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Abstract

A Computational Geometric Approach for an Ensemble-based Topological Entropy

Calculation in Two and Three Dimensions

by

Eric John Roberts

Doctor of Philosophy in Applied Mathematics

University of California, Merced

Professor Suzanne Sindi, Chair

From the stirring of dye in viscous fluids to the availability of essential nutrients

spreading over the surface of a pond, nature is rife with examples of mixing in two-

dimensional fluids. The long-time exponential growth rate of a thin filament of dye

stretched by the fluid is a well-known proxy for the quality of mixing in two dimen-

sions. This growth rate in turn gives a lower bound on the flow’s topological entropy,

a measure quantifying the complexity of chaotic dynamics. In the real-world study

of mixing, topological entropy may be hard to compute; the velocity field may not be

known or may be expensive to recover or approximate, thus limiting our knowledge

of the governing system and underlying mechanics driving the mixing. Central to

this study are two questions: How can stretching rates in two-dimensional planar

flows best be computed using only trajectory data?, and Can a method for computing

stretching rates in higher dimensions from only trajectory data be developed?.

In this spirit, we introduce the Ensemble-based Topological Entropy Calculation

(E-tec), a method to derive a lower-bound on topological entropy that requires only

finite number of system trajectories, like those obtained from ocean drifters, and no

detailed knowledge of the velocity field. E-tec is demonstrated to be computationally
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more efficient than other competing methods in two dimensions that accommodate

trajectory data. This is accomplished by considering the evolution of a “rubber band”

wrapped around the data points and evolving with their trajectories. E-tec records

the growth of this band as the collective motion of trajectories strike, deform, and

stretch it. This exponential growth rate acts as a lower bound on the topological

entropy. In this manuscript, I demonstrate convergence of E-tec’s approximation

with respect to both the number of trajectories (ensemble size) and the duration of

trajectories in time.

Driving the efficiency of E-tec in two dimensions is the use of computational ge-

ometry tools. Not only this, by computing stretching rates in this new computational

geometry framework, I extend E-tec to three dimensions using two methods. First, I

consider a two-dimensional rubber sheet stretched around a collection of points in a

three-dimensional flow. Similar to the band-stretching component of two-dimensional

E-tec, a three-dimensional triangulation is used to record the growth of the sheet as it

is stretched and deformed by points evolving in time. Second, I calculate the growth

rates of one-dimensional rubber strings as they are stretched by the edges of this

dynamic, moving triangulation.
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2.14 Schematic of the movement of a single point (circled in red) against a
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is proportional to the number of average core triangles that would

have an equivalent area to that of the diagonal blue rectangle. For

FTBE calculations, the number of braid generators created by this
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3.1 Fluorescence microscopy image of the active nematic fluid consisting

of a densely-packed microtubule network in 2D. The two types of topo-

logical defects that emerge are pictured in the inset. Image credit :

Amanda Tan [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 a) Bright field image of tracked bead trajectories that remain unbroken

(colored in for effect). b) Lagrangian particle image tracking results.
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that leave the field of view. c) Number of trajectories that are actively

moving in the field at any given time for one data set (red) and the

union of data sets (blue). . . . . . . . . . . . . . . . . . . . . . . . . . 43
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2

defects and period-3 co-

herent islands from the chaotic test flow used in Ch. 2 a) Fluorescence

microscopy image of the active nematic fluid with topological defects

marked. White circles denote +1
2

defects. A yellow triangle denotes a

−1
2

defect. b) A band stretched by the braiding of the three period-3

islands (circled). Image a) credit : Amanda Tan [8]. . . . . 48

3.6 E-tec topological entropy measurements using defect trajectories in

yellow. Also pictured are the same Lyapunov exponent averages and
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3.7 Displayed are bands around three coherent sets a) Initial bands placed

around a three subset of points that lie in the interior of the coherent

sets. (Blowup in inset.) b) The bands evolved forward in time, with
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3.10 The natural log of the number of remaining trajectories in each bound-

ing region as a function of time. Bounding boxes are in a) and bounding

circles are in b). On the right are tables summarizing the escape rate

data extracted from the plots. Listed data includes N , the number

of initially seeded trajectories, and the escape rates and corresponding

escape rate errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Updated Fig. 3.9 from above, with new E-tec topological entropy esti-

mates (in black) for the trajectory sets with replacement. . . . . . . . 56
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4.1 Collisions in 3D: Depiction of the two collisions (point-face and edge-

edge) that may occur among points, edges, and faces of a 3D triangu-

lation as points move. Triangulation faces are colored to help better
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the page, resulting in an intersection between edges (1, 5) and (2, 3).
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sharing edge (2, 3). Furthermore, the new weight representation of a

potential red sheet is left ambiguous. . . . . . . . . . . . . . . . . . . 60

4.2 Strings Anchored by Edges: Pieces of a rubber string (in red) are

wrapped around triangulation edges (a, c) and (c, d). . . . . . . . . 61

4.3 Encoding Rubber Sheets in the Triangulation: Two types of

two-dimension rubber sheets and their Dual E-tec weight representa-

tion. a) A rubber sheet folded around the middle triangular face on

the left (the folding over points is not drawn in 3D). This sheet is rep-

resented in Dual E-tec by weights along each edge it passes through.

Weighted edges are in red. b) A rubber sheet in the form of a plane is

on the left. Weighted edges that represent the sheet are shown on the

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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with empty interiors are shown. . . . . . . . . . . . . . . . . . . . . . 63
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4.5 Comparison of Original and Dual E-tec: The same band and

point configuration are displayed in all three sub-figures. However,

the band representation among the edges and weights in the original

scheme in a) differ from Dual E-tec representations in b) and c) a) In

the original E-tec scheme, this is the only possible triangulation among

these five points in which the band may be represented. b) The same

triangulation as the left, this time with the triangulation’s Dual-E-tec

weight representation. c) A second possible triangulation of the five

points and corresponding edge weights, with the changed edge dashed

for emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 E-tec and Dual E-tec Numerical Band Initialization: a) The

original E-tec representation of an initial band (in red). Notice the

constrained Delaunay triangulation. b) The Dual E-tec representation

of the band anchored by same two points in a). The triangulation

edges passing through the band are shown in red. Notice this is an

unconstrained Delaunay triangulation. . . . . . . . . . . . . . . . . . 65

4.7 2D Collapse Event: Triangles, edges, and labeled variables before

and after a collapse event. Edge weights (in red) and refer to the

number of times a band passes through the labeled edge. Auxiliary

lower case variables at points refer to the number of times a band

passes through the two edges adjacent to the labeled point. . . . . . . 66

4.8 Example of a 2D Collapse Event: A specific example displaying

new edge weight C ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Dual and Original E-tec Numerical Comparison: Comparison

of the two methods using the same 100 point trajectory set and initial

band. The confidence intervals for both slopes (starting at fit time

T = 5) overlap at (0.9620, 0.9624). . . . . . . . . . . . . . . . . . . . 70
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subsequent re-triangulation is depicted. As the hollow point 5 move

north, edge (4, 5) is added and tetrahedra T and B are converted into

the three final tetrahedra X, Y , and Z. Sheets wrapped taut around

points 1 and 2 are shown in red. The Dual E-tec representation of this

sheet is given by weights along edges in which the sheet passes through. 71

4.11 Adjacent Tetrahedra Vertex Partition Variables: The top and

bottom tetrahedra involved in the collision event. In this projection,

two of the shared vertices are on the left and one is on the right.

This represents one of three combinatorially possible projective side
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form N and O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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point moves north or northeast. a) Instead of waiting for the 2D point-

edge collision to occur before implementing the local re-triangulation

rules, depicted on the left, I apply the same local update on the right at

an earlier time, specifically when the Delaunay criterion is broken, i.e.

once the blue circumcircle contains the fourth point on its boundary.

b) In blue, the circumsphere for points 1, 2, 3, and 4. On the right, once

point 5 breaks the Delaunay criterion by moving onto the circumsphere,
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Note that the two tetrahedra (1, 2, 3, 4) and (1, 2, 3, 5) are replaced

by three that all share the newly introduced edge. c) In blue, the
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circumsphere dilates and moves and the Delaunay criterion is broken as

point 4 enters. The tetrahedra are re-triangulated in the same manner

as b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.14 Flips: In a), a flip22 is used to transition among the two valid trian-

gulation configurations of four points in 2D. In b), either a flip23 (left

to right) or flip32 (right to left) is used in 3D depending if the trian-
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4.15 Stars and Link: The stars and links for red point p. (Left) The 2D
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faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.16 2-Ears and 3-Ears: In three dimensions, a link for some vertex
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4.17 3-ear and 2-ear Convexity Tests: Point p is shown with the two

types checks. a) Faces (1, 2, 3), (1, 3, 4), and (2, 3, 4) in link(p) form
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Chapter 1

Introduction

1.1 Motivation and Background

A common approach to studying physical systems is through their representation

as dynamical systems. A dynamical system represents a fundamental tool for ana-

lyzing and modeling at every length scale. In simplest terms, they describe how a

system evolves over time. For example, dynamical systems modeling is instrumental

in studying population growth in landscapes with limited resources [9–11], analyz-

ing long-time behavior of predator-prey interactions [12,13], predicting stock market

fluctuations [14–16], and discovering bacterial growth patterns [17].

Intertwined in the study of dynamical systems is the study of complexity. Com-

plexity arises in models both intricate – slight variations in experimentally-estimated

parameters result in large-scale changes in the dynamics of blood coagulation models

comprised of many coupled ordinary differential equations [18] – and simple – the na-

ture of the three-body problem solution evaded the greatest scientific minds for over

a century. In fact, system complexity can give rise to unpredictability and render

long-term forecasts generally impossible, a fact first alluded to by Henry Poincaré in

his studies of the deceptively simply three-body problem. In it, Poincaré established

the existence of an infinite number of aperiodic solutions to the problem [19–21]. In

truth, Poincaré’s discovery set the groundwork for the theory of chaos. The field

was later formalized over half a century later with the advent of the computer. In

1
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1961, Yoshisuke Ueda [22, 23] and Edward Lorenz [22, 24, 25], using numerical calcu-

lations, independently discovered that small perturbations in initial conditions grow

exponentially and result in vastly different system behavior. Systems exhibiting this

sensitivity to initial conditions are deemed chaotic.

Trajectories and orbits originating from chaotic systems are oftentimes mistaken

for random behavior. In truth, chaotic systems are deterministic and all future behav-

ior is fully determined. These two seemingly contradictory statements allude to the

very difficult and tedious nature of chaotic systems research. Focused efforts in better

understanding the field have led to better prediction analysis for a large number of

applications, the best known being weather and climate forecasting [24,26].

1.2 Chaotic Advection

Though analysis of chaotic dynamical systems is difficult, the presence of chaos affords

certain advantages to particular applications. Chief among these is the field of fluid

dynamics. Fluid systems undergo efficient mixing and scalar transport in the presence

of chaos. This is especially useful for fluids at the low Reynolds number regimes

where viscosity or small length scales govern the dynamics (think peanut butter or

microfluids). In this low Reynolds setting, turbulent flow, a well-known facilitator of

mixing (think cream mixing in coffee with the single whisk of a spoon), is impossible

to induce.

Shifting the focus to deterministic fluid dynamics, flow complexity is connected

to the chaotic nature of particle trajectories – that is, chaotic flow trajectories have a

sensitive dependence to initial conditions, one of the hallmarks of chaos theory. This

phenomenon is called chaotic advection [27, 28]. Though flows undergoing chaotic

advection are deterministic and complexity drives uncertainty, their study sheds light

on the mixing and transport processes that occur in a wide range of natural phenom-

ena. Such knowledge aids greatly in a wide variety of natural and industrial fluid

systems, including the large-scale dispersion of pollutants in the Earth’s atmosphere

and oceans [29]; for example, understanding how regions of fluid remain isolated from

each other helps predict the fate of oil spills [30, 31]. Understanding mixing in the
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rapidly developing field of microfluidics [32,33] could lead to new classes of self-mixing

active solvents that further our understanding of the kinetics of mass transport and

chemical reactions. Obvious industrial applications include the optimization of stir-

ring devices in viscous fluids, such as the rod-stirring devices used to effectively knead

dough, pull taffy [34,35], or manufacture glass compounds [34,36].

1.2.1 Numerical Considerations

A variety of techniques have been used to quantify complexity and uncertainty in

chaotic dynamical systems theory. These tools include the finite-time Lyapunov

exponent (FTLE) field [37, 38], which measures the exponential rate of separation

between points in a small neighborhood; the finite-time entropy (FTE) field [39],

a probabilistic approach to measuring local stretching and determining the uncer-

tainty in a trajectory’s final position; and operator-theoretic methods, such as the

eigenfunctions and eigenvalues of the Koopman operator [40].

However, a problem remains - a prohibitively large number of trajectories may

be required if the phase space is too large or trajectories and linearizations may

simply be too expensive to compute, as with some experimental measurements. The

critical challenge for extracting statistically meaningful information for numerous

physical problems is often the adequate sampling of system trajectories, either from

experimental data or from large-scale simulations. When only particle trajectories

are available, like those collected from oceanic floats or airborne tracers, data sets

are oftentimes sparse. Few methods give adequate topological entropy results for

sparse input. Fewer methods yet are able to detect topological structures that may

drive the mixing. Fuzzy clustering detection of Lagrangian coherent structures [41]

and the braiding technique for topological entropy calculations come to mind [5, 42],

though these methods fail to scale linearly in the number of particle trajectories, thus

rendering them inefficient when the analysis of a highly complex system requires a

high point density.

To develop an algorithm that succeeds where others have failed, we aim to carefully

extract the maximum information from the limited number of trajectories available.
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The collective motion of all trajectories moving through phase space in tandem en-

codes global information that is not contained in any individual trajectory. That is,

extra information is “hiding” in an ensemble of classical trajectories, which is not

exploited in a trajectory-by-trajectory approach. We exploit this idea by focusing

on the numerical evolution of a two-dimensional material-curve, who’s growth rate is

shown to be equivalent to the topological entropy [43–47], which measures the expo-

nential proliferation of distinguishable orbits [48].

1.3 Topological Entropy

In deterministic dynamical system theory, the amount of complexity that is present

in a d-dimensional system may be quantified by entropy. Two common entropies,

metric and topological, can be formally described by considering two trajectories of

length T that can only be distinguished if they are, at any point in time, further

than some resolution ε apart. We expect the number of these ε-distinct trajectories

to increase as both T → ∞ and ε → 0. If this growth is asymptotically exponential,

the rate h is the entropy. We distinguish between metric and topological entropy

in that topological entropy counts all ε-distinct trajectories, while metric entropy

counts those trajectories that are typically ε-distinct, or rather, the set of orbits that

have nonzero measure with respect to an invariant measure [49]. In this manner, the

topological entropy is the upper bound for the metric entropy.

The formal topological entropy definition above is ill-suited in capturing the second

hallmark of chaotic fluid dynamics: the exponential stretching and folding of packets

of fluid into long, thin fluid filaments. In a manner more consistent with this idea,

topological entropy h can be estimated in two-dimensional flows by embedding an

initial material-curve, analogous to a line of dye, of length L0 in the system and

estimating its growth under the evolution of the flow [46]. At long times, the length

L(t) of the curve as a function of time t grows exponentially as

L(t) ≈ L0 e
ht. (1.1)
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Because positive topological entropy captures the strength of the stretching and

folding processes inherent to chaotic flows, it is often used as a common proxy for the

quality of mixing occurring in a flow. This is displayed in the two mixing protocols

in Fig. 1.1. Here, the lines of dye are the material-curves being stretched. The top

protocol results in dye that stretches and folds and grows in time, though this growth

is not exponential yields a low topological entropy. However, we find the stirring

protocol on the bottom results in exponentially stretched line of dye.

Four	periods

One	Period

Four	periods

One	Period

Figure 1.1: Comparison of two mixing processes, one with zero topological entropy
(above) and one with high topological entropy (below). Dye-stirring images adapted
from ref. [1], Cambridge Univ. Press.

Direct computation of the curve’s evolution is troublesome in chaotic flows, re-

quiring an exponentially growing number of trajectories to maintain sufficient point

density of the curve. This problem is only exacerbated in three dimensions and

higher. A generalization of topological entropy called expansion entropy [50] consid-

ers the ensemble-averaging of Jacobian singular values scales to higher dimensions

for all flows and requires no computing or measuring of multidimensional surfaces.
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However, this method requires many millions of trajectories and their subsequent

linearizations. Finite-time Lyapunov exponent fields remain popular for analysis of

chaotic flows and detecting special flow structures, though intimate knowledge of gov-

erning equations is required for generating many trajectory pairs. Worse yet, many

of these techniques are not well-suited for the analysis of real-world experiments, as

data is oftentimes some combination of noisy, sparse, and short-lived.

1.3.1 Topological Entropy from Braiding

A natural alleviation to these restriction is to use methods requiring only poten-

tially sparse sets of particle trajectories as input, with no reliance on any detailed

knowledge of the velocity field; namely, topological methods. In particular, braiding

techniques were first applied to two-dimensional fluids to compute the topological en-

tropy of either flows containing periodic orbits [51] or of particular multi-rod stirring

protocols [1, 52] that induce topological chaos. The single Artin algebraic braid [53]

representation is extracted from 2D point trajectory data. This braid uniquely en-

codes how periodic trajectories or rods exchange positions with respect to an arbitrary

projection axis, thus capturing the dynamics of time-ordered trajectory data. Braid

operators are collected by ordering points along an arbitrarily chosen projection axis.

As ordered points (p1, p2, p3, . . . ) evolve forward, neighbors swap places along the pro-

jection axis. At each event, neighboring points pi and pj that swap places are recorded

as an operator σ±1
pi,pj

, where the superscript denotes a clockwise or counterclockwise

swap. Braids are then simply a collection of time-ordered operators. The topological

entropy of the braid, typically calculated using braid’s matrix representation [1, 54].

Topological entropy calculations of braids were later generalized to any arbitrary,

two-dimensional, aperiodic point trajectory data in chaotic flows by Thiffeault, Finn,

Allshouse, and Budǐsić [55–58]. They introduce Finite-Time-Braiding Entropy [5,42],

an estimation of the topological entropy, which may be calculated by replacing the

initial material line L0 in Eq. 1.1 with a “loop” anchored between two points that

acts as a rubber band. The Dynnikov coordinate representation [59] is used to encode

entangled loops by listing the number of times the loop passes above and below each
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point and the number of loop strands between points. (For a arbitrary set of points,

each possible entangling of a loop has a unique Dynnikov representation.) Using

the coordinates, loops are deformed under the action of braid operators. A cartoon

depicting a braid operator acting on a loop is pictured in Fig. 1.2. The exponential

rate of deformation of the loop acts as a generalization to the material curve stretching

in Eq. 1.1 and is denoted the Finite-Time Braiding Exponent.

1 2 3 4 5 1 23 4 5

σ−1
2,3

Figure 1.2: A loop entangled between points. The braid operator σ−1
2,3 acts on the

loop, deforming it accordingly. The operator subscript indicates the second and third
points swapped orderings on the projection axis in black. The superscript indicates
the two points swapped in a counterclockwise fashion (the right-most point passes
above).

Though a popular metric for computing topological entropy from trajectory data,

Braiding Exponent calculations scale quadratically in the number of points, rendering

them unwieldy for systems requiring many points. Worse yet, this method has no

current extension to three dimensions or higher [41], as two dimensional lines are not

obstacles for points in three dimensions.

1.4 Manuscript Overview

We use this as motivation for a new data-driven topological entropy calculation from

system trajectories. To develop a method for computing topological entropy that will

efficiently scale up to higher dimensions in both system size and modeling time, one

must be clever about extracting the maximum information from the limited trajecto-

ries available. To achieve this, much like Braiding Exponent theory, the focus needs
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to be on topological information, not geometric information. In essence, the relative

motion of trajectories through phase space encodes global information that is not con-

tained in any one individual trajectory. That is, extra information is “hiding” in an

ensemble of classical trajectories, which is not exploited in a trajectory-by-trajectory

or Monte Carlo approach.

I introduce a new algorithm based on topological analysis designed to take ad-

vantage of such additional information: the Ensemble-Based Topological Entropy

Calculation, or E-tec. Much like the work of Thiffeault, Finn, Allshouse, and Budǐsić

in two dimensions, E-tec requires only system trajectories as input and computes a

lower bound on the topological entropy by deforming a loop, hereby referred to as a

band. However, by forgoing the stretching of bands by braid operators and adopting a

computational geometry framework, E-tec scales much more favorably in the number

of trajectories than its braiding predecessor.

In Chapter 2, I outline the procedural steps of the algorithm. Using a time-periodic

and chaotic lid-driven cavity flow, I demonstrate E-tec convergence to topological en-

tropy in ensemble size N and near-N logN runtime scaling, representing a significant

improvement over the quadratic runtime scaling of the finite-time braiding exponent

technique that motivated E-tec research. Furthermore, I demonstrate that E-tec can

be integrated with other fields by applying it to real-world phenomena. In Chap-

ter 3, I use experimentally obtained trajectories to verify the mixing properties of a

microfluidic active matter system.

Next, motivated by the study of advective transport in complex three-dimensional

fluid flows and higher dimensional applications, I recognize a critical need for new

topological approaches capable of analysis in higher-dimensional systems, particularly

when sampling of phase space is sparse. In Chapter 4, the computational geometry

foundation on which E-tec is founded is scaled up to three dimensions and represents

the first three-dimensional topological entropy calculation requiring only system tra-

jectories and no linearizations or knowledge of the governing equations. Two methods

for capturing stretching are described, implemented, and discussed here. In one, a

two-dimensional rubber sheet is deformed and stretched under the evolution of points.

In the second, a one-dimensional rubber string is stretched and folded by the edges of
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a moving, dynamic triangulation. The growth of the sheet and string both represent

a lower bound on the topological entropy. Procedural details for both methods are

given in the chapter, including the derivation of a second E-tec scheme for recording

re-triangulation events.

Lastly, a summary of contributions and a discussion of future research directions

are presented in Chapter 5.

In Appendix A, I highlight my numerical implementation of expansion entropy, the

generalization of topological entropy that is capable of higher dimensional analysis.

Requiring millions of trajectories, I verify the expansion entropies of a number of

discrete maps and the three dimensional chaotic Lorentz system with dual attractors.

In Appendix B, I introduce a precursor to E-tec which accounts for the stretching

of bands anchored between one dimensional orbits projected as a time series in two

dimensions (orbit position as a function of time).



Chapter 2

2D Ensemble-based Topological

Entropy Calculation

2.1 Introduction

Our goal is to compute material-line stretching rates using only 2D particle trajecto-

ries, like those collected from oceanic floats [56,60] or fluorescent beads in microfluidic

systems [61, 62]. These data sets may be sparse, and hence may not fully sample all

of the 2D space. We are motivated by Budǐsić, Allshouse, and Thiffeault [42, 56, 63],

who use braiding theory to compute a lower bound for topological entropy of flows

from such data sets. The initially embedded material-curve is thought of as an elas-

tic line whose growth rate is computed using the collective motion of all available

trajectories moving through space in concert. In essence, the relative motion of an

ensemble of trajectories in space encodes global information that is not contained in

any one individual trajectory. That is, extra information is “hiding” in an ensemble

of trajectories, which is not exploited in a trajectory-by-trajectory approach.

In this paper, we focus on these underlying stretching and folding processes that

drive mixing in two dimensional fluids. We apply computational geometry techniques

to develop a 2D algorithm titled the Ensemble-based Topological Entropy Calculation

(E-tec), which may be downloaded at 10.5281/zenodo.1405656. E-tec achieves three

main goals: a) estimation of a lower bound to the topological entropy on data sets,

10

https://zenodo.org/badge/latestdoi/146612307
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b) convergence to the topological entropy as ensemble size increases, c) linear scaling

in runtime with the length of trajectories and Nk logN scaling with the number of

trajectories N . (Values of k range from 1/3 ≤ k ≤ 3/2 and typically k . 1. We point

the reader to Sect. 2.7 for a discussion.) E-tec does not require the flow to be area

preserving or incompressible.

The remainder of this paper is broken up into six sections. We first review topo-

logical entropy (Sect. 2.2) and then summarize (Sect. 2.3) and give procedural details

(Sect. 2.4) of our E-tec algorithm. E-tec performance is then evaluated on a chaotic,

lid-driven cavity flow as a test case (Sect. 2.5) and we show that results are consistent

with the braiding approach. Next, we demonstrate E-tec’s robustness and show evi-

dence that the E-tec runtime compares favorably to braiding algorithms (Sect. 2.6).

