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ABSTRACT OF THE DISSERTATION

Bioinformatics Software Systems for the Study of Circadian Rhythms

By

Yu Liu

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Pierre Baldi, Chair

The study of circadian rhythms increasingly relies on high throughput circadian omic data.

Processing, annotating and analyzing these data require an efficient and powerful bioinfor-

matics software system. In this thesis, I highlight the implementation of such a system.

Major components of this system include genome-wide binding site predictors, statistical

and machine learning pipelines, functional enrichment pipelines, visualization tools and a

data management server. Using this system, we have produced high impact publications,

a circadian web portal (CircadiOmics, http://circadiomics.ics.uci.edu/), and advanced our

understanding of the organization of the circadian transcriptome.

xi
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Chapter 1

Introduction

Circadian rhythms are biological processes that display an oscillatory behavior, in an en-

dogenous and entrainable manner, following a 24-hour clock. Circadian rhythms are ubiq-

uitous in life and deeply rooted in evolution–they can be observed in life forms ranging

from cyanobacteria to human [43]. On a macroscopic scale, circadian rhythms are vital for

many physiological processes, including the sleep/wake cycle, hormone secretion, diet re-

lated metabolism, and neural function [9, 14, 19, 39]. As a consequence, loss or disruption

of circadian rhythms can result in diseases and health issues such as diabetes, obesity, and

premature aging [44, 18, 6, 1, 47]. On a microscopic scale, circadian rhythms manifest as

oscillations of molecular species such as transcripts, proteins, and metabolites that inter-

act with one another [24]. One of the most important and well studied types of molecular

oscillations is that of the transcripts, which is the focus of this thesis. It is known that

transcriptomic oscillations are pervasive and well organized [45, 14, 32]. Transcripts do not

oscillate in isolation–they form regulatory feedback loops that oscillate in a network of cou-

pled oscillators [38, 46, 45]. At the center of this transcriptomic network is a set of highly

coordinated regulators in the form of transcription factors (TF), including CLOCK, BMAL,

REV-ERB, CRYs, PERs and DBP [31]. This is known as the core clock. Moreover, oscilla-
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tory metabolites and proteins can interact with oscillatory transcripts and their regulatory

system [17, 13, 16, 33]. The resulting landscape of molecular oscillations is astoundingly

complex and robust.

One of the most important findings in the study of the circadian transcriptome is that almost

all transcripts are capable of oscillation [45]. In a typical transcriptomic dataset, ∼ 10% of

measured transcripts are found to oscillate [16, 15, 38, 37, 41]. However, the intersection of

oscillating transcripts between any two conditions is only∼ 2% [45]. As a result, the circadian

landscape in a cell can be drastically different depending on genetic and epigenetic conditions

[32, 16, 53, 45]. The process by which these circadian landscapes evolve is understood as

circadian reprogramming. Reprogramming can be induced by external perturbations such

as inflammation or dietary challenge [21, 34, 7, 41]. Logically, it follows that the union of all

oscillating transcripts is large–indeed, it is estimated that over 90% of transcripts can become

circadian through reprogramming. The underlying mechanism guiding reprogramming and

global organization of circadian rhythms is of great interest for the circadian field.

Due to the pervasiveness, complexity and importance of circadian rhythms, the circadian

field is emerging as a frontier of biological research. Coincidentally, it is also a field that

is increasingly reliant on “big data” and high-throughput bioinformatics analysis [24]. As

such, there is a strong need for a complete software system tailored for the analysis of

high throughput circadian omic data. In this thesis, I discuss our contribution 1 in this

area. Our work focuses on three main areas: first, generating “big data” as resources for

circadian study; second, performing novel analyses of circadian omic data; third and finally,

engineering of software systems that integrate said analyses. As a culmination of our work,

we also try to tackle one of the most fundamental and difficult questions in this field, namely

the aforementioned transcriptomic organization of circadian rhythms. Substantial results,

1Unless otherwise stated, I am the main contributor of most of the projects listed. Some of the projects
were contributed equally by Nicholas Ceglia & me. A detailed breakdown of contributions is included in
Appendix 2 of this chapter.
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generated by applying all the tools that are described in this thesis, are shown in the last

chapter (publication pending).

1.1 Circadian Omic Data and Challenges

The circadian field is not the only field in biology that utilizes more and more high through-

put omic data. Indeed, this trend is observed generally in biology, where the number of

publication involving omic data has multiplied by 10X from 2002 to 2016 [24]. In the same

period of time, the number of circadian omic papers has also increased by more than 6X, with

a mix of micro-array, RNA-Seq, ChIP-Seq proteomics and metabolomic papers [24]. High

throughput omic data differs from traditional biological data in quantity, complexity and na-

ture of variability [20]. This in turn raises new challenges for the field [24, 22, 29, 20, 3, 48]:

1. Challenge 1: High throughput circadian omic data must be processed from their

raw form (e.g. RNASeq reads) to usable data (e.g. RPKM values) 2 and to meaningful

interpretations (e.g., enriched pathways). The speed by which this process happens is

the new bottleneck for circadian study.

2. Challenge 2: Large scale data requires the usage of increasingly complex models.

This produces a classic bias-variance trade-off situation. As a result, a combination of

statistical and machine learning techniques must be employed to account for noise and

achieve robustness.

3. Challenge 3: Different forms of omic data (e.g., genomics, proteomics, metabolomics)

need to be integrated with each other. Additionally, experiment-specific data need to

2This thesis largely omits discussion of this particular processing step (from raw data to quantitative
input data). This is because, for each type of high throughput omic data, there already exist mature and
reliable software systems for this processing process. For example, RNASeq data can be readily processed
by the Tuxedo protocol [50], or kallisto [10].

3



be integrated with existing knowledge bases such as Gene Ontology (GO), KEGG

pathways and transcription factor binding sites (TFBS).

4. Challenge 4: Results need to be properly managed and stored. The management

system also needs to deliver results in a rapid, user-friendly way for biologists who may

not be versed in quantitative methods (i.e., via visualization). Such results should also

be publicly available if possible.

Given these challenges, it is not hard to arrive at the conclusion that a robust bioinformatics

approach with efficient software systems is the proper solution for the analysis of circadian

omic data. Indeed, in this thesis I present our work in this area, which is of a pioneering

nature.

1.2 Overview: Bioinformatics Software Systems for Cir-

cadian Rhythms

Most of our work originated as individual projects that were designed to be inter-operable

with each other. However, by now most code or logic of the individual projects has been

incorporated into three main systems: IGB-pipelines integrates multiple data processing

and analysis pipelines which are used for individual experimental datasets. CircadiOmics

is a major web portal for circadian data that integrates data storage and visualization with

a focus on providing the most comprehensive set of circadian omic data for the public. Py-

Circadiomics integrates data mining, machine learning and bioinformatics tools to conduct

global analysis of the circadian transcriptome.

Nevertheless, to focus on individual components with clarity, in this thesis I will first present

them in their original form as subsystems in the last three chapters. How and where they are
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incorporated into one of the larger systems is mentioned in chapters 2-6. Novel algorithms,

statistical and machine learning methods are noted as well. Each of the three main systems

also has one chapter summarizing its components and other novel designs. Application of

any of the systems is also discussed in each chapter.

Additionally, particularly worth mentioning is BIO CYCLE [2], which is a deep learning

based approach to predict rhythmicity. Obviously, to conduct large scale analysis of biological

oscillations, it is vital to have a highly reliable and tunable method for predicting such

oscillations, which forms the basis for all subsequent analyses. BIO CYCLE provides such

baseline data for most of the components of our system, which can also function using another

older method for detection (JTK CYCLE [25]). That said, BIO CYCLE is otherwise outside

of the scope of this thesis.

A detailed breakdown of the chapters is listed below:

• Chapter 2 describes MotifMap-RNA and ChIPSeq-pipeline. These general purpose

genomics projects generate global functional data which can be vital for interpretation

of circadian signals (Challenge 1).

• Chapters 3 & 4 describe novel statistical tools, machine learning tools and func-

tional analysis tools for individual circadian datasets. These chapters also describe

various databases and software infrastructures for combining quantitative data and

functional annotation data. They address Challenges 1-3 and are also components of

igb-pipelines.

• Chapter 5 describes visualization and rapid client side delivery solutions. They con-

stitute the front end and integration layer of igb-pipelines and address Challenges

3 and 4.

• Chapter 6 describes CircadiOmics, a web portal for ciradian data. CircadiOmics

5



provides the largest repository of high throughput circadian omic data for the general

public (Challenge 4).

• Chapter 7 describes PyCircadiomics, which integrates all of the data and analyses,

applying them globally to understand the organization of the circadian transcriptome.

• Chapter 8 gives a short summary.

By designing individual pipelines and integrating them into larger systems, we have pro-

duced a powerful yet fully extensible software system for the study of circadian rhythms,

focusing on transcriptomic organizations. By combining specialized pipelines and libraries,

we have formulated a data-driven bioinformatics framework which can competently address

questions in circadian biology. Moreover, results generated using this framework are readily

understandable and usable by biologists. As a result, our work and collaborations have pro-

duced high impact publications. Finally, we have advanced the understanding of one of the

most fundamental problems in circadian biology, namely the organization of the circadian

transcriptome.
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Chapter 2

MotifMap-RNA

2.1 Introduction: Genome-wide Computational RNA

Binding Sites Prediction

The primary mode for transcriptomic regulation is regulation by transcription factors (TFs).

An important extension to TF regulation is post-transcriptional control, induced by RNA

binding proteins (RBPs). Therefore, knowledge of where and how TFs and RBPs bind to

and thus regulate their targets is fundamental to transcriptomic studies at all levels.

Circadian transcriptomic datasets typically consist of micro-array, RNASeq and ChIPSeq

datasets. While ChIPSeq datasets themselves measure TF or histone bindings, the vast ma-

jority of other datasets do not intrinsically contain such information. Therefore, augmenting

such datasets with functional information in the form of TF and RBP binding sites can be

very important.

In terms of TF binding sites (TFBS), MotifMap [12, 52] provides a systematic computational

prediction throughout the genome. Importantly, the quality of MotifMap predictions are
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generally consistent and tunable by adjusting filtering parameters. These TFBS results,

although purely computational, have been proven to be highly applicable for tasks such as

identifying key TFs within a dataset, identifying enrichment of targets of certain TFs and

identifying key pathways in a dataset [12].

A natural extension of TFBS prediction is the prediction of RBP binding sites, which ac-

counts for post-transcriptional regulation such as alternative splicing. Therefore, I developed

MotifMap-RNA for generating system-wide computational predictions of RBP binding

sites. While MotifMap-RNA is not directly related to circadian rhythms, it serves as a

knowledge base of possible post-transcriptional control. Along with the original MotifMap,

these two methods constitute an important building block for other projects.

Fundamentally, MotifMap and MotifMap-RNA employ the same principle to predict bind-

ing sites, with two major components: first, binding motifs, in the form of positional weight

matrices (PWMs), are used to generate binding scores for all genomic sequences in a species.

Sites with the highest scores are considered to have the highest probability for potential

binding by the factor, quantified as a form of normalized z-scores (NLOD). Second, phy-

logenetic evidence, in the form of multiple species alignments (MSA), is used to estimate

how conservative each of the top binding sites is. Conservation rates are used as weights

for calculation of a Bayesian Branch Length Score (BBLS). This approach has been proven

to be effective in reducing false positive rates [52]. In addition, MotifMap-RNA uses a few

novel statistical tools to improve performance relative to RBP, which is detailed later in this

chapter. Due to the fact that the results are systematic and completely scalable by tun-

ing parameters, MotifMap and MotifMap-RNA can often behave better than experimental

ChIPSeq results when applied to high throughput omic data. That is to say, by applying a

stricter filtering parameter such as the BBLS, predicted binding sites will reliably become

less prone to false positives, and the scaling of the false discovery rate (FDR) is consistent

across different predicted motifs [35, 12].
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However, both methods face new challenges raised by the rapidly increasing data quan-

tity in the field of genomics. More specifically, both methods rely on generating knowledge

based on multiple sequence alignment files (MAF) for the relevant species, which is provided

by UCSC (http://hgdownload.soe.ucsc.edu/downloads.html). For mouse alone, the latest

genome build (mm10) contains alignment to 59 other species, doubling the amount of data

from the previous iteration (mm9). As such, the old MotifMap codebase, which was devel-

oped in pure python, struggles to perform well for large scale predictions of newer genomes.

This is also an example of Challenge 1 mentioned in the introduction. To address the perfor-

mance needs of these systems and to ensure that they can scale to future genome builds which

may further grow in size, I engineered a low level software library named motifMap-core

which provides high performance IO and compute functionalities for both projects.

2.2 Overview of the MotifMap-Core Infrastructure

motifmap-core is a C++ library that handles low level algorithms for both MotifMap

and MotifMap-RNA. It consists of three main components: mafslice handles IO related

to genomic sequences and sequence alignments. motifmap-compute is a C++ wrapper

for MOODS (https://www.cs.helsinki.fi/group/pssmfind/) which handles sequence scoring

against PWMs. pyga is a high performance genome annotation tool for generating basic

annotations accompanying each predicted binding site.

A dependency graph showcasing the major classes is generated by the software doxygen

(https://www.stack.nl/d̃imitri/doxygen/) and is shown in Figure 2.1.
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Figure 2.1: Class dependency graph for motifmap-core

2.2.1 mafslice

One major performance bottleneck for both MotifMap and MotifMap-RNA is the retrieval

of the MAF hits, which are plain text records that describe instances where sequences of a

reference genome (e.g., human) intersect with its phylogentic neighbors (e.g., chimp, mouse

etc). Below is an example of a typical MAF hit:

a score=1500.000000

s hg38.chr1 11470 1 + 248956422 G

s panTro4.chr15 14084 1 - 99548318 G

i panTro4.chr15 C 0 C 0

s calJac3.chr9 112497732 1 - 124281992 G

i calJac3.chr9 C 0 C 0

s saiBol1.JH378170 10178365 1 - 12910020 G

i saiBol1.JH378170 C 0 C 0

s bosTau8.chr5 107494275 1 + 121191424 g

i bosTau8.chr5 C 0 C 0
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s myoLuc2.GL429865 46543 1 - 4619595 g

i myoLuc2.GL429865 N 0 C 0

This record shows, in addition to other information, that there is an alignment of evolutionary

neighbors around the sequence at human chromosome 1, position 11470. The intersection is

only for one one base pair. A whole human genome (hg38) can contain more than 100,000,000

similar MAF hits, totaling a size of 800GB in plain text format. A random range based

retrieval task appears when one calculates the likely binding sites, which may be found in

widespread locations in the reference genome. The range of a single binding site can also

correspond to multiple MAF hits. The algorithm of MotifMap and MotifMap-RNA requires

that one retrieve all intersecting sequences, align them or extend them from their original

host genomes, and then recalculate BBLS based on scores on all individual aligning sequences

[52].

mafslice is the IO library designed for such a task. It utilizes a heterogeneous data

structure for efficient retrieval and processing of MAF hits. Briefly, records are stored on

an on-disk hashtable (one hastable or database per chromosome, implemented by Kyoto-

Cabinet http://fallabs.com/kyotocabinet/), whose keys correspond to the genomic start-

ing locations plus an offset (encoded in two bytes). Hashing is done via murmurHash3

(https://sites.google.com/site/murmurhash/) because of its excellent performance. The keys

are then extracted and stored in an index tree, which resides fully in memory at runtime.

The index tree is based on boost-avl-tree (https://www.boost.org) which is sorted by ge-

nomic coordinates. Since the index tree allows for range query in log n time (in memory)

and the retrieval of records of the on-disk hashtable is constant time (on-disk), this consti-

tutes a dramatic performance improvement over previous solutions 1 where the query takes

up to log n time on-disk. Indeed, profiling done in the mouse genome mm10 shows an IO

performance gain up to 20X.

1pygr, https://omictools.com/pygr-tool
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Additionally, a novel hit merging algorithm was developed to efficiently combine records and

reduce fetching of original sequences when it is unnecessary. A brief excerpt of the code is

below:

auto inner = [](const char &c, std::string &out, int &cnt, int &gap) {

if (c != ’-’) {

out.push_back(c);

++cnt;

return true;

} else

++gap;

return false;

};

...

for (auto &it : hits.second) {

int t_lshift = 0, t_dist = 0, t_gap1 = 0, t_gap2 = 0;

std::string seq1(""), seq2("");

for (int i = 0; i < lshift + gap1; ++i) {

char c = it.second.seq[i];

inner(c, seq1, t_lshift, t_gap1);

}

for (int i = lshift + gap1; i < lshift + gap1 + dist + rs.first; ++i) {

char c = it.second.seq[i];

inner(c, seq2, t_dist, t_gap2);

}

it.second.seq = routine(it.second.seq);

interval itt;
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itt.seq = seq2;

itt.ref = it.second.ref;

itt.chr = it.second.chr;

itt.strand = it.second.strand;

itt.score = it.second.score;

itt.l = t_lshift;

itt.r = t_dist; // local change

out.second[itt.ref] = itt;

...

}

In this code snippet, hits.second contains all of the MAF hits for a particular binding site

prediction. Each of these sequences partially match the range of the prediction, but there

are typically gaps in alignment. In order to combine all of them, the helper function inner

is used to scan their alignments and remove gaps (annotated as -) while incrementing a

counter for gaps. This gap counter is then used both on the left end and the right end of the

alignment to match the aligning sequence back to the reference. Finally, the correct range

for the aligning sequence is updated in place while the sequence is stitched together from

the original input. As long as the updated range falls into an interval suitable for matching

the whole of the predicted sequences, there is no need to further retrieve it from the original

genome. This is a significant improvement over the old algorithm, where only coordinates,

not matching sequences, were utilized.
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2.2.2 motifmap-compute

motifmap-compute is yet another C++ library wrapping the sequence aligning algorithm

MOODS (https://www.cs.helsinki.fi/group/pssmfind/). It utilizes the advanced scan func-

tion provided in the MOODS C++ library over simple PWM multiplication, which is an

improvement over the old MotifMap. The advanced scan takes into consideration of back-

ground distribution of base pairs over the whole genome when calculating PWM scores and

is thus more accurate in species where there is a strong C/G bias in the genome. Another

improvement of motifmap-compute is its use of parallelism, which cannot be achieved in

similar efficiency in pure python. Briefly, it generates compute threads at the C++ level and

then releases the python global interpretor lock (GIL) to run all of them as real processes.

A code snippet demonstrating this functionality is attached below:

void compute(const int &cnt, const std::string &motif, const std::vector<matrix> &mats,

const std::vector<double> &bg, const std::vector<double> &ths) {

try {

if (threads.size() > 100) {

std::vector<std::thread> ths;

std::cerr << "Releasing GIL" << std::endl;

releaseGIL unlock = releaseGIL();

std::cerr << "Too many threads, joining 100" << std::endl;

for (auto &c : threads) {

ths.push_back(c.spawn());

}

for (auto &th : ths)

th.join();

threads.clear();

}
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std::cerr << " Creating compute object...";

threads.push_back(motifmapcompute(inp, motif, mats,bg, ths, cnt));

} catch (...) {

std::cerr << "Compute failed on " << print_interval(inp.first)

<< std::endl;

}

return;

};

2.2.3 pyga

Once predicted binding sites are produced by MotifMap or MotifMap-RNA, an important

task is to annotate them with biological meanings. Sites are predicted with genomic co-

ordinates (i.e., which chromosome, starting point and strand of DNA/RNA). Annotations

include the closest gene, the distance to said gene, and if the binding site is within the

location of the gene, whether or not it is within a functional part of this location (e.g. in

the promoter region). The old MotifMap utilizes MySQL to match hits in database, which

has proven to be suboptimal for performance. Other tools for annotation, such as bedtools

(https://bedtools.readthedocs.io/en/latest/), lack a convenient or scalable python interface.

pyga is designed for such high performance genome annotation tasks. It contains a C++ layer

and a set of python interfaces for ease of use. Importantly, it has a very low memory profile

(< 1Mb when loaded with a single genome annotation) and fast performance, which means it

is well suited for parallel annotation tasks or on-demand annotation tasks that are performed

multiple times during a MotifMap or MotifMap-RNA run. Additionally it also contains

functionalities for generating random sequences and scanning base pair distributions, which

are again used by both MotifMap and MotifMap-RNA.
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motifmap-core combines the aforementioned components in a boost-python templated class,

which can be conveniently used in python once compiled. Compilation is done via cmake.

All MotifMap and MotifMap-RNA results are generated via motifmap-core and stored in

MySQL databases, with rich querying and filtering functionalities (detailed in the paper

attached later in this chapter).

2.3 Novel Methods in MotifMap-RNA

In addition to the improvement in software infrastructure and low level routines in terms

of IO and compute, MotifMap-RNA improves upon the original MotifMap in its statistical

methods. These new statistical methods were inspired by the specific properties of RBP

binding sites. For example, it is known that RBP binding sites tend to cluster over a larger

range than TFBS [51]. As such, two new forms of scores were devised for MotifMap-RNA.

The following is an excerpt from the supplementary material of the MotifMap-RNA paper

[35]:

“ Two forms of meta z-scores were generated by aggregating z-scores in the vicinity of each

hit, extending up to 150 bps on each side. This should have the effect of reflecting the

clustering of local high scoring binding sites and was shown in the validation to improve

performance when validated by eCLIP peaks. Briefly, the two meta z-scores are defined

as: ExpZ =
∑

i
1ri−1

2
Zi and StoufferZ =

∑
i r

−1
i Zi√∑
i r

−2
i

, where is the index of the hit, is the

z-score and is the 1-based local rank. Both meta z-scores are weighted sum of the local

z-scores, whose weights are a function of ranks. In ExpZ the weight decays exponentially,

while StoufferZ uses a variant of Stouffers method with linear weight decay. In calculating

these scores, the flanking sequence was allowed to extend beyond the original boundary to

obtain even flanking distances everywhere. ”
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Additionally, MotifMap-RNA also utilizes eCLIP peaks, which is a very new class of ex-

perimental data for validation of predicted results. eCLIP experiments produce broad peak

signals that inform of RBP bindings in the transcriptome. The processing of such experi-

mental data and extraction of samples for validation tests (e.g., generating ROC curve) is a

relatively novel subject. MotifMap-RNA utilizes an approach based on filtering peak signals

and sampling background information to produce sufficient samples from limited experimen-

tal data (e.g., 2000 samples from 500 peaks). The following is an excerpt from supplementary

material of the MotifMap-RNA paper [35]:

“ Because of the fact that the binding may be tissue specific and are also sensitive to the

amount of RNAs expressed in the cell, it is almost certainly not globally comparable to

MotifMap results. The fact that a certain high scoring hit is not found to be within a

positively enriched peak is not necessarily indicative of the hit being false, but may be

indicative of a variety of biological and experimental processes resulting in the lack of binding

shown in the eCLIP experiment. As such, we restricted our validation to peaks with high

degree of certainty (highly positively enriched and negatively enriched peaks). For positively

enriched peaks, a log-p value threshold of >= 2 was used, and up to 1000 top positive peaks

were selected as ground truth positives. For negative peaks, due to the lack of highly negative

peaks, a log-p threshold of <= 0 was used. To even out the number of positive and negative

samples, random sequences from the genome were also introduced as negative samples if

they were not found to be overlapping any positive peaks. Enough random sequences were

taken such that the total number of positive and negative samples were equal. ”

2.4 The MotifMap-RNA Web Portal

As mentioned in Challenge 4 in Chapter 1, availability of results and ease-of-use is crucial for

bioinformatics projects in the age of big data. MotifMap-RNA addresses this by providing
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a modern, fast and intuitive web portal (http://motifmap-rna.ics.uci.edu). The user can

query the full results of RBP hits from all motifs using a variety of parameters to filter

and sort the data. The user can further filter the results using distances of the hits from

closest genome markers. Moreover, all of the data is presented in a fully interactive table

allowing the user to further search, query and download. A brief user guide is available at

http://motifmap-rna.ics.uci.edu/help.

2.5 MotifMap-RNA

A full paper of MotifMap-RNA is appended here to fully demonstrate the motivation, results

and impact of the project.
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Abstract

Motivation: RNA plays a critical role in gene expression and its regulation. RNA binding proteins

(RBPs), in turn, are important regulators of RNA. Thanks to the availability of large scale data for

RBP binding motifs and in vivo binding sites results in the form of eCLIP experiments, it is now pos-

sible to computationally predict RBP binding sites across the whole genome.

Results: We describe MotifMap-RNA, an extension of MotifMap which predicts binding sites for RBP

motifs across human and mouse genomes and allows large scale querying of predicted binding sites.

Availability and Implementation: The data and corresponding web server are available from:

http://motifmap-rna.ics.uci.edu/ as part of the MotifMap web portal.

Contact: rspitale@uci.edu or pfbaldi@uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA serves not only as a messenger between DNA and protein, but

also as a regulator of important processes such as genome organiza-

tion and gene expression (Morris and Mattick, 2014). RNA itself is

regulated by a diverse collection of RNA binding proteins (RBPs),

which are responsible for an array of functions such as alternative

splicing, RNA modification, polyadenylation, mRNA transport and

translational regulation (Glisovic et al., 2008; Mercer et al., 2009).

RBPs typically bind to their targets via one or more RNA binding

domains (RBDs) which are thought to have specific binding motifs

(Lunde et al., 2007). Due to the large number of known and pre-

dicted RBPs and their important role in RNA regulation, there has

been much interest in systematically understanding their behavior.

Recently, large scale in vivo surveys have been carried out to dis-

cover the binding motifs of a large number of RBPs (Cook et al.,

2011; Ray et al., 2013). At the same time, high throughput in vivo

eCLIP experiments have been effective in identifying the RBP bindings

to RNAs in human immortalized and primary cells (Tollervey et al.,

2011; Van Nostrand et al., 2016). Together, these biological data

provide a foundation for systematically predicting RBP binding sites

across the whole genome and validating them. Previously computa-

tional methods have been described to predict motif specific RBP

binding sites for a given sequence or a range of sequences (Paz et al.,

2014; Zhang et al., 2013). However, to our knowledge, there is no

service that allows systematic, genome-wide binding site querying.

Here we describe MotifMap-RNA, a novel extension of

MotifMap (Daily et al., 2011; Xie et al., 2009), a system for tran-

scription factors binding site prediction, to RBP binding sites.

MotifMap-RNA predicts z-score based binding sites specific to RBP

motifs across the human and mouse genomes. It also allows the user

to filter and sort the results based on clustering of local binding sites,

represented by weighted z-scores, or evolutionary conservation,

quantified by Bayesian branch length scores (BBLS). Furthermore,

we organized genomic sequences into 4 major classes: UTRs, in-

tronic regions, lncRNAs and miRNAs, for all of which we generated

class specific model parameters. Finally, we implemented a web ser-

ver which allows the user to interact with MotifMap-RNA results

through a friendly interface.
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2 Materials and methods

2.1 Motif and genomic data collection
We obtained experimental and computational RBP binding motif

data, in the form of positional weight matrices (PWMs), from

RBPDB and CISBP (Cook et al., 2011; Ray et al., 2013). In total, we

curated 371 PWMs, 266 of which are from human, 22 from mouse

and 83 from other sources. We estimated that these motifs corres-

pond to approximately 235 unique RBPs. We also downloaded the

latest human and mouse genome assemblies (hg38, mm10) and their

multiple species alignments from the UCSC genomic browser (http://

genome.ucsc.edu/). We filtered the genomic sequences into 4 classes

by annotations: untranslated regions (UTRs), intronic regions, long

non-coding RNA (lncRNA) and miRNA (sources in supplement).

2.2 Scoring
We scanned each class of filtered genomic sequences using curated

motifs, calculating z-scores with class-specific mean and variance to

achieve better specificity. For each sequence in a class (e.g. 5’UTR of

a particular gene), we filtered the top scoring motif binding sites in

terms of z-scores (only positive z-scores were considered), up to 3 on

each strand. These were considered hits from the motif. Per sequence

hits were chosen over hits with the highest absolute z-scores to

maximize the coverage across the entire genome.

We also incorporated additional metrics to measure the hits.

Some RBP bindings tend to be locally clustered (Ule et al., 2006).

As such, Two forms of weighted z-scores were used to reflect local

clustering of high z-score hits from the same motif. In addition, RBP

binding sites can be less conserved than TF binding sites (Gerstberger

et al., 2014; Vaquerizas et al., 2009). Conservation scores in the

form of BBLS were also generated using method described in the ori-

ginal MotifMap (Xie et al., 2009). Details about scoring and filtering

of hits are described in the Supplementary Material.

3 Results

Overall we generated binding predictions for 371 motifs in 4 classes

of human and mouse genomic sequences. The total number of hits is

typically between 100 000 and 200 000. While the amount of hits

can be enormous due to the short and degenerate nature of some

motifs, which may produce lower quality hits, the user can effect-

ively filter out a small set of hits of interest using a combination of

aforementioned metrics through the web portal.

3.1 Validating the quality of z-score and BBLS hits
In order to validate the quality of the predictions, we downloaded

eCLIP results for 12 RBPs from the ENCODE project (https://www.

encodeproject.org/; Van Nostrand et al., 2016) and generated ROC

Fig. 1. (A) ROC curve of a representative RBP (HNRNPK) from 3 types of z-scores: raw, exponentially weighted z-score and Stouffer’s z-scores using rank as

weights (details in supplement). Results show that aggregating z-scores improves the AUC performance. (B) Distribution of ground truth peak scores for both

negative and positive examples used in ROC calculation, and their corresponding aggregate z-scores from MotifMap (exponentially weighted, corresponds to

black solid line in A). (C) Portion of MotifMap hits with BBLS scores greater or equal to the marked thresholds from hits corresponding to (positive) peaks at differ-

ent peak score cutoffs. This shows the relative amount of highly conserved hits increases as the peak score increases, i.e. the most positively enriched peaks tend

to overlap highly conserved MotifMap hits. However, the total portion of conserved hits is low (<0.3). (D). Same as (A) but with random sequences added as

negative examples. This shows that random sequences improves the AUC performance but retains the same trend. (E). Same as (B) but with random sequences

as negatives. MotifMap-RNA is able to identity random negatives effectively. (F). Same as (C) but with random sequences as negatives. BBLS score is not sensi-

tive to the addition of random negatives, since high BBLS scores are concentrated on a portion of the most positive peaks (Color version of this figure is available

at Bioinformatics online.)
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curves for matching MotifMap-RNA results. As an example, UTR

results from the RBP HNRNPK are shown in Figure 1A–C (from

HepG2 tissue, Replicate 1). Notably, aggregating z-scores improves

the AUC performance while high BBLS scores tend to concentrate

on highly positive peaks.

