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Abstract 

Occupants are active participants in their built environment, affecting its performance while simultaneously 

being affected by its design and indoor environmental conditions. With recent advances in computer 

modeling, simulation tools, and analysis techniques, topics such as human-building interactions and 

occupant behavior have gained significant interest in the literature given their premise of improving 

building design processes and operating strategies. In practice, the focus of occupant-centric literature has 

been mostly geared towards the latter (i.e., operation), leaving the implications on building design practices 

underexplored. This paper fills the gap by providing a critical review of existing studies applying computer-

based modeling and simulation to guide occupant-centric building design. The reviewed papers are 

organized along four main themes, namely occupant-centric: (i) metrics of building performance, (ii) 

modeling and simulation approaches, (iii) design methods and applications, and (iv) supporting practices 

and mechanisms. Important barriers are identified for a more effective application of occupant-centric 

building design practices including the limited consideration of metrics beyond energy efficiency (e.g., 

occupant well-being and space planning), the limited implementation and validation of the proposed 

methods, and the lack of integration of occupant behavior modeling in existing building performance 

simulation tools. Future research directions include the need for large-scale international data collection 

efforts to move from generic assumptions about occupant behavior to specific/localized knowledge, the 

need for improved metrics of measuring building performance, as well as the need for industry practices, 

such as building codes, to promote an occupant-in-the-loop approach to the building design process. 

 

 

Keywords: building design; occupant-centric; building performance simulation; occupant behavior; 

human-building interaction; performance metrics. 
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1. Introduction 

1.1. Background 

Beyond their energy, economic, and environmental footprints, buildings also have a significant impact on 

their occupants, as people are estimated to spend 87% of their time in enclosed buildings [1]. Numerous 

research efforts confirm the significant impact of indoor environmental conditions on the comfort, well-

being, health, and productivity of occupants. Commonly-studied indoor environmental metrics include 

temperature, humidity, lighting, noise, and air quality levels [2–6].  

In parallel to the effects of building conditions on occupants, occupants, in turn, exhibit a significant 

influence on building performance. As highlighted by de Dear and Brager [7], occupants are active – rather 

than passive – recipients of the indoor environments assigned to them. Through their presence and control 

of various building systems such as lighting, plug-loads, and space heating, ventilation, and air conditioning 

(HVAC) systems, occupants can significantly affect the thermal/energy performance of a building [8]. The 

stated impact is even applicable to buildings equipped with automated systems as occupants can look for 

adaptive actions to mitigate any thermal discomfort they experience (e.g., operating windows and shades), 

in addition to maintaining control over end-uses such as office equipment [9,10]. 

Acknowledging the two-way interaction between occupants and their built environment, 

researchers have turned to research methods and approaches that help evaluate building performance while 

accounting for its human dimensions [11]. A notable recent effort to advance the state-of-of-the-art in 

occupant behavior (OB) research is the Annex 66 project of the International Energy Agency Energy in 

Buildings and Communities Programme (IEA EBC): Definition and simulation of OB in buildings [12]. 

The project successfully advanced important aspects of OB research, such as data collection, behavior 

model representation, and evaluation approaches. However, it typically fell short of effectively integrating 

most developed tools and methods in the design process of actual occupant-centric buildings. 

In this paper, the term occupant-centric refers to the notion of placing occupants and their well-

being as a top priority throughout the building life-cycle. Rather than providing comfortable conditions in 

buildings, occupant-centrism means to provide comfort and well-being to occupants. Rather than the 

highly-implicit schedules as a basis to characterize occupants, occupant-centric approaches use an explicit 

presentation of occupants that recognizes the two-way interaction between occupants and building design. 

More broadly, occupant-centric design, in this paper, also refers to space utilization by occupants and the 

impact of a building’s physical layout on its occupants. 

In general, occupant-centric building research encompasses various disciplines covering both the 

design and operation phases of buildings. The former investigates design features and strategies that 

maximize one of more occupant-centric metrics (e.g., visual comfort, space utilization), while the latter 

focuses on operation strategies (i.e., post-construction) to achieve similar or other occupant-centric goals 

[13]. Such occupant-centric approaches to building research are in line with global efforts to develop and 

promote green or sustainable buildings that minimize resource consumption while ensuring high levels of 

occupants’ comfort, well-being, health, and productivity [14].  

Computer-based modeling/simulation is a promising tool that can be used to support occupant-

centric decision-making during design and operation. It allows designers, engineers, and researchers to 

experiment with various design and/or operation-focused strategies and predict their impact on building 

performance. As detailed later in this paper, building performance simulation (BPS) models are commonly 

used to predict the performance of buildings in terms of energy consumption, carbon emissions, or occupant 

comfort-related metrics [15–17]. However, such tools tend to treat occupants in simplistic ways that fail to 
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recognize their stochastic, diverse, and reactive nature, affecting the quality of their estimates [18]. For 

example, the Advanced Energy Design Guide of ASHRAE [19] summarizes the complex energy 

interactions between building systems but shows occupants as merely an internal heat gain rather than an 

agent that can affect the energy use of virtually every system. In contrast, the relationship between 

occupants, indoor environmental quality (IEQ), and energy is far more complex. For instance, building 

design and operations affect IEQ, which can result in adaptive behaviors that in turn affect IEQ (refer to 

Figure 1). 

 
Figure 1: A conceptual figure showing the IEQ- and energy-related role of occupants in buildings. 

 

The recognition of the above shortcomings to modeling approaches has contributed to the 

emergence of OB modeling tools and approaches that aim to overcome some of the gaps of BPS [11,20]. 

Integration efforts can also be found where BPS and OB capabilities are combined in holistic modeling 

frameworks [20,21]. In parallel, analytical methods are developed to leverage the power of the modeling 

tools and extract efficient design and operation strategies. These include – but are not limited to – parametric 

variations, uncertainty analyses, optimization algorithms, and robust/resilient design practices [22–24]. 

Finally, research efforts can also be found on mechanisms and practices that support the development and 

adoption of occupant-centric design approaches such as building codes, green building rating systems, and 

integrated project delivery methods that promote stakeholder communications from the early stages of 

building design [20,25]. 

1.2. Previous reviews and gaps in the literature 

The literature lacks a comprehensive assessment of occupant-centric building design covering its 

multifaceted aspects, including occupant-centric metrics, simulation tools, analytical methods, and external 

mechanisms to apply research findings in actual buildings. Nonetheless, previous review articles covered 

topics related to occupant-centric buildings. The studies are summarized in Table 1 and discussed in the 

following paragraphs. 
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Table 1: Summary of previous review articles and their limitations pertaining to the current review. 

Source Year Scope Main gaps 

   Limited 

focus on 

the design 

phase 

Limited 

coverage of 

multivariable 

metrics 

Limited 

emphasis on 

simulation 

tools 

D’Oca et 

al. [26]  

2018 Review of energy-related behaviors of key 

stakeholders that affect energy use over the 

building life cycle 

X  X 

Zhang et 

al. [27] 

2018 Review of the role of OB in building energy 

performance 

X X  

D’Oca et 

al. [28] 

2019 Review and illustrative examples of office 

occupant modeling formalisms 

X X  

Gaetani et 

al. [11] 

2016 Proposing a fit-for-purpose modeling approach 

for occupant behavior models  

X   

Hong et al. 

[29] 

2015 Proposing the DNAs ‘Drivers-Needs-Actions-

Systems’ framework providing an ontology to 

represent energy-related OB in buildings 

X X X 

Hong et al. 

[30] 

2015 Implementation of the DNAS framework 

proposed in [X] using an XML schema 

X X  

Østergård 

et al. [32] 

2016 Review of building simulations supporting 

decision making in the early design stage 

 X  

Ouf et al. 

[31] 

2018 Review and comparison of occupant-related 

features between common BPS tools 

X   

Hong et al. 

[17] 

2018 Review of implementation and representation 

approaches of OB models in BPS programs 

X   

Lindner et 

al. [33] 

2017 Determination of requirements on occupant 

behavior models for the use in building 

performance simulations 

X X  

Gunay et 

al. [40] 

2016 Implementation and comparison of existing 

OB models in EnergyPlus 

X X  

O’Brien et 

al. [35] 

2017 Review, discussion, and guidance for 

developing and applying of occupant-centric 

building performance metrics 

X  X 

Ouf et al. 

[38] 

2019 Proposing an approach and metrics to quantify 

building performance adaptability to variable 

occupancy 

X X X 

Machairas 

et al. [22] 

2014 Review of algorithms for optimization of 

building design 

X X  

Tian et al. 

[15] 

2018 Review and survey of building energy 

simulation and optimization applications to 

sustainable building design 

X X  

Kheiri et 

al. [39] 

2018 Review on optimization methods applied in 

energy-efficient building geometry and 

envelope design 

X X  

Shi et al. 

[13] 

2016 Review on building energy-efficient design 

optimization from the perspective of architects 

 X  

Dong et al. 

[11] 

2018 Review on modeling occupancy and behavior 

for better building design and operation 

 X  

 

D’Oca et al. [26] and Zhang et al. [27] reviewed and categorized the “human dimensions” of 

building performance and the need to integrate them into the operation and design processes. More specific 

reviews on various OB modeling approaches classified them into distinct formalisms [28], proposed a “fit-

for-purpose” modeling strategy [11], or introduced an ontology to represent energy-related behaviors of 
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building occupants [29,30]. Other papers focused on performing comparative reviews of occupant-related 

features and inputs in common BPS tools [31,32], or presented different approaches to implement OB 

models in BPS tools (e.g., [17,33,34]). On the other hand, O’Brien et al. [35] assessed occupant-centric 

building performance metrics and proposed new ones to quantify the impact of occupants on building 

performance, while Ouf et al. [36] introduced metrics to quantify building adaptability to variable 

occupancy. Other researchers have focused on applying a specific analytical technique to guide design 

choices such as optimization, which is used in various contexts such as overall building design [22], passive 

designs [37], building geometry and envelope design [38], and efficient designs from the perspective of 

architects [39]. Finally, Dong et al. [13] reviewed modeling efforts of OB with applications covering 

operation patterns and specific design features. However, the scope of that study was limited to two specific 

design areas: crowd circulation and HVAC sizing. Additional occupant-centric performance metrics such 

as thermal comfort, well-being, productivity, or space planning are not covered in that review. 

