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Abstract

This paper proposes new, simple, and more accurate statistical tests in a cointegrated
system that allows for endogenous regressors and serially dependent errors. The approach
involves �rst transforming the time series using some orthonormal basis functions in L2[0; 1],
which has energy concentrated at low frequencies, and then running an augmented regression
based on the transformed data. The tests are extremely simple to implement as they can
be carried out in exactly the same way as if the transformed regression is a classical linear
normal regression. In particular, critical values are from the standard F or t distribution. The
proposed F and t tests are robust in that they are asymptotically valid regardless of whether
the number of basis functions is held �xed or allowed to grow with the sample size. The F and
t tests have more accurate size in �nite samples than existing tests such as the asymptotic chi-
squared and normal tests based on the fully-modi�ed OLS estimator of Phillips and Hansen
(1990) and the trend IV estimator of Phillips (2014) and can be made as powerful as the
latter tests.

JEL Classi�cation: C12, C13, C32

Keywords: Cointegration, F test, Alternative Asymptotics, Nonparametric Series Method, t
test, Transformed and Augmented OLS

1 Introduction

This paper considers a new approach to parameter estimation and inference in a triangular
cointegrated regression system. A salient feature of this system is that the I(1) regressors are
endogenous. In addition, to maintain generality of the short-run dynamics, we allow the I(0)
regression errors to have serial dependence of unknown forms. One of the most popular semi-
parametric estimators in this system is the fully modi�ed OLS (FM-OLS) estimator of Phillips
and Hansen (1990). The estimator involves using a long run variance and a half long run variance
to remove the long run joint dependence and endogeneity bias. Both the long run variance and
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the half long run variance are estimated nonparametrically. Inference based on the FM-OLS is
standard � as in the classical linear regression with stationary or iid data the Wald statistic is
asymptotically chi-squared. This is perhaps one of the most elegant and convenient results in
time series econometrics. It releases us from having to simulate functionals of Brownian motion.

A drawback of the FM-OLS method is that the asymptotic chi-square test often has large size
distortion. The source of the problem is that the estimation errors in the long run variance and
half long run variance have been completely ignored in the conventional asymptotic framework
adopted in Phillips and Hansen (1990). A new ��xed-b� asymptotic framework has been put
forward by Vogelsang and Wagner (2014) but the Wald statistic does not appear to be asymp-
totically pivotal, making inference di¢ cult and inconvenient. For this reason, Vogelsang and
Wagner (2014) proceed to propose a di¤erent estimation method called the Integrated-Modi�ed
OLS (IM-OLS). They show that the associated test statistics are asymptotically pivotal under the
�xed-b asymptotics. However, the inference procedure is quite complicated, and critical values
have to be simulated.

In the same spirit of Vogelsang and Wagner (2014), we propose a new estimation method that
involves �rst transforming the data using some orthonormal basis functions and then running an
augmented regression based on the transformed data in the second stage. This gives rise to our
transformed and augmented (TA) OLS (TAOLS) estimator. Augmentation removes the long run
endogeneity problem while transformation eliminates the second order bias that plagues the OLS
estimator. A key feature of our asymptotic analysis is that the number of basis functions K is
held �xed as the sample size goes to in�nity, leading to our �xed-K asymptotic theory. Compared
with existing methods such as the FM-OLS of Phillips and Hansen (1990), the Trend Instrument
Variable (TIV) of Phillips (2014) and the IM-OLS of Vogelsang and Wagner (2014), our new
method enjoys several advantages.

First, under the �xed-K asymptotics, the test statistics based on the TAOLS estimator are
asymptotically standard F or t distributed. Since critical values from the F and t distributions
are easily available from statistical tables, there�s no need to further approximate or simulate
a nonstandard limit distribution. In addition, the test statistics can be obtained directly from
canned statistical programs that can compute the F and t statistics in a classical linear normal
regression. So our method is practically convenient and empirically appealing comparing with the
IM-OLS method where both the test statistics and the critical values cannot be easily obtained.
In particular, the �xed-b limit of the Wald statistic based on the IM-OLS is highly nonstandard.
Critical values have to be simulated.

Second, our TAOLS method is asymptotically equivalent to the TIV method of Phillips (2014).
As a by-product, we have established the �xed-K asymptotics of the TIV estimator and the
associated test statistics. Under the increasing-K asymptotics where K grows with the sample
size at an appropriate rate, Phillips (2014) shows that the Wald statistic and t statistic are
asymptotically chi-squared and normal, respectively. While the �xed-K asymptotic distribution
is di¤erent from the increasing-K asymptotic distribution, we show that the �xed-K asymptotic
distribution approaches the increasing-K asymptotic distribution as K increases. As a result, the
�xed-K critical values are asymptotically valid regardless of the type of asymptotics we consider.
This is a robust property enjoyed by our asymptotic F and t tests.

