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Abstract

Dynamic PET allows quantification of physiological parameters through tracer kinetic modeling. 

For dynamic imaging of brain or head and neck cancer on conventional PET scanners with a short 

axial field of view, the image-derived input function (ID-IF) from intracranial blood vessels such 

as the carotid artery (CA) suffers from severe partial volume effects. Alternatively, optimization-

derived input function (OD-IF) by the simultaneous estimation (SIME) method does not rely on 

an ID-IF but derives the input function directly from the data. However, the optimization problem 

is often highly ill-posed. We proposed a new method that combines the ideas of OD-IF and ID-IF 

together through a kernel framework. While evaluation of such a method is challenging in human 

subjects, we used the uEXPLORER total-body PET system that covers major blood pools to 

provide a reference for validation.
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Methods: The conventional SIME approach estimates an input function using a joint estimation 

together with kinetic parameters by fitting time activity curves from multiple regions of 

interests (ROIs). The input function is commonly parameterized with a highly nonlinear model 

which is difficult to estimate. The proposed kernel SIME method exploits the CA ID-IF as a 
priori information via a kernel representation to stabilize the SIME approach. The unknown 

parameters are linear and thus easier to estimate. The proposed method was evaluated using 
18F-fluorodeoxyglucose studies with both computer simulations and 20 human-subject scans 

acquired on the uEXPLORER scanner. The effect of the number of ROIs on kernel SIME was also 

explored.

Results: The estimated OD-IF by kernel SIME showed a good match with the reference input 

function and provided more accurate estimation of kinetic parameters for both simulation and 

human-subject data. The kernel SIME led to the highest correlation coefficient (R = 0.97) and the 

lowest mean absolute error (MAE = 10.5 %) compared to using the CA ID-IF (R = 0.86, MAE 

= 108.2 %) and conventional SIME (R = 0.57, MAE = 78.7 %) in the human-subject evaluation. 

Adding more ROIs improved the overall performance of the kernel SIME method.

Conclusion: The proposed kernel SIME method shows promise to provide an accurate 

estimation of the blood input function and kinetic parameters for brain PET parametric imaging.

Keywords

Tracer kinetic modeling; Input function estimation; Kernel method; Total-body PET

1. Introduction

Positron emission tomography (PET) has been widely applied in clinical and research 

scenarios. Compared to static PET, dynamic PET allows more accurate quantification of 

different physiological processes using tracer kinetic modeling (Wang et al., 2020; Gallezot 

et al., 2020). An accurate blood input function is essential to perform tracer kinetic analysis. 

Conventionally, the blood input function is obtained by arterial catheterization. This method, 

however, is invasive and requires extra processing time (Feng et al., 2020).

Noninvasive or less invasive methods for obtaining blood input functions have attracted 

much research interest (van der Weijden et al., 2023; Bartlett et al., 2022). For example, 

a population-based input function can be obtained from a cohort of subjects, and is then 

scaled for individual subjects (Takikawa et al., 1993; Eberl et al., 1997). However, such 

a method may not be adaptive enough to individual subjects due to its fixed shape. The 

image-derived input function (ID-IF) is another category of noninvasive methods. An ID-IF 

can be extracted from large blood pools such as the ascending aorta or left ventricle (der 

et al., 2001; de et al., 2006). However, these major blood pools are not always covered in 

the field of view (FOV), such as in brain or head & neck imaging using conventional short 

PET scanners (Feng et al., 2012; Mourik et al., 2008). As a result, an ID-IF often has to 

be extracted from small blood vessels such as the carotid arteries, which suffer from severe 

partial volume effect (Zanotti-Fregonara et al., 2009; Volpi et al., 2023). Although multiple 

studies have applied partial volume correction during extraction of the ID-IF (Mourik et 

al., 2008; Croteau et al., 2010), these methods are sensitive to the accuracy of system 
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point-spread-function estimation and the precision of vessel segmentation. Alternatively, 

an optimization-derived input function (OD-IF) can be obtained using the simultaneous 

estimation (SIME) method which seeks to estimate the input function jointly with kinetic 

parameters by fitting time activity curves (TACs) from multiple regions of interest (ROIs), 

e.g. (Feng et al., 2020, 1997; Ogden et al., 2010; Wong et al., 2002; Samil Yetik and 

Qi, 2006). While the performance of SIME was evaluated on different tracers (Bartlett 

et al., 2019; Zanderigo et al., 2018; Guo et al., 2007; Sari et al., 2018), conventional 

