
UC Berkeley
UC Berkeley Previously Published Works

Title
Bayesian inference of structured latent spaces from neural population activity with the 
orthogonal stochastic linear mixing model.

Permalink
https://escholarship.org/uc/item/82c7s6mw

Journal
PLoS Computational Biology, 20(4)

Authors
Meng, Rui
Bouchard, Kristofer

Publication Date
2024-04-01

DOI
10.1371/journal.pcbi.1011975
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/82c7s6mw
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE
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Abstract

The brain produces diverse functions, from perceiving sounds to producing arm reaches,

through the collective activity of populations of many neurons. Determining if and how the

features of these exogenous variables (e.g., sound frequency, reach angle) are reflected

in population neural activity is important for understanding how the brain operates. Often,

high-dimensional neural population activity is confined to low-dimensional latent spaces.

However, many current methods fail to extract latent spaces that are clearly structured by

exogenous variables. This has contributed to a debate about whether or not brains should

be thought of as dynamical systems or representational systems. Here, we developed a

new latent process Bayesian regression framework, the orthogonal stochastic linear mix-

ing model (OSLMM) which introduces an orthogonality constraint amongst time-varying

mixture coefficients, and provide Markov chain Monte Carlo inference procedures. We

demonstrate superior performance of OSLMM on latent trajectory recovery in synthetic

experiments and show superior computational efficiency and prediction performance on

several real-world benchmark data sets. We primarily focus on demonstrating the utility of

OSLMM in two neural data sets: μECoG recordings from rat auditory cortex during presen-

tation of pure tones and multi-single unit recordings form monkey motor cortex during com-

plex arm reaching. We show that OSLMM achieves superior or comparable predictive

accuracy of neural data and decoding of external variables (e.g., reach velocity). Most

importantly, in both experimental contexts, we demonstrate that OSLMM latent trajecto-

ries directly reflect features of the sounds and reaches, demonstrating that neural dynam-

ics are structured by neural representations. Together, these results demonstrate that

OSLMM will be useful for the analysis of diverse, large-scale biological time-series

datasets.
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Author summary

Extracting insight from data into the dynamic processes that produce observed phenom-

ena is a ubiquitous challenge in biology. For example, brain functions are generated by the

collective activity of many neurons. Extracting insight from biological time-series data can

be challenging because the number of observations can be large, activities can be noisy,

and collective dynamics can be complex. Here, we developed a new latent processes

Bayesian regression model, the orthogonal stochastic linear mixing model (OSLMM) to

address these challenges. Compared to competing methods, we demonstrate that

OSLMM has superior recovery performance of latent trajectories in synthetic experiments

and is computationally efficient. In two diverse neural data sets, we find that the latent

spaces extracted from OSLMM are directly structured by task parameters. Our results

demonstrate that latent dynamics can be structured by representations and suggest that

OSLMM will be useful for data-driven discovery in large-scale biological time-series data.

Introduction

Complex brain functions are the result of the activity of large populations of neurons [1].

From perceiving sounds to producing arm movements, a major focus of modern neuroscience

is to record and understand the structure of latent spaces/dynamics of neural population activ-

ity [2]. Powered in large part by recent technological advancements, the number of simulta-

neously recorded neurons has been growing rapidly. However, extracting understanding from

such data sets remains an open analysis challenge because the number of simultaneously

recorded neural signals can be large, the collective dynamics of neural population activity can

be complex, and there can be substantial variability across individual trials. Neuroscientists

often draw conclusions about brain function from the organization (or lack thereof) of latent

population activity with respect to exogenous variables (e.g., sound frequency, reach angle) [3–

5]. For example, latent neural dynamics that lack organization according to reach kinematics

has been interpreted as evidence that motor cortex should be viewed as a dynamical system,

not a representational system [3]. However, lack of structured latent spaces could reflect meth-

odological short-comings, not necessarily the latent structure in the data. Thus, it is important

that analysis methods for latent spaces of population neural activity are interpretable while

imposing as little structure as possible so as to let the data “speak for itself”.

The latent structure of population neural activity can result from both internal processing

and exogenous factors. A common finding is that, while the ambient dimension (e.g., number

of neurons) can be large, the intrinsic dimensionality of population activity are often low (i.e.,

they are often confined to a lower dimensional subspace) [2]. Furthermore, neural activity

across multiple trials of the same exogenous variable can be different, as illustrated in a diver-

sity of experiments [6]. Therefore, it is becoming increasingly important to analyze neural

population activity across multiple trials directly, without first averaging [2, 7–9]. Finally, it

has been observed that there are time-dependent changes in correlation structure that are tem-

porally aligned to exogenous variables (e.g. [10, 11]). Thus, it is important for methods to be

able to handle non-stationary correlations. However, methods that address all these challenges

are nascent.

Different methodological approaches have been developed to extract low-dimensional

latent structure from single-trial population neural data. Generally speaking, such methods

model two mapping functions: the mapping function between time and latent trajectories and

the mapping function from latent trajectories to neural observations. One of the most popular
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approaches is Gaussian Process Factor Analysis (GPFA) proposed by [2]. It models the neuron

responses as a linear mapping of latent trajectories and the mapping between the latent trajec-

tory and time is modeled by independent Gaussian processes (GP). The linear mapping mod-

els the correlation of neurons and GPs provide a flexible way to model latent trajectories.

Moreover the GPs also impose smoothness into latent trajectories which is important for anal-

ysis of noisy single-trial data and aids visual interpretation. However, GPFA assumes time

invariant correlations, which is known to not hold in real neural data [6, 10, 11]. Broadly

speaking, GPFA belongs to the class of linear models of coregionalization [12, 13]. Several

methods built around this class of models are capable of handling nonstationary covariances

[14, 15], datasets with large numbers of samples, and high-dimensional datasets [16, 17]. More

recently, like GPFA, [8, 18] use the linear coupling between latent dynamics and neural

responses but model the dynamics using linear dynamic systems and recurrent networks,

respectively. On the other hand, several studies have introduced nonlinear coupling between

latent dynamics and neural responses, such as Gaussian processes [7, 9] and neural networks

[19]. Although those nonlinear mappings are flexible, they impede geometric interpretation of

the extracted latent spaces.

Here, we developed a new, general Bayesian regression framework for high-dimensional

time series data with latent dynamics, the Orthogonal Stochastic Linear Mixing Model

(OSLMM). We first developed the Stochastic Linear Mixing Model (SLMM), where we employ

Gaussian processes for dynamics and an adaptive linear function to model the coupling rela-

tion between latent dynamics and neural responses. OSLMM then puts an orthogonality con-

straint on the adaptive coefficient matrices of the SLMM. We derived theoretical

computational benefits of OSLMM which are confirmed by empirical results in real datasets.

Compared with GPFA, we demonstrated that OSLMM had better latent dynamics recovery in

synthetic experiments utilizing the Lorenz system and has superior predictive performance on

real benchmark datasets and neural data. Most importantly, OSLMM extracted insightful

latent subspaces in application to diverse population neurophysiology recordings. Specifically,

in μECoG recordings from rat auditory cortex, OSLMM subspaces exhibited monotonic struc-

ture of stimulus amplitude and frequency. In simultaneous recordings of multiple single-units

from motor cortex of monkeys performing reaches, OSLMM subspaces were structured by

reach angle and speed. The functional organization observed in the OSLMM extracted sub-

spaces matches expectations from the response properties of individual neurons. These results

imply that dynamical systems and representational systems perspectives on brain computa-

tions are not as incompatible as previously proposed. Together, these results demonstrate that

OLSMM extracts latent structure from time-series data that provide insight into the neurobio-

logical processes that generated observed data.

Materials and methods

We first describe the stochastic linear mixing model and orthogonal stochastic linear mixing

model as well as their inference approaches. Both models assume zero mean, and so we have a

centering step if the data is not zero mean. Then we describe the synthetic data generating pro-

cess for the Lorenz system for model validation. Finally, we provide details of analysis and eval-

uation metrics on the neural data.

