our proposed methodology

In order to tackle the challenges of handling the vast data of Whole Slide Images (WSIs)

and the correlation between different data modalities, we present the Genomic-Guided Hier-

archical Attention Multi-Scale Pathology Transformer (GG-HAMPT), a novel deep learning

framework that is multimodal and multi-scale, specifically designed for the purpose of pre-

dicting survival. By modeling co-attention correlation between whole slide images (WSIs)

and genomes, GG-HAMPT enables survival outcomes to be intuitively interpreted.

Survival prognosis is heavily reliant on clinical metrics, particularly tumor stage grade

(Frank et al., 2002). However, the design of our framework is intended to extract this infor-

mation inherently from the tumor image and genomics. By emulating hierarchical attention

mechanisms commonly found in Natural Language Processing (NLP), which possess the abil-

ity to discern document semantics across word, sentence, and document levels, we designed a

partial attention network with multiple tiers. In order to surpass the challenge presented by

gigapixel WSIs’ voluminous data, this network is optimized to extract pathogenic insights

at three distinct resolution levels (256×256, 1024×1024, 4096×4096). Our model deviates

from the prevalent practice of late fusion in modern deep learning frameworks for survival

analysis by utilizing the co-attention paradigm, which is well-established in the field of Vi-

sual Question Answering (VQA). This methodology enables a more cohesive early fusion

approach, proficient in deciphering the complex interaction between genomic information

and the pathogenic intricacies detected at one of the different three levels. Furthermore, it

dynamically evaluates the significance attributed to pathogenic information in accordance

with the genomic context.

Key benefits of the GG-HAMPT framework include:

1. Unlike conventional late fusion models, which typically concatenate WSI and genomic
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representations and does not have much model weights for modality fusion, our co-

attention-based early fusion layer contains a substantial fraction of the model’s param-

eters. This design facilitates concurrent learning of WSI and genomic representations

across the three resolution scales, enabling a comprehensive grasp of their interrela-

tions. Leveraging the attention scores for each patch, the deciphered interactions can

be pictorially represented through attention heatmaps.

2. Our multi-scale hierarchical partial attention layer is adept at navigating gigantic WSIs.

As opposed to mere patch selection from regions of interest, our multi-scale architecture

resonates with human heuristic methodologies employed in tissue imagery examination.

This is evidenced by the adaptive co-attention weights, which emulate the physician’s

strategy of pinpointing pivotal regions. Moreover, recognizing that the assimilation

of cell-level information inherently shapes the tissue-level and organ-level data, our

model’s focal point pivots from elementary resizing and encoding to a more complete

amalgamation of information, culminating in global insights.

The results in Table 3.1 confirm that our GG-HAMPT model surpasses existing state-of-

the-art weakly-supervised methods in predicting survival outcomes using multimodal data,

including gigapixel WSIs. To further validate the effectiveness of our model, we conducted

an ablation study using five large, publicly available cancer datasets. These datasets encom-

passed a range of genomic information, including gene expression, copy number aberration,

and mutation information. The inclusion of these diverse data types significantly enhanced

the model’s predictive power, as detailed in Table 3.2.

In addition to these quantitative analyses, we employed heat maps to visualize the visual

concepts guided by genes. These heat maps, as depicted in Figures 3.7 and 3.8, allowed

us to analyze the interactions between WSIs and genomic data. Our evaluation focused

on the correlation between morphological features in the WSIs and individual genes. This

approach not only illuminated the relationship between these features but also highlighted

a list of genes that emerged as strong predictors in our model. The identified genes demon-

strate a significant impact on the model’s ability to accurately predict survival outcomes,

underscoring the value of integrating genomic data with WSIs in survival analysis.
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3.2 Method

This section presents our framework in GG-HAMPT for predicting discrete-time sur-

vival outcomes and identifying disease predictors using WSIs and genomic data. Figure 3.1

provides an illustration of the method. It consists of three components: a feature extrac-

tion module with dedicated submodels for WSI and genomics (described in section 3.2.2); a

multi-level partial co-attention transformer that fuses the submodel outputs into processed

representations (described in section 3.2.3); and a transformer decoder that maps the incom-

ing feature representation to a set of discrete-time conditional survival probability predictions

(described in section 3.2.4). This framework builds on the multimodal and weakly-supervised

deep learning model presented in R. J. Chen et al., 2021.
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Figure 3.1: Our Genomic-Guided Hierarchical Attention Multi-Scale Pathology Transformer (GG-
HAMPT) model architecture has two inputs: a gigabyte whole slide image and genomics fea-
tures (including gene expression RNA seq and copy number matrix). The model is composed of
three parts: feature extraction (as described in Section 3.2.2), partial attention and multi-scale
co-attention (as described in Section 3.2.3), and Transformer encoder and pooling (as described
in Section 3.2.4). Finally, Section 3.2.1 discusses how the features extracted from the network are
used to predict survival.

3.2.1 Problem Formulation

Our goal is to utilize pathology WSI and genomic data to forecast the time it takes

for a patient with a particular type of cancer to experience an event of interest, such as

death or disease progression. The outcomes of the survival analysis can help physicians and

scientists better understand the development of the disease and recognize possible treatment

alternatives for individual patients.

Let T denote the continuous random variable for survival time, X denote the patient
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information, then the survival function fsurv(T ≥ t|X) symbolizes the probability of the

patient surviving longer than a certain time t, and the hazard function fhazard(T = t|T ≥

t,Xi) represents the probability of the patient passing away at time t.

fhazard(T = t|T ≥ t) = lim
∂t→0

P (t ≤ T ≤ t+ ∂t|T ≥ t)

∂t

Out method don’t use the assumptions of the traditional CoxPH-based model. Our

method utilizes discrete time intervals and models each interval using a neuron with inde-

pendent output, as described in Zadeh & Schmid, 2020. For each patient i, we have the

set of WSIs related to them, {Wij}Ki
i=1, their gene expression vector ei, their copy num-

ber variation vector vi, their survival time (in months) ti ∈ R+, their mutation vector mi

and their censorship status ci ∈ {0, 1}. Our dataset can be represented as {Xi, ti, ci}ni=1 =

{{Wij}Ki
j=1, ei,vi,mi, ti, ci}i=1. We then formulate our multi-modal cancer survival predic-

tion problem as finding a neural network model F that integrates the patient i information

Xi = {{Wij}Ki
j=1, ei,vi,mi} to predict the hazard function fhazard(T = t|T ≥ t,Xi) ∈ [0, 1].

We divide the continuous timeline into four distinct, non-overlapping intervals: [t0, t1),

[t1, t2), [t2, t3), [t3, t4) with fixed boundaries 0 < t1 < t2 < t3 < t4 ∈ R+ of survival time

values (in months). The discrete event time of each patient, indexed by j, with continuous

event time T ′
j is then determined by:

Tj = r if T ′
j ∈ [tr, tr+1), for r ∈ {0, 1, 2, 3}

The probability of hazard and survival for the patient i can be determined by:

fhazard(t|Xi) = P (T = t|T ≥ t,Xi)

fsurv(t|Xi) = P (T > t|Xi) =
t∏

s=1

(1− fhazard(s|Xi))

Here T denotes the discrete time variable. Predictions of fhazard(t) are derived from the

output layer of the neural network with a sigmoid activation function.

As discussed in Zadeh & Schmid, 2020, we use the negative logarithmic likelihood function
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for the discrete survival model as the optimization goal.

For patient i, let Ti be the time interval from actual recorded timeti, ci be the censorship

status (ci = 0 if the patient passed away during the discrete time interval Ti), β be the (fixed

hyperparameter) weight for censored patients, then the loss function can be expressed as:

L = −ci(1− β)log(fsurv(Ti|Xi))− (1− ci){log(fsurv(Ti − 1|Xi)) + log(fhazard(Ti|Xi))}

3.2.2 Feature extraction

WSI feature extraction To extract information from the slide set {Wij}Ki
j=1, an initial

segmentation is performed on tissue sample of the WSI, producing a collection of patches with

dimensions 4096× 4096 at the organ level. Subsequently, each of these 4096× 4096 patches

undergoes further segmentation, yielding 16 patches of dimensions 1024× 1024 at the tissue

level. This hierarchical process culminates in the generation of 256 patches of dimensions

256×256 at the cellular level. Each set of patches, representing the three distinct granularity

levels, is processed through a ResNet-50 CNN encoder (pretrained on ImageNet), producing

three sets of feature embeddings, each with a dimensionality of dk (a fixed hyperparameter

of embedding size). Given M patches at the organ level, the embeddings extracted across

the three levels are organized into specific sets: Horgan ∈ RM×dk , Htissue ∈ R16M×dk , and

Hcell ∈ R256M×dk . Using the complete tissue information across numerous WSIs, the typical

patch size at the organ level for training is approximatelyM = 60, with some patients bag size

M up toM = 890, resulting more than 200,000 patches at the cellular level 256×256. Given

the vastness of these data, conventional multi-instance learning (MIL) methods are often

limited to either random sampling or straightforward concatenation of features extracted by

the Residual Network, without delving into the intrinsic relationships between the patches.

An example of the patching process and its handling is shown in Figure 3.2.

Genetics feature extraction We extracted a variety of genomic features, encompass-

ing gene expression(RNA-seq), copy number variation, and gene mutation status, from the

TCGA portal Tomczak et al., 2015. Directly applying an attention mechanism to these

genomic measurements with the extensive pathology information poses computational chal-
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Figure 3.2: Schematic representation of the hierarchical segmentation and feature extraction pro-
cess for whole slide images (WSIs). Starting with the complete slide set, an initial segmen-
tation segregates tissue-containing regions, forming patches at the organ level with dimensions
4096 × 4096. These patches are further segmented to produce finer-grained patches at the tis-
sue level (1024 × 1024) and subsequently at the cellular level (256 × 256). Each granularity level
undergoes feature embedding through a ResNet-50 CNN encoder. The flowchart illustrates the
transformation of a single WSI into a myriad of patches, culminating in feature sets Horgan, Htissue,
and Hcell. The varying patch sizes denote the progression from macroscopic organ-level details
to intricate cellular-level insights. The methodology aims to capitalize on the rich hierarchical
information embedded within WSIs, surpassing conventional techniques that might overlook the
intrinsic relationships between these diverse patch levels.

lenges. To circumvent this, we segmented the genes into N = 6 distinct functional groups

based on their biological roles as proposed in Liberzon et al., 2015 and R. J. Chen et al.,

2021. These categories were formulated as: (1) tumor suppression, (2) oncogenesis, (3) pro-

tein kinases, (4) cell differentiation, (5) transcription, and (6) cytokines and growth factors.

Each gene’s genomic data was accordingly classified into one of these functionally relevant

clusters. For every cluster, a dedicated Fully Connected (FC) layer was trained to harness

the genomic nuances specific to that group, resulting in a feature vector Gi of dimension dk.

Consolidating these outputs, we crafted the aggregate genomics bags of features, denoted as

G = {Gi}Ni=1 ∈ RN×dk . This procedure is illustrated in Figure 3.3.
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Figure 3.3: Illustration showcasing the process of genomic data classification and feature extraction.
Starting with a diverse array of genomic features from the TCGA portal, genes are categorized into
six distinct functional groups based on their biological roles. Each group is then processed through
a dedicated Fully Connected (FC) layer, capturing the nuanced genomic characteristics specific to
that category. The final product is an aggregate genetic bag-of-features that integrates information
across all functional groups, providing a complete representation of the genomic landscape.

3.2.3 Hierarchical Genomic-WSI Fusion based on Multi-level Co-

Attention Module

Modern multimodal pathology methods frequently rely on late fusion techniques, as un-

derscored in Vale-Silva & Rohr, 2021 and Mobadersany et al., 2018. This strategy fuses

features mainly at the penultimate network layers, consequently sacrificing interpretability

of multimodal interactions. Central to this approach is the inherent challenge of merging gi-

gapixel Whole Slide Imaging (WSI) with genomic features, primarily due to the pronounced

heterogeneity gap between them. This stark disparity serves as a formidable barrier, often

obscuring the intricate genotype-phenotype interactions within the tumor microenvironment.

Building upon this groundwork, we propose the ”Genomic-Guided Hierarchical Attention

Multi-Scale Pathology Transformer.” Our model embraces the effectiveness of hierarchical

network structures seen in diverse fields like natural language processing and image recog-

nition. It is inspired by the Hierarchical Question-Image Co-Attention mechanism in VQA.

The following sections will delve into the technical intricacies of our proposed model.
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While various models attempt to prioritize Whole Slide Images (WSIs) as one important

modality, they often do not provide a comprehensive analytical perspective on these images.

Studies like (Hou et al., 2016, Wulczyn et al., 2020,Chikontwe et al., 2020) either analyze

the doctor labeled region of interest (ROI), or downsample the whole WSI with loss of

detailed information. When juxtaposed with the multimodal fusion techniques seen in Visual

Question Answering (VQA) (J. Lu et al., 2016), wherein image features are intertwined

with word embeddings through co-attention learning, it’s evident that current WSI-centric

multimodal methodologies lack commensurate interpretability tools.

