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predict radiomic features and histology in non-small
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aUniversity of California, Los Angeles, Department of Radiological Sciences,

Los Angeles, California, United States
bUniversity of California, Los Angeles, Department of Bioengineering,

Los Angeles, California, United States
cUniversity of California, Los Angeles, Bioinformatics Interdepartmental Program,
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Abstract

Purpose: Integrative analysis combining diagnostic imaging and genomic information
can uncover biological insights into lesions that are visible on radiologic images. We investigate
techniques for interrogating a deep neural network trained to predict quantitative image
(radiomic) features and histology from gene expression in non-small cell lung cancer
(NSCLC).

Approach: Using 262 training and 89 testing cases from two public datasets, deep feedforward
neural networks were trained to predict the values of 101 computed tomography (CT) radiomic
features and histology. A model interrogation method called gene masking was used to derive the
learned associations between subsets of genes and a radiomic feature or histology class [adeno-
carcinoma (ADC), squamous cell, and other].

Results: Overall, neural networks outperformed other classifiers. In testing, neural networks
classified histology with area under the receiver operating characteristic curves (AUCs) of
0.86 (ADC), 0.91 (squamous cell), and 0.71 (other). Classification performance of radiomics
features ranged from 0.42 to 0.89 AUC. Gene masking analysis revealed new and previously
reported associations. For example, hypoxia genes predicted histology (>0.90 AUC).
Previously published gene signatures for classifying histology were also predictive in our model
(>0.80 AUC). Gene sets related to the immune or cardiac systems and cell development proc-
esses were predictive (>0.70 AUC) of several different radiomic features. AKT signaling, tumor
necrosis factor, and Rho gene sets were each predictive of tumor textures.

Conclusions: This work demonstrates neural networks’ ability to map gene expressions to radio-
mic features and histology types in NSCLC and to interpret the models to identify predictive
genes associated with each feature or type.

© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.8.3.031906]

Keywords: radiogenomics; non-small cell lung cancer; gene expression; model interpretability;
deep learning.

Paper 20218SSRR received Aug. 21, 2020; accepted for publication Apr. 13, 2021; published
online May 8, 2021.

1 Introduction

Precision medicine has driven the high-throughput profiling of both molecular and medical im-
aging data to identify detailed tumor subtypes that better predict survival and treatment out-
comes. Radiogenomic studies attempt to integrate two complementary data types to explain
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tumor imaging patterns using molecular information and vice versa. For example, radiogenomic
studies have shown that image features [e.g., appearance of a tumor on computed tomography
(CT) or magnetic resonance imaging] predict molecular patterns (e.g., gene expression, gene
mutation, or molecular subtypes).1–6 Radiogenomic studies support the derivation of tumors’
biological states from noninvasive imaging and the correlation of molecular information and
imaging phenotypes to better understand cancer heterogeneity. However, radiogenomic studies
are often limited by the high dimensionality of the data, the simplifying model assumptions (e.g.,
linearity), and the lack of validation datasets.7,8

Deep learning techniques have been widely used on molecular and imaging datasets given
their ability to handle high-dimensional inputs without feature engineering and to represent non-
linear and hierarchical relationships between model inputs and outputs. Several studies have
used deep learning models such as convolutional neural networks, generative adversarial net-
works, and autoencoders to uncover radiogenomic associations.5,6,9,10 However, while these
works report accurate predictions of imaging phenotypes from genomic data, they do not attempt
to provide a biological interpretation of what the model has learned. While high classification
accuracy is important, the ability to interrogate the model is critical to validating the learned
radiogenomic associations.

In our previous work, we addressed the model understanding challenge by presenting meth-
ods such as gene masking to interpret trained neural networks.11 We showed that the models
were capable of learning radiogenomic associations that were consistent with prior work while
also generating new associations for further consideration. A limitation of this prior work11 is
that the analysis was performed using a single dataset from glioblastoma patients. We did not
demonstrate the generalizability of our approach in other domains. Therefore, the purpose of this
study is to investigate the ability of neural networks to model gene expression in a different
cancer domain with multiple different histologies or stages, a variety of computationally derived
image features (e.g., shape and texture), and an external validation or testing dataset.

Here, we present deep feedforward neural networks to model transcriptomes using two sim-
ilarly derived radiogenomic datasets recently published in non-small cell lung cancer (NSCLC).12

As one of the few publicly released radiogenomic datasets available, the paper reported radioge-
nomic associations and provided a basis for comparison. First, we evaluate the ability of neural
networks to independently predict two clinical traits (histology and stage) and 101 radiomic fea-
tures using a transcriptome consisting of 21,766 gene expressions in a training dataset of 262
patients. Next, we demonstrate the generalizability of our neural network models in an independent
validation dataset of 89 patients. Finally, we systematically probe the trained neural networks to
define specific patterns of gene expression related to a clinical trait or radiomic feature. We com-
pare the models’ learned relationships with previously reported associations.

