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Abstract

Epidural electrostimulation has shown promise for spinal cord injury therapy. However, finding 

effective stimuli on the multi-electrode stimulating arrays employed requires a laborious manual 
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search of a vast space for each patient. Widespread clinical application of these techniques would 

be greatly facilitated by an autonomous, algorithmic system which choses stimuli to 

simultaneously deliver effective therapy and explore this space. We propose a method based on 

GP-BUCB, a Gaussian process bandit algorithm. In n = 4 spinally transected rats, we implant 

epidural electrode arrays and examine the algorithm's performance in selecting bipolar stimuli to 

elicit specified muscle responses. These responses are compared with temporally interleaved, 

intra-animal stimulus selections by a human expert. GP-BUCB successfully controlled the spinal 

electrostimulation preparation in 37 testing sessions, selecting 670 stimuli. These sessions 

included sustained, autonomous operations (10 session duration). Delivered performance with 

respect to the specified metric was as good as or better than that of the human expert. Despite 

receiving no information as to anatomically likely locations of effective stimuli, GP-BUCB also 

consistently discovered such a pattern. Further, GP-BUCB was able to extrapolate from previous 

sessions’ results to make predictions about performance in new testing sessions, while remaining 

sufficiently flexible to capture temporal variability. These results provide validation for applying 

automated stimulus selection methods to the problem of spinal cord injury therapy.

Keywords

Implants; Learning Automata; Neural Engineering; Neuromuscular Stimulation; Spinal Cord 
Injury

I. Introduction

Animal [1] and human [2], [3] studies have shown that multi-electrode epidural spinal 

stimulation can provide significant recovery of motor and autonomic function in subjects 

suffering from severe spinal cord injury (SCI). Fig. 1 shows a 27-electrode stimulating array 

we employ in rat SCI models. When implanted in the epidural space, the application of 

appropriate spatio-temporal patterns of electrical stimulation to these arrays can facilitate the 

operation of spinal circuits caudal to the spinal injury, enabling beneficial motor function, 

and the recovery of some voluntary control and autonomic function [2], [3].

Multi-electrode stimulating arrays provide many benefits over simple wire electrodes, such 

as patient-customized stimulation parameters, compensation for errors in surgical placement 

of the array, and potential adaptation to spinal cord plasticity. Moreover, this adaptivity is 

needed in the clinic: optimal stimulus patterns vary substantially across patients [3] and over 

time for each patient due to spinal cord plasticity. Hence, the clinical process of deploying 

multi-electrode epidural stimulation requires a burdensome search for the optimal 

stimulation paradigm for each patient.

The space of possible stimuli which must be searched to find high-performing electrode 

combinations can be vast; e.g., the 19 parameters (which describe active electrode selection, 

electrode polarity, voltage, stimulus frequency, and pulse width) which can be varied on the 

16-electrode array used in [2], [3] allow for 108 different stimulus combinations. When 

restricted to pulse-like stimuli (parametrized by amplitude, frequency, phase, and pulse 

width), the array shown in Fig. 1 presents a 108-dimensional space that must be searched. 

Even though the range of permissible values is greatly reduced by safety and design factors, 
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the necessary search for the small set of high-performing or optimal parameters can be 

tedious and of limited direct therapeutic value.

This burden suggests the need for automated algorithms to facilitate, simplify, and 

accelerate the search process. Other factors motivate the need for automated search 

techniques: (1) different stimulation patterns are needed to facilitate different motor 

behaviors (e.g., standing vs. stepping); (2) the current labor-intensive process of finding 

optimal stimulation patterns is expensive and may not result in optimal parameter choices; 

(3) no method yet exists to predictively account for plasticity in the nervous system during 

locomotor recovery after severe paralysis; and (4) a systematic method can facilitate 

widespread, cost-effective distribution of this therapy, as there are currently few therapists 

trained to optimize epidural stimulation for recovery after an SCI.

This paper introduces a novel algorithm which can automatically optimize multi-electrode 

array stimulation parameters.1 The methodology is based on a novel Gaussian Process 

Batch Upper Confidence Bound (GP-BUCB) active machine learning technique developed 

by some of the authors [5]. GP-BUCB uses a batch processing format that meshes with 

clinical practice: data from a completed training session is processed to select a batch of 

stimuli to be tested in the next training session. This approach decouples the data processing 

step from the clinical process. When the data processing step is sufficiently rapid, as in the 

experiments here, this approach can also be used within a session. The basic theory 

underlying GP-BUCB is developed and analyzed elsewhere [5]. This paper focuses on 

animal experiments designed to evaluate the method. These studies used a block strategy in 

which an experienced neurophysiologist and the GP-BUCB algorithm each selected and 

applied batches of stimuli in an interleaving sequence. Each was blind to the competitor's 

actions and the responses elicited, allowing comparison of the exploratory/exploitative 

strategies, while largely compensating for spinal plasticity. Our experiments showed that an 

automated algorithm can find high-performing stimulus parameters efficiently, 

competitively with a human expert. This should lead to a better therapeutic recovery 

experience, and shows that an automated algorithm can be a competitive option for 

determining effective therapeutic strategies.

Relation to Prior Work

This paper lies at the intersection of multiple fields: machine learning, neuromotor 

rehabilitation, and multi-electrode array technology. Herein, we address spinal cord injury, a 

medical condition with broad impact, which has been widely studied in both human [2], [3] 

and animal models [6]. Reviews of SCI research include [7]– [9]. Although regenerative 

approaches [10] hold long-term promise, they have not yet had substantial success in 

patients with a complete SCI [7].

Since there is no present cure for SCI, current practice focuses on therapy for the injured 

neuromuscular system. Locomotor therapy [11] produces gains in some patients through a 

variety of putative mechanisms [12], [13]. Several therapies involve electrical stimulation. 

Functional electrostimulation (FES) [14] aims to create muscle activation patterns associated 

1A preliminary version of this work has been reported [4].
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with a desired movement. Since FES is an open-loop method, the stimulation must be 

carefully designed and/or user-controlled if complex behaviors are desired. FES also can 

engender rapid fatigue [15]. Other approaches focus on spinal cord stimulation to 

rehabilitate the cord's motor control ability, without addressing the injury itself [16]. This 

philosophy relies on the spinal cord's intrinsic circuitry caudal to the injury site, which 

remains viable and adaptable [8]. Specific targets include interneuronal networks 

responsible for reflexes and the central pattern generators that coordinate muscle activity in 

walking [17]. A variety of methods for delivering the electrical stimulus have been 

suggested, including penetrating microelectrodes [18].