Stochastic linear mixing model

Let f(�) = [f1(�), . . ., fQ(�)] be a vector-valued function composed of Q independent latent func-

tions. Each latent function is independently sampled from a GP prior with a squared exponen-

tial covariance function such that fq � GPð0; kf Þ with kf (t, t) = 1. W(t) is a P × Q input
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dependent coefficient matrix and Σ is a P × P covariance matrix of observational noise, where

P is the number of time-varying mixing processes. SLMM models the output function as a lin-

ear combination of latent functions corrupted with observation noises. We call f the latent pro-

cesses and W the mixing coefficient processes. Specifically, the SLMM is given by the

following generative model:

fq � GPð0; kfqÞ ; latent processes

gðtÞjWðtÞ; f ðtÞ ¼WðtÞf ðtÞ ; mixing mechanism

yðtÞjgðtÞ � N ðgðtÞ;SÞ : noise model

The SLMM is a generalization of the instantaneous linear mixing model [20]. Instead of

employing deterministic mixing coefficients W, the SLMM explicitly assumes that it depends

on time t. This mixing mechanism with independent latent processes is called the spatially

varying linear model of corregionalization [14] in the spatial statistics literature. Recently, [15]

proposed a general regression framework based on this mixing mechanism and demonstrated

successful analysis of electronic health records. On the other hand, replacing latent processes

f (t) with noisy latent processes f (t) + σf �, assuming homogeneous noise such that S ¼ s2
yIP

and modeling each element of W(t) via a Gaussian process takes the SLMM to be the exact

Gaussian process regression network (GPRN) in [21].

Following [21], we assume all the latent functions share the same covariance function kf,
and also assume that each mixing coefficient wij(t) is independently sampled from a GP prior

with the same covariance function kw. We denote the values of fq at times T = [t1, . . ., tT]0 by

fq,� = [fq(t1), . . ., fq(tT)]0, the values of wij at times T by wij = [wij(t1), . . ., wij(tT)]0. The joint

probability of observed outputs Y = [y1, . . ., yT] with yt = y(tt), and latent variables W = [W(t1),

. . ., W(tT)] and latent functions F = [ f (t1), . . ., f (tT)] is

pðY;W; FjX; yf ; yw;SÞ ¼
YT

t¼1

N ðytjWtf t;SÞ
YP

i¼1

YQ

j¼1

N ðwijj0;KwÞ
YQ

q¼1

N ðfq;�j0;Kf Þ ð1Þ

where Wt is a P × Q coefficient matrix at time tt in which [Wt]ij = wij(tt), ft = f (tt). Kw and Kf

are the covariance matrices estimated at times T, and model parameters are Θ = (θf, θw, Σ).

The hyper-parameters of Gaussian processes corresponding to f and w include (amplitude)

scale and length scale parameters. We have the detailed explanation in Appendix A in S1 File

for SLMM method and in Appendix C in S1 File for OSLMM method.

Learning in the SLMM is equivalent to inference of the posterior distribution of latent vari-

ables and model parameters. Latent variables consist of mixing coefficients W and latent func-

tions F, and model parameters include the covariance matrix of observation noise Σ and

hyper-parameters in GPs. The most computationally expensive component of the learning

procedure comes from inference of latent variables. We note that the conditional posterior of

mixing coefficients p(W|F, Y, T, θf, θw, Σ) and the conditional posterior of latent functions p
(F|W, Y, T, θf, θw, Σ) have close-form multivariate Gaussian distributions with dimension

PQT and QT. The complexity of learning them are OðP3Q3T3Þ and OðQ3T3Þ respectively.

Hence, Gibbs sampling for W and F would be difficult for large datasets. [21] propose a Mar-

kov-chain Monte-Carlo (MCMC) approach to jointly sample them via elliptical slice sampling

(ESS), an acceptance-rejection sampling method [22]. The time complexity of ESS depends on

computing the joint distribution of Eq (1) which takes OðPQT3Þ (shown in the supplementary

of [21]). Although in principle ESS relieves the computational burden, ESS still does not work

for large datasets in practice because of poor mixing.
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Our inference conditionally samples latent variables W and F given model parameters Θ
via ESS and conditionally samples Θ given W and F. The details of sampling model parameters

are described in Appendix A in S1 File. Similar to the inference in [21], our inference is not

efficient, because ESS suffers from low efficiency and slow time to convergence. Therefore, we

next propose a new regression framework, the orthogonal stochastic linear mixing model that

introduces an orthogonality constraint amongst the mixing coefficients and significantly

improves the inference efficiency theoretically and empirically.

Orthogonal stochastic linear mixing model

In SLMM, the most burdensome computation comes from the inference of mixing coefficients

W, which includes PQT model parameters. To improve the inference efficiency, we simplify

the model by introducing an orthogonality constraint amongst the mixing coefficients. We

call this new model the orthogonal stochastic linear mixing model (OSLMM).

Instead of explicitly modeling the mixing coefficient processes W via GPs, OSLMM takes the

eigen-decomposition of the variance-covariance matrix of the latent signal g(t) given W(t),

implying that var (g(t)) = W(t)W(t)0 = U(t)S(t)U(t)0, where the columns of UðtÞ 2 RP�Q
are

orthonormal and SðtÞ 2 RQ�Q
is a positive diagonal matrix. Then W(t) can be decomposed as

WðtÞ ¼ UðtÞS1
2ðtÞ. We simplify the structure of mixing coefficients by assuming U(t) is indepen-

dent from input t: WðtÞ ¼ US1
2ðtÞ. Then the latent signal g(t) stays in the subspace spanned by

the orthonormal basis of U. This assumption is in accordance with the observation that high-

dimensional data usually lie on a low-dimensional manifold in many real-world problems [4].

The orthogonal stochastic linear mixing model (OSLMM) is an SLMM where the latent sig-

nal g(t) is expressed as gðtÞ ¼WðtÞf ðtÞ ¼ US1
2ðtÞf ðtÞ where U is a P ×Q matrix with orthonor-

mal columns, S(t) is a Q × Q positive diagonal matrix indexed by input t, and S ¼ s2
yI. In

order to model the positive diagonal matrix function S1
2ðtÞ, OSLMM assumes that each element

on the diagonal of S1
2ðtÞ is in the logarithmic scale, hqðtÞ ¼ log S1

2ðtÞ
� �

qq

� �
, with a GP prior

modeled by a squared exponential covariance function such that hq�
iid GPð0; khÞ. We denote

the values of hq(t) at times T as H = [h1, . . ., hT] where ht = [h1(t1), . . ., hQ(tT)]0. We display the

schematic diagram of OSLMM with the latent dimension size Q = 3 in Fig 1 as well as the cor-

responding graphical model. In comparison with SLMM, the number of latent variables of

OSLMM is reduced from PQT + QT to PQ + 2QT. In practice, this reduction in parameters

renders inference possible for large datasets. In addition, we develop an efficient inference

framework via sufficient statistics as follows.

Similar to [20], for each time stamp tt, we first propose the projection matrix Rt ¼ S�
1
2

t U0,
where St = S(tt). We prove that conditional on U and St, Rtyt is a maximum likelihood estimate

for ft. In addition, Rtyt is a minimally sufficient statistic for ft. The detailed proofs are provided

in Appendix B in S1 File. Those summary statistics lead to the fact that for any prior p(ft) over

ft, we have

pðf tjytÞ ¼ pðf tjRtytÞ ; Rtytjf t�
ind N ðRtytjf t;SRt

Þ ð2Þ

where SRt
¼ S�

1
2

t U0SUS�
1
2

t . It suggests the posterior of ft depends only on low dimensional sum-

mary statistics Rtyt. Moreover, when Σ has the form S ¼ UD1U
0 þ s2

yI, the variance-covari-

ance matrix is a diagonal such that SRt
¼ S�

1
2

t D1S
� 1

2
t þ s

2
yS
� 1

t . This leads to a linear learning

complexity with respect to latent functions f in Eq (3) (see below). In the rest of this work, we

assume a homogeneous noise S ¼ s2
yI, and thus fSRt

g are diagonal.
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We refer to cðtÞ ¼ S1
2ðtÞf ðtÞ as the orthonormalized latent functions. The orthonormality

refers to U, and c(t) is the coefficient functions in terms of the orthonormal basis U. Each

dimension of c(t) represents a scaled f (t) at each input t. Similar to the orthonormalized neural

state in GPFA [2], the orthonormalized latent functions can explain the amount of data covari-

ance. Since we put the orthogonality constraint on U during the training, we do not need to do

a final SVD on c(t) as is done in GPFA. Also, similar to the spirit of PCA [1, 23], this orthonorm-

ality constraint penalizes redundancy in latent representations [24] and thus contributes to a

better low-dimensional visualizations of the latent structure. We also note that the GPFA impose

the orthogonality after inference, which may lead to mixing of data effects in latent factors that

can not demixed by post-hoc orthogonalization in an unsupervised manner. In OSLMM, this

orthogonality constraint is imposed directly during inference, allowing it to capture orthogonal

structure in the data directly. This contributes to better interpretation of latent trajectories.