Finally, we discuss details regarding E-tec’s runtime scaling and computational bot-

tlenecks (Sect. 2.7 ).

2.2 Topological Entropy

As discussed in Sect. 1.3, topological entropy is the growth rate of the number of

distinguishable orbits [49]. In two-dimensional flows, topological entropy h can be

estimated by embedding an initial material-curve, e.g. a line of dye, of length L0 in

the system and estimating its growth under the evolution of the flow [46]. At long

times, the length L(t) of the curve as a function of time t grows exponentially as

L(t) ≈ L0 e
ht. (2.1)

Thus, direct computation of the curve’s evolution is troublesome in chaotic flows since

the length is expected to grow exponentially fast, which requires an exponentially

growing number of trajectories to maintain sufficient point density of the curve. Other

techniques for extracting topological entropy operate on a trajectory-by-trajectory

basis, i.e. ensemble-averaging some quantity (such as the Jacobian singular values)

computed one trajectory at a time. This is the approach taken in recent work on

expansion entropy [50] , a generalization of topological entropy, which unlike Eq. 2.1,
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a) b) c)
2 1

2
1

1

1
1

3

Figure 2.1: Band Deformation. a) The white point strikes and deforms the band
(red). b) The white point detaches from the band. Notice the band edge is taut
after detachment. c) An initial rubber band stretched between two points on the
left with edge weights displayed. A more complicated band on the right. The edge
weights correspond to the number of times the band crosses an edge.

scales to higher dimensions for all flows and requires no computing or measuring of

multidimensional surfaces.

As an alternative approach for 2D systems, a lower bound to the topological en-

tropy may be computed with a finite number of trajectories and no detailed knowledge

of the velocity field. The material-curve to be advected is represented by a taut elastic

loop that wraps tightly around trajectories that strike it. Since an advected material-

curve may be continuously deformed into this taut loop given the same trajectory

evolution, the need for maintaining material-curve point density is eliminated. The

loop is stretched and folded over itself exponentially many times in a chaotic flow. Its

exponential growth rate is a lower bound to the full system’s topological entropy [56].

In this more topological setting, braiding theory has been used to compute this

lower bound. The Finite-Time-Braiding-Exponent (FTBE) method [42] evolves the

loop forward using the entanglement of a finite number of trajectories. However, this

method scales quadratically in the number of points N due to the braid approach

requiring O(N2) algebraic generators per unit time. This renders braiding exponent

calculations unwieldy for systems requiring many trajectories.

To develop a computationally efficient method to estimate a lower bound on the

topological entropy of a planar flow that scales sub-quadratically in the number of

points N , we compute the stretching rate of an advected elastic curve directly. Re-

ferring now to the elastic curve or loop as a rubber band, we use the same FTBE

idea of trajectories working in concert to stretch and fold the band. The E-tec algo-

rithm achieves this using the same input: i) a set of (typically aperiodic) trajectories
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{xi(t), yi(t)} that are discretized over time t1, t2, . . . and ii) a user-specified, non-

self-intersecting elastic band which wraps around a set of trajectories. The output is

the number of edge segments in the band as a function of time. However, instead of

using a braid representation to compute the stretching of the band, E-tec computes

this stretching, and thus the topological entropy, directly by using a triangulation to

detect all point-band collisions.

In summary, E-tec tracks the crossing of a trajectory with only its neighboring

edges in the triangulation, unlike the braiding method which concerns itself with each

trajectory’s relative position with every other trajectory along a projection axis. This

idea leads to a more favorable sub-quadratic runtime scaling of O(Nk logN), where

1/3 ≤ k ≤ 3/2. (For a detailed discussion about the two methods’ runtime scaling

in the number of points, we refer the reader to Sect. 2.7.) The idea of using an

advected dynamic triangulation to compute topological entropy was first proposed

by Marc Lefranc [64–66]. Lefranc’s work was restricted to the entropy generated by

periodic orbits, and he did not develop a general algorithm to implement this. To

our knowledge, this work is the first attempt to fully generalize Lefranc’s ideas to

aperiodic orbits.

2.3 Overview of E-tec

We first give an overview of E-tec and forgo the details to the next Section (Sect. 2.4).

E-tec computes how an initial, closed, piecewise linear, non-self-intersecting rubber

band in R2 evolves under an ensemble of trajectories. The vertices of the band coincide

with trajectories from the ensemble. When trajectories strike the band, they do not

penetrate it but stretch it like a piece of elastic (Fig. 2.1a). In this manner, the band is

stretched and folded, typically producing a growing number of edges wrapping around

each other. Our algorithm tracks the configuration of the band. Care must also be

taken in finding when and how a trajectory detaches from an edge. This detachment

results in two band edges returning taut (Fig. 2.1b), in much the same way a tight

string will return taut once plucked (stretched) and released (undoing the stretching).

Each band edge is assigned an integer weight ω indicating the number of times the
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Two total edges Four total edges Six total edges

Figure 2.2: Edge Weights. E-tec counts the number of edges of a rubber band as
it is stretched by moving points. As the two bottom points rotate, the red band,
initially wrapped around two points, is stretched and folded (left to right). E-tec
tracks the growth of this band by assigning a weight to each edge corresponding to
the number of times the band passes over this edge.

band stretches across it (Fig. 2.1c and Fig. 2.2). For chaotic advection, the total

weight of the band will grow exponentially, as shown in Sect. 2.5. This exponential

growth rate is a lower bound to the true topological entropy of the dynamical system.

Even though the weight of all the edges grows exponentially, the number of unique

edges is bounded.

E-tec efficiently tracks band growth by simply shifting edge weights to the appro-

priate edges when a point collides with, or detaches from, the band. A key component

of the algorithm is the detection of all relevant point-edge collisions. We achieve this

by maintaining a triangulation of all trajectories for all times. First, edge weights

are determined corresponding to the initial placement of the band. Next, the data

points may be triangulated in any manner consistent with the initial placement of the

band. We choose a Delaunay triangulation [67] constrained such that each weighted

initial edge representing the initial band is included in the triangulation. For any

initial band, E-tec’s computation of the evolved band growth is independent of the

initial triangulation. Note that the algorithm is fast enough to run and compare many

different initial bands in a reasonable time.
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The triangles that make up the triangulation are called core triangles. Each edge

of the stretched band lies within the triangulation, so that each time a point strikes

the band, the orientation of one of the core triangles will be inverted. We refer to this

inversion as a triangle collapse. All band deformations will be detected since band

edges remain in the core triangulation. The triangulation must be updated upon any

triangle collapse. This update is local to the detection of each event, resulting in the

rearrangement of edges and triangles near the collision only (illustrated in Fig. 2.3a).

Similarly, the only edge weights that are shifted are those involved in the collision.

The update process is independent of both the number of points N and the number

of triangles.

In addition to collisions, we need to detect when a trajectory detaches itself from

a band edge. E-tec records which edges of the band are candidates for detachment

by storing the triangle made up of the outer-most band edges attached to each point,

i.e. typically the most recent edges to have struck a point. These triangles are called

outer triangles and are shown in blue in Fig. 2.3. Unlike the core triangles, the

outer triangles do not form a triangulation of space. Rather, there is simply one

outer triangle for each vertex crossed by the band. When a point detaches from the

band, its corresponding outer triangle collapses and inverts its orientation. After the

outer band edge peels off the point, there may remain other band edges still wrapped

around the point. (Follow point 7 in Fig. 2.3b for an example.) In this case, E-tec

recalculates and stores the new outer triangle. Note that the outer triangle of a given

point can always be recalculated from just the weights of all edges adjacent to the

point. Thus, E-tec must track when both core and outer triangles collapse.

The triangulation update process following an outer triangle inversion remains

local, though the process differs from the core triangle inversion update in one fun-

damental aspect: the local re-triangulation is constrained to contain the band that

remains taut. This creates a possibly non-unique choice in edges needed to complete

the triangulation. As an example, notice that edge (1, 5) could have replaced edge (2,

6) to complete the triangulation in Fig. 2.3b. Because of this, E-tec will not generally

recover the initial triangulation away from the band if trajectories are run forward

and then exactly backward in time. However, the algorithm is time-reversible in that
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Core Triangle

Outer Triangle

Combined Core and Outer Triangle

Figure 2.3: Events of E-tec Algorithm. a) As point 5 moves right, triangle (2, 4,
5) collapses and inverts orientation. Two core triangles are re-triangulated, with the
new edge shown as dashed. The initial edge weight of 2 for segment (2, 4) is shifted
to segments (2, 5) and (4, 5). The blue-highlighted triangle (2, 4, 5) is the new outer
triangle of point 5. It records which triangle collapse would be needed for the band
to “snap back” taut, thereby undoing the collision. b) As point 7 moves to the right,
outer triangle (2,5,7) collapses and the band edges (2, 7) and (5, 7) straighten into (2,
5). The three core triangles within pentagon (1,2,7,5,6) are reconfigured into three
new core triangles (1,2,6), (2,5,6), and (2,5,7). Point 7 is still a candidate for future
detachment, with new outer triangle (3,4,7), which also happens to be a core triangle.
c) In blue is a combined core and outer triangle (2,4,5). As point 5 moves to the right
and this triangle collapses, the band returns taut around segment (2,4). Three core
triangles (1,2,4), (2,3,5), and (3,4,5) are reconfigured, with the new edge shown as
dashed. Collapsed triangle (2,4,5) (previously shaded) remains as a core triangle.
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the band returns to its initial configuration after running the trajectories backwards

to their initial positions.

In summary, there are two kinds of events that must be detected: the collapse of

either a core or outer triangle. In the given time interval, these events are detected by

finding the time for which their area first goes through zero. This time of first collapse

is simply the appropriate root of the area quadratic polynomial, which is formed from

the linear interpolation of triangle point positions. (For any reader interested in the

scaling of the number of events with the number of trajectories used, we refer them

to Sect. 2.7.) Once these events are detected, they are put in a time-sorted list and

processed in order. Each event is “fixed” by locally updating the core triangulation,

outer triangles, and edge weights. In the course of fixing an event, we may need to

add or remove events from the event list. Event lists become large for densely-packed

ensembles, though E-tec parses through each event and performs each subsequent

triangulation update efficiently, as verified in Sect. 2.5. A flowchart summarizing the

E-tec algorithm is given in Fig. 2.4. The algorithm steps found here are detailed in

the following section.

2.4 E-tec Algorithm Details

This section details our implementation of the E-tec algorithm.

Input: The following inputs are required by the algorithm:

1. The precomputed (or experimentally measured) trajectories.

2. An initial, non-self-intersecting rubber band stretched around a sequence of

data points, specified by the set of edges connecting pairs of data points. This

is represented as a counterclockwise ordering of this set of points. It is often

convenient to choose an initial band that encloses two distant points.

Output: E-tec tracks the evolution of the band, as we will describe below, and

outputs:

1. The state of the stretched rubber band as a function of time, recorded as a (core)

triangulation of all data points and a set of edge weights of this triangulation.

2. The sum of all band edge weights ω as a function of time.
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L	>	0 L	=	0

No

Yes

Core	Triangle	
Collapse	Event

Outer	Triangle	
Collapse	Event

Combined	
Collapse	Event

Choose	the	element	of	the	event	list	with	the	
smallest	time.		Determine	the	event	type.

Check	the	length	(L)	of	the	event	list

• Evolve	data	one	time-step	forward,	and	check	every	core	and	outer	
triangle	for	collapse.	

• Create	a	list	of	(potential)	collapse	events,	sorted	by	the	time	of	
collapse	(first	time	to	zero	area	using	the	linear	interpolation	of	
point	positions)

Initialize	triangulation

Save	weight	
totals.		Is	this	the	

final	time?

“Fix”	this	Event
• Locally	update	the	triangulation	(remove/create/modify	

all	affected	outer	and	core	triangles).		
• Locally	update	pertinent	edge	weights.
• Create	lists	of	neighboring	core	and	outer	triangles	that	

are:	removed,	new,	and	modified.	

Update	the	Event	List
• Binary	search	through	the	event	list	for	the	core	and	

outer	triangles	that	were	removed	or	changed.		
Matches	are	deleted	from	the	event	list.

• Core	and	outer	triangles	from	the	new	and	changed	list	
are	checked	to	see	if	they	collapse	in	the	remaining	
time.		If	so,	they	are	inserted	(binary	search)	into	the	
event	list.

To	extract	the	topological	entropy,	fit	the	
log	of	the	weight	data	to	a	line.

Step	1

Step	3

Step	2

Step	5

Step	4

Step	6

Step	7

Figure 2.4: E-tec Algorithm Flowchart. As described in Sec. 2.3, E-tec employs
computational geometry techniques for tracking the evolution of a piecewise-linear
band. Full details are given in Sect. 2.4.
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3. The exponential growth rate of the band (topological entropy), determined by

the slope of the best fit line for the ln(ω) vs. time graph.

Data structures: E-tec maintains the following data structures as a function of

time:

1. A core triangulation of all data points in the plane.

2. The weights on each edge in the triangulation. (Non-zero weighted edges con-

stitute the stretched rubber band.)

3. For each relevant data point, the outer band triangle (abbreviated outer tri-

angle) records the outermost wrapping of the rubber band around that point.

(See the blue shaded triangles in Fig. 2.3.) During the algorithm’s run, the

outer triangle represents the piece of rubber band that has struck the point

most recently and hence is a candidate for detachment at a future time. For

example, upon inspection of vertex 7 in Fig. 2.3b, we may deduce that of all

the red band edges attached to it, the two that created the largest angle would

be the ones to snap back and revert to a single edge. Specifically, edge (2, 5)

will snap back taut if triangle (2, 5, 7) changes orientation. Notice that outer

triangles are not necessarily contained in the set of all core triangles.

Steps: We outline the key steps taken by E-tec in tracking the evolution of a rubber

band. These steps are summarized in the Fig. 2.4 flowchart.

1. We first initialize the core triangulation using a constrained Delaunay triangu-

lation [67] of the initial points (with the initial placement of the rubber band

as the constraint). See Fig. 2.5a.

In steps (2-6) we evolve the state of the system (core triangulation, weights, and

outer triangles) forward using the next time-slice in the trajectory data as input.

Notice that E-tec does not need the whole trajectory at once in order to evolve the

triangulation forward, and therefore could be used in real-time during experimental

data collection.

2. For each core and outer triangle in the current state of the system, we use the

linear interpolation of point positions to determine if and when a triangle will

pass through zero area during this time step. These collapse events are sorted

by time into an event list.
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3. If the event list is non-empty, we go to step 4 and determine the event type of

the next collapse event. If the event list is empty, we then add up the weights

of every edge to get the current total weight ω of the band, and store this

value. This acts as a proxy for the length of the band, and grows with the same

exponential rate in time. If we are at the final time of the trajectory data, we

end by analyzing the accumulated weight data in step 7. Otherwise, we move

on to the next trajectory time in step 2.

4. A collapse event can be one of three general types: a core triangle collapse

(Fig. 2.3a), an outer triangle collapse (Fig. 2.3b), or a combined core and outer

triangle collapse (see Fig. 2.3c for an illustration). While the specifics of how

the three types of collapse events are handled are different, the broad strokes,

as seen in step 5, are the same.

5. For each collapse event type, there is a general template for adding, removing,

and/or modifying the core and outer triangles that are adjacent to the collaps-

ing triangle. Crucially, this process is local, and the number of operations is

bounded and does not grow with the number of trajectories.

6. The local deletions, creations, and modifications of core and outer triangles

that result from handling a collapse event potentially affect the overall event

list for this time-step. First we consider the deleted and modified core and

outer triangles. If, before modification, they have a time-to-zero-area that is in

the remaining fraction of the current time-step, then we search for and remove

them from the event list. Next we consider the new and modified core and outer

triangles. If, after modification, they will collapse in the remaining time-step,

we search for the proper position to insert them into the sorted event list. Both

searches are binary, and constitute one of the two aspects of the algorithm that

give us O(Nk logN) computational complexity, where 1/3 ≤ k ≤ 3/2 (O(logN)

for binary search and O(Nk) searches per time-step). Here, the value k is

determined by the scaling of the collapse event rate and depends heavily on the

type of flow producing the trajectories. (Please see Sect. 2.7 for an explanation

of the collapse event rate scaling.) After modifying the event list, we return to

step 3.
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7. Approximate the topological entropy by computing the exponential growth rate

for the total weight over time.

2.5 E-tec Algorithm Verification

In this section, we verify the E-tec algorithm by running E-tec on numerical trajecto-

ries sampled from a chaotic lid-driven cavity flow used to study chaotic advection [3].

A numerical example of E-tec applied to real trajectory data (requiring only seconds

to run) is shown converging to the theoretical topological entropy lower bound of the

flow in Fig. 2.5. In later subsections, we compare our results to lower bounds on topo-

logical entropy computed from two different methods; first, by a direct application

of Eq. (2.1) to a growing material-line, and second, by a technique called homotopic

lobe dynamics (HLD), which extracts symbolic dynamics from finite-length pieces of

stable and unstable manifolds attached to fixed points of the fluid flow [2,6, 7].

2.5.1 Chaotic Lid-Driven Cavity Flow

The chaotic lid-driven cavity model [3, 4, 68, 69] is a two-dimensional area-preserving

flow defined over a 2D vertical cross-section of a rectangular cavity, extending verti-

cally from −b ≤ y ≤ b and horizontally from 0 ≤ x ≤ a. The flow,

V(x, y, t) =

(
∂ψ

∂y
,−∂ψ

∂x

)
(2.2)

is defined in terms of a stream function ψ(x, y). The stream function is an exact

solution of the biharmonic equation ∇2∇2ψ(x, y) = 0 defined on the rectangular

domain. The stream function is time-periodic with period τf and is given explicitly

by

ψ(x, y, t) =



U1C1f1(y) sin
(
πx
a

)
+ U2C2f2(y) sin

(
2πx
a

)
,

for nτf ≤ t < (n+ 1/2)τf ,

−U1C1f1(y) sin
(
πx
a

)
+ U2C2f2(y) sin

(
2πx
a

)
,

for (n+ 1/2)τf ≤ t < (n+ 1)τf ,

(2.3)
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Figure 2.5: Numerical Example of an E-tec Implementation. a) Initial data
points with the band wrapped around two points (in red). The core Delaunay tri-
angulation (in blue, dotted) is constrained to include the red band edge. b) Final
data point positions at T = 20, the triangulation, and the stretched band evolved
under the motion of the trajectories. Dynamics is given by model in Sect. 2.5 with
τf = 0.96. c) E-tec output: the number of band edges as a function of time (blue).
The slope of the best-fit line (red, dashed) is the topological entropy estimate.
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where

fk(y) =
2πy

a
cosh

(
kπb

a

)
sinh

(
kπy

a

)
− 2kπb

a
sinh

(
kπb

a

)
cosh

(
kπy

a

)
, k = 1, 2,

and

Ck =
a2

2kπ2b

[
a

2kπb
sinh

(
2kπb

a

)
+ 1

]−1

, k = 1, 2.

We follow Grover et al. [3] and assign U1 = 9.92786, U2 = 8.34932, a = 6, and b = 1.

Fig. 2.6a and Fig. 2.6b show streamlines for the two steady flows in Eq. (2.3). Each

flow is separately integrable and is asymmetric in x, with a large vortex on one side

and a smaller vortex on the other. The system alternates between each flow for a half-

period τf/2. It is this alternating flow that introduces positive topological entropy

into the system.

When τf is sufficiently large, τf ≥ τ ∗f ≈ 0.9553, there exists a period-three orbit,

ri, i = 1, 2, 3, such that

M(r1) = r2, M(r2) = r3, M(r3) = r1, (2.4)

where M is defined to be the flow map that evolves a point (x, y) forward to the

point (x′, y′) = M(x, y) after a single period τf . Fig. 2.6c shows the points ri and

their time evolution over one period. In the first half-period, nτf ≤ t < (n + 1/2)τf ,

the two trajectories on the left swap positions in a clockwise fashion, while in the

second half-period, (n + 1/2)τf ≤ t < (n + 1)τf , the two trajectories on the right

swap positions in a counterclockwise fashion. Grover et al [3] characterize the ri

as a set of three strands braiding around one another in a nontrivial fashion. The

presence of this braid guarantees the topological entropy is at least hpo3 = 0.9624,

the topological entropy which Boyland et al. [1,51,70] computed using the Bestvina-

Handel train-track algorithm [71]. We note that this period-three orbit lives within

a larger coherent set, a period-three island chain [4] when τf is strictly greater than

τ ∗f .
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a)

b)

c)

a)

b)

c)

Figure 2.6: Dynamics of Chaotic Lid-Driven Cavity Flow. We depict stream-
lines of the flow, Eq. (2.3). a) Motion under the first half-period, nτf ≤ t <
(n+ 1/2)τf . b) Motion under the second half-period, (n+ 1/2)τf ≤ t < (n+ 1)τf . c)
Illustration of a period-three orbit ri. Each color (blue, green orange) represents the
trajectory evolving forward one period.
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2.5.2 Period-Three Orbit and Convergence in Ensemble Size

Here we investigate the convergence of the E-tec algorithm by studying trajectories

from the chaotic lid-driven flow with period τf = 0.96, where we are guaranteed the

existence of a period-three island chain [3, 72, 73]. As illustrated in Fig. 2.7d, no

trajectory starting in an island leaves the island, and no trajectories enter. These

islands braid around one another as they swap places in the same fashion depicted

in Fig. 2.6c. In the analysis of Sect. 2.5.1, each trajectory is sampled with time

step ∆t = 10−2 between points. This choice of ∆t will be shown to be sufficient in

Sect. 2.6.3.

First, we run E-tec on a set of three trajectories with the initial condition for each

trajectory chosen in a different period-three island (Fig. 2.7a). We place an initial

band around the right two points and observe exponentially growing band weights

(Fig. 2.7b). At T = 15 our estimate for the topological entropy is within 0.1% of the

topological entropy guaranteed by the braid (Fig. 2.7c).

Next, we run E-tec on a set of 75 trajectories consisting of the 3 previously selected

trajectories along with 72 randomly chosen ones. We calculate topological entropy

by considering the time evolution of the same initial band (Fig. 2.7b). While the

dynamics appear far more complicated than in Fig. 2.7a, our estimate of topological

entropy is within fitting error to hpo3 = 0.9624 (Fig. 2.7c). Our results demonstrate

that the periodic islands, and their braiding, are what drives most of the system

entropy [74,75]. Furthermore, this demonstrates that for certain systems, topological

approaches such as E-tec (as well as braiding approaches) are capable of producing

accurate estimates of topological entropy with only a small set of carefully chosen

trajectories.

Although the coherent sets for our example were straightforward to locate, for

other examples and practical applications, coherent sets may be harder to identify.

As such, there is no guarantee trajectories from coherent sets, whose dynamics might

be governing the topological entropy of the system, will be sampled appropriately.

To investigate how E-tec would perform under conditions like this, we examine our

ability to accurately recover the topological entropy when randomly sampling initial
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a)

b)

75	pt entropy	=	0.9631	+\- 0.0011

3	pt entropy	=	0.9615	+\- 0.0020

c)
d)

75	pt entropy	=	0.9631	+\- 0.0011

3	pt entropy	=	0.9615	+\- 0.0020d)

Figure 2.7: E-tec Analysis of the Chaotic Lid-Driven Cavity Flow. We show
E-tec results on trajectories governed by Eq. (2.3) with τf = 0.96, guaranteeing the
existence of a period-three orbit, seen in Fig 2.6c. a) We show E-tec results when
considering only 3 points close to the period-three orbit and contained in period-three
islands. We consider an initial band around the two right points (top). This band
evolves (bottom) into a highly stretched band (edge weights in red) around all three
points by T = 15. b) We consider the same 3 initial points, but add 72 random
trajectories (top). The dynamics are more complex (bottom, weights omitted). c)
The growth rate in the number of edges, i.e. our estimate of the topological entropy,
for (a, red) and (b, blue) is the same. This indicates the entropy is driven by the
period-three islands as also shown by Ref. 2. d) The coherent period-three islands,
noted in Refs. 2, 3, and 4, are clearly seen in the Poincaré return map of a long-lived
trajectory in blue. Ten long-lived trajectories inside the islands are shown in red.
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conditions uniformly in space, but removing any point chosen in the period-three is-

lands. E-tec was run on increasingly larger but nested sets of such trajectories. That

is, the points chosen in the 20 trajectory analysis contain all of the points in the

10 trajectory analysis, and so forth. As shown in Fig. 2.8a, E-tec converges rather

quickly in the number of points to the topological entropy lower bound guaranteed

by the period-three islands. Estimates may fluctuate based on the interval used to

fit, especially when fewer trajectories are used. In Fig. 2.8, we see apparent oscil-

latory behavior, though we expect these to dampen at longer times and for results

to converge if taken to infinite time. We note that in the above figure that E-tec

does not require many long trajectories to compute a reasonable approximation to

the topological entropy.