2 Materials and Methods

2.1 Data

Clinical, imaging, and transcriptomic data were from 351 cases used in a prior study.12 The data
consisted of two groups of patients, all of whom were diagnosed with primary tumors, had con-
trast-enhanced diagnostic CT, and underwent surgical resection. In one group, data were col-
lected from 262 patients treated at the H. Lee Moffitt Cancer Center, Tampa, Florida, from 2006
to 2009 (Dataset1). The remaining 89 patients were treated at the Maastricht University Medical
Centre, Maastricht, Netherlands (Dataset2). In this study, Dataset1 and Dataset2 were treated as
training and testing datasets, respectively. Patient characteristics are compared between the two
datasets in Table 1. The clinical stage referred to pathologic TNM staging and was represented
using four categories: I, II, III, or other. Pathologic histology was captured using three categories:
adenocarcinoma (ADC), squamous carcinoma (SCC), or “other.” CT scans were interpolated to
have a voxel size of 1.0 × 1.0 × 1.0 mm3, and radiomic features were generated in prior work by
the original study authors13 from regions identified using a semiautomated ensemble segmen-
tation algorithm.14 Radiomic features were extracted from three-dimensional tumor volumes in
contrast-enhanced presurgical CT scans to determine histogram statistics; morphology; textures,
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such as gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (called RLGL),
and gray-level size-zone matrix (GLSZM); Laplacian of Gaussian (LoG) transformations; and
wavelet decompositions. Transcriptomes consisting of 21,766 gene expression levels were mea-
sured for all patients using the same Affymetrix microarray chip platform.

In this study, each radiomic feature was a continuous variable that was transformed into
binary classes using k-means clustering in the training dataset. This approach was used to sep-
arate patients into two groups based on a single radiomic feature. If a radiomic feature was highly
imbalanced (e.g., >90% of the patients belong to one group), that feature was removed from the
analysis. For example, the radiomic feature surface area to volume ratio was grouped into two
clusters: cluster A had a mean ratio of 0.26, and cluster B had a mean ratio of 0.52. Each cluster
represented one class. Clustering was performed via KMeans from sklearn. After filtering, 101
radiomic features out of the 636 features generated in the original study remained.12 These
included seven types of radiomic features: 10 shape, 22 GLCM, 7 GLSZM, 10 RLGL, 12 stats,
9 LoG, and 31 wavelet features. The full names and class frequencies of the 101 radiomic fea-
tures are provided in a GitHub repository (see Code Availability). LoG and wavelet features
were selected from LoG_sigma_0_5_mm_2D and the HHH wavelet decomposition. Radiomic

Table 1 Patient characteristics, estimated or replicated from the source.12

Training (n ¼ 262) Testing (n ¼ 89)

Source Country USA Netherlands

Gender Male 100 (38%) 59 (66%)

Female 124 (47%) 28 (32%)

N/A 38 (15%) 2 (2%)

Histology ADC 129 (49%) 42 (48%)

Squamous 61 (23%) 33 (38%)

Other 34 (13%) 12 (14%)

N/A 38 (15%) 0 (0%)

Stage I 123 (47%) 39 (44%)

II 35 (13%) 26 (29%)

III 46 (18%) 12 (14%)

Other 20 (8%) 10 (11%)

N/A 38 (14%) 2 (2%)

Smoking status Current 66 (25%) N/A

Former 141 (54%) N/A

None 17 (7%) N/A

N/A 38 (14%) N/A

Tumor site Primary 224 (86%) 87 (98%)

N/A 38 (14%) 2 (2%)

Status Alive 134 (51%) 41 (46%)

Deceased 90 (35%) 46 (52%)

N/A 38 (14%) 2 (2%)

Follow-up Median months 32 31
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features with definitions that were not explicitly provided by the source12,13 were not considered
during model interpretation. The same cluster boundaries discovered during training were used
to binarize the testing data.

2.2 Radiogenomic Modeling

Dense feed-forward neural networks were used to map transcriptomes (which we defined as
model inputs) to radiomic features (model outputs). Gene expression was standardized by mean
subtraction and standard deviation division for each gene. Layers within the radiogenomic mod-
els were constructed with three or four hidden layers, where the first hidden layer had either
2000, 4000, or 6000 nodes. The number of hidden nodes was halved with each subsequent
hidden layer. Neural networks were trained using cross-entropy loss, nonlinear activation func-
tions, dropout, batch normalization, and early stopping by monitoring loss.

Performance was reported using area under the receiver operating characteristic curve (AUC).
Hyperparameters were selected using a grid search based on the model that achieved the highest
mean AUC in 10-fold cross-validation (CV) during training. During CV, the mean and standard
deviation used for gene standardization were calculated using the training folds for each split; in
testing, metrics were based on the entire training dataset. Training performance was averaged
across CV folds. Accuracy was calculated based on a decision threshold of 0.5 class probability.