As for inference, we propose a Markov chain Monte Carlo (MCMC) algorithm for

OSLMM via Gibbs sampling, which updates latent functions and model parameters iteratively

from their conditional posterior distributions. First, because of Eq 2, the conditional posterior

of latent functions F is

pðFjH;U;Y;X; yf ; yw;SÞ /
YT

t¼1

N ðRtytjf t;SRt
Þ
YQ

q¼1

N ðfq;�j0;Kf Þ

¼
YQ

q¼1

N ðfq;�jðK
� 1

f þ
~S � 1

q Þ
� 1
ð~S � 1

q ~yqÞ; ðK
� 1

f þ
~S � 1

q Þ
� 1
Þ ;

ð3Þ

where ~Sq ¼ diagð½SR1
�qq; . . . ; ½SRT

�qqÞ and ~yq ¼ ð½R1y1
�q; . . . ; ½RTyT�qÞ

0
.

Fig 1. Schematic diagram of the Orthogonal Stochastic Linear Mixing Model (OSLMM). (A) illustrates data generated by the model with a three-

dimensional latent processes. Note that S1
2ðtÞ is a positive diagonal matrix with log([S1/2(t)]qq) = hq(t). (B) illustration of the graphical model of OSLMM.

https://doi.org/10.1371/journal.pcbi.1011975.g001
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Because this conditional posterior can be factorized into the product of each latent dimen-

sion q, and each conditional posterior is a multivariate Gaussian distribution, the learning

complexity is OðT3QÞ, linear to the latent dimension size Q. The conditional posterior of H, is

pðHjF;U;Y;X; yf ; yw;SÞ /
YT

t¼1

N ytjUS
1
2
t f t;S

� �YQ

q¼1

N ðhq;�j0;KhÞ

/
YT

t¼1

exp �
1

2
yt � US

1
2
t f t

� �0
S� 1 yt � US

1
2
t f t

� �� �
YQ

q¼1

N ðhq;�j0;KhÞ ;

ð4Þ

where hq,� = (hq(t1), . . ., hq(tT))0.

As Σ is diagonal, this likelihood can be factorized for each time index t and each output

dimension p, so the computational complexity of this posterior is OðmaxðPT;T3ÞÞ. Since the

closed-form expression of each posterior is intractable, we sample them via the elliptical slice

sampling [22].

To sample U, because U is on the Stiefel manifold where the columns are orthonormal, we

parametrize U with the polar decomposition such that U¼d UV ¼ VðVTVÞ�
1
2 [25], where V 2

RP�Q
is a random matrix. We assume pU(U) is uniform and thus V follows a matrix angular

central Gaussian distribution, MACG(IP), corresponding to V � N P;Qð0; IP; IQÞ [26]. Hence,

the conditional posterior of V is

pðVjF;H;Y;X; yf ; yw;SÞ /
YT

t¼1

N ytjUS
1
2
t f t;S

� �
N P;QðVj0; IP; IQÞ

/
YT

t¼1

exp �
1

2
yt � US

1
2
t f t

� �0
S� 1 yt � US

1
2
t f t

� �� �

N P;QðVj0; IP; IQÞ :

ð5Þ

We sample V via elliptical slice sampling and the computational complexity of this poste-

rior is OðmaxðPT; PQÞÞ.
Finally, to update model parameters Θ, we employ the Metropolis-Hastings method and

the details are discussed in Appendix C in S1 File. This inference takes OðmaxðQT3; PT; PQÞÞ
time, which is linear in the number of latent dimensions Q and output variable dimensionality

P. Empirically, we compare the training speed of OSLMM to that of SLMM and sparse Gauss-

ian process regression network (SGPRN) [27] in a neural dataset (μECoG recordings from

auditory cortex) with output dimension 128 [28]. This experiment takes T = 100 time stamps

for training and we report the running time for each iteration in Fig 2. The running time for

other two datasets are available in Fig A in S1 File. Experiments are run on Ubuntu system

with Intel i7–7820X CPU @ 3.60GHz and 128G memory. Those results clearly demonstrate

that inference of OSLMM is considerably faster than SLMM and SGPRN. The details of data

and methods are available in Appendix D in S1 File, where we also display the same training

speed comparison on two other real high-dimensional machine learning datasets. Moreover,

we report the predictive performance on five real datasets in Appendix D in S1 File, which

shows that OSLMM has better predictive performance on most of the datasets.

In contrast to SLMM, an assumption of OSLMM (and many other latent space methods in

neuroscience, e.g., GPFA), is that the embedding subspace is fixed. There are several reasons

for this assumption. The primary goal of OSLMM is to extract intrinsic latent spaces of neural

population data that are clearly organized by the parametric structure of external variables

commonly studied in neuroscience. This capability is critical to scientific interpretability of the

latent spaces, and hence directly impacts neuroscientific conclusions. While it is true that hav-

ing a fixed embedding space constrains the model, it greatly eases visualization and
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interpretation of resulting latent spaces, which is our desired goal. Further, the assumption of

fixed embedding subspace is explored in [29], in which it is concluded that most real neural

data usually lie on a low-dimensional manifold. Additionally, while SLMM is more flexible, it

requires approximate Bayesian inference, which is substantially more demanding and is not

guaranteed to be a better model in practice. Relatedly, SLMM typically does not scale beyond a

few thousand training points and cannot deal with high dimension data, both of which are

common in systems neuroscience. As such, SLMM is not applicable for most real-world data

sets, and is therefore less likely to have broad adoption by the community. Finally, a model

allowing time varying subspaces would easily result in overfitting issues. Indeed, we explored

the assumption of fixed embedding subspace in real world datasets Table A and B in Appendix

D in S1 File, where we compared data-reconstruction accuracy across five different methods

for five different real world data sets. In all cases, OSLMM substantially outperformed SLMM.

Indeed, OSLMM outperformed all other methods for four out of the five data sets, and was

substantially better for three out of the five. The two datasets on which OSLMM was on par

with GPRN (NPV) were relatively low-dimensional with trivial correlations. In summary,

OSLMM balances computational efficiency with model flexibility, extends the assumption of

Gaussian data to the non-Gaussian case, and, most critically, results in latent spaces that are

more directly organized by the structure of exogenous variables, which is critical for interpre-

tation and neuroscientific conclusions.

Compared with GPFA, OSLMM has two main differences. First, OSLMM introduced the

log scale processes h(t) to handle the varying correlation across the time, which also extended

the Gaussian observation assumption to non-Gaussian case, making the model more flexible

to handle complicated relation of outputs. Second, OSLMM introduces the orthogonal

Fig 2. Training OSLMM on neural data scales well with the number of latent functions. The running time per

iteration with different number of latent functions for the Stochastic Linear Mixing Model (SLMM), the Orthogonal

Stochatic Linear Mixing Model (OSLMM), and the Stochastic Gaussian Process Regression Network (SGPRN).

https://doi.org/10.1371/journal.pcbi.1011975.g002
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constraint during the inference, which not only regularizes the model for better low-dimen-

sional visualization, but also makes model inference more efficient.

Data generating process for the Lorenz system

We tested the ability to recover ground-truth latent spaces in the context of the non-linear

Lorenz dynamical system. Specifically, the Lorenz system describes a flow of fluids with fq,
q = 1, 2, 3 as latent processes.

df1
dt
¼ b1ðf2 � f1Þ;

df2
dt
¼ f1ðb2 � f3Þ � f2;

df3
dt
¼ f1 f2 � b3 f3 : ð6Þ

Lorenz sets the values β1 = 10, β2 = 28 and β3 = 8/3 to exhibit chaotic behavior as utilized in

recent works [9, 30, 31].

We simulated the three-dimensional dynamics of the Lorenz system in (6) and normalized

each dimensions to unit variance and zero mean. Then we generated log time-scales H via

three different mapping functions h with different GP priors: hq�
iid GPð0; khÞ with three differ-

ent squared exponential covariance functions kshorth ðDtÞ ¼ exp � Dt2
2

� �
,

kmedian
h ðDtÞ ¼ exp � Dt2

2 expð1Þ2

� �
, and klongh ðDtÞ ¼ exp � Dt2

2 expð2Þ2

� �
. Finally, we selected a random

semi-orthogonal matrix U and generated data via yt = UTexp(ht)ft + ηt, where ht = h(tt) and

the noise ηt are drawn from N ð0; 0:12IÞ.
We also developed a multiple data generating process to produce observations from the

same latent trajectories (i.e., Lorenz trajectories), but with different corrupted orthogonal map-

pings from latent trajectories to observations. We first generated one random semi-orthogonal

matrix U with dimension size P = 50 and Q = 3, and then generated I corrupted semi-orthogo-

nal matrix Ui, i = 1, . . ., I, by simulating Vi ¼ Uþ sEi;Ei �MN ð0; IP; IQÞ and next extracting

the closest matrix in VðP;QÞ to Vi in the Frobenius norm, i.e. Ui ¼ argminU2VðP;QÞk Vi � U kF ,

where VðP;QÞ ¼ fA 2 RP�Q
jATA ¼ Ig is the set of semi-orthogonal matrices. It suggests that

U is the median subspace of {Ui}.

