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Generating Reward Functions Using IRL Towards Individualized 
Cancer Screening

Panayiotis Petousis1, Simon X. Han1, William Hsu1,2, Alex A. T. Bui1,2

1UCLA Bioengineering Department, Los Angeles, CA 90095, USA

2UCLA Department of Radiological Sciences, Los Angeles, CA 90095, USA

Abstract

Cancer screening can benefit from individualized decision-making tools that decrease 

overdiagnosis. The heterogeneity of cancer screening participants advocates the need for more 

personalized methods. Partially observable Markov decision processes (POMDPs), when defined 

with an appropriate reward function, can be used to suggest optimal, individualized screening 

policies. However, determining an appropriate reward function can be challenging. Here, we 

propose the use of inverse reinforcement learning (IRL) to form rewards functions for lung and 

breast cancer screening POMDPs. Using experts (physicians) retrospective screening decisions for 

lung and breast cancer screening, we developed two POMDP models with corresponding reward 

functions. Specifically, the maximum entropy (MaxEnt) IRL algorithm with an adaptive step size 

was employed to learn rewards more efficiently; and combined with a multiplicative model to 

learn state-action pair rewards for a POMDP. The POMDP screening models were evaluated based 

on their ability to recommend appropriate screening decisions before the diagnosis of cancer. The 

reward functions learned with the MaxEnt IRL algorithm, when combined with POMDP models 

in lung and breast cancer screening, demonstrate performance comparable to experts. The Cohen’s 

Kappa score of agreement between the POMDPs and physicians’ predictions was high in breast 

cancer and had a decreasing trend in lung cancer.

Keywords

Cancer screening; Maximum entropy inverse reinforcement learning; Partially-observable Markov 
decision processes

1 Introduction

Annually, millions of people undergo screening for disease prevention and surveillance. 

From these tests, physicians aim to make decisions based on the patient’s past results and 

most current observations, determining a subsequent action (e.g., further diagnostic testing, 

increased monitoring, following regular screening schedules, etc.) that optimizes early 

detection of health problems while balancing other (pragmatic) concerns (e.g., patient 

quality of life, resource utilization, cost). Choosing the “best” next step and tailoring 
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screening for each person is challenging: selecting an action of benefit in the immediate 

future may not be optimal over the long-term, given the particulars of an individual (i.e., a 

locally greedy approach vs. a global optimization).

Sequential decision making methods provide a potential solution. Such approaches can 

integrate and analyze multiple sources of patient data, while handling issues related to 

temporal credit assignment. In particular, partially observable Markov decision processes 

(POMDPs) have been applied to cancer screening (e.g., breast, colorectal, prostate [20]) to 

determine policies based on patients’ risk factors and prior screening results. Markedly, 

POMDP models used in medicine typically use a reward function adopted from cost-

effectiveness studies [20] or are posed in terms of quality-adjusted life years (QALYs). 

While such functions are informative about general populations, they do not necessarily 

reflect how an experienced clinician would make a decision, especially given a specific 

individual’s medical history and preferences. Indeed, little work has been done in designing 

reward functions that emulate experts’ decision processes.

Here, we propose using the Maximum Entropy Inverse Reinforcement Learning (MaxEnt 

IRL) algorithm [26] to establish reward functions from retrospective screening data, learning 

how an expert physician may select a given action based on observed test results. We use an 

adaptive step size to expedite the convergence rate of MaxEnt IRL. Importantly, we present 

how to use the MaxEnt IRL learned rewards to generate state-action pair rewards that can be 

used in POMDPs. We demonstrate this work using two real-world clinical datasets for lung 

and breast cancer screening, mimicking how clinicians made decisions regarding patients. 

We evaluate the resultant POMDP policies using the MaxEnt IRL reward functions, 

comparing model performance to experts’ actions. We conclude that the MaxEnt IRL 

algorithm is an efficient and accurate method in estimating sensible reward functions for 

cancer screening.