Figure 1(a) shows the overall procedure used to train the radiogenomic neural networks. To
reduce the hyperparameter search for each radiomic feature, a grid search was performed using a
neural network that predicted all features corresponding to one of the seven radiomic feature
groups (previously defined as shape, GLCM, GLSZM, RLGL, stats, LoG, and wavelet). For
example, one network would be trained to predict all 22 GLCM features as a multilabel clas-
sification task using the patient’s transcriptome as the input. Once a neural network was trained
for each radiomic group, the hyperparameters used for the best performing network were then
used to train a neural network that predicted a single radiomic feature within that group. Other
classifiers, including logistic regression, support vector machines, random forest, and gradient
boosted trees, were also implemented as a comparison. Each comparison model was trained to
predict a single radiomic feature and evaluated against the neural network. The best performing
model for each radiomic feature was then retrained on the entire training dataset to obtain the
final model. Final models were evaluated on the testing dataset. Radiomic features with at least
0.70 test AUC were kept for further analysis.

More details on the architecture of radiogenomic neural networks are shown in Fig. 2. All
models and their hyperparameters are listed in Table 2.

(a)

(b)

Fig. 1 An overview of this study’s approaches to (a) training and (b) interpretation radiogenomic
neural networks.

Smedley, Aberle, and Hsu: Using deep neural networks and interpretability methods. . .

Journal of Medical Imaging 031906-4 May∕Jun 2021 • Vol. 8(3)



Fig. 2 The architecture and hyperparameter tuning of a radiogenomic neural network.

Table 2 NSCLC radiogenomic models and hyperparameters. Grid search was used for selecting
hyperparameters.

Model type # Models Hyperparameter Values

Logistic regression 100 Penalty type Elastic net

L1 ratio [0–1]

Solver SAGA

Support vector machines 400 Kernel Linear, poly, rbf, sigmoid

C penalty logð−6Þ − logð6Þ

Random forest 120 Trees ½50∶100∶3050�

Split criterion Gini, entropy

Max. features
ffiffiffiffi

G
p

, log2ðGÞ

Max. depth None

Gradient boosted trees 150 Trees ½50∶100∶1000Þ

Max. depth [1–3]

Learning rate ½0.01∶0.1∶0.50�

Neural network 48 Hidden nodesa [6000–250]

Hidden layers 3, 4

Optimizer Nadam, Adadelta

Activation Sigmoid, relu

Dropout 0.4, 0.6

Loss Binary cross-entropy

Epochs (patience) 500 (200)

Batch 10

G: number of genes in the transcriptome
aFirst hidden layers were either 2000, 4000, or 6000 nodes, where the number of hidden nodes for a layer was
halved with each subsequent layer.
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2.3 Modeling Tumor Histology and Stage

In addition to predicting radiomic features, we trained additional networks to predict histology
and stage from the transcriptome. These networks have the same architecture as what was used
for radiogenomic modeling. Histology and stage were each modeled as multilabel classification
tasks (Table 1). The neural networks used categorical entropy loss and softmax activation in the
prediction layer. Training scores were microaveraged across all classes and folds in CV. Test
scores and model interpretation methods were based on one class versus all other classes unless
otherwise noted. The methods for hyperparameter optimization and model selection were the
same as previously described.

2.4 Using Interpretability Methods to Identify Gene Expression Patterns

Figure 1(b) shows the gene masking steps used to extract predictive gene expression patterns
from trained neural networks. Gene masking was previously defined for radiogenomic neural
networks11 and focused on a component of the model’s input using one predefined gene set at a
time, a similar process to sensitivity analysis.15 For example, masking of genes related to hypoxia
involved taking each patient’s gene expression profile, keeping only the hypoxia genes’ expres-
sions, and setting all other gene expressions to zero (i.e., the input is masked). The masked input
was then pushed through the model, and the model’s prediction of a radiomic feature was
recorded. This process was repeated for the entire cohort, and classification performance was
calculated via AUC and average precision (AP). Gene masking measured the model’s ability to
predict radiomic features based on gene expression of a particular gene set, where the higher the
performance is, the stronger the association in the cohort is. Masking resulted in “radiogenomic
associations” learned by the model. The strength and generalizability of the learned radioge-
nomic associations were measured for each gene set by their performance (i.e., AUC) in the
testing cohort. Predefined gene sets were used for gene masking. These included the “Hallmark”
and “Gene Ontology” (GO) biological processes from Molecular Signature Database (MSigDB)
v7.0.16 For simplicity, gene sets with a maximum of 500 genes were studied.

Relationships between gene expression and histology were also studied using gene masking.
In prior work, a 42-gene signature was used to distinguish ADC from SCC.17 In another similar
effort, a 75-probe set signature was found for ADC, SCC, and large cell carcinoma (LCC).18 The
gene sets reported in these works were also examined in this work as a point of comparison.