Due to the fact that many eCLIP results lack sufficient negative ex-

amples for ROC curve estimation, we included random sequences not

overlapping any positive eCLIP peaks as extra negatives. Their effect

on HNRNPK results are shown in Figure 1D–F. AUC performance

generally improves while BBLS performance remains consistent.

Overall, with random sequences added, we obtained an average

AUC of 0.76 for z-scores in the UTR region, and 0.68 for lncRNA

region. For details on the validation method, see the supplement.

Additionally, Fisher’s exact test was applied to MotifMap-RNA

results which overlap positive or negative peaks. In all tested cases,

MotifMap-RNA hits significantly overlap more positive peaks.

Comparison to existing method (RBPmap) also shows favorable re-

sults (details in Supplementary Tables S1 and S2).

3.2 Web server
We constructed a database to host the results and implemented the

MotifMap-RNA web portal, which provides the user a friendly

interface to effectively find, filter, sort and navigate the binding site

results in two different modes: motif search and gene search.

In motif search, the user can obtain an interactive table containing

results from all of the hits of the selected motif, filtered and sorted

by a variety of parameters. In gene search, instead of selecting one

motif, the user can input a gene symbol or an annotation ID (e.g.

miRNA accession), and search for hits from all motifs to that target

(details in Supplementary Material).

4 Conclusion

In conclusion, MotifMap-RNA is a novel system for genome-wide

querying of RBP binding sites. Together with its friendly interface,

it will assist users in their investigations of RBPs and RNA

regulation, and the fundamental roles they play across multiple

biological processes.

Conflict of Interest: none declared.
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2.6 The ChIPSeq pipeline

While MotifMap and MotifMap-RNA provide comprehensive predictive binding sites for

functional studies, experimental data is often times vital for specific studies. To augment

MotifMap and MotifMap-RNA, we developed the ChIPSeq pipeline. We then imported more

than 140 experimental results, most from the ENCODE project (https://www.encodeproject.org).

Data is stored in a MySQL database with similar interfaces to MotifMap and MotifMap-

RNA databases. A novel rank based score is introduced in an attempt to make filtered peaks

across different experiments more consistent. Briefly, for each experiment, where peak score

of some sort is available (e.g., peak pileup value), peaks are ranked by this score and the

ranks are used as a non-parametric score. When filtering peaks from multiple experiments,

this rank is optionally used as a filtering parameters similar to equivalent parameter in com-

putational results such as MotifMap. Empirical testing shows that this approach improves

the results of multi-experimental functional analysis, although only to a limited extent. An

example of this application is used in a study of mouse microbiome [41], which is appended

at the end of Chapter 3.

2.7 Integration into PyCircadiOmics

MotifMap, MotifMap-RNA and ChIPSeq data are used in PyCircadiOmics to conduct

genome wide functional study of circadian regulation. Details of PyCircadiOmics and the

functional results are included in Chapter 7.
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Chapter 3

Circadian Statistical and Machine

Learning Pipelines

3.1 Introduction

One of the most common forms of circadian omic data is measurements of concentrations

of molecular species, such as transcripts, proteins or metabolites. Such measurements are

usually taken over the course of a day (24hrs) and are collected over at least 4 time points.

As a result, a typical dataset contains hundreds or thousands of time series of individual

molecular species. Processing this time series data is an important first step of any circadian

analysis. Furthermore, machine learning techniques can be applied to individual time series

data or collections of time series, typically grouped by circadian behavior under different

experimental conditions (i.e., circadian groups).

However, as is typical of high-throughput biological data, circadian omic data introduces a

series of challenges for its processing and analysis. First of all, there is intrinsic noise from the

biological signals, accompanied by experimental noise particular to each type of experimental
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technique. Furthermore, the signals may contain numerous missing data, outlier data or

unannotated data. Last but not least, different experiments may produce different intensities

of signals, which makes cross-experimental analysis challenging.

3.2 Overview of the Pipelines

The circadian statistical pipeline (igb-pipelines:circadian statistics) was designed

to process noisy and variable circadian time series signals. At the very core, it employs

either BIO CYCLE [2] or JTK CYCLE [25] to predict circadian properties of time series

data. The user can choose parameters specific to either software through the interface of

the statistical pipeline. Predicted phases, amplitudes, periods and circadian p-values/q-

values are collected automatically by the pipeline and used for downstream processing. In

addition, the statistical pipeline utilizes a few common methods to improve the robustness

of the analysis. First, a Dixon’s test is performed, at each timepoint for multi-replicate data,

to determine any outlier replicate data to exclude. The test can be performed at either the

90th, 95th or 99th percentile. Second, at each timepoint, where pairwise conditional data is

available (e.g., the experiment is done in two conditions, WT vs KO), Cyber-T ([8, 30]), a

t-test with Bayesian regularization is used to perform differential analysis at that particular

timepoint with multiple testing corrections. Finally, the statistics generated by the pipeline

(e.g., circadian p-value, phases, differential p-values where applicable) are collected into a

well-formatted table, to be incorporated into the downstream pipelines including the machine

learning pipeline.

Given the output table of the statistical pipeline, we essentially obtain a matrix of circa-

dian features for each molecular species in a given experiment. The circadian profiling

pipeline takes this feature matrix as input and perform a series of basic machine learning

and visualization techniques.
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The most commonly used visualization for such circadian data is a time series heatmap

showing average concentrations at each time point, sorted by the predicted phase. This is

demonstrated in the analysis of mouse ketogenic data ([49]) attached later in Chapter 4. A

novel technique is also invented to utilize Dynamic Time Warping (DTW, [40]) to order time

series. Briefly, a random time series with phase close to ZT0 1 is used as a “bootstrap” time

series and other time series are ordered by the DTW distance away from this series. This

processing is useful for cases where the predicted phases do not separate distinct time series

well, typically in experiments with high noise.

In addition, a collection of machine learning techniques are also available from the profiling

pipeline. These include: dimension reduction (PCA, t-SNE [36]), clustering of timeseries

signals or features derived from such signals via K-Means, Agglomerative Clustering (AC),

and DBSCAN. The goal of these techniques is, in general, to identify for further analysis,

groups of molecular species (e.g., genes) that behave similarly in their circadian oscillations.

Implementation is done via scikit-learn in python.

Moreover, novel visualization techniques are also available, such as superimposed Andrews

plot [4], phase-amplitude hexagonal correlation plot and radial phase distribution plot. Select

examples of the aforementioned techniques are shown in the following figures. A published

example of the radial phase distribution plot is shown in a diet study ([49]) attached at the

end of Chapter 4.

1ZT indicates time point, thus ZT0 is time point 0 or hour 0
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Figure 3.1: Dimension reduction (PCA) of circadian features and clustering by K-Means
and Agglomerative Clustering. Data taken from a mouse liver diet experiment [16]. Features
include phases, amplitudes and circadian p-values. Above shows K-Means while below shows
AC. X, Y axis are principal components. Color indicates assigned clusters.
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Figure 3.2: Hexagonal correlation plot of circadian data. Data taken from a mouse liver
diet experiment [16]. LAG (y) indicates predicted phases while AMP (x) indicates predicted
amplitudes. Color indicates frequency.
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Figure 3.3: Superimposed Andrews Plot of circadian time series from several circadian
groups. Data taken from a mouse liver diet experiment [16].
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3.3 Integration into igb-pipelines

Through statistical analyses, we can convert high throughput circadian omic data from

their raw, quantitative form, to a set of condensed, higher level features. These features

include circadian p-values, phases, amplitudes, etc. Furthermore, through machine learning

techniques or traditional threshold based filtering techniques, we can produce sets of circadian

species that are of specific interest or significance. A very commonly used technique is to

separate transcriptomic data into those that are considered significantly oscillating in one

experimental condition vs. another condition. Similar sets can also be obtained by analyzing

the phase and amplitude of the time series, through differential analysis at certain time

points, or via dimension reduction of circadian features and clustering of such features.

Most of our projects rely on these outputs from the circadian statistical and machine learning

pipelines. As such, these pipelines are fully integrated into the worg publication system

(Chapter 5), CircadiOmics (Chapter 6) and PyCircadiOmics (Chapter 7).

3.4 Application: Mouse Gut Microbiome Paper

An example publication on the study of mouse microbiome, for which I am a contributing

author, is attached below [41].

In particular, the aforementioned pipelines contributed to Figure 3 and the accompanying

results section. Differential analysis was performed at fixed time points (ZT0 and ZT12)

between control mice and mice that underwent microbial transplant from a high fat diet

host. The analysis revealed a significant number of up-regulated and down-regulated genes

due to the transplant. Furthermore, it revealed that at ZT12 a large number of Pparγ target

genes are up-regulated. This finding is further strengthened by a metabolomic study using
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similar differential analysis techniques. The full analysis and discovery is shown in the paper

below.
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Gut microbiota directs PPARc-driven
reprogramming of the liver circadian clock by
nutritional challenge
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Abstract

The liver circadian clock is reprogrammed by nutritional challenge
through the rewiring of specific transcriptional pathways. As the
gut microbiota is tightly connected to host metabolism, whose
coordination is governed by the circadian clock, we explored
whether gut microbes influence circadian homeostasis and how
they distally control the peripheral clock in the liver. Using fecal
transplant procedures we reveal that, in response to high-fat diet,
the gut microbiota drives PPARc-mediated activation of newly
oscillatory transcriptional programs in the liver. Moreover, anti-
biotics treatment prevents PPARc-driven transcription in the liver,
underscoring the essential role of gut microbes in clock repro-
gramming and hepatic circadian homeostasis. Thus, a specific
molecular signature characterizes the influence of the gut micro-
biome in the liver, leading to the transcriptional rewiring of
hepatic metabolism.
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Introduction

Circadian rhythms are intimately linked to a large array of physio-

logical processes, metabolic control, immune responses, hormonal

regulations, and behavior [1,2]. The mammalian central pacemaker

is localized in the hypothalamus, in a paired neuronal structure

called the suprachiasmatic nucleus (SCN). The discovery that all

tissues and virtually all cells contain an intrinsic circadian clock

revolutionized the field, providing a conceptual framework toward

the understanding of organismal homeostasis and physiological

tissue-to-tissue communication [3–10]. It has been recently demon-

strated that misalignment of the peripheral clocks with the SCN may

contribute to a variety of pathological conditions [11]. Indeed,

disruption of the circadian clock has been shown to lead to

imbalance in metabolic homeostasis, contributing to a number of

pathologies [12–15].

Accumulating evidence reveals that changes in nutritional

regimes, including time-restricted feeding and challenge by high-fat

diet (HFD), extensively influence liver circadian metabolism

[16–18]. Importantly, the clock system undergoes a metabolic and

transcriptional reprogramming in response to nutritional challenge,

which involves the cyclic activation of otherwise non-circadian tran-

scription factors. Specifically, oscillation of peroxisome proliferative

activated receptor-c (PPARc) and its recruitment to chromatin

drives a significant fraction of the HFD-induced liver clock repro-

gramming [19].

As dietary intake drastically affects the microbial community

structure residing in the gut [20–23], we sought to explore whether

gut microbes might be responsible for the reprogramming of hepatic

circadian rhythmicity. Indeed, while it has been demonstrated that

HFD-induced adiposity is transmissible via microbiota transfer

[20,24] and that the gut microbiota contributes to circadian clock

function [25,26], little is known about the molecular signatures

through which gut microbes regulate clock function in a distal

tissue. This question has unique relevance with respect to circadian

biology as gut bacteria are considered to constitute an additional

host organ, and it has been shown that they have important influ-

ences on host developmental and physiological processes [27–30].

Here, we show that a significant fraction of HFD-induced transcrip-

tional reprogramming of the liver clock by PPARc [19] is mediated

by the gut microbial communities. This finding provides new

insights into the connection between gut microbiome and the host’s

circadian metabolism. Indeed, we describe a specific molecular

mechanism within the liver clock that interprets gut microbiota-

driven signals to serve the interplay between the gut and hepatic

metabolism.
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Results and Discussion

Microbial transfer mimics HFD-induced changes in
liver metabolism

To determine whether the HFD-induced metabolic phenotype is

transmissible through microbial transfer, we colonized control chow

(CC)-fed recipient mice with microbial communities freshly

harvested from donors fed CC or HFD (weighed 25.82 � 0.36 g and

40.15 � 1.55 g, respectively; for details see Materials and Methods).

Consistent with previous reports [20,31], the gut microbiome

derived from HFD-fed donors (HF-D) contained an increased frac-

tion of Firmicutes and lower levels of Bacteroidetes as compared to

CC-fed donors (CC-D) (Fig EV1A).

Ten days following the final fecal transplantation, HF-D feces

recipient (HF-R) had significantly more epididymal (2.52 � 0.08%

versus 1.97 � 0.10%) and mesenteric (1.32 � 0.04% versus

1.19 � 0.04%) fat pad mass than CC-D feces recipient (CC-R)

(Fig 1A), whereas body weight and blood glucose levels were not

affected (Fig EV1B and C). Also, an increase in lipid abundance in

the liver was evident in HF-R compared to CC-R, which paralleled

hepatic histology of HFD-fed animals (Fig 1B and C). This meta-

bolic profile strongly suggests that transmission of the HFD-

induced phenotype depends directly on microbiota transplantation.

As expected, CC-R and HF-R mice displayed a significant dif-

ference in their microbiota composition (Fig 1D). There was an

increase in the levels of Actinobacteria in HF-R compared with

CC-R as well as in Coriobacteriaceae, which have been previously

associated with obesity [32]. Moreover, HF-R microbiota was

enriched in Mollicutes, in line with observations indicating that

this class of bacteria is involved in diet-induced obesity in mice

[24,33].

A

D

B C

Figure 1. Metabolic phenotype induced by fecal transplantation.

A % fat mass/body weight of recipient mice (n = 34 per group, Student’s t-test, *P < 0.05, ***P < 0.001). Error bars represent SEM. MF: mesenteric fat, EF: epididymal
fat. CC-R: control chow-feces recipients, HF-R: high-fat diet-feces recipients.

B Oil Red O staining of livers after 2 weeks of diet challenge (Diet) or fecal transplantation (FT). Fat vesicles were photographed at 100× magnification. CC: control
chow, HF: high-fat diet. Scale bar, 0.1 mm.

C Fold change in lipid droplet area (n = 3–5 each group, diet: Mann–Whitney rank-sum test *P < 0.05; fecal transplantation: unpaired, two-tailed Student’s t-test
P = 0.1). Error bars represent SEM.

D Cladogram generated from LEfSe analysis showing the differentially abundant microbiota from CC-R and HF-R.

EMBO reports ª 2016 The Authors

EMBO reports Gut microbes reprogram the liver clock Mari Murakami et al

2

Published online: July 14, 2016 

32



Interestingly, in accordance with the notion that the gut micro-

biota elicits a profound effect on bile acid metabolism and on gut

Farnesoid X receptor (FXR) signaling [34,35], we found that expres-

sion of Fxr and FXR target genes fatty acid binding protein-6

(Fabp6), organic solute transporter-a (Osta) and organic solute

transporter-b (Ostb) to be significantly upregulated in the HF-R

ileum (Fig EV1D), confirming the remodeling of the gut microbiome

by fecal transplantation in recipient mice. As previous studies

demonstrated that gut microbiota is able to promote an obesity

phenotype through FXR [36], it is conceivable that phenotypic

differences between HF-R and CC-R were at least in part attributable

to FXR signaling alteration.

Rewiring of the hepatic circadian clock by HFD and HFD-derived
gut microbiome

Circadian regulation plays an important role in liver functions,

as bile acids, lipids, cholesterol, and glucose are all subject to

diurnal control [37]. In order to investigate how gut microbial

remodeling affects the circadian clock machinery in the liver, we

examined hepatic gene expression in mice receiving fecal

transplants from CC- or HFD-fed mice. Livers were collected at

4-h intervals along the circadian cycle, starting at 10 days

following the final fecal transplantation (FT). It has been previ-

ously described that HFD, while inducing an extensive repro-

gramming of alternative transcription pathways, does not

significantly influence the rhythmicity of the core clock genes,

causing modest changes in the phase and amplitude of transcript

oscillation [17–19]. Livers from CC-R and HF-R followed the

same pattern, with clock genes such as Bmal1, Per2, Rev-erba,

and the CLOCK:BMAL1-driven gene albumin D-box binding

protein (Dbp) robustly rhythmic and slightly phase advanced in

HF-R (Fig 2A). These profiles perfectly mirrored the ones of the

corresponding transcripts in HFD-fed mice, as shown by the dif-

ference between HF and CC expression profiles (delta (HF-CC))

in each condition (diet and FT) (Fig 2B). This analysis under-

scores that the effect of HF fecal transplant on the liver clock

parallels the one of HFD. Finally, BMAL1 phosphorylation,

known to contribute to BMAL1-driven circadian activity [38,39],

was virtually unaltered between CC-R and HF-R (Fig 2C), show-

ing a mild phase advance in BMAL1 phosphorylation in HF-R

compared to CC-R, in keeping with the phase advance of BMAL1

A

B

C

Figure 2. Core clock genes and BMAL1 protein expression.

A qPCR of core clock genes (n = 5–6 each group, two-way ANOVA, post hoc Holm–Sidak comparisons, *P < 0.05). Error bars represent SEM.
B Clock gene expression comparison between HFD-fed and HFD-R mice. Every square in the graphs represents the difference between HF and CC qPCR values (delta

(HF-CC)) in each condition (Diet or FT) at each time point.
C Representative image of immunoblot analysis of BMAL1 in nuclear fraction throughout the circadian cycle. C: CC-R, H: HF-R. On the right, ratio between

phosphorylated BMAL1 and non-phosphorylated BMAL1 is shown.

ª 2016 The Authors EMBO reports

Mari Murakami et al Gut microbes reprogram the liver clock EMBO reports

3

Published online: July 14, 2016 

33



targets observed in HF-R mice (Fig 2A). Our data demonstrate

that the liver core clock is only slightly modulated by HFD-

dependent alteration in gut microbiota composition. On the other

hand, metabolic changes triggered by the microbiota affect liver

functions that in turn can influence clock-driven circadian physi-

ology.

A

C

E

D

B

Figure 3. PPARc-driven transcriptional reprogramming induced by microbial transplantation.

A Heat maps representing the genes significantly downregulated or upregulated in HF feeding and HF fecal transplantation at ZT0 and ZT12 (n = 4, Cyber t-test
P < 0.05).

B Heat map of PPARc target genes upregulated in both HFD feeding and HF-R at ZT12 (n = 4, Cyber t-test P < 0.05).
C KEGG pathway analysis of genes downregulated at ZT12 in both HF feeding and HF-R.
D KEGG pathway analysis of genes upregulated at ZT12 in both HFD feeding and HF-R.
E Venn diagram and heat map of metabolites whose expression increased in both HFD feeding and HF-R at ZT12 (n = 5, Cyber t-test P < 0.05).

Source data are available online for this figure.
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HFD and HFD-induced dysbiosis share a specific
transcriptional program

To assess the impact of dysbiosis on the liver of fecal-transplanted

animals, we performed transcriptome analysis by studying genes

differentially expressed at ZT0 and ZT12 (the end and the begin-

ning of the mouse active phase). At ZT0, 367 transcripts were

downregulated and 871 were upregulated in HF-R compared to CC-

R. On the other hand, 416 transcripts were downregulated and

2,071 were upregulated in HF-R compared to CC-R at ZT12. These

results were then compared to our previous liver transcriptome

data from 10-weeks HFD-fed animals [19] to identify common regu-

latory pathways. We performed pathway analyses both for genes

shared by HF feeding and FT (Fig 3C and D) and for genes exclu-

sively regulated by either HFD feeding or HF-FT with respect to

their CC group (Fig EV2). Of all transcripts found to be upregulated

in both HFD-fed mice and HF-R compared to CC-fed and CC-R

respectively at ZT12, 133 transcripts were shared (Fig 3A, Source

Data). Singular enrichment analysis of KEGG pathways of the over-

lapping genes revealed several categories related to lipid metabo-

lism, such as “biosynthesis of unsaturated fatty acids” and “PPAR

signaling pathway” (Fig 3D). On the other hand, 109 genes

appeared in the group of transcripts that were downregulated in

both HFD-fed animals and HF-R at ZT12 (Fig 3A). In contrast to

“up in both high-fat groups” at ZT12, we found unique annotations

including “protein processing in endoplasmic reticulum”, “RNA

transport”, and “protein transport” (Fig 3C). At ZT0 (Fig 3A,

Source Data), “steroid hormone biosynthesis pathway” was found

“down in both high-fat groups” while no liver-associated annota-

tions were enriched in “up in both high-fat groups” (see Table EV1

for details). The comparative analyses between high-fat feeding and

HF-R transcriptome data revealed that lipid metabolism is the prin-

cipal biological process, which is influenced by both high-fat feed-

ing and HFD-induced dysbiosis. Moreover, the categories related to

lipid metabolism present in our gene ontology analysis suggest

ZT12 as the most relevant ZT involved in the transcriptional modi-

fications induced by both HFD and HF-R conditions.

Gut microbial remodeling induces circadian PPARc recruitment
in HF-R

A prominent pathway through which high-fat feeding induces

remodeling of the liver clock is the de novo cyclic activation of

PPARc [19]. PPARc is abundantly expressed in adipose tissue and it

is less abundant in the liver under physiological conditions, however

it is induced in hepatic steatosis or in obesity [40,41]. Based on the

signatures of transcriptome analyses, we speculated that PPARc-
driven reprogramming induced by high-fat feeding might be medi-

ated by microbial alteration. Thus, to address this issue, we crossed

133 genes “up in both high-fat groups” with previously established

PPARc-ChIP Seq analysis data [42,43]. Notably, we found that 17

out of the 133 (12.8%; P = 0.006) genes, including DFFA-like

effector c (Cidec), acyl-CoA thioesterase 2 (Acot2), and phospholipid

transfer protein (Pltp) (Fig 3B), were PPARc targets. Notably,

comparative analysis of the liver metabolome at ZT12 (Source Data)

revealed that 6 out of 7 metabolites, which were significantly

increased in both HFD-fed animals and HF-R at ZT12, were long-

chain fatty acids, and some of them, such as palmitoleate and oleate,

are possible ligands of PPARc [44,45] (Figs 3E and EV3C). Indeed,

gene expression of lipogenic enzymes catalyzing the synthesis of

these long-chain fatty acids such as acetyl-CoA carboxylase 1 (Acc1),

fatty acid elongase 6 (Elovl6), and stearoyl-CoA desaturase 1 (Scd1)

and its transcription factor SREBP1 were significantly upregulated in

HF-R compared to CC-R (Fig EV3A–C). Furthermore, it is reported

that PPARc enhances lipogenic gene expression in the liver and

induces hepatic lipid accumulation [40,41]. Taken together, our

comprehensive analyses confirm that microbial remodeling induces

ZT-dependent PPARc pathway activation at a global transcriptional

level in the liver accompanied by hepatic metabolites alteration.

Based on these results, we next analyzed the PPARc transcrip-

tional pathway along the circadian cycle. Gene expression of Pparg

and its target genes Cidec, Pltp, Acot2 and pyruvate carboxylase

(Pcx) all displayed rhythmic profiles, which peaked at ZT12 in the

HF-R mice (Fig 4A). The expression of Cidec and Pcx genes has

been previously demonstrated to become cyclic upon high-fat feed-

ing [19]. Interestingly, Cidec is a lipid-binding protein induced in

the steatotic liver and contributes to lipid accumulation [46,47].

Also, the expression of both Acot2, the enzyme that hydrolyses

long-chain fatty acyl-CoA and facilitates fatty acid oxidation [48],

and Pltp, a lipid transfer protein that drives lipoprotein production

[49], showed rhythmic expression with a zenith at ZT12 in HFD-fed

animals, in contrast to the expression of these genes in the CC-fed

animals (Fig EV3D). Again, Pparg and its target genes oscillated

with striking amplitude in HF-R as compared to CC-R, peaking at

ZT12 (Fig 4A). Similar results were confirmed in germ-free (GF)

mice transplanted with feces from HF-D or CC-D (Fig EV3E).

Figure 4. Microbial transplantation induces PPARc pathway activation in HF-R mice liver.

A PPARc target genes expression measured by qPCR (n = 5–12 each group, two-way ANOVA, post hoc Holm–Sidak comparisons, *P < 0.05, **P < 0.01). Error bars
represent SEM.

B Immunoblot analysis of PPARc in nuclear fraction. On the right, quantification of PPARc normalized to p84 is shown. Average of donor mice (ref. [19]) and four
experimental replicates per time point, per group of recipient mice (two-way ANOVA, post hoc Holm–Sidak comparisons, *P < 0.05). Error bars represent SEM.

C Immunoblot analysis of PPARc in chromatin fraction. On the right, quantification of PPARc normalized to the TBP is shown. Average of 4 experimental replicates, per
time point, per group (two-way ANOVA, no significant difference). Error bars represent SEM.

D Chromatin recruitment of PPARc at PPAR binding site contained in Cidec and Pcx promoters (n = 3–5 per group, per ZT, two-way ANOVA, post hoc Holm–Sidak
comparisons, *P < 0.05). H3K4me3 abundance at Cidec and Pcx promoters (n = 4–7, per group, per ZT, unpaired, two-tailed Student’s t-test, *P < 0.05). Error bars
represent SEM.

E Pparg and Cidec gene expression at ZT12 in the liver of fecal-transplanted animals treated with GW9662 or vehicle (n = 6–9 per group, two-way ANOVA, post hoc
Holm–Sidak comparisons, *P < 0.05). Error bars represent SEM.

F % epididymal fat mass/body weight of fecal-transplanted animals treated with GW9662 or vehicle (n = 6–9 per group, unpaired, two-tailed Student’s t-test,
*P < 0.05). Error bars represent SEM.
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Figure 4.
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Importantly, nuclear- and chromatin-bound PPARc (Fig 4B and C)

drastically oscillated in HF-R with a zenith at ZT12. This profile is

remarkably reminiscent of the previously reported effect of HFD on

liver PPARc nuclear protein [19] (Fig 4B). Moreover, PPARc
recruitment to PPARc-binding sites (PPRE) in Cidec and Pcx promot-

ers was significantly increased at ZT12, in line with gene and

protein expression profiles (Fig 4D) and paralleled by a tendency to

increase in trimethylation of Lys4 on the histone H3 (H3K4Me3) at

the same genomic regions (Fig 4D). Finally, to verify that PPARc
activation is one of the central molecular mechanisms underlying

HF-R liver reprogramming, we treated fecal-transplanted mice with

the selective PPARc antagonist GW9662 [50]. As expected, HF-R

injected with the vehicle (+ vehicle) displayed an increase in the

epididymal fat with respect to CC-R + vehicle. On the contrary, HF-

R injected with GW9662 (+ GW9662) showed no difference with

respect to CC-R mice + vehicle (Fig 4F). Strikingly, the increase in

Pparg and Cidec liver gene expression at ZT12 was completely

prevented in HF-R + GW9662 (Fig 4E). Thus, a significant fraction

of the HF microbiota-dependent liver diurnal reprogramming relies

on the induction and activation of the transcription factor PPARc.

HFD-induced reprogramming is neutralized by
antibiotic treatment

To validate that gut microbiota contributes to the HFD-induced

reprogramming, we treated HFD-fed mice with an antibiotic cock-

tail for 6 weeks [51]. Following antibiotic treatment, a remarkable

enlargement of the cecum was observed (Fig 5A), a distinctive

feature of germ-free mice. The body weight of antibiotic-treated

animals on HFD showed a significantly smaller increase with

respect to HFD-fed control mice, but it was still significantly higher

than that of CC-fed control animals. On the contrary, there was no

difference in body weight between CC-fed animals treated or not

treated with antibiotics (Fig 5B). Moreover, the high levels of

serum glucose induced by high-fat feeding were significantly

decreased to control levels by antibiotic treatment (Fig EV4). The

expression of Pparg and its targets were significantly higher in

HFD-fed control mice compared to CC-fed control mice at ZT12,

whereas there was no difference between the groups at ZT0. Strik-

ingly, antibiotic treatment reversed the effect of HFD on Pparg and

its target genes, significantly decreasing their expression at ZT12,

the peak time point of Pparg in HFD-fed animals (Fig 5C). It is

worth noting that HFD-induced reprogramming is dissociable from

obesity [19]. In fact, the expression of PPARc target genes was not

different between antibiotic-treated HFD-fed and CC-fed animals

even though the former weighed significantly more than the latter

(Fig 5B). Thus, the reversible effects shown in the antibiotic-

treated HFD-fed animals were induced by the depletion of micro-

biota, rather than the loss of body weight. These results confirm

that the microbial alteration plays an important role in PPARc-
driven diurnal transcriptional remodeling in HFD-fed animals.

Accumulating evidence reveals that the gut microbiota is

involved in maintaining the host metabolic homeostasis. Since

metabolic networks and the circadian clock are intimately inter-

twined, the impact of the gut microbiota in regulating host periph-

eral clocks is significant [25,52]. Evidence is emerging that feeding

A

C

B

Figure 5. HFD-induced reprogramming is counteracted by antibiotic treatment.

A Cecum of mice treated with or without antibiotics for 6 weeks.
B Body weight of animals fed CC or HFD and treated with or without antibiotics for 6 weeks. Animals were fed CC or HFD during the experiment (n = 8 HF and CC

control, n = 18 HF and CC + antibiotic; HFD control versus HF antibiotic: Student’s t-test, *P < 0.05; HF antibiotic versus CC antibiotic: unpaired, two-tailed Student’s
t-test, #P < 0.05). Error bars represent SEM.