In search of more nuanced feature interplay, R. J. Chen et al., 2021 introduced Genomic-

Guided Co-Attention (GCA), which pioneers intricate feature aggregation algorithms. These

algorithms are tailored to meticulously model the interactions between WSIs and genomics

features. Building on these foundational insights, we propose the Genomic-Guided Hierar-

chical Attention Multi-Scale Pathology Transformer. This model leverages the proven effi-

cacy of hierarchical network structures across domains, such as natural language processing

and image recognition, and is reminiscent of the Hierarchical Question-Image Co-Attention

paradigm in Visual Question Answering. Next we will present all the technical details of the

proposed model.

3.2.3.1 Preliminary

Notation Through our WSI feature extraction process, we derived WSI bag features across

three hierarchical levels:

1. Organ level: Horgan defined as Horgan = {Horgan,i}Mi=1 with dimensions ∈ RM×dk .

2. Tissue level: Htissue defined as Htissue = {Htissue,i}16Mi=1 with dimensions ∈ R16M×dk .

3. Cell level: Hcell defined as Hcell = {Hcell,i}256Mi=1 with dimensions ∈ R256M×dk .

In each case, individual feature vectors are denoted by Hi,j and have dimensions ∈ Rdk×1.

These features are the outputs indicated in Figure 3.2.

Additionally, from our genomics feature extraction, we derived the genomics bag features

G represented as G = {Gi}Ni=1 with dimensions ∈ RN×dk . The genomics features are shown

in Figure 3.3.

Scaled Dot-Product Attention The attention mechanism takes as input three feature

matrices, each of dimension dk: the queries (Q), the keys (K), and the values (V ). These
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are represented as Q ∈ RNq×dk , K ∈ RNk×dk , and V ∈ RNv×dk respectively, as outlined in

Vaswani et al., 2017.

The computation of attention weights involves taking the dot product of the query matrix

with all key matrices. This product is then scaled down by
√
dk before applying the softmax

function, ensuring stability and manageability of the resultant weights. The final output of

the attention mechanism is derived by taking a weighted sum using the value matrix.

Formally, the attention mechanism can be expressed as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

3.2.3.2 Hierarchical attention for WSI

Navigating through vast datasets often mandates an organized and methodical approach.

Leveraging the age-old ”divide and conquer” strategy, one can distill colossal challenges

into more tractable segments. In the context of deep learning, particularly when dealing

with sprawling gigapixel whole slide images, this principle proves invaluable. Inspired by

the efficacy of the Hierarchical Attention Network—which adeptly harnesses dual attention

mechanisms at both granular (word) and aggregate (sentence) levels—we put forth a re-

fined multi-tier attention layer. This layer is designed to deftly manage three hierarchical

pathologic features. Figure 3.2 offers a visual representation of our patching process and

the subsequent extraction of patch features. The focal point of our hierarchical attention

mechanism revolves around the features Horgan, Htissue, and Hcell, each corresponding to its

designated patch level. In the sections that follow, we delve deep into the intricate layers of

our hierarchical attention framework for WSI, using Figure 3.4 for illustrative clarity.

Cell-Level patches: Given an organ patch, i, we derive 16 tissue-level patches and a sig-

nificantly larger pool of 256 cell-level patches. As a result, the organ-level feature, symbolized

by Horgan,i (for i ranging from 1 to M), correlates with an array of 256 cell-level features:

Horgan,cell,i = {Hcell,256i−255, Hcell,256i−254, . . . , Hcell,256i}

Additionally, every tissue-level feature, Htissue,j (with j extending from 1 to 16M), maps

to a set of 16 cell-level features, briefly represented as:
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Figure 3.4: Schematic representation of the multi-tier attention layer in action. Beginning with
the extracted patch features from whole slide images, the figure details the process of hierarchical
attention across organ, tissue, and cell levels. The attention mechanism is finely-tuned to emphasize
key features within each hierarchy, facilitating a nuanced understanding of the intricate relationships
embedded within the whole slide images.

Htissue,cell,j = {Hcell,16j−15, Hcell,16j−14, . . . , Hcell,16j}

By delineating these intricate relationships, our design furnishes a comprehensive rep-

resentation, empowering deep learning models to unravel the details encapsulated within

whole slide images.

Tissue-Level Hierarchical Attention: For each tissue segment, represented by the fea-

ture Htissue,j, we apply an attention mechanism to identify and highlight the most relevant

cell patches within that tissue. These important cell patches are then combined to form an

enhanced cell-level tissue feature, represented as Htissue, cell,j.

In this setup, the tissue feature Htissue,j acts both as the focal point of the analysis (the

query) and the base reference (the anchor). It interacts with 16 associated cell features,

which function as the keys and values in the attention process. The attention mechanism
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computes a weighted average of these cell features, based on their relevance to the tissue

feature. This process results in a more detailed and informative tissue-level feature, denoted

as Htissue, new,j. In terms of technical specifics, the matrices Wq,TA, Wk,TA, and Wv,TA are

trainable weights within the attention framework. Each of these matrices corresponds to a

component of the query-key-value triplet in the attention mechanism, playing a critical role

in determining how the cell features are weighted and combined.

Formally:

Htissue, cell,j = Attention (Htissue,jWq,TA,Htissue,cell,jWk,TA,Htissue,cell,jWv,TA)

This design ensures adaptability:

Htissue, new,j = αHtissue, cell,j + (1− α)Htissue,j

The coefficient α is used to balance the influence of the attention mechanism with the

original characteristics of the tissue. This balance enables a dynamic representation of the

tissue features.

Organ-Level Hierarchical Attention: In a similar approach, for each organ segment

represented by the feature Horgan,j, we apply an attention mechanism to extract the most

significant cell patches that contribute to the overall understanding of the organ. This process

generates a cell-level organ vector. In this scenario, the organ feature Horgan,j serves as the

query in the attention mechanism, and it interacts with 256 cell features which act as keys

and values. This cell-level organ vector is then combined with the original organ feature to

produce a more detailed and refined organ-level feature.

Defined as:

Horgan, cell,i = Attention(Horgan,iWq,Horgan,cell,iWk,Horgan,cell,iWv)

And:

Horgan, new,i = αHorgan, cell,i + (1− α)Horgan,i
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Collating these refined features, we formulate the feature matrix:

- Horgan,new = {Horgan, new,i}Mi=1 ∈ RM×dk

- Htissue,new = {Htissue, new,i}16Mi=1 ∈ R16M×dk

- Hcell,new = {Hcell,i}256Mi=1 ∈ R256M×dk

These combined features now serve as the foundational input for the pathology-related

modeling in the multi-level co-attention layer.

3.2.3.3 Multi level co-attention

We approach the complex relationship between Whole Slide Images (WSIs) and genomic

features by representing them as ’bags’ of features. This approach allows us to develop

sophisticated methods to combine and analyze the interactions between specific feature em-

beddings of instances in WSIs and their corresponding genomic embeddings. In the upcoming

section, we will discuss the Genomic-Guided Co-Attention (GCA) mechanism. This multi-

level structure is grounded in the principles of standard Transformer attention, which is

commonly used to manage interactions between image-grid and word embeddings in Visual

Question Answering (VQA). A visual illustration of the GCA mechanism can be found in

Figure 3.5.

To explain further, the GCA mechanism draws inspiration from the Transformer model’s

ability to handle complex interactions in data. It is specifically designed to analyze rela-

tionships at different biological levels - organ, tissue, and cell. For each of these levels, we

implement a co-attention layer, enabling our model to simultaneously focus on relevant fea-

tures across different scales and modalities. Thus, the GCA mechanism involves layers of

co-attention that correspond to the organ, tissue, and cell levels. Each level within this co-

attention framework is meticulously structured to capture the nuances of the corresponding

biological specificity.

CoAttnL = Attention(QL,KL,VL)

= Attention(GWq,L,HL, newWk,L,HL, newWv,L)

= Acoattn, LHL, newWv,L = ĤL

In our model, the matrices Wq,L,Wk,L,Wv,L ∈ Rdk×dk act as adaptive weight coeffi-

cients. These matrices adjust the queries (G) and the keys and values (HL, new) within the
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co-attention layers. Additionally, our multi-level co-attention mechanism comprises three

distinct co-attention weight matrices for different biological levels: organ, tissue, and cell,

represented by Acoattn, organ, Acoattn, tissue, and Acoattn, cell, respectively.

The outputs from these co-attention layers determine the weighted average of the input

features at each respective level. By utilizing the output matrices from the organ, tissue,

and cell co-attention layers, we calculate a weighted summation. This process results in the

final integrated pathology-related feature, denoted as Ĥ:

Ĥ = worganHorgan, new + wtissueHtissue, new + wcellHcell, new

Multi Layer Genomic-Guided Co-Attention interpretation: The Genomic-Guided

Co-Attention (GCA) layer can be thought of as a mechanism that evaluates the similarity

between specific genomic embeddings (which include gene expression, copy number, and

mutation data) and their corresponding pathology features in WSIs. For example, consider

a genomic embedding gn from the set G = {g1, ..., gN}. At each biological level L, the GCA

layer assesses how much a particular feature hm from the set HL aligns or resonates with

gn. This relationship is represented in a row vector, such as [an1, an2, ..., anm] in the matrix

Acoattn. These attention weights are then applied toHL, resulting in a new feature embedding

hLn in Rn×1, which reflects the biological characteristics of gn. For example, if gn represents

a genomic feature associated with tumor development, the GCA layer will highlight image

patches with tumor cells, assigning high attention scores to them.

By combining insights from the three levels L, we obtain Ĥ, a consolidated feature

at the WSI level that primarily emphasizes tumor cells. This process leads to what we

call ’gene-guided visual concepts’. These are high-attention image patches that strongly

correlate with a specific genomic embedding gn, indicating similar phenotypic traits. The

GCA layer can identify as many different gene-guided visual concepts as there are unique

genomic embeddings in G. To visualize these concepts and their association with specific

genomic features, one can refer to the attention heatmaps presented in Figures 3.7 and 3.8.
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Organ Level Features
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Cell Level Features
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𝟐𝟓𝟔𝑴×𝒅𝒌

Genomics Features 
𝑮 ∈ 𝑹𝑵×𝒅𝒌

𝑸𝑶𝒓𝒈𝒂𝒏 ∈ 𝑹
𝑵×𝒅𝒌

𝑲𝑶𝒓𝒈𝒂𝒏 ∈ 𝑹
𝑴×𝒅𝒌

𝑽𝑶𝒓𝒈𝒂𝒏 ∈ 𝑹
𝑴×𝒅𝒌

𝑸𝑻𝒊𝒔𝒔𝒖𝒆 ∈ 𝑹
𝑵×𝒅𝒌

𝑲𝑻𝒊𝒔𝒔𝒖𝒆 ∈ 𝑹
𝟏𝟔𝑴×𝒅𝒌

𝑽𝑻𝒊𝒔𝒔𝒖𝒆 ∈ 𝑹
𝟏𝟔𝑴×𝒅𝒌

𝑸𝑪𝒆𝒍𝒍 ∈ 𝑹
𝑵×𝒅𝒌

𝑲𝑪𝒆𝒍𝒍 ∈ 𝑹
𝟐𝟓𝟔𝑴×𝒅𝒌

𝑽𝑪𝒆𝒍𝒍 ∈ 𝑹
𝟐𝟓𝟔𝑴×𝒅𝒌

𝑨𝒄𝒐𝒂𝒕𝒕𝒏,𝒐𝒓𝒈𝒂𝒏 ∈ 𝑹
𝑵×𝑴

𝑨𝒄𝒐𝒂𝒕𝒕𝒏,𝑻𝒊𝒔𝒔𝒖𝒆 ∈ 𝑹
𝑵×𝟏𝟔𝑴

𝑨𝒄𝒐𝒂𝒕𝒕𝒏,𝑪𝒆𝒍𝒍 ∈ 𝑹
𝑵×𝟐𝟓𝟔𝑴

𝑯𝑶𝒓𝒈𝒂𝒏,𝒏𝒆𝒘 ∈ 𝑹𝑵×𝒅𝒌

𝑯𝑻𝒊𝒔𝒔𝒖𝒆,𝒏𝒆𝒘 ∈ 𝑹𝑵×𝒅𝒌

𝑯𝑪𝒆𝒍𝒍,𝒏𝒆𝒘 ∈ 𝑹𝑵×𝒅𝒌

Genomic-guided WSI 
features

𝑯෡ ∈ 𝑹𝑵×𝒅𝒌

Genomics Features 
𝑮 ∈ 𝑹𝑵×𝒅𝒌

Figure 3.5: Schematic visualization of the Multi Layer Genomic-Guided Co-Attention mechanism.
This multi-layered representation showcases the interaction between genomic features and pathol-
ogy features across the organ, tissue, and cell levels. Emphasizing the relationships between the
different levels, GCA integrates genomic-guided attention to yield refined pathology feature em-
beddings.
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3.2.4 Set-based Transformer encoder

In the encoder segment of our architecture, we adopt insights from Zaheer et al. Zaheer

et al., 2017, emphasizing that set-based network architectures can maintain permutation

invariance if constructed upon layers that are permutation-equivariant. Given this principle,

our approach applies the set-based transformer to encode features post the genomic-guided

co-attention phase. The overall structure of the encoder’s formulation can be articulated as:

E (l)
(
H(l)

)
= ζ(l)

(
ψ(l)

({
ϕ(l) (xi) : h

(l)
i ∈ H(l)

}))
F (L)

(
H(L)

)
= ζ(L)

(
ρ(L)

({
ϕ(L) (xi) : h

(L)
i ∈ H(L)

}))
T (X) = F (L)

(
E (L−1)

(
. . . E (1) ({(xi) : xi ∈ X})

))
Here h

(l)
i denotes an arbitrary embedding from the set input H(l) at the lth hidden layer.