2 Background

Although Markov decision processes (MDPs) and POMDPs are used in a number of 

domains, their application in healthcare is limited and few strategies exist for estimating the 

associated reward functions that drive agent behavior in clinical settings. Taken from the 

perspective of epidemiological and health services research, different cost and patient benefit 

metrics are frequently adapted for optimization. Classic examples include: Bennet et al. [5], 

who proposed a cost-effectiveness metric based on the cost required to obtain one unit of 

outcome change (CPUC); Hauskrecht et al. [12], who designed a reward model that 

combines economic cost and patient quality of life measures; and Tusch et al. [22], who 

predicated rewards on 30-day mortality risk for a surgical procedure. In contrast, we take 

advantage of growing amounts of longitudinal data, using recorded information and actions 

from electronic health records (EHRs) and other observational data sources, to learn a 

POMDP reward function that imitates expert physicians’ behavior for desired health 

outcomes. Specifically, IRL is proposed for this task.

Briefly, IRL addresses the problem of obtaining a reward function given an agent’s optimal 

behavior over time towards a stated goal. A reward function for the environment is unknown 
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and is hence learned through empirical investigation of sensory inputs (i.e., observations) 

that progressively change the agent’s selection of different actions. Two families of IRL 

algorithms exist: (1) linear programming (LP) methods [1,18]; and (2) probabilistic IRL 

algorithms [4,26]. While potentially more computationally complex, probabilistic IRL 

approaches have two advantages: they guarantee a unique solution for deterministic MDPs; 

and compared to LP methods, they can handle stochasticity in the data [23]. Vroman et al. 

[4] developed a maximum likelihood IRL algorithm using clusters of experts’ data 

trajectories to characterize different intentions. Applying the maximum likelihood IRL 

algorithm to each cluster subsequently derives a reward function representing the experts’ 

behavior. Ziebart et al. [25,26] describe a probabilistic IRL algorithm that employs the 

principle of maximum entropy, dealing with noise and imperfect behavior as it normalizes 

globally over behaviors. In this approach, demonstrated for modeling routing preferences of 

vehicle drivers, behaviors with higher rewards are exponentially preferred by the algorithm 

when learning the reward function. Here, we build on and adapt this approach to obtain 

reward functions for cancer screening POMDPs.

3 Materials and Methods

3.1 NLST Dataset

The National Lung Screening Trial (NLST) is a multi-site randomized controlled trial that 

demonstrated a 20% mortality reduction in lung cancer screening using low-dose computed 

tomography (LDCT) relative to plain chest radiography [17]. For this work, we used data 

from the NLST’s LDCT arm, comprising approximately 25,500 participants that underwent 

three annual screenings and follow-up post screening. We further filter this dataset to those 

subjects who had a reported pulmonary nodule based on imaging. Unfortunately, 

preprocessing of the NLST data is not straightforward, as longitudinal tracking of the 

nodules was not considered at the time of the study. Thus, to use imaging-related 

information, we made the assumption that an imaging finding in individuals with only one 

reported nodule and in the same anatomical location over time is the same nodule across the 

three screening points of the trial. This criterion further constrained our dataset to 5,402 

LDCT subjects. From this subgroup, we learned a reward function, then trained and tested a 

POMDP. Note that for the reward function we made use of the recorded diagnostic follow-

up variables (e.g., recommendation for other procedures) to inform actions.