C Gene expression of Pparg and PPARc target genes in the liver of mice fed CC or HFD for 6 weeks and simultaneously treated with an antibiotic cocktail (n = 4 for
each antibiotic-untreated group, n = 9 for each antibiotic-treated group, per ZT; ZT0 and ZT12 two-way ANOVA, post hoc Holm–Sidak comparisons, *P < 0.05,
**P < 0.01, ***P < 0.001). Error bars represent SEM.
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rhythms induce diurnal fluctuations of gut microbiome [53–55]

while disruption of the rhythmic microbial population in HFD-fed

animals leads to an alteration of hepatic circadian transcripts [25].

However, the molecular mechanisms through which gut microbes

regulate liver homeostasis by rewiring the circadian transcriptome

have been unexplored.

Nuclear receptors play crucial roles in connecting the circadian

network and metabolism [56] by sensing oscillatory metabolites and

integrating them into host energy balance [57,58]. Among them,

PPARc, a master player in adipogenesis and a direct regulator of

genes involved in lipid and glucose metabolism [59], is at the heart of

this network [60–62]. Notably, high-fat feeding was shown to amplify

the expression of Pparg [60] and its target genes by inducing de novo

cyclic recruitment of PPARc to chromatin [19]. Our results show that

gut microbial remodeling under high-fat feeding induces rhythmic

activation of PPARc that in turn leads to transcriptional reprogram-

ming in the liver. Circadian activation of PPARc and SREBP1 expres-

sion coordinately contributes to the regulation of hepatic lipid

metabolism in HF-R mice and previous evidence demonstrates that

metabolites produced by gut microbes regulate host liver lipogenesis

[63–65]. Indeed, we observed an increase in the levels of hepatic

long-chain fatty acids that are involved in both signaling pathways

and in lipid accumulation in the liver. Furthermore, short-chain fatty

acids (SCFA) produced by bacterial fermentation are modulators of

PPARc [66], and PPARc signaling might be altered by different SCFA

profiles depending on dietary changes. Thus, we speculate that gut

microbe-derived metabolites modulate PPARc activity in HF-R liver

either through direct activation or indirectly via SREBP1. Interest-

ingly, HFD-driven dysbiosis is implicated in hematopoietic stem cell

differentiation through PPARc activation [67], further supporting a

PPARc-mediated effect of gut microbiota on distal tissues.

The circadian clock is fundamental to maintain liver tissue physi-

ology and contributes to whole-body metabolic homeostasis. Our

results demonstrate that HFD-induced gut dysbiosis affected hepatic

diurnal rhythmicity and induced hepatosteatosis and an increase in

fat depots. GW9662 treatment, blocking the microbiota-driven

PPARc diurnal reprogramming, reverted the fat depot phenotype in

HF-R mice. The change in circadian gene expression subsequent to

HFD microbiome remodeling might exacerbate more severe meta-

bolic diseases.

In conclusion, we have demonstrated that the HFD-induced

remodeling in gut microbiome mediates PPARc-driven reprogram-

ming of the host liver clock, leading to specific rewiring of circadian

transcription. This effect was reversible by depletion of gut micro-

biota, confirming the importance of intestinal microbes’ contribu-

tion to cellular plasticity in response to nutritional stress. The

elucidation of the molecular mechanisms underlying the powerful

effect of diet-induced gut microbial alteration on the host liver circa-

dian clock paves the way for pharmaceutical strategies to target

metabolic diseases.

Materials and Methods

Animals

Age-matched male C57BL/6J mice (Jackson Laboratory) were

maintained on a 12-h light/12-h dark cycle with ad libitum access of

food and water. Animals’ care and use was in accordance with

guidelines of the Institutional Animal Care and Use Committee at

the University of California, Irvine. Male C57BL/6J germ-free mice

were kindly provided by Dr. Sarkis Mazmanian (California Institute

of Technology).

Microbiota transplantation experiments

Six-week-old donor mice were fed CC or HFD for 6–11 weeks before

their feces were harvested. Recipient mice were fed CC from the age

of 6 weeks old, and they were pretreated with a combination of

vancomycin 0.5 g/l and neomycin 1 g/l in drinking water for

1 week followed by intraperitoneal injection of clindamycin at

10 mg/kg body weight for two consecutive days before fecal

transplantation. At the time of fecal transplantation, freshly

harvested donor feces were suspended in PBS and mixed with a

vortex for 10 min. Recipients at 12 weeks of age were colonized

with microbiota by gavaging freshly prepared donor fecal

suspension (0.8–1.0 mg feces/g BW/day) for 5 days, once a day. All

recipients were kept on CC throughout the experimental period and

sacrificed 10 days after the final transplantation. For fecal transplan-

tation into germ-free mice, 8-week-old male germ-free mice were

colonized only once. Recipient mice were sacrificed 14 days after

fecal transplantation.

Microarray analysis

RNA was extracted using TRIzol reagent (GIBCO BRL Life Technolo-

gies) and cleaned up with RNeasy spin columns (Qiagen). Quality of

purified RNA was checked with an Agilent Bioanalyzer (Agilent

Technologies). Microarrays were performed at the UCI Genomics

High-throughput Facility, University of California, Irvine, as

described in a previous study [19]. Data sets can be found in the

NCBI gene expression omnibus (GEO), GSE 82250 for FT and GSE

52333 for Diet experiment.

GW9662 treatment

GW9662 (Cayman Chemical) dissolved in DMSO was diluted in PBS

and intraperitoneally injected to fecal-transplanted mice (CC-R and

HF-R) at a dose of 4 mg/kg at ZT12 for 15 days, once a day, from

the second day of microbial transplantation. Animals were sacrificed

at ZT12, and liver tissue was harvested for gene expression 24 h

after the final injection.

Antibiotic treatment

Six-week-old mice were given vancomycin 0.5 g/l, ampicillin 1 g/l,

neomycin 1 g/l, and metronidazole 1 g/l in drinking water

ad libitum following previously published protocol to deplete

commensals [51] and they were fed CC or HFD during this period.

Mice were sacrificed after 6 weeks of antibiotic treatment.

Diets

Mice were fed a control chow (CC) (Harlan Laboratories, TD.

110870) or HFD (60% kcal fat, Research Diets, D12492) with

ad libitum access to both diets. 2020X (Harlan Laboratories) was
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used as a CC for antibiotics treatment experiment. All diets used

in this study were irradiated or autoclaved to avoid contamination.

Histological analysis

Freshly isolated liver was embedded in OCT, immediately snap

frozen in liquid nitrogen and stored in �80°C until they were used

for the analysis. Sections were sliced into 10 lm and stained with

Oil Red O. Area of lipid droplets was calculated by ImageJ.

16S rRNA gene sequencing analysis

Feces collected from donors and recipients were immediately frozen

in liquid nitrogen. Fecal DNA was extracted with QIAamp Fast DNA

Stool Mini kit (Qiagen) according to the manufacturer’s protocol.

16S rRNA gene sequencing was performed by Zymo Research

(Irvine, CA, USA). DNA samples were quantified, followed by PCR

amplification of V3 and V4 regions of the 16S rRNA gene. A second

PCR was performed to add barcodes to each sample. The final

amplicon libraries were quantified and then sequenced on MiSeq.

Paired-end raw reads in 2 × 250 bp length went through quality

check steps including adaptor removal and trimming 30 bases with

quality score q < 20. Reads shorter than 20 bp were discarded. The

data were analyzed using the program QIIME release 1.8.0 (www.

qiime.org) and the latest Greengenes 16S rRNA gene database

(gg_13_8).

Quantitative RT–PCR

Liver and intestine samples were homogenized in TRIzol lysis

reagent. Chloroform was added and the samples were shaken for

15 s. The samples were left at RT for 3 min and then centrifuged

(12,000 g, 15 min, 4°C). The upper phase aqueous solution,

containing RNA, was collected in a fresh tube, and the RNA was

precipitated by adding isopropanol. Samples were mixed by

vortexing, left at RT for 10 min and then centrifuged (12,000 g,

10 min, 4°C). Supernatant was discarded and the RNA pellet was

washed in 75% ethanol by centrifugation (7,500 g, 5 min, 4°C).

Supernatant was discarded and the pellet was resuspended in

DEPC water. Total RNA concentrations were determined by Nano-

drop spectrophotometer (ThermoScientific). Total RNA was reverse

transcribed using iScript Reverse Transcription Supermix (Bio-

Rad). Gene expression was analyzed by Real-Time PCR (Bio-Rad)

using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad). See

Table EV2 for the primer sequence list.

Nuclear and chromatin fraction extraction

Approximately 250 mg of liver was homogenized in 4 ml buffer A

(10 mM HEPES, pH 7.8, 25 mM KCl, 0.5 mM spermidine, 1 mM

EGTA, 1 mM EDTA, 0.32 M sucrose, and 0.3% Triton) with

protease inhibitors. Samples were centrifuged at 1,000 g for

10 min at 4°C. Pellets were resuspended in 4 ml buffer A and

centrifuged again at 1,000 g for 10 min at 4°C. Pellets were then

resuspended in 4 ml low-salt buffer (10 mM HEPES, pH 7.8,

25 mM KCl, 0.5 mM spermidine, 1 mM EGTA, 1 mM EDTA, and

20% glycerol) and then centrifuged again at 1,000 g for 10 min at

4°C. Nuclear pellets were resuspended in 1 ml low-salt buffer,

centrifuged, and resuspended in 1× volume low-salt buffer and 2×

high-salt buffer (10 mM HEPES, pH 7.8, 25 mM KCl, 0.5 mM

spermidine, 1 mM EGTA, 1 mM EDTA, 20% glycerol, and 0.5 M

KCl). Suspensions were nutated for 1 h at 4°C and then

centrifuged at 12,000 g for 20 min. The resulting supernatant is

used as the soluble nuclear fraction. The pellet was resuspended

in modified RIPA buffer, sonicated, centrifuged at 12,000 g for

20 min at 4°C, and used as chromatin fraction for subsequent

immunoblot analysis.

Immunoblot analysis

Approximately 3–10 lg of nuclear or chromatin extract from liver

samples was loaded on 8% polyacrylamide gels. The blots were

blocked in 5% milk in TBST and incubated overnight at 4°C with a

specific primary antibody. BMAL1 antibody (abcam # 93806) was

diluted 1:2,000, PPARc (1+2) antibody (abcam # 41928) 1:1,000,

SREBP1 antibody (Santa Cruz # 13551) 1:100, and p84 antibody

(GeneTex # 70220) 1:3,000. Blots were then washed three times in

TBST for 20 min, incubated in HRP-conjugated anti-mouse or anti-

rabbit diluted (1:8,000) in 2.5% milk in TBST 1 h at RT. The

membranes were then rinsed three times in TBST and incubated in

enhanced chemiluminescent substrate and exposed to films. Films

were scanned and densitometry was analyzed through ImageJ

software.

Chromatin immunoprecipitation

Approximately 100 mg of liver tissue was minced and double

crosslinked with DSG for 40 min and 1% formaldehyde for 10 min

followed by adding glycine (0.125 M final concentration) at room

temperature for 10 min. After homogenizing tissue pellet in PBS,

1 ml of lysis buffer was added. Samples were sonicated by Biorup-

tor to generate 200–500-bp fragments and centrifuged at 10,000 g

at 4°C. Supernatant was diluted in dilution buffer (1.1% Triton

X-100, 1.2 mM EDTA, 16.7 mM Tris–HCl, 167 mM NaCl),

precleared with protein-G beads blocked with salmon sperm DNA

and BSA for 2 h. Precleared supernatant was incubated with 2 lg
of PPARc (1+2) antibody (abcam # 41928) or 3 lg of histone

H3K4me3 (Active Motif #39159) primary antibodies overnight at

4°C. Protein-G beads were added to the supernatant and incubated

for 2 h at 4°C and centrifuged. Beads were recovered and washed

in low-salt buffer, high-salt buffer, and LiCl buffer, followed by

washing in TE for three times. Elution buffer (300 mM NaCl, 0.5%

SDS, 10 mM Tris–HCl, 5 mM EDTA) was added to the washed

beads and treated with RNase at 37°C for 2 h and proteinase K at

65°C overnight. Equal amount of PCI was added to the samples

and the aqueous phase was recovered. DNA was precipitated by

adding 100% ethanol, NaOAc, and glycogen and kept at �80°C

overnight. Samples were centrifuged at 12,000 g for 30 min at 4°C

and washed with 70% ethanol followed by centrifugation at

12,000 g for 30 min at 4°C. Quantitative PCR was done using

SYBRGreen reagent.

Metabolite analysis

Liver metabolite analysis was performed by Metabolon, Inc.

(Durham, NC, USA) based on ultrahigh-performance liquid
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chromatography–tandem mass spectroscopy (UPLC-MS/MS) and

gas chromatography–mass spectroscopy (GC-MS).

Statistical analysis

Data are expressed as mean � SEM. The significance of differences

was analyzed by Student’s t-test or ANOVA and post hoc analysis

for multiple group comparison. When the data were not distributed

normally, we used Mann–Whitney rank-sum test. For microarray

data, at each time point of interest, CyberT, a differential analysis

program using a Bayesian-regularized t-test [68,69] was performed

between experimental group and control group (i.e. HFD versus CC,

HF-R versus CC-R) and P-values were calculated. Transcripts/

metabolites passing P-value < 0.05 were considered differential at

that time point. Sets of differential transcripts/metabolites from diet

or fecal transplantation data were further intersected to produce the

list of commonly differential transcripts/metabolites. To cross our

data with ChIP-Seq databases, ChIP-Seq peaks were extracted from

previously published data [42,43]. Genes with peaks that are close

to transcription start sites (from 10,000 bp upstream to 2,000 bp

downstream) from any of the data sets were considered potential

targets.

Gene annotation analysis

Gene annotation was performed using Genecodis [70]. Data

presented in the manuscript was obtained using KEGG as know-

ledge base and pathways were ranked by number of genes (hits)

with pathway annotations.

Expanded View for this article is available online.
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Chapter 4

Functional Enrichment Pipelines

4.1 Introduction

Regardless of how one processes the time series signals through statistical or machine learning

methods, there is still a gap between those results and meaningful biological discoveries. This

gap requires the annotation and interpretation of signals.

In a typical transcriptomic experiment, one analyzes more than 20,000 transcripts under

one experimental condition. Grouping these transcripts results in an astronomically large

number of possible sets. It is naturally the task of bioinfomatics softwares to annotate each

transcript and discover meanings from sets of transcripts which may have particularly high

number of annotations of a certain kind. This is referred to as a functional enrichment.

The circadian functional enrichment pipelines were designed specifically for this analysis.

Again we focus on the transcriptome, but extend also to the metabolome: factor enrichment

is an annotation and enrichment analysis pipeline centered around predicted binding sites

produced by MotifMap and MotifMap-RNA, with additional results produced by the ChIPSeq
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pipeline as well. mpfe is a pathway based annotation and enrichment analysis pipline cen-

tered around KEGG transcriptomic pathways, with additional information from KEGG

metabolomic pipelines and GO term association. Together, these two pipelines produce ro-

bust and detailed annotation and enrichment reports based on transcriptomic or metabolomic

inputs in the form of sets of circadian species. Additionally, they can be readily used on

non-circadian data such as differential analysis data.

While set based enrichment analyses have been proven to be effective in interpreting biolog-

ical meanings from high-throughput data, they are an over simplification. Real mechanisms

cannot be explained simply based on functional groups. A more sophisticated approach is

to study circadian species as interacting nodes in a complex regulatory network. In this net-

work, functional information can be used to infer directed regulatory edges. pyfuncgraph

is a software library designed for supporting such analyses. It constructs meta-functional

graphs based on predicted binding sites, experimental binding peaks, or pathway and anno-

tation association. Such graphs can be intersected with circadian data to produce a circadian

functional graph, which serves as an automatically generated, data-driven model, or a knowl-

edge base, for explaining the organization of circadian species under certain experimental

conditions.

4.2 Overview of the Enrichment Pipelines

The factor enrichment pipeline takes a set of enriched gene or transcript symbols as input.

The user can conduct set intersection or union operations and use any of the resulting new

sets as inputs. To perform set enrichment analysis, the pipeline utilizes results from Mo-

tifMap, MotifMap-RNA and ChIPSeq databases previously described in Chapter 2. Binding

site or ChIPSeq peak results are queried from the MySQL database with a fixed set filtering

thresholds for each type of data.
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Category Source:Input Set Source:Background
Binding Site Hits Hits from the Input Set (exact) Total Hits (exact)

Missing Binding Sites Missing from Input (est.) Total Missing (est.)

Table 4.1: Demonstration of how a contingency table is set up for Fisher’s Exact Test.

For MotifMap, binding sites are predicted at the promoter region of genes (-10,000 ∼ +2,000

bps relative to the transcription start site), using filtering thresholds BBLS ≥ 1, NLOD ≥

0.9, FDR ≤ 0.25. Results from more than 1,300 transcription factors are available. For

MotifMap-RNA, binding sites are predicted for more than 350 RNA binding proteins at the

UTRs or introns (with 200 bps flanking distance) of transcripts, with filtering thresholds

NLOD ≥ 0.9, BBLS > 0. For ChIPSeq peaks, experimental results from more than 100

TFs or histones are filtered close to the promoter regions (defined the same as in MotifMap),

with peak scores percentile ≥ 50%. These binding sites or peak results are gathered for each

gene or transcript in the input set and are compared to a background set or background

genome for enrichment analysis. The background set can be provided by the user (e.g., a

set of all transcripts measured in a micro-array experiment) while a background genome is

provided by the pipeline for mouse (mm10).

Enrichment analysis is performed via Fisher’s exact test on a contingency table using the

input set and the background set/genome. A novel approach is adopted to estimate more

precise out-of-group numbers than simply counting the number of genes without binding

sites. Instead, average binding sites or peaks per target is estimated using the background

set or background genome and an expected value of binding sites or peaks is used for the

out-of-group numbers. A demonstration of this contingency table is shown in Table 4.1.

Furthermore, Benjamini-Hochberg q values (BHQ) are generated to correct for multiple

testing between different source factors (e.g. MotifMap TFs, RBPs). A novel invention of

this pipeline is the meta-factor enrichment analysis, which is performed on multiple input

sets generating set-specific enrichment results. Factors common or unique to these enriched

sets are then extracted from each enrichment analysis and their shared enrichment status is
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analyzed. Multiple testing correction via BHQ is also performed.

The mpfe (multiple pathways functional enrichment) pipeline performs a similar set based

enrichment analysis. However, instead of binding sites or ChIPSeq peaks, results are gen-

erated by pathway association and GO term association. Two publicly available databases,

CPDB and PathwayCommons [26, 11], are used as data sources. These databases incorpo-

rate pathway and annotation information from KEGG [27, 28] and Gene Ontology [5]. Genes

and metabolites are organized by their shared pathways or level 2 GO terms. A Fisher’s ex-

act test is performed per pathway or GO term, where the contingency table is built based on

gene symbols or metabolite names. A novel aspect of this pipeline is the metabolite-transcript

association enrichment analysis. This analysis associates metabolites with transcripts (and

vice versa) and performs enrichment analysis on those associated metabolites or transcripts.

This was done by querying the KEGG enzymatic reaction database (via PathwayCommons).

Figures 4.1 and Figure 4.2 showcase a set of sample output from the this novel analysis.
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Figure 4.1: Enriched reaction pathways, ranked by fold changes (odds ratio in Fisher’s exact
test), generated from genes (transcripts) associated with an input set of metabolites. Data
taken from a mouse brain metabolome study, Tognini et al 2018, publication pending.
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Figure 4.2: Detail of select enriched reaction pathways generated from genes (transcripts)
associated with an input set of metabolites. Data taken from a mouse brain metabolome
study, Tognini et al 2018, publication pending.
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Both enrichment pipelines connect to the viz rendering engine. Outputs are integrated into

the goworg project websites. Compared to existing enrichment analysis tools such as DAVID

[23], these pipelines utilize novel data sources (MotifMap and MotifMap-RNA), perform novel

analyses (metabolome enrichment, metabolite-transcript association enrichment) and run

much faster on local environments (most similar services such as DAVID require using a web

interface). Example application of the generated results are shown in a mouse microbiome

study ([41], Chapter 3), in a tumor bearing mouse study ([37], Chapter 5), and a mouse

ketogenic study ([49], attached below).

4.3 Application: Mouse Ketogenic Diet Study Paper

The functional enrichment pipelines, as well as other methods mentioned in this thesis, are

utilized extensively to conduct bioinformatics analysis of the mouse liver and gut under

different diet treatments by Tognini et al., detailed in the appended paper below [49], for

which I am a first co-author.

In particular, Figure 1 C,G, Figure 2 H and accompanying texts utilize the pathway en-

richment analysis and meta-factor enrichment analysis. Functional enrichment analysis of

circadian transcripts under specific diet conditions reveals that distinct functional pathways

are activated by the same diet treatment in different tissues. In particular, in the liver, under

ketogenic diet (KD), genes associated with endoplasmic reticulum, TNF signaling pathways

and glucagon signaling pathways are enriched. In contrast, in the gut, under the same treat-

ment, genes are enriched for pathways involved in amino acid degradation and fatty acid

metabolism. A meta-factor enrichment analysis was performed to elucidate the underlying

mechanisms for this tissue specificity. Results identified key transcription factors such as

Pparα and Stat5b. The full discovery and analysis is available in the appended paper below.
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SUMMARY

The circadian clock orchestrates rhythms in physi-
ology and behavior, allowing organismal adaptation
to daily environmental changes. While food intake
profoundly influences diurnal rhythms in the liver,
how nutritional challenges are differentially inter-
preted by distinct tissue-specific clocks remains
poorly explored. Ketogenic diet (KD) is considered
to have metabolic and therapeutic value, though its
impact on circadian homeostasis is virtually un-
known. We show that KD has profound and differen-
tial effects on liver and intestine clocks. Specifically,
the amplitude of clock-controlled genes and BMAL1
chromatin recruitment are drastically altered by KD in
the liver, but not in the intestine. KD induces nuclear
accumulation of PPARa in both tissues but with
different circadian phase. Also, gut and liver clocks
respond differently to carbohydrate supplementa-
tion to KD. Importantly, KD induces serum and intes-
tinal b-hydroxyl-butyrate levels to robustly oscillate
in a circadian manner, an event coupled to tissue-
specific cyclic histone deacetylase (HDAC) activity
and histone acetylation.

INTRODUCTION

The circadian clock is an endogenous timekeeper that provides

organisms with the ability to anticipate daily fluctuations in the

environment, thus allowing an appropriate physiological adapta-

tion (Bass and Takahashi, 2010; Eckel-Mahan and Sassone-

Corsi, 2013). The molecular clock is characterized by complex

transcriptional-translational feedback loops involving both tran-

scriptional activators and repressors. The positive limb of the

mammalian clock machinery comprises CLOCK and BMAL1,

which heterodimerize and induce the expression of clock-

controlled genes (CCGs) by binding E-boxes on target pro-

moters. Cryptochrome (Cry1 and Cry2) and Period (Per1, Per2,

and Per3) genes encode proteins that form the negative limb, in-

hibiting CLOCK:BMAL1-mediated transcription (Asher and Sas-

sone-Corsi, 2015; Tamanini et al., 2007). Another important

diurnal loop involves the transcriptional activator retinoid-related

orphan receptors (RORs) and the repressor REV-ERBa/REV-

ERBb, which induces Bmal1 rhythmic expression and delays

Cry1 expression (Everett and Lazar, 2014; Partch et al., 2014).

A number of studies have shown that chromatin remodeling

plays a central role in the harmonic oscillation of circadian

gene expression (Koike et al., 2012). Among the chromatin re-

modelers linked to the molecular clock are the nuclear sirtuins,

specifically SIRT1 (Asher et al., 2008; Nakahata et al., 2008)

and SIRT6 (Masri et al., 2014). These are deacetylases that use

NAD+ as a co-enzyme, thus linking cellular energy metabolism

with epigenetic control. Remarkably, SIRT1 activity and the

levels of NAD+ oscillate in a 24 hr manner since the molecular

clock directly controls the circadian transcription of the gene en-

coding the enzyme nicotinamide phosphorybosiltransferase

(NAMPT) (Nakahata et al., 2009; Ramsey et al., 2009). NAMPT

operates as the rate-limiting step enzyme in the NAD-salvage

pathway. Notably, NAD+ oscillation is abolished in the liver under

nutritional challenge by high-fat diet because of the lack of chro-

matin recruitment of the CLOCK:BMAL1 complex to the Nampt

gene promoter (Eckel-Mahan et al., 2013).

The mammalian circadian system is a hierarchical network in

which the central oscillator, located in the suprachiasmatic

nuclei (SCN) of the hypothalamus, acts in concert with peripheral

clocks (Mohawk et al., 2012; Okamura, 2004; Schibler and Sas-

sone-Corsi, 2002). Importantly, both organismal and cellular

metabolism are tightly interlocked with circadian rhythms and

food challenges, such as high-fat diet or restricted feeding,

that are able to profoundly remodel the liver circadian transcrip-

tome and metabolome (Eckel-Mahan et al., 2013; Hatori et al.,

2012; Kohsaka et al., 2007; Stokkan et al., 2001; Vollmers

et al., 2009). The gut has a powerful endogenous clock that is

thought to be implicated in time-specific food intake. The disrup-

tion of the clock causes higher risk of gut inflammation (Bellet

et al., 2013; Tognini et al., 2017) and increased intestinal perme-

ability (Summa et al., 2013). Interestingly, the crosstalk between

gut microbiota and intestinal epithelial cells is mediated by the

host clock, and clock impairment due to the absence of
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microbial signaling induces a pre-diabetic status (Mukherji et al.,

2013). In addition, food challenge-driven remodeling in the gut

microbiota can transcriptionally rewire the liver clock (Leone

et al., 2015; Murakami et al., 2016).

Both liver and intestine clocks play a key role in sustaining

metabolic homeostasis. However, little is known about how the

gut and liver clocks can specifically interpret a nutritional chal-

lenge and how diet variations might uniquely affect the circadian

physiology of distinct peripheral organs. To address this

conceptually critical question, we reasoned that the ketogenic

diet (KD) would provide the unique opportunity to explore how

specific diet-generated metabolites would differentially impact

distinct peripheral clocks. Indeed, KD is a high-fat, adequate

protein, very-low-carbohydrate diet that induces a switch to fatty

acid oxidation as an energy source. The result is an overproduc-

tion of acetyl-CoA, which leads to the synthesis of ketone bodies

via the activation of the ketogenic pathway. Ketone bodies refer

to three distinct molecules, acetone, acetoacetic acid, and b- hy-

droxyl-butyrate (bOHB), that are produced principally in the

mitochondrial matrix in the liver, during fasting or prolonged ex-

ercise (Hawley et al., 2014; Newman and Verdin, 2014). Mice fed

a KD present a low level of glucose but increased blood level of

bOHB, which is used as an energy source by the brain and other

tissues (Douris et al., 2015; Kennedy et al., 2007). Interestingly, a

central role for rhythmic release of bOHB from the liver appears

to be implicated in driving food anticipation via feedback to the

hypothalamus (Chavan et al., 2016). Furthermore, bOHB seems

to function as a cofactor for a recently defined epigenetic mark,

histone b-hydroxyl-butyrylation, involved in the control of gene

expression under specific metabolic states (Xie et al., 2016).

Another relevant facet of KD is its use in therapeutics to treat

refractory epilepsy in children as well as obesity and metabolic

diseases. Moreover, KD has been under evaluation for alterna-

tive indications such as polycystic ovarian syndrome, cancer,

and neurodegenerative diseases (Paoli et al., 2013). Despite

this biomedical use, little is known about how KD impacts tis-

sue-specific gene expression and how it may influence circadian

homeostasis. Here we show that KD triggers distinct transcrip-

tional responses by activating unique tissue-specific pathways

involved in rewiring cyclic gene expression. Finally, we reveal

that serum and intestinal bOHB levels display diurnal rhythmicity,

which accompany a time-dependent HDAC activity and histone

acetylation primarily in the gut. Our findings support the view that

ketogenic-based nutrition contributes to diurnal transcriptional

rewiring via metabolite-driven chromatin remodeling.

RESULTS

KD Abolishes Rhythmicity in Respiratory Metabolism
To explore howKD influences circadian physiology, we submitted

8-week-old C57BL/6 mice to KD dietary regimen during 4 weeks

and compared them to control chow (CC)-fed mice. KD-fed mice

lostweight in the first 2weeks of the newdietary regimen and then

stabilized to the same weight as CC-fed animals (Figure S1A), in

line with previous studies (Kennedy et al., 2007). As expected,

serum bOHB concentration significantly increased in KD-fed an-

imals (Figure S1B). KD induced a significant decrease in serum

glucose with respect to CC, although it remained in a physiolog-

ical range (Figure S1C). To further understand the metabolic state

induced by KD, animals were analyzed by indirect calorimetry for

CO2 emission, O2 consumption, and energy intake. Notably, while

the respiratory exchange ratio (RER) of normally fed mice oscil-

lated along the circadian cycle, RER rhythmicity was abolished

in KD-fed mice and remained flat throughout the circadian cycle

with an average value of 0.7 (Figures S1D and S1E). This indicated

that fat was the only fuel metabolized by KD-fed mice throughout

the circadian cycle. Caloric and water intake (Figures S1F and

S1G), as well as the feeding pattern (Figure S1F), were equivalent

in CC- and KD-fed mice, showing that rhythmicity in food intake

was not altered under KD.

Tissue-Specific Remodeling of Diurnal Transcription
by KD
To gain further insight into howKD influences diurnal metabolism,

we performed high-throughput profiling of hepatic tissue and ileal

intestinal epithelial cells (IECs) by transcriptome microarrays. The

analysis of rhythmic transcripts was performed using the non-

parametric test JTK_CYCLE (Hughes et al., 2010), incorporating

awindowof20–28hr for thedeterminationof circadianperiodicity.

A first notable finding is that, while the number of cyclic genes

in CC-fed mice was comparable between the liver and the gut,

this ratio was drastically different in KD-fed mice, with a much

larger number of genes oscillating in the liver (Figures 1A and

1E). Our analysis showed that 2,339 genes started to oscillate

de novo in the liver upon KD, while cyclic transcripts under CC

were 719. Genes displaying rhythmicity under both nutritional

conditions were 801 in the liver (Figures 1A and 1B). Gene anno-

tation analysis revealed specific categories for all groups (Fig-

ures 1C and S2A; Table S1). Remarkably, the effect of KD on

the number of cycling transcripts in IECs was the opposite,

with a decrease in oscillating genes (785, KD-only rhythmic

Figure 1. Heatmaps, KEGG Pathway, and Phase Lag Analyses of the Diurnal Transcriptome in Liver and Gut upon KD

(A) Venn diagram representing the number of genes rhythmic only in KD, only in CC, and in both conditions in the liver (n = 3 per time point, per group, p < 0.01,

false discovery rate [FDR] < 0.1).