3 Results

3.1 Predicting Histology or Stage from the Transcriptome

3.1.1 Deep neural networks outperform comparison approaches

In predicting histology, deep neural networks outperformed other models by more than 0.10 AUC
in 10-fold CV of the training dataset [Fig. 3(a)]. Performance of the histology model remained
consistent in the testing dataset, achieving test scores of 0.86 AUC, 0.91 AUC, and 0.71 AUC
in predicting ADC, SCC, or other histology, respectively. The neural network achieved an overall
microaveraged test AUC of 0.77. In predicting stage, all models fared poorly, with the neural
network still achieving the best performance. Given the poor performance in the predicting stage,
only the neural network used to predict histology was analyzed using gene masking.

3.1.2 Gene masking identifies gene sets that predict histology

Gene masking of the histology neural network showed agreement with previously published
gene signatures for predicting NSCLC, ADC, and SCC.17,18 As shown in [Fig. 3(c)], the afore-
mentioned gene signatures were also found to be predictive in our histology neural network in
the testing dataset. In particular, the gene signature from Ref. 17 resulted in 0.93 test AUC in
both ADC and SCC.
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Hallmark gene sets were also predictive of histology [Fig. 3(d)]. Gene expression related to
hypoxia, coagulation, and KRAS signaling predicted both ADC and SCC (>0.90 test AUC).
Similar to the overall performance observed on the testing data, summarized in Fig. 3(b), the
histology neural network was driven by accurate predictions in ADC and SCC, where the test
AUC was about 0.20 higher than what was obtained when predicting the other histology class.
Subsequently, this behavior was reflected in gene masking, where the most predictive gene sets
for estimating other histology in testing were inflammatory response (0.73 AUC) and angiogen-
esis (0.72 AUC). Notably, angiogenesis was more predictive of other histologies (0.73 AUC)
than ADC (0.66 AUC) or SCC (0.63 AUC) classes in testing.

Fig. 3 The ability of models to predict NSCLC histology and stage in (a) training and (b) testing. In
training, models were evaluated using 10-fold CV, and models were compared using the mean
AUC scores in CV. The top performing model was then retrained on the full training dataset and
evaluated on the testing dataset. The testing performance scores are shown for each histology
type and stage. (c)–(e) Genemasking of the histology neural network using gene sets from (c) pub-
lished gene signatures for histology,17,18 (d) Hallmark (top five out of 50),19 and (e) Gene Ontology
biological processes (GO.bp, top ten out of 7350).16 In (c)–(e), each column is a type of histology
and each row is a gene set used to mask the trained model to inspect how well the model predicted
a certain histology type. The color in a cell shows the model’s performance using a gene set to
predict a histology type, where red denotes higher AUCs and purple denotes lower AUCs in the
testing dataset. (b) The ability of the histology model to predict each histology type and the AUC
score is based on using all genes in the gene expression profile. (c)–(e) The ability of a specific
gene set in predicting a histology type. For more details on the gene sets used, see Sec. 2.
Notation: lcc = gene signature for large cell carcinoma, scc = gene signature for squamous cell
carcinoma, adc = gene signature for adenocarciomas, adc versus scc = gene signature for differ-
entiating ADC from SCC.
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Table 3 Summary of predictive gene expression patterns in NSCLC histology.

Histology

Transcriptomic pattern Test

Themea Gene set Sourceb AUC AP

ADC Synthesis Phosphatidylcholine biosynthetic process G 0.94 0.93

Phosphatidic acid biosynthetic process G 0.94 0.86

Transcription Neg. regulation of dna-binding
transcription factor activity

G 0.93 0.92

Vasculature Neg. regulation of sprouting angiogenesis G 0.93 0.92

Coagulation H 0.91 0.86

Cell development Retina development in camera-type eye G 0.93 0.87

Cell death Hypoxia H 0.91 0.88

KRAS KRAS signaling down H 0.91 0.84

UV UV response down H 0.92 0.90

E2F E2F targets H 0.92 0.87

Squamous cell Cell development Metencephalon development G 0.95 0.90

Carcinoma Differentiation Epidermal cell differentiation G 0.94 0.94

Neuron fate commitment G 0.92 0.87

Catabolism Neg. regulation of cellular catabolic
process

G 0.94 0.88

Cell death Cornification G 0.94 0.93

Hypoxia H 0.91 0.90

KRAS KRAS signaling down H 0.93 0.93

Hormone Estrogen response late H 0.92 0.91

Cholesterol Cholesterol homeostasis H 0.92 0.83

Other Transport Posttranslational protein targeting to
membrane, translocation

G 0.86 0.35

Regulation of sodium ion transmembrane
transporter activity

G 0.84 0.54

AMPA receptor Regulation of AMPA receptor activity G 0.85 0.44

Cell cycle Mitotic nuclear envelope reassembly G 0.84 0.50

Ubiquitination Neg. regulation of protein K63-linked
ubiquitination

G 0.84 0.38

Immune system Inflammatory response H 0.73 0.37

Vasculature Angiogenesis H 0.72 0.35

aGene sets were categorized by comparing the top five gene sets in GO and Hallmark with at least 0.70 test
AUC.