The encoder block, E (l), is stackable and incorporates a permutation-equivariant set function

ψ indicating the multi-head self-attention layer delineated in Vaswani et al., 2017. The

functions ζ and ϕ represent the position-wise fully-connected layers (FC). These layers are

inherently permutation-invariant and are adeptly applied to feature embeddings. In the

last layer L a global pooling function F (L) is employed. Subsequently, the signature of

our architecture, T , represents our set-based evolved Transformer encoder, obtained from

Vaswani et al., 2017. This encoder ingeniously amalgamates stacked permutation-equivariant

layers, subsequently segueing into a permutation-invariant pooling function, preserving the

structural integrity of our desired architecture.

To illustrate our model, we start with the inputs:

- We take Ĥ = {Ĥi}Ni=1 ∈ RN×dk , representing the WSI-level consolidated pathogenic

feature set.

- Additionally, we use G = {Gi}Ni=1 ∈ RN×dk , symbolizing the genomic features.

To encode the feature embeddings of both Ĥ and G, two distinct set-based transformers,

namely TH and TG, are instantiated. The encoder block, E (l), employs the multi-head self-

attention layer, ψ(l), which can be formulated as:

ψ(l)

({
h
(l)
i

}M

i=1

)
=


M∑
i=1

exp
(
h
(l)
i h

(l)⊤
j

)
dk

∑
j exp

(
h
(l)
i h

(l)⊤
j

) · h(l)
i → h

(l+1)
i


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For each layer, the position-wise fully-connected layers ϕ(l) and ζ(l) are defined as:

ϕ(l)
(
h
(l)
i

)
= W

(l)
ϕ h

(l)
i

ζ(l)
(
h(l)

)
= W

(l)
ζ h(l)

At the terminal layer, the global attention pooling function, ρ(L), is articulated as:

ρ(L)
({

h
(L)
i

}M

i=1

)
=

M∑
i=1

aiϕ
(L)

(
h
(L)
i

)
→ h(l) where

ai =
exp

{
Wρ

(
tanh

(
Vρh

(L)⊤
i

)
⊙ sigm

(
Uρh

(L)⊤
i

))}
∑M

j=1 exp
{
Wρ

(
tanh

(
Vρh

(L)⊤
j

)
⊙ sigm

(
Uρh

(L)⊤
j

))}
Here, the matricesW

(l)
ϕ ,W

(l)
ζ ,Wρ,Vρ, andUρ are trainable weight matrices of dimension

Rdk×dk . The sigmoid function, sigm(x), is given by 1
1+e−x . The attention score, ai, quantifies

the importance of the ith embedding h
(L)
i among the entire feature set h(L).

In conclusion, the processed features derived from the outputs of both TH and TG are con-

catenated as
[
ζ
(L)
h

(
h(L)

)
, ζ

(L)
g

(
g(L)

)]
. This integrated feature set is then channeled through

several fully connected layers to deduce the ultimate survival prediction result.

3.3 Experiment & Results

3.3.1 Data and evaluation metric

Genomic data, including whole slide images (WSI), were obtained from the GDC Data

Portal (https://portal.gdc.cancer.gov/). We use the TCGAbiolinks package v2.25.3 in the

R statistical computing software environment v4.1.1 to retrieve the clinical data, gene ex-

pression (RNA seq), and mutation (MAF) from the TCGA project. The copy number data

(discretized) was downloaded from Firehose (https://gdac.broadinstitute.org/). In our sur-

vival prediction study, we considered the following cancer types: Breast Invasive Carcinoma

(BRCA) (n = 1022), Bladder Urothelial Carcinoma (BLCA) (n = 437), Glioblastoma and

Lower Grade Glioma (GBMLGG) (n = 1011), Lung Adenocarcinoma (LUAD) (n = 515)

and Uterine Corpus Endometrial Carcinoma (UCEC) (n = 538). The BRCA dataset in-

cludes 549 cases of luminal A, 206 cases of luminal B, 81 cases of HER2 + and 185 cases of

basal-like. Clinical data contain patient codes, clinical characteristics, and survival labels,
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including ”vital status” (corresponding to the censorship indicator) and follow-up duration

(”days to last follow-up” and ”days to death”). We applied our proposed method to each

cancer dataset and conducted a 5-fold cross-validation. We then used the cross-validated

concordance index (c-Index) to measure the accuracy of our method in correctly ranking the

predicted patient risk scores with respect to overall survival .

3.3.2 Model training

Patient-derived data was systematically stratified according to the type of cancer. This

stratified data was then randomized into an 80% training dataset and a 20% validation

dataset. Additionally, we implemented a five-fold cross-validation to further ensure model

robustness. The validation dataset served as a metric for performance evaluation throughout

the iterative development of our model. The model training was executed employing the

Adam stochastic gradient descent optimization technique, implemented via the PyTorch

v2.0.1 framework. While most default parameters were retained, the learning rate was

specifically adjusted. The determination of the initial learning rates was achieved through a

pre-training run utilizing a learning rate range test. This process involved the observation

of training loss across a continuous spectrum of learning rate values.

The initial learning rate values adopted for the main model training ranged from 1 ×

10−4 to 5 × 10−4. A scheduler was integrated, tasked with modulating the learning rate in

response to potential learning plateaus. Typically, when there was an absence of discernible

improvement in validation performance over four successive epochs, the learning rate was

reduced by a factor of three. To further optimize our model’s efficiency and counteract

potential overfitting, an early stopping mechanism was employed. This mechanism preserved

model states upon detecting learning stagnation, specifically prior to noting an escalation

in validation loss. It was observed that models, when trained ab initio, generally reached

convergence within a span of fewer than 20 epochs. Owing to the inherent heterogeneity in

the sizes of the sample bags, we adopted a singular batch size, complemented with 32 steps

of gradient accumulation.
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3.3.3 Comparison with previously published models

Here, we undertook a rigorous evaluation of our proposed model’s predictive capabilities,

focusing on the BRCA, BLCA, GBMLGG, LUAD, and UCEC datasets. The configuration

of the data set and the split of cross-validation used are kept same as the experiments of

R. J. Chen et al., 2021. The results of this evaluation are detailed in Table 3.1. For a com-

prehensive understanding and comparative assessment, we also considered the performance

of several state-of-the-art models as described below:

1. Deep Sets Zaheer et al., 2017:

• Description: Deep Sets presents a neural network paradigm adept at handling

sets characterized by variable sizes and order. This is achieved through the incor-

poration of aggregation functions.

• Significance: Representing one of the pioneering neural network architectures

tailored for set-based deep learning, Deep Sets capitalizes on sum pooling over

feature instances.

2. Attention MIL Ilse et al., 2018:

• Description: Attention MIL, or Multi-Instance Learning, harnesses attention

mechanisms to seamlessly aggregate data from multiple instances, facilitating pre-

dictions at the aggregate or ’bag’ level.

• Significance: Demonstrating its efficacy in diverse applications such as image

classification and drug discovery, Attention MIL replaces the sum pooling inherent

in Deep Sets with a global attention pooling strategy.

3. MCAT R. J. Chen et al., 2021:

• Description: The Multimodal Co-Attention Transformer (MCAT) integrates a

co-attention-based early-fusion layer, a departure from the traditional late-fusion

approach.
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• Significance: When juxtaposed against preceding multimodal multiple instance

learning frameworks, MCAT emerges superior, boasting an average performance

increment of 8%-10%.

4. Multilevel Image:

• Description: This approach exploits the multi-tiered architecture of pathology

images. By leveraging an attention-driven hierarchical structure, it extracts three

distinct levels of whole-slide image features.

• Significance: These tri-tiered whole-slide image features are subsequently chan-

neled into the Attention MIL model, notably in the absence of genomic data.

5. Genomic-Guided Hierarchical Attention Multi-Scale Pathology Transformer

(Full):

• Description: Building upon the foundational MCAT model, we introduced our

bespoke Genomic-Guided Hierarchical Attention Multi-Scale Pathology Trans-

former. Drawing inspiration from the inherent multi-level architecture of pathol-

ogy images and the hierarchical nuances of text in natural language processing

(NLP), an attention-centric hierarchical structure is employed.

• Significance: This structure meticulously extracts three levels of whole-slide image

features, which, through co-attention mechanisms, undergo early fusion with the

patient’s genetic data.

6. Partial Attention Comparison:

• Description: We embarked on a comparative analysis to gauge the performance

of our model in diverse scenarios—incorporating and excluding multi-level analy-

sis and with and without the integration of attention-driven hierarchical feature

extraction from whole-slide images. The model iteration devoid of hierarchical

pathology attention feature extraction is denoted as ’multilevel’.
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Model BLCA BRCA GBM/LGG LUAD UCEC Average

Deep sets 0.604 ± 0.042 0.521 ± 0.079 0.803 ± 0.046 0.616 ± 0.027 0.598 ± 0.077 0.629

Attention MIL 0.605 ± 0.045 0.551 ± 0.077 0.816 ± 0.011 0.563 ± 0.050 0.614 ± 0.052 0.630

MCAT 0.624 ± 0.034 0.580 ± 0.069 0.817 ± 0.021 0.620 ± 0.032 0.622 ± 0.019 0.653

Multilevel Image 0.579 ± 0.076 0.604 ± 0.070 0.802 ± 0.026 0.569 ± 0.068 0.634 ± 0.060 0.638

Multilevel 0.659 ± 0.025 0.648 ± 0.019 0.859 ± 0.024 0.666 ± 0.026 0.708 ± 0.061 0.708

Full 0.672 ± 0.029 0.680 ± 0.024 0.852 ± 0.023 0.673 ± 0.026 0.724 ± 0.059 0.720

Table 3.1: Performance of different models on various cancer types. Values represent the C-
index with the standard deviation. BLCA: bladder urothelial carcinoma, BRCA: breast invasive
carcinoma, GBM / LGG: glioblastoma and lower grade glioma, LUAD: lung adenocarcinoma,
UCEC: uterine corpus endometrial carcinoma.

Supremacy of Our Proposed Model Over Existing State-of-the-Art Our proposed

model exemplifies marked performance improvements relative to the current state-of-the-art

pathonic genomics fusion methodologies employed in cancer survival pathology examina-

tions. In particular, when juxtaposed against the MCAT model, the prevailing state-of-

the-art, our full-fledged model registered an increase of 10.26% in the overarching c-Index.

Meanwhile, the multi-tier model reflected a gain of 8.42%. Even when benchmarked against

well-established baselines such as Deep Sets and Attention MIL, our full model depicted an

impressive 14.29% surge in the overall c-Index, while the multi-level counterpart exhibited

a 12.38% increment. Across the five cohorts under examination, our full model consistently

superseded all other state-of-the-art contenders. The graph in Figure 3.6 demonstrates that

our model was able to accurately predict the survival disparity between the high and low

risk groups.

Efficacy of Multilevel Whole-Slide Image (WSI) Feature Extraction The potency

of the multi-level model was underscored by its performance metrics, particularly when

contrasted against the MCAT model. With an overall performance boost of 8.42%, the

multi-level model showcased variability in its prowess - from a commendable 5.14% in the

GBMLGG cohort to a staggering 13.83% in the UCEC cohort. Remarkably, while the

Attention MIL model harnessed both whole-slide image features and genomic metrics, the

multi-level model remained exclusive to the former. Yet, their performance metrics were

remarkably proximate, gauged at an average c-Index of 6.38 for the multi-level model and

6.30 for the Attention MIL. Significantly, within the datasets for BRCA and UCEC, the
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Figure 3.6: Kaplan-Meier Analysis was used to compare the survival time of low-risk (blue) and
high-risk (red) patients based on their predicted risk scores from our model. The Logrank test
(weight set as wilcoxon) was used to measure the statistical significance of the difference between
the two survival distributions.

multi-level paradigm even eclipsed the MCAT model’s performance.

The Cutting Edge of Hierarchical Attention Feature Extraction We compared

the full model to its multi-level counterpart and found a slight but noticeable improvement

in the c-Index of 0.12 on average. This improvement was seen in four out of five cohorts,

with the full model outperforming the multi-level version. This suggests that an Attention-

assisted hierarchical feature extraction framework can bring even small gains, which can be

meaningful in terms of clinical significance. These small advances can lead to more accurate

clinical decisions and patient management strategies.

3.3.4 Ablation Study: Dissecting the Role of Genomic Features

To gain a deeper understanding of the intricate relationship between various genomic

features and their collective influence on the accuracy of cancer survival predictions, we

executed an exhaustive ablation study. This analysis was built upon our comprehensive

model and spanned a gamut of genomic inputs, encompassing:
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• Complete Genomic Features (All)

• Mutation and Gene Expression (Mut+RNASEQ)

• Copy Number Variation and Gene Expression (CNV+RNASEQ)

• Gene Expression (RNASEQ) exclusively

• Mutation and Copy Number Variation (Mut+CNV)

• Mutation (Mut) in isolation

• Copy Number Variation (CNV) solely

• The Multilevel Image model, reliant predominantly on image data

The results are shown in Table 3.2. It is essential to emphasize that the MCAT pa-

per’s dataset mainly consists of gene expression data, with a small number of copy number

variation data. To fill this data gap and allow for a thorough investigation, we created a

custom dataset, including a slightly adjusted patient group. This strategic approach enabled

us to gather a more comprehensive set of genomic information. As a result, the genomic

dataset and the cross-validation group division differed from the specifications mentioned in

the previous section.