Third, simulation results show that the asymptotic F and t tests have more accurate size than
existing tests such as the asymptotic chi-squared and normal tests based on the FM-OLS or TIV
estimators. On the other hand, the asymptotic F and t tests could be made as powerful as the
latter tests. This is based on our simulation evidence. It is also consistent with the asymptotic
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e¢ ciency of our TAOLS estimator under the increasing-K asymptotics. The asymptotic e¢ ciency
holds because the TAOLS estimator and the asymptotically e¢ cient FM-OLS estimator have the
same asymptotic distribution under the increasing-K asymptotics.

Fourth, taking it literally, the �xed-K asymptotics requires us to use only low-frequency
information. Fundamentally, what a cointegrating vector measures is the long run relation among
economic time series. For this reason, it is natural to estimate the cointegrating vector using only
the long run variation of the underlying time series. Doing so helps us avoid high-frequency
contaminations. From this perspective, the �xed K limiting thought experiment not only is an
asymptotic device for developing new and more accurate approximations but also has substantive
empirical content in economic applications.

Finally, in the presence of a linear trend, we can �lter out the trend using a shifted version of
standard cosine transforms. Interestingly, regression augmentation, which is necessary to achieve
the asymptotic mixed normality for general basis functions, is not needed under the shifted cosine
transforms. As a result, we can justify an even simpler OLS estimator � the transformed OLS
(TOLS) estimator, which involves only transforming the original regression.

This paper contributes to a large body of literature on semiparametric estimation of cointe-
grated systems with Phillips and Hansen (1990), Phillips and Loretan (1991), Saikkonen (1991)
and Stock and Watson (1993) as seminal early contributions. In the FM-OLS setting, partial
�xed-b asymptotic theory for cointegration inference has been considered by Bunzel (2006) and
Jin, Phillips and Sun (2006) but the �xed-b asymptotics is applied only to the standard error
estimator. See Vogelsang and Wagner (2014) for more discussion. Transforming a time series
using the basis functions considered in this paper is equivalent to �ltering the time series with a
particular class of linear �lters. The �ltering idea has a long history; see, for example, Thomson
(1982). For other applications of the idea in cointegration analysis, see Bierens (1997) and Müller
and Watson (2013). See also Sun (2006) where series data transformation is used to estimate
realized volatility.

The rest of the paper is organized as follows. Section 2 introduces a standard linear cointe-
gration regression and discusses some of the drawbacks of existing methods. Section 3 introduces
our TAOLS estimator and establishes the �xed-K asymptotic limits of the TAOLS estimator
and the corresponding Wald statistic. Section 4 considers cointegration analysis under cosine or
shifted cosine transforms. Section 5 presents simulation evidence. The last section concludes.
Proofs are given in the appendix.

2 Model and Existing Literature

Consider the following cointegration model:

yt = �0 + x
0
t�0 + u0t (1)

xt = xt�1 + uxt

for t = 1; :::; T; where yt is a scalar time series and xt is a d � 1 vector of time series with
x0 = Op (1) : The mean zero error vector ut � (u0t; u0xt)0 2 Rm for m = d+1 is jointly stationary
with long run variance (LRV) matrix 
. We partition 
 as follows:



m�m

=
1X

j=�1
Eutu

0
t�j =

0@ �20
1�1

�0x
1�d

�x0
d�1


xx
d�d

1A ; (2)
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and write it as a sum of three conformable components: 
 = �+ �+ �0 where

� :=
1X
j=1

Eut�ju
0
t =

0@ �00
1�1

�0x
1�d

�x0
d�1

�xx
d�d

1A and � := Eutu
0
t =

0@ �00
1�1

�0x
1�d

�x0
d�1

�xx
d�d

1A :

The half long run variance � is de�ned to be

� = �+ � =

�
�00 �0x
�x0 �xx

�
: (3)

We assume that 
xx is positive de�nite so that xt is a full-rank integrated process.
We shall maintain the Functional Central Limit Theorem (FCLT) below

T�1=2
[T �]X
s=1

us ) B(�) = 
1=2W (�); (4)

where W (�) := (w0(�);W 0
x(�))0 is an m-dimensional standard Brownian process. Also, it will be

convenient in our asymptotic development to represent the process B(�) using the Cholesky form
of 
1=2:

B (�) =
�
B0(�)
Bx(�)

�
=

 
�0�xw0(�) + �0x
�1=2xx Wx(�)



1=2
xx Wx(�)

!
; (5)

where �20�x = �20 � �0x
�1xx�x0 and 

1=2
xx is a symmetric matrix square root of 
xx:

To simplify the discussion, we assume that there is no intercept in the regression. Let X =
[x01; :::; x