The present paper focuses on epidural spinal electrostimulation (EES), which relies upon an 

electrode array implanted in the epidural space over the dorsal aspect of the lumbosacral 

spinal cord. Although originally developed for chronic pain therapy [19], epidural 

electrostimulation can produce complex motor patterns [17] in SCI subjects. EES has been 

successfully applied to spinal and decerebrate cats, spinalized rats, and humans with an SCI 

[9]. Properly configured EES can produce walking motions [9]. The combination of EES 

with partial body weight support exercise training can produce substantial functional and 

metabolic gains in locomotion in an incomplete quadriplegic patient [20]. More recently, 

some of the present authors have used EES coupled with motor training to demonstrate 

substantial gains in a motor-complete patients [2], [3]. One mechanism believed to be 

involved with in this type of stimulation is the activation of afferent fibers as they enter the 

spinal cord through the dorsal nerve roots [21]. A detailed attempt to examine spinal 

circuitry via EES-evoked potentials in human participants is presented in [22]. Even in this 

light, it is difficult to choose stimuli a priori, and so a search is necessary.

Since the search for optimal stimulating parameters consumes valuable patient and clinician 

time, any automated algorithm must quickly find high-performing stimulus parameters 

(explore the stimulus space) and then apply them (exploit its knowledge) to enable useful 

therapy. The unavoidable tension between these two requirements is classically called the 

exploration-exploitation tradeoff. Well-designed active learning algorithms strike an 

effective balance. The companion paper [5] reviews the active learning literature. Here we 

focus on the use of active learning for neurostimulation.

Our algorithm is not the first to “tune” the electrical stimuli applied by a medical device. 

Machine learning algorithms have tuned cochlear implants [23]. Computational models have 

been proposed to adjust deep brain stimulation (DBS) parameters [24], and automated DBS 

motor evaluation is in development [25]. In comparison to our approach, the ad-hoc 

techniques used in the cochlear tuning have no formal convergence guarantees. Moreover, 

EES invokes a more complex response (involving sensorimotor spinal networks) than does 

cochlear stimulation. Although the need for automated DBS tuning has been recognized 

[26], it is not yet a reality.

Whereas this paper focuses on neural stimulation, active learning has been applied to Brain 

Computer Interfaces (BCIs), which classify recorded neural activity. Active learning has 

been used to find the stimuli which produce good discrimination between volitional and 

resting states [27], [28], to calibrate BCI decoders [29] and BCI systems [30]. In contrast, 
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this paper uses an approach with more structure (a Gaussian process class of reward 

functions) over the space of actions in order to enable very large decision sets. Further, we 

optimize a reward function while simultaneously applying the therapy, rather than in a 

separate, potentially non-therapeutic session.

Finally, we note that our automated stimulus optimization approach can likely be adapted to 

other multi-electrode therapies, such as transcranial direct current [31], transcutaneous 

spinal cord [32], or deep brain stimulation.

Paper Organization

Section II describes the procedures and the electrode arrays used in our experiments. The 

theory and structure of the GP-BUCB algorithm [5] is briefly reviewed in Section III and 

Section IV describes adaptations of GP-BUCB to the clinical and experimental setting. 

Section V summarizes our experimental results, with Section VI providing a detailed 

analysis.

II. Experimental Methods

This section describes the preparation of the animal subjects (Section II-A), the micro-

fabricated (Section II-B) and wire electrode arrays (Section II-C) used to stimulate their 

spinal cords, and basic testing procedures (Section II-D).

A. Injury, Implantation, and Animal Care

Our surgical and care procedures are largely derived from [1], and are similar to those used 

for cats [33]. All animals are adult female Sprague Dawley rats, approximately 300 g in 

mass at time of implantation. The following procedures are performed on each animal, 

usually in a single surgery:

1) Partial laminectomy at the T8-T9 vertebral level and complete spinal cord 

transection at approximately the T8 spinal segment, including the dura, using 

microscissors;

2) Placement of gel foam at the transection site as a coagulant and separator of the 

cut spinal cord ends;

3) Partial or full laminectomies of some vertebrae (T11, T12, L3, and L4 for 

animals receiving parylene arrays, T12, T13, L1, and L2 for those receiving 

wired arrays);

4) Implantation of an epidural stimulating array, inserted using the T11, L4 (T12, 

L2) laminectomies for parylene (wire) arrays, placing the most rostral electrodes 

in the middle of the T12 vertebral level, and sutured to the dura at the rostral end 

using 8-0 Ethilon sutures;

5) Implantation of 2 ground wires (each made of 5 braided 0.003 cm gold wires, A-

M Systems, Sequim, WA) for parylene arrays, or one teflon coated stainless 

steel wire for the wired arrays (0.304 mm, AS 632, Cooner Wire, Chatsworth, 

CA). The grounds are placed in the muscle mass dorsal to the spinal column;
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6) Implantation of a pair of multi-stranded, Teflon-coated stainless steel EMG 

wires (AS 632, Cooner Wire) into the bellies of left and right tibialis anterior 

(LTA & RTA) and left and right soleus (LSol & RSol) muscles; and

7) Attachment of two headplug connectors (Amphenol, Wallingford, CT), that are 

screwed to the skull and secured with dental cement.

All surgeries are performed under aseptic conditions with general anesthesia (Isoflurane) 

delivered via face mask. Analgesia is provided with buprenex (0.5-1.0 mg/kg, 3 times per 

day subcutaneously), begun before the end of surgery and continued for 3-5 days post-

surgery. The animals were administered Baytril sub-cutaneously at the end of surgery and at 

12-hr intervals thereafter for at least 3 days. The animals are allowed to recover from 

anesthesia within an incubator and are individually housed both pre- and postoperatively, 

with free access to food and water. After recovering for one week (day 7 post-surgery, 

denoted P7), the experiments begin. Experiments continue as long as the animal and array 

both remain viable, or until 6 weeks post-operative (P42). Due to their spinal cord injuries, 

the animals’ bladders are manually expressed 2-3 times per day and their hind limbs are 

manually moved through a complete range of motion once per day to retain joint mobility.

All procedures were carried out in accordance with the NIH Guide for the Care and Use of 

Laboratory Animals and were approved by the UCLA Animal Research Committee.

B. Parylene Arrays

Two animals were implanted with parylene stimulating arrays, which were built using 

MEMS fabrication and traditional microelectronics, described in detail in [1]. The 26 mm × 

3mm array is sized to the rat spinal cord. The array consists of 27 platinum electrodes (each 

0.2 mm × 0.5 mm, partially covered by an anti-delamination waffle pattern of parylene) and 

platinum wire traces deposited on a parylene C substrate (see Fig. 1). The flexibility of the 

20μm thick array conforms to the cord's movements, allowing delivery of roughly the same 

stimulus in various body positions. The electrodes are in three rostro-caudal columns (see 

Fig. 2) denoted “A,” “B,” and “C” from the animal's left to its right, and are numbered by 

rows from 1 (rostral, L2 spinal cord level, T12 vertebral level) to 9 (caudal, S2 spinal cord 

level, L2 vertebral level). The rows are equally spaced.