(B) Heatmaps representing the genes diurnal in both conditions, KD only, and CC only in liver (n = 3 per time point, per group, p < 0.01, FDR < 0.1).

(C) KEGG pathway analysis in liver. The numbers in the pie charts and tables represent the number of genes enriched in the specific KEGG pathway.

(D) Radar plots representing the phase lag of genes exclusively diurnal in KD or CC in hepatic tissue (Anderson-Darling test; phase distributions significance,

p < 0.0001).

(E) Venn diagram representing the number of genes oscillating only in KD, only in CC, and in both conditions in the intestine (n = 3 per time point, per group, p <

0.01, FDR < 0.1).

(F) Heatmaps representing the genes diurnal in both conditions, KD only, and CC only in the gut (n = 3 per time point, per group, p < 0.01, FDR < 0.1).

(G) KEGG pathway analysis in the intestine. The numbers in the pie charts and tables represent the number of genes enriched in the specific KEGG pathway.

(H) Radar plots representing the phase lag of genes exclusively diurnal in KD or CC in ileal cells (Anderson-Darling test; phase distribution significance in IECs, KD

versus CC, p < 0.0001; comparisons not shown; phase distribution difference upon KD, liver versus IECs, p < 0.0001; phase distribution difference upon CC, liver

versus IECs, p < 0.0001).
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transcripts) with respect to CC condition (996, CC-only rhythmic

transcripts). Cyclic genes in both CC and KD in IECs were 515

(Figures 1E and 1F), and the most overrepresented Kyoto Ency-

clopedia of Genes andGenomes (KEGG) pathways among these

genes, such as ‘‘circadian rhythm’’ and ‘‘nicotinate and nicotin-

amide metabolism,’’ were the same of the liver ‘‘both’’ genes

(Figures 1C, 1G, S2A, and S2B; Tables S1 and S2). The heat-

maps of the oscillating transcripts showed the loss of rhythmicity

in CC (Figures 1B and 1F, second map) and in KD (Figures 1B

and 1F, third map). Disruption of diurnal oscillations in gene

expression was particularly evident with an increased p value

threshold (p < 0.05) in both liver (Figure S3A) and intestine (Fig-

ure S3B). For the complete list of genes oscillating in liver and

IECs, see Tables S3 and S4.

It is worth noting that the transcripts rhythmic under either KD

or CC (KD only and CC only) were enriched in a variety of

different pathways in a tissue-specific manner (Figures 1C, 1G,

S2A, and S2B; Tables S1 and S2), underscoring the unique

metabolic states induced by KD in the gut and liver clocks.

To explore the physiological relevance of the diurnal alterations

in the transcriptome under KD, we analyzed the levels of specific

metabolites in the liver and intestine of KD-fed mice. Our KEGG

pathway analysis indicated that ‘‘steroid biosynthesis’’ was a

metabolic pathway circadian in KD-only liver (Table S1, sheet 2)

and in CC-only IECs (Table S2, sheet 1). Indeed, we found a sig-

nificant increase in total cholesterol levels in KD liver with respect

to CC and a significant difference between zeitgeber time 0 (ZT0)

and ZT12 (Figure 2A). On the other hand, we could not monitor

convincing time-of-the-day-dependent changes in gut choles-

terol levels or a significant difference between CC and KD (Fig-

ure 2C). The KEGG pathway analysis also indicated ‘‘fatty acid

metabolism’’ as diurnal in both liver and IECs upon KD (Tables

S1 and S2, sheet 2). In the liver, there was an increase in free fatty

acid concentration upon KD, although no rhythmic alterations be-

tween the ZTs tested (Figure 2B). Strikingly, we found a strong in-

crease in free fatty acid concentration in the gut at nighttime

(ZT20), while in CC the levels were unchanged during night and

day (Figure 2D). As fatty acids are ligands of the peroxisome pro-

liferator-activated (PPAR) family of nuclear receptors (Grygiel-

Górniak, 2014), these data nicely match the rhythmic nuclear

accumulation of PPARa (Figure 4D) and its target gene expression

(Figure 4E) in the intestine of mice fed to KD. In keeping with

higher, but not diurnal, fatty acid levels, there was a non-circadian

increase in the expression of PPARa target genes in the liver (Fig-

ure 4B) (see Cyclic Activation of PPARa by KD).

Interestingly, the KD-induced diurnal genes oscillated in a co-

ordinated manner, in phase with a sharp peak at ZT6–ZT8 in the

liver and ZT8 in the intestine, as shown by time lag analysis (Fig-

ures 1D and 1H). The genes oscillating in CC only were still coor-

dinated in phase with an earlier peak around ZT2 in the liver and

ZT8 in the gut (Figures 1D and 1H).Moreover, the amplitude anal-

ysis in ‘‘both diets’’ condition underlined another tissue-specific

feature of the KD challenge: of all common oscillators, 54.7% of

the 801 transcripts displayed an increase in amplitude in the liver

upon KD feeding (Figure S2C). In contrast, in the gut 52% of the

genes showed adecrease in amplitude andonly 43%an increase

(Figure S2D). Altogether, these data indicate that distinct diets

control the phase and amplitude of oscillation of the circadian

transcriptome via distinct mechanisms in different tissues.

To further determine the diurnal transcriptional signature

induced by KD in the two distinct tissues, we analyzed the KD-

driven rhythmic transcripts in liver and gut (Figure 2E; Table

S5). The genes cycling exclusively upon KD in the liver were

2,724 and they clustered in the KEGG pathways ‘‘protein pro-

cessing in endoplasmic reticulum,’’ ‘‘TNF signaling pathway,’’

and ‘‘glucagon signaling pathway’’ (see Table S6, sheet 1, for a

complete list). Only 884 genes were rhythmic exclusively in the

gut (Figure 2E) and they were prevalently enriched in ‘‘metabolic

pathways’’; ‘‘valine, leucine, and isoleucine degradation’’; and

‘‘fatty acid degradation and elongation’’ (Table S6, sheet 2).

The shared rhythmic genes were 416 and, as expected,

comprised the core clock genes (Figure 2E; Table S6, sheet 3).

The heatmaps of the oscillating transcripts showed a total

disruption in diurnal rhythms of the exclusive cycling genes be-

tween the two tissues (Figure 2F), reinforcing the notion of tran-

scriptional reprogramming in response to a food challenge of

specific peripheral clocks (Eckel-Mahan et al., 2013).

Furthermore, to gain insight into the differential influence of KD

on the liver and gut clock, transcription factor binding site (TFBS)

enrichment analysis was performed based on MotifMap (Daily

et al., 2011; Xie et al., 2009) binding site results (Table S6, sheet

4), and a furthermeta-analysis was used to identify tissue-specific

rhythmic transcription factors (Figure 2G). Interestingly, Ppara, a

nuclear receptor involved inketogenic responses,wasa transcrip-

tion factor rhythmic in KD-only IECs (Figure 2G) and its binding

motif was highly significant in genes rhythmic exclusively under

this condition (Figure 2I). This suggested that the PPARa pathway

could represent a specific diurnal signature in the KD-dependent

rhythmic transcriptional rewiring of the gut clock. Other transcrip-

tion factors displayed an oscillatory profile in the liver (Figure 2G)

and someof themotifs boundby the STATprotein familywere en-

riched in KD-only liver (Figure 2H). Importantly, ‘‘CLOCK:BMAL1’’

binding site was enriched in virtually all the conditions (Table S6,

sheet 4) except for KD-only IECswhen compared toKD-only liver.

Moreover, ‘‘CLOCK:BMAL1’’ binding site was strongly significant

in KD-only liver (Table S6, sheet 4; Figure 2H), implying a possible

direct involvement of the core clock in interpreting a ketogenic

nutritional challenge on hepatic tissue physiology.

Limited Effect of KD on Core Clock Gene Oscillation
The significant influence of KD on cyclic gene expression promp-

ted us to determine whether it would directly affect the core clock

machinery. To do so, we analyzed the expression of Bmal1,Cry1,

Per2, and Rev-erba genes and found no significant alteration in

phase and amplitude when comparing CC- and KD-fed mice in

both liver (Figure S3C) and IECs (Figure S3D). Moreover, BMAL1

protein and phosphorylation levels were virtually unaltered by KD

as compared to CC in both liver (Figure S3E) and gut (Figure S3F)

along the entire circadian cycle. Thus, core clock gene expression

appears tobe resistant topotential perturbations causedbya food

challenge in two distinct peripheral clock systems.

Tissue-Specific Effect of KD on BMAL1 Chromatin
Recruitment
Given the changes in gene cycling but subtle difference in core

clock gene expression, we investigated other possiblemolecular

mechanisms by which KD influences the diurnal transcriptional

landscape. Therefore, we analyzed the expression profiles of
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CCGs other than the core clock that, as previously mentioned,

did not display any major alterations both in the liver and the

gut (Figures S3C and S3D).

In the liver, KD induced a significant increase in the amplitude of

CCGoscillation, such asDbp (albuminD-box binding protein) and

Nampt (nicotinamide phosphoribosyl transferase) (Figure 3A). The

Figure 2. Metabolite Levels and Circadian Transcriptional Signature in Liver versus IECs upon KD

(A) Hepatic total cholesterol levels at ZT0 and ZT12 in CC- and KD-fedmice (n = 4 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons

for factor, diet within ZT, *p < 0.05; ZT within KD, #p < 0.05).

(B) Free fatty acid levels in the liver of CC- andKD-fedmice at ZT8 and ZT20 (n = 4 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons

for factor, diet within ZT, *p < 0.05).

(C) Intestinal total cholesterol levels at ZT0 and ZT12 in CC- and KD-fed mice (n = 4 per time point, per group; two-way ANOVA, no significant difference).

(D) Free fatty acid levels in the ileum of CC- and KD-fed mice at ZT8 and ZT20 (n = 4 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; com-

parisons for factor, diet within ZT, *p < 0.05; ZT within KD, #p < 0.05). Error bars represent SEM.

(E) Venn diagram representing the transcripts oscillating in ‘‘liver only,’’ ‘‘both tissues,’’ and ‘‘IECs only’’ upon KD feeding (n = 3 per time point, per group, p < 0.01,

FDR < 0.1).

(F) Heatmaps representing the genes diurnal in both tissues, liver only, and intestine only upon KD (n = 3 per time point, per group, p < 0.01, FDR < 0.1).

(G) Analysis of the rhythmic transcription factors (p < 0.01) in animals fed KD, exclusively in the liver, in both tissues, or exclusively in the gut.

(H) Transcription factor binding site (TFBS) analysis in the liver of KD-fed mice. In the graph is reported the –log (pValue, 10). The first four sites are enriched

exclusively in the liver upon KD. CLOCK:BMAL1 binding site is not exclusive, although it is highly enriched in KD liver, as shown by the value of the –log (pValue).

(I) Transcription factor binding site (TFBS) analysis in the IECs of KD-fed mice. In the graph is reported the –log (pValue, 10).
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Figure 3. Clock-Controlled Gene Expression and BMAL1 Chromatin Recruitment on Specific Target Promoters

(A) Expression of clock output genes Dbp,Nampt, and Pnpla2measured by qPCR in the liver (n = 5 per time point, per group; two-way ANOVA, Holm-Sidak post

hoc; comparisons for factor, diet within ZT, *p < 0.05).

(B) qPCR- ChIP results showing BMAL1 chromatin recruitment on the E-boxes of theDbp,Nampt, andPnpla2 gene promoters in the liver (n = 5 per time point, per

group; two-way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05).

(C) Expression of clock output genesDbp,Nampt, andPnpla2measured by qPCR in IECs (n = 5 per time point, per group; two-way ANOVA, Holm-Sidak post hoc;

comparisons for factor, diet within ZT, *p < 0.05).

(legend continued on next page)
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example ofNampt is notable since, in contrast to KD, its circadian

expression is completely abolished by high-fat diet in the liver

(Eckel-Mahanetal., 2013). TheprofileofPnpla2 (patatin-likephos-

pholipase domain containing 2, also known as Atgl), a rhythmic

gene involved in lipid metabolism, was also altered (Figure 3A),

displaying a significant amplitude enhancement in the liver (Fig-

ure 3A). In the gut, the effect of KD on these genes was drastically

different. In fact, the expression of Dbp, Nampt, and Pnpla2 was

virtually identical to the profile under CC (Figure 3C). Importantly,

there was no increase of Nampt and Pnpla2 gene expression at

ZT12 upon KD in Clock-deficient mice, both in liver and intestine

(FiguresS3GandS3H). This result indicates that a functional clock

is required to mediate the effect of KD on hepatic rhythmic tran-

scriptional changes.

To decipher the molecular mechanism responsible for the

enhancement in CCG amplitude, we performed chromatin

immunoprecipitation (ChIP) experiments using BMAL1 anti-

bodies. Strikingly, BMAL1 recruitment on the E-boxes within

Dbp and Nampt promoter regions was significantly increased

at ZT8 and ZT12, and at ZT4 and ZT12 on Pnpla2 E-box in the

liver of KD-fed animals (Figure 3B). In contrast, BMAL1 binding

to the E-boxes of the same genes showed no differences in the

IECs (Figure 3D). In line with these results, cross-analysis of our

diurnal transcriptome with BMAL1 ChIP sequencing (ChIP-seq)

data (Koike et al., 2012; Rey et al., 2011) indicated that the ma-

jority of cyclic BMAL1 targets in the liver of KD-fed mice had a

robust peak at ZT8 (Figure S4A) and an increase in their expres-

sion at the same ZT with respect to CC-fed mice (Figure S4E).

Similarly, other clock output genes, such as Nmnat3 and

Bhlhe41, displayed a significant enhancement in their oscilla-

tion with a zenith at ZT8 (Figures S4G and S4H), accompanied

by a significant increase in BMAL1 chromatin recruitment on

their promoters upon KD feeding (Figures S4G and S4H). In

contrast, no changes in BMAL1 binding were observed at the

E-boxes on Per2 andRev-erba promoters (Figure S4I), perfectly

correlating with no major alterations in core clock gene tran-

scription in KD liver (Figure S3C). On the other hand, BMAL1

target genes displayed no increase in their level under KD in

the gut (Figures S4B and S4F). Moreover, the phase-lag anal-

ysis of BMAL1 target cyclic genes showed a different pattern

in the peak and nadir between liver and gut both for CC- or

KD-fed animals (Figures S4C and S4D). Thus, while the global

levels of BMAL1 protein seem to be unaffected by KD feeding,

BMAL1 chromatin recruitment to specific targets appears to be

a critical control step in the liver of KD-fed mice. It is worth

noting that these results are in keeping with the TFBS analysis,

in which the ‘‘CLOCK:BMAL1’’ motif was highly enriched in the

rhythmic liver transcriptome of KD-fed mice (Figure 2H; Table

S6, sheet 4).

Taken together, these data show that KD modulates specific

CCG oscillation by influencing the chromatin recruitment of the

endogenous clock complex in the liver, but not in the gut.

Thus, our findings underlie a tissue-dependent effect on clock

protein functions upon a nutritional challenge.

Cyclic Activation of PPARa by KD
A central pathway highly enriched in our high-throughput

genomic analysis is ‘‘PPAR signaling,’’ clustered in the class of

genes oscillating in ‘‘KD-only’’ in both liver and intestine (Figures

1C and 1G). It is worth noting that this GO category was present

also in ‘‘CC-only’’ cycling genes in the gut, although the sig-

nificance of the cluster in ‘‘CC-only’’ is much lower than in

‘‘KD-only’’ (Figure S2B). Moreover, the PPAR binding motif

was significantly enriched in KD-only IECs (Figure 2I). Impor-

tantly, PPARa-driven transcription is implicated in the metabolic

response to energy deprivation (Kersten et al., 1999). Further-

more, PPARa is a key regulator of lipid metabolic homeostasis

and a prime mediator of ketogenesis (Badman et al., 2007;

Leone et al., 1999). Thus, we examined the possible role of

PPARa in the KD-induced cyclic transcriptional reprogramming

in liver and gut. Importantly, PPARa nuclear protein levels were

robustly upregulated upon KD in both liver and gut (Figures 4A

and 4D). Daily oscillations of nuclear PPARa protein expression

in KD-fed animals were anti-phasic in the two tissues, with a

peak at around ZT8 in the liver and a trough at the same ZT in

the gut (Figures 4A and 4D). Remarkably, PPARa target genes

in the liver (Figure 4B) had a distinct profile with respect to the cy-

clic profile of the corresponding genes in the gut (Figure 4E),

following the nuclear accumulation of PPARa in the two tissues

(Figures 4A and 4D). Notably, PPARa targets Hmgcs2 (3-hy-

droxy-3-methylglutaryl-CoA synthase 2), the rate limiting

enzyme of the ketogenic pathway; Acot2 (acyl-CoA thioesterase

2); Angptl4 (angiopoietin-like 4); and Cpt1a (carnitine palmitoyl-

transferase 1A) robustly oscillate in IECs (Figure 4E) in phase

with PPARa nuclear protein abundance (Figure 4D) and following

the mouse feeding rhythm. It is worth noting that Hmgcs2 ex-

hibited a robust gain in oscillation in IECs, showing an increase

of more than 25-fold compared to CC at the peak time point

(Figure 4E). On the other hand, not all the liver PPARa targets

displayed a clear rhythmic oscillation (Figure 4B). For example,

hepatic Hmgcs2 was only moderately increased during the daily

ZTs, despite the significant upregulation in bOHB in KD-fed mice

(Figure S1B). It is conceivable that HMGCS2 activity may be

mainly regulated by post-translational modifications, in keeping

with previously reported findings (Rardin et al., 2013; Shimazu

et al., 2010). Acot2 was significantly upregulated in KD-fed

mice at all times of the circadian cycle, although it did not present

a clear rhythmic behavior. Finally, hepaticCpt1a and Angptl4 ex-

hibited a significant expression increase and gain in the ampli-

tude of oscillation (Figure 4B).

To gain further insight into the cyclic activation of the PPARa

pathway upon KD, we analyzed the daily expression of known

PPARa target genes (Rakhshandehroo et al., 2010). The major

biological pathways in which PPARa targets are involved are

presented as a pie chart (Figure S5A). Strikingly, in the gut

�20% of these genes oscillated in phase with PPARa nuclear

accumulation, as shown by the heatmap (Figure S5B, see the ar-

row). Thereby, it appears that the KD is imposing a stricter phase

of oscillation for a number of genes in the gut. The majority of

(D) ChIP results showing BMAL1 chromatin recruitment on the E-boxes of Dbp,Nampt, and Pnpla2 gene promoters in IECs (n = 5 per time point, per group; two-

way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet within ZT, no significant difference).

IgG represents ChIP experiment performed with an isotype-matched control immunoglobulin (normal rabbit IgG) to BMAL1.

Error bars represent SEM.
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Figure 4. Tissue-Specific Circadian PPARa Signature in Liver and Intestine upon KD

(A) Western blot analysis of PPARa in liver nuclear extract. On the left, representative blot; on the right, graph reporting the average of the blot band density (n = 3

per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05).

(B) Expression of the PPARa target genesHmgcs2, Acot2,Cpt1a, and Angptl4 in liver extract (n = 5 per time point, per group; two-way ANOVA, Holm-Sidak post

hoc; comparisons for factor, diet within ZT, *p < 0.05).

(C) Liver PPARa target gene expression in mice fed CC or KD for 4 weeks and treatedwith the specific PPARa inhibitor GW6471 (n = 3–4 per time point, per group;

two-way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05).

(legend continued on next page)
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these targets participated in specific metabolic pathways such

as ‘‘mitochondrial b-oxidation/oxidative phosphorylation’’ and

‘‘peroxisomal b-oxidation.’’ In contrast, the same genes in the

liver were not rhythmic and their profile was completely different

with respect to the one in IECs (Figure S5C), as already indicated

by the qPCR data (Figure 4B). Importantly, treatment of CC- or

KD-fed mice with the specific PPARa inhibitor GW6471 influ-

enced PPARa target gene levels at ZT20, the peak time point

in KD-fed mice, in the ileum (Figure 4F), but not in the liver

(Figure 4C).

Therefore, our results show that KD activates a tissue-specific

rhythmic PPARa-dependent transcriptional reprogramming

characterized by a well-defined phase of oscillation exclusively

in the intestine, which differs from the liver.

KD Induces Circadian bOHB Levels and Rhythmic
Histone Acetylation in the Gut
To determine the molecular mechanisms contributing to the

different diurnal expression of PPARa targets in liver and intes-

tine, we monitored the abundance of acetyl-(Lys9/Lys14) on

histone H3 at PPRE (PPAR response element) sites on target

promoters. The levels of acetylated H3 followed the daily

transcriptional changes in IECs of KD-fed animals, with a higher

increase at ZT20 than at ZT8 for all tested promoters (Hmgcs2-

PPRE, Acot2-PPRE, Cpt1a-PPRE, and Angptl4-PPRE; Fig-

ure 5B). In keeping with PPARa targets profile, no significant

changes in the rhythmicity of acetyl-(Lys9/Lys14) could be

observed in the liver (Figure 5A). Strikingly, there was a robust

oscillation of bOHB serum levels along the diurnal cycle in KD-

fed mice, peaking at ZT0–ZT20 and reaching nadir at ZT8 (Fig-

ure 5C), with a diurnal profile mirroring the one of PPARa nuclear

accumulation and PPARa target expression in the intestine (Fig-

ures 4D and 4E). Indeed, cyclic expression of ileal Hmgcs2 may

partially be responsible for the daily profile of bOHB levels. As

bOHB is an endogenous histone deacetylase inhibitor (Shimazu

et al., 2013), we reasoned that cyclic bOHB might generate

rhythmicity in HDAC activity contributing to de novo oscillation

of PPARa target genes. To explore this possibility, we analyzed

HDAC activity in nuclear extract from intestine during daytime

(ZT8) and nighttime (ZT20). We found that HDAC activity dis-

played an opposite profile with respect to serum bOHB oscilla-

tion in KD gut, being higher at ZT8 and lower at ZT20 (Figure 5G).

Moreover, HDAC activity was significantly decreased in the gut

of KD-fedmice as compared to CC-fedmice at ZT20 (Figure 5G),

in line with the increase in histone H3 acetylation at specific pro-

moter regions (Figure 5B). HDAC activity in nuclear extracts from

CC-fed mice was virtually identical at ZT8 and ZT20, in keeping

with the lack of bOHB rhythmicity (Figure 5C) and H3 acetyl-

(Lys9/Lys14) in CC-fed mice (Figure 5B). Notably, the local con-

centration of bOHB in KD intestine remarkably mirrored the

diurnal profile of the same metabolite in the serum (Figure 5E),

strongly supporting the inhibitory effect on HDAC activity and

the time-of-the-day-dependent changes in histone acetylation

in this specific tissue. On the other hand, bOHB levels in the liver

of KD-fed animals were still increased, although displaying a

different oscillatory patternwith apeak at ZT12–ZT16 (Figure 5D).

Furthermore, hepatic HDAC activity did not show any significant

difference between CC and KD and only a negligible day-night

difference (Figure 5F). To rule out the possibility that HDAC inhi-

bition may occur at a diverse ZT in the liver, we monitored the

abundance of acetyl-(Lys9/Lys14) on histone H3 on the same

promoter regions (Hmgcs2-PPRE, Acot2-PPRE, Cpt1a-PPRE,

and Angptl4-PPRE) at ZT0 and ZT12, the nadir and zenith,

respectively, of the local hepatic bOHB. No changes were

observed on H3 acetylation between CC and KD conditions or

between the two ZTs analyzed (Figure S4J).

To demonstrate the direct link between bOHB, gene expres-

sion, and changes in histone acetylation in the gut, mice were

fed CC or a diet corresponding to CC containing 10% (w/w)

1,3-butanediol (1,3 butanediol diet, BD) for 4 weeks. This is a

strategy to increase the endogenous bOHB levels without

inducing the metabolic state characteristic of a KD (Hashim

and VanItallie, 2014). 1,3-butanediol is an alcohol precursor of

bOHB and it is quickly converted to bOHB in the liver by the

alcohol dehydrogenase system (Veech, 2014). As expected,

bOHB serum concentration was significantly increased both at

ZT8 and ZT20 upon BD (Figure S6A). PPARa target gene expres-

sion in the liver did not show any substantial difference after

4 weeks of BD (Figure S6B), as predicted because 1,3-butane-

diol does not involve any aspect of fatty acid metabolism. In

keeping with this observation, only marginal changes in H3

acetyl-(Lys9/Lys14) on the promoter of the same genes were de-

tected (Figure S6C). Notably, a significant upregulation in PPARa

target genes was present in the intestine of BD-fed mice

(Figure S6D). Interestingly, H3 acetyl-(Lys9/Lys14) abundance

on the promoter region of Acot2, Cpt1a, and Angptl4 was

higher upon BD (Figure S6E), paralleling gene expression and re-

inforcing our hypothesis that bOHB specifically impacts this type

of histone post-translational modification in the gut. Taken

together, our results unveil a novel and tissue-specific epigenetic

role of bOHB in rewiring cyclic gene expression upon a nutritional

challenge.

Sucrose and Fructose Complementation of KD
As KD is devoid of carbohydrates, we questioned whether

complementation with either fructose or sucrosewould influence

the metabolic effect of KD on the diurnal program. Carbohy-

drates have been shown to inhibit the induction of ketogenesis

(Fukao et al., 2004). To do so, KD- or CC-fed mice were sub-

jected to oral gavage with fructose (4 g/kg of body weight) for

7 days once a day, during the last week of their dietary regimen.

Tissues were collected at ZT0 and ZT12, respectively the end

(D) Nuclear PPARa protein accumulation in IECs. On the left, representative blot; on the right, graph reporting the average of the blot band density (n = 3 per time

point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05).

(E) PPARa target gene expression of Hmgcs2, Acot2, Cpt1a, and Angptl4 in IECs (n = 5 per time point, per group; two-way ANOVA, Holm-Sidak post hoc;

comparisons for factor, diet within ZT, *p < 0.05).

(F) IleumPPARa target gene expression inmice fedCC or KD for 4weeks and treatedwith the specific PPARa inhibitor GW6471 (n = 3–4 per time point, per group;

two-way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05).

Error bars represent SEM.
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Figure 5. KD-Driven Oscillation in Serum bOHB and Daily Changes in Epigenetic Marks

(A) Liver ChIP of acetylated (Acetyl) lysine (K) 9-14 on histone H3. qPCR showing the relative abundance of H3 Acetyl(K9-K14) on the PPAR-responsive element

(PPRE) of specific promoter: Hmgcs2, Acot2, Cpt1a, and Angptl4 (n = 4–6 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for

factor, diet within ZT, *p < 0.05).

(B) H3 Acetyl(K9-K14) abundance on the PPRE ofHmgcs2,Acot2,Cpt1a, and Angptl4 promoter in the intestine (n = 4 per time point, per group; two-way ANOVA,

Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05; ZT within KD, #p < 0.05).

(C) Serum bOHB levels along the diurnal cycle in CC- and KD-fed mice (n = 5 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for

factor, diet within ZT, *p < 0.05).

(legend continued on next page)
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and the beginning of the active phase. We focused our attention

on a set of genes involved in KD metabolic response both in he-

patic and ileal tissues. No significant effect of fructose was noted

in the liver of KD-fed mice on Hmgcs2, Acot2, and Angptl4 gene

expression (Figure 6A). In sharp contrast, fructose induced a sig-

nificant reduction in the expression of all these transcripts in the

intestine (Figure 6C). Moreover, core clock genes and CCGs

were only marginally influenced by fructose supplementation

both in the liver (Figure S7A) and in the gut (Figure S7C). Thus,

clock effects in the liver may be due to altered upstream

signaling pathways that are selectively recruited over time to

adapt to the change in fuel availability and drive downstream

circadian events in a tissue-specific manner.

To test the effect of sucrose administration on KD-induced

clock response, CC- or KD-fed mice were treated with 30%

sucrose in drinking water for all 4 weeks of diet. Concomitant

sucrose administration was insufficient to alter KD-specific clock

response in the liver as only the expression of Acot2wasmoder-

ately affected (Figure 6B). In contrast, the intestinal clock was

robustly responsive to sucrose administration with an almost

complete reversal of KD-induced metabolic changes. Indeed,

gene expression of all the tested genes (Hmgcs2, Acot2, and

Angptl4) returned to the levels distinctive of CC-fed mice (Fig-

ure 6D). Interestingly, sucrose did not interfere with core clock

genes and CCGs in the liver of KD-fed mice, although it signifi-

cantly influenced gene expression in CC-fed mice (Figure S7B),

suggesting that KD could reinforce the core clock robustness in

the liver. Similarly, sucrose affected core clock gene expression

in the gut of CC-fed mice, although it also impacted CCG levels

upon KD (Figure S7D).

Thus, in contrast to the liver, the intestinal clock exhibits a

rapid response to carbohydrates that leads to increased plas-

ticity in transcriptional reprogramming, further underlying the

distinct and tissue-specific response of peripheral clocks upon

dietary perturbation.

DISCUSSION

Metabolic homeostasis is connected to circadian function and

both central and peripheral clocks contribute to its maintenance.

The liver clock has been extensively studied because of its role in

metabolic regulation. The intestinal clock, although obviously

of importance, has been less investigated despite its central

involvement in sustaining organismal metabolic responses (Mu-

kherji et al., 2013). For the first time, we have questioned how

two different tissues would operate their intrinsic, specialized

plasticity to respond to a distinct nutritional challenge. We reveal

a tissue-specific cyclic signature in response to a KD regimen

that leads to a dramatic increase in b-oxidation and consequent

ketosis (Paoli et al., 2015).While the impact of KDon the circadian

clock has been noted (Genzer et al., 2015; Oishi et al., 2009), the

molecular mechanisms underlying its action have not been satis-

factorily explored. Our study represents the first exhaustive anal-

ysis of how KD influences rhythmic genomic reprogramming. In

addition, as KD has been extensively used for the treatment of re-

fractory epilepsy in children and for many other applications in

adults such as obesity, diabetes, neurodegenerative disorders,

and cancer (Paoli et al., 2013), our findings may provide a frame-

work for future explorations of how circadian control could

contribute to these pathophysiological conditions.