0
T ]
0 and Y = [y1; :::; yT ]

0: The OLS estimator of �0 is given by �̂OLS = (X
0X)�1X 0Y: It

follows from Phillips and Durlauf (1986) and Stock (1987) that

T
�
�̂OLS � �0

�
=

 
1

T 2

TX
t=1

xtx
0
t

!�1 
1

T

TX
t=1

xtu0t

!
(6)

)
�Z 1

0
Bx(r)B

0
x(r)dr

��1�Z 1

0
Bx(r)dB0(r) + �x0

�
; (7)

where the presence of �x0 re�ects the second-order endogeneity bias.
Since Bx(�) and B0(�) are correlated, and � and hence �x0 is unknown, it is not possible to

make asymptotically valid inference based on the naive OLS estimator. To overcome these two
problems, Phillips and Hansen (1990) suggest the FM-OLS method that involves estimating 

and � in the �rst step. Typical estimators of 
 and � take the following forms:


̂ =
1

T

TX
s=1

TX
t=1

Qh(
s

T
;
t

T
)ûtû

0
s; (8)

�̂ =
1

T

TX
s=1

TX
t=s

Qh(
s

T
;
t

T
)ûtû

0
s; (9)

where ût = (û0t; u
0
xt)

0 and û0t = yt � x0t�̂OLS : In the above de�nitions of 
̂ and �̂, Qh (r; s) is
a symmetric weighting function that depends on the smoothing parameter h: For conventional
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kernel LRV estimators, Qh (r; s) = k ((r � s) =b) and we take h = 1=b: For the orthonormal series
(OS) LRV estimators1, Qh (r; s) = K�1PK

j=1 �j (r)�j (s) and we take h = K; where
�
�j (r)

	K
j=1

are orthonormal basis functions on L2[0; 1] satisfying
R 1
0 �j (r) dr = 0: We parametrize h in such

a way so that h indicates the amount of smoothing for both types of LRV estimators.
After partitioning 
̂ and �̂ in the same way as 
 and �; we de�ne

y+t := yt ��x0t
̂�1xx �̂x0,
u+t := ut ��x0t
̂�1xx �̂x0; (10)

M := T
�
�̂x0 � �̂xx
̂�1xx �̂x0

�
:

Then, the FM-OLS estimator is given by

�̂FM =
�
X 0X

��1 �
X 0Y + �M

�
;

where Y + = [y+1 ; :::; y
+
T ]
0: On the basis of kernel estimators of 
 and �; Phillips and Hansen

(1990) show that �̂FM is asymptotically mixed normal, i.e.,

T
�
�̂FM � �0

�
)MN

�
0; �20�x

Z 1

0
Bx(r)B

0
x(r)dr

�
: (11)

This is in contrast with the limiting distribution of �̂OLS ; which is complicated and has a second
order endogeneity bias. Based on a consistent estimator �̂20�x of �

2
0�x; one can obtain t and Wald

statistics that are asymptotically normal and chi-square distributed, respectively.
A key step behind Phillips and Hansen�s result is that 
̂, �̂; �̂20�x are all approximated by

the respective degenerate distributions concentrated at 
, �, and �20�x. That is, regardless of
the kernel function and the bandwidth used in the nonparametric estimators 
̂, �̂; and �̂20�x, the
same asymptotic approximations are used. However, in �nite samples, both the kernel function
and the bandwidth, especially the latter, do a¤ect the sampling distribution of �̂FM and the
associated test statistics. For this reason, the normal and chi-squared approximations can be
very poor in �nite samples. This is because we completely ignore the estimation uncertainty in
the nonparametric estimators 
̂, �̂, and �̂20�x; which can be very high in �nite samples. Bunzel
(2006) and Jin, Phillips and Sun (2006) develop partial �xed-b asymptotic theory that accounts
for the estimation uncertainty in �̂20�x but ignore that in 
̂ and �̂.

The degenerate distributional approximations for 
̂; �̂; and �̂20�x with consequential normal
and chi-squared tests are obtained under the conventional increasing-smoothing asymptotic the-
ory. Instead of this conventional asymptotics, we can use the �xed-smoothing asymptotics to
obtain more accurate asymptotic approximations. The �xed-smoothing asymptotics includes the
�xed-b asymptotics of Kiefer and Vogelsang (2005) as a special case. For more discussions on
these two types of asymptotics, see Sun (2014a, 2014b). There is a growing number of papers on
�xed-b asymptotic theory for stationary data starting with Kiefer and Vogelsang (2005). More
recently, Vogelsang and Wagner (2014) establish the full-�edged �xed-b asymptotic distribution
of the FM-OLS estimator and show that the Wald statistic depends on many nuisance parame-
ters even in the limit. As a result, it is hard to make asymptotically pivotal inference. As an
alternative solution, they suggest the Integrated Modi�ed estimator (IM-OLS) which is based on
partial sums of the original cointegration regression augmented by the original regressor. They

1Sun (2011, 2013) provides more background information on the OS LRV estimators.
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invoke the �xed-b asymptotics to approximate the IM-OLS test statistics and show that they are
asymptotically pivotal. However, their limiting distributions are quite complicated and highly
nonstandard. Critical values have to be simulated for practical implementation.