Analysis of neural data

Rat auditory cortex experiments. We analyzed micro-electrocorticography (μECoG) data

previously collected from rat auditory cortex experiments in the Bouchard Lab [28, 32]. We

analyzed the z-scored high-gamma activity of 128 simultaneously recorded μECoG channels

over rat auditory cortex. High-gamma (Hγ: 70–170Hz) activity from μECoG is a commonly-

used signal containing the majority of task relevant information for understanding brain com-

putations [33]. Hγ primarily reflects multi-unit activity from pyramidal neurons located in

infragranular layers [28]. For each experimental trial, we analyzed neural activity for a duration

of 150 ms in which the auditory stimuli happened from 50 ms to 100 ms. The stimuli consisted

of 240 different sounds with 8 distinct amplitudes [-70 to 0 dB attenuation] and 30 distinct fre-

quencies from 500 Hz to 32 000 Hz [28, 32]. Each stimulus has 20 trials in the experiment. The

Hγ activity was downsampled to 400 Hz. We calculated leave-one-channel-out prediction error

(accuracy), and additionally explored the latent representation of the data. We conducted both

stimuli-wise and global analysis. In stimuli-wise analysis, we assume that within single stimuli

the mixing coefficients W are shared across all trials, and different trials have their own individ-

ual latent processes. The mixing coefficients W are shared across all trials and stimuli in the

global analysis. Moreover, we decoded the sound attenuation and sound frequency from the

inferred latent functions evaluated at time with maximum norm via a linear regression.
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Monkey arm-reaching experiments. A second dataset is obtained from monkey arm-

reaching experiments and comes from [10, 34]. It consists of one full session with 2869 total

trials (2295 trials for training and 574 trials for testing), 108 conditions and 182 neurons with

simultaneously monitored hand kinematics. The arm-reaching task consists of a monkey

reaching to presented targets while avoiding the boundaries of a virtual maze. This task has

three distinct epochs: target presentation, go cue and movement onset [35]. We aligned the

neural spikes from 50 ms before the move onset time to 450 after that and resampled the data

at the bin size 5ms. Therefore, each trial has a multivariate spike time series with 100 time

stamps. As the same in [2], we smoothed the neural activities via convolution with a Gaussian

filter with 50 ms standard deviation. We conducted the global analysis where the mixing coef-

ficients are shared across all trials and conditions. Moreover, we decoded the monkey’s hand

position and velocity from the inferred latent functions with a 5-fold cross-validated ridge

regression.

Model evaluation using leave-one-channel-prediction. The leave-one-channel-predic-

tion is considered for model comparison. We use three-fold cross-validation of all trials and so

we have three pairs of training trials and testing trials. For each pair of data, we infer the poste-

rior samples (OSLMM) or point estimates (GPFA) of shared latent variables U and h, and

model parameters Θ from training trials. Next, for each test trial, we leave one channel out of

the test trial as a target and compute the posterior predictive mean of the signal of the target

channel using the remaining channels with the posterior samples (OSLMM) or estimates

(GPFA) of shared latent variables and model parameters from the training trials. We repeat

this procedure on each test trial and each channel of the chosen test trial. We choose the sum

of square error and coefficient of determination (R2) as two prediction measures for model

comparison.

As single-trial neural data are regularly sampled in time, a covariance matrix generated

from a stationary kernel has a Toeplitz structure. Specifically, for any Toeplitz matrix S 2 RT�T

with constant diagonals and Si,j = Si+1,j+1, this structure of a covariance matrix allows the corre-

sponding GP inference in OðT log TÞ and the GP prediction of variance in OðT2Þ [36, 37].

Therefore, the learning complexity for our MCMC algorithm for single-trail data would be

decreased to OðmaxðQT log T; PT; PQÞÞ.
Statistical tests. Our statistical tests were primarily based on bootstrap re-samples or

cross validation of various metrics (e.g., decoding performance, differences in reconstruction

accuracy, distances in latent spaces, etc.,). We used the Wilcoxon signed-rank test, and the

null-hypothesis was rejected at the α< 0.05 level.

Results

Inferring interpretable latent trajectories, particularly from single trial neural population

recordings, is critical to understand brain computations [1]. A large class of methods assumes

an autoregresive linear dynamics model in the latent process due to the computational feasibil-

ity [38, 39]. However, the assumption of linear dynamics may be overly simplistic since inter-

esting neural computations are naturally nonlinear. Therefore, the Gaussian Process Factor

Analysis method (GPFA) is a popular approach [2, 40]. Similar to GPFA, the Orthogonal Sto-

chastic Linear Mixing Model (OSLMM) developed here imposes a general Gaussian process

prior to infer latent dynamics. However, OSLMM differs from GPFA in three aspects. First,

OSLMM assumes that the mixing coefficient matrix (which describes how latent functions are

combined to produce observations) is time dependent, which allows modelling time-varying

correlation across neurons/channels. This is critical, as it is known that the correlation struc-

ture of neural data changes over time [6, 10, 11]. Second, GPFA orthogonalisation of the
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mixing coefficient matrix is done as a post-processing step; in contrast, OSLMM builds the

orthogonalisation of the mixing matrix into the model, arguably a more desirable modeling

approach. Finally, GPFA provides only point estimates of values, while OSLMM provides sam-

ples from the posterior distribution.

We compared the OSLMM to GPFA in three settings. We first showed superior recovery

performance on synthetic data generated from high-dimensional noisy observations of the

Lorenz system. We next conducted analysis on two neuroscience experiments. The first analy-

sis is on electrophysiology data from rat auditory cortex [28, 32]. The data consists of micro-

electrocorticography (μECoG) high-gamma responses to tone pips of varying frequency and

attenuation. The second analysis is on electrophysiology data from monkey arm-reaching [3,

34]. The data consist of simultaneously recorded single units from motor cortex while a mon-

key makes reaches with an instructed delay to visually presented targets while avoiding the

boundaries of a virtual maze. Across these very different neuroscience contexts, we found that

OSLMM extracts latent spaces that are more structured by exogenous variables (i.e., more

interpretable) than GPFA, and OSLMM’s latent spaces are more predictive of exogenous vari-

ables (i.e., tone frequency, reach angle) than GPFA.

OSLMM provides superior recovery performance on noisy observations of

the Lorenz system

To examine the degree to which OSLMM can recover known latent structure from dynamic,

high-dimensional, noisy observations, we first used synthetic data. We generated noisy high-

dimensional observations from known dynamics produced by the Lorenz system. The simula-

tion takes the latent dimension Q = 3 and the number of higher-dimensional observations

P = 50. We compared the ability of GPFA and OSLMM to infer the dynamics of the Lorenz

system from noisy, high-dimensional observations. The details of the data generating processes

are provided in Materials and Methods. We quantitatively compared the performance of

latent trajectory reconstruction by taking the difference of the root mean squared error

(RMSE): ΔRMSE = RMSEGPFA−RMSEOSLMM. The larger ΔRMSE is, the better OSLMM per-

forms compared to GPFA.