SIME parameterizes the input function using a highly nonlinear model and the optimization 

problem is complex to solve, either requiring a sophisticated optimization algorithm (e.g., 

(Wong et al., 2002)) or the model fitting may easily fail, as demonstrated later in the 

supplement. In addition, the model of the input function is challenging to match well with 

the specific data of the subject, especially for the early time period after injection (Yi-Gen, 

2008; Wong et al., 2006). Combining ID-IF with OD-IF provides a way to address the 

challenge of SIME. Constrained SIME methods (e.g., (Sari et al., 2018)) were proposed 

previously by utilizing the information from an image-derived whole-blood curve, but the 

model of the input function remains nonlinear and the application was mainly for metabolite 

correction by assuming the whole-blood curve is correct (Sari et al., 2018).

In this work, we further explore the ideas of ID-IF together with OD-IF to address 

the challenge of SIME without assuming a perfect whole-blood curve. A kernel SIME 

method is developed by exploiting the ID-IF as a priori information to stabilize SIME 

using a linear kernel representation of the input function. The method was evaluated using 
18F-fluorodeoxyglucose (FDG) with both a computer simulation study and human-subject 

data. Evaluating such a method in human subjects is generally challenging because arterial 

blood samples are normally required to provide the reference truth. Here we leveraged the 

uEXPLORER total-body PET system (Cherry et al., 2018; Badawi et al., 2019; Zhang et al., 

2020) to extract the reference from major blood pools for validation.

2. Methods

2.1. Tracer kinetic modeling

A commonly used two-tissue (2T) model for dynamic 18F-FDG PET is (Dimitrakopoulou-

Strauss et al., 2021):

d
dt

Cf(t)
Cm(t) =

−(k2 + k3) k4

k3 −k4

Cf(t)
Cm(t) +

K1

0
Cp(t),

(1)

where Cp(t) is the input function that represents the FDG concentration in plasma. Cf(t) and 

Cm(t) are the free and metabolized FDG concentrations, respectively. K1, k2, k3, and k4 are 

the tracer rate constants. The solution of this equation gives the total activity of FDG in the 

extravascular space as:

Ct(t) = Cf(t) + Cm(t) = ℎ(t) ⊗ Cp(t),

(2)
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where ⊗ denotes convolution, and ℎ(t) is the impulse response function given by

ℎ(t) = K1
Δα [(k4 − α1)e−α1t + (α2 − k4)e−α2t + k3(e−α1t − e−α2t)],

(3)

where Δα = α2 − α1, α1, 2 = 1
2(k2 + k3 + k4) ∓ 1

2[(k2 + k3 + k4)2 − 4k2k4]
1
2 . The 

observed total tissue activity CT(t) is:

CT(t) = (1 − vb)Ct(t) + vbCwb(t) = (1 − vb)ℎ(t) ⊗ Cp(t) + vbCwb(t),

(4)

where vb is the fractional volume of blood in the tissue. Cwb(t) is the tracer concentration in 

the whole blood and is related to Cp(t) with the plasma-to-blood ratio (PBR) function as

Cp(t) = PBR(t)Cwb(t) .

(5)

A nonlinear model for PBR function, PBR(t) = 1 ∕ [0.97 − 0.06exp( − 0.085t)], where t is in 

the unit of min, was applied in this work (Naganawa et al., 2020; Zuo et al., 2021).

2.2. Conventional SIME

The conventional SIME method exploits the assumption that TACs from different ROIs 

share the same input function (Feng et al., 2020). Thus, the input function can be estimated 

jointly with kinetic parameters by fitting TACs from multiple ROIs (Feng et al., 1997). The 

cost function for conventional SIME is:

Φ(θ, Cp) = ∑
j, m

wj[CT , j(tm; θj, Cp) − cj(tm)]2,

(6)

where cj(tm) is the measured TAC for jth tissue ROI and mth time frame. The weighting 

factor wj is computed as wj = 1 ∕ 1
M ∑mcj(tm)

2
 to normalize the scale of TACs from different 

regions, with M as the total number of time frames. θj = {vb, j, K1, j, k2, j, k3, j, k4, j} are kinetic 

parameters to be estimated, and Cp is the unknown plasma input function vector. Here the 

model TAC CT is explicitly written as a function of Cp and kinetic parameters θ. Note that 

the whole-blood function Cwb(t) in Eq. (4) is in turn denoted by Cwb(t) = Cp(t) ∕ PBR(t). In this 

work for 18F-FDG studies, we initialized θ as [0.1, 0.1(mL/min/cm3), 0.1(min−1 0.1(min−1), 

0.01(min−1)]T, and the lower bound was 0 and the upper bound was [1, 2(mL/min/cm3), 

2(min−1), 2(min−1), 0.5(min−1)]T. The input function was converted to standard uptake 

values (SUV) and the upper and lower bound was set as 120 and 0, respectively.
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Often, the input function is parameterized using Feng’s model (Feng et al., 1994). 