bfrom MSigDB v7.0, where H = Hallmark, G = Gene Ontology, neg.= negative.
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The most predictive GO biological processes [Fig. 3(e)] were also associated with angio-
genesis, epithelial mesenchymal transition, and hypoxia from the Hallmark gene sets. Of the
gene sets considered in gene masking, negative regulation of DNA-binding transcription factor
activity from GO had the best overall testing performance with the highest micro-averaged AUC
of 0.79; the individual test AUCs were 0.93 in ADC, 0.91 in SCC, and 0.75 in other. The afore-
mentioned gene set consisted of 170 genes, where 156 (91.2%) were in the gene expression
profile. A summary of gene expression patterns is given in Table 3. Notably, KRAS is a major
gene studied in NSCLC, and the KRAS Hallmark was found to be predictive of ACC and SCC.

3.2 Predicting Radiomic Features from the Transcriptome

3.2.1 Overall performance

Neural networks were overall better at classifying radiomic features than all other models within
the training dataset [Fig. 4(a)]. The only exceptions were in gradient boosted trees that had better
performance in four radiomic features (differences below 0.026 AUC) and random forest in one
radiomic feature (0.012 AUC difference). In testing, neural networks had 0.42 to 0.89 AUC, 0.45
to 0.94 accuracy, and 0.09 to 0.98 AP across all radiomic feature classifications. A subset of 13
radiomic features had at least 0.70 test AUC and was subsequently selected for interpretation.
Figure 4(b) shows the neural network’s generalizability to classify the aforementioned 13 radio-
mic features in the testing dataset.

3.2.2 Gene masking identifies gene sets that predict radiomic features

Figure 5 shows the top GO gene sets associated with predicting each radiomic feature. Overall,
the results of gene masking suggest that the prediction of each radiomic feature was associated
with a unique gene expression profile driven by different biological processes. None of the

Fig. 4 Radiogenomic modeling performance (a) between neural networks and other models in the
training dataset. Neural network performance (b) in the training and testing datasets for the 13
radiomic features selected for further analysis. Train scores represent the averaged scores of the
validation folds during 10-fold CV in the training dataset. The test scores are the model’s perfor-
mance in the testing dataset after models were retrained on the full training dataset.

Smedley, Aberle, and Hsu: Using deep neural networks and interpretability methods. . .

Journal of Medical Imaging 031906-9 May∕Jun 2021 • Vol. 8(3)



radiomic features had similar scores across all gene sets. Some gene sets were better for pre-
dicting one radiomic feature but not another. For example, the top two gene sets for predicting an
imaging texture, RLGL_longRunHighGrayLevEmpha, were regulation of syncytium formation
by plasma membrane fusion and pyrimidine nucleotide salvage, which had test AUCs above
0.75, but for all other 12 radiomic features these two gene sets were below 0.70 AUC and
0.65 AUC, respectively. Conversely, there were gene sets that could predict multiple radiomic
features at once. For example, response to tumor necrosis factor (TNF) was predictive of two
other imaging textures, GLCM_entrop2 (0.78 AUC, 0.81 AP) and RLGL_runPercentage (0.76
AUC, 0.76 AP), in testing. Hallmark gene sets were also applied to the radiomic models in gene
masking analysis but were not as predictive as the GO gene sets.

Radiogenomic associations were summarized for radiomic features related to histogram sta-
tistics of the tumor mask, the transformation of the mask (LoG features), and textures of tumors
in Table 4. For example, the three gene sets that were most predictive of LoG_stats_std were

Fig. 5 Gene masking of the radiogenomics models with biological processes from GO. The top
three gene sets ranked by test AUC for each radiomic feature are shown.
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Table 4 Summary of predictive gene expression patterns in NSCLC radiomic features.

Radiomic feature

Transcriptomic pattern test

Themea Gene set (from GO) AUC AP

Stats_skewness Cytoskeleton Reg. of actin filament-based process 0.82 0.82

Adhesion Neg. Reg. off cell adhesion 0.81 0.81

Neg. Reg. of cell-cell adhesion 0.80 0.77

Immune system Reg. of hemopoiesis 0.81 0.78

Reg. of leukocyte differentiation 0.80 0.77

Stats_rms Transport Reg. of release of sequestered
calcium ion into cytosol

0.95 0.65

Sequestering of calcium ion 0.93 0.30

Development Muscle organ development 0.93 0.46

striated muscle cell differentiation 0.93 0.32

Actin filament-based movement 0.92 0.26

LoG_stats_std Post-translational Post-translational protein modification 1.00 1.00

Development Epidermis development; epidermal
cell differentiation

1.00 1.00

DNA repair 26-cm DNA double-strand break
processing involved in repair via
single-strand annealing