We considered three different scenarios of the data generation process. In the first scenario,

we varied the temporal length scale of the latent dynamics. We took three data generating pro-

cesses with short, medium, and long timescales in terms of the length scale of Gaussian pro-

cesses. We set the number of time steps N = 200 and considered 10 trials in each setting. In Fig

3, we plotted ΔRMSE (summarized by the mean and standard deviation) and found that

OSLMM consistently had lower RMSE than GPFA (**: p = 1.95 × 10−3, Wilcoxon signed-rank

test, N = 10 trials for all). In the following two scenarios, we used the medium time scale for

the data generating processes. In the second scenario, we compared how GPFA and OSLMM

depended on the number of data samples used for training (N = 100, 200, 500). In Fig 3B we

plotted the ΔRMSE for N = 100, 200 and 500 samples, summarized by the mean and standard

deviation over the 10 trials (**: p = 1.95 × 10−3, N = 10 trials, Wilcoxon signed-rank text). In

the third scenario, we varied the amount of noise in the latent dynamics. We generated 10 tri-

als with noise scales σ = 0.01, 0.02, 0.05, representing different levels of discrepancy in sub-

spaces. We chose the number of data samples to be N = 200. In Fig 3C, we see that, as with

previous results, OSLMM significantly outperformed GPFA (**: p = 1.95 × 10−3, *:
p = 1.37 × 10−2 for σ = 0.01, 0.02, 0.05, Wilcoxon signed-rank text, N = 10 trials). Together,

these results demonstrate that OSLMM robustly outperforms GPFA in terms of recovering

underlying latent dynamics under a variety of data generating process scenarios.
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OSLMM latent spaces provide superior prediction performance for neural

recordings from auditory cortex

To examine the performance of OSLMM relative to GPFA on real neural data, we first ana-

lyzed data from rat auditory cortex (Fig 4A). We recorded cortical surface electrical potentials

from anesthetized rat auditory cortex with customized 128-channel micro-electrocorticogra-

phy (μECoG) arrays (Fig 4B) [28]. For each electrode, we extracted the high-gamma (Hγ: 70–

170Hz) analytic amplitude from the broad-band signal, and z-scored it relative to baseline sta-

tistics (see Materials and methods). Hγ primarily reflects the multi-unit firing rate of infragra-

nular pyramidal neurons [28]. The rat was presented with pure tone pips of varying frequency

and amplitudes. Fig 4C displays a heat-map of the average Hγ neural response at the electrode

demarcated in Fig 4B to each frequency-attenuation pair. We found that the Hγ activity at this

electrode exhibited a peak-response across amplitudes to frequencies of 7627 Hz (dotted verti-

cal line), and the magnitude of the response across frequencies increased with the amplitude of

the sound. These response characteristics are similar to single-unit recordings in the auditory

cortex [41]. We visually summarized the dynamics of Hγ activity across electrodes via the

functional boxplot [15, 42]. In Fig 4D, we plotted data from the stimulus (7627Hz, -10dB)

(solid black line denotes the median curve, light/dark shaded regions areas demarcate the non-

outlying and central 50% regions).

We quantified the predictive performance of GPFA and OSLMM for neural activity using

the prediction error in a leave-one-channel-out prediction procedure (Materials and meth-

ods). We first conducted a stimuli-wise analysis, in which mixing coefficients are shared across

all trials of a single stimulus, and different trials have their own latent process. For this analysis,

we chose four stimuli as the combinations of two attenuations −10dB and −50dB and two fre-

quencies 7627 Hz and 32 000 Hz. We considered the latent dimension Q = 5 and indepen-

dently ran GPFA and OSLMM on the four subsets of the data. The prediction errors for the

four stimuli are reported in Fig 4E. For all four stimuli, the prediction error of OSLMM is con-

sistently smaller than that of GPFA. Moreover, we analysed the relation between predictive

performance and latent dimension size Q in Appendix E in S1 File with prediction perfor-

mance shown in Fig C in S1 File. This shows that for most combinations of the stimuli and

Fig 3. OSLMM provides superior recovery performance on noisy observations of the Lorenz system. The difference of root mean square error

(ΔRMSE) of latent trajectories reconstructed from GPFA and OSLMM in three different scenarios. (A) Three data generation processes with different

time scales and data size N = 200. (B) Three medium time-scale data generating processes in terms of various number of time steps, N = 100, 200, 500.

(C) Three data generating processes in terms of different levels of noise on the subspace specified by the standard deviation of noise σ. Data are

presented as mean and standard deviation. *: 0.01< p� 0.05, **: 0.001< p� 0.01, Wilcoxon signed-rank test.

https://doi.org/10.1371/journal.pcbi.1011975.g003
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Fig 4. OSLMM latent spaces provide superior prediction performance for neural recordings from auditory cortex. (A) Schematic

location of μECoG grid on rat brain over auditory cortex. (B) Photomicrograph of the 128-channel micro-electrocorticography array on

the rat auditory cortex. The blue circle refers to one of 128 channels. (C) Heat-map of z-scored high-gamma responses from the electrode

circled with blue in (B) for each frequency-attenuation pair of the presented pure-tone pip stimulus. Dashed black line demarcates the

best-frequency of this electrode. (D) Functional boxplot of the z-scored activity across electrodes for a single stimuli; black lines refer to

the median and light/dark grey shaded regions refer to non-outlying and central 50% regions. The stimulus takes frequency 7627 Hz and

attenuation -10 dB and it starts from 0 ms and ends at 50 ms, which would affect some of electrodes in terms of Z-score displayed in this

panel. (E) Prediction error on the stimuli-wise analysis for four stimuli. (F) Prediction error on the global analysis across all stimuli; each

point is an electrode (p = 1.16 × 10−38, Wilcoxon signed-rank test, N = 128 channels). Panel B is reproduced from [28].

https://doi.org/10.1371/journal.pcbi.1011975.g004
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latent dimension size, the prediction error of OSLMM is smaller than that of GPFA, and R2 of

OSLMM is larger than that of GPFA. We next compared GPFA and OSLMM in a global analy-

sis across all 4800 trials and utilized a leave-one-channel-out prediction. In contrast to the sti-

muli-wise analysis above, here the mixing coefficients are shared across all trials and stimuli.

For each electrode, we reported the prediction error (sum of squared error) on the logarithmic

scale in Fig 4F. We found that the prediction errors for the overwhelmingly vast majority of

electrodes from OSLMM were smaller than those from GPFA (Wilcoxon signed-rank test on

the log prediction error, p = 1.16 × 10−38, N = 128 channels). Moreover, we decoded (with

ridge-regression) both sound attenuation and sound frequency using the latent functions from

OSLMM, GPFA, and PCA (Materials and methods). We conducted bootstrap sampling with

100 bootstrap replicates and found that for decoding of attenuation, the mean and 95% confi-

dence interval of R2 scores were 0.45(0.42, 0.51), 0.64(0.60, 0.69) and 0.84(0.80, 0.86) for PCA,

GPFA and OSLMM, while for decoding of frequency, R2 scores were 0.03(0.03, 0.04), 0.06

(0.04, 0.09) and 0.50(0.45, 0.52) for PCA, GPFA and OSLMM. This illustrates that latent func-

tions of OSLMM can be better linear decoders (at the time of max response) for those two

exogenous stimulus parameters. Together, these results indicate that OSLMM extracts latent

functions that are better predictors of neural data and decoders of exogenous variables.

OSLMM latent spaces extracted from auditory cortex population activity

are structured by external stimuli

Having demonstrated that OSLMM achieves superior prediction performance of neural activ-

ity compared to GPFA, we next examined the structure of the inferred latent spaces. Decades

of studies utilizing single-unit recordings, LFP, ECoG, fMRI, etc., across diverse mammalian

species (mice, rats, monkeys, humans) have demonstrated that primary auditory cortex neural

responses are monotonically modulated by the amplitude of the stimuli, and are tuned to a

preferred sound frequency [43]. Therefore, we hypothesized that inferred latent dynamics

would be structured by these properties of the stimulus.

To test this hypothesis and to compare the ability of OSLMM and GPFA to extract latent

spaces with the hypothesized structure, we applied both GPFA and OSLMM to jointly model

the trials of all different stimuli, and explored the structure of the latent spaces. For both meth-

ods, we set the latent dimension Q = 5, and then inferred the latent functions of all trials.

Latent functions are rotated to maximize the power captured by each latent in decreasing

order. Finally, we averaged the orthonormalized latent functions by either sound attenuation

or sound frequency over trials to ease visualizations.