Our research has highlighted the importance of gene expression as a major factor in

the c-Index performance. The inclusion of mutation and copy number variation with gene

expression had a small positive effect, but the lack of gene expression caused a significant

decrease in performance. Interestingly, in some cases, the addition of either copy number

or mutation data did not improve the accuracy of the predictions compared to scenarios

without any genomic features. This emphasizes the value of gene expression in providing

precise cancer survival predictions. Additionally, our findings demonstrate the inherent

predictive power of whole-slide images in this context.
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Feature Type/Modality BLCA BRCA GBM/LGG LUAD UCEC Average

All 0.675 ± 0.043 0.676 ± 0.081 0.843 ± 0.042 0.689 ± 0.043 0.731 ± 0.038 0.721

Mut+RNASEQ 0.675 ± 0.059 0.672 ± 0.023 0.841 ± 0.048 0.689 ± 0.046 0.737 ± 0.044 0.723

CNV+RNASEQ 0.667 ± 0.043 0.653 ± 0.074 0.850 ± 0.036 0.681 ± 0.032 0.720 ± 0.027 0.714

RNASEQ 0.654 ± 0.074 0.675 ± 0.039 0.838 ± 0.041 0.684 ± 0.042 0.728 ± 0.047 0.716

Mut+CNV 0.613 ± 0.048 0.596 ± 0.045 0.831 ± 0.047 0.599 ± 0.044 0.671 ± 0.043 0.662

Mut 0.565 ± 0.043 0.573 ± 0.041 0.788 ± 0.053 0.601 ± 0.059 0.696 ± 0.066 0.645

CNV 0.575 ± 0.056 0.616 ± 0.061 0.830 ± 0.049 0.595 ± 0.022 0.671 ± 0.045 0.657

Image 0.581 ± 0.087 0.594 ± 0.044 0.750 ± 0.039 0.569 ± 0.068 0.670 ± 0.053 0.633

Table 3.2: Performance comparison of different feature types and modalities on different cancer
types. All means with all 3 genomics modality: RNASEQ, CNV and Mutation. Mut stands for
Mutation, and Image means using no genomic modality data.

3.4 Interpretation of the full model

3.4.1 interpretation methods

Attention weight interpretation In the scaled dot-product attention module Attention(Q,K, V ),

the weight of the value features, softmax(QKT
√
dk

), represents how the query features Q at-

tend to the key features K. For our tissue-level and organ-level hierarchical attention

modules, the attention scores (a1, a2, ..., a16) ∈ Atissue and (a1, a2, ..., a256) ∈ Aorgan can be

interpreted as how the model constructs tissue- and organ-level features from lower-level

features. For the multilevel co-attention modules, which use attention-assisted hierarchi-

cal feature extraction to extract cell-, tissue-, and organ-level features from pathology im-

ages, the attention scores (a1, a2, ..., aM) ∈ Acoattn, organ, (a1, a2, ..., a16M) ∈ Acoattn, tissue, and

(a1, a2, ..., a256M) ∈ Acoattn, cell represent how the model constructs new weighted whole-slide

image features ĥ at the cell, tissue, and organ levels, respectively. These co-attention weights

can reflect the biological relationship between genomic embeddings gn and pathonic features

at the three different levels. We combine the attention weights for each level of the hierar-

chy by using level weights worgan, wtissue, wcell to obtain integrated attention weights. These

attention weights can be represented as attention heatmaps for the N genomic embeddings

in G.
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3.4.2 Attention Visualization in BRCA

We can gain insight into the relationship between genomic information and pathologic

features by visualizing the genomic-guided WSI embeddings used as input in our full model.

To do this, we compute the integrated co-attention weights from the 3-level whole slide image

features and each genomic embedding gn for both low and high risk cases in the BRCA

dataset. We then use these attention weights to generate hierarchical attention heatmaps,

which highlight the regions of interest in the whole slide image that contribute most to the

model’s prediction. Additionally, we use Integrated Gradients to identify the top-10 genes

in each embedding with the highest absolute attribution value. The results are illustrated

in Figure 3.7 and Figure 3.8, allowing us to understand which genes are most important for

the prediction of cancer risk for each patient.

3.4.3 Integrated gradient (IG) score indicating influential genes

Integrated Gradients is a sophisticated technique designed for attributing the importance

of individual features to a model’s predictive outcome. This method was first introduced

by Z. Qi et al., 2019. The core principle underpinning Integrated Gradients is to compute

the integral of the model’s output gradient concerning its input features. This calculation is

performed over a path that extends from a baseline input, representative of feature absence,

to the actual input in question. Such attributions facilitate a profound understanding of

model predictions.

The versatility of this method is evident from its successful application across diverse

domains ranging from natural language processing and computer vision to healthcare. Fur-

thermore, empirical studies have demonstrated that Integrated Gradients is consistently

more reliable than many prevailing attribution techniques.

Let’s mathematically represent the concept. Given:

- f : A model where input x produces output y

- x′: A baseline input, symbolizing the lack of features

The integrated gradient of f concerning input x for a particular input feature xi is denoted

as:
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IntegratedGradsi(x) = (xi − x′i)×
∫ 1

α=0

∂f(x′ + α× (x− x′))/∂xidα

In this equation, ∂f(x′ + α × (x − x′)) represents the partial derivative of the model’s

output with respect to the i-th input feature. This derivative is assessed at a specific point

along the trajectory from the baseline x′ to the genuine input x. The parameter α aids in

the path parameterization, and its integration occurs over the entire path.

In our research, the Integrated Gradients approach was essential. We used it to calculate

integrated gradient scores for the genomic data of each patient. It was easy to interpret the

results: a negative score indicated a gene’s association with a lower risk of tumor, while a

positive score indicated a higher risk of cancer.

We assessed the collective genomic impact of our deep learning model on a patient cohort

by normalizing each patient’s absolute integrated gradient score to a range of 0 to 1. We

then took the average of these normalized absolute scores to obtain a group-level integrated

gradient score. To ensure accuracy, we calculated the ”absmax” integrated gradient score

by taking the highest normalized absolute score from five iterations of a five-fold cross-

validation. These scores act as markers of gene significance in different cancer types. Table

3.3 catalogs the genes of paramount influence, ranked by their ”absmax” scores, for cancer

cohorts including BLCA, GBMLGG, LUAD, and UCEC.

3.4.4 Influential gene analysis for BRCA subtypes

To gain a better understanding of the impact of genetics on the four distinct BRCA

cancer subtypes—Her2, LumA, LumB, and Basal—we calculated the Average Absolute IG

score for each subtype. We started by averaging the Integrated Gradients (IG) across all

subtypes. As expected, the genes that were most prominent were those that are traditionally

known to be general cancer genes, confirming the universal oncogenic pathways. However, a

more subtype-specific averaging showed distinct IG signals for each subtype, demonstrating

the subtle genetic differences that are unique to each subtype. Interestingly, the genes that

had the most significant differences in IG scores between the subtypes have already been

documented in the literature as breast cancer-associated genes. This correlation not only

confirms the accuracy and biological relevance of our model but also highlights its potential

125



in identifying subtype-specific genetic signatures that are essential for targeted therapeutic

interventions. In Table 3.4, the term ”Absmax” refers to the highest Average Absolute IG

score observed across five cross-validation models for all BRCA patients. On the other hand,

the ”SubtypeMax” denotes the peak Average Absolute IG score across these models, but

only for patients of a single BRCA subtype.

Based on this, we obtain Table 3.5, which specifically spotlight genes with notable differ-

ences in their IG scores across subtypes. Within this table, the ”Absmax” column captures

the apex normalized absolute IG score spanning all BRCA patients. Concurrently, the

”Maxsubtype” column reveals the maximum score among the four delineated BRCA sub-

types. The computed ”Difference” column highlights the disparity between the ”Absmax”

and ”Maxsubtype” scores, and a larger difference may suggest that certain genes exert a

more dominant influence within specific breast cancer subtypes. For ease of interpretation

and to emphasize genes with heightened subtype specificity, the table entries are arranged in

descending order based on the ”Difference” values. Table 3.5 shows that 46 of the examined

genes had higher variability when looking at the different subtypes compared to the average

IG score among patients. Many of these genes have been identified as having a major impact

on breast cancer, and are key factors in its various subtypes. Out of these 46 genes, only 7

(SMO, CLTC, SDHD, FNBP1, PNOC, GUCY2D, ITGA2B) have not been associated with

the prognosis of breast cancer in the existing literature and therefore require further research.

• PALB2: Previous studies have revealed that breast cancer associated with PALB2

is particularly aggressive in terms of its clinicopathological features, particularly the

triple-negative subtype, and has a higher mortality rate regardless of the tumor stage,

the type of chemotherapy used, or the hormone receptor status (Antoniou et al., 2014).

• CDK12: There is a growing body of evidence that CDK12 is associated with breast

cancer. Furthermore, CDK12 appears to have different functions in the various sub-

types of breast cancer, particularly in HER2-positive breast cancer and triple-negative

breast cancer (TNBC) (S. Liang et al., 2020).

• CSF3: High levels of G-CSF (CSF3) produced by cancer cells can activate neutrophils

to create neutrophil extracellular traps, which can facilitate the movement of cancer
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cells. This discovery provides insight into why the C3 (LumA) subtype is associated

with a poor prognosis (L. Guo et al., 2019).

• BLM: Tumors of the LumA type and the Genufu subtype (ER(+)/Her2(-)/low pro-

liferation) were more likely to have low levels of BLM mRNA, suggesting that BLM

could be a useful biomarker for breast cancer (Arora et al., 2015).

• ICAM2: High concentrations of ICAM2 were found to increase the adhesion of the

blood-cerebrospinal fluid barrier, facilitate the trans-barrier migration, and enhance the

stemness abilities, thereby determining the specificity of leptomeningeal metastasis of

triple-negative breast cancer. (Pan et al., 2023)

• PDGFRA: The expression of PDGFRA and PDGF-CC were found to be highly

associated with breast cancer that has an aggressive biological nature, such as the

triple-negative subtype. Moreover, a high PDGF-CC expression was found to increase

the risk of a distant recurrence within five years (Jansson et al., 2018).

• RIPK3: The expression of RIPK3 was found to be strongly associated with increased

proliferation and cystine-dependence in recurrent breast cancer (Stoll et al., 2017).

Moreover, the positive correlation between RIPK3 and lymphoid cells was limited to

HER2+ and triple negative/basal-like breast cancer subtypes (Y. Xu et al., 2022).

• SDHB: The HER-2 subtype of breast cancer was most commonly associated with high

levels of SDHA expression in tumor cells, while the luminal A subtype was more likely

to have low or no SDHA expression (P=0.032) (Kim et al., 2013).

• TGFB2: The long noncoding RNA (lncRNA) TGFB2-AS1 is a significant regulator of

the reversibility and plasticity of noncancer stem cell populations in TNBC, TGFB2-

AS1 weakens the breast cancer stem-like cell (BCSC) characteristics of TNBC cells in

the laboratory and significantly reduces tumorigenic frequency and lung metastasis in

living organisms (C. Zhou et al., 2022).

• PIK3R1, AKT3: PIK3R1 is a tumor suppressor gene related to the PI3K pathway,

which is made up of oncogenes such as PIK3CA, AKT and MTOR (Pascual & Turner,
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2019).

• RARA: Overexpression of RARA caused the breakdown of mammary luminal struc-

tures. Additionally, it was seen that the RARA-induced epithelial to mesenchymal

transition (EMT) occurred in mammary epithelial cells (Doi et al., 2015).

• RET: Research on RET has mainly been conducted in relation to diseases that are

estrogen-receptor positive (ER+). Genomic changes in the RET gene were observed

in all types of breast cancer, with the majority of cases being ER-negative (65%) or

not amplified in ERBB2 (82%) (Paratala et al., 2018).

• THRA: The alpha-2 variant of the thyroid hormone receptor (THRA-2) has been

found to impede the effects of triiodothyronine (T3) and a low expression of this recep-

tor has been linked to unfavorable tumor characteristics and a higher mortality rate in

breast cancer patients.(Sandsveden et al., 2021)

• PTK2B: Al-Juboori et al., 2019 have confirmed that PTK2B (PYK2) plays a role in

promoting the invasion of metformin-resistant HER2 breast cancer cells by examining

the effect of PYK2 knockdown and metformin on cell invasion and by analyzing the

related cellular pathways through proteomics. Additionally, they have found a corre-

lation between high levels of PYK2 expression and decreased survival in pure HER2

breast cancer patients.

• AURKA: Amplification of the AURKA gene is a frequent genetic abnormality in

breast cancer, particularly in tumors that have a basal-like appearance (Staff et al.,

2010).

• ITGB4: Previous research has demonstrated that ITGB4 is more abundant in tissues

from patients with triple-negative breast cancer, as indicated in Table 3 of S. Lu et al.,

2008.