In summary, the review articles described in the previous paragraph present three main gaps that 

motivated the need for the current work. The first and most important gap is that the vast majority of studies 

evaluating OB in buildings focus on its implications on building operation – rather than design – strategies. 

Limited insights are presented on how OB modeling can be leveraged to improve or guide the design stages 

of buildings. The second gap in existing reviews of occupant-centric simulation studies is the dominant 

focus on energy efficiency/conservation as the primary target or objective of the modeling process. 

Additional occupant-centric performance considerations such as occupant thermal comfort, well-being, 

productivity, or space planning are not thoroughly and systematically covered in review studies. Finally, 

existing reviews on occupant-centric performance metrics often fail to connect their results to state-of-the-

art simulation tools and methods that can be used to guide design decisions.  

1.3. Current review objectives and methodology 

The aim of this paper is to provide a comprehensive and critical review of existing studies that apply 

computer-based modeling/simulation to guide occupant-centric building design. The review is inclusive in 

its coverage of metrics, tools, methods, and supporting mechanisms to guide the design of occupant-centric 

buildings. It provides readers with a holistic understanding of the field’s state-of-the-art, its gaps, and future 

perspectives. 

While the main scope of study is on occupant-centric design applications, it is essential to first 

review how studies in the literature define occupant-centric designs and the computer-based tools they use 

to experiment with and guide such designs. Therefore, Section 2 starts by covering the main occupant-

centric metrics that can be used to guide the design of buildings (e.g., thermal and visual comfort, well-

being, productivity, energy, and space planning). Section 3 then summarizes the main modeling/simulation 

tools and approaches currently used in the literature, including BPS, OB models, and efforts to integrate 

the two in comprehensive modeling schemes. Sections 2 and 3 serve as a foundation for Section 4, which 

reviews key research on simulation-aided occupant-centric design methods and applications such as 

parametric analysis, optimization, and robust/resilient design practices. In Section 5, practices that are 

currently supporting, or can be used to support, occupant-centric design applications are discussed, such as 

building codes and standards, as well as mechanisms to involve stakeholders (e.g., occupants) in integrated 

design processes. A synthesis of the results is then presented in Section 6, followed by concluding remarks 

and future perspectives in Section 7. 

As for the data collection process, it consisted of the following steps: (i) collection of articles known 

to authors; (ii) collection of articles citing or being cited by the articles; (iii) initial screening and elimination 
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of irrelevant articles (e.g., out of scope, content duplicated in multiple documents, non-English documents); 

(iv) final screening for inclusion and assignment to a specific section; (v) inclusion in the article. It is 

important to note that the above process provided the needed flexibility to cover the diverse topics reviewed, 

particularly in Sections 2 to 5, without limiting the search space to a predefined set of keywords. A total of 

253 articles passed the initial screening stage, out of which 213 passed the final screening stage and were 

included in the paper. 

2. Occupant-centric metrics of building performance 

Building performance is a complex and evolving concept that allows stakeholders to quantify how well a 

building fulfills its functions [41]. For benchmarking purposes, building performance is commonly 

normalized using building-centric quantities such as the building’s gross volume, the net, gross or treated 

floor areas, or the façade surface. Building users – who are the final recipients of the services offered by a 

building – are often not directly accounted for the performance evaluation [42]. The purpose of this section 

is to synopsize the main aspects and features of occupant-related building performance metrics that are 

commonly used in building performance estimation. Examples of such metrics covered in the next sections 

include occupant comfort (thermal, visual, and acoustic), indoor air quality (IAQ), well-being and 

productivity, space planning, and energy. These metrics are useful tools for the operational assessment of 

the performance of an existing building or for guiding the optimization of the design of the building 

envelope and systems, and related control strategies. 

2.1.  Thermal comfort 

Thermal comfort is the “condition of mind that expresses satisfaction with the thermal environment” [43]; 

as such, it is a highly subjective phenomenon influenced by a range of factors. Quantifying thermal comfort 

has been the subject of studies for many decades due to its role in determining acceptable indoor design 

conditions and HVAC system requirements in buildings. While thermal comfort is primarily assessed by 

subjective evaluation (e.g., occupant surveys), in practice, empirical models are typically used, in lieu of 

subjective evaluation, to predict the human perception of thermal comfort based on physically observable 

qualities. The most widely accepted model is the Fanger’s model of thermal comfort that expresses human 

thermal sensation in terms of environmental (air temperature, radiant temperature, airspeed, humidity) and 

personal (metabolic rate, clothing insulation) factors based on the steady-state heat balance principle [44]. 

It is expressed through two indexes: the Predicted Mean Vote (PMV) and the Predicted Percentage of 

Dissatisfied (PPD). The PMV/PPD model provides a global estimation of thermal sensation and 

acceptability of indoor environmental conditions by a large group of people, and typically has to be 

accompanied by the verification of possible local discomfort conditions that can affect individual 

occupants. It associates comfort with neutral sensation, which can lead to narrow temperature prescriptions 

that are energy-intensive to maintain [45]. 

Adaptive comfort models present an alternative approach that expresses acceptable indoor 

temperatures in terms of prevailing outdoor temperatures [46,47]. Such an approach accounts for the 

human’s ability to adapt to variable environmental conditions in naturally-conditioned buildings. Hence, it 

is often used to support passive design strategies or mixed-mode operation that allow a wider range of 

temperatures than can be explained by the PMV/PPD model. The adaptive comfort models assume that 

occupants have direct control on buildings devices to restore thermal comfort (often called adaptive 

opportunities), hence there exists the complex challenge of modeling the actual occupants’ behavior in 
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building simulation tasks. In an effort to overcome trivial and simplistic rule-based control strategies, 

research efforts in the last decades aimed to describe occupants’ presence and their interaction with building 

devices using stochastic models and data-driven methods. 

Another issue is that both the PMV/PPD model and the adaptive comfort models are often 

accompanied with right-here and right-now metrics (e.g., PPD, Nicol et al.’s overheating risk) [48], which 

result in time series that are difficult to be processed in automated design procedures. In this regard, several 

long-term thermal discomfort indices have been proposed to estimate the thermal stimuli accumulated by 

people into a building over a period. Such long-term thermal discomfort metrics differ by the type of thermal 

comfort model adopted for the right-here and right-now assessment of the thermal environment, the use of 

comfort categories or classes for weighting the estimation of thermal stress, whether considering 

symmetrical overshoots of acceptable conditions, and whether considering the non-linear relationship 

between the comfort temperature and acceptability of the indoor environmental conditions [49,50]. Despite 

their successful adoption into international standards (e.g., [43,51,52]), both types of models (PMV/PPD 

and adaptive) have displayed challenges in describing the thermal comfort of individuals in a particular 

field setting due to their one-size-fits-all approach [53]. To address this issue, a more recent approach called 

personal comfort models focuses on learning individuals’ thermal comfort based on relevant data (e.g., 

behavior, biomarkers) collected via various sensors and devices in their everyday environment [54–56]. 

This new approach is gaining attention among researchers and practitioners whose goal is to create a 

personalized comfort experience in occupant-centric buildings. 

2.2.  Visual comfort 

The European standard EN 12665 defines visual comfort as “a subjective condition of visual well-being 

induced by the visual environment” [52]. It is a complex state that depends on several intertwined aspects 

like the physiology of the human eye, the physical quantities describing the amount of light and its 

distribution in space, and the spectral emission of artificial light sources. Visual comfort has been 

commonly studied through the assessment of some coexisting factors characterizing the relationship 

between the human needs and the light environment, such as (i) the amount of light, (ii) the uniformity of 

light, (iii) the prediction of the risk of glare for occupants, and (iv) the quality of light in rendering colors. 

Numerous metrics have been proposed to assess such factors and used to inform the simulation process of 

buildings, for example [57]. However, although these factors are possibly correlated with each other, 

indexes usually only focus on one of them and fail to represent the full complexity of a luminous 

environment in particular from a human-centric perspective. 

Furthermore, light, by stimulating the intrinsically-photosensitive retinal ganglion cells (ipRGCs), 

produces non-visual responses in humans. These responses have direct effects on human physiology (e.g., 

sleep-wake cycles, secretion of hormones like melatonin, core body temperature, and heart rate) [58] and 

psychology, for instance altering mood [59]. To this regard, the International Commission on Illumination 

(CIE) developed the International Standard CIE S 026/E:2018 [60] that addresses non-visual effects of light 

in humans. The standard defines spectral sensitivity functions, quantities, and metrics related to quantifying 

retinal photoreceptor stimulation of the five types of photoreceptors while also considering the effects of 

age and field of view. Nevertheless, it does not provide any indications of lighting applications or 

quantitative prediction of non-visual light responses or ipRGC-influenced light (ILL) responses [60]. 

Further details on non-visual effects of light are available in dedicated reviews (e.g., [61,62]). 

 For simulation, the amount and uniformity of light can be estimated in a reasonably good manner, 

at the room level, with illuminance-based metrics such as the Unified Glare Rating (UGR) [63] or the 
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Illuminance Uniformity (U0) [64] even if no harmonized threshold levels are common among such types of 

metrics. These metrics are built upon the assessment/estimation of the illuminance at a point on a surface 

(the work plane or floor), but they do not explicitly take into account occupants’ presence, activity, location, 

or orientation into the space. Glare depends on the location of an observer into space and on his/her relative 

position with respect to both natural (e.g., windows) and artificial (luminaires) light sources. This 

geometrical complexity makes it very impractical to estimate the glare risk for an individual person located 

in a built environment and requests a number of assumptions on use scenarios for testing the visual 

performance of space during the design phase. One of the most commonly used glare metrics is the 

Discomfort Glare Probability (DGP) [65]. However, it requires the knowledge of the exact location and 

orientation of the occupant into a space; but if the ambition of the glare risk assessment at each occupant in 

a built space is reduced, simplified metrics such as the Wienold’s Simplified Discomfort Glare Probability 

[66], which are based on the vertical illuminance measured at the observer’s eye, provide a good correlation 

with DGP. Regarding the quality of light in rendering colors, it has shown to affect the psychological 

reaction of occupants to a luminous environment but has not been linked to any energy-related performance 

of a building so far. Consequently, it has not been used in the whole building simulation, and its application 

remains mostly limited to the optimization of artificial light sources, such as light-emitting diodes (LEDs). 