We plotted the averaged orthonormalized latent functions for all eight stimuli attenuations

for a fixed frequency of 7626 Hz in Fig 5A for OSLMM and Fig 5B for GPFA. Likewise, we

plotted the averaged orthonormalized latent functions for all thirty frequencies with a fixed

attenuation of −10 dB in Fig 5C for OSLMM and Fig 5D for GPFA. We found that OSLMM

latent spaces had a monotonic ordering of both the different sound attenuations (Fig 5A) and

sound frequencies (Fig 5C). In contrast, GPFA latent spaces did not have this property (Fig 5B

and 5D). Specifically, the OSLMM latent trajectories for a single frequency and different

sound attenuations extended in one direction (Fig 5A) with a magnitude that increased mono-

tonically with increasing sound amplitude(grey-to-black), while the GPFA latent trajectories

had mixed ordering (Fig 5B). Likewise, different sound frequencies (blue-to-red with increas-

ing frequency) at a single attenuation smoothly transitioned across angles of the OLSMM

latent trajectories (Fig 5C), but were highly intermixed in the GPFA latent trajectories (Fig

5D).
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We quantified these effects by extracting the amplitude of the latent trajectories as a func-

tion of sound amplitude, and the angle of the latent trajectories as a function of sound fre-

quency. We plotted the sound attenuation vs. the amplitude of latent trajectory in Fig 5E and

plotted the sound frequency vs. the angle of latent trajectory in Fig 5F. These plots show

OSLMM latent trajectories have a perfectly monotonic relationship between sound attenua-

tion and trajectory amplitude (Fig 5E, red), and a nearly perfect monotonic relationship

between sound frequency and trajectory angle (Fig 5F, red). However, the relationship

Fig 5. OSLMM latent spaces extracted from auditory cortex population activity are structured by external stimuli. (A, C) Trial-averaged latent

neural trajectories for all attenuations with a fixed frequency 7627 Hz for OSLMM and GFPA respectively; (B, D) Trial-averaged latent neural

trajectories for all frequencies with a fixed attenuation (−10dB) for OSLMM and GPFA respectively. (E) Stimulus attenuation vs. the amplitude of the

latent trajectory. (F) Stimulus frequency vs. the angle of latent trajectory. Lines in (E,F) are a moving average.

https://doi.org/10.1371/journal.pcbi.1011975.g005
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between GPFA trajectories and these stimulus properties is less pronounced (Fig 5E and 5F

black). We quantified these effects with the Spearman rank correlation (ρ) for GPFA and

OSLMM between sound attenuation and trajectory amplitude, and between sound frequency

and trajectory angle (amplitude: ρOSLMM = 1, ρGPFA = 0.71; frequency: ρOSLMM = 0.96, ρGPFA =

−0.41, Fig 5E and 5F). To show the statistical significance of Spearman rank correlation, we

conducted bootstrap sampling with 100 bootstrap replicates, and then conducted a Wilcoxon

signed-rank test using the bootstrap ρ. We found that the difference of ρ values between GPFA

and OSLMM is statistically significant (p = 8.11 × 10−17 for sound attenuation, p = 3.90 × 10−18

for sound frequency). We displayed the latent trajectories with latent dimension Q = 10 in Fig

D in S1 File and those with Q = 15 in Fig E in S1 File (Appendix F in S1 File). These results

illustrate the stronger monotonic relationship OSLMM latent spaces than in GPFA latent

spaces, and are robust to the choice of latent dimensions size. We further visualized the latent

neural trajectories of the auditory responses with and without the time varying scale factor (W

(t)) (Fig F in S1 File). We found that the differences were entirely in the magnitude of projec-

tion, and the geometry of the trajectories with respect to each other and their relationship to

the stimulus parameters (attenuation, frequency), were essentially unaltered. Together, these

results demonstrate that the OSLMM latent trajectories reflect distributed auditory cortical

population response properties that are not captured by GPFA.

OSLMM’s latent spaces extracted from motor cortex are predictive of

behavior

Recordings from monkey motor cortex during reaching tasks have emerged as an important

test-bed for latent space methods [2, 8, 44]. Therefore, we next compared OSLMM to GPFA

on multiple single-unit recordings from motor cortex (182 neurons) while the monkey per-

formed a delayed reaching task with obstructing barriers forming a maze (2869 trials total)

[10, 34] (Fig 6A). Data and analysis details are available in Materials and methods. The average

hand speed profiles for 108 conditions colored by average reach angle are displayed in Fig 6B.

We visualized the smoothed the spike rates for several conditions across trials in Fig 6C using

functional boxplots (black lines: median; light/dark shaded area: non-outlying region and cen-

tral 50% region).

We first compared the ability of OSLMM to GPFA and PCA to extract latent structure

from the population neural activity that was predictive of the monkeys reaching behavior.

OSLMM, GPFA, and PCA were applied to the population spike rates (182 neurons) across all

2869 trials of reaches across all reach angles/speeds. The orthogonalized latent functions were

estimated, and then rotated to maximize the power captured by each latent in decreasing

order. We decoded the monkey’s hand position and hand velocity solely from the inferred

latent functions from OSLMM, GPFA, and or PCA with cross-validated ridge regression (we

set the latent dimension size Q = 6 for all methods). To estimate the uncertainty of R2 scores,

we conducted bootstrap sampling with 100 bootstrap replicates. For hand position, the mean

and 95% confidence interval of decoding R2 scores for PCA, GPFA and OSLMM are 0.535

(0.527, 0.543), 0.574 (0.567, 0.582) and 0.602 (0.594, 0.610). In terms of hand velocity, those

metrics are 0.504 (0.497, 0.511), 0.518 (0.512, 0.525), and 0.544 (0.538, 0.550) for PCA, GPFA

and OSLMM respectively. We further quantified the dynamics of structure in the latent spaces

by measuring the distances between individual condition trajectories (Appendix G in S1 File)

with distance plot in Fig H in S1 File. We found that both maximum mean and standard devia-

tion of trajectory distances were significantly larger for OSLMM than GPFA (p = 3.90 × 10−18

and p = 4.67 × 10−18, Wilcoxon signed-rank tests, N = 100 resamples for each). These results

indicate that OSLMM trajectories for different reaches had more distance between them than
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GPFA trajectories. Furthermore, the dynamics of the distances from OSLMM trajectories for

different reach angles were grouped together, and then diverged to a maximum spread during

the middle of the reach (during which reach velocity is most heterogenous, Fig 6B), and then

converged again. GPFA trajectory distances did not exhibit such behaviorally relevant dynam-

ics. Together, these results demonstrate that OSLMM provides significantly better predictive

performance of reaching kinematics than GPFA or PCA.

OSLMM latent spaces extracted from motor cortex population activity are

structured by reach kinematics

Having demonstrated the superior predictive performance of OSLMM vs. GPFA for reach

kinematics, we next examined if and how neural trajectories extracted from motor cortex were

structured by reach kinematics. We first examined if and how latent trajectories were struc-

tured by the angle of the reach. We plotted the first two latent components vs. time and colored

the latent trajectories by reach angle for OSLMM (Fig 7A) and GPFA (Fig 7B). We observed

that reach angle clearly structured the latent trajectories in OSLMM. In particular, for the sec-

ond latent dimension, as the value varies from low to high, the color varies from blue to red via

green or purple. In other words, as the value of the second latent dimension increases, the

reach angles are deviating from zero radians. In contrast, for GPFA, the colors are mixed

throughout time, and it is hard to see any relation between latent trajectories and reach angles

(colors). To quantify this relationship, we calculated the ℓ2 distance between individual latent

trajectories and the baseline trajectory (defined as the average of all trajectories with reach

angle within [-0.5, 0.5] radians). We plotted the distance between trajectories as a function of

the angular distance (cosine distance) of the corresponding reaches for OSLMM (Fig 7C) and

GPFA (Fig 7D). Here, we indicated the speed of the reaches as the grey-scale of the points. We

found that, for OSLMM (Fig 7C), as the distance between reach angles increased, so to did the

distance in latent space (Spearmean ρOSLMM = 0.72 with p-value 2.54 × 10−18). This

Fig 6. OSLMM’s latent spaces extracted from motor cortex are predictive of behavior. (A) (top) Schematic location of motor cortex recordings on

non-human primate brain; (middle) schematic of maze reaching task; (bottom) raster plot of extracted neural spike data from monkeys’ motor cortex

(each tick mark corresponds to detected spike time). (B) The average speed profiles for 108 conditions. Each profile is colored according to the average

reach angle. (C)Functional boxplots of the smoothed spike rates for each condition where black lines refer to the median curve and light/dark grey

shaded areas refer to non-outlying region and 50% central region. It displays the general the spike rates pattern across all conditions. Panel A is

reproduced from [10, 34].

https://doi.org/10.1371/journal.pcbi.1011975.g006
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Fig 7. OSLMM latent spaces extracted from motor cortex population activity are structured by kinematics. (A,B)

Trial-averaged latent trajectories for all reach conditions colored by reach angle for OSLMM (A) and GPFA (B). (C,D)

Scatter plot of cosine distance between reach angles vs. the distance between latent trajectories for OSLMM (C) and

GPFA (D). Each point is colored (gray-scale) according to the speed (at 350ms) of the reach. (E,F) Trial-averaged latent

trajectories but for all reach conditions colored (grey scale) by the speed at 350ms for OSLMM (E) and GPFA (F). (G,

H) Scatter plot of difference in speeds vs. the rate of change of latent trajectories for OSLMM (G) and GPFA (H). Each

point is colored according to the average angle of the reach.

https://doi.org/10.1371/journal.pcbi.1011975.g007
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relationship was much weaker for GPFA (Fig 7D, Spearman ρGFPA = 0.31 with p-value

1.12 × 10−3). There was no visually salient modulation by reach speed for either GPFA or

OSLMM for this metric of latent trajectories. The difference in Spearman ρ values was statisti-

cally significant (p = 3.90 × 10−18, Wilcoxon signed-rank test, N = 100 resamples).