One challenge for SIME with Feng’s model is that both the kinetic modeling and the 

input function models are nonlinear, and the optimization problem is complex and often 

demonstrates instability in practice. Supplemental Fig. 1 shows an example that the SIME 

with the Feng’s model fails to estimate the input function accurately with simulation data, 

which is due to the local optimum in a highly nonlinear optimization problem. Alternatively, 

the input function Cp can be directly estimated as time points without using a nonlinear 

model, which however may result in a noisy estimation. For SIME methods, at least one 

reference point is required in order to overcome the global scaling problem (Ogden et al., 

2010; Guo et al., 2007; Riabkov and Di Bella, 2002; Riabkov and Bella, 2004).

2.3. Kernel SIME

While an ID-IF from a small blood region does not provide an accurate input function, 

the extracted ID-IF may already include useful a priori knowledge, such as the temporal 

correlations of different time points of the true input function. Inspired by the kernel method 

for tomographic image reconstruction (Wang and Qi, 2015; Wang, 2019), here we propose 

a kernel SIME method to utilize the a priori information from ID-IF through a kernel 

representation to describe the input function at the time frame m:

Cp, m = ∑
n

αnκ(fm, fn),

(7)

where αn is the kernel coefficient for nth time frame. fm and fn are 3 × 1 1D feature vectors 

extracted from ID-IF that centered at mth and nth time frame, respectively. κ(fm, fn) is a kernel 

function and can be computed using radial Gaussian kernel as (Wang and Qi, 2015):

κ(fm, fn) = exp − ‖fm − fn‖2

2σ2 ,

(8)

where σ is a hyper parameter and is set as 1 in this study. Supplemental Fig. 2 illustrates 

how to obtain the kernel function from an ID-IF. With this kernel representation, the input 

function is now expressed as a linear matrix-vector form Cp = Kα, where K is the kernel 

matrix with its (m, n)th element as κ(fm, fn). Note that the kernel representation here is 

nonlinear with respect to the feature vectors which embed the prior information, but is linear 

with respect to the unknown model parameter α, leading to an easier optimization problem 

as compared to a highly nonlinear model. Accordingly, the cost function in Eq. (6) becomes:

Φ(θ, α) = ∑
j, m

wj[CT(tm; θj, Kα) − cj(tm)]2

(9)
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To minimize the cost function in Eq. (9), the classic Levenberg-Marquardt algorithm used 

in tracer kinetic modeling was applied and implemented using MATLAB (MathWorks). The 

ID-IF was used as the initial guess for estimating α.

2.4. Evaluation with simulation study

A computer simulation study was conducted to evaluate the proposed method. TACs from 

the ascending aorta (AA) and carotid artery (CA) were extracted from the total-body 

dynamic FDG scan of a human subject on a uEXPLORER PET/CT system that lasted 

one hour with the following framing: 12 × 5 s, 4 × 15 s, 2 × 30 s, 3 × 60 s, 8 × 180 s, 6 

× 300 s. Image from 20 to 25 s was used to place ROIs for AA and CA since the blood 

vessels can be clearly visualized from this time frame. To extract TAC from AA, an ellipsoid 

ROI with a dimension of 20 × 40 × 20 mm3 was placed (see supplemental Fig. 5c, 5d). The 

blood TAC from AA was used as the true input function in this study. TAC from CA was 

extracted by manually segmenting CA from the 20–25 s PET image (see supplemental Fig. 