One of themost interesting properties of KD is its ability to drive

metabolic pathways generally induced by fasting or caloric re-

striction. In fact, gluconeogenesis, fatty acid oxidation, and keto-

genesis are upregulatedwhile glycolysis and denovo lipogenesis

are shut down (Kennedy et al., 2007; Paoli et al., 2015). Interest-

ingly, enzymes and transcription factors involved in these meta-

bolic cascades display circadian rhythmicity or start to oscillate

upon KD, underscoring the tight link with the circadian clock.

Our results show that KD is able tomodulate the clockmachinery

recruitment to chromatin, which led to gain in oscillation of CCGs

in the liver. Despite a very high fat content in KD, this effect was

the opposite of a high-fat diet, which hindered BMAL1 chromatin

recruitment to target genes (Eckel-Mahan et al., 2013), opening

new questions about how nutrient composition can modulate

the core clock-chromatin interaction. Herewe report a significant

increase in BMAL1 binding onNampt andDbp promoters both at

ZT8 and ZT12, and at ZT4 and ZT12 on Pnpla2 promoter, that re-

sults in a robust increase in their amplitude. Intriguingly, crossing

our diurnal microarray data with BMAL1 ChIP-seq unveiled that

BMAL1 target genes cycling in KD liver displayed a robust peak

at ZT8. Taken together, these data suggest that KD-driven

BMAL1 chromatin recruitment participates in the regulation of

systemic adaptive responses to KD. On the other hand, the gut

core clock was not affected by KD, indicating that the core clock

machinery contributes to the physiological adaptation to a KD

challenge in a tissue-specific manner, crosstalking directly with

the metabolic clock exclusively in the liver.

The robust PPARa signaling activation induced in the gut of

KD-fed mice paralleled the mouse food intake, suggesting that

daily changes in PPARa signaling were primarily mediated by

local physiological responses to feeding behavior rather than al-

terations in the core clock machinery. Indeed, the intestinal local

levels of free fatty acids were remarkably increased at ZT20 with

respect to ZT8 upon KD, respectively the peak and trough of

PPARa nuclear concentration and its target gene expression

(Figures 4D and 4E). Intriguingly, although PPARa pathway

was induced both in liver and gut during ketogenesis, the two tis-

sues displayed different phase of oscillation in both PPARa

(D) Hepatic bOHB levels along the diurnal cycle in CC- and KD-fedmice (n = 3 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for

factor, diet within ZT, *p < 0.05).

(E) Intestinal bOHB levels along the diurnal cycle in CC- andKD-fedmice (n = 3 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for

factor, diet within ZT, *p < 0.05).

(F) HDAC activity from liver nuclear extract at ZT8 and ZT20 (n = 5 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet

within ZT, no significant difference; ZT within KD, #p < 0.05).

(G) HDAC activity in intestinal nuclear extract at ZT8 and ZT20 (n = 3–5 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for factor,

diet within ZT, *p < 0.05; ZT within KD, #p < 0.05).

Error bars represent SEM.
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Figure 6. Liver and Intestine Response to Perturbation in Diet Composition

(A) qPCR of genes involved in the ketogenic response, Hmgcs2, Acot2, and Angptl4, in the liver of mice fed 4-week KD or CC and administered with fructose oral

gavage (4 g/Kg) once a day, per 7 days during the last week of dietary regimen (n = 5–6 per time point, per group; two-way ANOVA, Holm-Sidak post hoc;

comparisons for factor, diet within ZT, *p < 0.05).

(B) Hmgcs2, Acot2, and Angptl4 gene expression in the liver of animals fed 4-week KD or CC and simultaneously treated with 30% sucrose in the drinking water

(n = 5 per time point, per group; two-way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05).

(C) Intestinal gene expression of Hmgcs2, Acot2, and Angptl4 in mice subjected to fructose oral gavage (n = 5–6 per time point, per group; two-way ANOVA,

Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05).

(D) qPCR analysis ofHmgcs2,Acot2, and Angptl4 genes in the intestine of animals treated with 30% sucrose in the drinking water (n = 5 per time point, per group;

two-way ANOVA, Holm-Sidak post hoc; comparisons for factor, diet within ZT, *p < 0.05).

Error bars represent SEM.
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nuclear accumulation and target gene expression. Finally, the

pharmacological inhibition of PPARa during KD significantly

influenced its target gene expression in the gut, but not in the

liver. This evidence points toward unique circadian properties

ofmetabolic clocks upon a food stress, evenwhen the samemo-

lecular player, such as PPARa, is implicated. Furthermore the

liver and intestine clock exhibited different sensitivity to pertur-

bations in the diet macronutrient. Indeed, the hepatic clock

was refractory to carbohydrate supplementation under KD,

maintaining almost unvaried gene expression. This is in sharp

contrast to the intestinal clock that is highly plastic to either

sucrose or fructose complementation, as visualized by the

changes in gene expression as compared to KD (Figures 6C

and 6D). Thus, the sole KD complementation by either sucrose

or fructose appears to restore the metabolic clock in the gut to

the CC scenario, stressing the specificity in the response of

distinct peripheral clocks to food challenges.

An interesting facet of this study relates to the cyclic profile of

bOHB upon KD feeding. From a clinical point of view, this notion

could be relevant since KD has been broadly used for the treat-

ment of epilepsy (van der Louw et al., 2016). Indeed, circadian

control might contribute to the intricate and still poorly explored

relationship between seizure control and serum levels of ketone

bodies (Gilbert et al., 2000; McNally and Hartman, 2012). More-

over, KD seems to be beneficial as an adjuvant for cancer ther-

apy (Allen et al., 2014; Wright and Simone, 2016), and in obesity,

diabetes, and some inherited metabolic disorders (Mobbs et al.,

2013; Scholl-B€urgi et al., 2015). Remarkably, bOHB has been

demonstrated to be protective in a variety of conditions, such

as neurodegenerative diseases (Kashiwaya et al., 2000; Lim

et al., 2011), in support of a view in which ketone bodies may

have multiple functions in addition to energy source (Puchalska

and Crawford, 2017). Our findings support a role of bOHB as

an epigenetic regulator in keeping with previous studies (Shi-

mazu et al., 2013; Sleiman et al., 2016). Intriguingly, the rhythmic

nature of bOHB in the serum and locally in the gut upon KD is

translated into a time-of-the-day-dependent modulation of

HDAC activity specifically in the intestine, resulting in differences

in the level of histone H3 acetylation and paralleled circadian

changes in gene expression. The oscillatory levels of bOHB

appear to drive effects on histone acetylation in a tissue-specific

manner, being robust in the gut and almost absent in the liver.

While the reasons for this intriguing difference are yet to be

explored, our data reveal new avenues of future directions to

better understand the impact of bOHB, and possibly other

metabolites, on the epigenetic landscape and gene expression

control of different peripheral clocks.

Finally, our study brings further evidence to the link between

chromatin remodeling, diurnal rhythms, and cell energy meta-

bolism. Additional experiments will determine whether KD and

the subsequent bOHB oscillation could influence the levels

and/or rhythmicity of histone b-hydroxyl-butyrylation, a recently

described epigenetic mark involved in metabolic regulation of

transcription (Xie et al., 2016).

Our work contributes to the concept that metabolic cues can

influence chromatin landscape and gene expression (Katada

et al., 2012; Martinez-Pastor et al., 2013) and points to the ability

of the clock system to interpret changes in the nutritional

regimen in a tissue-specific fashion, leading to distinct rhythmic

signatures that designate the physiology and function of the tis-

sue analyzed (Figure 7). It is noteworthy that while the genes and

enzymes studied here are expressed in both the ileum and the

liver, the clock has the unique ability to recruit them to carry

out precise temporal roles tailored for tissue-specific response.
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and include the following:
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Figure 7. Schematic Representation of KD-

Dependent Diurnal Signature in Liver and

Intestine

A very-low-carbohydrate KD is able to reprogram

peripheral clocks in liver and intestine through the

activation of distinct transcription factors in a diurnal

manner. KD enhances BMAL1 chromatin recruit-

ment in the liver, resulting in an increase in the

amplitude of oscillation of CCGs. KD activates the

PPARa pathway both in liver and intestine but is

highly diurnal only in the gut. The activation of keto-

genesis increases serum bOHB concentration that

oscillates in a diurnal fashion. Through circulation,

bOHB is distributed to all the tissues as an energy

source. The effect of bOHB is primarily evident in the

intestine, where the metabolite oscillates with the

same phase of serum bOHB, and it leads to regu-

lated HDAC activity in a time-of-the-day-dependent

fashion. This results in the increase of histone H3

acetylation onmetabolic gene promoters at specific

ZTs, contributing to rhythmic gene expression.

Indeed, PPARa targets display a unique diurnal

profile that nicely parallels PPARa nuclear accumu-

lation and serum/intestinal bOHB daily changes.
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KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Paolo

Sassone-Corsi (psc@uci.edu).

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-BMAL1 antibody Abcam ab93806; RRID: AB_10675117

Anti-PPARa antibody Santa Cruz Biotechnology Sc-9000; RRID: AB_2165737

Anti-P84 antibody GeneTex GTX70220; RRID: AB_372637

Anti-H3K9/14Ac antibody Diagenode C15410200; RRID: AB_2637059

Normal Rabbit IgG Santa Cruz Biotechnology SC-2027; RRID: AB_737197

Biological Samples

Mouse Liver This paper See Experimental Model and Subject Details

Mouse Intestine This paper See Experimental Model and Subject Details

Mouse Serum This paper See Experimental Model and Subject Details

Chemicals, Peptides, and Recombinant Proteins

GW6471 PPARa inhibitor Cayman Chemical 11697

Disuccinimidyl Glutarate (DSG) Thermo Scientific 20593

Trizol Lysis Reagent Ambion 155696-018

Protein G Sepharose, Fast Flow Sigma-Aldrich P3296

Critical Commercial Assays

b-Hydroxybutyrate LiquiColor Test (Endpoint) Stanbio 2440-058

BHB Assay Kit Abcam ab83390

Free Fatty Acid Quantitation Kit Sigma-Aldrich MAK044

Cholesterol Quantitation Kit Sigma-Aldrich MAK043

HDAC Assay Kit Active Motif 56200

Deposited Data

Liver and IECs circadian microarray dataset This paper GEO: GSE87425

Experimental Models: Organisms/Strains

Male C57BL/6J mice Jackson Laboratory 000664

Male Clock-deficient mice Laboratory of Dr. S. Reppert (Worcester, MA) Debruyne et al., 2006

Oligonucleotides

Primers for RT-PCR, see Table S7 This paper N/A

Software and Algorithms

JTK_CYCLE Hughes et al., 2010 N/A

BIO_CYCLE Agostinelli et al., 2016 N/A

DAVID v6.7 N/A N/A

GeneChip Scanner 3000 7G N/A N/A

Command Console Software v. 3.2.3 N/A N/A

Other

Control Chow Diet (CC) Envigo, Teklad Custom diet TD.150345

Ketogenic Diet (KD) Envigo, Teklad Custom diet TD.160153

1,3-Butanediol diet (BD) Envigo, Teklad Custom diet TD. 160257
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and Feeding
Eight week-old male C57BL/6J mice (JAX, 00064), maintained at 24�C on a 12 hr light/ 12 hr dark cycle, were fed ad libitum to a keto-

genic diet (KD, Envigo, Teklad Custom diet TD.160153, 90.5% kcal from fat, 9.5% kcal from protein), to a control chow (CC, Envigo

Teklad Custom diet TD.150345, 12.6% kcal from fat, 9.8% kcal from protein, 77.7% from carbohydrate) or to 1,3-Butanediol diet

(10% 1,3-butanediol) (BD, Envigo, Teklad Custom diet TD. 160257) for 4 weeks.

At the end of the 4weeks 5-7mice per time-point, per groupwere sacrificed via CO2 and cervical dislocation every four hours along

the diurnal cycle (from ZT0 to ZT24). Clock-deficient animals were a gift from S. Reppert (Worcester, MA). Study animals were back-

crossed to the C57BL/6 background for four generations (Debruyne et al., 2006). Eight week-old male Clock-deficient mice and their

WT littermates were maintained in the same condition described for C57BL/6J. 4-5 Clock-deficient animals or WT littermates per

time-point were sacrificed via CO2 and cervical dislocation at ZT12 (light off, starting of the active phase). Liver and intestine were

harvested from both C57BL/6J mice and Clock-deficient mice and immediately frozen in liquid nitrogen. A portion of the ileum

was processed for intestinal epithelial cells isolation as reported below.

A second cohort of animals was sacrificed at ZT0-8-12-20 (n = 5 per time-point) during an independent experiment. Animal care

and use was in accordance with guidelines of the institutional Animal Care and Use Committee at the University of California at Irvine.

METHOD DETAILS

Mouse Diets
All diets are matched on a per-calorie basis for micronutrient content, fiber, and preservatives.

The composition of the three experimental diets (CC = control chow, KD = Ketogenic diet, BD = 1,3-Butanediol diet) is as follows

(g/Kg):

Vitamin supplements included AIN-93-VX vitamin mix (Envigo 110068), thiamin, phylloquinone, choline bitartate, mineral mix

(Envigo 98057), calcium phosphate, and calcium carbonate. Crisco is a proprietary blend of partially hydrogenated vegetable oil,

with minimal trans-fat content. Fatty acids in KD are, by weight, approximately 24% saturated, 39% monounsaturated, and 37%

polyunsaturated.

GW6471 Treatment
Eight week-old male C57BL/6J mice (JAX, 00064), maintained at 24�C on a 12 hr light/ 12 hr dark cycle, were fed ad libitum to a keto-

genic diet (KD, Envigo diet TD. 160153, 90.5% kcal from fat, 9.5% kcal from protein) or to a control chow (CC, Envigo diet TD.150345,

12.6% kcal from fat, 9.8% kcal from protein, 77.7% from carbohydrate) for 4 weeks. Twice per week the animals were intraperito-

neally injected once a day (ZT11) with the specific PPARa inhibitor GW6471 (Cayman chemical, Cat. N. 11697), at a dose of 10mg per

Kg of bodyweight. GW6471was dissolved in DMSO at a concentration of 10mg/ml and diluted in PBS before the injection. At the end

of the 4 weeks 3-4 mice per time-point, per group were sacrificed via CO2 and cervical dislocation at ZT8 and at ZT20. Animal care

and use was in accordance with guidelines of the institutional Animal Care and Use Committee at the University of California at Irvine.

Fructose and Sucrose Treatment
Eight week-oldmale C57BL/6Jmice, maintained on a 12 hr light/ 12 hr dark cycle, were fed ad libitum to KD or CC for four weeks. The

last week of feeding regimen, Fructose (4g/Kg) dissolved in PBSwas administered to the mice through oral gavage (Volume = 200ul),

once a day for seven days.

CC TD.150345 KD TD.160153 BD TD.160257

Casein 100 180 106.44

DL-methionine 1.6 2.88 1.7

Corn starch 512.46 0 436.973

Sucrose 100 0 85

Maltodextrin 155 0 130.5

Crisco 25 440 0

Cocoa butter 0 150 0

Corn oil 25 85 26.6

Cellulose 35 59.19 37.17

1,3 Butanediol 0 0 100

Calories per gram 3.6 6.7 3.9
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For sucrose experiments, mice were supplemented with 30% sucrose in drinking water ad libitum during the four weeks of dietary

regimen. At the end of the 4th week animals were sacrificed via CO2 and cervical dislocation at ZT0 (light on) and ZT12 (light off). Liver

and intestine were harvested and immediately frozen in liquid nitrogen.

Indirect Calorimetry
Calorimetry was performed as described in Eckel-Mahan et al. (2012), using negative-flow CLAMS hardware system cages (Colum-

bus Instruments, Columbus, Ohio). Briefly, animals were housed at a temperature of 24�C and subjected to individual indirect calo-

rimetry measurements for a period of 5 consecutive days under a 12 hr light/ 12 hr dark cycle. The first 48 hr of the experiment served

to allow acclimation of the mouse to the metabolic cage, and were not included in the analysis. Food and water were available ad

libitum during the whole experiment. VO2, VCO2, and food intake were measured every 10 min. RER (VCO2/VO2) was calculated

with Oxymax software (Columbus Instruments).

Intestinal Epithelial Cells (IECs) Isolation
IECs was isolated as previously described (Mukherji et al., 2013) with slight modifications. Specifically, 12 cm of ileum (0-12 cm up-

stream of cecum) was taken, opened longitudinally and washed vigorously in Hanks Balanced Salt Solution (HBSS). The samples

were put in 10 mM EDTA in HBSS with 5% fetal bovine serum and shaken at 200 rpm for 20 min at 37�C. The supernatant containing

IECswas centrifuged (720 g, 5min, 4�C) and the pellet waswashed in PBS. Following centrifugation (720 g, 5min, 4�C), the pellet was

frozen at �80�C for future analysis.

RNA Extraction
Liver samples were homogenized in Trizol Lysis Reagent (Ambion Cat. N. 155696-018). Chloroformwas added and the samples were

shaken for 15 s. The samples were left at RT for 3 min and then centrifuged (12000 g, 15 min, 4�C). The aqueous solution, containing

RNA, was collected in a fresh tube and the RNA was precipitated by the addition of isopropanol. Samples were mixed, left at RT for

10 min and then centrifuged (12000 g, 10 min, 4�C). Supernatant was discarded and the RNA pellet was washed in 75% ethanol by

centrifugation (7500 g, 5 min, 4�C). Supernatant was discarded and the pellet was re-suspended in DEPC-treated water. To increase

RNA purity, RNAwas purified using the RNeasymini kit (Qiagen Cat. N. 74106). Total RNA concentrations were determined by Nano-

drop Spectrophotometer (Thermo Scientific). RNA quality was analyzed via agarose gel electrophoresis (1% agarose). Total RNA

was reverse transcribed using Iscript reverse transcription Super mix (Biorad Cat. N. 1708840).

Gene expression was analyzed by Real time PCR (Biorad CFX96 Real-Time System) using SsoAdvanced Universal SYBR Green

Supermix (Biorad Cat. N. 172-5270).

Microarray Analysis
All starting total RNA samples were quality assessed prior target preparation/processing steps by running out a small amount of each

sample (typically 25-250 ng/well) onto a RNA 6000 Nano LabChip that was evaluated on an Agilent Bioanalyzer 2100 (Agilent Tech-

nologies, Palo Alto, CA). Microarray analyses were performed at the Genomics High-Throughput Facility, University of California

Irvine.

Gene Ontology Analysis
Gene ontology analysis was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7, using

genomic background; and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was chosen for gene clustering.

Protein Extraction and Western Blot
For whole cell extracts, liver samples were homogenized in modified RIPA buffer (50 mM Tris pH8, 150mMNaCl, 5mm EDTA, 15mM

MgCl2, 1% NP40) plus protease inhibitors and centrifuge for 15 min at 14000 g 4oC. The supernatant was recovered and the protein

concentration was determined by Bradford assay (Biorad Cat. N. 500-0006).

For liver nuclear fraction, approximately 250 mg of liver was homogenized in 4 mL buffer A (10 mM HEPES, pH 7.8, 25 mM

KCl, 0.5 mM spermidine, 1 mM EGTA, 1 mM EDTA, 0.32 M sucrose, 0.3% triton) with protease inhibitors. Samples were centrifuged

(1,000 g, 10min, 4�C) and the pellets were resuspended in 4mL buffer A. Following centrifugation (1,000 g, 10min, 4�C), 4mL low salt

buffer (10mMHEPES, pH 7.8, 25mMKCl, 0.5 mM spermidine, 1mMEGTA, 1mMEDTA, and 20%glycerol) was added to the pellets

and then centrifuged again (1,000 g, 10 min, 4�C). The pellets were resuspended in 1 mL low salt buffer, centrifuged, and resus-

pended in 1x volume low salt buffer and 2x high salt buffer (10 mM HEPES, pH 7.8, 25 mM KCl, 0.5 mM spermidine, 1 mM

EGTA, 1 mM EDTA, 20% glycerol, and 0.5 M KCl). Suspensions were nutated for 1 hr at 4�C and then centrifuged (12,000 g,

20 min, 4�C). The resulting supernatant was used as the nuclear fraction. For nuclear fraction of IECs, buffer B (10 mM HEPES-

KOH, pH 7.9, 1.5 mM MgCl2, 10 mM KCl) was added to wash the frozen aliquots of IECs and centrifuged (1,000 g, 5min, 4�C).
0.2% NP40 in buffer B was added to the pellets and left on ice for 10min before centrifugation (10,000 g, 5min, 4�C). The pellets

were washed with buffer B and centrifuged again (10,000 g, 5min, 4�C). The pellets were re-suspended in modified RIPA

(500 mM Tris-HCl, pH 7.4, 1% NP-40, 0.25% deoxycholic acid-Na, 150 mM NaCl, 1mM EDTA), sonicated and centrifuged

(12,000 g, 20min, 4�C). The supernatant was used as the nuclear fraction.
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8%SDS-PAGEwas performed to check BMAL1 andPPARa expression. The sampleswere blotted onto nitrocellulosemembranes

(Biorad) and blocked in 5% non-fat dry milk in Tris-buffered saline (TBS) for 2 hr at room temperature RT. The nitrocellulose mem-

brane was incubated at 4�C overnight with the following antibodies: anti-BMAL1 (Abcam ab93806) 1:2000, anti-PPARa (Santa Cruz

Biotechnology Sc 9000) 1:1000 and anti-P84 1:3000 (GeneTex GTX70220). Blots were then washed 3 times in TTBS for thirty

minutes, incubated in HRP conjugated anti-mouse or anti-rabbit diluted (1:8000) in 2.5%milk in TTBS for one hour at RT. The mem-

branes were than rinsed three times in TTBS and incubated in enhanced chemiluminescent substrate (Millipore Cat. N. WBKLS0500)

and exposed to film. The films were scanned and densitometry was analyzed through ImageJ software.

Chromatin Immunoprecipitation (ChIP)
Minced frozen liver or ileum tissue was double crosslinked with DSG for 40 min and 1% formaldehyde for 10 min followed by Glycine

(0.125M final concentration) at room temperature for 10 min. After homogenizing tissue pellet in PBS, 1 mL of lysis buffer was added.

Samples were sonicated by Bioruptor (20 cycles, every cycle: 30 s ON / 30 s OFF, power high) to generate 200-500 base pairs frag-

ments and centrifuged at 14000 g at 4�C. Supernatants were diluted in dilution buffer (1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM

Tris-HCl, 167mMNaCl), preclearedwith Protein-G beads, blockedwith salmon spermDNA andBSA for 2 hr. Precleared supernatant

was incubated with the following primary antibodies: 2 mg BMAL1 (Abcam Cat. N. ab93806) or 1 mg H3K9/14ac (Diagenode Cat. N.

C15410200) overnight at 4�C. To monitor the specificity of ChIP assays, samples were also immunoprecipitated with a specific-anti-

body isotype matched control immunoglobulin (IgG). Protein-G beads Sepharose, Fast Flow (Sigma-Aldrich Cat. N. P3296) were

added to the supernatant and incubated for 2 hr at 4�C and centrifuged. Beads were recovered, washed in low salt buffer, high

salt buffer, LiCl buffer, followed by washing in TE for three times. Elution buffer (300 mM NaCl, 0.5% SDS, 10 mM Tris-HCl, 5mM

EDTA) was added to the washed beads, treated with RNase at 37�C for 2 hr and Proteinase K at 65�C overnight. Equal amount

of Phenol-Chloroform-Isoamyl alcohol was added to the samples and the aqueous phase was recovered. DNA was precipitated

by adding 100% Ethanol, NaOAc and glycogen and kept at �20�C overnight. Samples were centrifuged at 14000 g for 30 min at

4�C and washed with 70% ethanol followed by centrifugation at 14000 g for 30 min at 4�C. Quantitative PCRs were performed using

SsoAdvanced Universal SYBR Green Supermix (Biorad), according to the manufacturer’s protocol.

qPCR Primers
The primers for gene expression and ChIP were designed by Primer 3 software (v. 0.4.0) or obtained from previous publications: Dbp

E-box ChIP primers are based on Ripperger and Schibler (2006), and Nampt E-box chip primers are based on Nakahata et al. (2009).

All the primer sequences are reported in Table S7.

b-Hydroxyl-Butyrate Quantitation
Fresh blood was centrifuged at 1500 g for 15 min and serum isolated. b-Hydroxyl-butyrate level were quantified using b-Hydroxy-

butyrate LiquiColor Test (Endpoint) (StanBio Cat. N. 2440-058) according to the manufacturer’s instructions. For b-Hydroxybutyrate

levels in intestine and liver, we used Abcam BHB Assay kit (Cat. N. ab83390). The samples were prepared and deproteinated with

PCA according to the manufacturer’s instruction.

Fatty Acid and Cholesterol Quantitation
10-15 mg of liver or intestinal tissue were used to check free fatty acid and total cholesterol levels. Free fatty acid were quantified

using the ‘‘Free fatty acid quantitation kit’’ (Sigma-Aldrich Cat. N. MAK044) according to manufacturer’s instructions. Total choles-

terol was quantified using the ‘‘Cholesterol quantitation kit’’ (Sigma-Aldrich Cat. N. MAK043) according to manufacturer’s

instructions.

HDAC Activity Assay
15 mg of intestinal or liver nuclear extract was tested using HDAC assay kit (Active Motif Cat. N. 56200) according to manufacturer’s

instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microarray Data Analysis and Statistics
3 animals per time-point, per group were analyzed. Arrays were scanned using GeneChip Scanner 3000 7G and Command Console

Software v. 3.2.3 to produce .CEL intensity files. The intensity files were then analyzed in Affymetrix Expression Console software

v1.1.1 using the PLIER algorithm to generate probe level summarization files (.CHP), where signal levels were normalized between

KD and CC conditions within the same tissue. Expression levels time series were then used to determine circadian behaviors of tran-

scripts using JTK-CYCLE (Hughes et al., 2010) and the results were corroborated using BIO_CYCLE (Agostinelli et al., 2016), an

improved circadian rhythm analysis software. Circadian behaviors include whether or not a transcript is circadian as well as its phase

and amplitude. Both methods produced similar results and importantly, key transcripts such as the core clock genes and PPARa

targets showed the same behavior. In the rest of the analysis, we report the results obtained with JTK-CYCLE. For JTK-CYCLE, a

gene was considered circadian, if at least one of its transcripts passed a p value cutoff of 0.01. Data visualization was done in

Python using ‘matplotlib’ and R using ‘gplots’. The Database for Annotation, Visualization and Integrated Discovery (DAVID) pathway
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analysis tool was used to identify GO terms related to biological process and potentially enriched pathways (Huang et al., 2009). Path-

ways were ranked by the number of circadian genes they contained with a JTK-CYCLE p value < 0.01, and results were compared to

the genomic background for enrichment. For the background, we selected all the possible genes in the whole genome that can be

detected by the specific microarray (extracted from the microarray annotation). The total number of background genes is around

25,000. The lists of PPARa and BMAL1 target genes used in focused analysis were generated using a combination of literature ev-

idence (Rakhshandehroo et al., 2010), MotifMap (Daily et al., 2011; Xie et al., 2009) and publically available ChIP Seq datasets from

GEO (GEO: GSE35262 and GSE39977). Differential analysis of transcript expression levels between KD and CC at certain ZTs was

done using CyberT (Baldi and Long, 2001; Kayala and Baldi, 2012), a differential analysis program using a Bayesian-regularized t test.

Variance Stabilizing Normalization was used process the data for input to CyberT using the R package ‘vsn’. Further statistical anal-

ysis including multiple hypothesis testing corrections was done in R using ‘fdrtool’.

Analysis was done using pipelines implemented for the Circadiomics (Patel et al., 2012, 2015) database and web portal (http://

circadiomics.ics.uci.edu/) where all the transcriptomic data associated with this work is publicly available.

Phase lag analysis was performed based on the ‘‘LAG’’ (predicted phase) obtained by JTK-CYCLE for every single gene (See also

Tables S3 and S4). The genes with the same ‘‘LAG’’ were grouped together and the data reported in the radar plot as percentage.

Anderson-Darling tests were performed using the R package ‘kSamples’ to determine whether or not the phase distributions of KD

and CC circadian transcripts were statistically different (p < 0.0001). Student’s t tests were conducted to determine if changes, in

terms of JTK amplitudes or specific expression at ZT8, were significant between KD and CC conditions for circadian transcripts.

Transcription Factor Enrichment Analysis
Transcription factors were analyzed in terms of enrichment for binding sites in the promoter regions (�10000�+2000 bps of TSS) of

rhythmic genes in each circadian group, where binding sites were extracted fromhigh qualityMotifMap results for themouse genome

buildmm9 (BBLS > 1, FDR < 0.25). A Fisher’s exact test was performed between the circadian genes and thewhole genome to estab-

lish enrichment (odds > 1, p < 0.05). TFs with motifs that are too short or degenerate (more than 50000 binding sites under the filtering

criteria) were removed, as they tend to be unreliable.

Enrichment results for different conditions across circadian groups were then compared in a meta-analysis to identify tissue-spe-

cific TFs. As an example, a PPARa related motif was found to be uniquely enriched in IECs under ketogenic diet, when compared to

both IECs under normal chow diet or liver under ketogenic diet, which suggests that it may explain the tissue-specific response to

ketogenic diet treatment. In contrast, Clock:Bmal motif was found to be enriched in virtually all circadian groups except for ketogenic

IECs when compared to ketogenic liver, which suggests that there is a stronger tissue-specific effect of Clock:Bmal controlled genes

in ketogenic liver when compared to IECs, despite the fact that Clock:Bmal is virtually ubiquitously enriched as a core circadian TF.

Full details of the analysis are provided as Table S6 (sheet 4).

Other Statistical Analysis
Data are expressed as mean ± SEM. The significance of differences was analyzed by Student’s t test or two-way ANOVA and post

hoc analysis for multiple group comparison. The test was considered significant with a P value < 0.05.