3 Cointegration Analysis: Augmentation and Transformation

3.1 Model without time trend

To confront several challenges in the literature, we propose a new method to estimate the coin-
tegration model in (1); where no trend is present. We consider the augmented cointegration
model:

yt = �0 + x
0
t�0 +�x

0
t�0 + u0�xt (12)

where �0 = 
�1xx�x0 is the long run regression coe¢ cient of �xt on u0t; and u0�xt = u0t � u0xt�0 is
the long run regression error of u0t projected onto uxt. The long run variance of u0�xt is �20�x.

Let f�ig1i=1 be a set of orthonormal basis functions in Hilbert space L2[0; 1]: Our new method
starts by transforming the original data fyt; x0t;�x0tgTt=1 using the basis functions f�igKi=1 for a
�nite K and then conducts regression analysis based on the transformed data. For each i =
1; :::;K; the transformed data fW�

ig are weighted averages of the original data:

W�
i =

1p
T

TX
t=1

�i(
t

T
);

Wy
i =

1p
T

TX
t=1

yt�i(
t

T
) =

Y 0�ip
T
; Wx

i =
1p
T

TX
t=1

xt�i(
t

T
) =

X 0�ip
T
; (13)

W�x
i =

1p
T

TX
t=1

�xt�i(
t

T
); W0�x

i =
1p
T

TX
t=1

u0�xt�i(
t

T
);

where �i = [�i(1=T ); :::; �i((T � 1) =T ); �i(1)]0.
When �i (r) = �i (1� r), which holds for the basis functions we will use, we can write, for

example,

Wy
i =

1p
T

T�1X
t=0

yT�t�i(
T � t
T

) =
1p
T

T�1X
t=0

yT�t�i(
t

T
): (14)

So Wy
i can be regarded as the output from applying a linear �lter to fytgTt=1 : The transfer

function of this linear �lter is

HTi(!) =
1p
T

T�1X
t=0

�i(
t

T
) exp(�t!) for � =

p
�1: (15)

To capture the long run behavior of the processes, we implicitly require that HTi(!) be concen-
trated around the origin. That is, HTi(!) resembles a band pass �lter that passes low frequencies
within a certain range and attenuates frequencies outside that range. The requirement can be met
by any low-order trigonometric bases such as

p
2 sin 2�ir;

p
2 cos 2�ir for a small i. In fact, the

transfer functions associated with the �rst few basis functions in a commonly-used base system
in L2[0; 1] are often concentrated around the origin. So the requirement can be met easily.
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Based on the augmented regression and the transformed data, we have

Wy
i = �0W�

i +Wx0
i �0 +W�x0

i �0 +W0�x
i for i = 1; :::;K: (16)

This can be regarded as a cross sectional regression withK observations. We assume thatK � 2d,
which is necessary for consistency. Obviously, there is no point of considering K > T , as there is
no extra information beyond the �rst T transforms.

Under the assumption that each function �i (�) is continuously di¤erentiable and satis�esR 1
0 �i (r) dr = 0; which we will maintain, we have

W�
i =

p
T

Z 1

0
�i(r)dr +

p
TO(1=T ) = O

�
1=
p
T
�
= o(1); (17)

and so the e¤ect of the constant term �0 in (18) is asymptotically negligible for a large T . As
a result, our asymptotic theory remains the same regardless of whether an intercept is present
or not. To simplify the presentation, we will assume without loss of generality that there is no
intercept in the model so that

yt = x0t�0 + u0t; xt = xt�1 + uxt (18)

and
Wy
i =W

x0
i �0 +W�x0

i �0 +W0�x
i for i = 1; :::;K. (19)

Putting (19) in the vector form, we have

Wy =Wx0�0 +W�x0�0 +W0�x,

where Wy = (Wy
1; :::;W

y
K)

0 and Wx, W�x and W0�x are de�ned similarly. Running the OLS
based on the above equation leads to our Transformed and Augmented OLS (TAOLS) estimator
of 0 = (�

0
0; �

0
0)
0 :

̂TAOLS = ( ~W0 ~W)�1 ~W0Wy

where ~W =
�
Wx;W�x

�
:

Let
Px =Wx(Wx0Wx)�1Wx0; P�x =W�x(W�x0W�x)�1W�x0;

and Mx = IK � Px, M�x = IK � P�x: Then we can represent ̂TAOLS as

̂TAOLS =

�
�̂TAOLS
�̂TAOLS

�
=

�
(Wx0M�xWx)�1(Wx0M�xWy)
(W�x0MxW�x)�1(W�x0MxWy)

�
. (20)

To establish the asymptotic properties of ̂TAOLS , we make the following assumptions.