5a, 5b). TACs from four brain regions were simulated, including gray matter (GM), white 

matter (WM), cerebrospinal fluid (CSF), and cerebellum. The simulated kinetic parameters 

were obtained by taking the average kinetic parameters from a dataset consisting of 20 real 

human subjects, as summarized in Table 1. Time-varying Gaussian noise was added to the 

brain TACs following the method described in (Zuo et al., 2018), with the noise standard 

deviation SDm for the mth frame defined as:

SDm = Sc cmexp(λtm) ∕ Δt,

(10)

where λ is the decay constant of 18F-FDG, cm is the noise-free TAC for the mth frame. tm

and Δtm are the middle time and the scan duration of frame m, respectively. Sc is a scaling 

factor to match the simulated noise level to that of the realistic dynamic FDG data (Zuo 

et al., 2018). Sc was chosen as 1.47 in this simulation study of dynamic brain FDG-PET. 

The simulation was repeated for 20 different noise realizations. We compared our proposed 

kernel SIME with the conventional SIME, and the CA-extracted ID-IF. Supplemental Fig. 

3 shows the flowcharts of the three methods to illustrate their relationships and differences. 

For all the methods, the last time point was scaled to the true input function to overcome 

the scaling problem. For quantitative evaluation, bias and standard deviation of kinetic 

parameters were computed as:

Bias = x − xt
xt

× 100 % ,

(10a)

Std = 1
N − 1 ∑

i = 1

N
(xi − x)2

(11)
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where x is the estimated kinetic parameter, xt is the ground truth, x = 1
N ∑i = 1

N xi is the 

mean of x, N is the number of noise realizations. In this work, for both the simulation 

study and human-subject study described in the next section, we used AMIDE software for 

ROI placement, TAC extraction and image display purposes (Loening and Gambhir, 2003). 

Quantitative analysis and display of quantitative results were performed with MATLAB 

(MathWorks).

2.5. Evaluation with total-body dynamic FDG scans

We then evaluated our proposed method on a dataset consisting of 10 healthy subjects 

and 10 cancer patients acquired on the uEXPLORER total-body PET/CT system. The 

demographic characteristics of the 20 subjects are summarized in Table 2. Each subject was 

injected with ~370 MBq (10 mCi) 18F-FDG, followed by a 60-minute total-body dynamic 

PET scan with the same framing as the simulation study. Each frame was reconstructed 

into an image of size 150 × 150 × 486 with 4 × 4 × 4 mm3 voxels using the vendor 

implementation of the time-of-flight ordered-subset expectation maximization algorithm 

with 4 iterations and 20 subsets (Spencer et al., 2020).

Six brain TACs were extracted, including GM, WM, CSF, cerebellum, brain stem and 

thalamus. The averaged TACs for each ROI are shown in supplemental Fig. 4. TACs from 

AA and CA were extracted by placing ROIs using PET images from early frames, as shown 

in supplemental Fig. 5. AA TACs were used as the reference truth of the blood input 

function in this study.

We first compared the proposed kernel SIME with the conventional SIME and the CA ID-IF. 

For this part, 4 brain TACs (GM, WM, CSF, cerebellum) were first used for SIME methods. 

The effect of the number of ROIs on kernel SIME was also studied. For both studies, the 

last time point was scaled to the reference input function for all the methods. The time delay 

effect was also modeled. Given the difference of time delay between different brain regions 

is relatively small, we modeled a global time delay parameter in the blood input function and 

estimated this parameter through a grid search method as described in (Wang et al., 2022). 

To quantitatively evaluate the estimated input functions, the area under curve (AUC) ratio 

(Zanotti-Fregonara et al., 2011) and the mean absolute error (MAE) was computed as:

AUCratio = ∫ Cp, est(t)dt
∫ Cp, ref(t)dt ,

(12)

MAE = ∑m = 1
M ∣ Cp, est(tm) − Cp, ref(tm) ∣

∑m = 1
M Cp, ref(tm)

× 100 % ,

(13)

where Cp, est and Cp, ref are estimated and reference input functions, respectively. M is the total 

number of time frames. We then evaluated the quantitative accuracy of FDG delivery rate 
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K1, fractional blood volume vb, and net influx rate Ki = K1k3 ∕ (k2 + k3) obtained with different 

input functions. Reference kinetic parameters were obtained by using the reference input 

function for kinetic modeling. MAE and the Pearson correlation coefficient were computed 

between an estimated kinetic parameter and its reference value.

To visualize the effect of different input functions on kinetic parameter estimation, we 

generated parametric images for the brain with an isotropic voxel size of 2.3 mm for a better 

image resolution. The parametric images were generated by voxel-wise TAC fitting with 

input functions from different methods.