 In general, the vast majority of light and daylight metrics do not account for the actual artificial 

lighting use and do not reflect the energy use for lighting. To overcome this limitation, O’Brien et al [35]. 

proposed the light utilization ratio (LUR) that simultaneously considers daylight availability, the lighting 

control scheme, and OB. This is an attempt to explicitly account for occupant impact on a building energy 

performance and link together more than one of the aforementioned aspects. Finally, lighting practices and 

regulations address visual and energy efficiency aspects of light while little interest is dedicated yet to non-

visual light responses [60]. 

2.3.  Acoustic comfort 

Acoustic comfort is the perceived state of well-being and satisfaction with the acoustical conditions in an 

environment [67,68]. It can be affected by two main types of noise in buildings: (i) structure-borne (impact) 

noise that is created by physical impact or vibration against a building element, and (ii) airborne noise that 

is transmitted through the air [69]. The sound pressure level is one of the main acoustical factors that affect 

comfort. Maximum sound pressure level (Lmax) is typically used when predicting comfort with impact noise, 

whereas equivalent sound pressure level over a given period of time (Leq) is used for airborne noise [70,71]. 

Other acoustical factors that impact acoustic comfort are: (i) frequency of the noise, (ii) noise source, (iii) 

duration of noise, and (iv) its variation with time [72,73]. Acoustic comfort is, however, highly subjective, 

and noise sources with the same physical characteristics can be perceived differently by different people. 

Personal and societal characteristics, such as sensitivity to noise and attitude towards a noise source, are 

thus essential when quantifying acoustic comfort [71,72]  

 Due to the physical and psychological effects associated with acoustic discomfort, some regional 

and international standards provide guidelines on noise level limits and other acoustic performance 

evaluation metrics. These metrics vary based on the purpose of the space and the type of effect noise will 

have on occupants. For instance, in residences, the main effects of noise exposure are annoyance, activity 

interference, and sleep disturbance, while in offices, effects on communication, work performance, and 

speech privacy are more important [74]. Standards and guidelines thus provide different background noise 

level limits for different spaces to ensure minimum interference with the activities performed in the spaces. 

The World Health Organization (WHO) [74], for instance, identifies different noise level limits for several 
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indoor spaces including residences, hospitals and schools. In open-plan offices, additional metrics, such as 

speech transmission index, distraction distance, and privacy distance are typically used to quantify the 

performance of an office with respect to speech privacy as well as effects of speech on occupants’ work 

performance [75]. 

Despite the available standards and guidelines, acoustic discomfort remains one of the most 

important comfort issues even in spaces that meet requirements set by standards. One reason for this is the 

lack of consideration of individual differences, such as noise sensitivity. In addition, many guidelines fail 

to consider the effects of variable noise levels over time as well as variable noise sources [76]. For example, 

the focus of most guidelines for residential spaces is outdoor noise sources such as traffic noise, and outdoor 

community noise, and do not include indoor sources. In addition, some guidelines group all noise sources 

together. The U.S. Environmental Protection Agency (US EPA), for instance, provides one Leq limit for all 

environmental noise sources to prevent annoyance and interference with activities disregarding the effects 

of specific noise sources and frequency on acoustic comfort [77]. Other guidelines, for instance, the WHO 

[74] and the Ontario Ministry of the Environment and Climate Change (MOECC) Noise Guideline [78], 

try to overcome this issue by providing different limits for different noise sources such as road traffic, rail 

traffic, and aircraft noise.  

2.4.  Indoor air quality 

The term Indoor Air Quality (IAQ) includes all physical, chemical, and biological pollutants to which we 

are exposed via indoor air [79]. IAQ is an important determinant of two high-performance goals that are 

closely related to building occupants: (i) population health and well-being, and (ii) energy-efficient 

ventilation for indoor hygiene and comfort [80]. The time-weighted concentration thresholds of air 

contaminants are the key information to convert IAQ design to an engineering problem of achieving the 

two aforementioned goals. Among the different indoor air pollutants, eight groups of substances including 

carbon dioxide (CO2), nitrogen dioxide (NO2), formaldehyde (HCHO), carbon monoxide (CO), sulfur 

dioxide (SO2), particulate matter in sizes up to 2.5 and 10 μm (PM2.5 and PM10, respectively), total volatile 

organic compounds (TVOCs), and Ozone (O3), are the most frequently addressed contaminants. Abdul-

Wahab et al. [81] and NRC [82] summarized the concentration limits published by a broad range of regional 

and international guidelines. It is worth noting that the acceptable values for the same substance could vary 

between guidelines because of the differences in the derivation approach and base data [83]. Some 

organizations, for instance, the WHO [84] and the German Federal Environment Agency [85], identified 

the requirements of certain VOC species that can be commonly found in building material emissions and 

synthetic products for household use. Some examples of those VOC agents are benzene, naphthalene, 

benzopyrene, trichloroethylene, and tetrachloroethylene. A few non-mandatory standards extended the IAQ 

metrics to include indoor bioaerosol contaminants. Singapore’s SPRING [86] specified the recommended 

limit of microbial pollutants in indoor air, but its application in modeling and design could be a challenge 

due to limited knowledge on the emission-to-response model of bioaerosols. More guidelines (e.g., WHO 

[87]) address this issue from the source control perspective, through managing the indoor dampness and 

removing the microbial-contaminated material. 

In response to the time-weighted concentration thresholds specified by legislations, numerical 

models have been developed to predict the indoor concentrations of various air contaminants as functions 

of outdoor air pollutant concentrations, indoor-outdoor air exchange rates, and indoor sources and sinks. 

The mechanistic nature of those indoor air pollution models ranges from single- to multi-compartment 

representations, from steady- to transient-state approaches. For example, the first-order differential 
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approach representing mass balance in one compartment model consolidated by Batterman [88] can be 

applied to calculate CO2 concentrations in both stable and unstable conditions. Earnest and Corsi [89] used 

a two-compartment model to predict concentration variations of two VOC agents owing to the use of 

cleaning products. The EnergyPlus generic contaminant model and CONTAM was employed to estimate 

indoor concentrations of NO2, PM2.5, and CO for the dwelling [90] and school spaces [91]. The indoor air 

simulation is based on many input parameters, and three of them are closely related to OB. The three 

parameters are (i) ventilation rate, which obviously depends on the operation of windows and doors, (ii) 

indoor source strength, which is under the influence of daily activities, such as cooking, the use of synthetic 

chemical products for cleaning, the burning of fossil fuels for heating, among others, and (iii) transient 

modifier, which relates to the location and duration of occupant activity.   

The health impact of indoor air quality ushered in the paradigm transformation towards preserving 

occupants' health beyond the traditional performance goal on energy and resource reduction. To that point, 

the WHO issued a report in 2000, declaring the human right to healthy indoor air [92]. As summarized in 

a recent review work [93], the associations between adverse health outcomes and exposure to air 

contaminants commonly present in indoor spaces have been evidenced by toxicological testing, 

epidemiology association, and self-rated health assessment. In general, there is a clear link to the increased 

risk of developing lung cancer, respiratory infections, immune system diseases, skin and mucous membrane 

irritations, and other building-related illnesses. However, having a consensus on their quantitative 

relationships with indoor air exposure would be a great challenge because site-specific and contextual 

factors differ between studies.  

Acknowledging the importance of indoor air to public health, many human health risk assessment 

models have extended their inhalation pathway developed for urban air quality research to include indoor 

media. Some examples are the indoor microenvironmental scenes incorporated in the APEX [94], USEtox 

[95], and SHAPE [96] models. The health risk assessment integrates three parameters in indoor air setting: 

(i) the time spent in the interior spaces (exposure time), (ii) the pollutant concentrations that the occupant 

is exposed to (exposure concentration), and (iii) the risk factors of different air pollutants. Occupants 

behavior greatly affects the first two parameters: the relationship between exposure time and occupant 

presence is obvious; the exposure concentration is built upon the indoor concentration, which is in turn 

affected by the location and behavior of occupants in the space. 

2.5. Well-being and productivity 

The built environment has a direct impact on how occupants sense and perceive a given space, and it has 

significant consequences on their well-being and productivity. Research shows ample evidence about the 

impact of office design on workers’ health, well-being, and productivity. Despite that, occupant well-being 

and productivity have not been a priority in traditional building design and construction. This is changing 

in recent years as more companies recognize the business case for healthy and productive offices and third-

party building rating systems begin to incorporate wellness and productivity into their requirements. 

Well-being is a broad term that encompasses the physical, mental, emotional, and social health of 

a person, and is generally measured based on the level of happiness, satisfaction with life, and fulfillment 

[97]. Productivity is an economic term that measures the efficiency of production, expressed in terms of a 

ratio of outputs (e.g., goods and services) to inputs (e.g., labors and materials) [98]. Since both well-being 

and productivity are not architectural terms, a key role of research communities has been to establish the 

criteria and metrics that can describe the impact of the built environment on occupant well-being and 

productivity. Studies have identified the following criteria for the assessment of well-being and productivity 
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in office environments: indoor environmental quality, office layout, biophilia, look and feel, and location 

and amenities [99,100]. The evaluation metrics are largely categorized into three groups: (i) financial 

metrics such as absenteeism, staff turnover, revenue breakdown (by department or per building), medical 

costs and complaints; (ii) perceptual metrics based on self-reported attitudes about health, well-being and 

productivity in the workplace; and (iii) physical metrics that are direct measures of IEQ (e.g., temperature, 

illuminance, pollutants) or an evaluation of design features (e.g., views outside, quality of amenities) [101]. 

Finding optimal ambient temperatures for office productivity is one of the most frequently studied 

topics. Amongst the best-known studies were the ones carried out by Seppanen and Fisk [102], showing an 

optimal temperature point for cognitive performance in an inverted-U relationship, which was later adopted 

by ASHRAE’s Handbook of Fundamentals [103] and REHVA Guidebook No. 6 [104]. However, this 

approach has been criticized for oversimplifying human response to environmental stimuli, justifying tight 

and energy-intensive indoor temperature control practices worldwide [105]. Recognizing this, studies (e.g., 

[106,107]) have looked into the interactions between the environment, occupant comfort (thermal, visual), 

and behavior through building simulations to optimize energy consumption and office productivity. 

Other research efforts (e.g., [105,108,109]) have adopted multidisciplinary approaches to provide 

a more holistic understanding of the relationship between physical environments and human well-being and 

productivity. For instance, Nayak et al. [109] study and predict work performance due to changes in indoor 

room temperatures using human brain signals recorded using electroencephalography (EEG). The proposed 

method achieved a performance prediction accuracy 17 times higher than that of traditional models using 

skin temperature, heat-rate, and thermal survey votes.  