3.2 Athena Dataset

The Athena Breast Health Network [10] is a University of California (UC)-wide initiative 

around breast cancer screening and treatment. The effort started in 2009 and includes 

women who underwent breast screening at five academic medical centers. The portion 

available at our institution (UCLA) consists of 49,244 patients, with follow-ups of up to 4.8 

years; this subset represents 96,515 screening and diagnostic mammograms (MGs), and 

2,713 diagnostic biopsies. MG results are reported as Breast Imaging Reporting and Data 

System (BI-RADS) scores [9]. We selected patients with initial risk (Gail) scores, four 

consecutive screenings, valid BI-RADS scores, and biopsies results per breast side (i.e., left, 

right). 2,095 patients with left breast MGs and 2,036 patients with right breast MGs (4,131 

total cases, 4,099 after pre-processing) were used in this study.
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3.3 Partially Observable Markov Decision Processes

An MDP is represented by a tuple of states, actions, rewards, action-dependent state 

transition dynamics (i.e., transition probabilities), and a discount factor. A POMDP is an 

extension to MDPs with two additional components: observations and state-dependent 

observation dynamics (i.e., observation probabilities). The state of the agent in POMDPs is 

partially observable. As such, its state is modeled as a probability distribution over the states, 

called the belief state, which is updated over time based on the observations experienced by 

the agent.

We designed and evaluated two separate POMDPs for lung and breast cancer screening. 

Each model consists of three states and two actions. The observations of each POMDP are 

domain based: in the lung model, they represent findings obtained from LDCT imaging 

studies, including nodule size, consistency, location, and margins; in the breast model, they 

represent BI-RADS scores derived from MG interpretations. Given the nature of each 

dataset, both the lung and breast models have a horizon of three and four years, respectively, 

with 6-month and 1-year epochs. Each epoch represents time points for which we have 

information on the cancer status of patient (diagnosed with cancer or not). Transition and 

observation probabilities for each POMDP model are learned using the expectation 

maximization (EM) algorithm, for learning dynamic Bayesian networks, from each dataset. 

Both models were solved using the QMDP approximation solver [21].

Lung Cancer Screening POMDP.—Figure 1 (left) depicts the lung POMDP, illustrating 

the state space and allowed transitions between states, as well as the observations of each 

state. The state space consists of three states: the no-cancer (NC) state that represents any 

case with no suspicious abnormalities (i.e., no pulmonary nodules >4 mm). The uncertain 

(U) state that represents any case with a noted finding (i.e., nodules 4 mm or larger) but not 

yet a lung cancer. Lastly, the invasive-cancer (IC) state is any case with a confirmed lung 

cancer diagnosis through the use of additional diagnostic tests. The IC state is terminal such 

that any individual who enters it leaves the screening process for treatment. An LDCT action 

implies continuation of screening, whereas an intervention action refers to any diagnostic 

procedure (e.g., thoracotomy, biopsies, diagnostic CT, positron emissions tomography (PET) 

scan). Observations represent LDCT findings (nodule size, consistency, margins, and 

anatomic location) and the occurrence of an intervention. To generate initial belief states for 

each individual in our dataset we used the Tammemägi PLCOM2012 model with 

demographic and clinical features at baseline to predict the risk of cancer. Demographic 

features used include age, education, race, and body mass index. Clinical features used were 

COPD, family history of lung cancer, personal history of cancer, smoking status, smoking 

intensity, and duration of smoking.

Breast Cancer Screening POMDP.—The breast POMDP model also consists of three 

states: the no-cancer (NC) state in which no abnormalities are seen, the benign (B) state in 

which benign breast disease diagnosis follows the MG, and the malignant (MA) cancer state 

in which the disease is confirmed through biopsy. MA is similarly a terminal state in which 

the patient leaves the screening process for treatment. Figure 1 (right) shows the breast 

cancer screening POMDP, transitions, observations (BI-RADS scores 1, 2, 3, 4A, 4B, 4C, 5), 
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and actions. Though an intervention (biopsy in the breast cancer context) is possible after 

each MG, in practice biopsies are only performed after an MG of BI-RADS 4 or higher. For 

an initial belief, we used the patient’s Gail score. The Gail score is an absolute risk estimate 

derived using age, age at menarche, age at first birth, the number of first-degree relatives 

with breast cancer, the number of previous breast biopsies, and race.