DATA AND SOFTWARE AVAILABILITY

The GEO accession number for the microarray dataset reported in this paper is GEO: GSE87425. All the transcriptomic data asso-

ciated with this work is publicly available on the resource http://circadiomics.ics.uci.edu/.
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4.4 pyfuncgraph

pyfuncgraph utilizes the same data sources for the enrichment pipelines (e.g., MotifMap,

MotifMap-RNA, KEGG and GO), but in a much more sophisticated way. Instead of per-

forming enrichment analyses based on categorical data derived from functional information,

it uses functional data directly to construct complex functional graphs.

For MotifMap, MotifMap-RNA and ChIPSeq data, sources such as transcription factors,

RNA binding proteins or histones are directly added as nodes in a directed, weighted graph.

Their targets are also added as nodes in the graph (note that sources can be targets as well).

Edges are constructed by binding sites or peaks, which may exist at the promoter, intron or

UTRs depending on the source and target. This graph is also a multigraph, permitting mul-

tiple edges of the same direction between a set of source and target. Furthermore, functional

graphs derived from each of the databases are also merged to generate a meta-functional

graph embodying the totality our knowledge of transcriptional and post-transcriptional reg-

ulation in the cell (for mouse). Different filtering parameters are used for different edges in

order to generate comparable and reliable results.

For pathway and GO term databases, a bipartite pathway graph is created where different

functional entities (e.g. pathway, GO term) inhabit one half and their targets (transcripts,

metabolites) inhabit the other. Targets are linked if they associate with the same functional

entity. Again, metagraphs are created by combining different data sources.

Due to the gigantic sizes of these functional graphs (the MotifMap-MotifMapRNA-ChIPSeq

meta graph has 30,334 nodes with 1,749,132 edges), pyfuncgraph does not provide any

client-side service by its own. Instead graphical resources are stored as network objects

on a webserver, in netowrkx (https://networkx.github.io/). Client side software, such as

igb-pipelines (Chapter 5) and PyCircadiOmics (Chapter 7), query this server to obtain sub-

graphs, target nodes, outgoing edges or other information derived from the functional graph.
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By preserving the complex regulatory relationships between transcripts and their regulators,

pyfuncgraph provides the basis for systematic graphical analysis of the circadian transcrip-

tome. It contributed to the discovery of novel circadian regulators and helped established

a hierarchical model for the organization of circadian transcripts centering around the core

clock (Chapter 7).
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Chapter 5

Circadian Web Development–viz and

goworg

5.1 Introduction

The software described in Chapter 2 and 3 (with data derived partially from results described

in Chapter 1) constitute the most important back ends of the igb-pipelines codebase.

Through these software, we can rapidly generate massive amounts of bioinformtics results,

such as circadian statistics, figures generated from visualization and machine learning analy-

ses, functional enrichment results, etc. Although these results qualify as biological interpre-

tations of some kind, by themselves they cannot produce meaningful biological discoveries.

Indeed, they must be further summarized and experimentally validated by bioinformaticians

and biologists. To facilitate this collaborative process, it is necessary to construct a man-

agement system that can host and organize large amounts of bioinformatics data. Moreover,

such a system should be readily accessible to many biologists, some of whom may not be

interested or well-equipped to directly process data and understand it at a low level. There-
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fore, it is necessary to provide extensive tools for documentation and interactive visualization

so that users can “play with” the data and obtain intuitive understanding which may inspire

further experiments.

The viz and goworg softwares are designed specifically to enable this kind of collaboration.

They serve as the front end of the igb-pipelines software system. Importantly, they can

also function as reliable archives of past research projects that can make reproduction of

bioinformatics analysis very convenient.

5.2 Viz

viz serves as a HTML templating system that takes various outputs from circadian softwares

such as mpfe and renders them into static HTML with interactive and scalable elements are

realized by javascript. viz contains a data layer in tabular.py which works similarly to a

dataframe in pandas, but is very lightweight and implemented in pure python. Datatables

are loaded by this data layer and converted to JQuery datatables (https://datatables.net/),

Google Charts (https://developers.google.com/chart/) or worg-javascript tables (a project

by Christophe Magnan). These elements are injected into static HTML with additional

interactive visualization elements provided by Google Charts. Various HTML templates

with dropdown selection and flexible client side search are available for rendering. A brief

summary of this codebase in the form of class dependency graph generated by doxygen

(https://www.stack.nl/ dimitri/doxygen/) is shown in the following figure. An example

of an interactive project page output showcasing flexible and searchable datatables with

visualization elements is shown further below.
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Figure 5.1: Class inheritance graph for the viz codebase. Tabular is used as a low level data
layer while more than a dozen interactive visualization template elements are available.
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Figure 5.2: Example output of the templated HTML generated by Viz. It contains interactive
elements such as tabs, dropdowns, and static/vectorized figures. Data taken from a tumor
bearing mouse study [37].
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5.3 goworg

The viz templating system is accompanied by goworg, a webserver inspired by the R project

Worg (https://orgmode.org/worg/). worg is written in GO and supported by the Echo

framework (https://echo.labstack.com/). Instead of being programmable like Worg, goworg

interacts only with static HTMLs. This is not a drawback because the automation functional-

ities provided by the viz-goworg system greatly reduce the workload necessary for developing

a project website. Briefly, to construct a project folder in goworg, one only needs to create a

folder of static files under monitored paths. The webserver scans the path and automatically

creates templates for raw data files such as tables and static figures. Any static HTML gen-

erated by viz works properly under its original directory structure. Moreover, markdown

files are rendered to HTML by the server, which makes writing richly styled documentation

trivial for the user.

The goworg system is available at http://worg.ics.uci.edu/. Here we note that individual

project pages are not available for public browsing.

5.4 Application: Tumor Bearing Mouse Liver Study

The viz-goworg system and the project websites generated using these software have been

utilized in many projects [41, 49]. Here I append a highlighted paper by Masri et al. on the

circadian reprogramming in mouse liver where the host bears a cancerous lung, for which I

am a contributing author [37].

This research utilized results hosted on the aforementioned systems, as well as other results

generated by the whole igb-pipelines. In particular, Figure 2 A C D and Figure 3 A

B utilized results extracted from the viz-worg system. Extensive bioinformatics analysis,
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rendered through the viz-worg system, revealed that there is a distinct set of oscillating

genes in mouse liver when the host also has a tumor bearing lung. These distinct oscil-

lating transcripts exhibit dramatic differences in circadian behavior, including phase shifts.

Functional enrichment analysis revealed that a significant number of these transcripts belong

to metabolism related pathways including insulin response and cell proliferation. Further

analysis of the metabolome identified metabolites linked to the the same pathways, thus

establishing a circadian reprogramming event driven by metabolism and inflammatory re-

sponse related pathways. The full scope and details of the study are shown in the paper

below.
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SUMMARY

The circadian clock controls metabolic and physio-
logical processes through finely tuned molecular
mechanisms. The clock is remarkably plastic and
adapts to exogenous ‘‘zeitgebers,’’ such as light
and nutrition. How a pathological condition in a given
tissue influences systemic circadian homeostasis in
other tissues remains an unanswered question of
conceptual and biomedical importance. Here, we
show that lung adenocarcinoma operates as an
endogenous reorganizer of circadian metabolism.
High-throughput transcriptomics and metabolomics
revealed unique signatures of transcripts andmetab-
olites cycling exclusively in livers of tumor-bearing
mice. Remarkably, lung cancer has no effect on the
core clock but rather reprograms hepatic meta-
bolism through altered pro-inflammatory response
via the STAT3-Socs3 pathway. This results in disrup-
tion of AKT, AMPK, and SREBP signaling, leading to
altered insulin, glucose, and lipid metabolism. Thus,
lung adenocarcinoma functions as a potent endog-
enous circadian organizer (ECO), which rewires
the pathophysiological dimension of a distal tissue
such as the liver.

INTRODUCTION

Metabolic, endocrine, and behavioral functions are largely

circadian and their disruption is associated with a number of dis-

orders and pathologies, including cancer (Asher and Sassone-

Corsi, 2015; Bass, 2012; Fu and Lee, 2003; Gamble et al.,

2014; Masri et al., 2015; Partch et al., 2014). Circadian rhythms

are governed bymolecular machinery whose function is to main-

tain rhythmic precision within cells and synchrony between cen-

tral and peripheral clocks. Importantly, circadian transcriptional

circuits function in a defined tissue-specific manner by interplay-

ing with specialized nuclear factors through poorly understood

mechanisms (Masri and Sassone-Corsi, 2010; Panda et al.,

2002). Under standard physiological states, the core clock ma-

chinery is coupled to the metabolic cycles with which it operates

in a coherent, concerted manner. However, the clock is also able

to adapt to changing metabolic fluctuations as a compensatory

mechanism and it does so by utilizing alternative transcriptional

strategies. For instance, restricted feeding temporally phase

shifts circadian gene expression in the liver (Damiola et al.,

2000; Stokkan et al., 2001; Vollmers et al., 2009) and nutritional

challenge is able to reprogram circadian transcription and

subsequently alter cyclic metabolism (Eckel-Mahan et al.,

2013; Hatori et al., 2012; Kohsaka et al., 2007). Therefore, timing

of food intake and nutritional challenge are able to uncouple

the timekeeping of hepatic metabolic oscillations from the

core clock machinery. Yet, aside from the consequences of

nutritional challenge, the effects of other non-dietary factors

that could uncouple and disrupt the hepatic clock remain largely

unexplored.

Cancer cells thrive based on a heightened metabolic rate that

circumvents typical physiological means for energy production

through the so-called Warburg effect (Hsu and Sabatini, 2008;

Vander Heiden et al., 2009). In addition, cancer cells excrete a

number of factors systemically, including metabolic ‘‘waste’’ by-

products and/or inflammatory signals (Hanahan and Weinberg,

2011; Lin and Karin, 2007). For example, tumor-secreted lactate,

a product of increased aerobic glycolysis of cancer cells, is asso-

ciated with heightened metastatic incidence and increased

angiogenesis, is responsible for metabolic reprogramming in

adjacent tissues, and can induce a pro-inflammatory state (Cole-

gio et al., 2014; Doherty and Cleveland, 2013). Similarly, the

cooperative effects of the inflammatory response during tumori-

genesis are well-documented (Gao et al., 2007; Sansone et al.,

2007). Tumor-secreted cytokines, such as Interleukin-6 (IL-6),

can regulate metabolism in multiple tissues (Mauer et al., 2015),

suggesting a possible role inmediating tumor-inducedmetabolic

changes systemically. Collectively, these tumor-derived metab-

olites and cytokines constitute the so-called tumor ‘‘macroenvir-

onment’’ (Al-Zoughbi et al., 2014), the systemic metabolic

consequences of which remain elusive.
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Importantly, the effects of a tumor on organismal homeostasis

are poorly understood, and given the unique ability of the clock in

sensing metabolic discrepancies, a potential role of cancer in

rewiring clock-controlled metabolism is intriguing (Sahar and

Sassone-Corsi, 2009). Indeed, our results demonstrate that

lung adenocarcinoma rewires the circadian hepatic transcrip-

tome and corresponding metabolome, yet the core clock ma-

chinery remains virtually unperturbed. The tumor imposes a

profound metabolic reprogramming that implicates a number

of signaling pathways, which operate within the framework of

the tumor macroenvironment. As a paradigm, we reveal that

the inflammatory STAT3-Socs3 signaling axis is induced in the

liver of lung-tumor-bearing mice, resulting in inhibition of hepatic

insulin signaling, glucose intolerance, and deregulated lipid

metabolism. In conclusion, we illustrate a previously unappreci-

ated role played by a distally located lung adenocarcinoma as

an endogenous circadian organizer (ECO) in the rewiring of

circadian homeostasis of the liver.

RESULTS

Lung Cancer as an Endogenous Reorganizer of
Circadian Rhythms
The KrasLSL�G12D;p53fl/fl mice are a genetic model of lung

adenocarcinoma that mimics human non-small cell lung cancer

(NSCLC) (Jackson et al., 2005; Jackson et al., 2001). Upon intra-

trachealdeliveryof equivalent adenoviral titerofCre recombinase,

which induces the genetic rearrangement of the Lox-stop-Lox

cassette toactivateoncogenicKirsten rat sarcomaviral oncogene

homolog (Kras) and to knock out the tumor suppressor p53, mice

developed defined lung adenocarcinoma (Figure S1). Thismouse

model generates lung adenocarcinoma with 100% penetrance

and uniform tumor burden among all mice (Jackson et al., 2001).

Equivalent adenoviral titer of FlpO recombinasewasadministered

to p53fl/fl littermates of the same pure C57BL/6J background as a

control that does not induce recombination. Upon sacrifice, lung-

tumor-bearing (TB) mice exhibited wild-type (WT) expression of

Kras in the liver, white adipose tissue (WAT), and muscle, and no

metastatic lesions were observed in the liver (Figure S2).

To investigate the distal effects of lung adenocarcinoma on

circadian hepatic function,WTandTBmicewere sacrificed every

4 hr over the circadian cycle (zeitgeber time [ZT] 0, 4, 8, 12, 16

and 20) and livers were subjected to transcriptomics andmetab-

olomics analyses. Heat maps for oscillating genes based on

transcriptomics, as determined by JTK_cycle, display striking

differences in unique sets of oscillating genes from WT (left)

and TB (right) mice (Figures 1A and 1B). Gene ontology (GO) bio-

logical function was determined using DAVID pathway analysis

for WT or TB oscillating genes. Pathway analysis revealed that

WT-specific genes were enriched for a number of metabolic pro-

cesses, including insulin response and regulation of cell cycle

andproliferation, while TB-only oscillating geneswere selectively

enriched for endoplasmic reticulum (ER) signaling, unfolded pro-

tein response, cholesterol biosynthesis, and redox state (Figures

1C and S3). Phase analysis was performed for uniquely oscil-

latingWT- and TB-specific genes to determine the relative phase

of circadian gene expression. The peak in phase of expression

was around ZT 8 in the WT category, whereas TB oscillating

genes exhibited a bi-phasic profile that peaked around ZT

0 and again at ZT 12 (Figure 1D). Using the set of 505 genes

that retain oscillation in both WT and TB mice, phase analysis

was performed to determine if rhythmic genes retained their

peak in expression. Strikingly, 46% of circadian genes exhibited

a phase change, with 68%of these genes being phase advanced

and 32% were phase delayed by at least 1 hr (Figure 1E). These

results demonstrate that lung adenocarcinoma significantly re-

programs the circadian hepatic transcriptome.

Similar to the circadian transcriptome, metabolomics analysis

revealed unique sets of oscillating metabolites in the livers of WT

(left heat maps) or TB (right heat maps) mice (Figure 2A). Of�600

identified metabolites, two-way ANOVA analysis identified that

235 metabolites were differentially altered by the lung tumor

and 328 metabolites were differentially expressed by time point

(Figure 2B). Oscillating metabolites were further determined

using JTK_cycle, and though the oscillation of 159 metabolites

persisted, 90 were rhythmic exclusively in WT and 84 exclusively

in TB mice (Figure 2B). Of these 159 metabolites that oscillate in

WT and TB mice, 53% exhibited a change in phase, with 62%

and 38% being phase advanced and delayed, respectively

(Figure 2C). Classification of these metabolites into pathways

demonstrated a clear reduction in oscillating lipids in TB versus

WT mice (Figure 2D). In addition, a reduction in the levels of

energetic metabolites NAD+, ATP and acetyl-CoAwas seen (Fig-

ure 2E). This indicates altered usage or production of these mol-

ecules resulting in disruption of liver homeostasis in TB animals.

Thus, the presence of lung tumors acts to distally rewire both

transcriptional andmetabolic programs in the liver. As further de-

picted below, this circadian reorganization appears to coordi-

nately contribute to a TB-specific hepatic metabolic profile.

Lung Adenocarcinoma Does Not Affect Hepatic Core
Clock Components
Adetailed analysis of thegenes thatwerenot alteredbetweenWT

and TB mice was carried out, as shown in the heat map in Fig-

ure 3A. GO pathway analysis revealed this category is enriched

in not only select metabolic genes, but also in rhythmic genes

pertaining to the circadian clock (Figure 3B). The phosphoryla-

tion of the aryl hydrocarbon receptor nuclear-translocator-like

(ARNTL or BMAL1) protein and expression of all core clock

genes, including circadian locomotor output cycles kaput

(Clock), Bmal1, Period (Per1-3), Cryptochrome (Cry1/2) and

nuclear receptor subfamily 1, group D (Nr1d1 or Rev-Erba), as

well as the clock-controlled D site of albumin promoter binding

protein (Dbp) gene, were unchanged in the livers of TB animals

(Figures 3C and S4). In order to better characterize the effects

of lung adenocarcinoma on the clock, locomotor behavior was

analyzed, andnochange in the free-runningperiodwasobserved

betweenWT and TBmice (Figure 3D). Similarly, behavioral acto-

grams show that the circadian activity profile was equal during

the light/dark cycles in WT and TB mice (Figure S4). Also, the

feeding behavior remained rhythmic in TB mice while a non-sig-

nificant decrease in food intake was observed (Figure 3E).

The respiratory exchange ratio (RER) remained rhythmic,

but TB mice displayed an elevated RER during the light

phase and a dampened RER during the dark phase (Figure 3F),

in keeping with a reduction in VO2, VCO2, and heat production
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(Figure S5). The altered circadianmetabolites (Figures 2Dand2E)

in conjunction with dampened RER levels (Figures 3F and S5)

revealed a significant shift in the metabolic state of TB mice.

Indeed, repressed energy expenditure might be a contributing

factor to the uncoupling of the core clock andmetabolic rhythms.

Timing of food intake, which functions as a powerful zeitgeber

(Damiola et al., 2000; Eckel-Mahan et al., 2013; Vollmers et al.,

2009), also remains virtually unaltered in TB mice (Figure 3E).

LungAdenocarcinomaRewiresHepaticMetabolism, but
Not the Core Clock
Given the changes in energy expenditure as measured by RER

(Figure 3F) and the dampened lipid profiles identified bymetabo-

lomics in TBmice (Figure 2D), the effect of lung adenocarcinoma

on fatty acid synthesis, breakdownbybeta-oxidation, and utiliza-

tion for cholesterol productionwere further investigated. The ste-

rol regulatory element binding protein (SREBP) pathway is known

to control lipid metabolism in the liver in a circadian manner (Gi-

lardi et al., 2014; Le Martelot et al., 2009), and its deregulation

is in accordance with the observed alteration of lipid levels (Fig-

ure 2D). The SREBP pathway is known to be inhibited by the en-

ergy sensor AMP-activated protein kinase (AMPK) (Li et al., 2011;

Vavvas et al., 1997). Indeed, activation of AMPKa by phosphory-

lation of threonine (Thr) 172 was markedly elevated in TB mice

and peaked at ZT 16 (Figure 4A). Given the dampened ATP levels

in TB mice (Figure 2E), these effects are aligned with the

increased intracellular AMP/ATP ratios over the circadian cycle

(Figure 4A). Accordingly, the SREBP1 pathway was suppressed,

asboth geneexpressionprofiles and the levels of themature form

of nuclear SREBP1c protein were repressed at ZT 16 in TB mice

Figure 1. Lung Adenocarcinoma Rewires the Circadian Hepatic Transcriptome

A) DNA microarray analysis was performed using mouse liver total RNA from ZT 0, 4, 8, 12, 16, and 20. Using JTK_cycle, genes selected to be circadian at a

p value < 0.01 are displayed as heat maps for WT and lung-tumor-bearing (TB) livers. Left displays circadian genes exclusively in WTmice and right shows genes

with more robust oscillation in TB mice.

B) Pie charts indicate actual numbers of circadian genes that oscillate exclusively in WT, TB, or BOTH conditions.

C) Top ten gene ontology (GO) terms for biological process were identified by DAVID pathway analysis tool, based on a 0.01 p value cutoff.

D) Phase analysis of WT- and TB-specific oscillating gene expression profiles.

E) Phase analysis of ‘‘BOTH’’ genes that remain circadian in WT and TB mice.
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(Figure 4B). Similarly, significant inhibition of SREBP1 target

genes was observed, as seen with Fasn, Acaca, and Elovl6

expression (Figure 4C). The repression of SREBP1-dependent

signaling in the livers of TB mice was further substantiated by

the decreased levels of long-chain fatty acids and esterified fatty

acids (Figure 4D), including myristate, linolenate, palmitoleate,

and eicosapentaenoate (EPA). This suggests either a decrease

in fatty acid biosynthesis or an increase in breakdown by

beta-oxidation, the former case being most likely given the

suppression of SREBP1 signaling and the unaltered peroxisome

proliferator-activated receptor alpha (PPARa) andbeta-oxidation

gene expression profiles in livers of TB mice (Figure S6).

In contrast to the suppression in the SREBP1 pathway,

SREBP2 gene expression is not repressed in TB mice and its

target genes lanosterol synthase (Lss), 3-hydroxy-3-methylglu-

taryl-CoA synthase (Hmgcs1), and phosphomevalonate kinase

(Pmvk) showed a significant and coordinated increased peak in

expression at ZT 16 (Figure 4E). As SREBP1 is primarily involved

in fatty acid biosynthesis and SREBP2 is critical for cholesterol

production (Brown and Goldstein, 1997; Horton et al., 2003), an

increase in total cholesterol levels was observed in TBmice (Fig-

ure 4F), which paralleled SREBP2-dependent gene expression

profiles (Figure 4E). Overall, TB mice displayed a deregulation

of SREBP signaling, with a suppression of fatty acid synthesis

Figure 2. The Circadian Metabolome is Reorganized by Lung Cancer

A) Heat maps displaying oscillating metabolites as determined by JTK_cycle (p value < 0.05) inWT and TBmice. Left displays circadianmetabolites exclusively in

WT liver and right shows metabolites with more robust oscillation in TB mice.

B) Two-way ANOVA analysis using a p value cutoff of 0.05 reveals metabolites that are responsive to lung tumors, circadian time point, or both. Numbers of

oscillating metabolites using JTK_cycle are indicated from WT, TB, or BOTH categories.

C) Phase analysis was performed using JTK_cycle to identify the phase of peak metabolite expression.

D) Oscillating metabolites are displayed based on biological sub-pathway, including amino acid, carbohydrate, cofactors, lipids, nucleotides, peptides, and

xenobiotics.

E) Examples of energetic metabolites that are dampened in TB mice. NAD+, nicotinamide adenine dinucleotide; ATP, adenosine 50-triphosphate.
Error bars indicate standard error of mean (SEM).
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Figure 3. The Circadian Clock Is Unaffected by Lung Adenocarcinoma

A) Heatmap for BOTH category genes that are unaltered in expression between WT and TB mice.

B) GO pathway analysis using biological process for BOTH oscillating genes.

C) BMAL1 protein phosphorylation by western and circadian expression of the clock genes, Bmal1, Clock, Rev-erba, Dbp, Per2, and Cry1, as determined by

quantitative real-time PCR.

D) Locomotor activity analysis for WT and TBmice, as calculated by the free-running period (Tau) in dark/dark (D/D) conditions. An n = 12WT and n = 12 TBmice

were used for behavioral analysis.

E) Food intake of WT and TBmice shown over a 48 hr period (left). Total food intake was normalized to body weight of each animal. An n = 7WT and n = 8 TBmice

were used for indirect calorimetry analysis.

F) VCO2/VO2 is shown as the respiratory exchange ratio (RER) for WT and TBmice over a 48 hr period. Average RER is quantified during the light and dark phases

(right panel). Error bars indicate SEM. Significance was calculated using Student’s t test and * and ** indicate p value cutoffs of 0.001 and 0.0001, respectively.
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Figure 4. Lipid Metabolism Is Altered in TB Mice

A) Western blot analysis for phospho-AMPK (Thr 172) and total AMPK in WT and TB mice, at the indicated circadian times. Quantification of pAMPK/total AMPK

signaling is shown as a histogram. The ratio of AMP/ATP is shown over the circadian cycle and is elevated at all ZTs.

B) Gene expression as determined by quantitative real-time PCR and protein expression of SREBP1c in WT and TB mice. Precursor (P) indicates uncleaved

protein and mature (M) shows cleaved SREBP1 protein.

C) Gene expression by quantitative real-time PCR was performed for Fasn, Acaca, and Elovl6 in WT and TB mice over the indicated ZTs.

(legend continued on next page)
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and an induction of cholesterol biosynthesis. Repressed fatty

acid levels and elevated cholesterol biosynthesis suggests a

preferential shuntingof lipids toproducecholesterol. Importantly,

increased cholesterol levels are associated with a heightened

inflammatory response (Ma et al., 2008; Zhao et al., 2011),

and recent evidence links sustained inflammation with hepatic

glucose production through the mevalonate pathway (Okin and

Medzhitov, 2016). These findings reveal a coordinated disruption

in metabolic homeostasis in TBmice, which converge to activate

AMPK in the liver and thereby differentially modulate SREBP-

dependent lipid signaling. Thus, these results demonstrate that

while the hepatic core clock is resilient to the distal effects of

lung adenocarcinoma (Figure 3), the liver metabolic clock is

altered in response to tumors.

Tumor-Driven Targeting of Circadian Inflammatory
Response
Pro-inflammatory responses mediated by tumor-secreted cyto-

kines and chemokines are critical in cancer initiation and pro-

gression (Grivennikov et al., 2010). Specifically, the janus kinase

(JAK)/signal transducer and activator of transcription (STAT)

pathway has been demonstrated to play a role in multiple types

of cancer (Lesina et al., 2011; Michalaki et al., 2004; Yu et al.,

2014) and is known to be activated by IL-6, tumor necrosis factor

alpha (TNFa), interferon gamma (IFNg), and leukemia inhibitory

factor (LIF) (Darnell et al., 1994; Fitzgerald et al., 2005; Grivenni-

kov et al., 2009; Guo et al., 1998). Also, inflammation plays an

important role in progression of lung adenocarcinoma (Gao

et al., 2007; Yeh et al., 2006). Therefore, to validate the inflamma-

tory response in TB mice, serum cytokine levels were assessed

in an unbiased, multiplexed platform at ZT 12, which is the re-

ported peak of circadian inflammatory response (Gibbs et al.,

2012). Of the 31 cytokines assayed, a number were increased,

decreased, or unchanged in TB mouse serum versus WT and

shown in a heat map (Figure 5A). Specifically, significant eleva-

tion of IL-6 was observed in TB mouse serum, along with a clear,

though statistically non-significant, increase in IL-1a, TNFa, LIF,

and IFNg (Figures 5A and S7). In contrast, serum levels of the

anti-inflammatory cytokine IL-10 and its receptor expression in

the liver did not change between WT and TB mice (Figures 5A

and S7). Importantly, concomitant gene expression profiles of

the cytokine receptors, interleukin 6 receptor (Il6ra), interleukin

1 receptor (Il1r1), tumor necrosis factor receptor subfamily

(Tnfrsf1b), and interleukin 17 receptor (Il17ra) were significantly

elevated in the liver and displayed circadian profiles that peaked

at ZT12 in TB mice (Figures 5B and S7). We focused on the ef-

fects of IL6-dependent signaling as a paradigm of how signals

in TB mice lead to the expression and phosphorylation of

STAT3. Gene expression of Stat3 was significantly elevated at

ZT 8, ZT 12, and ZT 16, along with a corresponding increase

in total protein levels in TB mice (Figure 5C), in keeping

with reported IL-6-dependent STAT3 auto-regulation (Narimatsu

et al., 2001). JAK-dependent phosphorylation of STAT3 at tyro-

sine (Tyr) 705 is known to activate STAT3 and induce its tran-

scriptional activity by nuclear translocation (Darnell, 1997). We

observed marked elevation of p-STAT3 Tyr705 in the livers of

TBmice that peaked at ZT8 and ZT12 (Figure 5C). The transcrip-

tional activation of STAT3 resulted in a significant increase in the

expression of its downstream targets. Specifically, gene expres-

sion of suppressor of cytokine signaling 3 (Socs3) was drastically

elevated and peaked at ZT 8 in TB mice, while the expression of

Socs1 and Socs7was unchanged (Figure 5D). Our transcriptom-

ics data were compared to known STAT3 target genes (Bonetto

et al., 2011) to determine the extent of STAT transcriptional

activation in the liver. Heat maps display genes that were differ-

entially regulated in TB normalized to WT, and of these genes,

an enrichment was observed in the TB-specific gene set versus

WT (Figure 5E; Table S1). Finally, there is a time-specific, signif-

icant increase of transcriptionally active p-STAT3 in TB mice

at the STAT binding element (SBE), as demonstrated by chro-

matin immunoprecipitation (ChIP), on the Socs3 promoter

(Figure 5F).

These results demonstrate that thepro-inflammatory response

can induce transcriptional activation of STAT3 signaling in the

liver, which may play a role in the hepatic metabolic rewiring

observed in TB mice. Yet, this transcriptional rewiring observed

in the liver is representative of a localized response, as the WAT

andmuscle gene expression profiles differ (Figure S6), in keeping

with a tissue-specific inflammatory response.Moreover, the pro-

inflammatory response is most likely not the only cause of meta-

bolic rewiring: our preliminary results of the circadian serum

metabolome fromWTand TBmice show that a number of factors

could be involved in tumor-dependent crosstalk with peripheral

tissues (Figure S7). These data suggest that the extent of the

tumor macroenvironment remains inadequately defined and

that complex tissue-specific responses to these tumor-derived

signaling molecules exist.

Lung Cancer Alters Hepatic Insulin Signaling and
Glucose Production
SOCS3 has been shown to play a role in modulating insulin

sensitivity in adipose tissue and liver, and these effects have

been linked with IL-6- or TNFa-mediated inflammation (Ema-

nuelli et al., 2001; Sachithanandan et al., 2010; Senn et al.,

2003; Torisu et al., 2007). Given the induction of the STAT3 in-

flammatory axis and the increase in Socs3 gene expression in

TB mice, hepatic insulin signaling was further investigated. Insu-

lin-dependent phosphorylation of V-Akt murine thymoma viral

oncogene homolog (AKT) at serine (Ser) 473 was dramatically in-

hibited in TB mice versus WT, while total levels of AKT remained

unchanged (Figure 6A). Strikingly, the total levels of insulin re-

ceptor substrate 1 (IRS-1) protein were noticeably decreased

in TB mice versus WT, especially from ZT8 to ZT20 (Figure 6A).

