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Adaptive optics microscopy enhances image quality in deep layers of 
CLARITY processed brains of YFP-H mice  

Marc R. Reinig*a, Samuel W. Novacka, Xiaodong Taoa, Florian Erminia, Laurent A. Bentolilab, 
Dustin G. Robertsb, Allan MacKenzie-Grahamb, S. E. Godshalkc, M. A. Ravenc, and Joel Kubbya, 

aW. M. Keck Center for Adaptive Optical Microscopy (CfAOM) at Univ. of California Santa Cruz 
(United States); bUniv. of California, Los Angeles (United States); cNRI-MCDB Microscopy 

Facility, Univ. of California, Santa Barbara (United States)  

ABSTRACT  

Optical sectioning of biological tissues has become the method of choice for three-dimensional histological analyses. 
This is particularly important in the brain were neurons can extend processes over large distances and often whole brain 
tracing of neuronal processes is desirable. To allow deeper optical penetration, which in fixed tissue is limited by 
scattering and refractive index mismatching, tissue-clearing procedures such as CLARITY have been developed. 
CLARITY processed brains have a nearly uniform refractive index and three-dimensional reconstructions at cellular 
resolution have been published. However, when imaging in deep layers at submicron resolution some limitations caused 
by residual refractive index mismatching become apparent, as the resulting wavefront aberrations distort the microscopic 
image. The wavefront can be corrected with adaptive optics. Here, we investigate the wavefront aberrations at different 
depths in CLARITY processed mouse brains and demonstrate the potential of adaptive optics to enable higher resolution 
and a better signal-to-noise ratio. Our adaptive optics system achieves high-speed measurement and correction of the 
wavefront with an open-loop control using a wave front sensor and a deformable mirror. Using adaptive optics enhanced 
microscopy, we demonstrate improved image quality wavefront, point spread function, and signal to noise in the cortex 
of YFP-H mice.  

Keywords: Adaptive Optics, CLARITY, Mouse Brain, Two-photon microscope  
 

1. INTRODUCTION  
Our ability to look deep within brain tissue, using fluorescent imaging, is primarily limited by refractive index (RI) 
inhomogeneities and mismatches. These cause light scattering and distortion of the point-spread function (PSF) and 
result in reduced intensity, resolution, contrast, and penetration depth. Limitations in the working depth of objective 
lenses also limit our ability to peer deeply into the structures.  

The light scattering qualities of brain tissue comes primarily from high concentrations of lipids. The distortion of the 
PSF originate from several factors: the RI mismatch between the microscope lens, index matching fluid, coverslip and 
the bulk RI of the tissue which cause depth dependent spherical aberration; the tilt of these elements and internal tissue 
structures relative to the lens can cause coma and astigmatism; and inhomogeneities in the RI of the tissue cause further 
degradation from the resultant higher order aberrations.  

At a relatively shallow depth (100µm), in brain tissue, scattering due to lipids becomes significant and, very soon after, 
no amount of improvement in the PSF can overcome the effects of scattered1 light in reducing signal intensity, contrast, 
and resolution. Moving the stimulating light to a longer wavelength allows us to penetrate deeper into the tissue, since 
scattering is inversely proportional to wavelength. Nevertheless, while using longer wavelength fluorophores or 
multiphoton excitation2 has allowed us to go even deeper, scattering still dominates within a few hundred µm. This 
limits us currently to a penetration of < 1,600µm3.  

In order to image the entire organ, at high resolution, one approach is to slice the brain, image individual slices and then 
recombine the images. This process is complicated by the physical damage from the slicing, and the fact that the deeper 
parts of each slice have reduced intensity, resolution, and contrast due to scattering, and aberrations.  
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Fortunately, we can now treat the samples to remove and replace the lipids with a scaffolding of non-scattering 
polymerized hydrogel using the CLARITY4,5 technique. This yields an entire organ with the scattering lipids removed 
allowing us to image fluorophores deep into the almost transparent structure, without the physical damage caused by 
sectioning, and with the PSF only affected by the residual spherical, coma, astigmatism, and higher order aberrations. 
However, there are still RI mismatches between the cleared organ and the lens both with CLARITY and other clearing 
protocols. This leads to spherical aberration which increasingly degrades imaging at deeper depths6. 

A number of techniques have been used to correct for spherical aberrations. Many objective lenses have correction 
collars that can correct a limited amount of spherical aberration. However, they must be manually adjusted iteratively 
with the focus control to give the best correction and often cannot correct over the long working distance required for 
deep imaging. A more sophisticated approach to correct sphere has been to synchronize a motorized correction collar 
with the stage height controller, but this does not compensate for the collar’s limited range. Additionally, some 
manufacturers have designed lenses specifically to match the index of a certain clearing protocol (see Table 1). These 
lenses are only corrected for a specific clearing agent and introduce spherical aberrations when used with other agents. 
Another approach is the use of adaptive optics (AO) to remove the spherical aberrations7,8. AO systems can also remove 
spherical aberration and the correct focal adjustment can be automatically applied without manual intervention. 
Unfortunately, after the spherical aberration is removed by any of the above means, the residual aberrations remain, 
including astigmatism, coma, and higher order aberrations, which will still degrade the PSF. These can only be removed 
by an AO system.  

 
 

Table 1: Some objectives customized for clearing methods6. 