The array is coupled to a biocompatible circuit board (33.2 mm × 10.3 mm) mounted 

dorsally on the spinal column. This board's circuits control the stimuli, record responses, and 

communicate with external circuitry through a headplug connector. A stimulus consists of a 

single pair of electrodes (cathode and anode) chosen from 29 candidates, the 27 on the array 

and 2 grounds located within the body. Considering only bipolar configurations (i.e., those 

without grounds), there are 702 possible stimulus pairs. Due to the design of the driving 

circuitry, certain pairs (36 in total) cannot be stimulated, leaving 666 pairs over which the 

stimulus can be optimized.

C. Wire-Based Spinal Stimulating Arrays

The wire electrode arrays consist of 7 Teflon-coated, multi-stranded, stainless steel wires 

(5×30 guage, A-M Systems; 2×AS 632 wires, Cooner Wire) laid parallel. Openings cut into 
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the wire insulation create exposed electrodes on the surface facing the dura. The wires are 

sutured to the dura above and below the electrode, ensuring consistent stimulus location. 

The other end is then connected to a headplug connector, to which the implanted EMG wires 

are also routed. The 7 stimulating electrodes are placed over the same spinal locations as 

electrodes A1, A4, A9, B2, C1, C4, and C9 on the parylene array (Fig. 2).

D. Animal Testing Procedures

During testing, the animals are suspended in a vest that supports their body weight. The 

device is positioned so that the animal is in a bipedal position, with both hindpaws in contact 

with a custom surface offering good traction. In a typical experiment, the algorithm chooses 

a batch of five bipolar electrode pairs, possibly with repetition. The stimulus associated to 

each selection consists of a train of 10 (or 20 in some animals) constant voltage pulses (1 Hz 

repetition, monophasic, 0.5 ms pulse width) applied across the selected electrodes.

The EMG signals corresponding to evoked potentials are amplified (A-M Systems model 

1700) and recorded by custom LabVIEW (National Instruments, Austin, TX) software, with 

a 10 kHz sampling rate. The digitized signals are processed with custom MATLAB (The 

MathWorks, Inc., Natick, MA) code to calculate the peak-to-peak amplitude of each evoked 

potential within a time window defined relative to the onset of the stimulus pulse. Along 

with previously recorded data, these new observations are used to select the five actions 

comprising the next batch. On a typical testing day, five batches are selected. A run of the 

algorithm typically lasts several days, and several runs may be performed on the same 

animal, with the algorithm's memory wiped between runs.

Human-selected batches (5 choices of electrode pairs and voltage) are interleaved between 

tests of the algorithm's batch selections in an alternating manner, constituting an intra-

animal baseline. The algorithm and human were blind to one another's actions and the 

animal's resulting responses. The two data sources were not combined for decision-making 

purposes, but they were combined for meta-analysis and tuning of the algorithm's 

hyperparameters.

III. Review of the GP-BUCB algorithm

The GP-BUCB algorithm is extensively developed elsewhere [5], [34]; here, we briefly 

sketch its construction. GP-BUCB is a Gaussian process (GP) bandit algorithm. The bandit 

setting [35] describes an agent which seeks to obtain high reward in its interaction with an 

unknown reward function f. In round t, the agent selects action xt from a decision set D, and 

then receives the single observation, yt = f(xt)+εt, of the corresponding reward, f(xt), 

corrupted by noise εt. Since only the reward corresponding to the action is observed, actions 

must be selected in view of both exploration and exploitation.

GP bandits impose the structural assumption that the reward function is drawn from a GP, a 

probability distribution over functions. This assumption is useful mathematically and 

because it allows a relatively intuitive encoding of prior (e.g., anatomical) knowledge about 

the problem. A GP is characterized by a mean function μ0(x) and a kernel function k(x, x′), 
which describes the covariance between f(x) and f(x′). With their hyperparameters, θ, the 
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kernel and mean functions encode assumptions about likely reward functions f, such as 

smoothness with respect to actions x, or locations of regions which are likely to yield high 

reward.

At time t, GP-BUCB updates the posterior distribution over f(x) for each x ∈ D using the 

actions {x1, . . . , xt–1 and observations y1:t–1 = {y1, . . . , yt–1}: the posterior over f(x) is 

, where

(1)

where  is the column vector of k(x, xi) for i = 1, . . . , t – 1,  is the corresponding 

vector of prior means μ0(xi), and K is the Gram matrix, i.e., [K]i,j = k(xi, xj). This posterior 

assumes that f is drawn from the GP and that the noise is i.i.d., with . The 

noise accounts for all factors which influence the response, but are unobserved by the 

algorithm. The GP-BUCB algorithm addresses the problem of making decisions in 

“batches,” where not all feedback is immediately available; only measurements yfb[t], where 

fb[t] < t – 1 are available. Conventionally, all observations yt–1 are required to select xt, but 

by using delayed measurements, the expenditure of valuable clinical time waiting for data 

processing is avoided. Mathematically, if the pending actions xfb[t]+1, . . . , xt–1 are known to 

the algorithm, the posterior variance available after those observations arrive can be 

calculated from (1), since this equation does not depend on the observation values. GP-

BUCB uses this pseudo-updated posterior to select xt,

(2)

where βt is a time-varying parameter (in the following, chosen to increase during a testing 

session). This lets GP-BUCB select observations in non-redundant batches (or despite a 

delay). A number of performance guarantees for GP-BUCB with particular choices of βt are 

obtained by [5].

IV. Clinical Adaptations of GP-BUCB

Noteworthy modifications of the GP-BUCB algorithm which are needed for clinical 

application are described below.

A. Objective Function

To optimize clinical reward, GP-BUCB must observe the actual reward or its faithful 

surrogate. Many methods exist to quantify standing performance [36], [37], which we 

eventually aim to optimize by EES. Many motor skill grading schemes rely on human 

observation [38], [39] or automated post-hoc analysis [40], [41]. Although we do not use 

human grading due to the variability in human judgement, our method can work with 

human-based ordinal ratings and is mathematically agnostic to the particular choice of scalar 

reward function.
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We use measured EMG activity as the reward function in our experiments. We chose the 

peak-to-peak amplitude of the left tibialis anterior (LTA, a foot dorsiflexor) muscle response 

to individual stimulus pulses (fixed amplitude of 5V, with 7V used in animal P2), in the 

“middle response” (MR, 4.5 - 7.5 ms post-stimulus) latency period, corresponding to motor 

responses which likely involve a single synaptic delay in the motor path. Since the evoked 

potentials represent a low-level function of spinal interneuron networks, they may be less 

sensitive to stimulus parameter variations than higher-level motor functions. At the 1 Hz 

stimulus frequency, the pulse responses can be dissociated from their predecessors and 

successors. Although this performance metric does not involve a complex motor behavior, it 

provides a short-term, measurable surrogate for therapeutic effectiveness, as it is an 

indicator of interneuronal function. Importantly, although our end-goal is to improve 

therapeutic outcomes, focusing on a short-term surrogate avoids the credit assignment 

problem, i.e., determining which actions are more or less responsible for that therapeutic 

outcome. This choice also allows us to use an intra-animal control design, thus avoiding a 

requirement for infeasibly large cohorts of animals.