3. Results

3.1. Simulation study

Fig. 1 shows the results of the estimated input function obtained by different methods. 

Both the kernel SIME and conventional SIME showed improvement for peak estimation 

as compared to the ID-IF. Compared to conventional SIME, kernel SIME showed a better 

match with the true input function. The results of fitted TACs in different brain regions are 

shown in supplemental Fig. 6. Interestingly all the methods were able to fit the tissue TACs 

well.

Fig. 2 further shows the estimated K1, Ki and vb values for different ROIs with different 

methods. Overall, the kernel SIME provided the most accurate estimation results as 

compared to the ID-IF and conventional SIME methods. Among all the three methods, 

the ID-IF led to the highest bias in K1 (83.3 % averaged over all brain ROIs) and vb (average 

bias of 189.5 %). Compared to ID-IF, conventional SIME resulted in a lower bias for K1

(average bias of 40.7 %) and vb (average bias of 125.8 %), but the noise is much higher than 

the other two methods. The kernel SIME had the lowest bias for K1 (average bias of 3.6 %) 

and vb (average bias of 26.9 %) among the three methods. The percent bias in vb was large in 

part due to its small absolute value in the brain regions. All the three methods were able to 

generate relatively accurate estimation for Ki,

3.2. Total-body dynamic FDG data

3.2.1. Comparison between different methods—We first compared the results from 

our proposed kernel SIME with the conventional SIME and CA ID-IF methods. Fig. 3 

shows an example of the estimated input functions with different methods. The results of 

average AUC ratios and MAEs are shown in supplemental Table 1. The kernel SIME led 

to a substantial improvement compared to the other two methods and a better match with 

the reference input function, especially for the early phase. It also had the highest AUC 

ratio (0.935 ± 0.111) and the lowest MAE (16.4 % ± 5.6 %) among all the methods. Higher 

standard deviations are observed for results of the conventional SIME, indicating that it is 

sensitive to the noise in TAC data.

Fig. 4 shows the scatter plots of the estimated kinetic parameters vs. reference kinetic 

parameters for different methods. The quantitative results are summarized in Table 3. For 

all the three kinetic parameters, the results by ID-IF and conventional SIME deviated 
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from the reference values, indicating that biases were induced by these two methods. In 

comparison, the estimated kinetic parameters by the kernel SIME matched the reference 

values well. We observed that the estimated kinetic parameters from kernel SIME had the 

lowest MAEs among the three methods. Compared to the ID-IF method, the conventional 

SIME had lower MAEs for K1 and vb, but also with the lower correlation coefficients for 

all three kinetic parameters. This observation is consistent with its unstable performance in 

estimating the input function. In this human-subject study, we observed the ID-IF method 

and the conventional SIME method generate a larger error for Ki estimation as compared to 

the results from the simulation study. This could be caused by the heterogeneity of human 

subjects, while the simulation study was conducted based on one subject. To illustrate the 

effect of individual subject differences on Ki estimation, supplemental Fig. 7 shows the 

results from a simulation study that used the TAC data extracted from a different subject. 

In this case, ID-IF and the conventional SIME methods have a larger error on Ki estimation 

compared to the results shown in Fig. 2. The proposed method still provided the best 

performance.

Figs. 5, 6 and supplemental Fig. 8 show K1, Ki and vb images obtained with the input 

functions from different methods, respectively. The asymmetric brain structures shown in 

the coronal slices were caused by the head rotation of the subject, as can be seen from 

the transverse slices. The images from kernel SIME were similar to the reference images. 

In comparison, the CA ID-IF resulted in overestimation in all three parametric images. 

Conventional SIME showed overestimation for Ki and vb images and underestimation for K1

images.

3.2.2. Influence of the number of ROIs—We performed kernel SIME with tissue 

TACs from 2 ROIs (GM, WM), 3 ROIs (GM, WM, and CSF), 4 ROIs (GM, WM, CSF, 

and cerebellum), 5 ROIs (GM, WM, CSF, cerebellum, and thalamus), and 6 ROIs (GM, 

WM, CSF, cerebellum, thalamus, and brain stem) that consist of typical brain regions. The 

AUC ratios and MAEs of the input functions estimated with different numbers of ROIs were 

shown in supplemental Table 2. Overall, we observed an increasing trend for AUC ratio 

and a decreasing trend for MAE as more ROIs were applied for the joint estimation. Fig. 7 

shows the effect of more ROIs on the final kinetic parameter quantification according to the 

correlation coefficient and MAE, which were computed by averaging results from GM and 

WM for all the 20 subjects. While two ROIs (GM, WM) were too few, the four-ROI option 

(GM, WM, CSF, and cerebellum) provided good results (about an average MAE of 10 % 

and correlation coefficient of 0.97). Adding extra ROIs from the thalamus and brain stem did 

not improve the results dramatically.