In parallel to the mentioned research efforts, studies have also investigated the positive link between 

passive/low-energy design strategies and occupant satisfaction, health, and performance, including natural 

lighting [110], occupant controls [111], and view of nature and plants [112]. Green building rating systems 

such as Leadership in Energy and Environmental Design (LEED), the WELL Building Standard, and Fitwel 

have adopted many of these design strategies to promote more natural and energy-conscious design 

solutions that can improve the indoor environment quality and the overall well-being of the occupants. 

2.6. Space planning and organizational metrics 

Beyond the individual aspects of occupant-centric metrics (e.g., comfort, IAQ), interactions among 

occupants can also be used to measure the success of a building from the perspective of the occupant and 

organization. This focus on group-level metrics can be particularly important in commercial buildings, 

where enabling the success and productivity of the occupants and organization in a building is a 

fundamental design goal of any commercial facility. Based on a review of the literature, we define two key 

categories for these kinds of organizational metrics: efficiency of space utilization and organizational 

performance. 

 Analysis of the utilization of spaces enables metrics that describe how appropriately spaces are 

serving their intended function; in other words, the ability of a building to enable occupants to carry out 

their intended activities. Spaces can be defined as under-utilized (which is both cost and energy-inefficient), 

properly utilized, or over-utilized (in which case occupants are inhibited from performing their activities) 

[113]. Metrics such as the percentage of desks occupied in a workspace can be used to determine the overall 

spatial efficiency [114]. With new methods enabling real-time, detailed inference of occupants’ space 

utilization [115–117], researchers have defined metrics that explore the potential to improve overall space 

utilization rates by moving to a scenario in which occupants share desks [35]. 
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 Ultimately, organizations in commercial buildings care most deeply about the productivity of their 

workforce as the cost of people is typically an order of magnitude higher than the cost of building operation 

[118]. Recently, researchers have noted that the physical design of buildings can have large impacts on 

different metrics related to productivity, such as communication, collaboration, and innovation. Using the 

language of space syntax [119], researchers have defined metrics based on the physical layout and 

correlated them with occupant outcomes. For instance, Congdon et al. [120] found that higher levels of a 

single desk’s spatial integration correlated with more central positions in the organizational network for the 

individual occupying that workstation. Kabo et al. [121,122] found that higher path overlap among 

occupants correlated with more successful collaborations. Generally, research has found that closer spatial 

relationships (e.g., proximity) improve the way individuals communicate and collaborate with one another 

in a building [123–126]. Conversely, recent research has also shown that certain open-plan office layouts 

– in which spatial relationships are harder to define due to a lack of spatial boundaries – are actually 

associated with a decrease in face-to-face communication [127]. This unique interface between spatial 

boundaries and communication patterns points up the need for further research relating building design to 

organizational performance. 

2.7. Energy 

Energy is a physical quantity that measures the capacity of a system to perform work or transfer heat to or 

from another (thermodynamic) system. It is an extensive property meaning that it is proportional to the 

extension of the system and is additive for independent and non-interacting subsystems [128]. In buildings, 

it is used to quantify the performance of any building services and mechanical systems to provide end-uses 

required by occupants. Focusing in the current work only on HVAC systems, renewable energy generation 

systems, artificial lighting, and electric appliances, energy is typically used to assess the performance of a 

building in providing space heating and cooling, humidification and dehumidification, ventilation and 

pumping, (domestic hot) water heating, (artificial) lighting, and electric appliances. 

Several energy performance indicators (EPIs) are used to express a building performance, differing 

by the boundary at which they are measured or the contributions considered for their calculation. The 

international standard ISO 52000-1 [129] sets a systematic and comprehensive framework for the holistic 

evaluation of the energy performance of new and existing buildings, also by defining several EPIs, such as 

primary energy, delivered energy, energy uses, and energy needs. Furthermore, for benchmarking purposes, 

the building energy performance is commonly normalized with respect to other extensive properties that (i) 

describe the building geometry such as the net or gross/treated floor area, the net or gross volume, or (ii) 

quantify the number of users, generating energy intensity quantities that do not depend on building size. In 

occupant-centric design applications, the use of geometrical properties is more commonly used than 

occupancy despite the target being people using or living in a building. Such an approach may lead to 

misrepresentation of phenomena [42] because building geometry is assumed to be time-invariant with 

epistemic uncertainty that can be, at least in theory, nullified, while the count of occupants in a building is 

variable and typically affected by aleatory uncertainty that cannot be reduced. 

2.8. Observations and gaps 

The aim of this section was to present the most common occupant-related metrics of building performance 

prior to reviewing the tools and methods used to assess that performance in the upcoming sections. The 

following observations can be made. Firstly, there is an imbalance in the breadth and depth of information 

on the different metrics that were covered. For instance, thermal comfort is very well covered in the 
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literature with clearly defined metrics and standards. Well-being or productivity, on the other hand, are 

more difficult to categorize, assess, and quantity. Secondly, while all metrics are directly related to and 

affected by occupants, there is a tendency to normalize metrics at the building level. A common example 

is the normalization of building energy performance per unit of floor area, which contributes to the 

categorization of energy as a building-focused, rather than an occupant-focused, metric. Such an 

aggregation of information contributes to the diluting of the personal and societal characteristics of the 

occupants, which have shown to contribute to the way they perceive and interact with their built 

environment. Thirdly, the reviewed sources of information mostly define what the different metrics are and 

how they are measured; less is presented on how to use such information to guide decision-making. Such a 

process is highly complex and depends on the characteristics of the building under study (e.g., typology, 

size, age, location) as well as the objectives of the different stakeholders involved (e.g., owner, facility 

manager, occupants). Moreover, possible conflicts may exist between metrics and should be accounted for 

(e.g., space utilization and acoustic comfort). While a holistic approach to assessing building performance 

is needed, most metrics are mostly defined and modeled in isolation, as further discussed in the following 

sections. 

3. Occupant-centric building performance simulation 

Following the review of occupant-centric building performance metrics, the current section covers common 

computer-based modeling and simulation approaches that are used to assess such metrics, as well as 

opportunities and challenges of adopting such approaches and tools to support building design. The section 

includes: (i) common BPS software tools and their core functions, (ii) their ability to account for occupant-

related features as inputs to the models, and (iii) OB-focused modeling tools and their interoperability in 

BPS environments. 

3.1. Building performance simulation overview 

Building performance simulation – also known as building energy modeling, energy simulation, or building 

simulation – is a physics-based software simulation of building systems and their performance [16]. A BPS 

program takes as inputs the characteristics of the building, such as its geometry, construction materials, 

electro-mechanical systems (e.g., HVAC and lighting), water heating configurations, and renewable energy 

generation systems. Inputs also include occupancy schedules and the operation patterns of plug-loads, 

lighting, and HVAC systems (e.g., thermostat settings) [130]. A BPS program then combines the physics 

equations of the building systems with outdoor weather conditions to predict one or more of the following 

metrics: building energy flows, energy consumption, peak loads, carbon emissions, air quality, daylighting 

availability, thermal comfort (e.g., PMV and PPD), and visual comfort (e.g., DGP) [15,16]. 

Figure 2 provides a summary of common BPS software tools adapted from the work of Østergård 

et al. [32]. The figure classifies the tools according to two main characteristics. The first is the software’s 

main functionality, which varies between BPS software with internal engine (right side), BPS software with 

external engine (bottom-left side), and plugin to existing BPS software (upper-left side). The 

interoperability between specific software is shown using arrows. The second characteristic is related to the 

available output metrics of the BPS engines, including useful metrics for occupant-centric design such as 

daylighting, thermal comfort, and air quality. It is clear that the outputs of these models are mostly focused 

on energy performance, followed by thermal, daylighting, and air quality related metrics. Other occupant-

related metrics, such as acoustic comfort, well-being, productivity, or space planning, are not covered. Even 
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when comfort outputs, such as PMV and PPD, are considered, they are often calculated at the building 

level, overlooking differences between occupants. Additional details are provided in the upcoming sections, 

which cover the ability of BPS tools to account for occupant-centric characteristics and behaviors, as 

discussed in the next subsection. 

 
Figure 2: BPS software classification, adapted from Ostergard et al. [32]. 

3.2. Occupant behavior modeling overview 

OB is a complex phenomenon that is driven by the response of occupants to multidisciplinary factors 

including the physical properties of the building (e.g., orientation), indoor and outdoor environmental 

conditions (e.g., temperature and humidity), state of building systems (e.g., an open window), personal 

characteristics (e.g., gender and age), and time of day [29,30]. However, one of the main limitations of 

current BPS tools is the simplistic representation of OB and its effect on simulation outputs. A recent survey 

of 274 building simulation practitioners in 36 countries confirmed this limitation, especially as most 

respondents (> 75%) indicated that common BPS tools should have more features for OB modeling [131]. 

Commonly-studied behaviors in OB models include – but are not limited to – occupancy presence/absence, 

lighting and blind control, windows opening, plug-load usage, and other user behaviors [132]. The same 

study classifies the models in three main categories or levels. Type 0 includes non-probabilistic models that 

mostly derive schedules (i.e., diversity profiles) from data monitoring and mining data (e.g., [133]). Type 

1, covers stochastic or probabilistic models of behaviors using methods such as Poisson processes, Markov 

chain processes, Logit, Probit, or survival analyses (e.g., [11]). This type exhibits higher resolution and 

level of complexity compared to the previous ones. Finally, Type 2 includes object-oriented and agent-

based models and is considered the largest among the three types in terms of modeling size, resolution, and 

especially complexity (e.g., [134]).  
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3.3. Occupant-related features in building performance simulation tools 

While BPS programs may include built-in stochastic OB modeling capabilities, this functionality is far from 

consistent across the different programs and generally lacks flexibility for user customization [135]. This 

finding was confirmed by Ouf et al. [31], who evaluated and compared the direct occupant-related BPS 

inputs of five major BPS software. The first category consists of schedules that specify the operation 

patterns of various systems such as HVAC, lighting, and plug-in equipment, as well as the presence of 

occupants in the building. A schedule, also referred to as a diversity profile, determines the fraction of the 

loads that are operating at a specific hour of the day. The second category of inputs is densities, which can 

include the density of occupants and other building systems (e.g., plug load equipment, lighting, and water 

fixtures), in addition to the corresponding sensible and latent heat gains they generate. The last category 

consists of user-defined rules that represent operation patterns based on specific environmental conditions 

and thresholds (e.g., outdoor/indoor temperatures, daylight illuminance/glare).  Overall, the authors argue 

that the vast majority of inputs used in BPS software to capture occupancy presence and actions are static 

or homogeneous rather than probabilistic that can better represent the diversity and stochastic nature of OB. 