3.4 Maximum Entropy IRL

In IRL, the reward function, r, is assumed to be a linear combination of feature vectors fs and 

weights θ (θT is the transpose of θ):

r(τ; θ) = θT f τ = ∑
s ∈ τ

θT f s (1)

A feature count, (fτ), is the sum of feature vectors of the states visited along a trajectory, 

where fs represents binary vectors indicating state values. Inputs to the MaxEnt IRL 

algorithm are an MDP and a set of trajectories (D) [3]. A path or a trajectory (τ) represents 

the sequence of states (s) and ensuing actions followed by an agent in an MDP. For example, 

in the NLST dataset, a trajectory comprises three epochs (i.e., the three annual screening 

exams) with state-action pairs describing the lung cancer states and the actions taken (e.g., 

NC-LDCT, U-LDCT, and IC-IBiopsy). The probability of a trajectory occurring in our set of 

trajectories is proportional to the exponential of the reward/cost of the trajectory [7]:

p(τ; θ) ∝ exp(r(τ; θ)) (2)

As such, trajectories of equal reward are equally likely to be executed by the expert, whereas 

trajectories of less reward are less likely. The probability distribution over paths with 

maximum information entropy is parameterized over θ. Z(θ) is the partition function, where 

Z(θ) = ∑τ∈D exp r(τ; θ).

p(τ; θ) = 1
Z(θ)exp(r(τ; θ)) (3)

The log likelihood of the trajectories (loss function) is shown in Eq. 4, M is the number of 

trajectories:

L = 1
M ∑

τ ∈ D
r(τ; θ) − log ∑

τ ∈ D
exp(r(τ; θ)) (4)

This loss function is convex for a linear reward function and a deterministic MDP. To update 

θ we use a gradient descent function, where η represents the learning rate:
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θi + 1 = θi + η∇θL (5)

The gradient ∇θL represents the difference of feature expectations and sum over state 

visitation frequencies multiplied with feature vectors:

∇θL = f − ∑
si

Dsi
f si

(6)

A feature expectation, ( f ), is defined as the average of all feature counts across all 

trajectories. The frequency of state visitation, Dsi
, can be computed using a dynamic 

programming algorithm; see [3,7] for more information regarding this algorithm. The 

pseudocode of the MaxEnt IRL algorithm can be found in [7].

3.5 Adaptive Step Size

To improve the convergence of the MaxEnt IRL algorithm, we introduce an adaptive 

learning rate approach for the update rule of the gradient descent. The idea behind making 

the step size adaptive is to calculate the inner product of ∇θL, the gradient, in the current 

step, i.e., ∇θLi with ∇θLi−1, its value from the previous step. the two are in the same 

direction then the step size can be increased, otherwise it is decreased. Following [15] we 

define the learning rate η = α

(t + A)α
, where t is dependent on the gradient inner product 

(which becomes the dot product in higher dimensions); α and A are constants. The role of t 
is to regulate the learning rate:

ti + 1 = max ti + f − ∇θLi, ∇θLi − 1 , 0 (7)

In this definition, f(·) represents the following sigmoidal function where 

f min +
f max − f min

1 −
f max
f min

exp − x
ω

. In the above expressions, α, A, fmin, fmax, and ω are user-defined 

constants obtained from [15]. With fmin < 0, fmax > 0, and ω > 0.

3.6 Computation of Rewards

We assumed that given the outcome of a known cancer diagnosis for each individual over 

time, partial observability was no longer a problem while training, so learning the rewards of 

state-action pairs of an MDP instead of a POMDP was sufficient and computationally more 

efficient. However, the MaxEnt IRL algorithm computes the rewards of each state of an 

MDP, not state-action pair rewards (r(s, a)). To estimate rewards for each state-action pair 

combination, we designed two MDPs:
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1. A state MDP model. The states of this MDP are the states depicted in Fig. 2, for 

the lung and breast models. The transition matrix of the state MDP is the same 

transition matrix used in its respective POMDP model.