4. Discussion

In this work, we developed a method for optimization-derived blood input function. The 

method can be generally applied when the major blood pools are not covered in dynamic 

PET imaging. The method was evaluated using both simulation data and human-subject 

brain data collected from the uEXPLORER total-body scanner, which provides simultaneous 

coverage of major blood pools to extract a cardiac ID-IF as the reference for validation of 
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our method. The method shows promise to be applied for brain parametric imaging with 

conventional short scanner or dedicated brain scanner (Catana, 2019). While the evaluation 

was focused on brain imaging in this work, we believe the method can also be extended 

to other applications such as head & neck cancer imaging and rectal cancer imaging 

(Thorwarth et al., 2005; Strauss et al., 2007) for which it is usually challenging to extract 

a good ID-IF due to the absence of a major blood pool in the FOV of conventional PET 

scanners.

Our proposed kernel SIME method demonstrates superior performance compared to the 

conventional SIME method and the CA ID-IF. The conventional SIME showed unstable 

performance due to the highly challenging optimization problem (Fig. 2, supplemental 

Table 1). The incorporation of prior information from the ID-IF by the kernel method 

helped stabilize and improve the performance of SIME. Specifically, the proposed method 

substantially improved the estimation of the early time points of the input function (Figs. 1, 

and 3). This in turn helped improve the estimation of K1 and vb as they are more sensitive to 

the shape of the early phase of the input function (Zanotti-Fregonara et al., 2009; Wahl et al., 

1999). This was further validated by the results of estimated kinetic parameters (Figs 4–6).

We further evaluated our proposed method with different number of ROIs. Overall, using 

more ROIs improves both the estimated input function and kinetic parameters (Fig. 7, 

supplemental Table 2). Early work by others shows that at least three ROIs (of distinct 

shapes) are required for a unique solution of SIME problem using two-tissue model 

(Riabkov and Bella, 2004). TACs with similar shapes might contribute less to help the 

estimation, as shown in supplemental Fig. 4, while smaller ROIs may induce higher noise. 

These factors could influence the selection of ROIs for estimation. In this study for brain 

imaging, we observed that using 4 ROIs (GM, WM, CSF, and cerebellum) could provide a 

good performance, offering an appropriate choice in practice.

As an initial demonstration, the proposed method was evaluated for the widely used 

radiotracer FDG. Other tracers such as amyloid tracers and tau tracers have also received 

much interest in brain PET imaging for Alzheimer’s disease (Landau et al., 2014; Kolanko 

et al., 2020; Saint-Aubert et al., 2017; Okamura et al., 2018). While an ID-IF generally 

requires an additional metabolite correction step for these tracers, an advantage for 

the proposed SIME method for OD-IF is that it theoretically allows the estimation of 

metabolite-corrected input function (Gallezot et al., 2020). On the other hand, these tracers 

may have different kinetic properties compared to FDG, resulting in very different shape 

of tissue TACs. In general, the proposed method could work so long as the CA ID-IF 

contains the shape information of the plasma input function. In practice, the detailed effects 

of different shapes of tissue TACs and CA ID-IF may be different and need to be further 

studied for individual radiotracers. We will explore the performance of the proposed method 

with these tracers in future work.

Some limitations exist in this work. All the SIME methods, including the proposed method, 

require scaling of the estimated input function using a known blood activity, e.g., from a 

late time point. Conventionally this would require one invasive blood sample in practice 