The software also typically fails to capture the relationships between occupants’ presence and their actions 

(e.g., operating lighting or equipment), as those are typically modeled with separate schedules. Finally, the 

limitations extend to the outputs of the software, which are commonly calculated at the building level; this 

complicates the process of using that output for detailed modeling of OB. 

The limitations covered in this section have motivated the need to develop and integrate dedicated 

OB models in BPS as a step to generate more realistic models [11]. The next subsection presents common 

OB modeling approaches and integration efforts with existing BPS software tools. 

3.4. Occupant behavior modeling and building performance simulation: toward integrated 

approaches 

A study by Hong et al. [20] provided a thorough overview of OB implementation approaches in the current 

BPS tools, which are: (i) direct input or control – refers to the case when occupant-related inputs are defined 

using the semantics of BPS programs – just as other model inputs are defined (building geometry, 

construction, internal heat gains, and HVAC systems); (ii) built-in OB models – users can choose 

deterministic or stochastic models already implemented in the BPS program, which are initially data-driven 

and use functions and models such as linear or logit regression functions. These models typically include 

occupant movement models, window operation models, and lights switching on/off models; (iii) user 

function or custom – users can write functions or custom code to implement new or overwrite existing or 

default building operation and supervisory controls; and (iv) co-simulation approach – allows simulations 

to be carried out in an integrated manner, running modules developed by different programming languages 

or in different physical computers. The following paragraphs summarize key research efforts and tools on 

OB modeling and integration in BPS tools. 

Gunay et al. [34] developed EMS (Energy Management System) scripts to implement 20 existing 

OB models for use with EnergyPlus. The EnergyPlus EMS  feature allows users to write custom code in a 

runtime language that overwrites the EnergyPlus calculations without requiring the recompilation of 

EnergyPlus. Using Ruby scripts, O’Brien et al. [136] developed an OpenStudio library of measures 

representing typical OB models that can be directly applied to EnergyPlus simulation models. Although the 

EMS scripts and OpenStudio measures provide more flexibility than the direct inputs method to model OB 

in BPS tools, they lack interoperability due to the need for customization for different applications. 
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To address the interoperability issue of OB modeling in BPS tools, various approaches to coupling 

OB modeling and BPS have been explored. Plessis et al. [137] developed a co-simulation approach using 

a Functional Mockup Interface (FMI) that couples the SMACH OB simulator using agent-based modeling 

with a building energy model built with the BuildSysPro Modelica library. Gunay et al. [138] investigated 

the viability of employing the discrete event system specification (DEVS) formalism to represent OB using 

an adaptive time advancement scheme, which permits realistic patterns of decision-making while 

facilitating the coupling of stochastic occupant models with BPS tools. Menassa et al. [139] proposed a 

High-Level Architecture (HLA) framework coupling a BPS engine (DOE-2) with an ABM software 

(Anylogic). The authors illustrate their approach through a simulation of OB in an office building followed 

by an energy feedback mechanism that promotes energy conservation actions among occupants. 

Two additional OB modeling tools, obXML and obFMU, were recently developed under IEA EBC 

Annex 66 [12] to (i) standardize the input structures for OB models, (ii) enable the collaborative 

development of a shared library of OB models, and (iii) allow for rapid and widespread integration of OB 

models in various BPS programs using the FMU-based co-simulation approach. obXML [29,30] is an XML 

schema that standardizes the representation and exchange of OB models for BPS. obXML builds upon the 

Drivers–Needs–Actions–Systems (DNAS) ontology to represent energy-related OB in buildings. Drivers 

represent the environmental and other contextual factors that stimulate occupants to fulfill a physical, 

physiological, or psychological need. Needs represent the physical and non-physical requirements of 

occupants that must be met to ensure satisfaction with their environment. Actions are the interactions with 

systems or activities that occupants can perform to achieve environmental comfort. Systems refer to the 

equipment or mechanisms within the building that occupants may interact with to restore or maintain 

environmental comfort. A library of obXML files, representing typical OB in buildings, was developed from 

the literature [140]. These obXML files can be exchanged between different BPS programs, different 

applications, and different users. 

obFMU [141] is a modular software component represented in the form of functional mockup units 

(FMUs), enabling its application via co-simulation with BPS programs using the standard functional 

mockup interface (FMI). FMU is a file (with an extension fmu) that contains a simulation model that 

adheres to the FMI standard. obFMU reads the OB models represented in obXML and functions as a solver. 

A variety of OB models are supported by obFMU, including (i) lighting control based on occupants’ visual 

comfort needs and availability of daylight, (ii) comfort temperature set-points, (iii) HVAC system control 

based on occupants’ thermal comfort needs, (iv) plug load control based on occupancy, and (v) window 

opening and closing based on indoor and outdoor environmental parameters. obFMU has been used with 

EnergyPlus (Figure 3) and ESP-r via co-simulation to improve the modeling of OB. 

 

 

Figure 3: Co-simulation workflow of obFMU with EnergyPlus. 
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For Modelica users, Buildings.Occupants [142] is an OB model package that can be used to 

simulate the continuous and dynamic interaction between occupants and building systems. The 

Buildings.Occupants package is part of the Modelica Buildings Library [143]. The first release of the 

package includes 34 OB models, reported and clearly described in the literature, for office and residential 

buildings. The office building models include eight models on windows operation, six models on window 

blind operation, four models on lighting operation, and one occupancy model. These models vary by their 

region of origin, driving factors of actions (e.g., indoor air temperature, and/or outdoor air temperature for 

windows opening or closing), and other contextual factors such as types of windows. 

Occupancy Simulator [144,145] is a web-based application running on multiple platforms to 

simulate occupant presence and movement in buildings. The application can generate sub-hourly or hourly 

occupant schedules for each space and individual occupants in the form of CSV files and EnergyPlus IDF 

files for building performance simulations. Occupancy Simulator uses a homogeneous Markov chain model 

[146,147] and performs agent-based simulations for each occupant. A hierarchical input structure is 

adopted, building upon the input blocks of building type, space type, and occupant type to simplify the 

input process while allowing flexibility for detailed information capturing the diversity of space use and 

individual OB. Users can choose a single space or the whole building to see the simulated occupancy results. 

3.5. Observations and gaps 

The aim of this section was to cover computer-based modeling and simulation approaches that can support 

decision-making toward occupant-centric building designs. Several main observations can be made. Firstly, 

the review of BPS tools highlights a plethora of available BPS engines, software, and plug-ins. However, 

as shown in Figure 2 and discussed earlier, the outputs of these models mostly focus on energy/thermal 

performance, with a tendency to normalize results at the building level. This finding highlights an important 

gap between the diversity of occupant-centric metrics covered in Section 2 of this paper and the capabilities 

of the BPS tools, mainly EnergyPlus, highlighted in the current section. 

Secondly, the review of OB models and research efforts on their integration with BPS tools show 

promising potential to better account for occupant characteristics and interactions with their environment. 

However, it should be noted that the current available OB models were developed for specific purposes 

considering contextual factors (e.g., building type, location, season, and activity type) and with limited 

measurement data. Users should be cautious about using OB models for extended purposes [148]. 

Improving the interoperability between OB and BPS models is essential to leverage the power of advanced 

OB modeling methods without significantly increasing the complexity of the BPS process. Some of the 

tools covered in the previous section, such as obXML [29,30], obFMU [141], or the Occupancy Simulator 

[144,149], are important steps in that direction. In parallel, there remains a strong need to design and collect 

large-scale measured data of occupants, building operation and performance, to support OB model 

development, evaluation, validation, and application.  

Thirdly, common challenges are contributing to the limited adoption of stochastic OB modeling to 

support building design, from the designers, engineers or modelers’ perspectives, include: (i) not knowing 

what types of occupants and behavior patterns will be in the new building under design; (ii) lack of 

knowledge in using advanced OB modeling tools; (iii) complexity of OB modeling tools and steep learning 

curve for new users; and (iv) lack of clear value proposition for using advanced OB modeling.  

Also to be noted is that stochastic models of occupant activities and behavior are not always 

necessarily needed or better than the use of static profiles or settings; fit-for-purpose modeling should be 

adopted to balance the needs, resources, and expertise [150]. Such an adaptive modeling approach also 
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offers alternatives to the purely static (i.e., overly simple) and purely dynamic (i.e., overly complex) 

modeling schemes. For instance, “static-stochastic” is a hybrid modeling method where static BPS inputs 

(e.g., schedules) are multiplied by randomly-selected coefficients, hence introducing stochasticity in the 

modeling process while still managing its complexity [151]. 

4. Occupant-centric design methods and applications 

The vast majority of research on occupant modeling and simulation has been focused on two topics: 

occupant model development (e.g., [34,152–154]) and quantification of the impact of occupants on energy 

and/or comfort (e.g., [155–161])Both these topics, along with papers focused on the implementation of 

occupant modeling (e.g., [40,133,145,162–164]), are clearly a necessary building block for simulation-

aided occupant-centric design. However, far fewer papers have examined methods to apply occupant 

modeling to inform design, despite the fact that this -along with the so-called performance gap- is cited as 

a leading reason for improving occupant modeling. 

This section is entirely focused on reviewing papers that applied occupant modeling to inform 

design processes. It is comprised of four main subsections. Section 4.1 provides a summary of frameworks 

and workflows for simulation-aided occupant-centric design. The remaining sections focus on the 

development and/or application of specific techniques. Section 4.2 is focused on papers where authors 

performed a systematic assessment of one or more design variables in the context of informing design (not 

merely for scientific purposes). Section 4.3 is focused on papers where authors performed design 

optimization using simulation paired with an optimization script. Finally, Section 4.4 is focused on robust 

and probabilistic design, whereby papers exploit the stochasticity of occupant models to consider both the 

uncertainty and mean predicted performance to inform design. 