2. An action MDP model. In the action MDP, the states are defined by the previous 

action of the agent. These states model the options for screening (e.g., continue 

annual screening) and intervention (e.g., biopsy), in which the agent enters after 

performing each action. The action MDP transition model represents the 

probability of transitioning from the LDCT/MG state to the I state.

Figure 2 demonstrates the two MDPs. A combinatorial design decision inspired by [13] was 

used to learn state-action pair rewards. State-action pair rewards are computed using a 

multiplicative model shown in Eq. 8:

R(s, a) = R(s) ⋅ R(a) (8)

4 Evaluation and Results

A stratified 5-fold cross validation study design was used to evaluate the POMDP models 

built from the NLST and the Athena datasets. The training set of each fold is used to learn 

the transition and observation matrices of the POMDPs, as well as the rewards using the 

MaxEnt IRL algorithm.

4.1 Comparison of MaxEnt IRL with and Without Adaptive Step Size

Table 1 shows the reward value of each state and action as well as different normalizations 

of these rewards computed using the MaxEnt IRL algorithm with an adaptive step size. We 

compare the MaxEnt IRL with and without the adaptive step size and assess the speed of 

convergence. Figure 3 depicts the computed rewards for states and actions for the lung 

POMDP over the number of iterations of gradient descent in the MaxEnt IRL algorithm, 

with and without an adaptive step size. A similar convergence trend is observed with the 

breast POMDP. As shown, the adaptive step size method converges to the correct solution 

more quickly than the standard MaxEnt IRL implementation. For the evaluation of the two 

models we use a reward function derived from rewards normalized in the [−1,1] range.

4.2 Lung and Breast POMDP Results

We used the longitudinal observations from the NLST and Athena datasets as input to 

POMDPs such that each sequential observation updates the belief state of the agent. The 

belief state of the POMDP, at each epoch, is then used to select the next (optimal) action, 

with the objective of early detection of cancer. The POMDP models can suggest to continue 

screening (i.e., MG, LDCT) or to perform an intervention (i.e., biopsy or diagnostic 

imaging). If an intervention is performed, the individual is removed from further 

consideration. Evaluation of the POMDP is posed as a binary problem: if the POMDP 

suggests continued screening (LDCT/MG) then the patient is classified as a negative cancer; 

if it suggests an intervention, then the patient is classified as a positive cancer. Based on this 

definition, if the model suggests a LDCT/MG and the patient did not have a confirmed 
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diagnosis of cancer in a given epoch, it is considered a true negative (TN); if the patient had 

a confirmed diagnosis of cancer then it is a false negative (FN). Conversely, if the model 

suggests an intervention and the patient did not have cancer in a given epoch, then it is 

considered a false positive (FP); if the patient had a diagnosis of cancer then it is considered 

a true positive (TP). Performance metrics were estimated for each epoch of the screening 

process. Any subject diagnosed with cancer is removed from the subsequent epoch. The 

POMDP models are compared against the equivalent physician decisions 

(recommendations) at each epoch, applying a similar framework for TN/FN/FP/TP to the 

experts, given the known cancer outcomes from each dataset (e.g., if the physicians 

suggested an LDCT/MG and the patient did not have a confirmed diagnosis of cancer, it is 

considered a true negative, etc.). Table 2 shows the performance of the lung and breast 

POMDPs and the corresponding performance of physicians on the same dataset. Notably, 

both POMDP models show performance comparable to experts. The lung cancer screening 

model has worse performance in terms of recall in the first and third screening epochs, but 

an improved performance in terms of recall and false positive rate in the second screening 

and post-screening. The breast cancer screening model demonstrates excellent recall (as do 

the expert physicians) but slightly worse false positive rate. The Cohen’s kappa coefficient 

of agreement was used to assess the concordance between the POMDP models and 

physicians. The kappa score of the lung POMDP and physicians decreases over time due to 

the large number of false positives. A large portion of different cases are classified as false 

positives between the lung POMDP and physicians. The breast POMDP has a high kappa 

score demonstrating strong agreement with physicians in terms of false positives and true 

positives. For both lung and breast models, the variance of kappa per screening is less than 

0.03.