Notably, these changes in IRS-1 protein levels coincided with

the peak in STAT3 activation and Socs3 expression (Figures

5C and 5D), as SOCS3 is reported to target and degrade IRS-1

D) Levels of fatty acids and fatty acid esters as determined by metabolomics analysis for myristate, linolenate, palmitoleate, and eicosapentaenoate (EPA).

E) Gene expression of Srebp2 and its target genes Lss, Hmgcs1, and Pmvk as determined by quantitative real-time PCR.

F) Total cholesterol levels in WT and TB mice over the circadian cycle were determined by metabolomics analysis. Error bars indicate SEM. Significance was

calculated using Student’s t test, and * indicates a p value cutoff of 0.05.
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Figure 5. Lung-Tumor-Induced Inflammation in the Liver

A) Serum samples fromWT and TBmice were assayed in an unbiased, multiplexed cytokine array platform and displayed as a heat map. Red indicates increased

levels of cytokines, and green indicates decreased cytokine levels in TB normalized to WT mouse serum. Specific profiles of pro-inflammatory cytokines (IL-6,

IL-1a, and TNFa) and anti-inflammatory IL-10 are shown.

B) Gene expression as profiled by quantitative real-time PCR is shown for Il6ra, Il1r1, and Tnfrsf1b.

(legend continued on next page)
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protein and thereby further repress hepatic insulin signaling (Rui

et al., 2002). Serum insulin levels were investigated, and in line

with decreased insulin signaling in the liver, systemic insulin

levels were significantly low and lose their circadian oscillation

in TB mice (Figure 6B). Yet, TB animals retained insulin sensi-

tivity, as determined by insulin tolerance tests (ITT) (Figure 6C).

Given these changes in insulin signaling, it would be expected

that TB mice exhibit elevated levels of serum glucose. Indeed,

TB mice displayed elevated fasting serum glucose levels (Fig-

ure 6D), and these mice were significantly less sensitive to exog-

enous glucose challenge using a glucose tolerance test (GTT)

(Figure 6E). In order to elucidate the mechanism by which

glucose levels were increased in TB mice, hepatic glucose pro-

duction through gluconeogenesis was investigated, as this

pathway is known to be clock-controlled (Zhang et al., 2010).

Gene expression of phosphoenolpyruvate carboxykinase 1

(Pck1 or Pepck) remained circadian but was significantly

induced at ZT 8, ZT12, and ZT16 in TBmice (Figure 6F). The level

of phosphoenolpyruvate (PEP), the product of PEPCK, was

elevated at ZT 8 and ZT 12 (Figure 6G). In contrast, expression

of key glycolytic enzymes, such as rate-limiting glucokinase

(Gck) and liver pyruvate kinase (Pklr), was significantly inhibited

(Figure 6H). Though their expression was not circadian, lactate

dehydrogenases (Ldha and Ldhc) that interconvert lactate and

pyruvate were elevated in TB mice (Figure 6I), in keeping with

the increased pyruvate levels that could be shunted into gluco-

neogenesis (Figure 6J). These results demonstrate that a lung tu-

mor is responsible for the drastic change in insulin-dependent

AKT signaling in the liver, leading to significant alterations in

clock-controlled hepatic glucose production.

DISCUSSION

Lung Tumor as an Endogenous Zeitgeber?
Circadian homeostasis is essential for organismal physiology and

its intrinsic plasticity constitutes a highly efficient adaptation sys-

tem to the changing environment. Specifically, zeitgebers such as

light and nutrition are referred to as external stimuli that operate to

entrain central and peripheral clocks, respectively. Here we have

reported on findings that identify an endogenous circadian reor-

ganizer that has the unique feature of rewiring circadian meta-

bolism under unaltered light and feeding conditions. Indeed,

lung adenocarcinoma contributes to the distal reprogramming

of circadian hepatic gene expression andmetabolic function (Fig-

ure 7). These results collectively demonstrate that lung tumors,

independently of any nutritional challenge paradigm, alter circa-

dian physiology leading to changes in cyclic energy expenditure,

lipid metabolism, and hepatic insulin and glucose signaling.

Importantly, since the core components of the liver molecular

clockdonot seem tobe influenced inTBmice (Figure3), the tumor

does not appear to function as a classical zeitgeber. Yet, lung tu-

mors act prominently on the liver by profoundly rewiring circadian

metabolic control. Thus, these findings illustrate that circadian

metabolism can be reprogrammed independently of exogenous

inputs, suchas theclassical zeitgebers, light andnutrition. Indeed,

lung adenocarcinoma operates as a distinctive ECO that dictates

the changing pathophysiological dimension of a distal tissue such

as the liver. We speculate that an ECOmay function in differential

manners dependingon the tissue type, range of action, andmeta-

bolic state.

Endogenous Circadian Organizer
Given that these metabolic effects are systemic, tumor-depen-

dent rewiring is most likely taking place in multiple organs to

disrupt homeostasis. In this context it is notable that the effects

of IL-6 are pleiotropic and function in a context- and tissue-spe-

cific manner to alter multiple signaling pathways (Mauer et al.,

2015) and that the inflammatory response is the likely mediator

of a complex web of physiological adjustments. Indeed, it does

not escape our attention that the effect of a lung tumor will not

be restricted to the liver alone (Figure S6), although this tissue

is critical to decipher the effects of lung cancer on organismal

metabolism. In further support of our results, a number of

intriguing links can bemade to connect tumor-derived inflamma-

tion with deregulated metabolism. Our extensive analysis dem-

onstrates that a number of cytokines could be implicated in the

rewiring observed in TB mice (Figures 5A and S7). Also, our pre-

liminary analysis of the serummetabolome indicates that the cy-

clic profiles of a variety of potentially critical metabolites change

significantly in the TB mice (Figure S7). We have focused on IL-6

as a paradigm since the IL-6 inflammatory response has been

investigated in fatty liver disease, and these effects link inflam-

mation to altered lipid accumulation through SREBP signaling

(Miller et al., 2011; Yamaguchi et al., 2010). Also, another layer

of complexity exists in that IL-6 is known to activate AMPK espe-

cially in the context of exercise (Carey et al., 2006; Ruderman

et al., 2006) and systemic IL-6 knockout mice are unable to stim-

ulate AMPK signaling (Adser et al., 2011; Kelly et al., 2004).

Moreover, AMPK suppresses SREBP target gene expression

and attenuates hepatic steatosis (Li et al., 2011). Collectively,

these notions suggest an interconnected network between in-

flammatory cytokines, AMPK, and SREBP that could contribute

to the tumor-induced liver reprogramming we observe. More-

over, the influence of cachexia on muscle and WAT is another

factor that can feedback and alter liver homeostasis (Bonetto

et al., 2011; Narsale et al., 2015; Tsoli et al., 2014). Our findings

C) Stat3 gene expression as shown by quantitative real-time PCR. Phospho-STAT3 (Tyr 705) and total STAT3 protein levels over the circadian cycle in WT and

TB mice.

D) Gene expression profiles of Socs3, Socs1, and Socs7 by quantitative real-time PCR.

E) Known STAT3 target genes were compared to our transcriptomics data. Heat map displays gene expression profiles in the TB-specific group normalized to

WT, with red and green representing up- and down-regulated genes, respectively. Additionally, to determine enrichment of STAT3 target genes in WT and TB,

Fisher’s exact test was used. The ** indicates the odds that the overlap of 39 genes in TB over random is 1.716 and the p value is 0.00358, which satisfies a

p < 0.005 threshold. For WT, the odds ratio is 1.345 with a p value of 0.209.

F) Recruitment of p-STAT3 to the STAT binding element (SBE) in the Socs3 promoter or to the 30 UTR as determined by chromatin immunoprecipitation (ChIP).

Error bars indicate SEM. Significance was calculated using Student’s t test, and * indicates a p value cutoff of 0.05.
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identify two converging pathways that might work in a coor-

dinated manner to modulate circadian hepatic homeostasis.

Altered energy expenditure can mediate a circadian metabolic

rewiring that is likely compounded by the pro-inflammatory

effects on the liver.

The Tumor Macroenvironment Reorganizes
Homeostasis
Our results illustrate that lung adenocarcinoma has a profound

effect on a variety of metabolic and signaling pathways in the

liver. This tumor-derived macroenvironment is constituted by

Figure 6. Lung Adenocarcinoma Alters Hepatic Insulin Signaling and Glucose Production

A) Western analysis of phospho-AKT (Ser 473), total AKT, and total IRS1 in WT and TB mice over the circadian cycle.

B) Serum insulin levels were measured by ELISA at ZT 8 and 16 in WT and TB mouse serum. Insulin levels at ZT 16 are statistically significant as indicated

by # (p value = 0.053, using Student’s t test).

C) Insulin tolerance test (ITT) in WT and TB mice.

D) Overnight fasting glucose levels in WT and TB mice.

E) Glucose tolerance test (GTT) in overnight-fasted WT and TB mice.

F) Gluconeogenic gene expression profile of Pepck (Pck1) by quantitative real-time PCR was done in livers of WT and TB mice.

G) Levels of phosphoenolpyruvate (PEP) were determined by metabolomics analysis from livers of WT and TB mice.

H) Quantitative real-time PCR of glycolytic gene expression of L-PK (Pklr) and GK (Gck) over the circadian cycle.

I) Gene expression of lactate dehydrogenases Ldha and Ldhc in WT and TB mice by quantitative real-time PCR.

J) Levels of pyruvate were determined by metabolomics in livers of WT and TB mice. Error bars indicate SEM. Significance was calculated using Student’s t test

and * indicates a p value cutoff of 0.05.
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glycolytic metabolic byproducts, inflammatory cytokines, and

other poorly defined circulating components (Al-Zoughbi

et al., 2014). In this context, we have explored the liver pro-in-

flammatory response, a paradigm of the metabolic rewiring

induced by the lung tumor. An additional twist to this scenario

is the likely contribution of other metabolic tissues that

respond to the tumor-derived macroenvironment. In turn,

these tissues could provide an additional layer of signaling

that would further adjust circadian homeostasis.

The pro-inflammatory response alters hepatic insulin signaling

and subsequent glucose production through the STAT3-

dependent activation of Socs3 (Figure 5). These findings bring

to light another critical pathway that is deregulated by the

distant actions of the lung tumor. The suppression of serum

insulin levels suggests an important role of inflammation in

the pancreas. Yet, these effects on hepatic insulin sensitivity

are most likely regulated coordinately with the inflammatory

response. For instance, the expression of the insulin-respon-

sive Insig2 gene, which is known to be involved in clock-

controlled SREBP function (Le Martelot et al., 2009), is unaltered

in TB mice and suggests a complex signaling mechanism

beyond a simple model of hypoinsulinemia. Moreover, the

circadian clock controls hepatic glucose production through

gluconeogenesis (Zhang et al., 2010) and our results suggest a

potential crosstalk between the tumor and the liver clock. We

speculate that tumor-secreted ‘‘waste’’ such as lactate is con-

verted to pyruvate and shunted through gluconeogenesis to pro-

duce glucose, which can further satisfy the heightened energetic

demand of cancer cells. Interestingly, TB mice exhibit increased

expression of lactate dehydrogenases (Ldha, Ldhc), Pepck

(Pck1), and PEP, which could result in enhanced glucose intol-

erance (Figure 6). In conclusion, the circadian clock is highly

responsive to its environment and is able to adapt to changes

in energetic demand. In this context, the lung tumor macro-

Figure 7. Lung Adenocarcinoma Distally

Rewires Circadian Hepatic Metabolism

Schematic overview depicting the effects of the

tumor macroenvironment on circadian hepatic

metabolism. Our results show that lung tumors,

acting through the inflammatorySTAT3-Socs3 axis,

operate todistally rewire circadian transcription and

metabolism by acting as an endogenous circadian

organizer (ECO). This manifests in loss of hepatic

insulin signaling, glucose intolerance, and deregu-

lated lipid metabolism through the AMPK/SREBP

pathway.

environment operates as an ECO on

hepatic circadian metabolism—a pro-

cess that could potentially further drive

tumorigenesis.

EXPERIMENTAL PROCEDURES

Animal Housing and Experimental

Procedures

KrasLSL�G12D;p53fl/fl mice have been previously

described (Johnson et al., 2001). Detailed hous-

ing and infection procedures are provided as Supplemental Experimental

Procedures.

DNA Microarray Analysis

Microarray analysis was performed as previously described (Masri et al.,

2014), and further information is provided as Supplemental Experimental

Procedures.

Metabolomics Analysis

Metabolomics analysis was carried out by Metabolon (Durham) as previously

described (Evans et al., 2009; Masri et al., 2014). See the Supplemental Exper-

imental Proceduresfor further details.

Bioinformatics and Pathway Analysis

Bioinformatics analysis was performed using JTK_cycle, and metabolomics

and transcriptomics data are accessible at circadiomics.ics.uci.edu. Detailed

methodology is available in the Supplemental Experimental Procedures.

Metabolic Cage Analysis

Indirect calorimetry was performed using negative-flow CLAMS hardware sys-

tem cages (Columbus Instruments). VO2, VCO2, RER, and food intake were

measured and calculated with Oxymax software (Columbus Instruments).

Locomotor Activity Analysis

Animals were individually housed, using an n = 12 mice/genotype for behav-

ioral analysis. Mice were housed for 2 weeks in 12 hr standard L/D conditions

and subsequently released into D/D conditions for 2 weeks. Activity was

measured using optical beam motion detection (Philips Respironics) and

data analyzed using Minimitter VitalView data acquisition software.

Gene Expression Analysis

Detailed methodology and primer sequences can be found in the Supple-

mental Experimental Procedures section.

Western Blot Analysis

Livers were homogenized in RIPA lysis buffer containing protease inhibitor

cocktail, NaF and PMSF, sonicated briefly, and rocked to lyse cells at 4�C.
10–30 mg of protein lysate was resolved on SDS-PAGE gels. Antibodies

used for western blots include: TBP, BMAL1, SREBP1 (Abcam), pAMPK, total
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AMPK, pSTAT3, total STAT3, pAKT, total AKT, and IRS1 (Cell Signaling

Technology).

Cytokine Profiling

A total of 31 mouse cytokines were profiled using a multiplex platform, and

data were extracted based on cytokine-specific standards by Eve Technolo-

gies (Calgary). Five independent serum samples were used from WT and TB

mice. Relative change in cytokine expression between TB and WT was deter-

mined using absolute deviation values from the median and then used for heat

map generation.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP)methodologywas previously described

(Masri et al., 2014). The pSTAT3 antibody used for ChIPwas obtained fromCell

Signaling technology.

Tolerance Tests: GTT and ITT

8 WT and 8 TB mice were fasted overnight, and fasting glucose levels were

measured using an ACCU-CHEK Aviva Plus glucometer (Roche). Body weight

measurements were taken, insulin (0.75U/kg) or glucose (2g/kg) was intraper-

itoneally injected, and blood glucose measurements were taken at 15, 30, 60,

90, and 120 min post injection.
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Chapter 6

Circadian Web Portals –

CiracadiOmics

6.1 Introduction

The software systems described in Chapters 2-5 essentially established an ecosystem of cir-

cadian analysis software, which is capable of generating a variety of results. These results

contributed in a major way to our collaborative projects with other biologists. However, we

believe our results can further benefit the circadian field by providing access to the general

public. CircadiOmics is a project built for this goal. Not only does it incorporate results

generated using our systems including igb-pipelines, it also integrates a vast amount of

publicly available circadian datasets. The result is a powerful web portal boasting the most

comprehensive repository of circadian data anywhere.

The motivation, implementation and impact of CircadiOmics are detailed in the paper ap-

pended below. I am a first co-author of this paper.
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ABSTRACT

Circadian rhythms play a fundamental role at all
levels of biological organization. Understanding the
mechanisms and implications of circadian oscil-
lations continues to be the focus of intense re-
search. However, there has been no comprehen-
sive and integrated way for accessing and min-
ing all circadian omic datasets. The latest release
of CircadiOmics (http://circadiomics.ics.uci.edu) fills
this gap for providing the most comprehensive web
server for studying circadian data. The newly up-
dated version contains high-throughput 227 omic
datasets corresponding to over 74 million measure-
ments sampled over 24 h cycles. Users can visualize
and compare oscillatory trajectories across species,
tissues and conditions. Periodicity statistics (e.g.
period, amplitude, phase, P-value, q-value etc.) ob-
tained from BIO CYCLE and other methods are pro-
vided for all samples in the repository and can eas-
ily be downloaded in the form of publication-ready
figures and tables. New features and substantial im-
provements in performance and data volume make
CircadiOmics a powerful web portal for integrated
analysis of circadian omic data.

INTRODUCTION

Circadian rhythms are a ubiquitous phenomenon in biol-
ogy that is deeply rooted in evolution (1,2). Circadian oscil-
lations of molecular species maintain homeostatic balance
by regulating a variety of physiological and metabolic pro-
cesses. These processes include sleep/wake cycle, hormone
secretion, diet related metabolism and neural function (3–
6). Disruption in circadian rhythms can lead to a wide range
of health problems such as diabetes, obesity and premature
aging (7–11).

It is well known that circadian oscillations at the tran-
scriptomic level are pervasive and well coordinated (4,12,2).
Oscillation in transcription is strongly regulated by a
number of key transcription factors, such as CLOCK,
BMAL1, PERs and CRYs that comprise the core clock (13).
These transcript level oscillations form regulatory feedback
loops that oscillate throughout the transcriptome (14–15,2).
Moreover, a large number of metabolites and proteins in
cells exhibit circadian oscillations and may play a key role
within the organization of genetic circadian regulation (16–
19). Strikingly, the circadian landscape in a cell can be
drastically different depending on genetic and epigenetic
conditions (17,12,2,20). The process by which these circa-
dian landscapes evolve is understood as circadian repro-
gramming. Reprogramming can be induced by external per-
turbations such as inflammation or dietary challenge (21–
24). The large repository of omic data provided in Circa-
diOmics, together with several comparative analysis tools,
provide a foundational platform that can be used to ana-
lyze these complex mechanisms and their implications.

MATERIALS AND METHODS

Dataset collection

The omic datasets available on CircadiOmics are compiled
from project collaborations, automated discovery and man-
ual curation. Over 6400 individual time points spanning 227
separate circadian experiments are available for search and
visualization. In aggregate, these datasets form the largest
single repository of circadian data available, including all
datasets from other repositories including CircaDB (25).
Table 1 shows a break down of the number of datasets avail-
able on several other sources. Eight species are currently
available on CircadiOmics. The majority are collected from
Mus musculus and Papio anibus.

Over 62 tissues grouped into 18 categories are represented
in the database. Within these categories, liver and brain ex-
periments comprise the majority. Diverse experimental con-
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†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gky441/5038285
by UNIV OF CALIFORNIA IRVINE user
on 18 June 2018

96



2 Nucleic Acids Research, 2018

Table 1. Data volumes of publicly available circadian omic databases

Source Experiments Tissues Species Total data pts. (est.)

CircadiOmics 227 23 8 ≈74 600 000
CircaDB 30 15 2 <1 800 000
DIURNAL 11 3 3 ≈3 009 600
BIOCLOCK 2 2 2 ≈3 600 000
CirGRDB 50 <20 2 ≈9 000 000

Comparison of CircadiOmics with other circadian repositories. Experiments refers to the total number of experimental level datasets from each source. An
experimental level dataset should contain at least two time points, more than one replicate at each time point, and time series data for a substantial number
of molecular species–at least 1000 for transcriptome and acetylome, and at least 100 for metabolome and proteome–and each replicate. Total data points
provide an estimate of the total number of individual measurements taken across different time points, replicates and molecular species. Numbers are
collected from internal statistics for CircadiOmics and from publications, or official websites, for the other sources. Details are provided in Supplementary
Material.

ditions grouped into nine broad categories are available for
comparison. Unique conditions include chronic and acute
ethanol consumption, high-fat diet, traumatic brain injury,
fibroblast undergoing myogenic reprogramming and several
cancer-specific datasets (26,27). At last, CircadiOmics is the
only tool that includes transcriptome, metabolome, acety-
lome and proteome experiments. Figure 1 summarizes the
number of available datasets by detailed categories. The full
table of datasets is available, with a short description and
experimental details such as number of replicates, on the
CircadiOmics web portal.

Increased interest in circadian rhythms is driving a con-
tinuous increase in publicly available omic datasets. Auto-
mated discovery of datasets has become necessary to main-
tain the most current and comprehensive repository. A
Python framework built with scholarly and geotools Python
packages is used to continuously search the literature for
new circadian omic studies and datasets. Automated dis-
covery based on keyword searches in published abstracts
is filtered using several features including publishing jour-
nal, author and provided supplementary materials. A logis-
tic regression step is used to classify datasets that are good
candidates for inclusion in CircadiOmics. Results produced
by this automated pipeline are then manually inspected for
quality, based primarily on the time point resolution of the
dataset. The minimum sampling density for any dataset in
the repository is every eight hours over a 24-h cycle. Ad-
ditionally, the CircadiOmics team and collaborating biolo-
gists periodically search recent publications for new datasets
that qualify for inclusion in CircadiOmics.

Statistics

All datasets are processed with both BIO CYCLE and
JTK CYCLE to provide oscillation statistics (e.g. period,
amplitude, phase) for each set of samples (28,29). Pri-
mary identification of oscillatory species is made using p-
values and accompanying q-values at a selected threshold.
Technical details for calculating P-values and q-values are
provided in the cited articles for the respective methods.
BIO CYCLE results have consistently shown to be an im-
provement in determining periodicity over older methods
(28). The BIO CYCLE portal within CircadiOmics at http:
//circadiomics.ics.uci.edu/biocycle allows users to upload an
unpublished dataset for processing with BIO CYCLE. For
each experiment and each molecular species, individual P-
value, q-value, period, amplitude and phase can be ob-

tained. Additionally, summary figures are generated for the
distribution of each statistic in the user provided dataset.
Trends for individual trajectories in user-provided data are
available for search and visualization through the supplied
set of molecular IDs. An example dataset is provided to give
the user a sample of portal features and provide a template
for desired data format. The main CircadiOmics documen-
tation page provides additional guidance. The BIO CYCLE
R package is also available for download through the main
portal.

Implementation

CircadiOmics is available as a pubic domain website at
http://circadiomics.ics.uci.edu. The CircadiOmics web ap-
plication is constructed as a three-tier Model View Con-
troller architecture. The web server is implemented with the
Flask Python library. The interface is generated dynami-
cally with Twitter Bootstrap and Google Charts. Fast query
response times are accomplished by caching JSON serial-
ized datasets on disk as the server is started. Figure 2 de-
scribes the web application architecture and correspond-
ing technology. The interface loads with an example search
of ARNTL (CLOCK-BMAL) in a sample liver control
dataset. Dynamic filtering of the available datasets is pro-
vided based on tissue and experimental perturbations. Ex-
amples of filtering options are provided in the documenta-
tion on the main web server in the context of various sample
workflows. Downloadable results for each search include
high resolution images in PNG or SVG format, and an ex-
cel table of BIO CYCLE reported statistics. Dataset docu-
mentation includes a short technical description as well as a
link to the corresponding article in PubMed. At last, addi-
tional help information on the features of CircadiOmics is
provided through a link on the main page of the web server.

RESULTS

Features

The main functionality of CircadiOmics is the search, com-
parison and visualization of oscillation trends. The user can
search any molecular species in the omic datasets within the
repository and overlay multiple searches together to initi-
ate a comparative study. A typical work flow may consist of
comparing a set of specific transcripts, metabolites or pro-
teins among several datasets. Intelligent auto-completion
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Figure 1. Dataset collection by species, tissues, experimental conditions and omic categories.

facilitates user queries within the currently selected dataset.
Searches can be performed individually or in batch on a se-
lected dataset. When datasets do not have the same time
course, results are displayed from the minimum to the max-
imum time point over all selected datasets. Query result for
a set of example searches is shown in Figure 3. Documenta-
tion available on the web server illustrates common query
tasks and results. Datasets with large difference in inten-
sity values at each time point can be dynamically scaled
for easy visual comparison. Minimum and maximum val-
ues are normalized to zero and one, respectively.

A table of statistics is compiled and displayed beneath
the main search window after each query. Statistics can
be updated dynamically to reflect results obtained with
BIO CYCLE. The table can be downloaded in several for-
mats compatible with Excel. Individual searches can be re-
moved from both the search view and the statistics table.
Figure 3 shows an example result obtained from searches
for ARNTL, PER1 and CRY1 in an example dataset.

With a rapidly expanding dataset collection, filtering can-
didate dataset within the interface has become necessary.
The filtering menu allows the user to limit the scope of
datasets displayed under drop-down menus for each dataset
type. Filtering can be done by species, tissues and experi-
mental conditions. Similar experimental conditions are cat-
egorically grouped together in the filtering menu. These

include knock-downs, knock-outs, diet changes and drug
treatments. The full set of available conditions for filtering
is summarized in Figure 1. The search interface uses an ab-
breviated dataset identification. Upon selection of a dataset,
the user can quickly verify the source of the data through
a corresponding literature citation. Additional details for
each dataset can be found in tabular form under the dataset
tab. These details include a brief description of the experi-
mental protocol.

The Metabolic Atlas web portal (http://circadiomics.ics.
uci.edu/metabolicatlas) is also available under the Circa-
diOmics umbrella. In addition to metabolite time series, in-
teractive metabolic networks can be generated and visual-
ized. These networks are derived in part from the KEGG
database (30) and can be filtered using BIO CYCLE statis-
tics.

Improvements

The new version of CircadiOmics considerably increases the
amount of data available to the user. In particular, the num-
ber of experiment-level datasets increased from 50 to 227,
the number of species increased from 1 to 8, the number of
transcriptomic datasets increased from 40 to 169, the num-
ber of proteomic datasets increased from 1 to 8, the number
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Figure 2. Three-tier Model-View-Controller architecture of the Circa-
diOmics web portal. Intelligent data discovery supplies candidate datasets
for inclusion in the repository using a machine learning filter applied to key
word features derived from web crawling published abstracts. BIO CYCLE
results are obtained and stored for all datasets. The user interface sends
requests and displays results from the web server allowing for interactive
hypothesis generation and scientific discovery.

Figure 3. Visualization of queries for ARNTL, PER1 and CRY1 in a con-
trol mouse dataset. Any number of queries, across any number of datasets,
can be displayed simultaneously.

of acetylome datasets increased from 1 to 8 and the number
of metabolomic datasets increased from 5 to 32.

Beyond the multi-fold increase in the underlying data
repository, the new version of CircadiOmics comes with sev-
eral other significant improvements, including a new, more
robust, architecture and software infrastructure. In addi-
tion, all circadian statistics are computed using the lat-
est version of BIO CYCLE with the capability to system-

atically apply any updates on the fly, as new versions of
BIO CYCLE are created and released. Thus, together with
intelligent data discovery, CircadiOmics provides state-of-
the-art statistical tools for integrating and analyzing cir-
cadian data. The server-side code has improved security
through encrypted HTTPS connection and enabled user-
specific content visibility for unpublished data.

In combination, the new features enable CircadiOmics
users to conduct end-to-end circadian analyses, starting
from the generation of new hypotheses all the way to the
generation of results suitable for publication.

DISCUSSION

Central to the study of circadian rhythms are large-scale
reprogramming events. Understanding these events at the
molecular level critically depends on being able to access
and compare significant amounts of high-throughput circa-
dian omic data. CircadiOmics, with its advanced search fea-
tures and unprecedented amount of high quality circadian
data, is a primary enabling tool for such studies. In a cir-
cadian reprogramming event, changes in oscillation of one
molecular species can often be related to changes in other
molecular species (31,2). One of the main qualities of Cir-
cadiOmics is the flexibility of the comparative analyses it
enables. For instance, a user can compare transcripts across
species, or relate metabolites to proteins and transcripts and
identify underlying oscillatory trends. An important exam-
ple can be seen in the loss of oscillation in the metabolite
NAD+ as a response to changes in the transcriptomic oscil-
latory landscape (17). As a result, CircadiOmics has proven
to be highly effective for hypothesis generation in new stud-
ies. To date, the web server has contributed to multiple stud-
ies that have been published in high impact journals. The
server has been accessed more than 250 000 times in total
traffic in 2017 alone.

Figure 4 details some examples of the impact of Circa-
diOmics. For instance, Eckel-Mahan et al. utilized Circa-
diOmics to analyze three related omic datasets in mouse
liver (17). They found that core clock genes regulate the
acetylation of the enzyme AceCS1. AceCS1 is responsi-
ble for changes in the oscillation of the metabolite acetyl-
CoA, a key metabolite involved in fatty acid synthesis
(Figure 4 A). Similarly, Masri et al. compared liver tran-
scriptomic data with metabolomic data in mice afflicted
with cancer using CircadiOmics (Figure 4 B). They dis-
covered that a distal tumor-bearing lung can reprogram
the liver circadian transcriptome through inflammatory
pathways and insulin related metabolic pathways (27).
More recently, CircadiOmics has been used to examine
the role of circadian regulation in myogenic reprogram-
ming of fibroblast (https://www.biorxiv.org/content/early/
2017/06/18/151555). It was observed that the core clock is
completely disrupted during this process. However, exoge-
nous MYOD1 gains rhythmicity during transition to mus-
cle cell. As a result, MYOG and a majority of critical tran-
scription factors related to muscle development known to
be regulated by MYOD1 synchronize oscillation. This be-
havior was identified in CircadiOmics through visualiza-
tion and confirmed by BIO CYCLE reported phase lag
(Figure 4 C). At last, aggregating all mouse transcriptomic
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Figure 4. Selected examples of the impact of CircadiOmics. (A) CircadiOmics was used to link a multitude of circadian metabolites with functionally related
circadian transcripts. Figure taken from Figure 5A of (17). (B) CircadiOmics was used to discover reprogrammed circadian transcripts and metabolites
related to inflammatory and energy pathways. Figure taken from Figures 2E, 4B and 5D of (27). (C) Exogenous MYOD1, during MEF myogenic repro-
gramming, entrains oscillation in MYOG and related targets in absence of oscillation of the core clock (https://www.biorxiv.org/content/early/2017/06/18/
151555). (D) Bar heights show the ordered number of oscillating protein coding transcripts with a P ≤ 0.05 in each mouse transcriptomic experiment in
the repository. The trend is the cumulative union of oscillating transcripts. Over 93% of possible protein coding transcripts are found to oscillate in at least
one tissue or condition across all mouse datasets.

datasets confirms and amplifies the notion that circadian
oscillations are pervasiveness: 93.5% of all possible protein
coding transcripts exhibit circadian oscillations in at least
one tissue or experiment (up from about 67% in (2)) (Fig-
ure 4 D). The large number of datasets in CircadiOmics fa-
cilitates these kinds of integrative analyses. Additional anal-
ysis of the 1275 protein coding transcripts that are not found
to oscillate in any condition or tissue is provided in Supple-
mentary Table S2.