In brief, the papers fitting the topics of this section are few in numbers. They tend to focus on 

providing a proof-of-concept but generally required using one or more modeling or simulation tools in 

advanced ways. Accordingly, the developed methods are generally not readily available for deployment to 

design practice.  

4.1.  Simulation-aided occupant-centric design strategies 

There are several noteworthy pieces of work whereby researchers outlined and/or demonstrated occupant-

centric design workflows. Gaetani [150] developed a so-called “fit-for-purpose” approach to occupant 

modeling, whereby they proposed a systematic approach to assessing the optimal occupant modeling 

method for a particular situation, balancing model complexity and validity. Gilani and O’Brien [151] 

developed a best practices guidebook for occupant modeling to support design. The document provides a 

background on theory, recommendations for techniques on applying occupant modeling to building design, 

and guidelines for selecting the most appropriate occupant model. Both of the above works explain the 

importance of strategically choosing the most appropriate occupant modeling strategy as a function of 

modeling purpose, building model scale, and design phase (Figure 4). Roetzel [165] proposed a method to 

simulate occupants in early-stage design. She argues that there is significant uncertainty about occupants in 

early-stage design, yet simulation has the potential to be most influential at that time. Therefore, the 

recommendation is to use a best and worst-case scenario to assess the magnitude of the impact of occupants. 

Finally, recognizing that occupant modeling results remain relatively intangible and difficult to visualize, 

Chen et al. [145] developed a tool to visualize occupants and their energy impacts in a simulation 

environment. 
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The following sections review the literature on parametric design, design optimization, and 

probabilistic design methods - all with aspects of occupant-centric simulation-aided design. The vast 

majority of papers occupy a narrow zone within Figure 4, namely schematic design for rooms (or buildings) 

for the purpose of general design. The focus tends to be on architectural design or lighting/daylighting - 

perhaps because they are simpler to model and also directly relevant to occupants. 

The authors argue that with the progression towards more accurate and precise occupant models 

(e.g., based on long-term field data collection), the research and practitioner community should evolve from 

simple parametric design (Section 4.2) to probabilistic design (Section 4.4). That is, the uncertainty analysis 

that is often performed in conjunction with a parametric design is normally approached from the standpoint 

that the uncertainty from occupants is high (e.g., passive and active occupants; best- and worst-case 

scenarios). However, a more refined approach is to acknowledge uncertainty but apply data-driven models 

that can quantify the likelihood of extreme results. 

 

Figure 4: A conceptual design space indicating key considerations for the most appropriate occupant model 

section and modeling strategy. 

4.2.  Parametric design 

Given the widely accepted uncertainty during building design that originates from occupants, a popular 

method to assess the impact of occupants in design is simultaneously varying occupant assumptions (i.e., 

uncertainty analysis) and design or control parameters (i.e., parametric analysis). A common approach is to 

model two or more extreme conditions either via personas (e.g., passive and active occupants) (e.g., 

[23,166]) or extreme schedule values or densities (e.g., [157]). Other papers simulated occupants according 

to a range of assumptions or compared simple and advanced models (e.g., [164,167]). Finally, some 

researchers have simulated the effects of spatial layouts and locations of occupants on metrics designed to 

capture the building’s performance from a social perspective (e.g., [122]).  

Reinhart et al. [168] provided an early example of simulation-aided design based on a relatively 

detailed occupant model. Starting with his Lightswitch-2002 stochastic occupant model, he demonstrated 

how a designer could use simulation to assess the impact of various lighting and blind control strategies for 

different occupant types. Even for a given occupant type and lighting/shade control configuration, Reinhart 
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et al. [168] showed that the annual lighting energy could vary by a factor of four or more. Bourgeois et al. 

[163] implemented the Lightswitch-2002 lighting and blind use model in ESP-r to support decision-making 

for automated versus manual lighting. This work built upon Reinhart et al. [168] in that it included heating 

and cooling results in the simulation, though the primary modeled behavior was still focused on lighting 

and shades. They showed automation does not necessarily save energy if the occupants actively seek 

daylight. Compared to the previous studies, Parys et al. [169] performed a more comprehensive assessment 

than the above studies, which was enabled by occupant models that were developed in the meantime. They 

included models covering occupancy, window shades, operable windows, lighting, internal gains from 

equipment, heating, and cooling setpoints. Upon applying the models using a Monte Carlo approach to an 

office building with 20 private offices, the standard deviation of annual energy was approximately 10%. 

This level, which is typically lower than those reported by other papers (e.g., [159,168]), is due to the fact 

that Parys et al. [23] studied a whole building rather than a single office. Thus, the impact of individual 

occupants largely canceled out. This scaling effect was formally studied by Gilani et al. [170]. Sarwono et 

al. [171] evaluated the impact of cubicle geometry and materials on speech privacy in an open-plan office 

using the CATT-Acoustic software. Unsurprisingly, they found that higher cubicle walls improved acoustic 

performance. 

Gilani et al. [167] used both typical (e.g., blinds all open or all closed) and stochastic lighting and 

blind use models from the literature in a parametric analysis to assess the impact of window size and shade 

transmittance on energy use in an office. They found that the case with blinds always open tends to lead to 

a larger optimal window size than if the stochastic models are used. This is because the stochastic window 

shade use model recognizes that a larger window leads to more frequent glare conditions (based on the 

work plane illuminance proxy), and thus, the window shade is closed more often, at the cost of greater 

reliance on electric lighting. Thus, this paper provided anecdotal evidence that the choice of occupant 

modeling approach can influence design decisions.  

Sun and Hong [172] applied three different occupant scenarios – austerity, normal, and wasteful – 

against a wide range of energy-conservation measures (ECMs) for an office building. They found that 

except for natural ventilation, the wasteful occupant generally yields greater absolute predicted energy 

savings from ECMs; however, the relative energy savings are similar in magnitude between all occupancy 

scenarios for each ECM. Following a similar approach, Abuimara et al. [173] used parametric analysis to 

assess an office building under three different occupant-related scenarios and a list of 20 building upgrades. 

They found some significant differences in the rank of the upgrades’ effectiveness at saving energy. For 

example, insulation was more beneficial for cases with lower occupant-related internal heat gains compared 

to cases with high heat gains. O’Brien and Gunay [174] used stochastic occupancy simulation in an open-

plan office to quantify the relationship between lighting control zone size and energy use on an annual 

basis. 

Reinhart and Wienold [164] developed a design workflow that involves modeling energy use and 

daylighting against several different extreme and simplistic and detailed occupant modeling methods. They 

provided a number of recommendations for extending their workflow into practice given the significant 

effort and computational time required. These include: automating the process (e.g., starting with a building 

information model), cloud computing, optimizing designs with expert systems to keep the designer in the 

loop at each design iteration, and providing the designers with a dashboard for comparison between designs 

and consideration of multiple performance criteria. 

Researchers have also parameterized spatial layouts of buildings – explicitly connected to 

occupants’ locations – and simulated their effects on metrics of organizational performance. This body of 
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the literature connects design (typically discussed retrospectively) to workplace metrics using the language 

of space syntax, often describing spaces within a building according to their integration, or connectedness 

to the other spaces [119]. Congdon et al. [120] compared two different real building designs occupied by 

the same organization using metrics from space syntax and found that the more integrated layout enabled 

better communication and was correlated with increased productivity. Jeong and Ban [175] similarly 

compared multiple design options using space syntax and demonstrated the ability to compare integration 

– associated with how “public” that part of the building feels – among designs. These design simulations 

enable evaluation of organizational outcomes, as researchers have noted that spatial design decisions impact 

both the formation of social relationships in workplaces [126,176] as well as the frequency and success of 

collaborations [122]. This research shows that parameterizing spaces by measures of their connectedness 

to the rest of the building can enable the simulation of the organizational performance. 

4.3. Design optimization 

In contrast to the previous section on parametric analysis, very few papers have formally optimized building 

designs that use advanced occupant modeling. The papers below discuss both the impact of geometric 

design alternatives on energy performance as well as the impact of spatial and occupant layouts on energy 

and organizational outcomes. 

Ouf et al. [150] used a genetic algorithm to optimize 10 facade-related design parameters for a 

private south-facing office. Using annual energy use as the cost function, they optimized the design using 

both standard occupant assumptions and the state-of-the-art in stochastic occupant models. Because the 

stochastic models yield a different annual performance level every time they are run, the mean energy use 

of 50 simulations was used to evaluate each design. The conclusions showed similar energy predictions for 

the optimal designs, but somewhat different optimal parameters. For example, the optimization with 

stochastic occupant modeling favored significant solar shading (side fin and overhang) to prevent the shade 

from being closed early in the day and reducing daylight potential for the remainder of the day. In a follow-

up study, Ouf et al. [177] optimized both the mean and standard deviation of sets of 30 stochastic 

simulations. The intent was to show the potential trade-off between certainty and mean predicted 

performance.  

To enhance thermal comfort in a housing design across different climates, Marschall and Burry 

[178] subjected building aspect ratio, orientation, roof type, window-to-wall ratio, and shading type to 

optimization. Thereby two types of window operation models were considered: a deterministic model based 

on a single indoor temperature setpoint (namely 23.9 °C) and a specific data-driven stochastic model based 

on another study [179]. In particular, the optimization results showed a considerable variation in shading 

design solutions depending on the choice of window operation models, which was more noticeable in 

warmer climates.   

Based on metrics describing the organizational operation of buildings, research also suggests that 

optimization can be used to create building layouts and designs that improve space-use metrics as well as 

notions of organizational performance (e.g., productivity). Lee et al. [180] simulated occupants’ walking 

behavior and used ant colony optimization to reduce cumulative walking time in a hospital building, thus 

improving its operating efficiency from a space-use perspective. Yang et al. [181] and Sonta et al. [115] 

connected this notion of optimally laying out a building based on space-use data to a building’s energy 

performance. By hierarchically clustering occupants based on their overall patterns of presence and absence 

and then virtually re-assigning them to different building zones through an iterative process, this work 

demonstrates that physically co-locating individuals with similar occupancy patterns can reduce zone-level 
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building energy consumption. As researchers discuss the importance of simulating the organizational 

performance of a building based on its design, the opportunity to optimize such designs for these 

organizational metrics emerges. Nascent work by Housman and Minor [125] shows that the spatial 

colocation of different types of workers can have differing effects on productivity. They show that a simple 

exploration of the design space can lead to spatial layouts that are optimized for productivity. 