Showing that the algorithm can successfully control this activity and learn the structure of 

spinal cord's responses demonstrates a step toward a therapeutic implementation. Further, 

since the prior means specified for this function in Table I do not vary with respect to 

stimulus location, the entirety of the function's spatial structure must be discovered online; 

thus, successful learning of spatial structure indicates that the algorithm may be able to 

discover previously unknown or patient-specific patterns via exploration.

Since the performance of this algorithm was compared to a human experimenter, we 

describe the experimenter's search and exploitation strategy. For a typical day, involving 

five batches (with five selections of stimulus parameters per batch):

• During batches 1-3, the human's first 3 actions were chosen using prior knowledge 

of electrode placement relative to the target muscle's motor pool, and observations 

from earlier tests. The 4th and 5th actions were typically small variations on 

successes in the first 3 choices.

• In the 4th and 5th batches, the human selected actions to explore portions of the 

spinal cord and array.

The human and the algorithm acted under different rules, confounding their competitive 

analysis. First, the human did not repeat an action within any day. Further, the human 

received immediate feedback, i.e., could observe the responses to an action and immediately 

use this information. Despite these factors, we maintain that the human expert's performance 

is an important baseline, due to the human's reasonable effectiveness at finding and utilizing 

good stimulus parameters.

B. Time Variation of the Reward Function

The GP-BUCB algorithm explores and exploits the reward function by selecting actions 

which individually are expected to yield high reward, substantial new information on the 

reward function, or both. Assuming a stationary reward function, well chosen algorithm 

parameters, and some technical conditions, GP-BUCB is guaranteed to converge over time 
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to a subset of actions which yield maximal reward [34]. In practice, the response function is 

temporally non-stationary across sessions due to factors including spinal cord plasticity due 

to training and the natural timecourse of post-injury response. Other effects include array 

degradation or small physical array displacements along the cord. Since spinal cord 

plasticity is an essential phenomenon of this therapeutic approach, the algorithm's model of 

the spinal response must capture temporal variation.

To do so, a variable representing time, T , (in units of days post-injury) is added to the GP 

model. Hence, GP-BUCB must regress on a function of both applied stimulus x and time T . 

This approach requires the covariance function to be a map . 

Further, actions selected from subset of D × T corresponding to the present time t, 

effectively a time-varying decision set Dt. The modeling problem becomes one of 

extrapolating from the past to the present, both on the order of days (between sessions) or 

minutes (between batches). In our setting, the posterior uncertainty at t grows as t increases 

and previous observations recede into the past. Even with optimal action selection, the 

posterior uncertainty cannot decrease below a level set by the measurement noise, rate of 

observation, and rate of change in the underlying responses, and effect analogous to nonzero 

steady state uncertainty limits for Kalman filters [42] and Gaussian Markov processes [43]. 

Thus, the algorithm will never know the best action with vanishingly small uncertainty. 

Fortunately, the spinal cord's current state appears to vary slowly; given observations from 

previous days, the algorithm's internal model should make reasonable predictions about the 

spinal cord's responses. Further, it is not necessary to select the optimal action at time t, only 

one which provides useful therapy. Indeed, maintaining some variety in the stimuli may be 

appropriate, as training via an overly limited set of stimuli may result in inferior therapy 

[41].

C. Redundancy/Repetition Control

Another deviation from the classical GP bandit setting concerns the repetitions of stimuli 

within short periods. For most experiments (see Table I), the algorithm was not allowed to 

request the same action more than twice per day in order to ensure adequate exploration. 

Since 5 batches of 5 stimuli are typically requested daily, 13-25 distinct electrode pairs are 

tested. Some of the consequences of this restriction are dicsussed in Section VI-A.

D. Kernel and Mean Functions

The kernel and mean functions describe the algorithm's prior assumptions about spinal cord 

response. To ensure reasonable action selection, their chosen form must carefully encode 

crucial problem information. Most importantly, k(x, x′) encodes the dependence between 

stimuli x and x′. For our experiments, the 5-dimensional stimulus description vector 

consisted of the anode and cathode spatial coordinates on the array (4-dimensions) and the 

time, in days post-injury. For the first two animals, we used a squared-exponential (SE) 

kernel kSE (xi, xj) (see [43], Section 4.2)

(3)
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(4)

where  and ln is the length scale corresponding to dimension n of x. The 

SE kernel implies that the GP is infinitely mean-square differentiable (see [43], Section 

4.1.1). For the third and fourth animals, a hybrid kernel kh(xi, xj) was used:

(5)

where km is a 3rd order Matérn kernel, , which allows 

considerably rougher functions than the SE kernel [43], and δ(i, j) is the Dirac delta function 

on stimulus indices i, j. This formulation tries to infer the noisy function f(xi, i) = g(xi) + ηi, 

 instead of the underlying function g(x), which has kernel km. Since kh 

implies a minimum uncertainty about f(x), the response to any candidate action, short-time 

variations in the reward are subsumed into the noise term, leaving the overall function shape 

to be captured by the Matérn kernel. The hybrid kernel proved to be more successful. Both 

kernels were implemented using the GPML toolbox [44]. Table I shows all kernel 

hyperparameters used in the experiments.

Following conventional practice, the hyperparameters used with the first two animals were 

estimated from an experimental data set selected by the human expert, which evenly 

sampled the decision set, and thus could be expected to faithfully estimate the spatial 

lengthscales. The fitting was performed using a conjugate gradient method2 on the data 

likelihood under the GP model. This fitting procedure was reasonably successful for the 

spatial lengthscales, but poorly captured the multi-day temporal lengthscales. This poor fit 

likely results from the strong influence of short-timescale effects (e.g., noise) in the value of 

the data likelihood, dominating the effects of fitting the underlying spinal plasticity. 

Consequently, the time lengthscale in the first two animals was hand-selected. Similarly, the 

hyperparameters were hand-selected for the third and fourth animals’ kernel in such a way 

as to largely ignore in-session variation and produce model predictions capturing the long-

term changes in the spinal cord's responses.