Assumption 1 (i) For i = 1; :::;K; each function �i (�) is continuously di¤erentiable and satis�esR 1
0 �i (x) dx = 0; (ii) The functions f�i (�)g

K
i=1 are orthonormal in L

2[0; 1]:

Assumption 2 The vector process futgTt=1 satis�es the FCLT in (4).
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Assumption 1 is mild and is satis�ed by many basis functions. For example,
p
2 cos (2�ir)

and
p
2 sin (2�ir) satisfy Assumption 1. Assumption 2 is a standard FCLT for time series data.

Under Assumptions 1 and 2, we have

W0
i :=

1p
T

TX
s=1

�i

� s
T

�
us )

Z 1

0
�i (r) dB(r) =

 
�0�x�i + �0x


�1=2
xx �i



1=2
xx �i

!
s iidN(0;
);

where �i =
R 1
0 �i (r) dw0(r) and �i =

R 1
0 �i (r) dWx(r). Since w0(�) and Wx(�) are independent,

we know that � = (�1; :::; �K)
0 and � = (�1; :::; �K)

0 are jointly normal and mutually independent.
Also, by the continuous mapping theorem,

1

T 3=2

TX
s=1

�i

� s
T

�
xs =

1

T

TX
s=1

�i

� s
T

� 1p
T

sX
�=1

ux� )
Z 1

0
�i (r)Bx(r)dr = 


1=2
xx �i;

where for 	i(s) =
R s
0 �i(r)dr,

�i =

Z 1

0
�i (r)Wx(r)dr =

Z 1

0
�i (r)

�Z r

0
dWx(s)

�
dr =

Z 1

0

�Z 1

s
�i (r) dr

�
dWx (s)

= �
Z 1

0

�Z s

0
�i (r) dr

�
dWx (s) = �

Z 1

0
	i(s)dWx (s) : (21)

For any �xed K; let � :� (�1; �2; :::; �K)0 2 RK�d. Then�
vec(�0)
vec(�0)

�
� N

��
0
0

�
;

�
A
 Id B 
 Id
B0 
 Id IK 
 Id

��
;

whereA 2 RK�K andB 2 RK�K whose (i; j)th components are [Aij ] =
R 1
0

R 1
0 �i(r)�j(s)min(r; s)drds

and [Bij ] = �
R 1
0 	i(r)�j (r) dr, respectively.

Using these properties, the following theorem establishes the asymptotic distribution of the
TAOLS estimator.

Theorem 1 Let Assumptions 1 and 2 hold. Then under the �xed-K asymptotics we have

�T (̂TAOLS � 0)) (~�
0~�)�1~�

0
~�;

where

�T =

0@ T � Id 0
d�d

0
d�d

Id

1A ; ~� =
�
�
1=2xx ; �


1=2
xx

�
; ~� = �0�x�, and ~� ? ~�:

A direct implication of Theorem 1 is that

T (�̂TAOLS � �0)) �0�x

�1=2
xx

�
�0M��

��1
�0M��; (22)

�̂TAOLS � �0 ) �0�x

�1=2
xx

�
�0M��

��1
�0M��; (23)

where M� = IK � �
�
�0�
��1

�0 and M� = IK � � (�0�)�1 �0: Conditional (�; �) ; both limiting
distributions are normal:

�0�x

�1=2
xx

�
�0M��

��1
�0M�� =

d N
h
0; �20�x


�1=2
xx (�0M��)

�1
�1=2xx

i
;

�0�x

�1=2
xx

�
�0M��

��1
�0M�� =

d N
h
0; �20�x


�1=2
xx (�0M��)

�1
�1=2xx

i
:
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So the unconditional limiting distributions are mixed normal. Furthermore, there is no second-
order endogeneity bias in the TAOLS estimator. The TAOLS approach has e¤ectively removed
the two problems that plague the naive OLS estimator. The �rst problem, i.e., the asymptotic
dependence between the partial sum processes of the regressor and regression error is eliminated
because we argument the original regression by the additional regressor�xt. The second problem,
i.e., the second-order endogeneity bias, is eliminated because we transform the original data and
run the regression in the space spanned by the basis functions. In general, both augmentation
and transformation are necessary to achieve the asymptotic mixed normality and asymptotic
unbiasedness. However, for some special basis functions, augmentation is not necessary for the
asymptotic mixed normality. See Section 4 for more detail.