We next examined if and how reach speed impacted latent trajectories. We first colored the

latent trajectories by the speed of the reach at 350ms (where speed profiles had high variance,

Fig 6B) into grey-scale for OSLMM (Fig 7E) and GPFA (Fig 7F). For OSLMM, the latent tra-

jectories corresponding to slower speeds (light grey) had less movement over time than did the

trajectories corresponding to higher speeds (black)(Fig 7E). That is, there were more rapid

dynamics of latent trajectories for more rapid reaches. In contrast, for GPFA, there appeared

to be no systematic effect on the latent dynamics for different reach speed (Fig 7F). To quantify

this relationship, we first defined the change in latent space as the difference between the posi-

tion at time 200 ms to position at time 300 ms. The relative rate of change is then the difference

in the rate of change for each condition and the baseline condition, where the baseline condi-

tion is defined as the reach with the minimum speed at time 350 ms. We plotted the rate of

change against the difference between the speed for each condition and the baseline condition

at time 350ms for OSLMM in Fig 7G and for GPFA in Fig 7H. We found that OSLMM had a

more robust relationship between speed and latent trajectories (Spearman ρOSLMM = 0.68 with

p-value 6.42 × 10−16) than did GPFA (Spearman ρGPFA = 0.40 with p-value 1.63 × 10−5). There

was no visually salient modulation by reach angle for either GPFA or OSLMM for this metric

of latent trajectories (coloring of points). The difference between Spearman ρ values was statis-

tically significant (p = 3.90 × 10−18, Wilcoxon signed-rank test, N = 100 bootstrap resamples).

We further visualized the latent neural trajectories of the motor cortex with and without the

time varying scale factor (W(t)) (Fig G in S1 File). In contrast to the auditory cortex trajecto-

ries, the geometry of latent neural trajectories were substantially different between the two. In

particular, the unscaled trajectories were much more tangled and had less organization with

respect to the reach angle compared to the scaled trajectories. Together, these results demon-

strate that latent spaces of motor cortex neural populations during reaches are structured by

the kinematics of the reach.

Finally, to provide further insight into the structure of latent dynamics in motor cortex, we

conducted jPCA [3] based on the extracted latent trajectories from GPFA and OSLMM. jPCA

finds latent directions of maximal rotational dynamics, and we visualized neural trajectories in

the first three jPCs for the first 150ms in Fig 8. As above, we encoded reach angles into colors

(Fig 8A and 8B) and encoded reach speeds into grey scale (Fig 8C and 8D). Visually, we

observed that the reach angles imparted structure to the jPCA trajectories extracted from

OSLMM (Fig 8A), but not GPFA (Fig 8B). More specifically, through the counter-clockwise

direction, the color (i.e., angle) in Fig 8A varied from green to yellow, orange to red, and pur-

ple to blue, which matches the dehttps://dandiarchive.org/dandiset/000128creasing order

(looped) in reach angles. However, no clear dependence between jPCA trajectories and reach

angles was observed in Fig 8B. The jPCA trajectories were not visually structured by speed for

either OSLMM or GPFA (Fig 8C and 8D). Together, these results indicate that latent rotational

dynamics of motor cortex neural populations during reaches can be structured by the kine-

matics of the reach.

Discussion

We developed a new Bayesian multi-output regression framework, the orthogonal stochastic

linear mixing model (OSLMM). OSLMM can capture input-dependent correlations across

outputs and enables accurate prediction by utilizing an adaptive mixing mechanism, where
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mixing coefficients depend on inputs. Moreover, by imposing orthogonality constraints on the

coefficient matrices, MCMC inference scales linearly with the output dimension and the num-

ber of latent functions. Together, these innovations enable application to large datasets with

complicated input-dependent correlations across many outputs. We demonstrated the numer-

ical superiority of OSLMM in various real-world benchmark datasets. Finally, we used

OSLMM for analysis of diverse single-trial neural data, demonstrating that it provides not only

better prediction performance but also extracts latent spaces structured by exogenous vari-

ables, enhancing neuroscientific interpretation.

Powered by new technologies, neuroscientists are recording from ever larger populations of

neurons across broad spatio-temporal scales. Such datasets simultaneously bring with them

the promise of improved insight into brain mechanisms producing complex functions, and

the challenge of developing new analytic techniques to provide that insight. However, if and

how neuroscientific conclusions about the structure (or lack-there-of) of latent neural popula-

tion activity depends on the methods used is rarely considered. We applied OSLMM to extract

latent spaces in two very different neurosicence datasets: μECoG recordings from rat auditory

Fig 8. OSLMM latent spaces of motor cortex dynamics are structured by reach angle. (A, C) First three jPCA dimensions from the OSLMM

extracted latent space; (B, D)First three jPCA dimensions from the GPFA extracted latent space. We encoded reach angle as color in (A,B) and reach

speed into grey scale in (C, D).

https://doi.org/10.1371/journal.pcbi.1011975.g008
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cortex in response to pure tone pips (collected in our lab), and multiple single-unit recordings

from monkey motor cortex during arm reaches from [10, 34]. In both datasets, we find that

OSLMM latent spaces provided a robust basis for diverse prediction tasks. More importantly,

we found that OSLMM extracted latent spaces were directly structured by the exogenous vari-

ables, which in some cases changed neuroscientific interpretation relative to GPFA.

μECoG recordings from rat auditory cortex in response to pure tone pips provide a power-

ful test-bed for comparing latent spaces extracted by different methods. The response proper-

ties of single μECoG channels are well matched to the response properties of single-neurons in

the cortical column underneath the electrode: responses are tuned to a single best frequency,

and responses increase with increasing sound amplitude [28, 41, 43]. In contrast to conven-

tional electrophysiological recording techniques, the μECoG recordings utilized here spanned

the entire extent of rat primary auditory cortex, as well as secondary and tertiary auditory fields

[28]. Across the auditory cortex, the representation of sound frequency is spatially organized

(’tonotopy’), which is a recurring functional organizational principle in mammals [43]. Across

electrodes, sound amplitude and sound frequency are primary sources of response variance,

providing strong expectation that latent trajectories extracted from the population activity

should be organized by those stimulus features. Indeed, we found that latent population activ-

ity was strongly organized by sound frequency and amplitude. However, this finding depended

on the method used to extract latent spaces, as GPFA latent spaces were not robustly organized

by both of these features. Thus, the absence of structured latent spaces is, in and of itself, not

sufficient to draw neuroscientific conclusions. This should come as no surprise, as it is well

known that negative scientific results (e.g., lack of structure) can emerge from many sources

(e.g., choice of methods) and may not reflect scientific reality.

Recent perspectives on motor cortex argue that, in contrast to a representational perspec-

tive, it is best thought of as dynamical system that drives behavior, and should be viewed

through the lens of latent spaces extracted from neural population activity activity [1, 3, 45].

This perspective is supported by findings of strong rotational dynamics in the latent neural

population activity, despite the fact that the behavior itself (arm reaches) are not cyclic [3]. It is

further argued that the kinematic parameters of produced reaches impart little-to-no structure

to rotational latent population dynamics [3]. However, as we showed for recordings from audi-

tory cortex, lack of organization of latent trajectories by exogenous variables can simply be a

consequence of the method used to extract the latent spaces from the data, not necessarily a

statement of the latent structure in the data per se. Indeed, many studies have found that the

activity of single neurons in motor cortex can be decently explained by specific kinematic

parameters of the behavior, such as reach angle and speed [46–48]. Thus, we hypothesized that

the latent structure of motor cortex population activity during reaching is shaped by reach

kinematics. We found that latent spaces were structured by both reach angle and speed, and

moreover, rotational dynamics (extracted via jPCA) are structured by reach angle. As with the

auditory cortex results, these findings were robustly revealed by OSLMM and but not GPFA.