Finally, in Fig. 2.8b, we investigate the E-tec convergence using the 100 point

ensemble in Fig. 2.8a by adding additional points in each of the three islands. E-tec

performs increasingly better as the island points are added. The result with no island

points, given in Fig. 2.8a, is then taken as a worst-case scenario. This assures our

confidence in E-tec results as ensemble sizes are increased in Sect. 2.5.3.

2.5.3 Topological Entropy for Range of Period Driving Pa-

rameter τf

With confidence in E-tec’s ability to characterize topological entropy when τf = 0.96,

we next explore how the topological entropy changes as τf varies. As mentioned

previously, the period-three orbit is born at τ ∗f ≈ 0.9553 and persists for larger values.

Thus, entropy for values τf < τ ∗f will be bounded above by the braiding entropy of

hpo3 = 0.9624, while hpo3 remains a lower bound for τf > τ ∗f . In all cases, the same

initial band is chosen and evolved forward.

As shown in Fig. 2.9, our estimate of topological entropy using E-tec is within

error of the direct calculation of material-line stretching when 0.85 ≤ τf ≤ 0.98 and

the number of data points is at least 1000. For τf < τ ∗f , there are no known island

chains that drive the complexity. Despite this, E-tec performs well here, as shown in

Fig. 2.9. For low values of τf , when τf < 0.85, E-tec produces an estimate slightly
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Figure 2.8: Convergence of E-Tec in the Length and Number of Trajectories.
a) We demonstrate convergence of E-tec to hpo3 = 0.9624 with increasing sample size
and trajectory duration. For E-tec, the same initial band is stretched under ensembles
of increasing size. All trajectories are sampled from outside the islands in the chaotic
lid-driven flow with period-driving parameter τf = 0.96. The entropy reported at
time T is the fitting slope and 95 percent confidence interval to the log of the total
number of edge weights over time t for the range t ∈ [5, T ]. b) We demonstrate
consistency between E-tec and FTBE results (calculated using the freely available
Matlab package braidlab [5]). The same ensembles of trajectories are used for both.
To stay consistent with the braidlab calculations, E-tec reports the entropy as the
fit from initial time to reported time (or rather, it is the fit from t ∈ [0, T ]). c) E-tec
output using the 100 point ensemble with a single trajectory added into one, two,
and three of the periodic islands.
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less than that of direct stretching but consistent with the value produced by HLD.

But E-tec’s discrepancy becomes smaller with increasing numbers of samples. For

high values of τf , when τf > 0.98, both E-tec and HLD produce lower estimates
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Figure 2.9: Verification of E-tec for Increasing τf . E-tec topological entropy
results over a range of τf values using increasing ensemble sizes. We compare to
the estimate of topological entropy from directly stretching a material line [2] and
through another topological technique, homotopic lobe dynamics [6, 7].

for topological entropy than the calculated direct stretching value. We note that E-tec

with 1000 trajectories still produces estimates consistent with HLD, and with 10,000

trajectories E-tec exceeds the HLD estimate but is still below the direct material-line

stretching.

To more clearly see what drives the increase in entropy for high values of τf , we

show the band stretched by E-tec for three different values of τf each computed from

a set of 1000 independently chosen trajectories (see Fig. 2.10). Exponential stretching

and folding is present in all tested parameter values, though Fig. 2.10 shows the band

is stretched in a more complex fashion at higher τf values. Here, additional island

chains emerge [4] resulting in secondary folding [76] that seems less “smooth.” This

secondary folding results in kinks near the islands that propagate forward, which in

turn are further stretched under the dynamics. These small areas with kinks give

significant contribution to the topological entropy, but because the entropy estimates

(Fig. 2.9) were generated from uniformly random samples, these highly-kinked regions

may remain undersampled. As such, a good portion of the stretching may remain

undetected by E-tec in Fig. 2.10c.
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a)

b)

c)

Figure 2.10: Stretched Band Visualization. E-tec band stretching due to flow
advection for period-driving parameters a) τf = 0.80, b) τf = 0.96, and c) τf = 1.05.
Colorbar corresponds to edge weights. All bands are stretched by ensembles of 1000
uniformly distributed trajectories.
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2.6 E-tec Robustness

In this section, we investigate the robustness of E-tec’s results. More specifically, we

examine how E-tec’s ability to correctly estimate topological entropy is impacted by

the choice of initial band and the time-step associated with trajectories. Finally, we

discuss how the E-tec algorithm’s run-time scales with the duration and number of

sampled trajectories.

2.6.1 Robustness to Choice of Initial Band

We make the following conjecture: if all trajectories reside in the same ergodic compo-

nent then the choice of initial band does not affect the topological entropy computed

by E-tec as long as the trajectories are sufficiently long. Figure 2.11 supports this con-

jecture. All initial bands eventually become stretched at the same rate despite some

differences at early times. Adjacent points may remain close for some time, though

the chaotic nature of the flow causes nearby trajectories to eventually diverge, thereby

making the band’s deformation inevitable. Thus, as long as it is possible to obtain

sufficiently long trajectories within a single ergodic component, E-tec’s topological

entropy calculation appears to be invariant to the choice of initial band.

Some chaotic flows have more than one ergodic component, or a mixture of ergodic

and non-ergodic regions. This is true of the model flow in Fig. 2.7d. In such systems,

the choice of initial band will impact the topological entropy estimate. For exam-

ple, a band placed entirely in one of the test flow’s period-three islands (Fig. 2.7d)

will undergo no significant stretching under the flow and thus yield zero topological

entropy.

In practice, to make sure all ergodic components are sampled, it is prudent to check

that the final band stretches around nearly all of the data points. Alternatively, one

could sample many initial bands taking the maximum growth rate of all sampled

bands as the best estimate of the entropy [55]. E-tec is fast enough to run multiple

bands, each with a a different initial triangulation constrained to the initial band

choice, in ensembles of fewer than 106 trajectories in a reasonable time. An alternative

approach to choosing a single initial band is to evolve a “web” of initial bands that
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Figure 2.11: Initial Bands. E-tec output is the logarithm of the sum of edge weights
as a function of time. E-tec’s estimate of topological entropy is the best-fit linear slope
through this data. Here we show 10 different outputs from E-tec for the same set of
100 trajectories. In each case, we chose a different pair of points around which to
stretch our band. Despite some initial differences in the increase in edge weights due
to initial adjacent points staying close to one another (left inset), eventually all the
bands grow at similar rates (right inset). When we fit the exponential growth rate,
starting at T = 5, we find the values for each of the 10 bands agree within 5 decimal
places and average out to 0.9617.

covers the entire initial triangulation. This guarantees that all ergodic components

sampled by the data will be included. As opposed to the initial triangulation being

constrained to the choice of initial band, the initial “web” is constrained to the edges

of the choice of initial triangulation.

2.6.2 Algorithm Scaling and FTBE Comparison

The computational runtime of E-tec is linearly proportional to the duration of the

trajectories. This is because the number of edges tracked by E-tec is constant, and

it is only the values of the weights that grow exponentially in time. This scaling is

the same as the FTBE calculation and stands in contrast to algorithms that precisely

evolve a material-curve forward, which requires inserting exponentially more points

to maintain sufficient point density [77].

One advancement we have made over the FTBE calculation is the run-time scaling

with respect to the number of trajectories used (see Fig. 2.12). The FTBE calculation
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Figure 2.12: E-tec Runtimes. Runtime comparison of E-tec and braidlab, a freely
available Matlab package implementing the FTBE calculation. Both used the same
trajectories from the chaotic model flow for τf = 0.96. All computations were com-
pleted using a 2.8 GHz Intel Core i7 processor.

scales quadratically in the number of trajectories N due to the braid approach re-

quiring N2 algebraic generators per unit time step [42]. Overall, E-tec runtime scales

as O(N + Nk logN), where k is the collapse event rate scaling factor. In general,

the value of k largely depends on the complexity of the flow being studied. For the

chaotic, lid-driven cavity flow trajectories, we find k ≈ 1.05, though we find values

as low as k = 1/3 for trajectories with highly correlated movement and as high as

k = 3/2 for random trajectories. We refer the reader to Sect. 2.7 for more details. As

a practical matter, the E-tec runtime for small to moderate ensembles (roughly up to

5,000 trajectories) is dominated by the linear behavior in Fig. 2.12.

One illustrative example highlighting the runtime difference between the two al-

gorithms is rigid rotational flow. While an admittedly special case, there would be

no new collapse events (except for ones associated with the boundary) making E-tec

very fast, whereas the number of braid generators needed would be proportional to

N2. However, one advantage the braid approach has over E-tec is that once the braid

is extracted from the trajectory data, it may be applied to any initial band. E-tec

only propagates a single curve forward. However, for topological entropy calculations,

a single sufficiently long curve is typically sufficient (as evidenced in Fig. 2.11).
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2.6.3 Robustness to Step Size ∆t

Because E-tec is based on the computational analysis of evolving trajectories, it is

necessary to consider discretized time. We next investigate how the trajectory time

step ∆t affects the entropy calculation and show that E-tec returns trustworthy results

even when poorly resolved trajectories are used as input. We use two ensembles of

trajectories (of sizes 100 and 1000) sampled at a fine scale using the same reference

time step of ∆t∗ = 10−4 to generate two reference topological entropies h∗t . We

then vary the time step ∆t (keeping the trajectories the same) and compute both

ensembles’ corresponding ht. The effect of time step ∆t is quantified by computing

the relative error ∣∣∣∣1 − ht
h∗t

∣∣∣∣, (2.5)

which is plotted in Fig. 2.13. Independent of ensemble size, the data shows that

relative error grows linearly with the time step ∆t. As the trajectory information

is input into E-tec using larger step sizes, we detect more events between steps. It

remains to be seen if the relationship between relative error and ∆t scales linearly for

all ensemble sizes.

E-tec detects events individually for all values of ∆t, but the order in which these

events are detected is potentially different as ∆t increases, due to the differences in

the interpolation of trajectories. In fact, undersampled trajectory data may lead to

entirely different events. This explains the larger relative errors for the 1000 trajectory

ensemble; at higher point densities, there are simply more events that E-tec must

resolve, resulting in more erroneous and misordered event detections. Despite this,

Fig. 2.13 shows that the E-tec error due to step size is still relatively small. It is

comparable to (or smaller than) the error due to other sources, such as trajectory

length and ensemble size (Fig. 2.8a), for ∆t < 10−2, at least for smaller ensemble

sizes.
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Figure 2.13: Relative Error as a Function of Step Size. The effect of time step
∆t on the relative error in the topological entropy calculation with respect to the
reference time step ∆t∗ = 10−4. Graph displays calculations done on two separate
ensembles of size 1000 and 100.

2.7 E-tec runtime scaling with number of points

The main bottleneck in the computational complexity of E-tec comes from the cre-

ation and maintenance of a time-sorted collapse-event list at each time-step. Since

every core and outer triangle, of which there are O(N), is checked for collapse in

this process, E-tec will scale no better than linear in N . Sorting is a worst-case and

average-case O(n log n) process, for n items to sort. Assuming that the number of

collapse events per unit time scales as O(Nk) for some k, the sorting bottleneck im-

plies an E-tec scaling of O(Nk logN). A similar scaling comes from the maintenance

of this event list. During the handling of a collapse event, core and outer triangles

may be created, modified, or deleted. Importantly, this process is local, and the time

for handling one event does not change with an increasing number of points. How-

ever, these amendments to the triangulation necessitate adding or removing events

from the time-sorted event list. This is achieved with a binary search, which is an

O(log n) routine for a list length of n. Given a list length that scales with the number

of collapse events per unit time, this constitutes a second avenue for the O(Nk logN)

scaling. Overall, the E-tec runtime scales as O(N +Nk logN), where k is determined

by the collapse event rate scaling.
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Figure 2.14: Schematic of the movement of a single point (circled in red) against a
background of stationary points. The number of E-tec collapse events is proportional
to the number of average core triangles that would have an equivalent area to that of
the diagonal blue rectangle. For FTBE calculations, the number of braid generators
created by this same process is equal to the number of points in the larger black
rectangle.

The scaling of the collapse event rate depends heavily on the type of flow that

produced the trajectory data. If there is no correlation between the velocities of

neighboring points, then it can be as high as k = 3/2. If they are highly correlated

(e.g. rigid rotation), then it can be as low as k = 1/3. For most flows, k . 1, with k

generally increasing for more complex flows.

To justify the worst-case scaling of k = 3/2, consider the movement of a sin-

gle point through a fixed length and against a background of stationary points, as

depicted in Fig. 2.14. The number of collapse events produced by this motion will

be proportional to the number of core triangles in the path of the moving point.
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Figure 2.15: The collapse event rate scaling for three numerical examples: random
motion, chaotic lid-driven cavity flow (for τ = 0.96), and rigid body rotation.

Given that the average area of a core triangle scales as O(N−1), a characteristic tri-

angle length goes as O(N−1/2). Therefore, the number of characteristic lengths in

the particle’s path, and from this the number of collapse events, scales as O(N1/2).

Moving to the general case where every point is in motion, we could say that each

of the N points “sees” O(N1/2) triangles in its way, and therefore the overall scaling

for collapse events would be O(N3/2). For comparison with FTBE calculations, the

same one-point motion produces a number of braid generators equal to the number

of points in the black rectangle of Fig. 2.14. Since this scales as O(N), the general

case where every point is in motion produces a braid generator production rate that

scales as O(N2).

The k = 3/2 scaling is also borne out in a numerical experiment, see Fig. 2.15.

Here we track the collapse event rate for N trajectories, whose initial and final po-

sitions are chosen randomly within a fixed square, and whose intermediate positions

are given by linear interpolation.

However, in most cases of interest the trajectory motion is generated by or sam-

pled from an underlying flow, and there will be substantial correlations between the

movement of nearby points. Points advected together can significantly suppress the
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collapse event rate scaling. At the other extreme, consider the case of points undergo-

ing rigid-body rotation. None of the triangles in the bulk will collapse, and the only

contribution to the collapse event rate comes from core triangles associated with the

fixed bounding auxiliary points (stationary points that are added upon initialization

which help us avoid triangulation update issues at the boundary edges of the triangu-

lation). This numerical example, see Fig. 2.15, gives a scaling value of k ≈ 1/3, likely

the most favorable scaling we can expect from a non-trivial flow. General flows will

fall between these two extremes. Our example of a chaotic lid-driven cavity flow (see

Fig. 2.15), with τ = 0.96, gives a scaling value of k = 1.05. We have also simulated

the collapse event rate scaling for linear shear flow, k ≈ 0.66 and an irrotational

(Rankine) vortex, k ≈ 0.77.

Overall, we can expect the E-tec runtime to scale as O(N + Nk logN), with

1/3 ≤ k ≤ 3/2, and typical flows resulting in k . 1. This favorable computational

complexity, compared to O(N2) for the FTBE, comes from two sources. First, collapse

events are produced locally, whereas braid generators encode more global information.

Second, the correlated motion of neighboring points further reduces the scaling for

trajectories derived from general flows.

2.8 Conclusion

We introduced the Ensemble-based Topological Entropy Calculation (E-tec), an algo-

rithm that computes topological entropy in a planar flow from an ensemble of system

trajectories. We verified E-tec’s convergence to the correct topological entropy with

increasing numbers of trajectories on a highly chaotic, lid-driven cavity flow. E-tec’s

performance was shown to be robust with respect to the choice of initial band, as

well as changes in the time sampling interval (∆t). Notably, we have shown that

E-tec’s runtime scales as O(Nk logN), where 1/3 ≤ k ≤ 3/2 and N is the number of

trajectories in the ensemble.

Our work suggests several further directions for the analysis of trajectories with

E-tec, which we intend to explore in future studies. First, we shall seek to extend E-

tec to three dimensions and higher. Braiding theory, the basis for FTBE calculations,
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cannot be readily generalized to higher dimensions [41]. The computational geometry

framework in which E-tec is based might perhaps be more naturally extended [64–66].

Instead of a rubber band in a planar flow, we would consider a two-dimensional rubber

sheet stretched around a collection of points in a three-dimensional flow. A 3D trian-

gulation may still be used to track point-face or edge-edge collisions, and the rubber

sheet may be chosen as one of the faces in the initial triangulation. As the points

evolve in time, they carry the sheet along with them, stretching and folding it so that

its growth reflects the flow complexity. Though there clearly remain some significant

challenges to executing this generalization to three dimensions, we anticipate a host of

interesting theoretical opportunities that this route may provide. Finally, by tracking

all the trajectories in concert, we believe E-tec’s algorithm may be naturally adapted

towards identifying and tracking coherent sets and other emergent structures.
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Chapter 3

2D E-tec Applications

3.1 Active Matter Mixing

3.1.1 Introduction

E-tec is a Lagrangian-based method, meaning its implementation requires no knowl-

edge of the velocity field or of the governing equations of motion. This makes E-tec

an appealing algorithm to use for topological entropy calculations in real world appli-

cations of chaotic advection, mixing, and fluid transport. In many of these situations,

observed data may be limited to only a small number of potentially-sparse trajectory

data. E-tec succeeds in these situations where many techniques fail, as standard

tools for studying such data, like finite-time Lyapunov exponent fields and velocity

field estimations, oftentimes require a large number of trajectories and sophisticated

trajectory-extraction techniques.

In this section, we apply E-tec to experimental data obtained from an active

matter microbiological fluid in an effort to better understand the mixing efficiency

of self-driven advection. Significantly, this work represents the introduction of well-

known measures of chaos to the physics of biologically-active fluids. E-tec is applied

to experimentally derived system trajectories and the system is verified to be chaotic.

Furthermore, E-tec results are verified against Lyapunov exponent calculations on

the same system trajectories. Some special challenges arise when working with these

40
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experimentally derived trajectories, particularly when they are observed for only a

portion of the time interval.

3.1.2 Active Nematic Fluid

Active matter is made up of many agents which each consume energy in order to

collectively move and produce large-scale motion. These groups come in all shapes

and sizes, ranging from the macro scale, like flocks of birds [78] and schools of fish [79],

to the micro scale, like cell formation patters [80,81] and swimming bacteria [82,83].

These self-propelling entities are able to collectively organize into patterns and exhibit

chaotic flows or self-assemble themselves into higher order structures that are in out of

equilibrium [84,85]. Of interest in this study are active nematic fluids, ones composed

of rod-like subunits that take on an anisotropic ordering, spontaneously aligning when

packed together densely, and slide relative to each other.

The active matter fluid studied is a microtubule-kinesin-based active nematic on

the length scale of 100’s of microns. In biological cells, microtubules and kinesin

motors play a major role in cell structure and intracellular transport. Microtubules

serve as biological highways for molecular motors to transport cellular cargo within

the cell’s cytoskeleton. Kinesin motors step along microtubules and are essential for

a variety of cell functions, including cell division and cytoplasmic streaming [86].

3.1.3 Experimental Setup

The experimental setup for this study is confined in two dimensions [85, 87] and the

resulting flow is shown in Fig. 3.1. Microtubules are densely packed together and

spontaneously organize in ordered bundles than can bend, buckle, and break [88–90].

Bundles are cross-linked by clusters of kinesin motors. Powering the kinesin movement

along microtubules is adenosine triphosphate (ATP) [91]. If two motors in a cluster

bind to adjacent microtubules of opposite polarities, the opposing forces produce a

sliding motion between these microtubules in the presence of ATP.

In the experiment, ATP can generally be thought of as an energy source, as system

activity and fluid speed increases with the ATP concentration. At low concentrations,
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microtubules simply glide forward in their respective opposing directions. There is no

change of direction and local ordering is never broken. However, rich dynamics occur

at higher concentrations of ATP. Emerging at high microtubule densities and high

ATP concentrations are pairs of +1
2

and −1
2

topological defects that are continuously

created and annihilated. These defects, pictured in the inset of Fig. 3.1, occur when

local ordering breaks down. They braid around one another when alive and are

responsible for driving much of the dynamics. In fact, on the macroscopic scale, the

flow exhibits chaotic behavior. (This is none too surprising, as the braiding of defects

is reminiscent of the braiding of period-3 islands in the chaotic lid-driven cavity flow

model used to verify E-tec in Ch. 2.)

Ultimately, we wish to explore how the dynamics depend on varying ATP concen-

trations. Experiments are repeated at progressively higher ATP concentrations and

two measures of chaos, topological entropy and the Lyapunov exponent, are estimated

for each. The trajectory extraction process is explained below, followed by results for

an array of ATP concentrations.

-1/2	defect

+1/2	defect

Figure 3.1: Fluorescence microscopy image of the active nematic fluid consisting of a
densely-packed microtubule network in 2D. The two types of topological defects that
emerge are pictured in the inset. Image credit : Amanda Tan [8].
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3.1.4 Extracting Particle Trajectories

To obtain position and velocity information of the nematic flow, biotin-coated silica

beads of 2µm diameter were bound to the microtubule bundles. Bead trajectories

directly following the microtubule network are seen colored-in in Fig. 3.2a. This

approach differs from recent work on similar systems in which beads are not directly

attached to the microtubules, but rather acted as passive tracers [85,88].

a) b)

c)

Figure 3.2: a) Bright field image of tracked bead trajectories that remain unbroken
(colored in for effect). b) Lagrangian particle image tracking results. All bead parti-
cles found in the frame are highlighted in dark blue. All bead particles belonging to
unbroken trajectories used for later analysis are highlighted in cyan. Pinned particles
near the boundary are those that leave the field of view. c) Number of trajectories
that are actively moving in the field at any given time for one data set (red) and the
union of data sets (blue).

To extract the trajectories, first bright-field optical microscopy snapshots were

produced to make movies. Second, bead motion was tracked using a particle-tracking

algorithm developed by Crocker et al [92] and adapted by Gao et al [93]. The tracking
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algorithm locates particles at each frame by identifying the center of mass based on

maximum intensity for each particle. Then, trajectories are created for each particle

by linking the displacement of a particle with the most probable corresponding par-

ticle in the preceding frames. A snapshot of detected bead particles in a single frame

is pictured in Fig. 3.2b. In dark blue are all the bead particles the algorithm detects

at the single snapshot of time. While most of these bead particles will be stitched

together as bead trajectories over multiple frames, the algorithm fails to track many

bead trajectories for the entirety of their run. This is mostly due to limitations in the

image qualities and non-uniformity of the background darkness in time. Also marked

in the Fig. 3.2b snapshot are the bead particles belonging to trajectories that the

algorithm is able to track for the entirety of their run are in cyan. The algorithm

does not “lose” this set of cyan trajectories. Because E-tec requires unbroken sets of

trajectories, E-tec analysis using bead trajectories is limited to this smaller subset of

unbroken ones.

In addition to losing track of trajectories, difficulties in the tracking algorithm arise

because the camera does not capture the entire flow field. Thus, many trajectories

are entering and leaving the field of view for the duration of the experiments. Any

tracked trajectory that leaves the field of view is left stationary at the position it exits

the boundary for all later time. Any trajectory entering is similarly placed along the

boundary where it enters for all prior times. As a result, the number of trajectories

that are moving in the field of view fluctuates in time.

The particle tracking algorithm is run once and Fig 3.2c shows in red the total

number of unbroken trajectories moving in the field of view at any given time. Since

the number of active and unbroken trajectories remains low (∼40), the algorithm

was run many times using different parameters. A union of trajectory sets is taken.

Repeated ones are thrown out, yielding an ensemble of size 254. Unfortunately, less

than half of these trajectories are moving in nearly every frame, indicated by the blue

curve representing active trajectories in Figure 3.2c.
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3.1.5 Topological Entropy Calculation for 50 µM ATP Con-

centration

We use extracted bead trajectories as input to E-tec. A long initial band is placed

along two trajectories and stretched by the trajectories as the triangulation is advected

forward. This process is shown for a small ensemble of roughly 100 trajectories in the

50 µM ATP solution in Fig. 3.3a and b. Figure 3.3c shows the entropy estimation

for the full ensemble of 254 trajectories. The topological entropy htop is estimated to

be 0.0100 ± .0001. For reference, the Lyapunov exponent, a key metric of a flow’s

complexity measuring the exponential rate at which nearby fluid parcels separate from

one another, is estimated by tracing the frame-by-frame paths of 10 pairs of nearby

trajectories and calculating the rate in which each pair separates. The Lyapunov

exponent λ of the flow is approximated to λ = 0.0120 ± .0006. Both htop > 0 and

λ > 0 indicate the flow at the 50 µM ATP concentration is chaotic. However, the

fact that λ > htop is problematic, as theory guarantees that the topological entropy

htop acts as an upper bound to the Lyapunov exponent λ [49].