V. Results

Experiments in four rats prepared as in Section II were carried out, resulting in 37 testing 

sessions and 1200 actions (670 actions selected by the algorithm, with the rest selected by 

the competing human). Fig. 3 shows a retrospective of GP-BUCB performance across all 

experiments. Each graph plots the reward (peak-to-peak evoked potential amplitudes) 

resulting from all stimulus pulses, color-coded according to the human or GP-BUCB origin 

of the stimulus selection.

2Using the minimize.m function in the GPML toolbox [44].
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These plots show substantial variation in the evoked potentials over the time frame of the 

experiments. In all animals, the per-day range of rewards is similar for both human- and GP-

BUCB-selected stimuli, indicating that response variations do not strongly depend upon 

which agent selects the actions and thus that the interleaved block structure provides a 

reasonable, intra-animal baseline for examining GP-BUCB. The temporal variation in 

reward appears to be composed of both day-to-day fluctuations and a long-term, upward 

trend. While some of this upward trend is due to the algorithm's growing knowledge of 

effective stimulus patterns, much of it is a general, plastic increase in spinal cord responses 

to the stimuli. Table II summarizes the experiments, the number of actions initiated by the 

algorithm, and the number of unique stimuli chosen.

A. Evaluaton of Reward

Reward is calculated from the response to an action, i.e., a continuous sequence of pulses. 

Let yτ denote the peak-to-peak response to the τth stimulus pulse. The reward resulting from 

an action started at time t is calculated as:

(6)

where τmin (t) and τmax(t) respectively index the first and last pulses for action t.

The maximum reward, Wmax, may be examined in terms of the maximum reward value 

observed so far,

The maximum reward describes the thoroughness of the search over the stimulus space, 

since a large maximum reward implies that high-performing stimuli have been found, and 

thus could conceivably be exploited. However, this quantity ignores the number of 

applications of high-performing stimuli, so strategies like random search may perform well 

in this metric, without delivering effective therapy. Alternatively, the average reward so far 

observed

measures how well exploration and exploitation are traded off; high average reward implies 

that a search process spent most of its search time choosing effective actions, yet also 

explored thoroughly enough to find high-performing stimuli. Superior average performance 

of one approach relative to another at time T is indicated by a larger average reward value.

Wire Arrays: Results—Fig. 3(a) and (b) show the search responses obtained by GP-

BUCB and the human expert in animals implanted with wire arrays, while Fig. 4(a) and (b) 

show the associated maximum and average rewards. The algorithm chose a total of 235 and 
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310 actions respectively for animals W1 and W2. In both animals, left, caudal anode 

locations were associated with strong responses to the stimulus. Although the sizes of the 

strongly responding regions of the stimulus space were different in the two animals (see Fig. 

5), the algorithm learned the response function well in both cases. Both animals exhibited 

increased responsiveness over the course of the experiments.

Parylene Microarray Animals: Results—Fig. 3(c) and 4(c) (animal P1) and Fig. 3(d) 

and 4(d) (animal P2) show the maximum and average reward obtained with the parylene 

arrays, which logged 4 days and 70 actions in animal P1, and 3 days and 55 actions in 

animal P2. GP-BUCB quickly found and exploited high-performing stimuli in this much 

larger space of possible stimuli. Note that high-performing stimuli observed in these two 

animals had caudal, left-side anode locations, as seen in the wire array experiments, though 

having such an anode was not itself sufficient for good responsiveness.

B. Computational Performance

When implemented in the MATLAB programming language3, the EMG data processing 

needed to prepare one new batch typically required 2-3 min, whereas GP-BUCB's selection 

of new stimuli required approximately 5 s of processor time. In our alternating double blind 

experiment format, the total time to construct a new stimulus batch was less than the time 

required for the human expert to perform a batch of tests. These results indicate that, given a 

sufficiently efficient and fluid data acquisition and processing system, the algorithm could 

perform closed-loop active learning much more rapidly than was the case in our 

experiments. Under the most severe condition, with n = 4432 previous evoked potential 

observations, a new batch of five actions was constructed in 142.0 s, with 50 s devoted to 

Cholesky decomposition, and 50 s allocated to evaluation the kernel matrix. Computations 

are typically dominated by the Cholesky decompositions (which require an order n3 

calculation) and memory usage by storage of the n × n kernel matrices (order n2 memory). 

As n grows with the increasing number of observations, the computational load can be 

managed by “forgetting” older observations, using approximate Cholesky decomposition, or 

sparse approximate GP regression [45]. Aggregating the individual, pulse-by-pulse 

responses to an action also saves substantial effort.

VI. Discussion

Our animal experiments show that GP-BUCB can compete with a human expert in 

optimizing stimuli. This section also explores additional ramifications of our experiments on 

the prospects for using machine learning in multi-electrode stimulation therapy. Section VI-

A analyzes the wire array results, including a discussion of inter-animal comparisons. 

Section VI-B addresses the analogous parylene array results. Section VI-C examines another 

perspective on therapeutic utility. Lessons learned regarding kernel function and 

hyperparameter selection are the focus of Section VI-D. Section VI-E examines the 

effectiveness of the algorithm's search from the perspective of information gain. Finally, 

effects on hindlimb muscles other than the LTA are the subject of Section VI-F.

3Running on either a 2.2 GHz quad-core i7 processor machine, with 8 GB RAM, and Mac OS 10.6, or an AMD Athlon 64 X2 Dual 
Core 3800+, 3 GB RAM machine running Ubuntu 12.04.
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A. Wire Array Animals

The wire array experiments tested how GP-BUCB copes with a time-varying reward 

function. The algorithm generally succeeded in future performance prediction. For example, 

in animal W2 (run 2) GP-BUCB showed strong queueing behavior (it first selected what 

were predicted and proven to be the best stimuli) before being forced by the repetition limit 

to consider other stimuli. This behavior results as the signature saw-tooth shape4 in the 

average reward plots (Fig. 4(b)). Moreover, GP-BUCB autonomously maintained good 

performance (showing the same good queueing behavior) over long periods, e.g., in animal 

W2's two-week-long second run, which included two multi-day gaps in testing. In this 

respect, these experiments validated that good forward prediction is possible over such 

intervals due to the utility of GP-BUCB's internal model, and reached a standard of 

performance which could be clinically relevant.

Algorithm Analysis. Several possible criticisms might follow from the fact that GP-BUCB 

can daily request a number of actions (typically 25, at least 13 unique, in 5 batches of 5 

actions) which is of the same order as 42, the size of the decision set, D.

• Measures of success: Simply finding a high reward stimulus may be an inadequate 

measure of algorithm success.