Our TAOLS approach is similar to the Trend Instrumental Variable (TIV) approach of Phillips
(2014), which involves solving

(�̂
0
TIV ; �̂

0
TIV )

0 = argmin
(�0;�0)0

(Y �X� ��X�)0�(�0�)�1�0(Y �X� ��X�) (24)

= ( ~X 0P� ~X
0)�1( ~X 0P�Y ), ~X = [X;�X] and P� = �(�0�)�1�0:

The basis functions � = [�1; :::;�K ] now act as �irrelevant�and deterministic trend instruments.
The TIV approach is closely related to our TAOLS approach. It �rst projects the data onto the
space spanned by the basis functions and then run the regression based on the projected data in
the second stage. However, the interpretations are somewhat di¤erent. While Phillips (2014) em-
phasizes the use of the basis functions as irrelevant instruments and how they help reproduce the
Karhunen-Loève representation of Brownian motion, we focus more on using the basis functions
as low-frequency �lters to exact the long run variation and covariation. If trigonometric bases
are used, our approach is closer to the frequency domain approach of Phillips (1991a), although
no frequency domain technique is needed here.

The following proposition shows that �̂TIV and �̂TAOLS are asymptotically equivalent under
the �xed-K asymptotics.

Proposition 2 Let Assumptions 1 and 2 hold.
(i) Under the �xed-K asymptotics, T (�̂TIV � �0) = T (�̂TAOLS � �0) + op(1):
(ii) Let VK be a random variable with distribution MN

h
0; �20�x


�1=2
xx (�0M��)

�1

�1=2
xx

i
: As-

sume that f�i (�)g1i=1 is a complete orthonormal system in

L20[0; 1] =

�
f (�) 2 L2[0; 1] :

Z 1

0
f (r) dr = 0

�
:

Then as K !1;

VK )MN

"
0; �20�x


�1=2
xx

�Z 1

0

~Wx(r) ~Wx(r)
0dr

��1

�1=2xx

#

where ~Wx(r) =Wx(r)�
R 1
0 Wx (s) ds is the demeaned version of Wx(r):

Given the asymptotic equivalence in Proposition 2(i), our �xed-K asymptotic theory applies
to the TIV estimator. This can be regarded as a by-product of our paper. For the TIV estimator,
Phillips (2014) considers only the increasing-K asymptotics under which T and K go to in�nity
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and K=T ! 0 at an appropriate rate. Phillips and Liao (2014, Lemma 5.1) considers the �xed-K
limit of �̂TIV in the case with a scalar regressor. In contrast to their claim on the existence of
asymptotic bias, our mixed normal representation in Theorem 1 shows that there is no second-
order asymptotic bias in both TAOLS and TIV estimators.

The conditional variance in Proposition 2(ii) is the semiparametric e¢ ciency bound in the
sense of Phillips (1991b). Here we do not aim at achieving the bound per se. Instead, our goal is
to come up with a more accurate approximation for the given K value in a �nite sample situation.
Proposition 2(ii) indicates that the TAOLS estimator could become more e¢ cient for a larger K
and ultimately reach the semiparametric e¢ ciency bound under the increasing-K asymptotics.
So from this alternative asymptotic point of view, there is no loss of e¢ ciency in our TAOLS
approach.

The asymptotics in Proposition 2(ii) is obtained for a �xed K as T ! 1 and then letting
K ! 1. This is a type of sequential asymptotics. The sequential asymptotics provides a
smooth transition from our �xed-K asymptotics to the increasing-K asymptotics in Phillips
(2005, 2014). There is no discontinuity between the �xed-K approximation for a large K value
and the increasing-K approximation.

The asymptotic mixed normality and unbiasedness facilitate hypothesis testing. Suppose that
we are interested in testing

H0 : R�0 = r vs. H1 : R�0 6= r; (25)

where R is a p�d matrix. If �20�x is known, then we would construct the following Wald statistic:

~F (�̂TAOLS) =
1

�20�x
(R�̂TAOLS � r)0

�
R(Wx0M�xWx)�1R0

��1
(R�̂TAOLS � r)=p:

When p = 1 and for one-sided alternative hypothesis, we would construct the following t statistic:

~t(�̂TAOLS) =
R�̂TAOLS � rp

�20�xR(Wx0M�xWx)�1R0
:

Under the null hypothesis in (25), we can invoke Theorem 1 to obtain

~F (�̂TAOLS)) Q0[ ~R
�
�0M��

��1 ~R0]�1Q=p; (26)

where
~R = R
�1=2xx and Q = ~R(�0M��)

�1�0M��: (27)

By construction, Q follows the mixed normal distribution MN
h
0; ~R (�0M��)

�1 ~R0
i
: Conditional

on ~R (�0M��)
�1 ~R0;

Q0
�
~R
�
�0M��

��1 ~R0��1Q=p s �2p=p:

The conditional distribution does not depend on the conditioning variable ~R (�0M��)
�1 ~R0: So

�2p=p is also the unconditional distribution. That is, the infeasible test statistic ~F (�̂TAOLS)

converges in distribution to �2p=p: Similarly, ~t(�̂TAOLS) converges to the standard normal distri-
bution.