Limitations in the number of bead trajectories that can be input into E-tec help

explain the low htop calculations. Further exacerbating this issue is the fact that

over half of all trajectories are stationary on the boundaries at any given time (see

Fig. 3.2c). Only 254 could be extracted from the experiment with 50 µM ATP

concentration. Figure 3.3d shows the topological entropy estimation as a function of

ensemble size, giving us a possible gauge for the size of ensemble needed to surpass

the Lyapunov exponent.

3.1.6 Topological Entropy Calculation from Beads as a Func-

tion of ATP Concentration

The same bead extraction technique is repeated on experiments using ATP concen-

trations of 75, 100, 500, and 1000 µMs. For each, trajectories are gathered using

several instances of the particle tracking software, the union of data sets is taken, and

repeat trajectories are thrown out. The E-tec results for each set are recorded in blue

in Fig. 3.4. Also plotted are the Lyapunov exponent averages for each concentration.
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Figure 3.3: E-tec results for the 50 µM ATP concentration. a) Initial bead positions
with the rubber band (red) stretched between two of them. b) At the final time,
the band is stretched and folded over itself in an intricate pattern. c) The number of
band edges grows exponentially in time, giving the topological entropy htop.

These measure the exponential rate of separation of nearby bead pairs and are ob-

tained from the bright microscopy images. E-tec topological entropy stays somewhat

stationary as ATP concentration increases while the Lyapunov exponents generally

increase.

Because ATP concentration controls the speed at which kinesin motors step at

the molecular level, we expect the topological entropy and Lyapunov exponent to

both increase with increasing ATP concentration. Somewhat surprising is that this

growth is not monotonic. Both measures drop in value for the 500 µM concentration
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Figure 3.4: E-tec topological entropy measurements using bead trajectories in blue.
Also pictured are the Lyapunov exponents found by averaging the exponential rate
of separation of 10 bead pairs for each concentration.

(significantly more so for the Lyapunov exponent). We note how low the E-tec entropy

results are in comparison to the Lyapunov exponents. This plot represents the best

E-tec can accomplish given the system’s bead trajectory gathering restraints and the

state of the bright-field optical microscopy movies. Though ensemble sizes input into

E-tec are on the order of O(102), typically more than half of these trajectories are

stationary.

3.1.7 Topological Entropy Calculation from Defect Tracking

as a Function of ATP Concentration

Instead of tracking beads attached to microtubules that move passively in the flow,

we aim to track topological defects that govern the flow dynamics. Microtubule

bundles around the +1
2

defects resemble the stretching and folding of dye by stirring

rods undergoing an optimal braiding pattern [1]. Experiment defects are highlighted

in Fig. 3.5a. As additional motivation for obtaining defect trajectories, the defect

stretching further resembles the stretching done by the period-3 islands of the chaotic

lid-driven cavity model flow [3, 4, 68, 69] used to verify E-tec in Ch. 2. The islands

are highlighted in an E-tec snapshot in Fig. 3.5b. Remember that the island braiding

enforced a minimum value on the topological entropy of the flow.
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a)

b)

Figure 3.5: A comparison between the active nematic +1
2

defects and period-3 coher-
ent islands from the chaotic test flow used in Ch. 2 a) Fluorescence microscopy image
of the active nematic fluid with topological defects marked. White circles denote +1

2

defects. A yellow triangle denotes a −1
2

defect. b) A band stretched by the braiding
of the three period-3 islands (circled). Image a) credit : Amanda Tan [8].

As a first step to obtaining defect trajectories, the defects were tracked from parti-

cle image velocimetry (PIV) using fluorescence microscopy images of the microtubule

bundles. Experimental images and tracked defects are pictured in Fig. 3.5a. Their

positions are found at breakdowns in local ordering in the PIV velocity field estima-

tions. Defect trajectories simply need to be extended for all time before and after

their creation and annihilation, a task done with the PIV velocity data. Defect tra-

jectories once again leaving or entering the field of view are left stationary on the

boundary for all times they are inactive.

By applying E-tec to defect trajectories, we obtain better topological entropy re-

sults and verify that the defects act as stirring rods that drive the flow dynamics

with their braiding. Figure 3.6 demonstrates remarkable consistency between the
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Lyapunov exponents and the topological entropy due to the defect trajectories. Ad-

ditionally, we verify once again that the active nematic flow increases in complexity

with higher ATP concentrations, resulting in better global mixing.

Figure 3.6: E-tec topological entropy measurements using defect trajectories in yel-
low. Also pictured are the same Lyapunov exponent averages and bead trajectory
topological entropies from Fig. 3.4.
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3.2 E-tec and Coherent Sets

In a broad sense, coherent sets are sets of trajectories that “do the same thing.”

Coherent sets exist as collections of regions in which material does not leak out. These

special structures have been studied extensively in geophysical applications in recent

years, as the ability to identify regions of mixing and material transport barriers has

many applications: the emergence of coherent structures that help explain bacterial

abundance in the Gulf of Mexico [94], the knowledge of how regions of fluid remain

isolated from each other allows for invaluable prediction of the fate of oil spills [30,31],

the coherent material core of Jupiter’s Great Red Spot [95], the large quantities of

Indian Ocean water that is transported by the Agulhas Current up to thousands

of kilometers with little to no mixing [31, 96], just to name a few. Additionally,

across flows in both the macro and micro scales, coherent sets can play a large role in

invoking unpredictability [73], a hallmark of chaotic advection. As seen in the chaotic

lid-driven cavity flow used to test and verify E-tec in 2D, coherent sets can act as

stirrers, braiding material lines and topologically forcing an entropy lower bound.

While the material in coherent sets might not be well mixed with the surrounding

fluid, they may act as “ghost rods” that stir the fluid around them, promoting efficient

mixing [73].

We verify below that E-tec will correctly handle trajectories sampled from co-

herent sets. As a test, three period-3 islands from the chaotic lid-driven cavity flow

model defined in Ch. 2 are analyzed. Trajectories are uniformly and randomly seeded

throughout the flow. The three islands are then sampled with additional random

trajectories. Rubber bands placed around the convex hull of the island points are

advected forward in E-tec. Though the islands all move in the “figure 8” golden

braid motion, the bands do not grow in time under the flow dynamics, as shown in

Fig. 3.7. The result would have been the similar for any band contained inside the

islands rather than on the boundaries, as the points remain nearly-stationary relative

to the islands’ movement.
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Figure 3.7: Displayed are bands around three coherent sets a) Initial bands placed
around a three subset of points that lie in the interior of the coherent sets. (Blowup
in inset.) b) The bands evolved forward in time, with negligible stretching. c) The
number of edges in the band exhibits no net growth in time, indicating that the band
encloses a coherent set.

3.3 E-tec, Escape Rates, and Unbounded Flows

In many real-world and experimental studies, flows are unbounded and trajectories

can move apart indefinitely. This is readily seen in the active nematic study in

Sect. 3.1 where trajectories continuously enter and exit the frame of view. Studies

on the optimization of braiding patterns [34, 57, 58] have theoretically extensions to

potentially-unbounded flows, though these works simply report on the topological

entropy lower bound for planar flows.

Many questions remain regarding the nature of unbounded flows undergoing chaotic

advection. The aim of this section is twofold: 1) to better understand how E-tec will

perform on unbounded flows, and 2) to investigate the dependence of topological en-

tropy on the ensemble densities and trajectory escape rates. To begin explore the

relationship between E-tec applied to unbounded flows and trajectory escape rates

using the following 2D time-dependent system:
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ux = sin(πx) cos(πy) ux = − sin(π(x− 1/2)) cos(π(y − 1/2)

uy = − cos(πx) sin(πy) uy = cos(π(x− 1/2)) sin(π(y − 1/2))

for nτf ≤ t < (n+ 1/2)τf for (n+ 1/2)τf ≤ t < (n+ 1)τf .

This system operates as a spatially-periodic mixer. It models a flow being mixed

by rods on an infinite 2D lattice that are swapping places with their horizontal and

vertical neighbors in clockwise and counterclockwise fashions, depending on the half-

period. A template to help envision this motion is the braiding of the period-3 islands

present in the test flow from Ch. 2, only here, rods extend infinitely in 2D and can

also exchange vertically. The parameter value τf = 2 yields a chaotic, unbounded

flow and is the parameter used for this study.

Trajectories will be initially seeded in two bounding regions, one consisting of a

circle with radius d and another consisting of a box of side length d. For each region,

the same trajectories will be advected three times, once allowing them to roam phase

space unbounded (Fig. 3.8, on the left), and one for the each boundary region in which

trajectories are frozen once leaving the boundary (Fig. 3.8, on the right). Trajectories

exiting the regions will remain stationary for all time and will not be replaced.
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Figure 3.8: (Left) Unbounded trajectories initially seeded in circle of radius 5. (Right)
Same initially-seeded trajectories are frozen once leaving the boundary.
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3.3.1 Unbounded E-tec Entropy, Bounded E-tec Entropy

Ultimately, we aim to compare topological entropies for unbounded flows with those

of the bounded flows. To accomplish this, three types of trajectory sets are used:

i) (Unbounded) initially-seeded trajectories allowed to run unbounded,

ii) (Bounded/Box) initially-seeded trajectories in a box that are frozen in place

for all later times once leaving the box, and

iii) (Bounded/Circle) initially-seeded trajectories in a circle that are frozen in

place for all time once leaving the circle.

Bounding region of circle diameter and box length d = 2.5, 5, 7.5, 10, 15, and 20 are

used in this study. Each bounding region is initially seeded in such a manner that

point densities remain constant.

Outlined in the solid blue, red, and yellow curves in Fig. 3.9 are the topological

entropy htop calculations as a function of the bounding region size. The solid blue

curve represents the E-tec entropy computed on trajectories from set i), those ini-

tially seeded in a region and allowed to evolve unbounded. This curve remains quite

consistent throughout the size d of regions. In solid red and yellow are the E-tec en-

tropy results from sets ii) and iii), those frozen once exiting the bounding regions. In

purple is the expansion entropy calculation, defined in Appendix A, which generalizes

topological and metric entropies by computing the rate at which a system expands

volume elements. Most importantly, expansion entropy acts as an upper bound on

htop [50].

The three E-tec computations of htop for the bounded and unbounded trajectory

sets are consistent at larger values of d. At small d, the bounded trajectory sets

result in significantly smaller values of htop. This may seem surprising given that all

regions start with the same ensemble densities, but an explanation to this discrepancy

materializes when one considers that bounding region areas decrease at a faster rate

than the regions’ perimeters as d is tuned down; while boundary perimeters decrease

linearly in d, the areas decrease quadratically, resulting in more opportunities for

trajectories to escape.
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Figure 3.9: Blue, red, and yellow solid curves are E-tec results using bounded and
unbounded trajectories as input. The diamonds represent the sum of the E-tec results
and the bounding regions’ escape rates. In purple is the independent expansion
entropy calculation which acts as an upper bound for the topological entropy.

3.3.2 Escape Rates

We next compute the exponential rates in which trajectories escape the initial bound-

ing regions. The number of trajectories remaining in the bounding circles and boxes

is tracked for all times and plotted on a log (base e) scale in Fig. 3.10. At later times,

the slope of the best-fit lines estimates the exponential decay rate for the number of

active trajectories. In turn, the magnitude of this decay rate gives the exponential in

which trajectories escape their regions, i.e. the escape rates.

Escape rate data is summarized in the Fig. 3.10 tables. As predicted, smaller

values of d tend to yield larger escape rates. These are added to the bounded tra-

jectory E-tec calculations of htop in the Fig. 3.9 diamonds. For large values of d, the

bounded trajectory entropy and escape rate sums are once again consistent with the

E-tec computation of unbounded trajectories; at no point is the unbounded entropy

in blue surpassed. However, the escape rates for smaller values of d are not large

enough to compensate for the discrepancy between bounded and unbounded topolog-

ical entropies. This is a surprising results, since theory suggests that the escape rates

should fully compensate for the gap in entropies [97], i.e. we expect the unbounded

topological to be equal to the sum of the bounded topological entropy plus the escape

rates for all values of d.
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a)

b)

Figure 3.10: The natural log of the number of remaining trajectories in each bounding
region as a function of time. Bounding boxes are in a) and bounding circles are in b).
On the right are tables summarizing the escape rate data extracted from the plots.
Listed data includes N , the number of initially seeded trajectories, and the escape
rates and corresponding escape rate errors.

3.3.3 E-tec and Trajectory Replacement

To investigate the small entropy and escape rate values at small d, we maintain point

densities in the bounding regions by replacing any trajectory that exits. In this

setup, a new trajectory is randomly placed on the boundary and enters the bounding

region at the instance another trajectory leaves. Since E-tec cannot handle broken

trajectories, those entering are held stationary at the boundary for all times before

flowing inward. If the E-tec calculations were to remain consistent for varying d

with trajectory replacement, the escape rates would need to be further analyzed. In

terms of applications to experimental data, this type of analysis would give valuable

insight on E-tec’s ability to calculate topological entropy when trajectory replacement

is available. E-tec results for ensembles with trajectory replacement are displayed in

Fig. 3.11. In this update to the entropy summary in Fig. 3.9, the new entropy result

in black is noticeably larger than the expansion entropy result in dashed purple. This

result is incorrect, as the new expansion entropy acts as the theoretical upper bound.

An explanation for the increase in entropy is as follows. For one, trajectory
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Figure 3.11: Updated Fig. 3.9 from above, with new E-tec topological entropy esti-
mates (in black) for the trajectory sets with replacement.

replacement requires E-tec to handle ensembles containing many more trajectories.

The bounding circle diameters of 3,5,7.5,10,15, and 20 require a ensembles of size

1808, 4967, 11147, 19543, 44391, and 78471 respectively to maintain, at all times,

360, 1000, 2250, 4000, 9000, and 16000 trajectories moving. In other words, for every

single trajectory moving in the interior, there are roughly five frozen on the boundary

at any given time.

Further investigation into the stationary boundary trajectories leads us to believe

that E-tec is ill-suited to handle such large, static amounts of data on the boundary.

Figure 3.12 shows a band stretched by E-tec with final band edges colored by weight.

The color bar is on a logarithmic scale, so differences in color indicate exponentially-

more stretching. Note the abundance of black edges populating the boundary regions.

This is explained by the large number of entering and exiting trajectories crossing

over band edges attached to moving points. An edge anchored by two points in the

boundary can be struck many times by points entering and leaving even though the

anchors are stationary.

3.4 Conclusion

We verify that E-tec produces accurate and consistent results on experimental data.

E-tec is applied to experimentally gathered trajectories of an active nematic flow on
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Figure 3.12: Final configuration of a band stretched by E-tec. Edge weights are
colored by weight, with color bar shown to right (log scale coloring). Trajectory
replacement is used, so many trajectories are frozen just outside of boundary, as seen
in subsequent zooming

the length scale of 100’s of microns. The resulting topological entropy calculations

demonstrate that the flow exhibits chaotic advection, representing the first known

study at the intersection of mixing dynamics and active matter nematic fluids. Lastly,

E-tec results are shown to be consistent with the Lyapunov exponents of nearby

trajectory pairs, further validating E-tec.

Next, we apply E-tec to coherent set trajectories. Bands are shown not to grow

exponentially or algebraically, an expected but important result. Lastly, E-tec is used

to investigate the entropy differences between bounded and unbounded trajectories.

Mixed results are reported here, with the E-tec entropy difference between bounded

and unbounded sets not fully recovered by the computed exponential escape rates.

Further investigations reveal that implementing trajectory replacement to maintain

consistent point densities among unbounded flows introduces superfluous edge weight

growth near the boundaries.



Chapter 4

3D E-tec

4.1 Introduction

In 3D, rich dynamics can occur, giving rise to more complex flow behavior and new

phase space structures that may invoke new transport and mixing mechanics [98].

For some examples, the exponential rates of separation between nearby trajectories

is commonly utilized in the form of finite-time exponent fields (FTLEs) [37, 38] for

the discovery of 3D transport barriers and are commonly applied in 3D atmospheric

and oceanic studies [99–103]. Normally hyperbolic invariant manifolds have been

largely theorized to play a large role in 3D fluid transport for decades [104]. Recent

studies of the development and evolution of stratospheric polar vortices that utilize

FTLEs and Poincaré sections of observational data have since verified this to be

the case [105, 106, 106]. Lastly, a new discovery in the field of microfluidics: new

topological defects in 3D active nematic fluids comprised of microtubule bundles and

molecular motors [107,108].

However, many techniques used for studying 3D require high point densities or

long-lived trajectories. The studies above utilizing FTLE fields required millions of

trajectories and orders of magnitude more operations to reveal the finer-scale structure

[100, 101]. Worse yet, studies involving velocity field estimations may require the

linearizations of many millions of trajectories at each time step, severely hampering

numerical costs. A natural remedy to these constraints may lie in the development

58
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of a three dimensional extension to the E-tec algorithm.

We see in previous chapters that the computation geometric properties of E-tec

are advantageous to a 3D extension as triangulations can be readily generalized to

three dimensions and higher. The idea of using an advected dynamic triangulation

in 3D to compute topological entropy was first proposed by Marc Lefranc [64–66] in

2006. Lefranc’s work was restricted to rubber band stretching by 2D periodic orbits.

While no general algorithm for 3D was ever implemented, our work here represents

the first implementation of his ideas.

Instead of rubber bands anchored between points in a planar flow, we consider two

objects to stretch under the evolution of an ensemble of trajectories and the resulting

dynamic triangulations. First are two-dimensional rubber sheets stretched around

ensemble points. As points evolve in time, they carry the sheet along with them,

stretching and folding it so that its growth reflects the flow complexity. This can be

visualized in Fig. 4.1a. A red sheet encasing the single triangular face (1, 2, 3) of a

3D triangulation will be stretched upward as point 5 collides with it.

The second object to be stretched in three-dimensional space are one-dimensional

rubber strings. Since points are not obstacle to strings in 3D, the moving edges of

the triangulation act as stirrers and deform the strings. As the cartoon in Fig. 4.2

displays, the one-dimensional edges act as anchors, stretching and folding the string

as the triangulation evolves in time with the ensemble. In a manner similar to the

rubber band growth in 2D and the manifold stretching in 3D, the growth rate of

the string reflects the flow complexity and acts as a lower bound for the topological

entropy.

4.1.1 Troubles in 3D

In 2D, the only type of band deformations to track were point-band collisions. This

was sufficient to record whether a point was striking or releasing from the band. Point-

face collisions are analogous to this in 3D and remain rather intuitive. A point strikes

a triangular face of the sheet and it grows. A point releases from sheet and it returns

taut. The triangular edges stretch strings in a similar fashion. However, a significant
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Figure 4.1: Collisions in 3D: Depiction of the two collisions (point-face and edge-
edge) that may occur among points, edges, and faces of a 3D triangulation as points
move. Triangulation faces are colored to help better visualize the stretching of poten-
tial elastic sheets. a) Point 5 (hollow) moves up and collides with the triangular face
(1, 2, 3). As a result, tetrahedra (1, 2, 4, 5), (1, 3, 4, 5), and (2, 3, 4, 5) are added
to the triangulation to replace the newly invalid tetrahedron (1, 2, 3, 4). A potential
elastic sheet wrapped around face (1, 2, 3) is now represented with weights on faces
(1, 2, 5), (1, 3, 5), and (2, 3, 5). b) From the same left configuration as above, point
5 moves to the right and into the page, resulting in an intersection between edges (1,
5) and (2, 3). The resulting re-triangulation depends on the number of tetrahedra
sharing edge (2, 3). Furthermore, the new weight representation of a potential red
sheet is left ambiguous.
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a
c

d

b

e
Figure 4.2: Strings Anchored by Edges: Pieces of a rubber string (in red) are
wrapped around triangulation edges (a, c) and (c, d).

problem remains – point-face collisions are not the only type of re-triangulation event

that can occur in 3D. Fig. 4.1b depicts the resulting shape of two tetrahedra that

have undergone an edge-edge collision.

There remains much ambiguity on how to best re-triangulate the tetrahedra in-

volved in edge-edge collisions. Tetrahedra not shown but adjacent to the ones drawn

in Fig. 4.1b will certainly be affected, particularly all other tetrahedra containing

edge 2-3. Less is known about how to best represent the sheet. The addition of an

auxiliary point where the edges collide could allow for re-triangulation, but this would

lead to larger ensembles and additional trajectories to compute.

4.1.2 A New E-tec Scheme

Motivated by the difficulty of managing edge-edge collisions and our desire for avoid-

ing them, we introduce Dual E-tec, a modified version of E-tec that will allow us to

bypass these collisions entirely. Dual E-tec works in 2D and 3D by simply encoding

rubber bands and sheets into the triangulation in a new manner. Instead of repre-

senting a rubber manifold in d-dimensional space as the number of times it traverses

along a (d − 1)-dimensional simplex (a band along an edge or a sheet along a face),

Dual E-tec represents a rubber manifold by counting the number of times it crosses

through each 1D edge of the triangulation. These two representations are dual to each
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other (thus inspiring the name) in much the same way that knowledge of the Voronoi

diagram between a finite set of planar points S implies knowledge of the Delaunay

triangulation of S.

Two sheets are drawn on the left in Fig. 4.3 with their Dual E-tec edge weight

representations on the right. This figure hints at the single most important advance-

ment that Dual E-tec ushers in: since the rubber manifolds are no longer attached

along the edges of the triangulation, the triangulation at any given time is no longer

dependent on the current state of the rubber manifold. Now, since any triangulation

may be used at any given time along an ensemble’s evolution, we are free to seek out

re-triangulation methods that eliminate edge-edge collisions entirely. Once the full

evolution of the triangulation is recorded, any rubber manifold can be stretched by

points and any rubber string can be stretched by the triangulation edges.

a)

b)

1

1

1

1

1

1

1
1

1

Figure 4.3: Encoding Rubber Sheets in the Triangulation: Two types of two-
dimension rubber sheets and their Dual E-tec weight representation. a) A rubber
sheet folded around the middle triangular face on the left (the folding over points is
not drawn in 3D). This sheet is represented in Dual E-tec by weights along each edge
it passes through. Weighted edges are in red. b) A rubber sheet in the form of a
plane is on the left. Weighted edges that represent the sheet are shown on the right.
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4.1.3 Chapter Summary

The remainder of this chapter is presented in five sections. The 2D and 3D Dual

E-tec update rules for rubber manifold representation and growth are introduced and

derived in Sect. 4.2. Next, our motivation and reasoning for choosing to maintain a

Delaunay triangulation (pictured in Fig. 4.4) among moving, kinetic points at all times

is presented in Sect. 4.3. This all culminates in Sect. 4.4 where the new Dual E-tec

scheme is used in tandem with the new triangulation advection technique to build the

first 3D ensemble-based topological entropy calculation. Here, 3D E-tec performance

is evaluated on the familiar chaotic lid-driven cavity flow that was used in 2D, only

this time with trajectories raised to a third dimension. For a second E-tec stretching

scheme in 3D, one-dimensional rubber strings are anchored by triangulation edges

and stretched and folded. The manner in which their growth is tracked is presented

and evaluated in Sect. 4.5. Lastly, future considerations for algorithm verification are

presented in Sect. 4.6, followed by a brief summary of our contributions in Sect. 4.7.

0 0.2 0.4 0.6 0.8 1
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Figure 4.4: A Delaunay triangulation of forty points. Eight triangle circumspheres
with empty interiors are shown.

4.2 Dual E-tec

Figure 4.5 gives a graphical depiction of how the Dual E-tec band representation

scheme represents a band in 2D by counting the number of times it crosses through

each edge and how this differs from the original algorithm. Upon a collision event,
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core triangulation updates are handled in the same local way among both schemes:

a single interior edge is replaced with the other interior edge among different points.

However, there is no need to track outer triangles using Dual E-tec; the weight update

rules translating edge weight to the minimum number of taught band edges (derived

below) appropriately account for the stretching, folding, and releasing of a band.

2
2 1

1
1 1

1
2 2

2
1

1 1

1

1

1

a) b) c)Original E-tec Dual E-tec 1 Dual E-tec 2

Figure 4.5: Comparison of Original and Dual E-tec: The same band and point
configuration are displayed in all three sub-figures. However, the band representation
among the edges and weights in the original scheme in a) differ from Dual E-tec
representations in b) and c) a) In the original E-tec scheme, this is the only possible
triangulation among these five points in which the band may be represented. b)
The same triangulation as the left, this time with the triangulation’s Dual-E-tec
weight representation. c) A second possible triangulation of the five points and
corresponding edge weights, with the changed edge dashed for emphasis.