5 Discussion

POMDPs, through the use of beliefs and a hidden state space, can overcome some of the 

limitations seen in other sequential decision making models used in cancer screening. For 

instance, given the uncertainty in diagnosing lung and breast cancer from imaging studies, 

we modeled a hidden cancer state space in three parts [19]: no-cancer, benign/indeterminate, 

and malignant/invasive cancer. Modeling the cancer state space with an additional state 

rather than a binary state space allows the distinction of lower risk individuals (i.e., no 

abnormalities) – who constitute a large portion of screening cases and thus result in highly 

imbalanced datasets – over medium (i.e., benign growth) and high risk individuals (i.e., 

malignant abnormality).

Driven by the need to define the reward function in these screening POMDPs, we explored 

the use of the MaxEnt IRL algorithm towards generation of state-action reward pairs. As 

noted earlier, cost and utility estimation are frequently adopted as reward functions in 

healthcare models. [11] uses the National Statistical services’ costs of procedures to define 

reward functions, while QALYs and a lifetime mortality risk model [16] are common 

alternative approaches. However, cost has certain limitations as it does not generalize to the 

whole population equally, and does not reflect the importance of quality outcomes. 

Additionally, QALY data are scarce, and arguably expensive to collect [16]. In contrast, a 

reward function learned using the MaxEnt IRL algorithm aims to maximize the objective of 
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state-action trajectories. In this work, we used the MaxEnt IRL algorithm to generate reward 

functions for lung and breast cancer screening POMDP models using experts retrospective 

decisions. We improved the speed and accuracy of convergence of the gradient descent 

optimization of the MaxEnt IRL algorithm using an adaptive step size. Moreover, we 

introduced a multiplicative model for representing state-action pairs as products of state 

rewards and action rewards. The multiplicative model has the advantage to clearly 

demonstrate the difference in utility between rewards of different actions, which is what 

drives decision recommendation. Rewards are thus learned based on the state-visitation 

frequency of each trajectory. In this context, states with fewer visitations across each 

trajectory earn the lowest reward (e.g., invasive or malignant cancer state), which is why 

only cancer and non-cancer cases with a complete trajectory are used to learn rewards in our 

framework. Modeling the expert’s decisions with the MaxEnt IRL algorithm resulted in 

reward functions for the POMDP models with performance comparable to experts. We 

noticed that when using aggressive reward functions (i.e., identifying all cancer cases), the 

true positive rate exceeded physicians’ true positive rate but at the expense of a higher false 

positive rate, which in clinical practice can translate into higher costs and unnecessary 

psychological burden on the patient. Including more observational variables, derived from 

medical images, in the screening process can overcome this trade-off between true positive 

and false positive rate. The overall true positive rate and false positive rate using our learned 

reward functions in the POMDPs is comparable to experts. Nonetheless, in some cases the 

experts had false negative cases, which is also captured by our approach. When compared 

with other machine learning algorithms at the baseline of the lung and breast paradigms the 

POMDP models demonstrate improved performance.

The kappa coefficient of agreement between the POMDP models and physicians is 

constantly high for the breast POMDP model, illustrating the discriminatory capability of 

BI-RADS score as an imaging observation. In our lung cancer screening model, kappa 

gradually decreased over ensuing epochs, suggesting variability in the interpretation of 

LDCT imaging observations between the POMDP and the physicians. The lung POMDP is 

not fully replicating physicians’ decision making patterns despite its overall performance 

being comparable to experts. When it comes to early cancer prediction (e.g., predicting 

screening 3 cancer from screening 1) the lung POMDP outperforms physicians, suggesting 

that the model and reward function are discriminating in a different way between positive 

and negative cases. Error analysis of the lung POMDP false positives shows a different 

subset from the physicians.