0.99 0.79

Cell cycle neg. reg. of mitotic cell cycle 0.99 0.79

LoG_stats_uniformity Cell development Liver regeneration 0.78 0.64

Epithelial tube morphogenesis 0.77 0.49

Transport Protein transmembrane transport 0.77 0.64

Intracellular protein transmembrane
transport

0.76 0.61

Catabolism Organic acid catabolic process 0.75 0.54

LoG_stats_entropy Localization Establishment of organelle localization 0.82 0.47

Pos. reg. of protein localization
to membrane

0.79 0.60

Heart rate Reg. of heart rate by cardiac
conduction

0.77 0.40

Cell mobility Reg. of actin filament-based
process

0.77 0.46

External stimulus Cellular response to mechanical
stimulus

0.77 0.44
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Table 4 (Continued).

Radiomic feature

Transcriptomic pattern test

Themea Gene set (from GO) AUC AP

LoG_stats_kurtosis Connective tissue Elastin metabolic process 0.73 0.84

Collagen metabolic process 0.72 0.85

Synthesis Pos. reg. of receptor biosynthetic
process

0.73 0.81

Pos. reg. of hormone biosynthetic
process

0.73 0.84

Immune system Response-regulating cell surface
receptor signaling pathway

0.72 0.78

GLCM_diffEntro Muscle Muscle fiber development 0.76 0.82

Muscle cell differentiation 0.75 0.79

Cardiac ventricle formation 0.76 0.77

Bacteria Response to molecule of bacterial
origin

0.76 0.73

Rho Rho protein signal transduction 0.75 0.78

GLCM_invDiffnorm Cell development Fat cell differentiation 0.83 0.63

Neg. reg. of cell development 0.80 0.60

Cell respiration Reg. of aerobic respiration 0.81 0.64

Immune system Neg. reg. of lymphocyte activation 0.80 0.63

Nervous system Neuromuscular process controlling
balance

0.79 0.70

GLCM_invDiffmomnor Immune system Reg. of osteoclast differentiation 0.81 0.58

Osteoclast differentiation 0.80 0.58

Homeostasis Multicellular organismal
homeostasis(G)

0.80 0.61

Tissue homeostasis 0.79 0.57

Rho Reg. of Rho protein signal
transduction

0.79 0.55

GLCM_entrop2 TNF Response to TNF 0.78 0.81

Muscle Muscle cell development 0.77 0.80

Ventricular septum morphogenesis 0.77 0.77

Striated muscle cell differentiation 0.76 0.78

Drug response Response to xenobiotic stimulus 0.76 0.84

Smedley, Aberle, and Hsu: Using deep neural networks and interpretability methods. . .

Journal of Medical Imaging 031906-12 May∕Jun 2021 • Vol. 8(3)



related to post-translational protein modification, epidermis development, and DNA repair.
Processes involving the immune system and cardiac system were the top predictors for several
radiomic features. Many gene sets were related to cell development, varying from muscle, liver,
epidermis, fat cell, and renal gene sets. AKT signaling, a targeted pathway in NSCLC therapy,20

was moderately predictive of RLGL_longRunHighGrayLevEmpha with 0.76 AUC but had
an AP of 0.54 in testing. TNF was associated with RLGL_runPercentage and GLCM_entrop2.
Rho signaling, associated with tumor suppressor activity and another targeted pathway in
NSCLC,21,22 was associated with GLCM_diffEntro (0.75 AUC, 0.78 AP) and GLCM_
invDiffmomnor (0.79 AUC, 0.55 AP). While GLCM_invDiffmomnor and invDiffnorm were
correlated and clustered together, the two radiomic features had differing gene sets.

To compare the results of our neural network with prior reported associations, we performed
an analysis using radiogenomic modules. Radiogenomic modules, defined as a set of correlated
radiomic features and gene expressions, were previously defined as part of the original study.12

Not all radiomic features were reported in the original study’s radiogenomic modules. In this
paper, the radiomic models were masked with the same Reactome gene sets as Grossmann
et al.12 using MSigDB v4.0. Table 5 summarizes the overlapping radiogenomic associations
found in this study compared with the aforementioned work. The highest agreement was
between LoG_stats_entropy and module 13, where three of the pathways in the module were
also among the top ten most predictive gene sets in our radiogenomic model. Other comparisons
did not have overlapping associations. For example, the authors reported a radiogenomic asso-
ciation between GLCM_diffEntro and the five pathways in module 2, while we found the most

Table 4 (Continued).