4.4. Probabilistic design methods 

A widely-recognized trait of occupant modeling is the stochasticity of inputs and the corresponding 

uncertainty of simulation outputs. A growing number of papers that have treated non-deterministic 

simulation outputs (e.g., annual energy use) as an opportunity rather than a burden by focusing on 

minimizing both the mean and variance of the output(s) of interest. In practical terms, this means designing 

buildings to be less sensitive to occupants and less dependent on occupants’ energy-saving behaviors. While 

robust design approaches have been developed and applied in engineering design since the 1960s [182] and 

have been applied to building design in general since then (e.g., [183]), they have only been applied to 

occupant modeling more recently.  

The papers that applied robust design to occupant-centric building design fall into two categories, 

as shown in Figure 5. Either they use the classical approach, whereby occupants are treated primarily as 

heat gains via schedules, or an advanced approach whereby the two-way interaction between occupants and 

buildings is recognized. In the latter case, building design can affect the way people behave and their 

energy-related actions.  

 

 
Figure 5: The classic P-diagram of robust design theory applied to occupant modeling [148]: assuming 

occupants can be treated as a source of noise to the building (left) and recognizing the two-way interaction 

between buildings and occupants (right).  

 

The literature has generally pursued two ways to assess the robustness of building designs: in the 

formal sense by adding random noise to a building and by scenario analysis. The latter is more common. 

For example, Palme et al. [24] are the first known authors to explicitly tie robust design to occupant 

modeling. They defined robust design as designing buildings to such that it is “[...] difficult for users to 

make inappropriate decisions”. They used a simplified modeling approach to demonstrate the impact of 

occupants, with a focus on windows opening. Hoes et al. [184] are considered to have spurred advances in 

the application of occupant modeling. They were pioneers in developing robust design in the context of 

occupant modeling and building design. They showed how the coefficient of variation caused by OB could 

be significantly reduced through passive design decisions such as thermal mass and window area. In a 

follow-up paper, Hoes et al. [185] applied a genetic algorithm to design a building to be robust against 

uncertainty from basic occupant parameters (i.e., setpoints and internal heat gains). In contrast to Palme et 

al. [24], Karjalainen [186] cautioned that robust design does not necessarily mean removing adaptive 

opportunities (e.g., operable windows and controllable thermostats) from buildings; such adaptive 

opportunities are known to allow occupants to tolerate a wider range of conditions (e.g., [46]). Karjalainen 
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[186] set out with a similar motivation as the previous papers but used occupant types (careless, normal, 

conscious) and TRNSYS to assess the robustness of a building design. He demonstrated that the ‘careless’ 

occupant used 75 to 79% less energy in the robust office (which consisted of occupancy-controlled and 

efficient lighting, an overhang, and a low-power computer) as opposed to the normal design. Similarly, 

Abuimara et al. [173] assessed the robustness of various building upgrades against a wide range of possible 

occupant-related scenarios.  

Buso et al. [187] modeled 15 different design options for an office building in three different 

climates. Stochastic window shade and operable window use models were implemented in IDA ICE. They 

ran parametric simulations and reported the standard deviation among the simulations, as a measure for 

robustness. They concluded that the design options with high thermal mass and smaller windows resulted 

in the greatest robustness against OB. In a more targeted fashion, O’Brien and Gunay [148] set out to 

demonstrate that improving comfort can reduce energy by reducing the number of adaptive actions. They 

used a formal robust design method to show that fixed exterior shading to reduce the frequency of daylight 

glare can prevent the occupants from closing blinds, which in turn improves daylight availability and 

reduces dependence on electric lighting. However, in this paper and a follow-up paper [188], it was 

concluded that current occupant model development approaches do not lend themselves to robust design 

because they suppress diversity by aggregating all occupant data. In the meantime, this has generally been 

resolved in the literature by using several extreme occupant types (similar to Section 4.2). 

On probabilistic occupant-centric design, O’Brien et al. [189] developed a plug and lighting use 

model for the building scale based on measured data. They implemented a stochastic schedule model for 

the lighting, plug load, and occupancy domains in a whole building simulation tool to perform HVAC-

sizing. The paper showed several advantages to stochastic occupant modeling and a probabilistic approach 

to HVAC sizing. First, the trade-off between the probability of under-sizing and HVAC component sizing 

can be quantified. This allows designers to take calculated risks, whereby the comfort risk associated with 

under-sizing (relative to traditional design methods) can be quantified. For example, ASHRAE 

recommends 25% safety factors for heating equipment, whereas the new method showed that there is only 

a 1% risk of having the true heating load being 21% lower than the result of ASHRAE’s safety factor. 

Secondly, the results showed that larger buildings greatly benefit from diversity between tenants and that 

the building-scale plant size can be safely reduced on a per unit floor area compared to smaller buildings. 

Using the same tenant models (for occupancy, lighting, and plug loads), Abdelalim et al. [190] developed 

and demonstrated a probabilistic method to size a photovoltaic (PV) array for a net-zero energy office 

building. They showed that uncertainty from occupants is costly and that each percentage point of improved 

likelihood of reaching net-zero energy is more costly than the one before. For example, the PV array 

required to be 99.9% certain about achieving net-zero energy is 50% more expensive than a PV array that 

yields 90% certainty. This is a result of the long tails on the cumulative probability distribution for annual 

energy consumption (i.e., it is unlikely, but not impossible, to have extremely high values). 

4.5. Observations and gaps 

The aim of this section was to review articles that applied simulation/modeling to guide occupant-centric 

designs. The following observations can be made. Firstly, the number of studies fitting in this section is 

relatively small. Such a small number confirms what was observed earlier in Section 1.2 that most studies 

evaluating OB in buildings focus on building operation rather than building design strategies. 

Moreover, most studies have a specific or narrow scope of coverage of occupant-centric building 

performance (e.g., simulation tools or behavioral classifications). They lack a comprehensive assessment 
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of occupant-centric building design that covers its multifaceted aspects, including occupant-centric metrics, 

simulation tools, analytical methods, and external mechanisms to apply research findings in actual 

buildings. 

Another gap is the lack of papers on design considering multiple aspects of IEQ simultaneously or 

on the domains of IAQ and acoustic comfort. This is thought to be a combination of fewer researchers in 

these areas and the relatively less emphasis on these domains in BPS tools. Moreover, IAQ and acoustic 

comfort have generally not been included as predictors in OB models.  

Finally, most of the studies are limited to proofs-of-concept of occupant-centric designs using 

advanced modeling or analysis techniques. They typically fall short of effectively scaling or deploying the 

design practices in actual buildings, indicating an important gap remaining between OB research and actual 

design applications. 

5. Supporting practices for occupant-centric methods/applications 

Following the review of existing occupant-centric modeling tools and methods, the current section 

discusses two main practices or media that can promote further applications and implementations of 

occupant-centric designs in actual buildings. The first subsection discusses the premise of using building 

codes as a mechanism to promote occupant-centric design practices. The second subsection reviews 

common construction project delivery methods and their potential of engaging stakeholders - building 

occupants in particular - in the early building design stages. 

5.1. Building codes and standards 

Today's society may aspire for occupant-centric high-performance buildings, but, arguably, the majority of 

new buildings aim to comply and not exceed local codes pertinent to building performance and occupant 

comfort. Therefore, building codes play a critical role to tailor the future built environment for occupants 

and to achieve the global emissions reduction targets. In this context, as discussed in Section 2, building 

codes set a variety of building performance metrics to regulate different aspects of occupant requirements 

in the built environment with efficient use of resources. The authors, however, argue that while the building 

codes have been commonly trying to address occupant needs in terms of indoor environmental conditions, 

OB (i.e., occupants’ adaptive actions to adjust the environmental conditions) and the controllability of 

building indoor environment by occupants (arguably as another occupant need) have not been sufficiently 

addressed in these efforts.  

To clarify the aforementioned point, one can focus on building energy codes, which are meant to 

provide determinant regulatory requirements for the realization of occupant-centric high-performance 

buildings. In spite of the consensus on the substantial inter-influence of occupants and building 

performance, the current building energy codes often treat occupants in simplistic and often inadequate 

ways. On the lower end of the spectrum, a building energy code, which is based on steady-state heat balance 

calculations, may only rely on a single value for overall internal heat gains along with monthly hours of use 

(see, for example, the Austrian code for thermal protection in building construction [191]). On the higher 

end of the spectrum, the codes that benefit from dynamic building simulation represent OB with values of 

occupancy, lighting, and equipment power density along with associated schedules for weekdays and 

weekends (see, for example, the building energy codes used in England [192], United States [193] and 

Canada [194]). For instance, ASHRAE Standard 90.1 mandates that eligible BPS tools used for compliance 

“shall explicitly model hourly variations in occupancy, lighting and equipment power, as well as thermostat 
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setpoints” [193]. In general, building codes, at best, only implicitly acknowledge the interactions between 

occupants and buildings and do not value building affordance in terms of indoor environmental control 

possibilities. Such a limitation is believed to contribute to the common use of deterministic input parameters 

in BPS tools when representing occupants’ presence and actions in buildings [135]. 

On the other hand, the aforementioned simplistic occupant representation can be considered 

beneficial for verification of modeling assumptions and validation of simulation results. It also, in principle, 

suffices for those building performance enhancement efforts that are not tightly intertwined with OB. 

However, as many aspects of building performance and OB are closely linked, overlooking the interactions 

between building performance and OB can undermine the use of building codes in occupant-centric design 

efforts. In this regard, while the new generation of data-driven OB models aims to capture the interactive 

nature of OB, the building codes and standards (e.g., LEED) are yet to benefit from the state-of-the-art 

research in this area. Of course, reliable modeling of the OB and measuring the controllability of indoor 

environment pose challenges for compliance checking applications. Nonetheless, the authors believe that 

building codes can further contribute to occupant-centric building performance optimization efforts by 

addressing the interactive relation between occupants and buildings in a more explicit manner. Moreover, 

standards and building rating systems that are specifically focused on occupant health and well-being (e.g., 

WELL) have the potential to drive the market towards simulation-aided occupant-centric design. While 

requirements in WELL are mostly verifiable without the use of simulation, a performance path in such 

standards could lead the industry in this direction. Another interesting line of inquiry is whether normalizing 

building performance by occupancy rather than floor area can address the uncertainty caused by space 

utilization and occupancy. To this end, efforts such as IEA EBC Annex 79 [195] and the present paper aim 

to pave the way for the preparation of guidelines and standards to form the future building codes and rating 

systems with a more holistic approach to occupant needs and behavior in buildings. 