The presence of the unknown long run variance �20�x in ~F (�̂TAOLS) and ~t(�̂TAOLS) hinders
their practical applications. In practice, we have to estimate �20�x in order to construct the test
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statistics. Given that �20�x is the approximate variance of the error term in the TAOLS regression,
it is natural to estimate �20�x by

�̂20�x =
1

K

KX
i=1

�
Ŵ0�x
i

�2
=
1

K
W0�x0

h
IK � ~W( ~W0 ~W)�1 ~W0

i
W0�x;

where Ŵ0�x
i = Wy

i �Wx0
i �̂TAOLS �W�x0

i �̂TAOLS : With the estimator �̂20�x; we can construct the
feasible F (�̂TAOLS) and t(�̂TAOLS) as follows:

F (�̂TAOLS) =
1

�̂20�x
(R�̂TAOLS � r)0

�
R(Wx0M�xWx)�1R0

��1
(R�̂TAOLS � r)=p; (28)

t(�̂TAOLS) =
R�̂TAOLS � rq

�̂20�xR(Wx0M�xWx)�1R0
:

The theorem below establishes the limiting null distributions of F (�̂TAOLS) and t(�̂TAOLS)
under the �xed-K asymptotics.

Theorem 3 Let Assumptions 1 and 2 hold. Under the �xed-K asymptotics, we have

F (�̂TAOLS))
K

K � 2d � Fp;K�2d and

t(�̂TAOLS))
r

K

K � 2d � t(K � 2d):

Theorem 3 shows that both F (�̂TAOLS) and t(�̂TAOLS) are asymptotically pivotal and have
standard limiting distributions. This is in contrast with the IM-OLS approach of Vogelsang
and Wagner (2014) where the corresponding limiting distributions are nonstandard. A great
advantage of our approach is that critical values can be obtained from statistical tables and
software packages. There is no need to simulate nonstandard critical values.

Our asymptotic distributions are also in sharp contrast with the chi-squared (�2p=p) and
standard normal distributions. The latter distributions are the limits for the infeasible test
statistics. In fact, under the increasing-K asymptotics as developed in Phillips (2014), the latter
distributions are also the limits of the feasible statistics F (�̂TAOLS) and t(�̂TAOLS): So the
increasing-K asymptotics e¤ectively assumes that �20�x is known in large samples, and hence
completely ignores the estimation uncertainty in �̂20�x:

Let F�p;K�2d and �
�
p be the (1� �) quantiles from the standard Fp;K�2d and �2p distributions,

respectively. Then we can use the modi�ed F critical value K=(K � 2d)F�p;K�2d to carry out our
F test. This critical value is larger than the scaled chi-squared critical value ��p =p for two reasons.
First, F�p;K�2d > ��p because the F distribution Fp;K�2d has a random denominator as compared
to the corresponding chi-square distribution. Second, the multiplicative factor K=(K � 2d) is
greater than 1. The di¤erence between the two critical values depends on the value of K: It
can be quite large when K is small. However, as K increases, K=(K � 2d)F�p;K�2d approaches
��p =p. There is a smooth transition from a �xed-K critical value to the corresponding increasing-
K critical value. So the critical value K=(K � 2d)F�p;K�2d is asymptotically valid regardless of
whether K is held �xed or allowed to grow with the sample size. In this sense, K=(K�2d)F�p;K�2d
is a robust critical value.
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3.2 Model with a linear trend

In this subsection, we consider a more general version of (1) by including a time trend in the
cointegration model. The model is now given by

yt = x0t�0 + �0t+ u0t; (29)

xt = xt�1 + uxt:

De�ne Wtr
i = T�1=2

XT

t=1
�i(t=T )t for i = 1; :::;K and Wtr = (Wtr

1 ; :::;Wtr
K)

0: Then, the trans-

formed regression in (18) is naturally generalized to

Wy
i =W

x0
i �0 +W�x0

i �0 +Wtr
i �0 +W0�x

i for i = 1; :::;K: (30)

As we discussed before, an intercept can be included in (29) and (30) but our approach is as-
ymptotically invariant to location shifts. The TAOLS estimator for �0; �0 and �0 is now given
by �

�̂
0
TAOLS ; �̂

0
TAOLS ; �̂

0
OLS

�0
= ( ~W0

tr
~Wtr)