Radiomic feature

Transcriptomic pattern test

Themea Gene set (from GO) AUC AP

RLGL_shortRunEmphasis Localization Pos. regulation of establishment of
protein localization

0.79 0.77

Catabolism Lysine catabolic process 0.79 0.80

Cell death Pos. reg. of autophagy of
mitochondrion

0.77 0.78

Hormone Pos. reg. of insulin secretion 0.77 0.77

Cell mobility Neuron projection guidance 0.75 0.71

RLGL_
longRunHighGrayLevEmpha

Syncytium Syncytium formation 0.78 0.54

Reg. of syncytium formation by
plasma membrane fusion

0.77 0.47

Synthesis Pyrimidine nucleotide salvage 0.76 0.50

AKT Protein kinase B signaling 0.76 0.54

Renal system Renal sodium excretion 0.76 0.44

RLGL_runPercentage Muscle Smooth muscle tissue development 0.76 0.75

TNF Response to TNF 0.76 0.76

TNF-mediated signaling pathway 0.75 0.76

Immune system Myeloid leukocyte differentiation 0.75 0.76

Renal system Metanephros development 0.74 0.80

aShown are the top five GO gene sets ranked by AUC and with at least 0.50 AP; reg.= regulation;
pos. = positive; neg. = negative.
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predictive pathway in module 2 was ranked 197 out of the 664 Reactome pathways used in gene
masking. Thus, our model suggested that many other pathways were more predictive of the
radiomic feature than the five pathways in module 2.

4 Discussion

We demonstrated the ability of deep neural networks to learn associations between radiomic
features or clinical traits and gene expression using two NSCLC cohorts. A relatively large train-
ing dataset of 262 patients was available. An independent test dataset of 89 patients allowed us to
validate the generalizability of our neural network models. We showed that neural networks
outperformed other machine learning models. While the overall test AUC was mixed across
all 101 radiomic features (test AUC of 0.42–0.89), the thirteen radiomic features selected for
gene masking and histology had an average test AUC above 0.70. We interpreted the models
using gene masking and identified specific sets of gene expressions that were indicative of a trait

Table 5 A comparison of the learned radiogenomic associations extracted from our neural net-
works and the modules previously identified in the same dataset.12 Each module consisted of a set
of Reactome pathways and a set of image features. Shown are the modules that included the
radiomic features used in this study. If any module’s set of pathways was ranked among the top
100 in gene masking, the top three pathways were listed.

Radiomic trait Reactome pathway

This study Grossmann et al.12

Test AUC Ranka Module # Pathways

GLCM_diffEntro Cross presentation of soluble exogenous
antigens endosomes

0.58 197 2 5

Phase II conjugation 0.69 9 12 35

Regulation of mitotic cell cycle 0.66 21 — —

ABCA transporters in lipid homeostasis 0.65 28 — —

LoG_stats_std Regulation of ornithine decarboxylase 0.94 15 2 5

Cross presentation of soluble exogenous
antigens endosomes

0.82 89 — —

Antigen processing cross presentation 0.80 106 — —

Cholesterol biosynthesis 0.75 150 6 7

Signaling by TGF beta receptor complex 0.83 81 8 17

Elongation arrest and recovery 0.82 92 — —

mRNA splicing 0.75 142 — —

LoG_stats_entropy Elongation arrest and recovery 0.73 1 7 8

Mitochondrial protein import 0.63 74 — —

RNA pol III chain elongation 0.58 180 — —

Elongation arrest and recovery 0.73 1 13 26

RNA pol II pre transcription events 0.69 7 — —

Formation of RNA pol II elongation complex 0.69 9 — —

Stats_skewness Antigen processing cross presentation 0.62 139 2 5

aAll Reactome pathways were ranked by test AUC.
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or feature. Together, these results suggest that potential biological associations exist to explain
the differences among histology classes and CT imaging characteristics of NSCLC patients.

A number of radiomic and radiogenomic studies have been performed with NSCLC
patients.10,12,13,23–26 A recent study used the same dataset of 89 patients to train models to predict
immune cell gene signatures of NSCLC tumors using CT radiomic features.27 Our model
attempted to learn associations between high dimensional gene expression profiles and radiomic
features. While deep neural networks were used to map CT image patches to tumor gene expres-
sion in Li et al.,10 the study did not report specific radiogenomic associations. Most related to
our study was Grossmann et al.,12 which provided the source datasets. They used Gene Set
Enrichment Analysis and the Iterative Signature Algorithm, a correlation and biclustering
method, to define radiogenomic modules by grouping radiomic features with Reactome gene
sets (i.e., pathways). The top ten most predictive Reactome pathways for a radiomic feature
in our models overlapped with the radiogenomic modules defined by Grossmann et al.,12 but
overall agreement was low. Differences in radiogenomic associations between our work and
Grossmann et al.12 may relate to differences in methodology. Our study assessed the entire gene
expression profile, whereas their study assessed correlations between radiomic features and sub-
sets of genes. Moreover, the number of associations to be found was not predefined in our study,
while Grossmann et al.12 specifically assessed 20 radiogenomic modules. Other studies12,24 have
shown that their selected radiogenomic associations can differentiate between patients with
longer versus shorter survival. We leave survival analysis using the radiogenomic associations
found in our neural network models as future work.