In addition to eliminating outer triangle event tracking, the biggest advantage of

Dual E-tec lies in the fact that, for a given band stretched around a configuration

of points, any triangulation may be used to represent the band. Figures 4.5b and c

depict this, showing two valid triangulations and the differing dashed edge on the right

housing a different weight than the edge it replaced. In essence, the triangulation is

no longer married to the current state of the band. As seen in Fig. 4.6, this allows for

simpler initial band configurations that no longer rely on constrained triangulations.

Since the triangulation and initial configurations are no longer dependent on each

other, the triangulation updates involving band weight are no longer dependent on the

band evolution as points move around. Thus, Dual E-tec allows users to fully separate

the triangulation evolution from the band stretching. By representing each collapse
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Figure 4.6: E-tec and Dual E-tec Numerical Band Initialization: a) The orig-
inal E-tec representation of an initial band (in red). Notice the constrained Delaunay
triangulation. b) The Dual E-tec representation of the band anchored by same two
points in a). The triangulation edges passing through the band are shown in red.
Notice this is an unconstrained Delaunay triangulation.

event as an operator, one simply needs to record the unique sequence of operators

generated by the full evolution of the triangulation and then apply this sequence to

any band around points in the initial triangulation. (This process is similar to the

recording of Dynnikov coordinates and the separate application of their actions onto

bands [5,42].) This is a stark juxtaposition to the original evolution that would occur

in Fig. 4.6a where each initial band evolution required its own unique sequence of

collision update operators.

4.2.1 2D Collapse Event Weight Update Rule

Dual E-tec does not detect direct collisions between moving points and the band.

Instead, it seeks to translate weight crossings among edges into the minimum number

of taut band edges when a re-triangulation event occurs. To illustrate how this is
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done, let us define edge weight variables for a collapse event. In Fig. 4.7, we consider

the pair of triangles T and B involved in a collision. Edge weights through given

edges are labeled (T2, T3), (B2, B3), and (C = T1 = B1), where C corresponds to the

shared edge. Additional auxiliary variables (in lower case) refer to the number of

band edges that wrap around a particular point in a given triangle. These auxiliary

variables at points represent the portion of edge weights in the two adjacent edges

that are directly connected to this triangle.

1

2 3

4

T3 T2

T1 =	C
B1 =	C

B2 B3

1

2 3

L2 R3L1	 =	R1

L3 R2
4

=	C’

T	– top	triangle

B	– bottom	triangle

L – left	
triangle R	– right	

triangle

t1

t2 t3

b1

b2b3

Figure 4.7: 2D Collapse Event: Triangles, edges, and labeled variables before and
after a collapse event. Edge weights (in red) and refer to the number of times a band
passes through the labeled edge. Auxiliary lower case variables at points refer to the
number of times a band passes through the two edges adjacent to the labeled point.

In this generalization of a collapse event in Fig. 4.7, the bottom point is moving

north and collapsing B. The horizontal interior edge with weight C, shared between

T and B, is struck and removed, replaced by the vertical interior edge connected by

the other two points. After the re-triangulation, the weights passing through the four

outer edges remain unchanged, i.e.

T3 = L2, T2 = R3, B2 = L3, and B3 = R2.

Only the new weight C ′ (or L1 or R1) lying on the new interior edge changes and is
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given by:

C ′ =
1

2
(T3 + T2 +B3 +B2) − C +

1

2

∣∣T3 − T2 +B3 −B2

∣∣. (4.1)

To help understand how only one of the five unique edge weights changes after a

collision, consider the specific weight update configuration in Fig. 4.8. Only the three

bands passing through the central edge will be affected by the bottom point moving

north. The single band passing through the moving point will remain un-stretched,

while the bands wrapped tightly along the other three points will not interact with

the moving point. This pre-collision interior band weight C is given by

C =
1

2

∣∣T3 − T2 +B3 −B2

∣∣. (4.2)

It can be thought of as the number of band edges entering and exiting the two adjacent

triangles through diagonal edges that share no common points. Note this can only

occur with only a single pair of opposing edges, as the band is not allowed to cross

over itself.

T3 =	8 T2 =	3

B2 =	3 B3 =	4

C	=	5

L2 =	8

L3 =	3	 R2 =	4

L1 =	R1 =	
C’	=	7

New	weight C’	=	7 given	by:

1
2 (T3 + T2 + B3 + B2)	– C	+	

1
2|T3 - T2 + B3 - B2|

R3 =	3

Figure 4.8: Example of a 2D Collapse Event: A specific example displaying new
edge weight C ′.

To justify the new edge weight C ′ in Eq. 4.1, we turn to the lower case auxiliary
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variables in Fig. 4.7. For a particular triangle, the “corner weights” can be thought

of as the number of band edges wrapped taut around the triangulation corners. In

Fig. 4.7, the pre-collision auxiliary weights are (starting from the top and bottom

points and moving clockwise) :

t1 = 3, t2 = 5, t3 = 0,

and

b1 = 1, b2 = 3, b3 = 2.

What follows is a linear relationship between the “corner weights” and the edge

weights, given by:

T1 = t2 + t3, T2 = t1 + t3, T3 = t1 + t2 (4.3a)

for the top triangle, followed by

B1 = b2 + b3, B2 = b1 + b3, B3 = b1 + b2. (4.3b)

The new vertical edge is with weight C ′ will be forced to go through the top and

bottom corner weights t1 and b1, as well as the diagonal band weight given by |t2−b3|
(or |t3 − b2|), and is expressed in terms of “corner weights” by:

C ′ = t1 + b1 + |t2 − b3|. (4.4)

Note the absolute value is required because we do not know the direction of the

diagonal band, i.e. we cannot tell if the diagonal band passes though t2 or b3. Now,

we express C ′ in terms of capital edge weights. Luckily, we can express t1 and b1 in
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terms of these same edge weights by inverting Eqs. 4.3a and 4.3a. This yields

t1 =
1

2
(T2 + T3 − T1)

t2 =
1

2
(T1 + T3 − T2)

t3 =
1

2
(T1 + T2 − T3)

(4.5a)

and

b1 =
1

2
(B2 +B3 −B1)

b2 =
1

2
(B1 +B3 −B2)

b3 =
1

2
(B1 +B2 −B3).

(4.5b)

Subbing in t1, b1, t2, and b3 from Eqs. 4.5a and 4.5a into the auxiliary variable form

of C ′ in Eq. 4.4 yields:

C ′ = t1 + b1 + |t2 − b3|

=
1

2
(T2 + T3 − T1 +B2 +B3 −B1) +

1

2

∣∣T1 + T3 − T2 − (B1 +B2 −B3)
∣∣,

which is equivalent to Eq. 4.1 once we recognize that T1 = B1 = C.

A numerical comparison of the two methods is found in Fig. 4.9. The weight total

between the two do not match perfectly, though the ratio between the two seems to

be stable. Of course, Dual E-tec scales better in runtime for this example, mainly

due to stripping away the necessity of tracking outer triangles and points releasing

from the band.
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Figure 4.9: Dual and Original E-tec Numerical Comparison: Comparison of
the two methods using the same 100 point trajectory set and initial band. The
confidence intervals for both slopes (starting at fit time T = 5) overlap at (0.9620,
0.9624).

4.2.2 3D Collapse Event Weight Update Rule

Two types of collapse events occur in 3D: a point-face collision and an edge-edge

collision. We discuss here only the point-face collapse events and the corresponding

update rule. As depicted in Fig. 4.1a, two tetrahedra are converted into three tetra-

hedra when this type of collision occurs. A new edge is added to the triangulation in

addition to three new faces, all of which contain the new edge. See Fig. 4.10 for the

geometry and a depiction of sample rubber surface we wish to represent using edge

weights.

We use four ways to encode how a rubber surface (hereby referred to as a “sheet”)

intersects a tetrahedron: a) counting the number of sheet intersections with the four

faces, or b) counting the number of sheet intersects with six edges, c) classifying how

the vertices are partitioned from each other if the sheet were to “cut” the edges, and

d) classifying how the sheet partitions the set of vertices within the faces. Using the

top tetrahedron T with labeled vertices Fig. 4.10, I label and explain each variable in

a bit more detail:

a) Faces and their weights are denoted F T
i : F for the face, subscript i for the face

across from vertex i, and T for the specific tetrahedron. For the example sheet
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Figure 4.10: 3D Dual E-tec Collapse Event Update: A point-face collision and
subsequent re-triangulation is depicted. As the hollow point 5 move north, edge (4,
5) is added and tetrahedra T and B are converted into the three final tetrahedra X,
Y , and Z. Sheets wrapped taut around points 1 and 2 are shown in red. The Dual
E-tec representation of this sheet is given by weights along edges in which the sheet
passes through.

configuration in Fig. 4.10, faces have weight F T
2 = 2, F T

3 = 3, F T
4 = 1, and

F T
5 = 3.

b) Edges and their weights are denoted ET
i,j: E for the edge, subscript ij for the

two edge endpoints, and T for the specific tetrahedron. The superscript may be

dropped since the vertex labeling is unique. For the example sheet configuration,

the edge weights are E2,3 = 1, E2,4 = 3, E2,5 = 1, and E3,5 = 0.

c) Vertex partitions are denoted V T
[i],[j,k,l] or V T

[i,j],[k,l]: V for the vertex partitioning,

T for the tetrahedron, and either [i][j, k, l] or [i, j][k, l] for the partitioning. This

partitioning informs us which vertices are mutually reachable by edges once the

sheet has “cut” the intersecting edges. For the same example sheet, V T
[5],[2,3,4] =

0, V T
[3],[2,4,5] = 0, V T

[2],[3,4,5] = 1, V T
[4],[2,3,5] = 1 , V T

[2,3],[4,5] = 0, V T
[2,4],[3,4] = 0, and

V T
[2,5],[3,4] = 0. These variables classify how a surface intersects the tetrahedron

by noting how the surface partitions the four vertices into two groups. For

convenience, one half of the partitioned points will be dropped to write V T =

(V T
2 , V

T
3 , V

T
4 , V

T
5 , V

T
2,3, V

T
2,4, V

T
2,5).
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d) Lastly, we focus on the sheet partitioning the set of vertices within each face.

Denote each variable as F T
i V[j],[k,l]: F

T
i for the face (as above) and V[j],[k,l] for the

vertex partitioning amongst the face’s vertices. (We use Vj for short.) Twelve

of these variables exist for the tetrahedron T , with a few being F T
3 V2 = F T

3 V4 =

1 and F T
5 V2 = F T

5 V1 = 1, indicating vertices 2 and 4 are isolated from the

other vertices in both faces opposing vertex 3 and 5 (given by F T
3 and F T

5 ,

respectively).

The update rules are easiest to derive in terms of vertex partitions V T , but are

most simply stated and easiest to implement in terms of edge weights ET . To connect

the two representations, we examine how to go back and forth between the four vari-

able sets. Focusing on a single tetrahedron (and this dropping the superscript T ) and

its four vertices i, j, k, and l, connections between the four variable sets F T , ET , V T ,

and F TV are given by:

• V T → ET

From inspection, we have

Ei,j = Vi + Vj + Vi,j + Vi,m. (4.6)

Six of these equations exist for each tetrahedra.

• V T → F T

There are four of the following equations:

Fi = Vj + Vk + Vm + Vj,k + Vk,m + Vm,j. (4.7)

• ET → F T

Fi =
1

2
(Ej,k + Ek,m + Em,j). (4.8)

• We aim for the connection ET → V T so that we can start with ET , translate

to V T , implement the update rules, then translate back to ET . This is not



73

obvious from inspection, so we consider two intermediate steps ET → F TV and

F TV → V T .

• ET → F TV

This is equivalent to the 2D variable case for expressing the number of times a

band wraps around a point, expressed using the triangle’s edges weights:

FiVj =
1

2
(Ej,k + Em,j − Em,k). (4.9)

• F TV → V T

Two connections are made:

Vi,j = (FjVi − FkVi)
+ = (FjVi − FmVi)

+

= (FiVh − FkVj)
+ = (FiVj − FmVj)

+

= (FmVk − FiVk)+ = (FmVk − FjVk)+

= (FkVm − FiVm)+ = (FkVm − FjVm)+,

(4.10)

where S+ is defined as max(0, S) = S
2

+ |S|
2

. We also have

Vi = FjVi − Vi,j

= FkVi − Vi,k

= FmVi − Vi,m.

(4.11)

Eq. 4.10 is justified by considering the tetrahedron T in Fig. 4.10. We have

the following simple relations for the face vertex partitions and the full vertex

partitions about vertex 4:

F1V4 = V4 + V1,4, F2V4 = V4 + V2,4, and F3V4 = V4 + V3,4.

We know only one of V3,4, V2,4, and V1,4 is nonzero. By combining in this one
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example, we have: F1V4 = F2V4 − V2,4 + V1,4. Rearranging yields

V1,4 = F1V4 − F2V4 + V2,4.

If V1,4 is nonzero, then V2,4 = 0 and V1,4 = F1V4 − F2V4. If V4,1 = 0, then either

V2,4 = 0 (resulting in F1V4−F2V4 = 0) or V2,4 > 0 (resulting in F1V4−F2V4 < 0).

All three cases are brought together in

V1,4 = (F1V4 − F2V4)
+.

This logic gives all parts of Eq. 4.10, while Eq 4.11 is simply a rearrangement

of F1V4 = V4 + V1,4, F2V4 = V4 + V2,4, and F3V4 = V4 + V3,4, defined earlier in

this paragraph.

• ET → V T

Combining Eq. 4.9 with Eqs. 4.10 and 4.11 gives two additional equations:

Vi,j =
1

2
(Ei,k + Em,j − Em,k − Ei,j)

+

=
1

2
(Ei,m + Ek,j − Em,k − Ei,j)

+
(4.12)

and

Vi =
1

2
(Ei,k + Em,i − Em,k) − Vi,j

=
1

2
(Ei,j + Em,i − Em,j) − Vi,j

=
1

2
(Ei,j + Ek,i − Ek,j) − Vi,j.

(4.13)

Next, we consider how the V T and V B partition variables for adjacent tetrahedra

T and B glue together at their shared face. See Fig. 4.11 for a projection of the two

tetrahedra with the shared face compressed down to a single line.
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L M

N O

a
b

c

d

Figure 4.11: Adjacent Tetrahedra Vertex Partition Variables: The top and
bottom tetrahedra involved in the collision event. In this projection, two of the
shared vertices are on the left and one is on the right. This represents one of three
combinatorially possible projective side views of the pair of tetrahedra. The red lines
are possible ways that a surface could pass through both tetrahedra (viewed edge-on).
L and M represent two of the V T variables (partitioning the top vertices 2-2 and 1-3
respectively). N and O are the analogous V B variables. The variables a, b, c, and d
encode how L and M split and re-distribute to form N and O.

• The goal is to invert each of the four relationships found in Fig. 4.11: L = a+b,

M = c + d, N = a + c, and O = b + d. Notice that b and c cannot both

be zero. Consider (M − O + N − L)+/2. Substituting this into the above

relationships yields (c− b)+ = c. Furthermore, using L+M = N +O, we arrive

at c = (M −O)+ = (N − L)+. These inverted relationships are summarized in

the following:

a = L− b = N − c

b = (O −M)+ = (L−N)+

c = (M −O)+ = (N − L)+

d = M − c = O − b

(4.14)
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Figure 4.12: Split Crossing Variables: The three different side views of the two
tetrahedra before the collapse event. Bold and boxed letters designate a new set of
defined variables.

• The three different views Fig. 4.11 are displayed in Fig. 4.12. In it are three

new sets of defined variables: A, B, and C. Using Eq. 4.14 above, we get

the three sets of split crossing variables (Aa,Ab,Ac,Ad), (Ba,Bb,Bc,Bd), and

(Ca,Cb,Cc,Cd), all in terms of the V T and V B variables.

Finally, we put together all of the preceding work and find the update rules for

edges in terms of only the edges. First, we find V X in terms of the crossing variables

V T and V B. We find the weight update for the new edge E1,5 in the point-face

collision shown in Fig. 4.10. As a reminder, the new post-update tetrahedron X is

comprised of points 1, 2, 4, and 5.

• V T , V B → V X

The following list of variable relationships is useful for dealing with the re-

triangulation of the edge-edge collapse case.
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V X
1 = V B

1 + Bc

V X
2 = Ad + Ca

V X
4 = Aa + Cd

V X
5 = V T

5 + Bb

V X
1,2 = Ac + Cb

V X
1,4 = Ab + Cc

V X
1,5 = Ba

(4.15)

We note that V Y and V Z are not shown, though they are related to V X by

symmetry.

• By inspection of the right-hand side of Fig. 4.10 and making use of Eq. 4.6, we

arrive at

E1,5 = V X
1 + V X

5 + V X
1,2 + V X

1,4. (4.16)

Plugging this into the set of equalities in Eq. 4.15, we get

E1,5 = V B
1 + V T

5 + Ab + Ac + Bb + Bc + Cb + Cc. (4.17)

This makes sense geometrically, as the vertical edge E1,5 would have to go

through each of the b and c crossing variables, as well as the top partition

variable V T and the bottom partition variable V B
1 . We further utilize S+ =

A
2

+ |A|
2

and notice that, for D equal to any of A, B, or C,

Db + Dc = (L−N)+ + (N − L)+ = |L−N |.

Combining this with the proper values for L and N from the three parts of

Fig. 4.12, we have
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E1,5 = V B
1 + V T

5 + |V T
2,3 − V B

2,3| + |V T
2,4 − V B

2,4| + |V T
3,4 − V B

3,4| (4.18)

Finally, we use the ET → V T relationships from Eqs. 4.12 and 4.13 to get the

above Eq.4.18 in terms of edges only:

E1,5 =
1

2
min[(E1,2 − E2,3 + E3,1), (E1,3 − E3,4 + E4,1), (E1,2 − E2,4 + E4,1)]

+
1

2
min[(E5,2 − E2,3 + E3,5), (E5,3 − E3,4 + E4,5), (E5,2 − E2,4 + E4,5)]

+
1

2
abs[(E4,2 − E2,3 + E3,5 − E5,4)

+ − (E4,2 − E2,3 + E3,1 − E1,4)
+]

+
1

2
abs[(E3,4 − E4,2 + E2,5 − E5,3)

+ − (E3,4 − E4,2 + E2,1 − E1,3)
+]

+
1

2
abs[(E2,3 − E3,4 + E4,5 − E5,2)

+ − (E2,3 − E3,4 + E4,1 − E1,2)
+].

(4.19)

Here, the min function is an expanded version of Vi = min(FjVi, FkVi, FmVi) using

Eq. 4.9.

4.3 Kinetic Delaunay Triangulation Maintenance

Let S be a set of points in n-dimensional Euclidean space Rn. The Delaunay tri-

angulation (DT) of S is the partitioning of S into n-dimensional triangles such that

the n-dimensional ball circumscribed around each triangles’ (n + 1) points contains

no other points in the interior. Maintaining a DT of S among moving points is

ideal for implementing our ensemble-based topological entropy calculation in three

dimensions. This is allowed since the Dual E-tec re-triangulation is no longer forced

to evolve according to point-edge or point-face. Figure 4.13a (right) and b depict

re-triangulation updates in 2D and 3D that are applied at the moment the Delau-

nay criterion is broken. Topologically, these individual update events and subsequent

local triangulations are the same as updating at collision times.

Though maintaining a global DT of moving points in S will generally require

more updating of the triangulation structure and computational time, there is one
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major advantage in doing so: edge-edge collisions in 3D are not possible. Two edges

crossing each other in 3D require the four edge endpoints to be coplanar, resulting in

a circumsphere with infinite diameter. This is an obvious and direct violation of the

Delaunay criterion, one which will not occur if the proper DT maintenance updates

are recorded. Figure 4.13c provides further proof of concept: as the hollow point 5

moves up and to the right, the circumsphere around points 1, 2, 3, and 5 translates

and changes diameter. Before edge (1, 5) collides with edge (2, 3), the circumsphere

consumes point 4 and a Dual E-tec update rule is applied.

a)

1 2
3

4

5

1 2
3

4

5

1 2
3

4

5

1

2

3

4

5

b) c)

Figure 4.13: New Local Triangulation Updates: In all sub-figures, the hollow
point moves north or northeast. a) Instead of waiting for the 2D point-edge collision
to occur before implementing the local re-triangulation rules, depicted on the left,
I apply the same local update on the right at an earlier time, specifically when the
Delaunay criterion is broken, i.e. once the blue circumcircle contains the fourth point
on its boundary. b) In blue, the circumsphere for points 1, 2, 3, and 4. On the right,
once point 5 breaks the Delaunay criterion by moving onto the circumsphere, the
tetrahedra are re-triangulated with the addition of red edge 4-5. Note that the two
tetrahedra (1, 2, 3, 4) and (1, 2, 3, 5) are replaced by three that all share the newly
introduced edge. c) In blue, the circumsphere for points 1, 2, 3, and 5. As point 5
moves northeast, the circumsphere dilates and moves and the Delaunay criterion is
broken as point 4 enters. The tetrahedra are re-triangulated in the same manner as
b).
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Delaunay triangulations have been well-studied and their usage in both surface

modeling [109–111] and simulating real-world processes [110,112–114] is robust. There

exist many varied algorithms for adding/deleting vertices to/from an existing tri-

angulation [115–118] and their higher-dimensional computations [119–126]. These

algorithms involve methods based on convex hulls [117, 127], dividing and conquer-

ing [128], and sweeplines [129].

The focus in this chapter is on the more difficult task of maintaining a Delaunay

triangulation as points move along trajectories in two and three dimensions. Primi-

tive algorithms accomplish this in 2D [130, 131] by moving all points and finding all

potential times the Delaunay criterion breaks, sorting these events in a time-ordered

priority queue [132, 133], updating DT(S) at each event, deleting or modifying later

events, and continuing until no events exist in the queue. The event times are found

by looking at every pair of adjacent triangles, translating the circumcircle equation

into a polynomial, and solving for the zeros of this polynomial.

The same algorithm has theoretically been extended to 3D [134–136], however, it

is much less efficient in dimensions higher that three. The polynomial form of the 2D

circumcircle equation is of degree three and can be solved quickly and analytically to

easily retrieve the event times. However, this polynomial in 3D is of degree eight and

iterative methods must be used to approximate the roots [137,138]. Implementation

[139,140] of this algorithm exists in the Computation Geometry Algorithms Library,

or CGAL, a standard opensource C++ library.

While efforts have been made in finding the fastest times for numerically solving

the eighth-order polynomial, this computational bottleneck is bypassed in a newer

algorithm that seeks to maintain a DT while moving only individual points. First

proposed for two dimensions by Gold [141, 142] in 1990, further developed by Most-

favafi [112,113] a decade later, then extended to three dimensions by Ledoux [109] in

2008, the algorithm describes a method for maintaining a DT by moving individual

points forward in time while recording the times at which the Delaunay criterion is

violated. Two major advantages emerge:

• By parameterizing the single trajectory of p, denoted ~p, and substituting into the

circumcircle and circumsphere equations, violation times are found by solving
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a much simpler degree 2 polynomial.

• Delaunay criterion only needs to be checked for local triangles and tetrahedra

adjacent to p, a stark contrast to the global check among all pairs of adjacent

simplices in earlier algorithms.

While the method from Ledoux records Delaunay violation times among all mov-

ing pi while holding all other pk 6=i static. With all pi moved independently, the vio-

lation times are queued in a time-ordered list of Delaunay criterion violations. Each

violation time is addressed in chronological order and at each one the points involved

in the violation are evolved forward, neighboring appropriate updates are made to

the triangulation structure and

I implement a simpler algorithm which does not evolve many points together,

instead moving only a single point p at a time through the entirety of its time step.

However, my implementation remains efficient; after each new update, the number of

triangles and tetrahedra requiring Delaunay criterion checks scales as O(log n), the

same as Ledoux’s method with multiple points moving at the same time [109].

4.3.1 Flips

First among definitions and operations needed to maintain a kinetic DT is a flip

[118, 143]. This topological operation modifies the configuration of local triangles

and tetrahedra. Among four points in 2D, there are only two possible triangulations.

Figure 4.14a gives an example of a flip22, used by many of the algorithms listed above

to transition a triangulation to the only other configuration possible. The ’22’ in the

name comes from the fact both before and after the flip, there are two triangles.

In 3D, there are exactly two ways to triangulate five 3-dimensional points: either

with two tetrahedra or with three tetrahedra [116, 118]. Illustrated in Fig. 4.14b are

the two flips used to transition between the two different configurations. A flip23 tran-

sitions the two tetrahedra sharing the triangular face (1, 2, 3) into the configuration

of three tetrahedra sharing the common edge (4, 5). A flip32 is the inverse operation,

transitioning the three tetrahedra configuration into the one with two tetrahedra.