• Differentiation between algorithms: Given the small size of D and the repetition 

limit, other learning algorithms would likely select similar actions to GP-BUCB.

• Generalization to unconstrained settings: Our use of a repetition limit can cloud an 

assessment of how effectively GP-BUCB can track f in an unconstrained setting.

The experimental data support additional several arguments for GP-BUCB's success. First, 

and unsurprisingly5, GP-BUCB found high-performing stimuli in the first day (within 2 

batches of 5 stimuli, in each case) in all wire array runs. This indicates that GP-BUCB's 

search is free from gross deficiencies. Second, GP-BUCB demonstrates success in the sense 

of avoiding ineffective stimuli. The number of unique electrode pairs selected (see Table II) 

was always substantially smaller than the size of the decision set. GP-BUCB thus avoids 

exhaustive testing, but appears to effectively model the reward for untested stimuli. Finally, 

since GP-BUCB was found to be competitive with the performance of a human expert in 

terms of the maximum reward so far observed, while maintaining a better average reward, it 

follows that GP-BUCB thoroughly searches for high-reward regions while simultaneously 

exploiting its knowledge in a therapeutically more effective fashion. These observations 

argue that GP-BUCB makes a successful exploration-exploitation tradeoff.

The second criticism argues that the decision set size and repetition limit mean that all 

algorithms will have to explore D somewhat, and that further, convergence cannot be 

observed, making algorithms indistinguishable. GP-BUCB's ability to discriminate against 

(likely bad) stimuli, discussed in relation to the first criticism, is a crucial feature in this 

4The upward edge is produced by the superior reward resulting from the first stimuli in the session and the flatter or downward-sloped 
portion of the average reward curve results from the poorer stimuli which are queued later in the session.
5If 6 electrode pairs are effective out of 42, e.g., all those pairs including a particular anode, 10 stimuli drawn randomly without 
replacement will include one of these 6 with probability > 82%.
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setting, and compares favorably with simple methods such as random search or bandits 

without structured payoffs. With respect to convergence, the strong queueing behavior 

indicates that GP-BUCB has converged to the extent allowed by the repetition restriction, 

since high-reward actions are selected first (i.e., in preference to other actions), despite the 

low exploratory value of doing so under (2), until disallowed by the repetition limit. GP-

BUCB's queueing behavior also requires a reasonably correct posterior over the rewards 

which will be received in the day's first batch of stimulation, implying that its internal model 

is adequate to the inter-day prediction task.

Fatigue offers an alternate explanation for the observed queueing behavior. If the animal 

rapidly tires during a session, and this fatigue appears as a decrease in evoked peak-to-peak 

amplitude, the responses elicited by the first stimuli would appear stronger than those from 

later stimuli. These “better” stimuli would then be selected early in future sessions, a 

feedback loop which could produce the observed queueing effect. However, the human 

expert's choices would also show a strong within-session fatigue pattern, which they do not. 

Also, the difference, ΔV , between average responses to different applications of the same 

stimulus in the same session (by human, algorithm, or both) can be measured. A large and 

negative ΔV is required if queueing is explained by fatigue. However, for actions leading to 

substantial responses (within-session average ≥ 0.2 mV), ΔV is small in magnitude (ΔV = 

−0.0871 ± 0.4897 mV, n = 142 pairs from animal W2), even over prolonged periods 

(−0.0336 ± 0.4228 mV for 34 intervals of ≥ 1 hour). Further, the correlation between the 

interval and ΔV is very weak (r = 0.0090). Fatigue, therefore, is not a convincing 

explanation for the observed queueing behavior.

The third criticism is more difficult to directly refute since no experiments without the 

repetition constraint were performed, and the repetition limit forces the algorithm to track 

stimuli which are high-performing, but suboptimal. However, for stationary reward 

functions, the performance of GP-BUCB is supported by theoretical guarantees and 

validation in simulation [5]. Although [5] does not provide guarantees in the case of time-

varying rewards, such guarantees have been derived for other methods, e.g., [46], suggesting 

that similar guarantees could be derived for GP-BUCB. Together, the relatively benign time 

variation in the reward function in our experiments and the stationary case guarantees 

suggest that unconstrained GP-BUCB could also maintain a useful posterior over responses 

to previously high-performing stimuli.

Cross-animal Comparisons. Fig. 5 compares the performance of electrode pair selections 

across animals W1 and W2. The data demonstrate substantial repeatability between animals 

with regard to the evoked potential strength elicited by the same stimulus, particularly for 

the highest-performing stimuli (typically those with electrode A9 as the anode).

B. Parylene Array Animals

The data from the animals implanted with parylene arrays allow us to assesses how well GP-

BUCB can search a large decision space (666 possible electrode pairs, of which no more 

than 25 can be tested in a typical day), using a structured reward function. In both animals, 

after finding a high-performing configuration (C8_A9 in animal P1, and C6_A9 in animal 

P2), the algorithm moved sharply to exploit this knowledge, allocating repeated queries to 
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neighboring actions. Both discovered configurations including an anode at the left, caudal 

corner of the array, similar to those found in the wire array animals. Note that GP-BUCB 

overcame its spatially flat prior on f to find this anatomical pattern. The key, high-

performing stimulus was found in the 3rd batch for animal P1, and the 6th batch for animal 

P2. The efficiency of the search and the rapid exploration of high-performing stimuli argue 

that the structured GP model provides a benefit over conventional bandit algorithms for this 

application.

Although no comparison to a human expert was made in animal P1, the P2 experiment 

followed the interleaving human-machine batch paradigm. Possibly due to prior anatomical 

knowledge, the human found strongly responding stimuli on the first testing day. However, 

soon after, the algorithm found high-performing stimuli in both animals. In the final day of 

animal P2 testing, GP-BUCB found stimuli of comparable reward to the best found by the 

human, as seen in Fig. 4(d).

C. Therapeutic Relevance

The reward in (6) makes the heuristic assumption that strength of response and contribution 

to long-term therapeutic outcomes are equivalent (i.e., linearly related). An alternate reward 

heuristic is

where wt is defined in (6), is a threshold dividing stimuli into therapeutically effective and 

ineffective classes by average twitch strength, and I(·) is the indicator function. This 

alternate reward function is reasonable if fine differences between strongly responding 

stimuli (important to the previous reward measures) are irrelevant. Table III presents a 

comparison of human and machine reward under this heuristic for different values of . For 

nearly all runs and values of Π, proportionally more algorithm actions met or exceeded the 

specification. Thus, if therapeutic effectiveness is a function of the proportion of stimuli 

which elicit a strong response, the algorithm is more effective than the human expert's 

chosen strategy.