• BRCA1, BRCA2: Individuals with BRCA1 mutations are mainly prone to develop-

ing triple negative breast cancers, while those with BRCA2 mutations are more likely
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to have tumors that are positive for estrogen and/or progesterone receptors (Rennert

et al., 2007).

• KSR1: Patients with breast cancer and high levels of KSR1 (a breast cancer tumor

suppressor) had better disease-free and overall survival, additionally, KSR1 expres-

sion was found to be positively correlated with levels of breast cancer 1, early onset

(BRCA1), BARD1, and Chk1 in breast cancer specimens (H. Zhang et al., 2015).

• NFIB: NFIB could be a potential target for estrogen receptor-negative breast cancers.

Research has revealed that NFIB protein was more abundant in ER negative breast

cancer tissues, however, the expression level was comparable between HER2 subtype

and triple negative subtype (Moon et al., 2011).

• MSI2: In Triple Negative Breast Cancer (TNBC), a high level of MSI2a expression was

found to be associated with a worse overall survival rate for patients. In both laboratory

and real-world settings, an increase in MSI2a inhibited the invasion of TNBC cells and

decreased the activity of the ERK1/2 protein (M. Li et al., 2020).

• ERBB2: The HER2-Enriched (HER2-E) intrinsic subtype is characterized by the high

expression level of ERBB2 (Schettini & Prat, 2021).

• FGFR3: Chew et al., 2020 utilized mass spectrometry (MS) to analyze tyrosine phos-

phorylation in a subset of triple-negative breast cancer (TNBC) cell lines. The results

revealed aberrant activation of the FGFR3 kinase, prompting further investigation into

its potential as a therapeutic target.

• SDHAF2: Clinically, a reduction in the quantity of SDHAF2 is associated with a

poorer prognosis for ER+ breast cancer patients in terms of relapse-free survival. Re-

search has revealed that the accumulation of succinate, which is caused by a lack of

SDH activity, is functionally linked to endocrine therapy resistance in ER+ breast

cancer cells (Sengupta et al., 2022).

• C3: C3, a major molecule in the complement pathway, was found to be highly ex-

pressed and its expression was inversely associated with that of CAS in breast cancer.
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Lower C3 expression was linked to a worse prognosis. Additionally, C3 expression was

positively correlated with the infiltration of multiple immune cells. Our results indicate

that CAS may be involved in the progression of TNBC through C3-mediated immune

cell suppression and could be a potential therapeutic target for TNBC (Ye et al., 2022).

• GAS7: The wild-type form of the p53 gene increases the expression of GAS7, a gene

associated with early-onset breast cancer, in order to inhibit metastasis through a

signaling pathway that involves GAS7 and CYFIP1 (J.-W. Chang et al., 2018).

• JUN: Activated c-Jun is primarily observed at the invasive forefront in breast cancer

and has links with cell proliferation and blood vessel formation. Targeting c-Jun/AP-

1 could offer novel approaches to inhibit tumor-related angiogenesis (Vleugel et al.,

2006).

• CCL25: CCL25, which is the only chemokine for CCR9+ cells, is not expressed in both

human and mouse triple-negative breast cancers (TNBCs). This suggests that intro-

ducing CCL25 directly into the tumor might boost the effectiveness of immunotherapy

in TNBCs (H. Chen, Cong, et al., 2020).

• HSPB8: In estrogen receptor-positive breast cancer cells, the HSPB8 gene’s expression

is stimulated by estrogen. Additionally, this protein operates as a chaperone, working

alongside Bag3, which promotes macroautophagy (Piccolella et al., 2017).

• FANCD2: FANCD2 expression is lacking in 10–20% of both sporadic and BRCA1-

related breast cancers, suggesting its somatic inactivation plays a role in both heredi-

tary and non-hereditary breast cancer development, with FANCD2 also serving as an

independent prognostic indicator in sporadic cases (Van Der Groep et al., 2008).

• CXCL1: CXCL1/CXCR2 induces ER-negative breast cancer cell invasion and migra-

tion via the ERK1/2 pathway (C. Yang et al., 2019).

• STK11: The tumor-suppressing LKB1/STK11 gene, linked to PJS, aids in inhibiting

breast cancer, and its reduced expression in sporadic breast cancer correlates with

decreased survival (Nakanishi et al., 2005).
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• MAP2K6: MAP2K6 is a prognostic indicator in breast cancer, with higher expression

being associated with a more favorable outcome (X. Zhou et al., 2020).

• BUB1B: Reducing BUB1B expression disrupts the SAC, causing chromosomal mis-

alignment and abnormalities in breast cancer cells, leading to cell death, and its sup-

pression in the TNBC cell line, MDA-MB-468, curtails tumor growth in mice, em-

phasizing SAC’s pivotal role in breast cancer and its potential as a therapeutic target

(Koyuncu et al., 2021).

• NBN: Mutations in the NBN gene can lead to Nijemen breakage syndrome, which

increases the likelihood of developing various illnesses, particularly a heightened risk

of breast cancer. (Uzunoglu et al., 2016).

• EDN1: Endothelin-1 genetic polymorphism as predictive marker for bevacizumab in

metastatic breast cancer (Gampenrieder et al., 2017).

• EDN3: Targeting EDN3 with epigenetic treatment and combining DNA demethyla-

tion agents with EDNR inhibitors could potentially restore ET-axis-mediated cellular

signaling, which could provide therapeutic advantages for breast cancer (Wiesmann

et al., 2009).

• POU2AF1: According to Thalor et al., 2022, machine learning-enhanced analysis of

gene expression profiles in breast cancer has identified new potential prognostic markers

for triple-negative breast cancer including POU2AF1.

3.4.5 Discussion

In a study by S. Li et al., 2020, the framework begins with a CNN-based module for

cancer detection, which assesses each patch in WSIs to predict tumor probability. Following

this, they employ the Deep Conventional Gaussian Mixture Model (Zong et al., 2018) to

conduct unsupervised nuclear segmentation and to generate nuclear density maps. Tumor

regions and Regions of Interest are identified and extracted using the generated probability

heatmaps and nuclear density maps. Subsequently, a conditional autoencoder is applied

to merge pathological features with genomic features. Lastly, the combined image and

131



gene features are processed through the DeepHit (C. Lee, Zame, et al., 2018) model, which

provides predictions regarding patient survival.

The biggest difference between this model and ours lies in its structure. The model

in question comprises three separately trained components. It initially encodes the Whole

Slide Images (WSIs) into features using ResNet, followed by the Deep Conventional Gaussian

Mixture Model to obtain tumor probability. Only after this step are the regions of interest

selected based on the tumor probabilities for input into the final DeepHit model. Unlike their

model, which is not end-to-end, ours does not require the calculation of tumor probability

for each WSI patch, making our model not only less complex in terms of training but also

more robust.

It’s important to note that their C-index is actually a time-dependent C-index (Antolini

et al., 2005). Although numerically higher than ours, it’s not directly comparable as they are

not the same type of C-index. In our model, the final survival classifier can be replaced with

their DeepHit framework. This potential modification opens avenues for future research to

experiment and see if our time-dependent C-index could perform better.

3.5 Conclusion

The study introduces the Genomic-Guided Hierarchical Attention Multi-Scale Pathology

Transformer (GG-HAMPT), a cutting-edge multi-scale, multi-modal pan-cancer survival pre-

diction system adept at processing inputs from gigapixel Whole Slide Images (WSIs) and

varied genomic attributes, including RNA-sequenced gene expression, copy number varia-

tions, and mutation profiles. GG-HAMPT, born from an exhaustive analysis of different

data modalities for each cancer cohort, employs intricate feature aggregation techniques,

leveraging multi-scale hierarchical attention and co-attention mechanisms. This allows it to

extract and formulate impactful internal data representations, crucial for accurate long-term

survival forecasts across diverse cancer types. GG-HAMPT is strategically placed to take

advantage of the ever-evolving world of precision medicine. It is designed to make the most

of the immense amount of high-dimensional data available, offering not only improved prog-

nosis but also the ability to make evidence-based clinical decisions for cancer patients. Its

validity, underscored by integration gradient results aligning with prior academic findings,

132



cements GG-HAMPT’s role as a revolutionary instrument in cancer prognosis, promising

heightened precision in predictions and enriching patient management in oncology.

Figure 3.7: Co-attention visualization for low risk cases in BRCA patient TCGA-B6-A01A, with
corresponding high attention patches and high-attributed genes in each heatmap.
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Figure 3.8: Co-attention visualization for high risk cases in BRCA, with corresponding high atten-
tion patches and high-attributed genes in each heatmap.
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BLCAgene Absmax GBMLGGgene Absmax LUADgene Absmax UCECgene Absmax
ERBB2 1 CD22 1 PRF1 1 CYLD 1
PMS1 1 COL1A1 1 MTCP1 1 CD1C 1
CYLD 1 TNFRSF12A 1 REG1A 1 FANCE 1
BRCA1 1 KLF6 1 FAM3D 1 SPECC1 1
FANCE 1 CGB8 0.955 CBLB 0.97 KDM6A 1
KNL1 0.993 CHEK2 0.875 IL12A 0.944 CDC73 0.962

CARD11 0.93 PRF1 0.87 EXT1 0.933 PTCH1 0.955
EP300 0.922 TNFRSF11B 0.787 NBN 0.906 KDM5C 0.92
IL7 0.894 DICER1 0.783 ERBB2 0.903 NF1 0.895

SETD2 0.884 NOTCH2 0.766 KLF6 0.881 FANCD2 0.871
PRF1 0.845 FCGR2B 0.761 BST1 0.835 PHOX2B 0.842
ETV6 0.837 F3 0.757 CGB7 0.807 CBLB 0.836
LAMP3 0.837 MSN 0.75 NF2 0.791 EP300 0.817
CD3G 0.821 ADGRE2 0.742 SDHC 0.79 TRPM7 0.8
SOCS1 0.812 VCAM1 0.708 CXCL3 0.755 RECQL4 0.796
B3GAT1 0.78 SIRPG 0.706 CD1B 0.752 XPA 0.794
CDH1 0.744 EPHA10 0.703 BLM 0.745 BRCA2 0.79
NCR1 0.734 DPP4 0.697 FH 0.744 TSC2 0.764
ETV1 0.732 CD58 0.694 ZXDA 0.736 FOXL2 0.752
PDCD1 0.726 PDGFA 0.685 ELF4 0.735 HNF1A 0.751
FASLG 0.717 AKAP9 0.683 RB1 0.733 TP53 0.751
CD74 0.707 SDHB 0.671 LIFR 0.728 MLH1 0.732

KLRC1 0.704 CD101 0.669 ANKK1 0.727 BRIP1 0.731
CD109 0.704 PLAU 0.651 TNFAIP3 0.725 FANCG 0.724
PF4 0.693 ENPEP 0.651 GATA3 0.722 BMPR1A 0.714

INSL3 0.692 RPN1 0.648 ZNF180 0.72 APC 0.693
VHL 0.687 ATM 0.643 CLK3 0.714 KLRB1 0.693

CDKN2A 0.684 ALCAM 0.638 PHKG1 0.711 NUAK1 0.683
HMGA1 0.683 GDF2 0.637 ARNT 0.704 PALB2 0.676
GAST 0.672 GDF15 0.632 IL36A 0.703 SETD2 0.674
ERCC2 0.671 VEGFA 0.629 FASLG 0.697 CDH1 0.671
CMTM5 0.662 BCR 0.627 TPM3 0.695 TRIB3 0.668
HOXC9 0.654 RET 0.626 PRKAA1 0.692 BUB1B 0.665
CIITA 0.648 IL2RA 0.621 SOX9 0.69 NSD1 0.661
TSSK4 0.648 PRKG1 0.621 RNASEL 0.69 ERCC5 0.651
LASP1 0.645 AFF3 0.617 ATM 0.681 EZH2 0.651
TCF12 0.636 MIA 0.614 CD1E 0.68 AURKB 0.651
IL3RA 0.632 CEBPA 0.614 CXCL2 0.679 RBM15 0.649
CD7 0.63 TRIM33 0.611 CCL13 0.677 TFAP4 0.649

CTLA4 0.628 CDCP1 0.61 TRIO 0.675 CR1 0.638
KIR2DL4 0.625 EGFR 0.608 L1CAM 0.674 DDB2 0.638
EGFR 0.615 BLM 0.608 ARHGEF12 0.671 CDC7 0.629
TFRC 0.611 BUB1B 0.608 WNK4 0.666 FBXW7 0.627
PIK3R1 0.61 TWF2 0.605 MLLT10 0.663 ALPK3 0.626
NTF3 0.609 ERCC2 0.604 TLK2 0.662 HMMR 0.617
IL2RG 0.609 MYCL 0.602 SETD2 0.66 CDK15 0.616
BLK 0.609 MUC1 0.6 ERCC2 0.656 INHBE 0.614
SUFU 0.609 ADM 0.645 FANCC 0.613
DKK1 0.605 MLLT6 0.643 GRK7 0.608
BLM 0.602 TCL1A 0.642 MYC 0.606