5.2. Project delivery methods 

One significant opportunity to support occupant-centric design applications revolves around innovations in 

project delivery methods. A project delivery method is a process by which various stakeholders (e.g., 

building owners, occupants, architects, engineers, constructors) work together to deliver a building; it is 

generally distinguished by two key characteristics: (i) the contractual relationships between project 

stakeholders; and (ii) their timing of engagement in the project [196]. 

The traditional Design-Bid-Build (DBB) delivery is one where the different project phases (e.g., 

design, construction, occupancy) are sequential and do not offer room for involving and aligning the various 

stakeholders. In DBB, the design is typically fully completed without engaging with the constructors who 

do not get a chance to offer insights on how the design could have been tweaked to save considerable 

amounts of time and resources in the construction phase of the project. Similarly, future building occupants, 

arguably the most important stakeholder group, are not part of the weekly or monthly decision-making 

process, where there is an opportunity to adapt the building design and construction to the future needs of 

its occupants [197]. 

In contrast, more progressive and integrated methods are on the rise, also referred to as Alternative 

Project Delivery Methods (APDM). APDM are designed to engage these critical building stakeholders as 

part of the design and construction process [198]. They offer the possibility of engaging the occupants and 

constructors much earlier in the process (e.g., before the design is complete) for occupants to test hands-on 

mock-ups of rooms, constructors to provide constructability advice, as well as to explore design strategies 

and their anticipated impact on construction performance metrics (e.g., cost and schedule) and occupant-
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centric metrics (e.g., comfort levels, efficiency of space utilization and organizational performance) 

[199,200].  

The impact of this involvement has been considerable, leading to successive research efforts to 

study it further. In fact, this difference in performance has been measured over the past two decades, 

showing a significant improvement in project outcomes when the constructor in engaged in informing the 

design [201–204]. The average numbers from Sullivan et al. [205] meta-analysis are on the order of 2% to 

4% improved cost control and 35% faster delivery. El Asmar et al. [25,206] show that the average building 

quality increases significantly, and stakeholder communication (through requests for information and 

change order processing times) can be up to four times faster; the authors then mapped the level of 

integration of major delivery methods versus overall project performance, showing that more integration in 

the process leads to increasingly higher project performance. There is new preliminary evidence that 

suggests the actual performance of the facility itself, over its lifecycle, may improve too [207,208]. 

The same tested concept of increasing communication and involvement between design and 

construction stakeholders can be pushed further upstream allowing the prospective occupants to participate 

in informing the design of the facility and provide the perspective of building users. Design charrettes with 

prospective occupants and successive iterations of the design  and simulations that engage occupants are a 

good start in this direction. Contractual and process mapping elements to engage occupants through APDM 

have not yet been sufficiently explored yet, but the mountains of evidence linking stakeholder collaboration 

and integration to improved performance are hard to ignore. There is an exciting opportunity to use these 

proven frameworks to support occupant-centric design applications. 

5.3. Observations and gaps 

The aim of this section was to explore and discuss potential enablers for occupant-centric building designs, 

namely building codes and standards, in addition to project delivery methods. The main observation is that 

both approaches are promising and can contribute to addressing the challenges raised in the previous 

sections. However, currently, they are not successful in doing so. 

Firstly, traditional buildings codes and rating systems (e.g., ASHRAE and LEED) account for 

occupants’ needs mostly through indoor environmental specifications. They typically overlook occupant-

building interactions and fail to leverage the advances in OB modeling and integration with BPS to provide 

a more realistic representation of occupants. Similarly, health- and well-being-focused standards, such as 

WELL, are not well integrated with the tools commonly used to guide the design process. 

Secondly, project delivery methods, particularly APDMs, have shown to increase communication 

among stakeholders and better integrate the different phases of the construction process. However, it is 

important to note that no studies were found directly linking the capabilities of APDMs to occupant-centric 

design practices. Future research efforts can explore and quantify the potential contributions of APDMs 

towards more occupant-centric and integrated designs. 

6. Synthesis 

The in-depth reviews presented in the previous sections identified critical gaps in the literature on occupant-

centric building design: (i) most occupant-centric simulation studies focus on energy efficiency and 

conservation as the main target or objective of the building modeling process. There is limited coverage 

and discussion of other occupant-centric performance metrics such as comfort (thermal, visual, and 

acoustic), IAQ, well-being, productivity, and space planning. Moreover, metrics are commonly measured 
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and normalized at the building level, overlooking occupant-level characteristics and interactions with the 

built environment; (ii) the application of OB modeling and simulation tools in BPS is limited in the building 

design process. This can be attributed to multiple factors such as the lack of clear objective (i.e., why 

business-as-usual is not adequate), the lack of expertise of engineers, designers or energy modelers to 

effectively use the tools, the lack of readily available occupant models and data and easy to use BPS tools, 

or the lack of methods to communicate results or design considering the stochastic nature of OB; and (iii), 

while interdependent, there is a clear gap in the literature on occupant-centric metrics (Section 2), modeling 

tools (Section 3), applications (Section 4), and potential enabling mechanisms for occupant-centric building 

applications (Section 4).  

A synthesizing framework is proposed in Figure 6 to connect the different themes covered in this 

paper and offer a more central role for occupants in the design process compared to the traditional approach, 

which deals with occupants in simplistic ways (e.g., conservative schedule values, passive tolerance to 

discomfort). At the core of the proposed framework below is the goal of achieving occupant-centric design, 

which is measured by the various occupant-centric metrics of performance covered in Section 2. There is a 

particular need to explore multi-domain drivers of occupants’ perceptions and behaviors in buildings, which 

are still less studied in comparison to single-domain drivers [209]. As stated by ASHRAE [210], “current 

knowledge on interactions between and among factors that most affect occupants of indoor environments 

is limited”. Recent efforts (e.g., [209,211,212]) are important steps in that direction and should be further 

developed into design guiding principles and processes. BPS, supported by OB modeling upon need, can 

provide the milieu to model these metrics. In parallel, various methods (e.g., uncertainty analysis and 

optimization) can be used to translate the generated knowledge into practical design decisions. Such 

decisions should also account for external factors, such as weather conditions, and internal factors, such as 

the needs of different stakeholders. The latter is particularly important as occupants, owners, facility 

managers, researchers, and practitioners might perceive and define “occupant-centric design” differently. 

 An important consequence of the agency problem stated above is that advances in research tools 

and methods developed in academic circles do not often translate to applications in the building industry. 

This was confirmed in the current review by the plethora of occupant-centric metrics, tools, and methods 

found in the academic literature on the one hand, and the minimal application to the design of actual 

buildings, on the other. Such disconnect is also present in academia, even in relatively close fields (e.g., 

studying various occupant comfort metrics). This was confirmed by the limited studies found in Section 4 

that apply multivariable occupant-centric metrics of building performance to guide design. Further 

alignment is needed within academia, as well as between academics and practitioners. The latter can be 

enabled by case studies using real building projects to demonstrate how OB research and tools can 

effectively improve the design process, hence showing the added value to the practitioners. In parallel, 

building codes and regulations [213] can help translate the state-of-the-art of OB research to design 

guidelines and best practices. 

Finally, the framework emphasizes the need to move from a linear top-down design process, where 

occupants are simply considered as end-consumers or passive recipients of building design, to a circular 

one, where occupants' needs and preferences are key guiding factors of the design. This approach is 

illustrated in Figure 6, with the dotted lines highlighting the iterative processes that are needed for effective 

occupant-centric modeling and design practices 
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Figure 6: Proposed framework for occupant-centric building design research and applications. 

7. Conclusion and Future Perspectives 

In principle, most buildings are designed and operated to provide a comfortable and healthy environment 

for occupants; however, reality – particularly in simulation-aided design processes – is quite different. 

Understanding occupants’ diverse needs are essential to optimize building energy use as well as to ensure 

occupants’ comfort, well-being, and productivity. Occupants’ activities and behaviors influence building 

operation and, thus, energy use; on the other hand, building design and operation patterns lead to adaptive 

behaviors of occupants. This two-way human-building interaction is crucial to achieving sustainable, zero-

energy, or carbon-neutral buildings, which are targeted by more and more countries in the world. 

In this paper, a comprehensive and critical review was conducted on existing studies that apply 

computational methods and tools to provide quantitative insights to inform occupant-centric building 

design. The reviews were organized into four cohesive themes covering occupant-centric metrics of 

building performance, modeling and simulation approaches, design methods and applications, as well as 

supporting practices and mechanisms. Key barriers were then identified for a more effective application of 

occupant-centric building design practices, including the limited consideration of metrics beyond energy 

efficiency (e.g., occupant well-being and space planning), the limited implementation and validation of the 

proposed methods, and the lack of integration of OB models in existing BPS tools. 

Future research and applications are needed to address the gaps identified in this paper and support 

an integrated occupant-centric design approach, as proposed in Figure 6. These include: (i) developing a 

diverse collection of OB datasets based on large-scale monitoring or international surveys. Such effort can 

help improve the occupant data and assumptions that are used for building code compliance calculations, 

as well as define and quantify a suite of occupant-centric metrics (including occupants’ thermal comfort, 

visual, acoustic, IAQ and well-being) to characterize building performance while considering their 

variability. The output of such activities can serve as an input to advanced OB models that can better capture 
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the stochastic and dynamic nature of OB while accounting for the diversity and uniqueness of the individual 

users who are studied; (ii) integrating OB models in the building energy modeling process to support its 

multiple uses during building design (e.g., comfort and usability, space layout for productivity, peak load 

calculations, HVAC system type determination and sizing, code compliance, evaluation of design 

alternatives, and building performance rating). The studies reviewed in Section 4 can serve as a good start 

to the simulation-aided occupant-centric design, but additional efforts are needed both in terms of breadth 

of analysis (i.e., covering metrics beyond energy use and comfort) and depth (i.e., moving from proof-of-

concept to implementation and validation); (iii) establishing an industry practice of engaging occupants and 

communicating occupant-centric building design among building owners, architects, engineers, energy 

modelers/consultants, and operators. Building codes and alternative project delivery methods can serve as 

media for such exchange, bringing users at the center of the different stages of a building’s life-cycle: from 

early design to operation. 
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