D. Kernels and Hyperparameters

For the structured GP model to faithfully capture muscle responses, yet allow rapid learning, 

the kernel function, mean function, and their hyperparameters must be chosen well. Poor 

choices can lead to undesired behavior, as seen in Fig. 6(a). However, the comparatively 

good performance obtained in later animals with the hybrid Matérn kernel, (5), shows that 

appropriate kernel choice can resolve this problem (Fig. 6(b)).

Although the hybrid kernel was successful, our experiments suggest other possible kernels. 

For example, the hybrid kernel's noise term could be replaced by a term which models the 

covariance between measurements of the same action on the same day, but otherwise treats 

observations as independent. Such a kernel includes a hidden additive variable for each 

configuration on each day. A linear temporal term in the kernel may also be useful, provided 
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that old observations can be forgotten, as it models the fact that non-responsive 

configurations typically remain non-responsive.

The kernel, mean, and hyperparameters were periodically re-examined. If appropriate, 

hyperparameters were reinitialized after an animal's first run, accompanied by a wipe of the 

algorithm's memory; Table I and Fig. 3 detail these refitting and memory wipe events. The 

choice to re-fit or wipe algorithm memory was made by human inspection. This approach 

protected the algorithm from making prolonged, catastrophic errors, introducing some bias. 

However, this manual oversight constitutes a meta-algorithm which can be compared to the 

oversight required to detect device failure and is thus not unrealistic. Automated execution 

of such re-examinations (in some sense, a form of hyperprior fitting) and also heuristics for 

detection of various failure modes should naturally be built into future systems, but are 

beyond the scope of this work.

E. Information Gain

GP-BUCB can also be asssessed by the amount of information it gains about the spinal 

cord's responses. Using the GP model, the information gain with respect to the entire reward 

function f can be quantified directly. Table IV shows the averaged ratio of the algorithm's 

daily gain in conditional information to that of the human and to that of a random sampling 

policy. Interestingly, the algorithm gains a comparable (but smaller) amount of information 

to both the human and random searches. The algorithm's repeated, exploitative actions, 

which produce higher mean daily reward, may account for most of this difference. However, 

the algorithm's high conditional information gain, despite allocating many actions to stimuli 

which are well-understood, suggests that the actions allocated to exploration are well-

chosen.

F. Effect of Learning on Other Hindlimb Muscles

In addition to LTA responses, the peak-to-peak twitch amplitudes were recorded in the left 

soleus, right TA, and right soleus muscles. Often, several muscles responded strongly 

together to a given stimulus. Although the LTA twitch amplitude accounted for a large 

portion of the response amplitudes in the other muscles (r > 0.25, p << 1e−3 in all animals 

and muscles, except the RTA in animal P1), these responses in other muscles also 

demonstrated substantial independence. Even in this simple paradigm, many combinations 

of muscle responses can be elicited. The creation of an efficiently computable reward metric 

which faithfully matches therapeutic utility in multi-muscle behaviors is a highly non-trivial 

problem worthy of future investigation.

VII. Conclusions

Our experiments show that an automated algorithm can handle the difficult task of 

maximizing the performance of a relatively complicated neural interface. These results 

provide a strong indication that a structured GP model can effectively capture spinal 

responses over large sets of possible stimuli (tens to hundreds) and substantial periods of 

time (weeks). Further, the GP model allowed effective extrapolation forward in time from 

previous sessions and observations, a requirement to avoid extensive re-exploration. GP-
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BUCB also found task-relevant anatomical structure in the responses it encountered, despite 

starting with no information as to which regions of the cord were expected to be most 

responsive. This indicates that these structures, and potentially novel or patient-specific 

ones, can be found by online, automatic experimentation. Given the extensive differences 

among individual injuries and injured spinal cords, this capability is essential. Finally, our 

results show that GP-BUCB can effectively trade off exploration and exploitation in a 

simple therapeutic application. In particular, the algorithm allocated more actions to high-

performing stimuli while still matching the human experimenter's effectiveness in finding 

the best stimuli. Such a demonstration implies that automated algorithms have the potential 

to efficiently use the stimuli available to them, both inside and outside of the clinic, to 

simultaneously learn about the spinal cord's responses and deliver effective therapy. Our 

successful handling of this problem constitutes the successful completion of a necessary 

prerequisite for a well-founded attempt to solve the more complex clinical problems ahead, 

maximizing standing or stepping performance in paralyzed subjects and tuning stimuli to 

individual patients’ needs.
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Fig. 1. 
Parylene Array Device. (A) and (B): The complete implant, including main circuit board, 

parylene electrode array, headplug connector, EMG wires, and ground wires. (C): Tip of the 

array, showing suture sites. (D): Detail of a single electrode. The bright surface regions are 

electrical contacts and the darker material is a layer of parylene to prevent delamination. (E): 

View of the entire parylene and platinum microfabricated portion of the implant. Figure 

reproduced under Open Access from [1].
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Fig. 2. 
Placement of a 9×3 array relative to the spinal cord (segmental level in red) and vertebrae 

(gray). The colored bars at the top and bottom represent the rostro-caudal spinal locations of 

the soleus, tibialis anterior, and medial gastrocnemius motor pools. Adapted under Open 

Access from [1].
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Fig. 3. 
Peak-to-peak amplitude (i.e., reward in mV) of individual stimulus pulses for each animal. 

Blue circles: potentials evoked by the human expert's choices; Green ‘x’: potentials due to 

algorithm choices. Solid red lines denote a wipe of the algorithm's memory. Dashed lines 

denote hyperparameter changes without a memory wipe. The human experimenter and 

algorithm were blind to each other's actions and the resulting rewards, and their actions were 

interleaved in batches. The decreased evoked potential magnitude from days 9 and 10 to 

15-17 in animal W2 is a typical feature of the preparation.
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Fig. 4. 
Human expert's (blue) and GP-BUCB's (green) reward, defined as the peak-to-peak 

amplitude (mV) of MR evoked by an epidural electrical stimulus of 5 V (animals P1, W1, 

and W2) or 7 V (animal P2), delivered in 1 Hz pulse trains. The average reward (solid lines) 

measures the rewards generated by every action, while the maximum reward (dashed) is the 

best reward observed up to a given time. GP-BUCB typically has a superior average reward 

to the human, while maintaining a superior or competitive maximum reward. In animals W1 

(a) and W2 (b), runs (i.e., periods between memory wipes) are separated by red vertical 

lines.
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Fig. 5. 
Time-averaged, intra-day-normalized response for cathode-anode electrode pairs, animal 