NKX2-1 0.641 ATIC 0.606
IL10RB 0.636 MSH2 0.605
STK11 0.635 IGF2R 0.604
NDP 0.632

SMARCB1 0.627
DKK1 0.625
CD47 0.624
NF1 0.623

ATOH1 0.623
IRX1 0.621

KDM5C 0.619
MIF 0.615
CCN1 0.614

DPRXP6 0.613
BIRC3 0.607
FAS 0.604

Table 3.3: Average normalized absolute IG score of all patients from five different cancer cohorts.
The highest average normalized absolute IG score across five cross validation models is referred to
as the ”Absmax”. These IG scores are used to demonstrate the significance of genetics of different
cancer cohorts. Many cancer oncogenes are on the high-impact list.
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Gene Absmax Her2Max LumAMax LumBMax BasalMax Maxsubtype
PDGFRA 0.407 0.962 0.79 0.565 1 1
GUCY2D 0.414 1 0.588 0.716 0.797 1
BUB1B 0.449 0.716 1 1 1 1
CLTC 0.462 0.803 0.66 1 0.838 1
SDHD 0.48 0.873 1 1 0.946 1

SDHAF2 0.555 1 1 0.787 1 1
ERCC5 0.665 1 1 1 1 1
SAA1 0.686 1 0.586 0.568 0.743 1
EP300 1 1 1 1 1 1
BLM 0.375 0.837 0.998 0.895 0.789 0.998

GATA3 1 0.632 0.948 0.83 0.981 0.981
EDN1 0.494 0.777 0.638 0.943 0.763 0.943

SMARCB1 0.735 0.941 0.939 0.743 0.816 0.941
CCL25 0.522 0.934 0.506 0.586 0.43 0.934
PALB2 0.237 0.565 0.927 0.719 0.634 0.927
CSF3 0.266 0.693 0.477 0.919 0.74 0.919
SDHB 0.347 0.604 0.906 0.717 0.598 0.906
AMER1 0.556 0.904 0.637 0.629 0.825 0.904
PIK3R1 0.366 0.896 0.58 0.618 0.565 0.896
ITGB4 0.4 0.551 0.447 0.885 0.483 0.885
CDK12 0.213 0.866 0.577 0.509 0.694 0.866
ITGA2B 0.167 0.757 0.509 0.63 0.861 0.861
MEN1 0.537 0.858 0.517 0.606 0.472 0.858
BRCA2 0.422 0.475 0.853 0.627 0.583 0.853
NBN 0.247 0.847 0.55 0.586 0.476 0.847

ERBB2 0.386 0.767 0.592 0.838 0.579 0.838
RARA 0.303 0.823 0.752 0.801 0.808 0.823

SIGLEC5 0.524 0.667 0.451 0.589 0.822 0.822
FCGR2A 1 0.596 0.478 0.812 0.548 0.812
BRCA1 0.327 0.808 0.622 0.733 0.666 0.808
FGFR3 0.354 0.589 0.628 0.805 0.66 0.805
LHFPL6 0.441 0.607 0.488 0.801 0.52 0.801
NFIB 0.321 0.584 0.556 0.673 0.795 0.795
MS4A1 0.503 0.747 0.513 0.795 0.627 0.795
RET 0.285 0.499 0.495 0.789 0.517 0.789

MAP2K6 0.361 0.785 0.58 0.577 0.459 0.785
CD5 0.414 0.625 0.476 0.784 0.509 0.784
AKT3 0.344 0.371 0.777 0.607 0.569 0.777

RECQL4 0.521 0.733 0.72 0.674 0.768 0.768
FNBP1 0.282 0.763 0.561 0.529 0.757 0.763
RIPK3 0.163 0.6 0.675 0.471 0.751 0.751
TGFA 0.404 0.657 0.446 0.547 0.74 0.74
SMO 0.28 0.739 0.505 0.63 0.734 0.739
GAS7 0.31 0.727 0.499 0.547 0.681 0.727
FSHB 0.688 0.677 0.489 0.725 0.648 0.725
BRD4 0.566 0.601 0.399 0.723 0.395 0.723
ICAM2 0.095 0.71 0.435 0.511 0.484 0.71
FANCA 0.618 0.7 0.473 0.655 0.564 0.7
FANCF 0.49 0.375 0.698 0.505 0.543 0.698
MYLK3 0.385 0.627 0.539 0.4 0.688 0.688

HNRNPA2B1 0.395 0.683 0.446 0.502 0.624 0.683
ATIC 0.395 0.681 0.419 0.474 0.598 0.681

PTK2B 0.182 0.604 0.514 0.397 0.68 0.68
STK11 0.277 0.403 0.665 0.68 0.497 0.68
APLN 0.437 0.68 0.257 0.432 0.404 0.68

CEACAM5 0.47 0.494 0.405 0.673 0.447 0.673
GAST 0.312 0.586 0.357 0.672 0.437 0.672
JAK2 0.314 0.469 0.492 0.587 0.672 0.672

TGFB2 0.13 0.664 0.363 0.624 0.506 0.664
THRA 0.161 0.664 0.375 0.405 0.392 0.664
CXCL1 0.254 0.662 0.281 0.419 0.338 0.662
CD274 0.272 0.662 0.335 0.484 0.395 0.662
MN1 0.592 0.537 0.385 0.659 0.393 0.659

SIGLEC1 0.583 0.563 0.439 0.653 0.459 0.653
KSR1 0.167 0.554 0.491 0.395 0.648 0.648

CLTCL1 0.446 0.529 0.384 0.648 0.387 0.648
AURKA 0.156 0.544 0.531 0.467 0.643 0.643
FGF7 0.488 0.643 0.436 0.504 0.556 0.643
BRIP1 0.323 0.629 0.64 0.619 0.626 0.64

PTGFRN 0.575 0.373 0.426 0.638 0.426 0.638
MRTFA 0.242 0.574 0.303 0.609 0.635 0.635
CD52 0.423 0.342 0.409 0.634 0.348 0.634
JUN 0.216 0.478 0.484 0.629 0.469 0.629
CBLB 0.421 0.373 0.627 0.494 0.518 0.627
CD58 0.404 0.475 0.353 0.626 0.419 0.626
PTEN 0.803 0.366 0.622 0.479 0.494 0.622
SCG2 0.461 0.411 0.338 0.615 0.45 0.615
EDN3 0.137 0.614 0.464 0.564 0.475 0.614

LILRB5 0.806 0.408 0.391 0.613 0.356 0.613
FANCD2 0.202 0.612 0.523 0.495 0.591 0.612

Table 3.4: Average absolute IG score of all patients from 4 different BRCA cancer subtypes:
Her2, LumA, LumB, Basal. The highest average normalized absolute IG score across five cross
validation models among all BRCA patients is referred to as the ”Absmax”, the highest average
normalized absolute IG score across five cross validation models among all BRCA patients from
a specific subtype is referred to as the ”SubtypeMax”. Maxsubtype indicating the maximum of 4
”SubtypeMax”. These IG scores are used to demonstrate the significance of BRCA subtype specific
genetics. This table was sorted by the Maxsubtype.
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Gene Absmax Maxsubtype Difference Gene Absmax Maxsubtype Difference
ITGA2B 0.167 0.861 0.694 PALB2 0.237 0.927 0.69
CDK12 0.213 0.866 0.653 CSF3 0.266 0.919 0.653
BLM 0.375 0.998 0.623 ICAM2 0.095 0.71 0.615
NBN 0.247 0.847 0.6 PDGFRA 0.407 1 0.593
RIPK3 0.163 0.751 0.588 GUCY2D 0.414 1 0.586
SDHB 0.347 0.906 0.559 BUB1B 0.449 1 0.551
CLTC 0.462 1 0.538 TGFB2 0.13 0.664 0.534
PIK3R1 0.366 0.896 0.53 RARA 0.303 0.823 0.52
SDHD 0.48 1 0.52 RET 0.285 0.789 0.504
THRA 0.161 0.664 0.503 PTK2B 0.182 0.68 0.498
AURKA 0.156 0.643 0.487 ITGB4 0.4 0.885 0.485
FNBP1 0.282 0.763 0.481 BRCA1 0.327 0.808 0.481
KSR1 0.167 0.648 0.481 EDN3 0.137 0.614 0.477
NFIB 0.321 0.795 0.474 MSI2 0.105 0.574 0.469
SMO 0.28 0.739 0.459 ERBB2 0.386 0.838 0.452

FGFR3 0.354 0.805 0.451 POU2AF1 0.13 0.581 0.451
EDN1 0.494 0.943 0.449 SDHAF2 0.555 1 0.445
C3 0.134 0.576 0.442 AKT3 0.344 0.777 0.433

BRCA2 0.422 0.853 0.431 MAP2K6 0.361 0.785 0.424
GAS7 0.31 0.727 0.417 JUN 0.216 0.629 0.413
CCL25 0.522 0.934 0.412 PNOC 0.145 0.556 0.411
HSPB8 0.085 0.495 0.41 FANCD2 0.202 0.612 0.41
CXCL1 0.254 0.662 0.408 STK11 0.277 0.68 0.403

Table 3.5: Comparison of Average Absolute IG Scores Across BRCA Cancer Subtypes (Positive
difference only). The table lists genes with their corresponding ”Absmax” scores, which represent
the highest average normalized absolute IG score across all BRCA patients, and the ”Maxsub-
type” scores, indicating the maximum of the four subtype-specific scores. The ”Difference” column
illustrates the difference between the ”Absmax” and ”Maxsubtype” scores. Genes with a larger
difference may have a more pronounced role in specific breast cancer subtypes. This table is sorted
by the ”Difference” in descending order to highlight genes of potential subtype-specific significance.
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Chapter 4

Domain adaptation of foundation

models for image classification in

digital pathology

4.1 Abstract

The accuracy of classifying images in digital pathology is essential for correct diagnosis

and has major implications for patient outcomes. Nevertheless, traditional machine learning

models often struggle to move from general images to the specialized domain of pathological

images (Razzak et al., 2018). We present the LoRA Vision Transformer (LoRA-ViT), a novel

adaptation of existing models that is especially adept at classifying images in digital pathol-

ogy. By using Low-Rank Adaptation (LoRA) techniques, LoRA-ViT can be easily adjusted

to the unique features and distribution of pathological data without needing to be exten-

sively retrained or tuned to a specific dataset. This approach helps reduce the domain shift

issue, refine the model’s focus and take advantage of the pre-trained representations. The

adaptability and computational efficiency of LoRA-ViT stand to offer substantial advance-

ments in automated pathology, ultimately supporting the broader integration of artificial

intelligence in diagnostic medicine.
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4.2 Introduction

4.2.1 Digital pathology

Pathology, the cornerstone of precise diagnosis in healthcare, has traditionally been

grounded in the examination of biopsy samples on glass slides (Acs et al., 2020). This

practice, while effective, is constrained by the need for physical presence for examination

(Jahn et al., 2020). Digital pathology represents a transformative approach, leveraging dig-

ital technology to usher in a new era of accurate diagnosis in the field.

The advent of digital pathology brought significant advancements in imaging technol-

ogy, including high-speed scanners capable of capturing detailed images of histological slides,

greatly expanded access to information and analysis opportunities (Wright et al., 2013).Cen-

tral to digital pathology is its ability to transcend the physical barriers of slide examination.

Pathologists can now examine, interpret, and analyze digitized slide images with enhanced

clarity and precision (Aeffner et al., 2019). The benefits of this digital shift are manifold.

It not only improves diagnostic accuracy through superior image quality but also integrates

quantitative analysis tools, augmenting the expertise of pathologists.

4.2.2 Deep learning in digital pathology

Deep learning is poised to revolutionize the domain of histopathology. Traditionally,

pathologists expert have been responsible for the meticulous task of examining stained tissue

specimens under a microscope, often to diagnose serious conditions such as cancer (Spanhol

et al., 2015). This manual inspection, while thorough, can be extremely time-consuming

and sometimes subjective. The emergence of new deep learning technologies has opened

up the possibility of quickly and automatically analyzing and interpreting large amounts of

digitized whole slide images (WSIs). These advances not only have the potential to streamline

traditional processes, significantly reducing the amount of time pathologists spend manually

examining slides, but also add a quantitative element of accuracy. For instance, rather than

relying on a pathologist’s qualitative assessment, it is now feasible to use deep learning-driven

approaches to quantify specific metrics, like the number of tumor-infiltrating lymphocytes

across entire WSIs with unparalleled accuracy (Klauschen et al., 2018).

This transformative shift towards automated histopathology is attributed to the consis-
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tent advancements in deep learning techniques. Recent deep learning methodologies have

obtained exemplary results in various histopathology analysis tasks (Niazi et al., 2019, Bera

et al., 2019, Van der Laak et al., 2021). More impressively, some of these state-of-the-art

machine learning models have achieved performance metrics comparable to, and in some

cases exceeding, experienced human pathologists in specific diagnostic tasks (Xiaoxuan et

al., 2019). As the field progresses, it is anticipated that integration of deep learning with

histopathological practices will further enhance the precision, efficiency and reliability of

diagnoses, setting new standards for patient care and medical research.

4.2.3 Challenges: generalizability

In the past decade, deep learning has witnessed significant advances in digital pathology,

both in refining algorithmic accuracy and pioneering innovative methodologies. However,

the journey to fully integrate these deep learning methods into clinical settings is riddled

with multifaceted challenges.