82

5

1
2

4

3

a)

1
2

3

2

4

5
1

4

5

1
3

2

4

3

5

b)

flip22
flip23

flip32

Figure 4.14: Flips: In a), a flip22 is used to transition among the two valid triangu-
lation configurations of four points in 2D. In b), either a flip23 (left to right) or flip32
(right to left) is used in 3D depending if the triangulation configuration of five points
contains two or three tetrahedra before the flip.

Convexity is of importance when checking if adjacent tetrahedra can be flipped.

For example, in Fig. 4.14 b), a flip23 is only possible on the two adjacent tetrahedra

(1, 2, 3, 4) and (1, 2, 3, 5) if and only if the union of these two tetrahedra forms a

convex polyhedron. This is easily checked by verifying that edge (4, 5) passes through

the shared triangular face (1, 2, 3). (See Fig. 4.17a below for an illustration of the

required convexity checks.)

4.3.2 Stars, Links, and Ears

Next, we introduce three concepts related to triangulations, defined by Ledoux [109],

all to be used for detecting when the Delaunay criterion fails in 2D and 3D. I define

these concepts generally for d-dimensional space and use two and three dimensional

figures to illustrate concepts. For all definitions, I denote p be a vertex in a d-

dimensional triangulation.

Star

The star of p, denoted star(p) and shown in Fig. 4.15, consist of all the k-simplices
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(k = d, d − 1, . . . , 2, 1) that contain p. No 1-simplices (vertices) other than p are in

star(p). For example, in 2D, star(p) contains all of the triangles and edges connected

to p, while the star(p) contains all tetrahedra, triangles, and edges connected to p.

a)

b)

star(p) link(p)

star(p) link(p)

Figure 4.15: Stars and Link: The stars and links for red point p. (Left) The 2D
star in a) contains all lines and triangles connected to p. The 3D star in b) contains
all lines, triangular faces, and tetrahedra connected to p. (Right) The 2D link of p
in a) contains all adjacent points and the edges connecting them, while the 3D link
in b) contains all adjacent points and their connecting edges in addition to the outer
triangular faces.

Link

The link of p, denoted link(p), consists of all the simplices incident to the sim-

plices forming star(p), but left out by star(p). In other words, link(p) is the (d − 1)

dimensional triangulation that forms the boundary of star(p). Note that this bound-

ary triangulation forms a polygon in 2D and a polyhedron in 3D, though it is not

necessarily the convex hull of star(p), as evidenced Fig. 4.15b.
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Ear

In 3D, an ear of link(p) is a potential tetrahedron that could be used in flip23 or

flip32 event. These tetrahedra are referred to as imaginary because they do not exist

yet in the triangulation before the flipping operation. As shown in Fig. 4.16, ears can

be constructed from four points in link(p) that span either two or three triangular

faces. Two faces sharing a single edge are denoted 2-ears, while three faces sharing a

single, common vertex are denoted 3-ears.

1 2
3

4

1

2

3 4

3-ear

2-ear

Figure 4.16: 2-Ears and 3-Ears: In three dimensions, a link for some vertex viewed
from outside. Three adjacent faces in the link sharing a common vertex for a 3-ear
in dark gray. In light gray, two adjacent faces sharing only one common edge form a
3-ear.

While many ears are found in link(p), not every ear is a potential tetrahedron for a

flip23 or flip32 operation. Some adjacent faces of 2-ears and 3-ears are outside of star

(p). A simple test for convexity is done to identify invalid ears, shown in Fig. 4.17.

4.3.3 Real and Imaginary Events

Moving point p is evolved step-by-step to the closest time the Delaunay criterion is

broken, re-triangulating each step of the way. Along the trajectory of p, a break-

down can occur among p and circumcircle/circumsphere one of two different types

of triangles/tetrahedra: real and imaginary. We define these two types below, using



85

1

2
3

4

p

1 2
3

4

p

a) b)

1

2

3

4

p

1

p

2
3

4

Figure 4.17: 3-ear and 2-ear Convexity Tests: Point p is shown with the two
types checks. a) Faces (1, 2, 3), (1, 3, 4), and (2, 3, 4) in link(p) form a 3-ear of
p. This 3-ear is valid (left) when the line connecting p and 4 passes through shaded
triangle and invalid (right) if not. b) Faces (1, 2, 3) and (2, 3, 4) in link(p) form a
2-ear of p. This 2-ear is valid (top) if the line connecting 1 and 4 passes through the
shaded triangle and invalid (bottom) otherwise.

the term ’event’ to indicate which type of triangle or tetrahedron is involved in the

breakdown.

Real Event:

A real event involves a real triangle or tetrahedron τi, those that are incident to

link(p), but outside star(p). Figure 4.18a depicts in gray the circumcircles of τi asso-

ciated with red moving point p. If p moves into a gray circumcircle of a real triangle,

a real event is triggered since the 2D Delaunay criterion is violated.

Imaginary Event:

An imaginary event involves the ears σi of star(p). These are labeled imaginary be-

cause they do not exist in triangulation before the event’s subsequent re-triangulation.

Re-triangulation becomes necessary once p leaves the circumcircle/circumsphere of an

imaginary triangle/tetrahedron. The concept of ears is simpler in 2D. Figure 4.18b

shows one of the five ears associated with p and its circumcircle in blue. Note that

there is a single different ear for every point on link(p). (For the more complicated
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2-ears and 3-ears defined for 3D, see Fig 4.16.)

b)a)

Figure 4.18: Real and Imaginary Events in 2D: Moving point p is in red. The link
of p consists of points in black and the edges connecting them. The events necessary
for the maintenance of a Delaunay Triangulation are detailed. a) Each gray circle
represents the circumcircle through a real triangle of p. A real triangle is comprised
of an edge on the link and the single hollow point outside of the link that this edge
is attached to. A real event occurs when the red point p enters a gray circumcircle.
A flip22 must then occur between p and the real triangle to maintain a Delaunay
triangulation. b) The blue circle represents the circumcircle through an imaginary
triangle consisting of three adjacent points on the link of p. An imaginary event is
triggered once p leaves a blue circumcircle, resulting in a flip22 between p and the
imaginary triangle.

4.3.4 3D Delaunay Maintenance Algorithm Details

For the remainder of this section, I detail my modification to Ledoux’s [109] method

for Delaunay maintenance of S. For each time step in the trajectory data, each

moving point pi ∈ S is moved to the end of its time step while all other pk 6=i ∈ S are

held stationary. The idea is to move each pi individually to each topological event

and correct the DT with appropriate flips along the way, with the only constraint

being that the DT of S must be known at the beginning of the trajectory of pi. Once

an event is detected, pi is moved to the location of the event, the DT is corrected,
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and star(p), link(p), and associated ears σi are updated. A local search for the next

event occurs along the remainder of the trajectory of pi. Once no more events for pi

are found, pi is moved to its final position in the time step, concluding a single point’s

movement. A cartoon depicting this process (with flip22 operators) in 2D is shown

in Fig. 4.19.

a)

b)

Figure 4.19: Moving a Single Point: Real and imaginary events are detected and
processed as point p (in red)moves along its trajectory. Circumcircles of real and
imaginary triangles are shown in gray and blue. (For simplicity, only one imaginary
triangle is shown.) a) The first event detected is a real event. p is moved to the
intersection (middle). The triangulation is updated with a local flip22 (right) and
two new real triangles emerge. Not pictured is the modification of the imaginary
triangles. b) The next event detected is an imaginary event. p is moved to the
intersection (middle). The triangulation is updated with another flip22 (right).

Below are the details of the algorithm moving a single point to along its full tra-

jectory in 3D. I make note of any changes or unnecessary steps needed for the same

2D implementation.

Input: The following inputs are required by the algorithm:

1. Beginning and ending position of the moving point p.
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2. Locations of all other stationary points.

3. List of tetrahedra making up DT, denoted T .

Output: E-tec tracks the evolution of the band, as we will describe below, and

outputs:

1. The DT at the moving point’s final position and corresponding updated tetra-

hedra list T .

2. The time-ordered list of events required to maintain the DT. Event details

include:

(a) event times along the trajectory (parameterized from 0 to 1),

(b) the real or imaginary tetrahedra,

(c) the flips being performed,

(d) the edges that are added/deleted from the triangulation as a result of a

flip23/flip32. (Or, the edges added and deleted in a flip 22 in 2D.)

Data structures: The following data structures are maintained as a function of

time:

1. T , the (n by 4) list of n tetrahedra in the triangulation.

2. For each different moving point p:

(a) star(p), which is the subset of T containing p,

(b) the faces in link(p), found from star(p). (Or, the edges in link(p) in 2D.)

Steps: Here, the key steps taken to move p and correct the DT are outlined.

1. The parametric equation for the trajectory of p, denoted ~p, is used. ~p is at

initial position at time t = 0 and final position at t = 1.

2. Star(p) and link(p) are extracted from T .

3. All real tetrahedra τi of p are found from the faces in link(p). Invalid τi lying

inside star(p) are disregarded.

4. All imaginary tetrahedra σi of p are found from the ears of link(p). Invalid σi

are thrown out according to the convexity test in Fig. 4.17.

5. ~p is substituted into the equation of each circumsphere of τi and σi. Each

substitution yields a quadratic equation that has no real solution if there is no

intersection, one solution if ~p is tangent to the sphere, and two solutions if ~p

intersects the sphere.
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(a) Solutions satisfying 0 < t < 1 indicate that ~p intersects a circumsphere

along its trajectory. All other real solutions are thrown away, as these

intersections occur either before the initial position of ~p (t < 0) or after

the final position (t > 1).

6. If no real solutions satisfying 0 < t < 1 are found, p is moved to its final position

and the algorithm is complete. Otherwise, proceed to steps 7 - 8.

7. The tetrahedron having closest circumsphere intersection with ~p is extracted,

indicated by the smallest solution satisfying 0 < t < 1. p is advanced along its

trajectory to the point of intersection.

(a) If the tetrahedron is real (τ), the adjacent tetrahedron in star(p) is ex-

tracted. The appropriate flip and update to T depends on the convexity

of these two.

i. A flip23 is performed if the two tetrahedra are convex. The convex con-

figuration of and the check for convexity are illustrated in Fig. 4.20a.

ii. A flip32 is performed if the two tetrahedra are not convex. Non-

convexity indicates that a third tetrahedron adjacent to the two is

present in the triangulation [134, 135]. This three tetrahedra, non-

convex configuration and corresponding check are illustrated in Fig. 4.20b.

(b) If the tetrahedron is imaginary (σ), the appropriate flip and update to T

depends on whether σ is a 2-ear or 3-ear.

i. A flip23 is performed if σ is a 2-ear.

ii. A flip32 is performed if σ is a 3-ear.

8. With the position of p and the valid list of DT tetrahedron T updated, proceed

back to step 1.

4.4 Topological Entropy Calculation

To compute topological entropy in two and three dimensions, the Delaunay mainte-

nance in Sect. 4.3 is performed separately from the Dual E-tec weight updates (found

in Sect. 4.2) applied to a rubber band or sheet. The advantage here is that once the
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Figure 4.20: Real Event Convexity Test: A real event occurs between p and real
tetrahedron (1, 2, 3, 4). a) A flip 23 is performed if the line connecting p and 4 passes
through the shaded triangular face of the other three points. b) If the line connecting
p and 4 does not pass though the shaded triangular face, a third tetrahedron (p, 2,
3, 4) exists in the triangulation of the five points. A flip 32 is then performed.

motion of the points is captured by the DT update events and saved, this informa-

tion can be applied independently to any number of rubber manifold configurations

amongst the initial positions. An overview of the procedure is as follows:

1. Obtain unique list of Delaunay triangulation maintenance events (done once).

(a) Initialize the set of points S with a DT.

(b) Evolve S for the entirety of its motion and at each event, return the points

involved, the type of flip, and the edge that is created or annihilated (or

modified in 2D).

2. Evolve any rubber manifold configuration using list of events (can be done any

number of times).

(a) Initialize a rubber band or sheet that runs through the initial DT of

S. Bands anchored at initial edges of the DT are tested in 2D. In 3D,

tested rubber manifolds include sheets wrapped around triangular faces

and sheets cutting though entire planes of the initial DT.

(b) Dual E-tec weight update rules are applied to the edge weights in corre-

spondence with each flip23 or flip32 required to maintain the DT.
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(c) Topological entropy htop is found by fitting to the log-scaled sum of edge

weights vs. time.

Though ensemble motion will be different for the DT-maintained cases, we find

some success in verifying that the dynamics are being accurately captured. First, a

2D Dual E-tec topological entropy comparison of both the chaotic lid-driven cavity

flow [3,4,68,69] used in Ch. 2 and its DT-maintaining form is presented. The period-

driving parameter τf = 0.96, which yields three period-3 islands that force a true

entropy of hpo3 = 0.9624, is used for all testing. A convergence test and discussion of

results follow. Once verified in 2D, two test cases are examined in 3D. These results

excitingly represent the first topological entropy calculations in 3D from trajectory

data alone.

4.4.1 2D Dual E-tec Results Using Delaunay Triangulation

Maintenance

While the Dual E-tec scheme is shown to be consistent with the original E-tec scheme

for the same motion of points in Fig. 4.9, I now show consistency between Dual E-

tec weight updates extracted from both the original motion of points and the DT-

preserving motion described in Sect. 4.3. Figure 4.21 displays their applications to

a number of initial bands . As a control, a band anchored between two distant

points is initialized, the re-triangulation events corresponding to point-edge collisions

in the original chaotic lid-driven cavity flow dynamics are recorded, and the band is

subsequently evolved forward (in red). For the DT-preserving dynamics, events are

recorded, then a band is placed around every single edge in the initial, unconstrained

DT. The DT-preserving events then operate on each band (dashed). Band edge

weights were updated at every flip22. The maximal stretching attained (in blue) over

all initial bands is consistent with the stretching done by the point-edge collisions of

the original dynamics.

Next, DT-maintained re-triangulation events are recorded for ensembles of increas-

ing size for three times the length of time T as Fig. 4.21. For each ensemble, bands

are placed around all edges in the initial triangulation and evolved using the events.
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Figure 4.21: Original Motion vs. Motion Maintaining a Delaunay Triangu-
lation: An ensemble of 12 trajectories from the chaotic lid-driven cavity flow is used.
The true entropy is hpo3 = 0.9624. Red line represents the stretching of a single band
under the original flow evolution. All other lines represent stretching of single bands
under the evolution of the flow maintaining a Delaunay triangulation. Bold blue line
represents the initial band yielding the most stretching after the time T = 4.

The band undergoing maximal stretching at later times is the extracted topological

entropy htop. Convergence to the true, exact entropy is shown in Fig. 4.22.

0 100 200 300 400 500 600 700 800 900 1000
Ensemble Size

0.9

0.92

0.94

0.96

E
n
tr
op

y
E
st
im

at
e

Maximal stretching among initial bands
True Entropy

Figure 4.22: Entropy Convergence: Topological entropy htop results using Delau-
nay triangulation-maintaining event operators as a function of ensemble size. Dashed
line is the true entropy result for the original motion of this flow.

Interestingly, the motion maintaining a DT yields slightly higher topological en-

tropy calculations than expected for larger ensemble sizes. This may not be too

surprising of a result, as only single points are moved at a time, resulting in motion

that is different between time steps from the original motion. Evidence of intrinsically
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different motion is found in Fig. 4.23. The number of re-triangulation events occur-

ring per time step increases with ensemble size at a faster rate than when trajectories

evolve forward in their natural way. This increase in the number of events, as well

as the subsequent increase in the number of edge modifications and flip22 operators,

could be one reasons why the entropy is larger.
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Figure 4.23: Events per Period: Average number of re-triangulation events per
period required to maintain a Delaunay triangulation. The N1.05 guideline shows the
event scaling for the original flow.

Generally, the DT-maintaining motion moving only a single point at a time may

yield intrinsically different dynamics than the original motion. It is not the preferred

method for evolving a triangulation forward in 2D, points may be re-triangulated dif-

ferently based on the order in which trajectories are evolved forward in time. However,

we keep in mind that the main advantages to this new method for re-triangulating

reveal themselves in 3D.

4.4.2 3D Dual E-tec Results Using Delaunay Triangulation

Maintenance

Here is an appropriate time to remind the reader of the primary reason why a Delau-

nay triangulation is maintained as points evolve forward in time: edge-edge collisions

will not occur in 3D under this constraint. The re-triangulation ambiguities that

come with edge-edge events are bypassed, leaving only a series of flip23 and flip32
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operators that modify the triangulation with either an addition or deletion of an edge.

To help verify Dual E-tec in 3D, the same chaotic lid-driven cavity flow used in

the above 2D analysis is raised to three dimensions. The same flow parameter value

that results in the exact topological entropy hpo3 = 0.9624 is used. Full trajectories

are gathered in two dimensions from a uniform distribution of initial conditions.

Only this time, each trajectory is raised to a uniformly random z-coordinate for the

duration of its run. Trajectories are then contained in the rectangular box 0 < x < 6,

−1 < y < 1, and 0 < z < 1. Three sample trajectories can be seen in Fig. 4.24.

The aim in choosing essentially the same flow as previous tests is that the 2D E-tec

convergence in both the number and length of trajectories is well-understood. This

gives a solid reference for which to compare the 3D results with.

Figure 4.24: 3D Chaotic Lid-driven Cavity Flow: Three trajectories belonging
to the same chaotic flow from previous sections are used. Here, each individual point
is uniformly distributed along 0 < z < 1 for the entirety of its trajectory. Projecting
all trajectories down to the z = 0 plane gives the original 2D dynamics.

Ensembles of size 20, 50, and 100 trajectories are advected forward fifty periods.

(Note that any trajectories in the period-3 islands will return back to their starting

positions after three periods, ensuring plenty of mixing in 2D.) Eight additional auxil-

iary points are positioned as boundaries outside the reach of any ensemble trajectory.

Similar to the 2D algorithm, the stationary auxiliary points allow us to bypass any

issues that arise when re-triangulating on the boundary. 50,280; 239,994; and 732,268

re-triangulation events are recorded for three ensembles run for fifty periods, each of
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which include the flip operation and the edge to be added or subtracted. The total

number of edges present in the triangulation for each ensemble stays consistent, as

seen in Fig. 4.25, indicating the flip23 and flip32 operators are evenly distributed.

Figure 4.25: Total Number of Edges in the Triangulation: Total edges are
plotted as a function of time. Increases or decreases to the edge totals result from
the flip23 and flip 32 operations.

The list of events is recorded for each ensemble only once and can be used to evolve

forward any number of rubber sheets. Sheets are encoded into the initial triangulation

using non-zero edge weights, with the integer value of the weight corresponding to the

number of times the edge passes through the sheet. While E-tec in 2D was typically

initialized with bands anchored at two points, sheets anchored around the three points

of a triangular face are troublesome for this model flow due to the ż = 0 we’ve

introduced by raising each trajectory to the z-axis. We find that sheets whose anchors

do not simultaneous span much of the z-axis and cover a large area when projected

down to two dimensions do not generally grow exponentially in time. Rather, this

problem is alleviated by considering rubber sheets along planes can still be stretched

under the advection of the flow. These planar sheets are not anchored by points, but

instead can be thought of as being tied off at infinity. As illustrated in Fig. 4.26,

these planar sheets are easily encoded into the triangulation.

Next, re-triangulation events for the three ensemble sizes are applied to varying

initial sheet conditions. The simplest configuration is a single planar sheet through

x = 3. However, this plane passes through one of the period-3 islands (now thought

of as period-3 rods or cylinders when raised to three dimensions). Better entropy
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Figure 4.26: Sheet Initialization: An initial triangulation of points and the Dual
E-tec edge weight representation of two rubber sheets along the planes x = 2.5 and
x = 3.5. Weighted edges of the triangulation are shown in red. Integer weight
corresponds to the number of times an edge passes through a sheet.

results are found using two sheets at x = 2.5 and x = 3.5 between the rods. This

configuration is depicted in Fig. 4.26. The logarithmic sum of edges weights and the

resulting htop estimation are revealed in Fig. 4.27a. To avoid initial transience, T = 5

is chosen as the time to begin the slope-fitting. Though the results show exponential

growth in the sum of edge weights over time and overall growth in htop in the number

of trajectories, the method is well short of the true topological entropy hpo3 = 0.9624.

Initial sheets along the y = 0 plane are next initialized and stretched by the same

ensembles’ re-triangulation events. Figure 4.27b shows a slower growth in the entropy

compared to Fig. 4.27a when using the largest sized ensemble (100 trajectories, in

yellow). This is possibly due to all three island rods intersecting with the plane, as

the rods are pulling and dragging the sheet instead of intersecting and pushing it.

However, this is simply the author’s own hypothesis.

As a last calculation, one hundred sheets are evenly distributed along the planes

through y = α, α ∈ (−1, 1). This is done in hopes of sampling more space discon-

nected from the islands. (A similar calculation is done using x = α, α ∈ (0, 6) with

results similar to Fig. 4.27a.) Initializing this setup is once again simple, as only the

integer-valued weights along triangulation edges intersecting these sheets increases.

Subsequent edge weight sums and resulting htop estimations are show in Fig. 4.27c.

The 100-trajectory ensemble entropy result is improved from the single y = 0 case in
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Figure 4.27: Topological Entropy Results for Three Initial Sheet Configu-
rations: Three sets of initial sheets are each tested on the 20 pt., 50 pt., and 100
pt. ensembles: a) two planes at x = 2.5, 3.5, b) one plane through y = 0, and c)
one hundred planes evenly spaced up and down the y-axis. Planes in a) are chosen
such that no plane crosses through the period-2 islands (or rods, in 3D). Topological
entropy is stated in inset boxes and is given by the slope of the best-fit line through
the natural log of edge weight sums as a function of time. Slope and line fitting begins
at T = 5.

Fig. 4.27b, though initial configuration of two planes through x = 2.5 and x = 3.5

result in the highest estimate of htop (Fig. 4.27a).

One sign of validation in our entropy calculations is the fact that sum of edge

weights is consistent over time once early transience is accounted for. To further ver-

ify the entropy calculations, it is shown that the exponential growth of edge weight

sums is not simply a product of a growing number of edges transitioning from having

zero weight. Figure 4.28 displays consistency between the ratio of weighted edges and

all edges after T = 5, indicating that sheet growth is resulting from an exponential

increase in the integer values of the weights. This figure not only justifies the be-

ginning best-fit time of T = 5, but it also brings to light an interesting phenomenon

regarding the weight proliferation at early times; the weighted edge ratio peaks near

T = 2.5. This peak is left unexplained in this manuscript.
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Figure 4.28: Weighted Edge Ratios: As a function of time, the ratio between the
number of weighted edges to the number of total edges in the triangulation.

4.4.3 3D Dual E-tec Results Using Stirring Rods of the Chaotic

Lid-driven Cavity Flow

As opposed to a random sampling of trajectories, E-tec is previously shown to con-

verge more quickly to the correct value of htop if trajectories are chosen from coherent

sets that topologically force certain dynamics. In 2D, the lid-driven cavity flow used

to study chaotic advection [3, 4, 68, 69] contains three period-3 islands that braid

around one another, topologically forcing the flow to have a minimum entropy. In

3D, we extend these islands vertically in three dimensions as cylinders. Not only will

these cylinders existing above the islands resemble stirring rods, the braiding of these

rods should topologically force the same entropy lower bound of hpo3 that the islands

force in 2D. To sample from the stirring rods, trajectories existing in the period-3

islands are acquired and raised to a uniformly distributed z-coordinate value. (This

the exact process performed in Sect. 4.4.2.) Figure 4.29 displays the stirring rods and

the 2D island braiding motion superimposed over a freeze-frame of the trajectories

used.

Twenty trajectories in each stirring rod are chosen and a Delaunay triangulation

is maintained while the ensemble is evolved for T = 50 periods. Though the ensemble

is smaller in size than the largest test case above, the higher density of points results

in an order of magnitude more re-triangulation events. The same three initial sheet
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Figure 4.29: Chaotic Lid-driven Cavity Flow in 3D: Cartoon of the 2D period-3
island motion is displayed in the z = 0 plane. Raising these islands in three dimensions
results in three cylinders that resemble stirring rods. Trajectories in black are sampled
from the islands and raised to some uniformly distributed z-coordinate.

configurations used in previous tests are used: two planes through x = 2.5 and

x = 3.5 initially between the rods, one plane along y = 0, and one hundred planes

evenly spaced along y = α, where α ∈ (−1, 1). Unfortunately, the edge weight totals

do not grow as fast as previous tests. Pictured in Fig. 4.30 (using the same y-axis

scaling as the results in Fig. 4.27), no initial configuration yields exponential grow for

any extended period of time.