While we emphatically agree with a dynamical systems perspective of brain activity, we

believe that the representational and dynamical perspectives are not as incompatible as has

been previously claimed. That is, the dynamics of population activity can be structured by the

features of exogenous variables (e.g., sound frequency and reach angle) represented by individ-

ual neurons. Indeed, we have demonstrated that latent population trajectories can simulta-

neously be structured by the properties of individual neurons (i.e., reflect reach angle, which is

known to modulate single-neuron responses) and reveal properties not obvious at the single-

neuron level (e.g., rotations). These results emphasize the potential perils of interpreting nega-

tive results from latent spaces and advocate for application of the same scientific rigor used to

evaluate negative experimental results. More broadly, we argue that connecting latent spaces/
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dynamics of population neural activity to well characterized properties of single-neurons pro-

vides important neurobiological insight. This insight may ultimately permit understanding

how specific neurons contribute to the generation of population dynamics based on their tran-

scriptomic, physiologic, and connectomic properties. Such understanding is critical for tar-

geted interventions to alleviate neurological disorders.

Interestingly, in both auditory cortex and motor cortex, we observed that different parame-

ters of the exogenous variables were reflected by distinct characteristics of the latent trajecto-

ries. Specifically, in the auditory cortex, sound frequency modulated the angle of latent

trajectories while sound amplitude modulated the magnitude of those trajectories. Likewise, in

the motor cortex, reach angle modulated the location of latent trajectories and rotational

dynamics, while reach speed modulated the rate of change of latent trajectories (but not rota-

tional dynamics). Having independent exogenous features impart different structure in latent

spaces may provide a basis for separate information channels that are read-out by down-

stream/upstream neurons. Thus, such latent spaces may be utilized for information transmis-

sion across long-range anatomical connections that form an information bottleneck [49, 50].

Future work relating sparse codes to such latent structure could shed light on this conjecture

[50, 51].

A variety of methods for extracting latent structure from neural population data have been

recently introduced. LFADS (Latent Factor Analysis via Dynamical Systems) [8] is a sequential

model based on a variational auto-encoder, which leverages the RNN to model the temporal

dependence in the latent space. However, the latent space learned by LFADS was not used to

visualize latent neural trajectories, but more to ‘process’ the data for subsequent input to linear

subspace methods (PCA and jPCA) [3]. Similar to LFADS, NDT refers to Neural Data Trans-

formers, a non-recurrent neural network similar to LFADS that replaces the RNN encoder

decoder with Transformer instead [52]. MINT refers to “mesh of idealized neural trajectories”

[53]. It simply uses a state-transition lookup table to model the latent dynamics and proposes

two conditional functions to jointly model both spiking activity and the behavioral statistics.

In contrast to LFADS and NDT, OSLMM is a non-neural network model that focuses on

extracting intrinsic latent trajectories that are organized by the parametric structure of exoge-

nous variables, instead of model predictive performance. MINT focuses on latent representa-

tions learned from both behavior trajectory and spiking observations, while OSLMM targets

representations for only spiking activities. That is, OSLMM identifies intrinsic latent represen-

tations, while MINT was directly designed to improve the performance of brain computer

interfaces by modeling both the extrinsic behavior and neural data simultaneously.

Compared with other Gaussian process based methods, some advantages and differences of

the OSLMM are addressed. First, similar to most linear models of coregionalizations [15, 54],

GPFA assumes fixed correlations between neurons. However, in neural data sets, it has been

observed that there are time-dependent changes in correlation structure that are temporally

aligned to the stimulus, violating this assumption [6, 10, 11]. OSLMM addresses this issue by

employing an adaptive linear function of latent functions to admit correlation structure

changes over time. Recent works [15, 17] have also illustrated that the adaptive linear projec-

tion structure can deal with input-dependent correlation, scale, and smoothness of outputs.

Second, similar to the Orthogonal Instantaneous Linear Mixing Model (OILMM) in [20],

OSLMM assumes the coefficient matrices in the coupling between latent dynamics and obser-

vations are orthogonal, but OSLMM enables the coefficient matrices to vary across inputs

while the OILMM does not. Moreover, instead of imposing orthogonality on coefficients post-
hoc, as in the GPFA, OSLMM directly imposes orthogonality on stochastic coefficients. The

orthoganility constraint enables scaling inference by breaking down the high dimensional pre-

diction problem into independent single-output problems and using efficient MCMC to
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sample the orthogonal space on the Steifel manifold. Both the conditional linear and orthogo-

nality properties of OSLMM contribute to enhanced extraction of interpretable latent spaces.

Lastly, we note that, like the Gaussian process regression network [21], OSLMM is strictly a

non-Gaussian model due to its adaptive mixing mechanism. Future work could derive varia-

tional inference for OSLMM to overcome the expensive sampling of all latent functions when

the number of samples is very large.

In summary, we have demonstrated that OSLMM enables Bayesian inference in time-series

datasets with large-numbers of latent dimensions, provides superior performance on diverse

prediction tasks, and reveals organization of unsupervised latent spaces by exogenous vari-

ables. As with neuroscience, many other fields of biology are benefiting from the collection of

data from large numbers of sensors over time [55]. Therefore, these results indicate that

OSLMM will be beneficial for analysis of many high-dimensional biological time-series data-

sets where data-driven discovery of complex latent structure is crucial for understanding the

data generation process.

Supporting information

S1 File. Appendix A. Hyper-parameter learning for SLMM. Appendix B. Theoretical proofs

for sufficient statistics. Appendix C. Hyper-parameter learning for OSLMM. Appendix D. Pre-

diction comparison on real datasets. Table A. Predictive mean absolution error of five methods

on three real datasets, Equilty, PM2.5 and Neural. The results were summarized by mean and

standard deviation over 5 runs. Fig A. Training speed of SLMM, OSLMM and SGPRN infer-

ence algorithms on Equity data (A) and PM2.5 data (B). We show the running time per itera-

tion in the setting with different number of latent functions. Table B. Predictive mean

absolution error of five methods on three real datasets, Jura and Concrete. The results were

summarized by mean and standard deviation over 5 runs. Fig B. First two principle angles

derived from the SLMM model for five real data. First principal angle is on left while the sec-

ond principal angle is on right. Appendix E. Analysis between predictive performance and

latent dimension size in ECoG dataset. Appendix F. Analysis between latent representation

performance and latent dimension size in ECoG dataset. Fig C. Prediction performance on

leave-one-channel-prediction task on different latent dimension size Q = 2, 4, 8 and 16. S1, S2,

S3 and S4 represent four stimuli with paired of conditions (7627Hz, -10dB), (32000Hz, -10dB),

(7627Hz, -50dB) and (32000Hz, -50dB). Fig D. Inferred orthonormalized latent functions

from OSLMM and GPFA for all stimuli with Q = 10. (A-B) Eight stimuli for all attenuation

with a fixed frequency 7627 Hz averaged by trials. (A) OSLMM; (B) GPFA); (C-D): The same

type of inferred orthonormalized latent functions for OSLMM (C) and GPFA (D) but for all

frequencies with a fixed attenuation -10 dB averaged by trials. Moreover, we conducted linear

regression between the peak of latent functions and exogenous variable (attenuation or fre-

quency). The R2 scores for OSLMM/GPFA are 0.71/0.61(Frequency: 7627) and 0.28/0.06

(Attenuation: -10). Appendix G. Latent trajectories with/without scaling. Fig E. Inferred ortho-

normalized latent functions from OSLMM and GPFA for all stimuli with Q = 15. (A-B)Eight

stimuli for all attenuation with a fixed frequency 7627 Hz averaged by trials. (A) OSLMM; (B)

GPFA); (C-D): The same type of inferred orthonormalized latent functions for OSLMM (C)

and GPFA (D) but for all frequencies with a fixed attenuation -10 dB averaged by trials. More-

over, we conducted linear regression between the peak of latent functions and exogenous vari-

able (attenuation or frequency). The R2 scores for OSLMM/GPFA are 0.85/0.62(Frequency:

7627) and 0.50/0.06(Attenuation: -10). Fig F. Latent trajectories of ECoG auditory responses

with (A and C) and without (B and D) the time varying scale factor. The log scale trajectories

of ECoG auditory responses ranked by the corresponding variance (E). Fig G. Time varying

PLOS COMPUTATIONAL BIOLOGY Bayesian inference of structured latent spaces from neural population activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011975 April 26, 2024 23 / 26

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011975.s001
https://doi.org/10.1371/journal.pcbi.1011975


scale analysis in motor cortex data. Latent trajectories with (A) and without (B) time-varying

scale. The log scale trajectories of motor cortex responses ranked by the corresponding vari-

ance (C). Distance plots for latent trajectories. Fig H. Distance plots of latent trajectories for

OSLMM (A) and GPFA (B). The mean and one standard deviation below and above it for the

point-wise distances are provided.
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