W1 (a) and animal W2 (b), shown with respect to array location as viewed dorsally (rostral 

at top). Each large box corresponds to a spatial location of a wire array electrode. Within the 

boxes, each small rectangle denotes the spatial location of one cathode which could be 

paired with an anode located at the large box's position, giving every stimulus a unique 

address. Each small rectangle's color corresponds to the time-averaged normalized response 

strength (1: red; 0: blue) of that anode-cathode pair. Black rectangles represent invalid pairs, 

e.g., A1_A1. Data are shown only from days where a total of at least 15 actions were taken 

between the human and algorithm. The set of highly excitable configurations for animal W1 

is broader than that for animal W2. Note that monopolar stimuli (using a ground wire) were 

tested by the human experimenter in animal W1; these results are shown in the bottom-most 

boxes.
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Fig. 6. 
GP posterior over the response function f(A1, A9, t). Points show responses evoked by 

electrode pair A1_A9 (black squares) and other stimuli (green ‘x’s). The red dashed line is 

the prior mean of the entire GP with respect to time. The posterior mean (solid) and ±1 

standard deviation confidence intervals (dashed) for f(A1, A9, t) are shown in blue. (a): 

Animal W1, run 3, shows the effects of poor kernel and hyperparameter choices. The 

posterior prediction of the responses at the beginning of P34 (at right, using data acquired on 

P31 and earlier) was extrapolated poorly. This resulted from the squared-exponential 

kernel's inherent smoothness, the time lengthscale used, and the low assumed noise level. 

Actions selected on day P34, using this badly inaccurate model, were consequently 

unproductive. (b): The altered kernel, mean, and hyperparameter choices employed in 

animal W2, run 2, avoid this pathology, while still providing useful prediction.
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TABLE I

GP priors used to model responses to spinal stimuli. The GP prior mean is μ0 (t) = c0 OR c0 + tc1.

ANIMAL RUN KERNEL MEAN REPETITIONS ALLOWED

FUNCTION HYPERPARAMETERS FUNCTION HYPERPARAMETERS

P1 RUN 1A SE l = [0.2740, 0.4659, 0.3297, 0.6300, 
1.2018], σ = 0.1244, σn = 0.0268

CONSTANT c0 = 0.0 mV 2

RUN 1B c0 = 0.1 mV 1

W1 RUN 1A SE l = [0.5480, 0.9317, 0.6593, 1.2599, 
2.4034], σ = 0.1244, σn = 0.0268

CONSTANT c0 = 0.1 mV 3

RUN 1B CONSTANT c0 = 0.9 mV 2

RUN 1C SE l = [0.1147, 46.9592, 0.1949, 5.0130, 
0.9114], σ = 0.5288, σn = 0.1708

CONSTANT c0 = 0.9mV 2

RUN 2 SE l = [2.9453, 6.3777, 3.4291, 2.3453, 
2.4034], σ = 0.7903, σn = 0.1364

CONSTANT c0 = 0.9 mV 2

RUN 3 CONSTANT c0 = 1.4 mV 2

W2 RUN 1A HYBRID l1 = [1.0000, 2.7183, 1.0000, 2.7183, 
2.7183], σ1 = 0.2865, σ2 = 0.2231, σn = 

0.1353

LINEAR c1 = 0.08 mV/day, c0 = -0.2492 
mV

2

RUN 1B LINEAR c1 = 0.08 mV/day, c0 = 1.7 mV 2

RUN 2 LINEAR c1 = 0.08 mV/day, c0 = -0.1348 
mV

2

P2 RUN 1 HYBRID l1 = [1.0000, 2.7183, 1.0000, 2.7183, 
2.7183], σ1 = 0.2865, σ2 = 0.2231, σn = 

0.1353

LINEAR c1 = 0.08 mV/day, c0 = 0.2513 
mV

2
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TABLE II

Number of actions chosen by GP-BUCB (unique), and Spearman's ρ between each selected stimulus's reward 

and the number of stimulus pulses applied by GP-BUCB or human.

ANIMAL & RUN MACHINE ACTIONS (UNIQUE) ρMachine(p) ρHuman(p)

P1, RUN 1 70 (43) 0.264 (0.0906) N/A

W1, RUN 1 80 (23) 0.105 (0.6348) –0.073 (0.6829)

RUN 2 55(23) 0.339 (0.1132) –0.045 (0.8091)

RUN 3 100 (29) 0.480 (0.0083) 0.325 (0.0500)

W2, RUN 1 70 (28) 0.582 (0.0012) –0.034 (0.8682)

RUN 2 240 (33) 0.824 (< 0.0001) 0.569 (0.0001)

P2, RUN 1 55 (40) 0.581 (0.0001) –0.477 (0.0021)
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Table III

Proportion of applied stimuli which elicited a peak-to-peak responses exceeding a threshold. bold indicates 

more supra-threshold responses.

Animal Agent Threshold II (mV)

0.5 1.0 1.5 2.0

P1 ALGORITHM 0.229 0.157 0.100 0.043

W1, RUN 1 ALGORITHM 0.662 0.450 0.263 0.000

HUMAN 0.440 0.253 0.067 0.013

W1, RUN 2 ALGORITHM 0.945 0.727 0.545 0.091

HUMAN 0.720 0.520 0.280 0.040

W1, RUN 3 ALGORITHM 0.910 0.850 0.790 0.560

HUMAN 0.828 0.697 0.626 0.424

W2, RUN 1 ALGORITHM 0.657 0.543 0.357 0.214

HUMAN 0.564 0.418 0.273 0.127

W2, RUN 2 ALGORITHM 0.779 0.642 0.442 0.308

HUMAN 0.681 0.472 0.285 0.153

P2 ALGORITHM 0.255 0.091 0.036 0.000

HUMAN 0.085 0.000 0.000 0.000
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TABLE IV

INFORMATION GAINS (GP-BUCB, Im; RANDOM SEARCH, Ir; HUMAN, Ih), COMPUTED USING HYBRID KERNEL. Ih cannot be calculated in animal 

W1 due to use of monopolar stimuli, for which kh (x, x′) IS UNDEFINED.

ANIMAL & RUN MEAN Im/Ir (± STD.) MEAN REWARD RATIO (± STD.) MEAN Im/Ih (± STD.) DAYS USED

P1, RUN 1 0.730 ± 0.145 N/A N/A 0

W1, RUN 1 0.549 ± 0.165 1.368 ± 0.519 N/A
5
*

RUN 2 0.791 ± 0.132 1.474 ± 0.490 N/A 4

RUN 3 0.697 ± 0.105 1.297 ± 0.317 N/A 5

W2, RUN 1 0.811 ± 0.145 1.540 ± 0.560 0.798 ± 0.093 4

RUN 2 0.802 ± 0.119 1.600 ± 0.749 0.895 ± 0.152 10

P2, RUN 1 0.924 ± 0.214 2.520 ± 2.415 1.119 ± 0.323 3

*
Reward ratio outlier discarded.
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