MaxEnt IRL also handles partial trajectories, making it suitable for screening processes in 

which individuals diagnosed with the disease exit the screening process for treatment. 

Relative to other IRL methods, MaxEnt IRL has the advantage of handling ambiguity by 

using a probabilistic model of behavior that exponentially prefers trajectories of higher 

reward [7,26]. MaxEnt IRL can also be used to transfer knowledge between datasets, tasks 

or domains by reusing learned weights (i.e., transfer learning). The only “partial” trajectory 

cases employed, in this analysis, are individuals diagnosed with cancer across the horizon of 

the screening process.
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The first limitation of using MaxEnt IRL in this study is the fact that more than one 

combination of rewards can define the same problem. To overcome this, a policy iteration 

algorithm can be used rather than value iteration algorithm to learn optimal policies, as the 

policy space is finite in comparison to the rewards space (hence the policy iteration 

algorithm is guaranteed to optimally converge). A second limitation is the assumption that 

reward functions are only based on state visitation frequencies. The utility of screening 

recommendations is subjective and defined by different factors such as cost, quality of life, 

and patient satisfaction. To assess the quality of these reward functions a comparison of 

suggested recommendations with patient satisfaction could be used.

Other limitations are around assumptions about the nature of our datasets. While lung and 

breast cancer screening tests occurred roughly at one year intervals, we assumed that 

screening occurs annually (i.e., at fixed frequency). Moreover, data imbalance is a function 

of time, as at each screening point the number of cancer and non-cancer cases changes (i.e., 

at the outset of a screening period, more cancers are found at the beginning of a dataset). We 

did not account for this dynamic nature of the dataset during training. Given the small 

number of cancer cases across each screening point of both datasets, we utilized a stratified 

5-fold cross-validation to obtain an unbiased estimate of model performance. Similarly, 

other temporal studies have used a k-fold cross validation to assess model performance 

[2,6,8,14,19,24]. To simplify modeling, our lung POMDP model considered only cases 

reporting a single pulmonary nodule over the course of the trial; this represents only a subset 

of the screened individuals, as many subjects have more than one such finding. A more 

concrete analysis would include cases with multiple nodules over time. However, it was not 

possible to ascertain the history of individual nodules in patients with multiple nodules as 

tracking of the nodules was not considered at the time of the study. Lastly, for the Athena 

dataset, in breast cancer screening, patients with BI-RADS 1, 2, or 3 rarely undergo biopsy, 

thus the true FN rate is likely underestimated. Future work involves the exploration of 

MaxEnt IRL in transfer learning between other datasets and domains, by reusing learned 

weights.
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Fig. 1. 
Left. The lung POMDP; NC: no-cancer state; U: uncertain state; IC: invasive cancer state. 

LDCT and intervention observations can be observed in each state. Right. The breast 

POMDP; NC: non-cancer state; B: benign state; MA: malignant cancer state. MG and 

intervention observations can be observed in each state.
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Fig. 2. 
Left. The state MDP; NC: non-cancer state; U/B: uncertain or benign state; I/MA: invasive 

or malignant cancer state, respectively for the lung and breast models. Right. The action 

MDP; LDCT/MG: state after a LDCT or MG; I: state after an intervention (e.g., biopsy); 

+R(·): rewards experienced by the agent in each state.
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Fig. 3. 
State and action rewards computed using the MaxEnt IRL and normalized by range. Left: 
Using an adaptive step size. Right: Without using an adaptive step size. The adaptive step 

size MaxEnt IRL algorithm converges to a solution significantly faster than the MaxEnt IRL 

without an adaptive step size.
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Table 1.

The rewards for each state (R(NC), R(U/B), R(IC/MA)) and action (R(LDCT/MG), R(I)) computed using the 

MaxEnt IRL algorithm, for one of the folds of the 5-fold cross validation, with an adaptive step size.