The most significant challenge is the generalizability of deep learning digital pathology

algorithms to clinical practice. Although the size of datasets used to create deep learning

digital pathology algorithms has grown significantly in recent years, they still do not reflect

the data typically encountered in clinical settings (Abels et al., 2019). The data employed

in academic studies often oversimplify the rich variations seen in practice. Additionally,

factors such as different patient demographics across different institutions or geographical

areas can lead to subtle biases that are not adequately addressed in current deep learning

digital pathology algorithms.

Therefore, deep learning digital pathology algorithms perform optimally on data from

the source(s) they were trained on, but not as well on data from other sources. For instance,

when a prostate cancer detection model was applied to whole slide images (WSIs) from the

same dataset used for algorithm construction, but rescanned on a different WSI scanner,

the model’s performance dropped by 5.84% (Campanella et al., 2019). Other studies have

also reported similar performance drops when using external test data (de Bel et al., 2018,

Y. Liu et al., 2019).
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4.2.4 Foundation models in computer vision

The evolution of computer vision has been marked by pivotal advancements, primarily

spurred by the introduction and continual refinement of deep learning models. The main

impetus for this transformation has been the evaluation of datasets such as ImageNet (J.

Deng et al., 2009), which has become known as the ultimate testing ground for the state of

the art (SOTA) models. The ImageNet dataset, comprising a diverse range of 1000 common

classes, provides an ideal grand set against which new models can be evaluated.

Figure 4.1: Computer Vision Benchmark on ImageNet (Top 1 accuracy / 1000 classes)

Figure 4.1 shows the different models and their accuracy on ImageNet (Top 1 accu-

racy / 1000 classes). In 2012, a major advancement was made with the debut of AlexNet

(Krizhevsky et al., 2012). This marked the onset of the era where convolution neural net-

works (CNNs) began to redefine the paradigms of image classification. Their inherent ability

to hierarchically extract features from images set them apart, leading to superior perfor-

mance. Subsequently, 2014 witnessed the evolution of Visual Geometry Groups Very Deep

Convolutional Networks (VGG)(Simonyan & Zisserman, 2014), which expanded upon the

layers introduced by AlexNet, enhancing depth and complexity. However, a monumental

change occurred toward the end of 2015 when Kaiming He introduced ResNet (K. He et al.,

2016a). With its ingenious design of a bypass shortcut, ResNet effectively circumvented the

degradation problems often associated with profoundly deep networks. Subsequently, this

design has been the cornerstone of numerous successful networks. Its balanced combination

of robust performance and simplicity makes it an ideal choice for training or fine-tuning
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purposes.

As time went on, models became more complex and accurate. ResNeXt (S. Xie et al.,

2017) was a demonstration of this, further developing the basic elements of ResNet. How-

ever, it was in 2019 that the field underwent a major transformation. The advent of large-

scale pretrained foundation models, especially those ingrained in transformer architecture,

revolutionized the field. Originally conceived for natural language processing (NLP), the

potential of these models in computer vision began to unfold. Up until 2020, CNNs were

the predominant choice for computer vision tasks. However, the landscape began to change

with the emergence of the Vision Transformer (ViT) towards the end of 2020. Drawing

inspiration from the success of transformers in NLP, ViT showcased the potential of these

architectures to decipher visual data (Dosovitskiy et al., 2020). This marked the beginning

of transformer-based foundation models that overshadowed their CNN counterparts in terms

of performance. Subsequent models, like ViT-G (indicating ”Giant”), escalated the number

of parameters. Similarly, hybrid models such as CoCa (J. Yu et al., 2022) amalgamated con-

volution and transformer architectures, thus defining themselves as the contemporary state

of the art models.

Recently, Meta AI has made a groundbreaking advancement in the field of computer

vision with the introduction of the Segment Anything Model (SAM) (Kirillov et al., 2023).

This model combines deep learning and extensive dataset training to enable accurate seg-

mentation of any object in an image. Prompts can be a single point, a group of points

(including a full mask), a bounding box, or text. The model is expected to generate a valid

segmentation mask even when the prompt is ambiguous. What makes SAM unique is its

capacity for zero-shot generalization, which means that it does not require additional train-

ing when presented with new objects. This is made possible by its training alongside the

three-stage development of the SA-1B dataset with of over 11 million images and more than

a billion masks. To generate this dataset, firstly human annotators improved the masks

created by SAM from public datasets with manual adjustments; then, they increased the va-

riety of objects by dealing with SAM’s less certain mask predictions, leading to the ultimate

segmentation created by SAM through grid-distributed points across pictures, only selecting

the most reliable results. Potential applications of SAM are far-reaching, as demonstrated
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by its ability to precisely delineate any desired object with a single click or to autonomously

sample points to segment multiple entities, as seen with the Brooklyn Bridge in New York

City (Figure 4.2).

Figure 4.2: Segment Anything Model demo with Brooklyn Bridge (Kirillov et al., 2023).

Reflection on the potential cross-disciplinary applications of cutting-edge advancements

is warranted. How can these sophisticated tools be effectively incorporated into the biology

and medical field? In (Mazurowski et al., 2023) the authors assessed SAM across 19 med-

ical imaging datasets, demonstrating inconsistent performance across different tasks. This

implies that while SAM has potential in medical image segmentation, its application must

be carefully considered, with a lot of room for improvement.

4.2.5 Challenges in foundation model domain adaptation

In the medical domain and digital pathology analysis, adapting foundation models presents

a distinct set of challenges. The main problem is caused by the specialized nature of the

medical images we are examining, which is significantly different from the regular images

that traditional computer vision activities manage. This specialization results in signif-

icantly smaller datasets—typically ranging from several hundreds to a few thousand im-
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ages—compared to the multi-million image datasets like the 11 million images used to train

models such as SAM. The lack of medical images is not only evident in their quantity, but

also in the quality of data needed. Each image in our datasets contains a wealth of important

information, and labeling them requires specialized knowledge, which is in stark contrast to

the ability of companies such as Meta to use less costly labor for annotation tasks in more

general areas.

Medical applications usually require extremely high accuracy. Currently, people use

simpler, yet reliable models, such as ResNet50, which are trained for each particular dataset

and issue. One question naturally occurs: why can’t we exploit the capacities of large-scale,

pre-trained base models?

The tremendous size of pretrained foundation models makes them resource-intensive, a

critical consideration given the often constrained resources in medical research settings. Even

with the traditional training method, the performance of these models often fails to meet

the precision required in medical applications. In essence, while the foundation models hold

promise, the journey to effectively adapt them to medical imagery is fraught with obstacles

that require innovative solutions to bridge the gap between general-purpose vision models

and the nuanced needs of medical image analysis. Therefore, in this section we investigate

methods to adapt these foundational models into the biology and medical domains.

4.3 Method

4.3.1 Vision Transformer

Motivated by the success of the Transformer in the field of natural language processing,

some researchers have investigated whether similar models can learn useful representations

for images. Vision Transformer (ViT) (Dosovitskiy et al., 2020) is a pure transformer that

is applied directly to sequences of image patches for image classification tasks. It follows

the original design of the Transformer as closely as possible. Figure 4.3 illustrates the ViT

framework.

To process 2D images, the image X ∈ Rh×w×c is reshaped into a series of flattened 2D

patches Xp ∈ Rn×(p2·c), where c is the number of channels. The resolution of the original

image is (h,w), while the resolution of each image patch is (p, p). The effective sequence

144



Figure 4.3: The framework of ViT (Dosovitskiy et al., 2020). The image was divided into patches of
a fixed size, ordered, then embedded linearly, and position embeddings were added. The sequence
of vectors that resulted was then fed to a regular Transformer encoder. To classify, the usual
approach of adding a trainable ”classification token” to the sequence was used.

length for the transformer is n = hw/p2. A trainable linear fully connected layer is used to

transform each patch embedding size to d, and the output of this projection is referred to as

patch embeddings.

A trainable classification layer is applied to the sequence of embedding patches, similar to

the classification token of BERT (Devlin et al., 2018). This embedding serves as the image

representation, and position embeddings are added to the patch embeddings to preserve

positional information. ViT only utilizes the standard transformer encoder, with an MLP

layer following its output. In most computer vision applications, ViT is pre-trained on large

datasets and then the MLP layer is fine-tuned for downstream tasks with smaller data.

4.3.2 LoRA

The evolution of large-scale transformer-based networks has led to a significant increase in

the number of parameters, posing challenges in model tuning and application. One promising

solution to this problem is the Low-Rank Adaptation (LoRA) technique (E. J. Hu et al.,

2021), which offers a pathway to fine-tune massive foundational models efficiently. LoRA

works by updating a bypass layer within the network instead of the whole parameter matrix,

which makes the fine-tuning process more efficient. The bypass layer serves as a shortcut for

parameter updates, potentially reducing the number of trainable parameters to as little as
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1/10000 of the original model. The LoRA method can be selectively applied to specific weight

matrices within a neural network, such as the four weight matrices in the Transformer’s self-

attention module (Wq,Wk,Wv,Wo) and the two in the MLP module, to reduce trainable

parameters.

Research (Aghajanyan et al., 2020) on the ”intrinsic dimensionality” of pretrained lan-

guage models suggests that after fine-tuning on downstream tasks, these models have a low

intrinsic rank in their weight matrices. This implies that high-dimensional representations

of large models may contain redundancy. LoRA therefore hypothesizes that the changes to

the weights during adaptation have a low ”intrinsic rank”.

Figure 4.4: The LoRA layer. Only A and B will be trained.

The LoRA method constrains the update of the pre-trained weight matrix W0 ∈ Rd×k by

employing a low-rank decompositionW0+∆W = W0+BA, where B ∈ Rd×r, A ∈ Rr×k, and

the rank r ≪ min(d, k). In this approach, W0 remains static during training, not subject to

gradient updates, while A and B are designated as trainable parameters. The LoRA method

applies both W0 and ∆W = BA to the same input, and their output vectors are summed

coordinate-wise. For an input vector x and output h = W0x, the modified forward pass that

LoRA employs is articulated as:
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h = W0x+∆Wx = W0x+BAx

The reparametrization technique of LoRA is illustrated in Figure 4.4. Initially, A is

randomly assigned a Gaussian distribution and B is set to zero, making ∆W = BA start

from zero. During the forward pass, LoRA scales ∆Wx by α
r
, with α as a constant scaling

factor and r the rank. The rank is a hyper parameter of the LoRA method.

Figure 4.5: Comparison between transformer models tuned with and without LoRA and ResNet

The Low-Rank Adaptation (LoRA) technique offers a significant reduction in the number

of trainable parameters and GPU memory requirements for Vision Transformer (ViT) mod-

els. The structure of LoRA layer applied in ViT (Vision Transformer) is illustrated in Figure

4.6. When employing LoRA, the Vision Transformer models exhibit a dramatic decrease in

trainable parameters, as shown in Figure 4.5:

• ViT-Giant: Trainable parameters are reduced to 0.868 million from a total of 965.228

million.
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Figure 4.6: The LoRA layer in ViT transformer layer. The LoRA layer was applied to the q (query)
and v (value) projection layer of each of the transformer block in the ViT (excluding k (key) layer).
”Proj.q”, ”Proj.k”, ”Proj.v”, ”Proj.o” represent the projection layer of q, k, v and o, respectively.
Plus means element wise add, and multiply means matrix production.

• ViT-Huge: Trainable parameters are reduced to 0.633 million from a total of 602.179

million.

• ViT-Large: Trainable parameters are reduced to 0.382 million from a total of 289.517

million.

• ViT-Base: Trainable parameters are reduced to 0.146 million from a total of 81.970

million.

The traditional methods (Figure ?? shown in red) make the basic model unmanageable

due to the large number of trainable parameters. However, the LoRA-adapted model (de-

picted in blue) reduces the trainable parameters significantly. In comparison, the ResNet50

model has 22.431 million trainable parameters, which is much higher than any LoRA-ViT

model. Without the use of LoRA, fine-tuning large ViT models would be impractical unless

very small batch sizes were used, which could have a negative effect on the training dynamics

and model performance. Therefore, the application of LoRA brings these benefits:

1. Reduction of Trainable Parameters: By significantly reducing the number of train-
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able parameters, LoRA ensures that training large foundational models becomes fea-

sible, even on high-performance computing (HPC) systems with resource constraints.

2. Transferability Across Tasks: LoRA’s adaptability allows the transfer of weights

of a foundation model between various tasks. This transferability ensures that only

the lightweight LoRA layer needs to be stored for each specific task, rather than the

entire model, leading to substantial storage savings.

3. GPU and Training Efficiency: LoRA reduces the necessary GPU resources for

fine-tuning foundational models, which, coupled with the method’s potential to speed

up training, presents a cost-effective solution for model adaptation.

4. Scalability with Limited Data: LoRA is particularly advantageous in specialized

fields such as digital pathology where extensive datasets may not be available. It

enables effective fine-tuning on smaller datasets, which is often a limiting factor.

5. Inference Efficiency: The design of LoRA ensures that there is no additional infer-

ence latency, making it an attractive option for deploying models in real-world appli-

cations.

4.3.3 Data and model training

To assess the capability of transformer-based foundation models against the established

ResNet50 benchmark, a cell classification task is conducted using a dataset consisting of

54,679 images. An illustration of the images in the data set can be found in Figure 4.7.

These images are stratified across six unique cell type classes with the following distribution:

• Epithelial: 8,658 images

• Lymphocyte: 7,629 images

• Neutrophil: 2,991 images

• Plasma: 10,401 images

• Stroma: 10,000 images
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Figure 4.7: Sample and numbers of pictures for cell type classes: Epithelial, Lymphocyte, Neu-
trophil, Plasma, Stroma, Tumor.