4.4.4 3D Dual E-tec’s Loss of Information

The numerical results in Sects. 4.4.2 and 4.4.2 are underwhelming, as the best result

yields a topological entropy lower bound of 0.183. This is only 19% of the known

lower bound of hpo3 = 0.9624. Comparatively, a small ensemble of only 10 points

in 2D attained roughly 85% of the same lower bound. One may intuitively be led

to believe that larger ensembles of points are needed to further test the convergence

and robustness of 3D Dual E-tec. However, upon realization that an important

consideration regarding the encoding of surfaces has been overlooked, we believe that

updating surfaces using the Dual E-tec rules alone is insufficient and will not result

in convergence to the true entropy.
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Figure 4.30: Stirring Rod Entropy Results: Logarithmic sum of edge weights as
a function of time for the three initial sheet configurations. For reference, in black is
the best result obtained using random ensembles.

The Dual E-tec rules are losing information about the stretching of manifolds,

particularly when a flip32 is performed and the interior edge is lost. This results

in not only the expected loss of edge weight described in subsections above, but

in a more troublesome ambiguity in the type of surface being tracked. The most

succinct example of this is drawn out in Fig. 4.31. Here, two surfaces are being

recorded in the triangulation: a long cylindrical surface passing through two points

and the familiar rubber sheets wrapped around the same two points. In Fig. 4.31a,

the cylinder encases the interior edge shared by the three tetrahedra. Figure 4.31b

shows the same cylinder after a flip32 update. Notice that the weight representation

remains the same: 6 individual weights of one on each of the edges incident to the

top and bottom points. Next, two rubber sheets are encoded in the original three

tetrahedra configuration in Fig. 4.31c. Once a flip32 is performed in Fig. 4.31d, the

weights have changed accordingly, though the weight representation of the two sheets

in this two tetrahedra configuration is the same as the representation of the cylinder

using the same two tetrahedra.

In short, information is lost when flipping from three tetrahedra to two and we
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Figure 4.31: Dual E-tec Loss of Information: A cylindrical surface and corre-
sponding Dual E-tec weight representations through a three-tetrahedra configuration
in a) and after a flip32 event in b). Likewise, two sheets passing through the same
tetrahedra configurations in c) and d). While the two-tetrahedra configurations have
differing weights in a) and c) (boxed for emphasis), all edges have the same weight
after the flipping events in b) and d). In e) is a cylindrical surface passing through a
tetrahedron while intersecting no edges. It has zero edge weight and thus cannot be
encoded into the triangulation.

cannot distinguish between two different surfaces. This effectively means that our

current method will “pinch off” any local bits of the manifold that look like this,

resulting in disconnected sheets that don’t pick up as much growth. Worse yet, this

opens up a whole other set of scenarios in which surfaces cannot be properly encoded.

For instance, a cylindrical surface may enter a tetrahedron through one face and exit

through another without crossing any edges. This scenario is depicted in Fig. 4.31e.

Since the cylindrical surfaces can deformed into arbitrarily narrow tubes, we will

refer to them as “stings” for the remainder of this manuscript. To help the Dual

E-tec scheme properly keep track of the lost information, we aim to track the strings
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through the faces in which they pass through. For instance, the string in Fig. 4.31b

could be properly recorded with the addition of two weights assigned to the middle

interior face in which it passes through, one weight for the top tetrahedra and one

for the bottom. Likewise, the string in Fig. 4.31e would be easily recorded using two

nonzero face weights for each of the two front faces it passes through.

Ideally, a coupling between the 2D sheet surfaces and the cylindrical surfaces could

be developed to simultaneously encode two-dimensional rubber sheets and the string

structures that arise. Such a scheme conceivably requires much work and is outside

the scope of this manuscript. Instead, we take a simpler approach: motivated by the

fact that one-dimensional edges of the triangulation are objects in 3D to the one-

dimensional strings, we use the edges of a triangulation to stretch and fold strings as

the triangulation evolves in time.

4.5 Stretching Strings in 3D Using E-tec

Here, we present a modified version of E-tec similar to the Dual E-tec scheme. Similar

to the Dual method, once the flipping events necessary for preserving a Delaunay

triangulation among moving points are recorded, this information can be applied

independently to any number of initial string configurations. In this section, we

outline our technique for encoding strings in a triangulation and define the edge

weight update rules. These update rules will be applied to each flip23 and flip32

event in order to evolve the string in tandem with the moving points and edges of

the triangulation.

4.5.1 Encoding the Strings

Since we use triangulation edges as stirrers, we want to encode one-dimensional rubber

strings using new weights attached to each edge. We achieve this by assigning a weight

to each edge corresponding to the number of times a piece of the string wraps around

said edge. For an example, we follow Fig. 4.32. Here, edge (a, d) has two pieces of

the string wrapped around it and is thus assigned a weight of 2. Likewise, edge (c,
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d) is assigned a weight of 1 for the single piece of string it anchors. Another way of

interpreting these weights is that they define how pieces of string puncture and wind

around adjacent triangular faces. In the case of edge (d, c), the string punctures faces

(b, c, d) and (a, c, d). We simply choose the common edge these two faces share as

the edge to assign the appropriate weight.

a c

d

b
2

1

0
0 0
0

Figure 4.32: Encoding Strings in a Single Tetrahedron: Pieces of a rubber
string (in red) are wrapped around edges (a, d) and (c, d). The string is represented
with nonzero edge weights of 2 and 1 corresponding to the number of times the string
wraps around each edge. All other edges have zero weight.

In total, each single tetrahedron has a total of six weights, one for each edge,

to describe how the string winds through it. To encode the string in the many

neighboring tetrahedra in a 3D triangulation, each individual tetrahedron will carry

six weights. Adjacent tetrahedra must necessarily have the same number of string

pieces puncturing the shared face, though this will be verified in the edge weight

update rule derivation below.

We next take steps to simplify the update rules for the string edge weights. These

rules will be applied at each application of a flip23 or flip32 event. For a flip23

transformation from two to three tetrahedra, the rules take in as input the 12 edge

weights attached to the two tetrahedra configuration and outputs the 18 edge weights

consistent with the three tetrahedra configuration and new edge. Likewise, a flip32

update transitions from the 18 edge weights to 12 as three tetrahedra transition to

two.
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To help visualize the string encoding and to help simplify the weight update rules,

we use the topological diagrams of neighboring two and three tetrahedra configura-

tions in Fig. 4.33. In the diagrams, tetrahedra are representing using full black points.

Each black point is connected to four open circles representing the four faces of the

tetrahedron. There are six edge weights attached to the top tetrahedron in Fig. 4.33a.

They are 1-2, 1-3, 2-3, 1-T , 2-T , and 3-T , corresponding the shared edge between the

listed faces. (And similarly for the bottom tetrahedron.) A nonzero weight along

edge 1-3 for example indicates a string piece wraps around the edge shared by faces

1 and 3. To further show the ease with which strings may be represented, assume a

more complicated scenario: a single piece of string punctures face 1 of the top tetra-

hedron, passes through the middle face T , and exits the structure through face 1′ on

the bottom. This is easily represented using two weights of 1 assigned to edges 1-T

and 1’-T .

String representation is more complicated for the three tetrahedra configuration

in Fig. 4.33b. For k = 1, 2, 3, one k-k′ edge is found on each of the three tetrahedron

while each interior uk-uk+1 edge is shared among two of the three tetrahedra. For

example, a string entering the structure through face 1 and exiting through face 3

can be represented by weights along 1-u2 and 3-u2 if it does not wind around the

interior edge, by weights along 1-u3, u3-u1, and 3-u1 if it winds around the interior

edge once, or by 1-u3, 3-u1, and many u3-u1, u1-u2, and u2-u3 if it winds around the

interior edge more than once.

We define below the rules for updating the edge weights representing the string.

For each flipping event, edge weights need to be shifted around the new configurations

and faces in a way that is consistent with how the actual string would interact with

the new or deleted edge. Of note, we assume a minimal topological complexity in the

new configuration that is compatible with the weights before the flip. This minimal

complexity assures we arrive at a lower bound on the growth of the string, yielding a

lower bound on the topological entropy.

For the update rules, we use the following notation:

• k and k′ are used for the integer-named faces, where k = 1, 2, or 3. Each set of

k and k′ belong to one of the two tetrahedron.
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Figure 4.33: Topological Diagram of Neighboring Tetrahedra: a) On the left
is the two tetrahedra configuration with labeled faces and shared face T . On the right
is the simplified topological diagram of this configuration. Here, open holes represent
the faces and the two full points represent the two tetrahedra. b) On the left is
the three tetrahedra configuration that share a single edge running vertical. Exterior
faces have integer names and are the same as a). The interior faces adjacent to the
shared edge are labeled u1, u2, and u3. (Faces u2 and u3 are colored for clarity.)

• T is still used for the shared face in the two tetrahedra configuration,

• uk, k = 1, 2, 3, is used for the shared interior faces of the three tetrahedra

configuration,

• to express edges, we define km = k − 1 and kp = k + 1, defined cyclically.

The last bullet is particularly useful, as the event updates loop through k = 1, 2, 3

and the current value of k acts as a pivot. For k = 1, we have km = 3 and kp = 2.
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Similarly, for k = 3, km = 2 and kp = 1.

4.5.2 Flip23 Event Update

We begin with the more straightforward of the two updates. The addition of the

interior edge does not add much complexity, as strings connecting outer faces now

simply may pass through one of the new interior uk faces. The reader is encouraged

to view Fig. 4.34. This figure will be referenced throughout the steps below.

3’
2’

1’

T

1

1’

3

3’

2

2’

u1

u23
2

1

u3

flip23

Figure 4.34: Flip23 Update Rule Example: On the left are three colored pieces
of string entwined in the two tetrahedra configuration. A flip23 occurs and the string
pieces are mapped to the new configuration. The update rules moves pieces in the
following order: red piece is mapped from 1-3 to 1-u2 and 3-u2, the blue piece is
mapped from 1-T and 1′-T to 1-1′, and the green piece is mapped from 3-T and 2′-T
to 3-u1 and 2′ − u1.

Input: The flip23 update requires 12 edge weights as input:

1. Six edge weights from the top tetrahedron, k-kp and k-T .

2. Six edge weights from the bottom tetrahedron, k′-k′p and k′-T .

Output: The flip23 gives 18 edge weights as output:

1. Three k-kp weights for the lateral sides of the three tetrahedra structure.

2. Six k-ukm and k-ukp weights connecting the outer k faces with the interior uk

faces.
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3. Six k′-ukm and k′-ukp weights.

4. Three uk-ukp weights connecting the interior faces.

Steps: The steps are given below

1. For k = 1, 2, 3, string pieces passing through neighboring faces and not punctur-

ing T will now pass through one of the shared faces uk. (Follow the red string

piece in Fig. 4.34.) :

k-ukp = km-ukp = k-km,

k′-uk′p = k′m-uk′p = k′-k′m.

2. For k = 1, 2, 3, string pieces puncturing faces k and k′ and passing through face

T are pushed to k-k′. (The blue string in Fig. 4.34.) :

m = min(k-T, k′-T ),

k-k′ = m,

k-T → k-T −m,

k′-T → k′-T −m.

3. The only string pieces remaining are those passing through T and puncturing

k and k′m. These are pushed to k-k′m and forced to pass through an interior uk

face. (The green string in Fig. 4.34.) :

m1 = min(k-T, k′p-T ), m2 = min(k-T, k′p-T ),

k-ukp → k-ukp +m2,

k-ukm → k-ukm +m1,

k′m-ukp → k′m-ukp +m2,

k′p-ukm → k′p-ukm +m1,
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4.5.3 Flip32 Event Update

Next we define the more complicated flip32 update in which an edge is removed and

the points transition to two tetrahedra. In the previous Dual E-tec scheme, much

information of the surface structures was lost when an edge was removed. This is not

the case here with the strings; the string can still be uniquely defined by the edge

weights upon removal of an edge. When the internal edge is indeed removed, the

string will simply return taut around the nine triangulation edges on the exterior of

the structure.

Two cases arise in the flip32 update and depend whether or not any of the three

interior edge weights uk-ukp are nonzero. If all are zero, the update is similar to the

flip23 case above, with string piece puncturing faces k and kp mapping to k-kp and

pieces puncturing k and k′ (or k and k′p) being forced through new face T . If any

uk-ukp are nonzero, this means string pieces are wrapped around the interior edge.

The update rule takes care in peeling off these pieces from the interior edge and com-

bining them with appropriate edge weights to preserve the string structure. Once

again, Fig. 4.35 illustrates the steps and the placement of string pieces.

Input: The flip32 update requires 18 edge weights as input:

1. Three k-kp weights for the lateral sides of the three tetrahedra structure.

2. Six k-ukm and k-ukp weights connecting the outer k faces with the interior uk

faces.

3. Six k′-ukm and k′-ukp weights.

4. Three uk-ukp weights connecting the interior faces.

Output: The flip32 gives 12 edge weights as output:

1. Six edge weights from the top tetrahedron, k-kp and k-T .

2. Six edge weights from the bottom tetrahedron, k′-k′p and k′-T .

Steps for Case I: If all uk-ukp are zero, no piece of the string returns taut once the

edge is removed. The steps below give a formula for transitioning to this configuration.

(Case I is visualized in Fig. 4.35b to c. One simply needs to track the mapping of

each colored string.)

1. For k = 1, 2, 3, weights for neighboring k and k′ faces are forced through face
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Figure 4.35: Flip32 Update Rule Example: a) Three colored pieces of string
entwined in the three tetrahedra configuration. b) The update rule moves pieces
in the following order: the red piece is mapped to 1-u3 and 2-u3, the blue piece is
mapped to 1′-u3 and 2-u3, and the green piece is mapped to 2-2′. c) The transition
to the two tetrahedra configuration occurs. The red piece is mapped to 1-2, the blue
piece is mapped to 1′-T and 2-T , and finally the green piece is mapped to 2′-T and
2-T .

T . (Follow the red string piece in Fig. 4.35b and c.)

k-T = k-k′,

k′-T = k-k′,

k-k′ → 0.

2. For k = 1, 2, 3, string pieces puncturing either k and km are moved to k-km.

(The blue string in Fig. 4.35b and c.)
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m = min(k-ukp , km-ukp),

k-km → k-km +m,

k-ukp → k-ukp −m,

km-ukp → km-ukp −m.

Repeat this step with primed faces swapped for unprimed faces.

3. The only string pieces remaining are those puncturing k and k′m that will pass

through T in the new configuration. (The green string in Fig. 4.35b and c.) For

k = 1, 2, 3:

m = min(k-ukp , k
′
m-ukp),

k-T → k-T +m,

k′m-T → k′m-T +m,

k-ukp → k-ukp −m1,

k′m-ukp → k′m-ukp −m1.

Repeat this step with primed faces swapped for unprimed faces.

Steps for Case II: The steps are given below if any of uk-ukp are nonzero. The

process is visualized in the transition from Fig. 4.35a to b.

1. Use uk-ukp to convert as many k-ukp and kp-uk segments into k-kp segments.

(The red string transition from Fig. 4.35a to b.) For k = 1, 2, 3:

m1 = min(k-ukp , kp-uk) m2 = min(k′-ukp , k-ukp).

(a) If uk-ukp < m1 +m2:

• The strings in uk-ukp will need to be apportioned between the top and

bottom tetrahedra. This is not uniquely specified, though a logical

way to do it is proportionately. Therefore, define a1 and a2 by
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a1 =
m1

m1 +m2

uk-ukp ,

a2 =
m2

m1 +m2

uk-ukp ,
(4.20)

where one of a1 or a2 is rounded up to the nearest integer and the

other is rounded down.

• We update using m1 = a1 and m2 = a2.

• If uk-ukp ≥ m1 +m2, m1 and m2 remain unchanged.

Once this condition is accounted for, we have:

k-ukm → k-ukm +m1,

k′-ukm → k′-ukm +m2,

kp-ukm → kp-ukm +m1,

k′p-ukm → k′p-ukm +m2,

k-ukp → k-ukp −m1,

k′-ukp → k′-ukp −m2,

kp-uk → kp-uk −m1,

k′p-uk → k′p-uk −m2,

uk-ukp → uk-ukp − (m1 +m2).

This step is repeated on loop until uk-ukp remains unchanged after applying this

step to the three values of k.

2. This step is similar to the above step, only this time swapping any connecting

primed integer faces with unprimed ones. We use uk-ukp to convert as many

k-ukp and k′p-uk segments into k-k′p segments. (The blue string transition from

Fig. 4.35a to b.) For k = 1, 2, 3:
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m1 = min(k-ukp , k
′
p-uk) m2 = min(k′-ukp , kp-uk).

(a) If uk-ukp < m1+m2, once again proportion the strings by applying Eq. 4.20,

rounding accordingly, and updating m1 and m2.

Once this condition is accounted for, we have:

k-ukm → k-ukm +m1,

k′-ukm → k′-ukm +m2,

k′p-uk → k′p-uk +m1,

kp-uk → kp-uk +m2,

uk-ukp → uk-ukp − (m1 +m2),

k-ukp → k-ukp −m1,

k′-ukp → k′-ukp −m2,

k′p-uk → k′p-uk −m1,

kp-uk → kp-uk −m2.

This step is again repeated on loop until all uk-ukp remain unchanged after

applying this step to the three values of k.

3. At this point, if there is a nonzero uk-ukp left, the string punctures a face k,

wraps around the middle edge, then leaves through the k′ face below k. This

means the weights k-ukm , k-ukp , k′-ukm , and k′-ukm must be zero except for a

single value of k. Furthermore, uk-ukp = uk-ukm . (The green string transition

from Fig. 4.35a to b.)

For this single value of k only:

m1 = min(kp-uk, k
′
p-ukm) m2 = min(k′p-uk, kp-ukm).

(a) If uk-ukp < m1 + m2, once again apply Eq. 4.20, round a1 and a2, and
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update m1 and m2.

After updating the m values, we have:

kp-k
′
p → kp-k

′
p + (m1 +m2),

uk-ukp → uk-ukp − (m1 +m2),

ukp-ukm → ukp-ukm − (m1 +m2),

kp-uk → kp-uk −m1,

k′p-uk → k′p-uk −m2,

k′p-ukm → k′p-ukm −m1,

kp-ukm → kp-ukm −m2,

4. At this point, the only portion of string leftover is that which has not been

pushed aside to the outer edges. That means if remaining nonzero uk-ukp still

exist, then a portion of the string enters and exits through the same face.

Additionally, this piece of the string may wind around the middle edge any

number of times. Rather than allowing the string to return taut along some

other tetrahedron’s edges, we take three steps in order to pin the string to the

edge opposite the face it punctures.

• Redundant windings around the interior edge are eliminated by updating

with:

m = min(uk-ukp , ukp-ukm , ukm-uk),

uk-ukp → uk-ukp −m for all k.

• The string weight puncturing face k or k′ twice is pinned to the opposite

edge kp-km or k′p-k
′
m. This amounts to shifting the weight to this opposite

edge.

• The neighboring tetrahedra must be updated with the newly pinned edge
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weight. The weight added in the step above is simply added to all tetra-

hedra sharing this edge.

5. Lastly, we apply the steps in case 1, as all interior weights are zero.

4.5.4 String Stretching Results

We apply one-dimensional string stretching application of E-tec on the familiar chaotic

lid-driven cavity flow used in Ch. 2 and raised to three dimensions in Sect. 4.4. For

a proof of concept, six special trajectories are selected from the flow. We use a single

pair of slightly perturbed trajectories in each of the three islands. Next, the island

pairs are slightly perturbed in their z-coordinate value such that one lies above z = 0

and the other below. The main advantage is that since the stirring rods (the islands

raised to 3D) stay isolated, the edges between each pair of points never disappear

from the triangulation. These long-lived edges make for the most efficient stirrers as

there is no chance for the string to “diffuse” through the more densely-populated 3D

rods with disappearing and reappearing edges.

The flip23 and flip32 events are recorded for the Delaunay triangulation mainte-

nance of the evolving six points. Since the pairs of trajectories are placed slightly

above and below the z-axis, we choose an initial string placed along the z = 0 plane

and between two of the raised islands. The exponential growth of the edge weights

representing the string is displayed in Fig. 4.36. Fitting to T ∈ [30, 50], these special

trajectories yield an E-tec result equal to htop = 0.9619 ± 0.0012. This result is con-

sistent with hpo3 = 0.9624, the flow entropy guaranteed by the braiding of the island

rods.

To generalize results, trajectory ensembles are randomly seeded and sampled from

the entire space in which the flow lives and from within the island rods. The E-tec

results from these two types of ensembles are shown in Fig. 4.37. The string growth

obtained from 60 island rod trajectories, 20 in each island, attains only ≈ 60% of the

entropy lower bound. This is in stark contrast to the result directly above in Fig. 4.36

which was obtained using one-tenth the number of trajectories. To make sense of this

issue, we note that all though the small ensemble only had three triangulation edges
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Figure 4.36: Proof of Concept: The growth of a rubber string stirred by the edges
of an evolving triangulation of six trajectories specially curated from the chaotic lid-
driven cavity flow coherent islands. For reference is a line with slope hpo3 = 0.9624,
the exact flow entropy ultimately produced by the braiding of the islands.

performing the stirring, these edges never disappeared after a flip32 event. Since the

edges living in the rods all disappear at some time for the larger ensemble, we believe

the band is “diffusing” through the rods.

The same diffusion issue may be responsible for the lack of growth in the larger

random ensembles. Since these sets are nested (each ensemble is contained in all

larger ones), we had reason to believe the growth rate would increase with ensemble

size. This is not the case, as the 50 point ensemble surprisingly yields the best result

and the largest ensemble yields the worst. The leads the authors to believe that

higher densities of points result in many more flipping events and disappearing edges,

which in turns gives the string more opportunity to diffuse through the tetrahedra

structures.

4.6 Future Considerations

4.6.1 Coupling 2D Sheet Stretching and Cylindrical Surface

Tracking

Both the sheet stretching and string stretching methods fail to converge to the true

topological entropy as a function of ensemble size. We propose a coupling of these
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Figure 4.37: String Stretching from Random Trajectories: The dashed orange
line shows string growth using 20 random trajectories in each of the three islands. the
other results come from nested sets of trajectories that are uniformly and randomly
distributed among the space in which the flow is contained.

methods as the next step to further E-tec along. The path forward could involve a

foundation sheet stretching Dual E-tec rules, augmented with rules derived to encode

strings in the triangulation. This is conceivably enough to keep track of the cylindrical

pieces of manifold that can be topologically deformed into the long, narrow strings.

To further simplify, an additional set of weights along each triangular face may be

sufficient in tracking when the cylindrical strings pass through a face.

4.6.2 Parallelizing the Re-triangulation Process

There remains work to be done in verifying that E-tec will converge to the correct

entropy in 3D. Certainly, it is expected that many more trajectories are needed to

attain good results. The curse of dimensionality guarantees this; phase-space volume

grows exponentially with dimension, resulting in exponentially more trajectories re-

quired to maintain sufficient densities. Future iterations of E-tec can certainly be

optimized with respect to runtime in order to adequately handle larger ensembles.

We are motivated by the fact that Delaunay triangulation maintenance consumes

a majority (99.9%) of E-tec runtime. However, by taking advantage of the locality of

each individual re-triangulation event, we discuss a process in which re-triangulating
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may be heavily parallelized. The idea is to group points together in disconnected

groups, process these groups together in parallel, then process any remaining points.

Figure 4.38 depicts this procedure in 2D. In each quadrant, the non-convex boundary

of all edges contained in the quadrant is found and shaded. Points interior to these

shaded regions are processed in parallel since all adjacent points and incident edges

are contained in the closures of shaded regions. Any point that transitions to the

exterior of a shaded region will be placed in one final grouping with points on the

shaded region boundaries. This final grouping is not processed in parallel due to

adjacent points residing in other quadrants.

Figure 4.38: Parallelizing Procedure: A Delaunay triangulation in 2D (containing
four auxiliary boundary points) is split up into four quadrants. In this depiction, four
sets of trajectories interior to the four shaded regions will be processed in parallel.
After, to complete the time step, remaining trajectories (those initially on the shaded
region boundaries or those exiting their boundary regions) will be processed.