Normalization R(NC) R(U/B) R(IC) R(LDCT/M) R(I)

Lung cancer

None 83.530 127.410 −835.730 497.610 −427.530

By range 0.080 0.120 −0.800 0.540 −0.460

[0,1] 0.950 1.000 0.000 1.000 0.000

[−1,1] 0.910 1.000 −1.000 1.000 −1.000

Breast cancer

None −37.930 103.950 −571.420 −0.840 −1179.820

By range −0.050 0.150 −0.800 −0.001 −0.999

[0,1] 0.790 1.000 0.000 1.000 0.000

[−1,1] 0.580 1.000 −1.000 1.000 −1.000
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Table 2.

Left: The lung and breast POMDPs performance per epoch. Right: The physicians performance at each 

epoch. Metrics used for this evaluation are the true positive rate (TP), false negative rate (FN), false positive 

rate (FP) true negative rate (TN), precision (P), and recall (R). NCs: no-cancer cases. Cs: cancer cases. Kappa: 

Cohen’s kappa score (coefficient of agreement), variance of kappa for all scores: < 0.03.

POMDP Physicians Kappa

Lung cancer

TN rate FP rate FN rate TP rate Precision Recall TN rate FP rate FN rate TP rate Precision Recall

Training NCs: 3960, Cs: Scr1, 2, 3=130, 68, 86; Pst-Scr=78

Scr 1 0.48 0.52 0.02 0.98 0.05 0.98 0.48 0.52 0.00 1.00 0.06 1.00 0.42

Scr 2 0.34 0.66 0.02 0.98 0.02 0.98 0.34 0.67 0.05 0.95 0.02 0.95 0.29

Scr 3 0.24 0.76 0.01 0.99 0.03 0.99 0.21 0.79 0.00 1.00 0.03 1.00 0.05

Pst-Scr 0.25 0.75 0.07 0.93 0.02 0.93 0.22 0.78 0.14 0.86 0.02 0.86 0.05

Testing NCs: 990, Cs: Scr1, 2, 3=32, 17, 21; Pst-Scr=20

Scr 1 0.48 0.52 0.04 0.96 0.05 0.96 0.48 0.52 0.00 1.00 0.06 1.00 0.42

Scr 2 0.35 0.65 0.02 0.98 0.02 0.98 0.33 0.67 0.05 0.95 0.02 0.95 0.30

Scr 3 0.25 0.75 0.05 0.95 0.03 0.97 0.21 0.79 0.00 1.00 0.03 1.00 0.07

Pst-Scr 0.25 0.75 0.07 0.93 0.02 0.93 0.22 0.78 0.14 0.86 0.02 0.86 0.06

Breast cancer

Training NCs: 2808, Cs: Scr1, 2, 3, 4=370, 68, 27, 5

Scr 1 0.99 0.01 0.01 0.99 0.96 0.99 0.99 0.01 0.01 0.99 0.95 0.99 1.00

Scr 2 0.99 0.01 0.01 0.99 0.70 0.99 0.99 0.01 0.01 0.99 0.73 0.99 0.97

Scr 3 0.98 0.02 0.03 0.97 0.40 0.97 0.99 0.01 0.03 0.97 0.43 0.97 0.95

Scr 4 0.98 0.02 0.00 1.00 0.09 1.00 0.98 0.02 0.00 1.00 0.10 1.00 0.92

Testing NCs: 703, Cs: Scr1, 2, 3, 4=93, 17, 7, 1

Scr 1 0.99 0.01 0.01 0.99 0.96 0.99 0.99 0.01 0.01 0.99 0.99 0.99 1.00

Scr 2 0.99 0.01 0.01 0.99 0.70 0.99 0.99 0.01 0.01 0.99 0.74 0.99 0.97

Scr 3 0.99 0.01 0.03 0.97 0.40 0.97 0.99 0.01 0.03 0.97 0.44 0.97 0.95

Scr 4 0.98 0.02 0.00 1.00 0.09 1.00 0.98 0.02 0.00 1.00 0.10 1.00 0.91
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