• Tumor: 15,000 images

We used ResNet-50 (K. He et al., 2016a) as our baseline model in the experiment. We

observed that the performance was the same whether the model was pre-trained with Im-

ageNet weights or trained from scratch. For the ViT models of different sizes, we start

from the pre-trained weights obtained from Huggingface (Face, 2023), and apply the LoRA

technique with different rank hyperparameters. The performance of the models is evaluated

through three distinct experimental configurations. Each of these configurations has different

train-validation-test splits, which are used to simulate various application scenarios.

1. Experiment 1: Comprises a standard distribution of 60% for training, 20% for vali-

dation, and 20% for testing.

2. Experiment 2: Utilizes a skewed split with 16% for training, 24% for validation, and

a predominant 60% for testing, to assess model robustness with minimal training data.

3. Experiment 3: Employs an extreme case with approximately 2.7% (240 images) per

class for training, a large 72% for validation, and 25% for testing, challenging models

with a scarce training dataset.

In each experiment, the same data division is kept in order to guarantee that the outcomes

from different models and training conditions can be compared. The training procedure

involves updating the model weights with the training set and selecting the most effective

model based on the validation set. In all of the training sets, data augmentations such
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as random resizing and cropping, as well as random flipping, were applied. The ultimate

measure of performance, the test accuracy, reflects the best model’s capability as determined

by the validation process.

We train all models using a single V100 GPU in a high-performance computing envi-

ronment to ensure consistent computational conditions. After trail and error, the learning

rate has been set to 0.001 for all models, and a cosine anneal learing rate schedule was ap-

plied. We pay particular attention to the LoRA method as it has the potential to reduce the

number of trainable parameters, which could lead to more efficient and adaptable training

of the model in data-limited situations. The results of these experiments will be essential

in determining whether parameter reduction and approximation in the LoRA layer affects

model accuracy or help to create a more effective and scalable training process.

4.4 Results

Here, we present the results of three experiments with different batch size and rank

settings of LoRA-ViT compared to the baseline model ResNet 50 (which was pretrained on

ImageNet and fine tuned on the train dataset). Tables 4.1, 4.2, and 4.3 display the results

of these experiments.

In the first experiment, we observed that LoRA-ViT consistently outperformed the

ResNet 50 across various configurations. Notably, the ViT base model achieved a higher

accuracy with the same inferencing time as the ResNet model, and required significantly

fewer epochs to reach comparable accuracy levels, indicating faster training speeds. For

example, to reach 97. 5% accuracy in the validation set, the ViT base model with a batch

size of 16 and rank 4 took 164 epochs and 7.3 hours, while with a batch size of 128 and the

same rank, it took only 68 epochs and 3.4 hours, as shown in Table 1.

The second experiment further established the superiority of LoRA-ViT when training

data was limited. With only 24% of the training data, the test accuracy gap widened to

approximately 2%. The ViT base model with a batch size of 128 and rank 4 reached 96%

accuracy in 74 epochs, taking 1.8 hours, which was more efficient compared to the baseline

model, which could not reach 96% accuracy, as detailed in Table 2.

Experiment three demonstrated the robustness of LoRA-ViT under extreme data scarcity,
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using only 2.7% of the training data. Despite a general performance decline, the test accuracy

of the foundation model was 8% higher than that of the baseline model. The ViT base model

reached a test accuracy of 93.4%, while the ResNet50 only achieved 85. 4%, highlighting the

superior generalizability of the foundation model.

These results confirm the hypothesis that foundation models, due to their specialized

pre-training, learn more effective vision representations than the ResNet50. Furthermore,

LoRA effectively leverages the pretrained knowledge of the foundation model, requiring

similar training effort as traditional fine-tuning methods for baseline models. Additional

observations included that the training time for the ViT base model was on the same scale or

faster than the baseline model. To achieve parity with ResNet50’s performance, LoRA-ViT

only needed about half an hour. The selection of hyperparameters such as rank and batch size

proved crucial; a rank of 4 was sufficient for the ViT base model, while larger models required

a reduction in rank due to GPU constraints. A minimum batch size of 64 was necessary

to ensure convergence for models larger than the ViT base. These findings underscore the

importance of optimizing training configurations to fully exploit the capabilities of LoRA-

ViT.

Model Batch Size Rank
Epoch Time(hr)

Test Acc Infer Time (s)
to reach 97.5% Acc on validation

ViT – base 16 4 164 7.3 97.8% 34
ViT – base 128 4 68 3.4 97.7% 34
ViT – base 32 8 90 4.5 97.9% 34
ViT – large 32 4 82 8.7 98.0% 48
ViT - huge 32 4 Cannot reach. Need more GPU resource 96.8% 86
ResNet50 32 N/A Cannot reach 97.5%. 96.7% 37

Table 4.1: The performance of Vision Transformers (ViT) with Low-Rank Adaptation (LoRA) and
a ResNet50 model across various configurations in experiment 1. Test Acc means accuracy on the
test set of the best model. Infer Time (s) means for one batch of data, how many seconds the
model will spend on inference stage.

4.5 Conclusion

The conclusion of this research demonstrates the efficacy of the Low-Rank Adaptation

(LoRA) technique in fine-tuning large-scale transformer-based vision models. Through three

experimental conditions, LoRA-ViT models consistently outperformed the baseline ResNet

50 model, particularly in scenarios with limited training data. The reduction in epochs

and training time required to reach high accuracy levels underlines the efficiency of LoRA in

152



Model Batch Size Rank
Epoch Time(hr)

Test Acc Infer Time (s)
to reach 96% Acc on validation

ViT – base 32 4 139 3.5 96.4% 44
ViT – base 128 4 74 1.8 96.4% 44
ViT – base 128 8 113 2.7 96.6% 45
ViT – large 64 4 135 6 96.5% 60
ViT – huge 32 4 Model cannot converge. Need more GPU resource (on one V100)
ResNet50 32 N/A Cannot reach 96%. 94.5% 48

Table 4.2: The performance of Vision Transformers (ViT) with Low-Rank Adaptation (LoRA) and
a ResNet50 model across various configurations in experiment 2. Test Acc means accuracy on the
test set of the best model. Infer Time (s) means for one batch of data, how many seconds the
model will spend on inference stage.

Model Batch Size Rank Max Train Acc Max Val Acc Test accuracy

ViT – base 64 4 98.3% 92.3% 93.4%

ViT – large 64 4 98.1% 92.5% 93.5%

ViT – huge 64 2 98.4% 92.3% 93.4%

ResNet50 64 N/A 97.2% 83.6% 85.4%

Table 4.3: The performance of Vision Transformers (ViT) with Low-Rank Adaptation (LoRA) and
a ResNet50 model across various configurations in experiment 3.

leveraging pre-trained foundational models. Crucially, the LoRA technique’s ability to main-

tain or even enhance model accuracy while dramatically decreasing the number of trainable

parameters addresses significant computational and storage challenges, offering a scalable

and resource-efficient solution for deploying advanced vision models. Our findings advocate

for the adaptation of LoRA in future vision tasks, especially in fields constrained by data

scarcity or computational resources, promising a new horizon in the practical application of

state-of-the-art vision models.
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Chapter 5

Conclusion and Discussion

Deep learning has become a crucial asset in the biomedical field and has revolutionized

our prediction capabilities in problems arising in biological systems and disease modeling.

Despite these advances, the primary challenge of designing and training deep learning models

that can effectively manage the complex and diverse nature of biomedical data is barely

starting to be explored. The aim is not just to use these models for analyzing large and

complex datasets but also to ensure they are capable of interpreting biological variability.

Overcoming issues such as data heterogeneity, the necessity for interpretable models, and

computational limitations is essential in harnessing the full potential of deep learning in this

realm. A complete integration of deep learning into the medical field will allow us to enhance

the precision and effectiveness of medical treatments and deepen our basic understanding of

biological systems.

In my PhD thesis, I have explored the role of deep learning in biology by addressing some

very challenging and complex questions. Through the development and implementation of

advanced deep learning models, I have sought to use the growing volume of biomedical

data to obtain new insights. This thesis navigates the integration of deep learning into

life sciences, carefully strategizing to meet specific domain challenges while optimizing the

analysis of highly heterogeneous datasets.

In Chapter 2, we delve into the development of Scratch-AID, a deep learning-based

system engineered to automate the detection of mouse scratching behaviors, specifically

following the administration of chloroquine. This innovation emerges as a response to the

154



limitations inherent in manual video analysis, such as labor intensity and susceptibility to

human error. At its core, Scratch-AID employs a convolution recurrent neural network,

meticulously trained on a diverse dataset of video recordings, annotating mouse scratching

behaviors induced by chloroquine. This training encompasses a range of environmental

conditions to ensure robustness and accuracy. The system’s efficacy is highlighted by its

impressive recall rate of 97.6% and a precision rate of 96.9%, signifying its potential as a

reliable alternative to traditional manual methods in both pharmacological screenings and

behavioral studies. This case study not only underscores the potential of deep learning in

enhancing the accuracy of behavioral analysis but also highlights the challenges in ensuring

comprehensive training and continuous model refinement. Our research demonstrates the

methodology for designing a robust deep learning model to meet the intricate requirements

of biological applications.

In Chapter 3, we delve deeper into the critical issue of cancer patient survival, present-

ing the Genomic-Guided Hierarchical Attention Multi-Scale Pathology Transformer (GG-

HAMPT). This framework, motivated by the urgent need to improve survival prediction

accuracy in oncology, builds upon and extends the foundations laid by the Multimodal Co-

Attention Transformer (MCAT)(R. J. Chen et al., 2021). Our contribution lies in the novel

multi pathology level early data fusion strategy that GG-HAMPT employs. Leveraging the

co-attention mechanism, a concept originally from the domain of Visual Question Answering

(VQA), the model innovatively integrates genomic data with three-level representations of

Whole Slide Images (WSIs) of cancer tissues. This integration, which is a significant ad-

vancement from the MCAT approach, allows for a more dynamic and nuanced analysis of

the pathological data in relation to the genomic information of patients. The GG-HAMPT’s

ability to weigh pathology information with respect to corresponding genomic data signifi-

cantly enhances its predictive capacity for patient survival outcomes, using multimodal data

including gigapixel WSIs. The model notably surpasses other existing weakly supervised

methods in performance. Looking forward, this pioneering approach in GG-HAMPT paves

the way for more sophisticated, data-integrated models in the field of oncology, potentially

transforming survival prediction and can help discover new genes that may be overlook from

previous study.
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In the final section of my research, I ventured into exploring the domain adaptation of

pre-trained models in digital pathology image classification, particularly focusing on the de-

velopment of the low rank adapatation of Vision Transformer (LoRA-ViT). The motivation

behind this initiative stemmed from the hypothesis that large-scale models possess the ca-

pability to learn more robust feature representations in computer vision, potentially offering

greater robustness in diverse applications. However, these large models, due to their exten-

sive parameter sets, pose challenges in fine-tuning, requiring significant computational power

and time for training. Our objective was to investigate methodologies to efficiently and effec-

tively train large models in digital pathology tasks, aiming to outperform traditional models

like ResNet. The LoRA-ViT demonstrated exceptional efficiency and accuracy, notably sur-

passing the traditional ResNet 50 model in a 6-class cell classification task. Conclusively, the

LoRA-ViT proved an impressive adaptability to digital pathology data. This adaptability

is achieved without the necessity for extensive retraining or specific dataset tuning, effec-

tively mitigating the domain shift issue. Such adaptability and speed position LoRA-ViT as

a substantial advancement in automated pathology, supporting the broader integration of

artificial intelligence in diagnostic medicine and potentially revolutionizing the field.

Domain adaptation in deep learning means applying a model trained on one set of data

(source domain) to a different, but related set (target domain). The core of domain adapta-

tion is the ability to transfer knowledge from one domain to another, addressing the challenge

of data heterogeneity and scarcity, which are common in biomedical applications. This is

particularly pertinent in areas such as medical imaging, genomics, and drug discovery, where

models trained on large datasets (like public repositories) must be adapted to work effectively

on specific, often smaller datasets from hospitals or labs. The success of domain adaptation

hinges on the model’s ability to generalize well from the source domain to the target do-

main, capturing underlying patterns and features that are invariant across domains. This

involves techniques like feature alignment, transfer learning, and fine-tuning, ensuring that

the model, initially trained on a broad dataset, remains accurate and reliable when applied

to more specialized, domain-specific data.

In my research, I have undertaken three projects that each contribute to this field. The

first project involved training deep learning models from scratch in the experimental animal
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domain, which is pivotal in understanding the development of models tailored to unique

datasets. The second project centered on designing complex, multi-scale models for can-

cer multimodal data, including imagery, highlighting the necessity of developing specialized

models to manage the complexities of multimodal biomedical data. The third project fo-

cused on the domain adaptation method LoRA for pre-trained large models. This method

is essential for adapting extensive models to specific biomedical data, thereby enhancing the

performance of deep learning in the biomedical area. Collectively, these studies significantly

contribute to the advancement of deep learning in the biomedical sector, particularly in the

customization of deep learning models for specific biomedical data and the utilization of

appropriate methodologies.
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