 
Model (manufacturer) 

Numerical 
aperture 

Clearing agent or
immersion medium 

Working 
distance 

Refractive 
index range 

HC FLUOTAR L 25×/1.00 IMM 
(ne = 1.457) motCORR VISIR
(L i )

1.0 CLARITY 6 mm 1.45 

10× UIS2- XLPLN10XSVMP
(Olympus) 

0.6 CLARITY, glycerol,
Scaleview-A2, SeeDB, water

8 mm 1.33–1.52 

25× UIS2-XLSLPLN25XGMP 
(Ol )

1.0 Glycerol, CLARITY,
S DB

8 mm 1.41–1.52 
LSFM Clearing 20×/1.0 (Zeiss) 1.0 CLARITY, CUBIC,

LUMOS
5.6 mm 1.45 ± 0.03 

LD Plan-Apochromat 20×/1.0 (Zeiss) 1.0 Scale 5.6 mm 1.38 ± 0.03 
EC Plan-NEOFLUAR 5×/0.16 (Zeiss) 0.16 CLARITY, CUBIC,5.6 mm 1.45 

 

In this paper, we characterize the impact of an AO system on CLARITY brain imaging, when used to remove 
aberrations beyond simply sphere. To determine the effect of wavefront aberrations on the imaging of the CLARITY 
brain, we compared images made at various tissue depths with and without AO correction.  

 

2. MATERIALS AND METHODS 
2.1 Wavefront metrics 

In order to provide an objective measure of a system's performance in imaging we use the Strehl ratio. This is the ratio of 
a system 's actual PSF to its theoretical diffraction limited PSF in the absence of aberrations9. Systems with Strehl ratios 
of less than 0.3 can be considered poorly corrected, whereas Systems with Strehl ratios above 0.8 are considered well 
corrected. All aberrations contribute a Root Mean Square (RMS) error, which degrades the wavefront; consequently, we 
also use the total RMS wavefront error as a metric in our analysis.  

We report Zernike single-index orders in Noll form as shown in Table 2. Only the first 22 Zernike modes are reported in 
our calculations, since those of higher order do not contribute to a significant amount of RMS wavefront error. Zernike 
orders 1 to 4 (piston, tip, tilt, and focus) are ignored since they are not aberrations but movements of the focal point in X, 
Y, and Z.  
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Table 2: Zernike aberrations in Noll single index order. 

Index Zernike 

1 Piston 
2 Tip 
3 Tilt 
4 Defocus 
5 Oblique astigmatism 
6 Vertical astigmatism 
7 Vertical coma 
8 Horizontal coma 
9 Vertical trefoil 

10 Oblique trefoil 
11 Primary spherical 

 

2.2 Two-photon AO microscope 

A two-photon microscope10, 11 was modified to include an adaptive optics system with an open-loop control system. 
Figure 1 shows the layout of the system. Two photon excitation is generated by a tunable (680-1080 nm) mode locked 
Ti:Sapphire laser (140 fs, 80 MHz, Chameleon Ultra II, Coherent) the intensity of which is modulated by an electro-
optic modulator (model 350- 80LA, Conoptics Inc.). A 25X water immersion objective with a numerical aperture of 1.05 
was used (XLPlan N, Olympus Microscope, Center Valley, PA) for imaging. The photomultiplier tube (PMT) (H7422-
20, Hamamatsu) is configured in a non-descanned mode, and collects the emitted light during imaging. To correct 
wavefront aberrations, a deformable mirror (DM) (Boston Micromachines) with 140 actuators and 3.5μm of stroke is 
used.in conjunction with a 44x44-lenslet array in a Shack-Hartmann wavefront sensor (SHWS). The SHWS collects 
fully descanned light during wavefront measurement from selected points in the imaging plane. (For more complete 
details of the system, see reference 10 and 11 above). Imaging was done using a wavelength of 900nm for two-photon 
excitation of the fluorophores. Wavefront measurements were made at a wavelength of 515nm.  
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Figure 1: Two-Photon AO Setup 

 

2.3 CLARITY mouse brains 

Two different samples of optically cleared mouse brains were used in this study. M. Raven, UCSB, provided a whole 
optically cleared mouse brain labelled for the astrocytic marker glial fibrillary acidic protein (GFAP).  

A dissected section of optically cleared brain tissue from a Thy1-YFP mouse (Jackson Laboratories, Bar Harbor, ME) 
was provided by courtesy of Laurent Bentolila, UCLA). This sample was enclosed in a custom slide chamber and 
immersed in FocusClear media (CelExplorer, Hsinchu, Taiwan).  

2.4 Measurement methods 

To determine the effect of wavefront aberrations on the imaging of the CLARITY brain, we compared images made at 
various depths with and without AO correction.  

2.5 Making the wavefront measurements 

Images from the SHWF sensor were used to determine an unaberrated reference wavefront. The reference images were 
taken from a 100nm fluorescent bead on a slide under a #1.5 (170µm) coverslip mounted with Vectashield (Vector 
Laboratories). This became the reference wavefront representing an unaberrated wavefront. The bead slide was then 
replaced with the brain slide for imaging and wavefront measurements were made at various depths. The first 22 Zernike 
aberrations were measured, and the wavefront RMS wavefront error and Strehl ratio were determined. Excitation 
wavelength was centered at 900nm. Emission wavelength was centered at 515nm. Wavefronts were measured at the 
emission wavelength and the compensation during imaging was applied to the 900nm excitation after compensation for 
dispersion.  

Aberrations in a CLARITY whole brain sample were measured from the surface to a depth of 1,500µm in increments of 
50µm. No coverslip was used and the lens (a water immersion lens) was immersed directly in a CLARITY solution. This 
mismatch in RI caused some spherical aberration. At each stage, we measured and analyzed the wavefront for 
aberrations. For each stack of CLARITY micrographs, the first 22 Zernike aberrations were determined from a section 
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