(Ogden et al., 2010). However, this still reduces the effort compared to the case that 
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requires multiple arterial blood samples to be obtained and analyzed. This might bring 

potential application for applying this method on the new generation brain PET scanner 

for parametric imaging. Furthermore, such a measurement of blood input at a late time 

point can be directly extracted from a separate scan of the heart, which may be acquired 

when performing whole-body static imaging for oncological applications. Such a scan 

protocol where a dynamic brain scan is followed by a whole-body static scan may have 

potential to enable brain parametric imaging in cancer patients, which may have various 

clinical applications such as for quantitative study of chemo brain. Another limitation of 

this work is that instead of using arterial blood samples as reference standard, which is 

common in many other works, we used the AA ID-IF obtained with total-body PET as the 

reference. We consider this as a reasonable alternative as the AA ID-IF has been shown 

to provide a good approximation to the arterial input function (der et al., 2001), though 

some differences could exist between the two functions. On the other hand, arterial blood 

sampling is not without problems, for example, external delay and dispersion effects need to 

be considered due to sampling from peripheral arteries and inhomogeneous velocity in the 

vessels and the catheter (Dimitrakopoulou-Strauss et al., 2021). Lastly, the CA ID-IF was 

used in the comparison study without partial volume correction, which might only represent 

a sub-optimal performance for CA ID-IF. Even with partial volume correction, the corrected 

CA ID-IF may still lead to inaccurate quantification for microkinetic parameters, such as K1

(Providência et al., 2024). While partial volume correction is not a trivial task (Mourik et al., 

2008; Croteau et al., 2010), an advantage of the proposed method is that it can be applied to 

the uncorrected CA ID-IF directly as the estimation may correct for partial volume effect at 

least in part.

5. Conclusion

We developed a kernel SIME method that exploits ID-IF as a priori information to estimate 

the blood input function from imaging data. Results from simulation study and human-

subject dataset indicate that compared with the CA ID-IF and conventional SIME methods, 

our proposed method substantially improves the estimates of the input function, especially 

for the early time points, and the accuracy of the estimated kinetic parameters. Overall, 

our method shows promise when an accurate ID-IF cannot be obtained from major blood 

pools. This method may have a number of potential applications, including brain parametric 

imaging with dedicated brain scanner or non-invasive studies of chemo brain in cancer 

patients in combination with whole-body imaging.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimated input functions by different methods used in the simulation study. (a) 0–60 min. 

(b) zoomed-in plots for 0–100 s.
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Fig. 2. 
Estimated kinetic parameters of brain regions using the input function derived from different 

methods in the simulation study in (a) GM, (b) WM, (c) CSF, and (d) cerebellum. The error 

bars indicate the standard deviations of the estimated parameters. .
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Fig. 3. 
Estimated input functions by different methods in the human-subject study. (a) 0–60 min. 

(b) zoomed-in plots for 0–100 s. The error bars on the reference IF indicate the standard 

deviation of blood SUV within the ascending aorta region.
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Fig. 4. 
Scatter plot of the estimated kinetic parameters vs. reference kinetic parameters. The black 

dashed line indicates the case that the estimated parameter is equal to the reference value. 

Each dot represents an estimated kinetic parameter from one brain region (GM, WM, CSF, 

cerebellum) of one human subject.
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Fig. 5. 
Transverse (top row), coronal (middle row) and sagittal (bottom row) views of K1 images of 

brain generated with the input functions by different methods.
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Fig. 6. 
Transverse (top row), coronal (middle row) and sagittal (bottom row) views of Ki images of 

brain generated with the input functions by different methods.
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Fig. 7. 
Effect of the number of used ROIs in the kernel SIME on the performance of kinetic 

parameter quantification. Left: MAEs and right: Pearson correlation coefficients.
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Table 1

Kinetic parameters set in the simulation study.

vb K1 (mL/min/cm3) k2(min−1) k3(min−1) k4(min−1)

GM 0.045 0.110 0.191 0.102 0.009

WM 0.027 0.062 0.125 0.070 0.010

CSF 0.019 0.048 0.215 0.174 0.019

Cerebellum 0.032 0.146 0.231 0.089 0.007
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Table 2

Demographic characteristics of healthy subjects and cancer patients.

Healthy subjects Cancer patients

Number of Subjects 10 10

Age (years) [mean ± SD] 50 ± 15 69 ± 8

Sex (male/female) 8/2 4/6

Body mass index (kg/m2) [mean ± SD] 29.1 ± 5.9 25.4 ± 5.2
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Table 3

MAE and correlation coefficient R of the estimated kinetic parameters for human-subject dataset.

ID-IF Conventional SIME Kernel SIME

MAE R MAE R MAE R

K1 101.2 % 0.86 65.8 % 0.61 6.8 % 0.99

Ki 37.1 % 0.87 77.6 % 0.65 16.3 % 0.98

vb 186.2 % 0.85 92.7 % 0.46 8.3 % 0.94
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