We further explored the ability of neural networks to map transcriptomes to other relevant
patient image features by training models to predict stage and histology. While neural networks
were better at predicting stage and histology in the training dataset compared with other classifiers
(based on scores from 10-fold CV), stage was poorly estimated in the testing dataset. However,
the histology neural network has 0.77 test AUC when averaged across each histology type.

Several prior works for predicting NSCLC histology using radiomics have been based on
differentiating ADC from SCC. For example, using five radiomic features, a study that trained a
Naive Bayes model to distinguish ADC from SCC achieved a 0.72 AUC in a test set of 152
patients.28 In another similar study, a radiomic signature was able to distinguish ADC from SCC
using a logistic regression model and 129 patients; the authors reported a 0.893 AUC in a test
subset of 48 patients.29 More recent work reported logistic models that achieved 0.694, 0.780,
0.800, and 0.923 AUC for clinical, standard CT features, radiomics, or all three, respectively, to
predict ADC versus SCC.30 The AUC scores were observed in a cohort of 93 patients but are
likely overly optimistic given that there was no validation or test set to evaluate their models. In
contrast, our neural network model used gene expression profiles to predict histology. In a test
set of 89 patients, our model achieved a 0.86 test AUC when estimating ADC versus all other
(SCC and other) histology types and a 0.91 test AUC when estimating SCC versus all other types
(ADC and other). One notable study analyzed the association between CT-derived radiomic
features and digital pathology-derived pathomic features to differentiate between two NSCLC
subtypes.31

Additionally, there is a difference in our models’ performance when predicting histology
compared with stage. The difference is likely because staging is based on factors such as tumor
size, location, and spread to lymph nodes or metastasis in other sites, which is information that
may not be readily seen in the gene expression of the collected tumor tissue. On the other hand,
histology classification is based on the molecular and physical characterization of the collected
sample, which is likely more related to the transcriptomic profiling of the tumor. Subsequently,
we extracted the learned associations between gene expression and histology types with gene
masking and compared with two previous studies that report gene expression signatures to pre-
dict NSCLC histology.17,18 The studies’ gene signatures were predictive in our models as well,
indicating that our neural networks found similar associations as reported in prior work. In our
model, other gene sets such as hypoxia (200 genes) and angiogenesis (36 genes) Hallmark gene
sets and the neuronal (156 genes) GO gene set, are associated with histology and may have the
potential to help automate or standardize the assignment of histology in the future.

This study has several notable limitations. The retrospective datasets used in this analysis
were from two different sources with varying imaging protocols, which can add variance to
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radiomic feature values. A majority of patients were early-stage cancers, and thus late-stage
patients were left out of the radiogenomic analysis. While sample size is an inherent concern
of radiogenomic analysis, datasets with paired imaging and genomic data are difficult to obtain
and limited in sample size. Interpreting the biological significance of radiomic features is chal-
lenging, and researchers are currently attempting to understand their correlation with tumor biol-
ogy and other clinical traits. Radiomic features were binarized using clustering, and radiomic
features with a minority class below 10% were removed. The tumor tissue samples used for
transcriptome profiling are limited in that only one sample was acquired per patient, which may
not fully capture tumor heterogeneity. These factors make it challenging to validate the relation-
ships in radiogenomic models. The reported findings should be interpreted as possible associ-
ations and require further clinical or animal studies to validate.

In future work, the issues may be addressed by the standardization of imaging protocols to
allow for consistent comparison of image features and maps such as genomic atlases to better
characterize whole tumors. A larger sample size could result in a more complete representation
of the general population and allow for modeling of radiomic features as continuous outputs. The
ranked gene sets are interpreted based on GO descriptions. A more quantitative approach to
compare the ranked gene sets between radiomic features, such as semantic similarity of GO
terms,32 and a sensitivity analysis of resultant radiogenomic associations are needed. In addition
to the transcriptome, there are likely other contributing factors to tumor image features, such as
other molecular data (e.g., gene mutations and methylation) and patient covariates (e.g., smoking
status). These factors could either be incorporated into the modeling process or used to stratify
analyses. Additionally, the impact of knowing such radiogenomic associations at the time of
tumor biopsy in relation to survival or treatment projection would be highly beneficial.

5 Conclusion

In this study, we present deep neural networks for mapping gene expressions to radiomic features
or clinical traits in patients with non-small cell lung cancer. Our models are evaluated using
public datasets. Neural networks are capable of modeling high-dimensional gene expression
to predict tumor image features and lung cancer histology. We further interpret the models
through gene masking and report the learned relationships between gene expression and a radio-
mic feature or histology type. We find that the network is capable of replicating previously
reported associations while identifying new associations. The reported associations could be
further studied to improve the automated classification of histology, predict specific gene expres-
sion profiles of patients presenting with an observable imaging phenotype, and develop a knowl-
edge base of associations between imaging phenotypes to gene expression profiles that would be
useful in informing individualized treatment planning.
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