The latest release of CircadiOmics is the largest sin-
gle repository of circadian omic data available. Updates
in server architecture and data mining ensure that Circa-
diOmics will continue to maintain and grow as new data
is published. Improvement in features for search and vi-
sualization expand the possibilities for study of circadian
rhythms in omic datasets. These possibilities include gen-
erating specific hypothesis for individual experiments and

answering larger questions about the organization of oscil-
lation within a cell.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Chapter 7

Transcriptomic Organization of

Circadian Rhythms

7.1 Introduction

The set of software systems described in this thesis provide us with a powerful set of tools

for analyzing high throughput circadian omic data. Indeed, we have utilized this system in

high impact research projects, some of which were listed above. CircadiOmics shares our

results with the public and also gathers the largest set of circadian omic data available from

the public domain. In particular it contains a large set of transcriptomic datasets, totaling

more than 170 datasets across multiple species. This combination of tools and data uniquely

positions us to address some of the most complex and systematic questions in circadian

biology.

One of the most important questions of this kind is to understand the reprogramming and

global organization of the circadian transcriptome, as mentioned in Chapter 1. To this end,

we have engineered the PyCircadiOmics codebase. It incorporates results and tools from
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individual pipelines in igb-pipelines and organizes them in a highly efficient and flexible

python library. Using object oriented design, different methods can be readily combined

to produce new results. Multiple parameters and input data can be processed in parallel

to increase the robustness of results. By applying these methods on 81 mouse transcrip-

tomic datasets, we have validated our methodology by rediscovering the core clock, and

discovered dozens of novel circadian regulators. Last but not least, we have formulated a

possible hierarchical model to explain large scale circadian reprogramming events in the tran-

scriptome. Through our bioinformatics software systems, exemplified by PyCircadiOmics,

we have conducted a systematic, data-driven and ground-breaking analysis of the circadian

transcriptome in mouse.

The details of this study is shown in full in the appended paper. I am a first co-author of

this paper (publication pending).
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Abstract

While many studies have highlighted the importance of the core circadian clock, a general model for

the organization of the circadian transcriptome has yet to be described. To identify such a model, we

developed the Circadian Regulatory Control (CRC) method and generated CRC graphs on 87 mouse

transcriptomic datasets. Frequency analysis rediscovered the core circadian clock in both mouse and

baboon. Node analysis on CRC graphs revealed more than 20 novel circadian transcription factors and

RNA binding proteins. Edge analysis demonstrated that the core clock directly controls only a limited

set of 334 TFs and RBPs. Graph analysis on the individual experiment specific CFC graphs as well

as the aggregated CRC graph showed that the core clock directly controls about 35% of the oscillatory

transcripts. However, at regulatory distance-3, the core clock can indirectly control more than 80%

of the circadian transcripts. Furthermore, 95% of oscillatory transcripts can be reached from the core

clock at some regulatory distance. Functional analysis of the remaining 5% non-oscillatory transcripts

showed a significant enrichment of olfactory, sensory and G-protein coupled receptor pathways. Overall,

we conclude that the circadian transcriptome is organized by a hierarchical regulatory system, where

perturbation close to the core clock can cascade into large scale circadian reprogramming events.

1 Introduction

Circadian oscillations in the concentrations of molecular species play a fundamental role in many biological

processes from metabolism, to cell cycle, and to neuronal function [1, 2, 3, 4]. To study the role of these

∗These authors contributed equally to this work.
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oscillations, an increasing amount of high through-put circadian omic data is being generated under diverse

genetic, epigenetic, and environmental conditions. In any single circadian transcriptomic experiment, roughly

10% of measured transcripts are found to oscillate in a circadian manner [5, 6, 7, 8, 9]. However, the

intersection of oscillating transcripts between any two experiments is typically small, only about 2% [10]. This

small overlap between experiments suggests that the union of all oscillating transcripts across all experiments

is large. Remarkably, we calculate that over 93% of all of protein coding transcripts in mouse are found to

oscillate in at least one condition [11]. Previous studies have demonstrated specific mechanisms by which

a cell can select different oscillating subsets of transcripts, an event known as circadian reprogramming

[12, 13, 14, 9]. However, the question of how almost every transcript is capable of oscillating in a circadian

manner remains unanswered. To address this question, we develop informatic methods and apply them to

the largest collection of mouse circadian transcriptomic data.

To establish a framework, it must be noted first that the concentration of any molecular species cannot

oscillate in isolation [15]. The fundamental unit of any such oscillation is a feedback loop of molecular inter-

actions, such as transcriptional regulation, post-trascriptional modification, and protein-protein interactions

[7, 16, 10], causing all species in the loop to oscillate at the same frequency. A very large number of such regu-

latory loops have been identified using informatics methods and large omic repositories [10, 17, 18, 19, 20, 21].

The empirically observed pervasiveness of circadian oscillations implies that a significant fraction of these

loops is capable of oscillating with a 24 hour period. This 24 hour common period is most likely due to

evolution given the importances of the differences between night and day for all biological life, the ∼ 2 trillion

night-day transitions 1 that have occurred since the origin of life 3.5 billion years ago, and the inherently

circadian nature of the molecular circuitry of early photosynthetic life (cyanobacteria) [22]. Thus, in short,

modern cells contain entire networks of circadian coupled oscillators. The question again is how specific

subsets of oscillators are selected under specific genetic, epigenetic, and environmental conditions.

A key element of the answer to this question is the circadian core clock. The circadian core clock is

genetically implemented by a relatively small set of genes whose transcripts are consistently found to oscillate

in most circadian experiments [23, 24, 25]. The core clock regulates an extensive number of transcripts

through a set of transcription factors (TF) including CLOCK-BMAL [26]. CLOCK-BMAL binds to E-

box motifs that are found abundantly throughout the genome [27, 28]. A possible centralized model of

organization is that the core clock directly orchestrates the selection of oscillators in the coupled network.

While the importance of the core clock is undeniable [29, 26, 30, 31], additional findings have shown that

knocking out elements of the core clock (including CLOCK-BMAL) does not lead to a complete loss of

circadian oscillations [32, 33, 34, 35, 36]. Thus, at the other extreme, a completely decentralized model

of circadian oscillations is also conceivable where oscillators compete and self organize. Here we seek to

find where in this spectrum, from centrally orchestrated to completely decentralized, the cellular network of

coupled-oscillators operates.

1This estimate accounts for the fact that the day and night cycle has been lengthening over time due to tidal influences.
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To this end, using an intelligent discovery framework, we have aggregated the largest repository of

high through-put circadian omic data on CircadiOmics (www.circadiomics.ics.uci.edu). Among others,

CircadiOmics contains 161 transcriptomic datasets from 8 species and over 23 broad tissue categories.

BIO CYCLE, a deep learning based software available on CircadiOmics, is used to identify oscillating tran-

scripts with statistical significance [37]. MotifMap and MotifMap-RNA are used to study transcription

factors (TF) and RNA binding proteins (RBP) and their binding sites [18, 17, 38]. These binding sites can

provide evidence for transcriptional and post-transcriptional regulation.

2 Results

To identify a model of organization for transcriptomic circadian oscillations, we perform a series of analyses

of increasing complexity using novel computational metrics. To achieve robustness and overcome noise in the

data and incomplete knowledge, we present results obtained consistently at different statistical threshold as

well as results that are supported by multiple lines of evidence. In total, 87 datasets from mouse were used

to generate each set of results (Supplementary Table 1). The most represented tissues are liver (37 datasets),

skin (14 datasets) and brain (13 datasets). In all cases, aggregated results, as well as tissue specific results,

were generated.

2.1 Frequency Analysis

The frequency at which a TF or RBP is found to oscillate in a collection of datasets provides a simple metric

for estimating its consistency in circadian oscillation. Figure 1 illustrates this frequency distribution for

mouse at a BIO CYCLE p-value < 0.01. Additionally, 64 datasets from Papio anubis (baboon) were used

for comparison to validate the methods. Both analyses show that TFs involved in the circadian core clock

are found to be the most frequently oscillating. This purely data-driven approach automatically discovers

the circadian core clock. Furthermore, it identifies additional TFs and RBPs that must play an important

role in circadian oscillation.

2.2 The Circadian Regulatory Control Graphs

Measuring the circadian regulatory influence of the TFs and RBPs identified in the previous analysis requires

further investigation using more sophisticated computational methods. To this end, a novel computational

method was used to identify and score directed regulatory edges in oscillating loops. The Circadian Regu-

latory Control (CRC) method can be understood as a proxy for circadian regulation between a TF or RBP

source and a transcript target. There are three major components of the CRC method applied to each

experiment. First, as a prerequisite, the source and target must be oscillating, as assessed by BIO CYCLE.

Second, the source must have at least one high quality binding site on the target for transcriptional or

post-transcriptional regulation, as assessed by MotifMap and MotifMap-RNA [18, 17, 38]. For a TF, binding

3

106



P
E
R
2

A
R
N
T
L

N
R
1D

2
N
R
1D

1
T
E
F

N
P
A
S
2

C
R
Y
1

N
F
IL
3

P
E
R
1

C
R
Y
2

T
H
R
A

H
LF

C
LO

C
K

F
U
S

C
IR
B
P

K
LF
13

A
R
H
G
A
P
24

P
P
A
R
A

K
LF
15

F
O
X
O
3

B
H
LH

E
40

A
T
F
5

T
A
R
D
B
P

E
IF
4B

N
F
IC

B
H
LH

E
41

G
T
F
2I
R
D
1

H
N
R
N
P
D

H
N
R
N
P
C

H
N
R
N
P
L

S
R
S
F
5

H
B
P
1

M
T
A
3

M
A
F
B

N
F
E
2L
2

E
S
R
1

S
LC

20
A
1

C
E
B
P
B

A
LC

A
M

N
C
L

M
X
I1

R
E
P
IN
1

C
E
B
P
A

H
N
R
N
P
K

IT
S
N
1

U
V
R
A
G

S
F
P
Q

Z
E
B
2

B
A
C
H
1

S
T
A
T
5B

Gene Symbol

0

10

20

30

40

50

60

70

N
um

be
r 
of
 D
at
as
et
s

MUS MUSCULUS
Core Clock
RBP
TF

(a) 87 Transcriptome Datasets

A
R
N
T
L

P
E
R
2

N
F
IL
3

N
P
A
S
2

N
R
1D

2
C
R
Y
1

H
N
R
N
P
D
L

N
R
1D

1
N
R
1H

2
R
B
M
4B

H
S
F
1

T
E
F

P
E
R
1

E
4F

1
T
R
IM
28

U
2A

F
2

R
X
R
A

A
C
D

R
B
M
42

U
S
F
2

Z
B
T
B
12

IR
F
3

E
S
R
R
A

C
D
C
37

G
T
F
2F

1
R
E
P
IN
1

Z
B
T
B
7B

D
E
A
F
1

R
A
LY

R
F
X
1

R
E
X
O
1

C
N
O
T
3

B
R
F
2

JD
P
2

B
C
L6

Z
B
T
B
3

M
Z
F
1

R
A
R
G

B
R
F
1

C
R
Y
2

H
LT

F
S
O
X
4

T
C
F
3

R
E
LA

S
IX
5

S
O
X
13

F
X
R
2

S
N
R
P
A

P
M
L

P
O
LD

2

Gene Symbol

0

5

10

15

20

25

30

35

40

N
um

be
r 
of
 D
at
as
et
s

PAPIO ANUBIS
Core Clock
RBP
TF

(b) 64 Transcriptome Datasets

Figure 1: Most Frequent Oscillating TFs and RBPs

sites were assessed at the promoter region of the target transcript. For an RBP, binding sites were assessed

at the introns or UTRs of the target transcript. Third, there must be a correlative relationship between

the phases of the source and the target. Recent studies have shown a significant lag between the transcript

expression and the concentration of the corresponding protein [39]. We addressed this issue by computing

and modeling the distribution of this lag, using transcriptomic and proteomic datasets produced from the

same study on CircadiOmics (Methods 4.2).

After filtering on p-value for the first criteria, the remaining two criteria were combined into two different

CRC scores. The B-score is a binary indicator of circadian regulation at various filtering thresholds for the

number of high quality binding sites and the likelihood of phase correlation. The E-score is an exponentially

weighted combination of these two criteria. In general, results generated using both scores tend to agree.

However, as a binary indicator, the B-score is more convenient for large scale analysis of graph structures. In

contrast, as a real valued metric, the E-score has more sensitivity and is used for ranking nodes and edges.

In either case, the CRC method yields a CRC graph, which is a directed weighted graph, where the

vertices correspond to circadian protein-coding transcripts in a given experiment, and the directed edges

correspond to regulatory relationships with E-score > 0, and the weights correspond to the E-score or the

B-score. The CRC graphs obtained for each experiment can be superimposed, for instance, across tissues or

across all experiments, by aggregating the scores of the corresponding edges.

2.3 Node Influence Analysis

For each source associated with a TF or RBP, an influence score was computed by aggregating all the CRC

E-scores from all its outgoing edges either in all experiments or in tissue-specific experiments. The highest

scoring TFs and RBPs are shown in Table 2 (Supplementary Table 2). When looking at aggregated results,

core clock TFs such as CLOCK and BMAL1 were found to have the largest scores, a finding consistent with
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Figure 2: Tables showing the ranking of circadian TFs and RBPs by CRC E-score in different tissue types.

The leftmost table shows ranking in mouse transcriptome across all datasets. RBPs are labeled in red while

TFs are labeled in black. Core clock TFs have been removed from the listing.

both the frequency of oscillation and previous literature [29]. Extended members of the core clock were also

identified in the ranking including THRA and BHLHE40 [40, 41].

In the results across all datasets, additional TFs and RBPs were identified that seem to have a much

broader regulatory role than reported in the literature. For instance, FUS and CIRBP have been reported

to affect the core circadian factor PER2 via alternative splicing, but only in the mouse liver [42, 43, 44]. In

contrast, we find that FUS and CIRBP are found to be high scoring also in both brain and skin. EIF4B has

been identified in the circadian regulation of translation in mouse liver [45]. We find that EIF4B is also top

scoring in skin. HNRPDL is listed as a potential target of circadian regulation via microRNA in the brain

[46]. Strikingly, these RBPs and TFs are found to have very high CRC scores across all mouse datasets.

This suggest that they play a broader, previously uncharacterized, role in circadian regulation.

When looking at tissue specific results, many additional TFs and RBPs with high CRC scores are

discovered. Although literature evidence has shown that these factors interact with circadian pathways, they

are not known to be regulators of oscillation. These TFs may explain tissue specific circadian reprogramming.

Within brain tissue, SFPQ is functionally involved in the cell cycle pathway, which also includes NONO and

PER2 [47]. EGR1 has been found to oscillate and under direct regulation by the core clock [48]. Within

our results, EGR1 potentially regulates a large number of downstream transcripts in the brain. CHD1 is

known to be involved in circadian chromatin remodeling in brain [49]. KLF15 is well known to be regulated

by the peripheral clock in relation to circadian nitrogen homeostatis in liver and muscle [50]. Within skin
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tissue, RUNX is a top TF and is known to be regulated in a circadian fashion in epidermal cells [51]. E2F1

is regulated by circadian factors SIRT1 and CLOCK[52]. BRCA1 is known to interact with core clock TFs

such as PER2 [53]. Within liver tissue, CEBPB is top ranking excluding core clock TFs. This agrees with

the literature finding that it interacts with the core clock through REV-ERB [54]. PCBP4 is known to be

involved in circadian alternative splicing in the liver [55].

Additionally, there are many other novel findings that have been linked to very few circadian studies.

These findings include: NFIC, RAD21, MXI1, and TARDBP across all tissues; ZC3H11A, RBM28, and

CEBPG in brain; HCFC1 and ETV5 in skin; and HNRNPK, ATF5, and BACH1/MAFK in liver (Sup-

plementary Table 2), and may provide leads for investigations of previously unknown circadian regulatory

mechanisms.

While these results have focused on individual TF and RBP nodes, the identification of a model of

transcriptomic organization requires analysis of regulatory edges found using the CRC method.

2.4 Edge Influence Analysis

While the previous analysis was performed on the nodes of the CRC graph (aggregated or tissue-specific),

to further understand the organization of circadian transcripts, it is necessary to study the regulatory edges

(aggregated or tissue-specific). Because we are focused on the regulatory architecture, we restrict the results

to edges where the source is either a TF or RBP and the target is also either a TF or RBP. This is a subgraph

of the whole CRC graph. An edge analysis was performed using CRC E-score weighted edges in this restricted

graph. We rank these edges on the aggregated E-scores (Figure 3 A). The results compiled from all 87 mouse

datasets are shown in Figure 3. Additional tissue specific results can be found in Supplementary Figure 3.

The heatmap demonstrates strong correlation within core clock TFs, as well as between the core clock and

other top CRC scoring TFs and RBPs such as FUS and CIRBP. Figure 3 A lists some of the top interactions.

Many of the findings are consistent with literature (Supplementary Table 2). However, some top interactions

seem to be underestimated in the circadian literature, such as the potential regulation of PER2 by NFIX, or

TEF by NFYA and RXRA. These novel interactions may be important in circadian regulation. Furthermore,

we visualized the weighted edge scores between top TFs and RBPs, including the core clock, in Figure 2

B. It can be clearly seen that while there exists strong interaction between core clock TFs, the core clock

does not strongly regulate a large number of additional TFs and RBPs. In fact, we find that using the CRC

graph, the core clock only directly regulates 334 TFs and RBPs (Supplementary Material 3). Given the

limited direct regulatory influence of the core clock, it is necessary to examine indirect regulatory influence

beyond the immediate neighborhood of the core clock within the CRC graphs.

2.5 Graph Analysis

So far we have looked at direct influence through ranked node and edge scores, to further understand

the architecture of circadian transcriptional oscillations, we must look also at indirect influences through

6
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Figure 3: Edge influence analysis. A: Ranking of top edges between TFs and RBPs. Edges between core

clock TFs have been omitted. B: Edge score heatmap Heatmap of inter-regulator (TF/RBP) circadian

CRC score (E-score aggregates) in mouse. The score is calculated by aggregating CRC E-scores from the

directed edges starting from row TF/RBP to the column TF/RBP across all datasets. Stronger colors in

the heatmap indicate higher total scores (normalized for visualization). Color on row and column indicates

the type of regulators: blue indicates core clock TF, red indicates RBP and gray indicates regular TF. The

heatmap visualizes the 100 strongest edges by aggregate scores.
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Figure 4: Mean percentages of transcriptome explained by TF/RBP at fixed regulatory distances from the

core clock across mouse datasets.

regulatory paths within the CRC graphs.

Regulatory distance was computed as the length of the shortest directed path in a CRC graph from a

source node to a sink node. The mean percentage of oscillating transcripts found at increasing regulatory

distances across all mouse datasets is shown in Figure 4. The set of oscillating transcripts that are found

to have a regulatory distance-one from the core clock were considered to be directly regulated by the core

clock. The mean percentage of distance-one transcripts across all CRC graphs (individual, tissue-specific, or

aggregated) is roughly 35% of all oscillating transcripts. While the majority of transcripts are not found to

be directly regulated by the core clock, almost any transcript can be connected through a regulatory path in

the CRC graph to the core clock. On average, in an individual experiment, 80% of all oscillating transcripts

are within distance-three from the core clock (Figure 4).

Given that over 80% of oscillating transcripts can be connected to the core clock within a distance of three

within experiment specific CRC graphs, we performed analysis of the aggregated CRC graph to quantify the

total number of oscillating transcripts over the entire mouse transcriptome that can be connected to the core

clock. We find that not only do 95% of protein-coding transcripts oscillate in some condition, but that this

95% can be connected to the core clock at some regulatory distance. The remaining 5% of non-oscillatory

transcripts are found to be significantly enriched (p-value < 0.001, q-value < 0.01) in a few highly specific

pathways including olfactory receptor activities, sensory perception and G-protein coupled receptor activity

(Supplementary Material 4).

Within the aggregated CRC graph, the number of out-going edges for TFs and RBPs at increasing

regulatory distances decreases. Core clock TFs have an average of 21 out-going edges. At distance-one,
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Figure 5: Network view of TFs and RBPs that are found at regulatory distance = 1. These TFs predom-

inantly fall into three broad categories labeled from GO annotations that includes Cell Cycle, Neuronal

Function, and Metabolic Process.

this number decreases to nine. For TFs and RBPs at a distance of three or greater, the average number

of outgoing edges is less than one. The decreasing number of out-going edges at each regulatory distances

illustrates the decreasing regulatory influence of these TFs and RBPs and highlights a cascading hierarchical

organization of transcriptomic regulation.

Functional enrichment by Gene Ontology (GO) term was performed on the subset of transcripts found

at each regulatory distance (Supplementary Table 3). Transcripts found at regulatory distance-1 from the

core clock exhibited significant enrichment for terms related to Circadian Rhythms, Cell Cycle, Metabolic

Processes, and Neuronal Processes. The sets of transcription factors found at this distance were grouped

into these functional categories including the set of known RBPs. To observe the significant shifts in the set

of oscillating transcripts found in reprogramming events, a perturbation must occur in the expression of TFs

and RBPs with small regulatory distances and, consequently, a high CRC score. Perturbations affecting low

CRC scoring TFs and RBPs at large regulatory distances can only induce changes in proportionally smaller

sets of oscillating transcripts. Therefore, we conclude that experimental conditions that relate to changes in

metabolism, neuronal function, cell cycle, or RBP modification likely instigate large reprogramming events

through perturbations found in distance-one TFs or RBPs.
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3 Discussion

The question of how specific subsets of oscillators are selected under specific genetic, epigenetic, and envi-

ronmental conditions has remained an open question in the study of circadian rhythms. An organizational

model that allows this selection within the network of coupled circadian oscillators must exist. This model

must lie within a spectrum extending from a purely centralized model, entirely orchestrated by the core

circadian clock, to a completely decentralized model. In order to determine where in this spectrum the

network of coupled oscillators operates, we obtained results using the CRC method and CRC graph with

the large collection of mouse transcriptomic data available on CircadiOmics.

Using 87 mouse transcriptomic datasets, we analyzed the frequency with which TFs and RBPs oscillate.

With no prior information, this purely data driven results rediscovered the core circadian clock. Remarkably,

these results were confirmed using the 64 Baboon datasets in CircadiOmics.

We formulated the Circadian Regulatory Control (CRC) method for identification of regulatory edges in

circadian feedback loops. Two CRC scores, B-Score and E-score, incorporate multiple sources of evidence

including the statistical significance of transcript oscillation and high quality predicted binding sites. These

scores also take into account the delay between transcript and protein expression using available proteomic

datasets included in CircadiOmics. CRC scores provide a measure circadian regulation from a TF or RBP

to a target (promoter or transcript).

Using the CRC method, we introduced the concept of the CRC graph as a directed weighted graph

where nodes are oscillating transcripts and regulatory edges are measured by CRC scores. We constructed

CRC graphs from individual experiments and superimposed these graphs to generate tissue-specific and

aggregated CRC graphs.

We performed a node influence analysis on the CRC graphs by aggregating all of the outgoing edges of

a source node across experiments. The node influence analysis revealed more than 20 novel TFs and RBPs

that are either previously underestimated or completely uncharacterized as important circadian regulators.

Our analysis of directed edges within the CRC graph demonstrated the relatively small direct influence of

the core clock. We found that core clock TFs only directly regulate 334 TFs and RBPs in the aggregated

CRC graph.

We performed further graph analysis on both experiment specific CRC graphs and the aggregated CRC

graph. We presented the average number of oscillating protein coding transcripts at increasing regulatory

distances centering around the core clock. We found that 35% (±8%) of oscillating protein coding transcripts

are directly regulated by the core clock. Additionally, we showed that on average 80% of oscillating transcripts

can be connected within a regulatory distance of three to the core clock.

Analysis of the aggregated CRC graph revealed that not only do 95% of protein coding transcripts oscillate

in some condition, but that any oscillating transcript can be connected at some regulatory distance to the

core clock. Functional analysis of the remaining 5% non-oscillatory transcripts showed significant enrichment

in highly specific pathways such as olfactory receptor activities, sensory perception and G-protein coupled
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receptor activity. At increasing regulatory distances, we observed that TFs and RBPs have decreasing

aggregated CRC edge scores and a decreasing number of out-going edges. This observation highlights the

decreasing regulatory influence at increasing regulatory distances. Finally, functional annotation by GO

terms revealed that at a regulatory distance of one, TFs can be grouped together into three categories: Cell

Cycle, Metabolic Process, and Neuronal Function. These sets, along with the set of RBPs found at distance-

one, are functionally related and highly influential circadian regulators. Reprogramming events, where the

core circadian clock continues to oscillate, must originate from perturbations of expression in these TFs

and RBPs. We conclude from these analyses that the organization of circadian transcriptional regulation is

structured as a heirarchy of regulatory steps originating at the core circadian clock.

4 Online Methods

The methods presented provide tools for identifying the organization of circadian rhythms within the context

of the transcriptome. This type of analysis is made possible by the large repository of circadian omic

data in Circadiomics. CircadiOmics currently provides access to 231 omic datasets from eight species in a

broad collection of tissue and conditions. To address bias in the repository of data related to tissue and

species, separate results were computed from only mouse liver, skin, and brain are provided for each method

(Supplementary Table 3).

4.1 Frequency Histograms

Transcript frequency is defined as the total number of datasets where a given protein coding transcript is

found to be oscillating at a BIO CYCLE p-value < 0.01. Histograms for results obtained at additional

p-values is provided in Supplementary Figure 1. Protein-coding transcripts were identified from the BioMart

ENSEMBL gene database [56].

4.2 Circadian Regulation Control Scoring

The Circadian Regulation Control method is a measure of circadian regulation from a source TF/RBP to

a target (promoter or transcript), consisting of three components. First, both the source and the target

must be oscillatory according to BIO CYCLE [37] with p≤ 0.01 (partial results with p≤ 0.05 available in

Supplementary Table 2). Second, if the source is a TF, there must exist at least one high quality binding

site (BBLS ≥ 1, NLOD ≥ 0.9 and FDR ≤ 0.25) in the promoter region of the target (defined as -5,000 to

+500 bp of the transcription start site) according to MotifMap [18, 17]. For RBP sources, there must be

high quality binding sites (BBLS > 0, NLOD ≥ 0.9) predicted by MotifMap-RNA [38] in the introns or

UTRs of its target transcripts.

Third, a measure of the correlative relationship between the phases of the source and the target is

computed from the lag between peak expression. The distribution of lags between the transcript and the
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protein product of 2,400 genes [57] was modeled as a beta distribution with µ = 0.35, SD = 0.25. The

empirical distribution and the fitted distribution are shown in Supplementary Figure 2. The lag between a

circadian transcript and the protein product is roughly 4 ±2 hours corresponding to the mode of the fitted

distribution. CRC scores are computed from the value of the highest probability density interval (HPD)

associated with a given lag between a source and its target.

The values of these two components are summarized in two ways. A binary edge indicator, the B-score,

uses a threshold number of binding sites (≥ 1) and phase correlation as measured by HPD value (≥ 0.8). An

exponentially weighted edge score, E-score, is defined as E = 0.5∗HPD−0.5∗exp(−NumberOfBindingSites).

4.3 Circadian Regulatory Control Graphs

CRC Graphs are constructed for each of the 87 mouse datasets. Nodes are defined as oscillating transcripts

using a threshold BIO CYCLE p-value ≤ 0.01. Edges with a CRC B-score = 1 are included. The shortest

path length, used to define regulatory distance, between a TF and RBP and a target transcript and the

number of out-going edges for each TF and RBP was computed by NetworkX (https://networkx.github.io/).

Results for mouse liver, skin, and brain tissue are provided in Supplementary Table 4. GO enrichment

analysis and functional annotation for transcripts found at each distance was completed using the Python

library goatools (https://github.com/tanghaibao/goatools) using NCBI gene to GO term associations. The

enrichment results provided in Supplementary Table 1 were performed at an adjusted p-value ≤ 0.01.
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Chapter 8

Summary and Conclusion

The study of circadian rhythms increasingly relies on high throughput circadian omic data.

The processing, analyzing and integrating of such data requires a set of efficient and powerful

bioinformatics methods. We have implemented a collection of such methods and organized

them into complete software systems. Using these systems, we produced large scale genomics

data for circadian analysis. We created pipelines for circadian statistical and machine learn-

ing analyses. We also created pipelines for large scale functional annotations and enrichment

analyses. Furthermore, we converted large scale functional data to functional graphs. For

individual projects, we implemented a visualization and web hosting server for circadian

data. For all publicly available circadian data, we have created CircadiOmics, which the

largest circadian omic web portal to date. Thanks to these efforts, we have published nu-

merous circadian papers. Finally, using our software systems and data, we have studied the

organization of the circadian transcriptome and produced significant results: we found that,

in mouse, the core clock directly controls about 35% of the circadian transcripts, while it can

indirectly affect more than 80% of the circadian transcripts in any given condition. Further-

more, more than 95% of the protein coding transcripts can be connected to the core clock by

some regulatory distance. The remaining 5% of non-oscillatory transcripts are enriched for
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specific pathways such as olfactory receptors. Along with these results, we have identified

more than 20 novel circadian TFs and RBPs in terms of their role in circadian regulation.

Overall, we have created a ground breaking framework for studying circadian rhythms and

obtained significant novel discoveries. This framework should continue to benefit the whole

of the circadian field in the future.
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