The choice of four regions/groupings for parallelizing above is chosen for conve-

nience. The size and number of regions is arbitrary and variation in runtime per-

formance will surely depend on choices for both. In 3D, this idea extends rather

intuitively. Phase space will be partitioned by planes into smaller 3D regions. Points

interior to faces contained in each region (the 3D analogy to the shaded regions) will

be processed first in parallel, followed by all remaining trajectories on the boundary

faces and that exit each region.
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4.7 Conclusion

Presented in this chapter are three major advancements to the original 2D E-tec

algorithm described in Ch. 2. First, the Dual E-tec scheme is developed as a dif-

ferent, more flexible way to encode a rubber manifold stretched across points. It

is shown to be consistent with its counterpart in estimating a planar flow’s topo-

logical entropy. Most importantly, Dual E-tec allows the user to implement any

re-triangulation scheme to compute topological entropy.

Secondly, implementation of a three dimensional E-tec algorithm is presented.

This represents the first topological entropy calculation in 3D that requires only flow

trajectories and no knowledge of governing equations. We demonstrate that individual

3D topological entropy estimations converge in the length of trajectories. We provide

some evidence that estimations will grow as ensemble sizes are increased, though we

detail a fundamental oversight in this technique: tube-like structures are not uniquely

defined and crucial information about the manifolds is lost upon deletion of an edge.

Third, instead of evolving 2D sheets as they intersect with points, we stretch and

fold 1D strings using triangulation edges as stirrers. We derive the edge weight update

rules for the flipping events and provide a proof of concept using only six trajectories

and long-lived triangulation edges. This method is demonstrated to converge to a

topological entropy value in time, though convergence as a function of ensemble size

is alluding the authors.
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Chapter 5

Conclusions and Future Direction

5.1 Conclusion

Lagrangian-based approaches to fluid dynamics, those focused on how different parti-

cle trajectories explore a fluid and separate from each other, remain invaluable tools

for understanding chaotic dynamics. These trajectory-based analyses continue to aid

in identifying phase space structures that govern fluid mechanics. When trajectory

data is limited or difficult to acquire, topological Lagrangian-based methods for quan-

tifying fluid complexity need to be appreciated for their potential in accommodating

sparse data. Thus, because higher-dimensional analysis requires a prohibitively large

number of trajectories, there is a critical need for new topological approaches to

Lagrangian-based methods.

This dissertation outlines my contributions to the field of chaotic fluid dynam-

ics and topological entropy calculation. In particular, one question motivated this

research throughout: how to best study three dimensional and higher chaotic flows

when restricted to sparse trajectory data? Chapter 2, begins to address this ques-

tion through the introduction and development of the Ensemble-based Topological

Entropy Calculation, or E-tec, in two dimensions. The algorithm requires only a

potentially-sparse set of system trajectories as input to stretch and fold material

curves to compute a flow’s topological entropy. It is shown to converge to the true

119
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entropy in both the length and number of trajectories, and furthermore, of all tech-

niques requiring only trajectory data, it is shown to attain the most favorable runtime

scaling.

In Chapter 3, E-tec theory meets practice as it is applied to experimental data ob-

tained from an active matter microbiological fluid. The system’s topological entropy

is shown to bound experimentally-gathered Lyapunov exponents in what is the first

study of chaotic mixing and active fluids. Next, E-tec considerations on unbounded

flows are explored, followed by a proposed strategy for detecting coherent sets.

In Chapter 4, E-tec is scaled up to three dimensions. A new E-tec scheme for

encoding rubber manifolds in a triangulation, is devised, one that allows for any

re-triangulation scheme to be used. As a result, the first 3D topological entropy cal-

culation requiring only system trajectories is made. E-tec convergence in the length of

trajectories is shown and we find evidence of topological entropy converge in ensemble

size.

E-tec represents a significant new tool for the fields of topological mixing and

chaotic fluid dynamics, though many additional questions are raised. To conclude

this manuscript, future considerations and strategies are addressed.

5.2 Future Work and Considerations

5.2.1 Three Dimensional Considerations

Necessary for showing E-tec convergence in 3D is adapting the algorithm to better

handle large ensembles of trajectories. Chief among these runtime considerations is

the parallelization technique outlined in Ch/ 4. Though promising, parallelization re-

mains unimplemented and unexplored. Questions remain regarding how runtime will

scale with the parallelizing process, particularly with the number of separate regions

used. Additionally, one might consider if this technique can further be enhanced by

optimizing the grouping of points; at the beginning of each time step, does the cost

of calling a clustering algorithm to find nearby groups of points offset any potential

gains in re-triangulation efficiency?
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Another question raised in 3D is how calculations are affected by the choice of

initial condition. The final results displayed in Fig. 4.27 vary greatly depending on the

initial plane. Missing is an ergodic argument, to argue that all initial rubber manifolds

will eventually start growing at the same rate, much like how we saw different initial

band choices in 2D all grow at the same rate after initial transience. It remains an

unanswered question if robustness to the choice of initial sheet can be obtained in

3D.

5.2.2 E-tec in Higher Dimensions

An important avenue in E-tec advancement regards its generalization to higher di-

mensions. Much like how a long, thin rubber band wrapped around 1-dimensional

edges is used to capture stretching and folding in 2D, or how the entanglement of flat,

rubber sheets stretched along 2-dimensional faces gives insight to a 3D flow’s com-

plexity, we wish to consider a (d− 1)-dimensional rubber manifold stretched around

a collection of initial points in a d-dimensional phase space. As these points evolve

in time, they carry the manifold along with them, stretching and folding it. How-

ever, difficulties arose in 3D that surely lead insight to potential difficulties in higher

dimensions; much like how the edge-edge collisions proved difficult to handle, we en-

vision ambiguities in re-triangulating after any collision that involves two simplices

in which one is not a point (edge-edge, edge-face, etc) in higher dimensions.

With the advent of 2D Dual E-tec allowing the freedom to choose any re-triangulate

procedure, two research avenue exist: 1) can the Dual E-tec weight updates be gen-

eralized to higher dimensions? and 2) does there exist a re-triangulation scheme in

higher dimensions that eliminates the need to track collisions between simplices with

dimension one or higher? Exploring an algorithm for maintaining a higher dimen-

sional Delaunay re-triangulation seems like the most plausible place to start answering

the second question, though an answer to the first remains unexplored. No work is

completed for Dual E-tec update rules for edge-edge collisions or collisions involving

a point and higher dimensional simplices.



Appendix A

Expansion Entropy

A.0.1 Introduction

Despite the rich history in the field of nonlinear dynamics and chaos, the exact def-

inition of the term chaos is still very much up for debate. While many proposed

definitions of chaos hold up against the commonly held intuitive notions of orbit

complexity and sensitive dependence on initial conditions, there exists not a single

definition that allows for a straightforward numerical computation for verifying chaos

that applies generally to any type of dynamical system. Disorder and unpredictabil-

ity are landmark consequences of chaos in a dynamical system, so it makes sense that

entropy, often thought of as the measure of increasing disorder in a physical system

evolving through time [144], is an indispensable tool for defining the existence of chaos

in a dynamical system. The existence of positive topological entropy, the measure-

ment of the exponential growth rate of orbits restricted to an invariant set [49, 145],

or positive metric entropy, the highly probabilistic approach of measuring the loss of

information over time [49, 146], are suitable definitions under certain conditions or

mappings, though these methods, along with many others, lack overall generality and

many require knowledge of the velocity field [50].

We investigate a new term entitled expansion entropy which is a generality to

the current leading entropy definitions. Expansion entropy measures the difference

between the exponential growth rate of volume expansion in an arbitrary region S
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and the exponential rate at which volume escapes from S. This is a sampling method

and is computed by contrasting the singular values of the evolving tangent map

(or Jacobian matrix) of uniformly distributed initial conditions in S with the rate

at which the trajectories leaveS. The existence of a straightforward and ”easy-to-

implement” test for chaos in a general region could have a large impact in wide array

of applications such as parameter control and identifying regions where chaotic mixing

is present (note that S need not be invariant, a necessary criteria for the computation

of topological entropy).

I will begin with an introduction and discussion of this alternative entropy defi-

nition in Sect. A.0.2, followed by a discussion on the numerical calculation adopted

by Hunt and Ott in Sect. A.0.3. Next, I present two things of significance that

arose from my work – first, the algorithm is applied to continuous flow for the first

time in Sect. A.0.4, something not addressed in the paper,and secondly, I present

my published result of an upper bound for topological entropy of a chaotic spherical

vortex in Sect. A.0.5. My expansion entropy result helps verify the Homotopic Lobe

Dynamics [2, 6, 7] calculation of topological entropy in Smith, et al. [147].

A.0.2 Expansion Entropy Theory

We consider a positive volume set S (which need not be invariant) and a smooth dy-

namical system on a finite-dimensional manifold M defined by the mapping f(t′,t)(x) :

M →M satisfying x′ = f(t′,t)(x), where f maps x at time t to x′ at time t′. To define

the expansion entropy of the system, the notion of local volume expansion needs to be

considered. Given an m by n matrix A, the singular values of A describe the amount

of stretching done to a unit ball in orthogonal directions. Then, letting G(A) to be

the product of singular values greater than one,G is applied to the derivative map

Df(t′,t). Upon application, G(Df(t′,t)(x)) then defines the ratio of local volume growth

of the map f(t′,t). Finally, using the notation adopted by Hunt and Ott, denote µ(S)

to be the volume of the set S and St′t ⊂ S to be the set of x ∈ S that stays in S for

all time t′′ ∈ [t, t′]. Expansion entropy is defined as
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H0(f, S) = lim
t′→∞

ln(Et′,t(f, S))

t′ − t
, (A.1)

where the

Et′,t(f, S) =
1

µ(s)

ˆ
St′,t

G(Df(t′,t)(x))dµ(x), (A.2)

term quantifies the stretching.

A.0.3 Numerical Computation

We begin with a continuous dynamical system ~̇x = f(~x). To numerically compute

Eq. A.1, Eq. A.2 is expressed in a more numerical, discrete way. A large number

of initial conditions xi in a general region S is uniformly distributed. We then, for

large T , evolve the trajectory f(T,0)(xi) of each initial condition xi forward along with

the corresponding tangent map Df(T,0)(xi), disregarding any trajectory that does not

remain in S. At discrete times T , I compute

ÊT (f, S) =
1

N

N∑
i=1

G′(Df(T,0)(xi)) (A.3)

where the prime symbol denotes the computation of only those trajectories remaining

in S for all times up to T . The estimated expansion entropy is the slope of ln ÊT (f, S)

plotted as a function of T . A positive slope, for large N , then indicates the existence

of chaos in the general region S

For continuous flows, the tangent map D and how it is integrated are derived.

Given an n-dimensional ODE

~̇x = f( ~x, t), (A.4)

where ~x ∈ Rn, a flow solution FT (~v) is assumed, which is the solution set of Eq. (A.4)

with initial condition ~v after T units of time. In other words, FT (~v) is the point at

which the orbit starting at initial condition ~v arrives after time T . Plugging the flow

solution into the original ODE yields

d

dt
(FT (~v)) = f(FT (~v)), (A.5)
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which, after differentiating with respect to the initial condition ~v, the variational

equation
d

dt
(DFt(~v)) = Df(Ft(~v)) ·DFt(~v). (A.6)

Here, D represents the derivative taken with respect to the initial conditions. Lastly,

defining Jt = DFt(~v) as the derivative of the orbit starting at ~v at time t and A(t) as

the matrix of partial derivatives of f(~x, t) with respect to ~x, the variational equation

[148] is alternatively expressed as

J̇t = A(t) · J(t). (A.7)

Intuitively, J̇T measures the evolution of small perturbations of the initial condi-

tion ~v at time T . We note that for the numerical computation of expansion entropy,

the derivative mapping Df(t′,t)(~x) is simply the J̇t′−t after t′ − t units of time. But

since the matrix A(T ) typically depends on the position at time T , JT must be solved

alongside the original ODE ~̇x = f(~x, t) and calculate the singular values of JT at

discrete times.

A.0.4 Expansion Entropy of the Chaotic Lorenz System

The analysis begins with verifying the topological entropy of a continuous flow. Con-

tinuous flows were not addressed in the original publication by Hunt and Ott [50].

Only discrete mappings were used which greatly simplified the computation of the

derivative map Df to that of simple composition of Jacobian matrices.

The Lorenz System of ODEs is used here to verify the algorithm works for con-

tinuous flows. The three dimensional, nonlinear, deterministic system is given by

ẋ = σ(y − x)

ẏ = (ρ− z)x− y

ż = xy − βz

. (A.8)

Fixing β = 8
3

and σ = 10, there exists three fixed points for ρ > 1, on at the origin

and two at (x, y, z) = (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ − 1). For the value ρ = 28, the
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origin is a saddle and the two other fixed points are attractors, resulting in a chaotic

system [149].

In computing DfT (~x) = JT , some slight analytical work is in order. JT must be

solved for numerically alongside the three-dimensional Lorenz system. The matrix

form of Eq. A.8 given by:

A(T ) =


−σ σ 0

−(ρ− (z(T )) −1 −x(T )

y(T ) x(T ) −β

 . (A.9)

Then, denoting

JT =


jxx jxy jxz

jyx jyy jyz

jzx jzy jzz

 ,
we arrive at the Lorenz System’s nine term variational equation

J̇T =

[
−σjxx + σjyx −σjxy + σjyy −σjxz + σjyz

(ρ − z(T ))jxx − jyx − x(T )jzx (ρ − z(T ))jxy − jyy − x(T )jzy (ρ − z(T ))jxz − jyz − x(T )jzz

y(T )jxx + x(T )jyx − βjzx y(T )jxy + x(T )jyy − βjzy y(T )jxz + x(T )jyz − βjzz

]
.

(A.10)

containing twelve dependent equations. Integration of the flow F (~x, t) and coupled

derivatives Jt is done simultaneously and reported at equally spaced times T using

’ODE45,’ an adaptive, Runge-Kutta 4 solver in the MATLAB standard ODE library.

Expansion entropy requires the calculation of the singular values of Jt at the reported

times T .

Using the Taken’s Method [150], which extracts topological entropy from the

fractal dimension estimation of time series data, Newhouse and Pignataro previously

estimated the topological entropy for our target parameters σ = 10, ρ = 28, and

β = 8
3

to be between the values 0.8947 and 0.9075 [46]. In the expansion entropy

paper, Hunt and Ott state that for an autonomous system on a compact manifold,

topological entropy and expansion entropy are equal for C∞ maps [150, 151]. Seeing

as how the Lorenz System calculated in a finite restraining region fits these criteria,

our numerical estimate of the expansion entropy should then approach Newhouse and
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Log(E)
Best	Fit

Log(E)
Best	Fita) b)

Figure A.1: Expansion entropy results for the chaotic Lorenz system. Plotted in
bluew is the computation of ln Êt versus T using 20 samples of N = 100 uniformly
distributed initial conditions. The expansion entropy estimate is the slope of the
best-fit red line. a) Best-fit line slope is 0.901 ± .011. Here, the restraining region
S is large enough such such that no trajectory leaves S. b) Best-fit line is fitted
until time T = 30. The slope is 0.884 ± .020. A smaller restraining region S is used.
Expelled trajectories are left out of the sum.

Pignataro’s topological entropy estimation of ht ∈ (0.8947, 0.9075) for a large number

of initial conditions.

The expansion entropy of the chaotic Lorenz cystem is computed using two dif-

ferent regions S, one which is large enough region such that S is invariant (Fig. A.1

a), and a second region small enough such that trajectories escape and S shrinks

(Fig. A.1 b). Using only N = 20000 initial conditions parsed into 20 samples for both

regions, the expansion entropy estimate is with error of the Newhouse calculation.

Of course, using a larger N will lead to better statistics and a tighter bound. In

their paper, Hunt and Ott use N on the order of 106 or 107, though more points are

necessary if trajectories escape from S rapidly.



128

A.0.5 Published Result: Expansion Entropy as an Upper

Bound for Topological Entropy

Lastly, I present an estimation of the expansion entropy of a modified version of Hill’s

spherical vortex [152,153]. Hill’s vortex is a well-known solution to Euler’s equations

for in inviscid incompressible fluid, represented by the Stokes stream function

φ0(r, θ) =

{
(1/2) U(1 − a3/r3)r2 sin2 θ = φ0+(r, θ) (r > a)

−(3/4) U(1 − r2/a3)r2 sin2 θ = φ0−(r, θ) (r < a).
(A.11)

To induce mixing, the Hill’s vortex is modified by a sequence of time-periodic adjust-

ments to the flow. We find a lower bound on the topological entropy of ln(2.1106) =

0.7469 by using the homotopic lobe dynamics technique [147], which uses the stretch-

ing and folding of stable and unstable manifolds to build a symbolic representation

of the dynamics [7]. The ”symbolic entropy” of the resulting tangle is extracted and

acts as an estimation to the topological entropy. Due to the exponentially increasing

complexity of the tangle, the above lower bound was found by taking only four iterates

of the tangle. As the information given by the tangle increases with higher iterates,

the ”symbolic entropy” will converge from below on the full topological entropy.

To get a sense of how well the homotopic lobe dynamics technique is estimating

the entropy the above lower bound of ht = 0.7469 is compared to the expansion en-

tropy computation. Figure A.2 reveals the expansion entropy result using 1.5 million

randomly seeded trajectories. The resulting data is parsed in two different ways.

Though it remains unclear which parsing method is more accurate, the true topo-

logical entropy lies between the minimum and maximum of two results: 0.9824 and

1.0554.This confirms that the symbolic entropy calculation is a strict lower bound.
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a) b)

Figure A.2: We choose N = 1.5 × 106 points distributed randomly and a ball of
radius 1.5 units centered at the origin as the restraining region S. We plot the
exponential growth of both the product of singular values greater than one and the
single largest singular value a) Data is parsed into 10 different samples of 150000
points. We estimate expansion entropy to be between 1.0188 and 1.0554. b) Same
data is parsed into 50 samples of 30000 points, yielding an estimate of .98241 and
1.0125.



Appendix B

1D Interval Stretching

We attempt to quantify chaos in 1D discrete dynamical systems by means of interval

stretching that results from orbit collisions. This method acts as a sort-of precursor to

the 2D E-tec algorithm, using 1D orbit data projected as a time series (1D positioning

as a function of time). Initial partitions between orbits are labeled as intervals and

they are stretched and folded over one another as the orbits evolve in time.

Iterate n denotes the n-th mapping of a discrete function. As illustrated in

Fig. B.1, subintervals Ijn are ordered in time by iterate n. At each time step n,

the superscript j = 1, 2, . . . indexes through the descending order of orbit positions

on the y-axis. The given ordering of subintervals Ijn with respect to j does not de-

pend on the previous iterate’s subintervals Ijn−1. For each iterate, the full interval is

denoted In =
⋃m−1

j=1 I
j
n and has length |ln| =

(
max fn(x0)−min fn(x0)

)
, representing

the total length of the range of orbits at iterate n.

The subinterval evolution at each iterate is the key to quantifying the stretching

of a times series of 1D data. In Fig. B.1, the three orbits b, g, and r create two

subintervals at each iterate. As orbits cross, subintervals at iterate n − 1 map to

a union of one or more subintervals at the next iterate n. Procedurally-speaking,

I count the number of times a subinterval is represented after a forward evolution,

compute the sum of the lengths of these subintervals, and normalize over the iterate’s

full interval length |In|. We will denote this ratio of interval lengths at the nth iterate

as ln. This, in essence, allows us to sort of quantify the stretching due to the crossing

130
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Figure B.1: Time series plot of three orbits b, g, and r. Please note, the superscript
ordering of subintervals given up and down at a specific orbit n are independent of
previous orderings.

of 1D orbit in a way that mirrors the 2D braiding work of Jean-Luc Thiffeault and

Mario Budivsic [5, 42,56].

I illustrate my method by finding these interval stretching ratios ln in the example

drawn in Fig. B.1,:

Iterate n = 1: The top subinterval at n = 0, I10 , is mapped to the top subinterval

interval I11 . The interval is flipped, but no stretching occurs, as I10 → I11 . Stretching

occurs as the bottom green and red subinterval I20 is mapped to I11
⋃
I21 . Therefore,

accounting for the crossing of the blue and green orbits, our stretched interval length

ratio is now

l1 =
2|I10 | + |I20 |

|I1|
.

Iterate n = 2: We are now looking at how the subintervals at n = 1 map to

subintervals at n = 2. The green and blue subinterval I11 is now mapped to I12
⋃
I22

while the blue and red subinterval I21 is mapped to the single subinterval I12 . The

stretched interval length ratio is then

l2 =
2|I11 | + |I21 |

|I2|
.

Iterate n = 3: At iterate n = 3, the no orbits cross and the ordering does not
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change. I12 is mapped to I13 and I22 is mapped to I23 . No stretching occurs and the

stretched interval length ratio is

l3 =
|I12 | + |I22 |

|I3|
.

The idea is to simply track the forward subinterval mapping at each iterate of the

time series, keeping track of the orbit crossings and resulting increase in subinterval

representation. To quantify stretching that results from these orbit intersections, I

proceed in a manner similar to expansion entropy: a initial conditions are uniformly

distributed and iterated forward while the stretched interval length ratio are ln are

computed for each iterate n = 0, 1, 2 . . . . The natural logarithm of the cumulative

product of these ratios

E(t) = ln
( t∏
j=0

lt
)

(B.1)

is plotted as a function of time. The ”orbit collision/ interval exchange” entropy-like

term , which we shall call hstretch, will then be the slope of the best-fit line through

Eq. B.1. Preliminary findings lead us to evidence that suggest hstretch approximates

topological entropy ht. Let us begin with some examples.

B.1 Chaotic Logistic Map

We begin with the logistic map, given by xn+1 = σxn(1−xn). For the parameter σ = 4,

the logistic map has topological entropy ht = ln(2) ≈ 0.69315. Interval stretching

entropy hstretch results are shown in Fig. B.2. The solid red lines plot Eq. B.1 as a

function of iterate and represent the growth of the subinterval mappings. At each

iterate, the orbits are resorted in descending order before computing the next iterate.

It there tracks only the growth from one interval to the next. Blue line computations

are done without any sorting of the subintervals and therefore represent only the

growth of the initial subintervals.

With agreeance between hstretch and the exact entropy value of ln(2) for the logistic

map with maximally chaotic parameter r = 4, I test my idea out on a full range of
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a) b)

c) d)

Figure B.2: Interval stretching entropy estimate for the chaotic logistic map with
parameter σ = 4. Entropy is given as best-fit line through the solid data. a)
hstretch ≈ 0.32702 for N = 5 orbits. b) hstretch ≈ 0.68976 for N = 50 orbits. c)
hstretch ≈ 0.69305 for N = 500 orbits. d) Entropy results as a function of the
number of orbits used. Correct entropy of log(2) is shown for reference. Colored lines
represent the iterate T at which the best-fit line is taken.
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Figure B.3: Interval stretching (or copying) entropy hstretch of the logistic map for a
range of σ values. 1000 orbits are used for each computation of hstretch, with different
ending fit times T shown in differing colors. The expansion entropy for the same
parameter values are shown. Exact topological entropy values are shown in green
markers.

σ values, using 1000 uniformly distributed orbits for each. I see good agreeance in

Fig. B.3 between my method (in red, yellow, and purple) and the exact topological

entropy values (in green) for non-chaotic parameter σ = 3.5 and all chaotic parameters

σ > 3.5. (The actual onset of chaos occurs at σ ≈ 3.57.) the topological entropy

is 0 for all σ < 3.5. However, my interval stretching method gives a false positive

for many of these values. An explanation as to why is not given here and remains

unexplored.

B.2 Chaotic Gauss Map

Lastly, I analyze the Gauss Map, given by

xn+1 =
1

xn
− floor

( 1

xn

)
or xn+1 =

1

xn
mod (1), x0 ∈ (0, 1]. (B.2)

Plotted in Fig. B.4, this map takes the fractional part of the reciprocal of the previous

state to get the next state. This map is interestingly shown to have finite metric
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Figure B.4: Graph of discrete Gauss Map with fixed point line as reference.

entropy hmetric = π2

6 ln(2)
[154] but infinite topological entropy [155]. Detailed in Fig. B.5

b), I compute hstretch as a function of the number of orbits N . In contrast to the

logistic map’s convergence of hstretch to ln(2) for large N , the Gauss Map entropy

appears to be growing logarithmically as N → ∞, indicating hstretch = ∞ for large

N .
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a)

b)

Figure B.5: a) Expansion Entropy results using 20 samples of N = 100, 1000, and
10, 000 orbits. b) Interval stretching entropy hstretch as a function of sample size N .
Expansion Entropy results from a) are shown starred.
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[21] Henri Poincaré. The three-body problem and the equations of dynamics:
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