�1 ~W0
trWy; (31)

where ~Wtr =
�
Wx; W�x;Wtr

�
:

Let Ŵ0�x
i;tr = W

y
i �Wx0

i �̂TAOLS �W�x0
i �̂TAOLS �Wtr

i �̂OLS and (�̂
tr
0�x)

2 = K�1PK
i=1(Ŵ0�x

i;tr)
2:

Then we can construct the Wald statistic and t statistic as follows:

Ftr(�̂TAOLS) =
1

(�̂tr0�x)
2
(R�̂TAOLS � r)

�
R(Wx0M�x;trWx)�1R0

��1
(R�̂TAOLS � r)=p;

ttr(�̂TAOLS) =
R�̂TAOLS � rq

(�̂tr0�x)
2R(Wx0M�x;trWx)�1R0

;

where M�x;tr = IK �W�x;tr

�
W0
�x;trW�x;tr

��1
W0
�x;tr and W�x;tr =

�
W�x;Wtr

�
:

Theorem 4 Let Assumptions 1 and 2 hold. Assume that a :=
�R 1
0 �1 (r) rdr; ::::;

R 1
0 �K (r) rdr

�0
6=

0: Under the �xed-K asymptotics, we have (i)

�T;tr

0@ �̂TAOLS � �0
�̂TAOLS � �0
�̂TAOLS � �0

1A)

0B@ �0�x

�1=2
xx (�0M�;a�)

�1 �0M�;a�

�0�x

�1=2
xx

�
�0M�;a�

��1
�0M�;a�

�0�x (a0M�;�a)
�1 a0M�;��

1CA ; (32)

where

�T;tr =

�
�T 0

0 T 3=2

�
;

and M� is the project matrix projecting onto the orthogonal complement of the column space of
�:

(ii)

Ftr(�̂TAOLS))
K

K � 2d� 1Fp;K�2d�1 and ttr(�̂TAOLS))
r

K

K � 2d� 1 t(K � 2d� 1): (33)
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Theorem 4(ii) is entirely analogous to Theorem 3. The e¤ect of having an additional trend
regressorWTr

i is re�ected by the adjustment in the multiplicative correction factor and the degrees
of freedom in the F and t distributions.

The asymptotic F and t limit theory resembles those in the classical linear normal regressions
(CLNR) with K iid observations. The multiplicative correction is a type of degrees-of-freedom
correction. Had we followed the standard practice in the CLNR and de�ne

(�̂0�x)
2 =

1

K � 2d

KX
i=1

(Ŵ0�x
i )2 and (�̂tr0�x)

2 =
1

K � 2d� 1

KX
i=1

(Ŵ0�x
i;tr)

2; (34)

we would not have to make the multiplicative correction. That is, the Wald statistic will be
asymptotically F distributed, and the t statistic will be asymptotically t distributed.

Observing that we compute the standard error of the TAOLS estimator as if the errors in the
transformed regression are homoskedastic, which does hold in large samples, our Wald statistic
Ftr(�̂TAOLS) with (34) as the error variance estimator is numerically identical to the F statistic
based on the residual sum of squares under the restricted and unrestricted models. So we can
obtain Ftr(�̂TAOLS) (and ttr(�̂TAOLS)) from the output of any simple and very basic regression
program as long as it works at least for the CLNR with homoskedastic errors. The only step that
we have to take is to get the data into the transformed form. A cautionary note is that we do
not include the intercept in the transformed and augmented regression.

If instead of a linear trend we have the polynomial trends (t; t2; :::; tg); then the same proof
of Theorem 4 can be invoked to show that

Ftr(�̂TAOLS))
K

K � 2d� gFp;K�2d�g and ttr(�̂TAOLS))

s
K

K � 2d� g t(K � 2d� g); (35)

where 2d+ g is now the number of parameters to be estimated.
As a by-product, we can perform the endogeneity test, i.e., a test of whether �0 = 0; in exactly

the same way as if the transformed regression is a CLNR. This can be justi�ed asymptotically
using the same argument for Theorem 3 or 4.

3.3 Selecting the number of basis functions

In principle, we can use any �nite number of orthonormal basis functions satisfying Assumption
1 in our �xed-K framework. However, Proposition 2 indicates that a larger K leads to a more
e¢ cient estimator. On the other hand, when K is too large, the TAOLS estimator will su¤er
from the asymptotic bias that is not captured by the �xed-K asymptotics. For example, if we
set K equal to the sample size, which is the upper bound for K; the TAOLS estimator will be
the same as the augmented OLS estimator which su¤ers from the second order asymptotic bias.
So there is an opportunity to select K to trade-o¤ the variance e¤ect with the bias e¤ect.

A direct approach to data-driven choice of K is to �rst develop a high order expansion of
�̂TAOLS from which we obtain the approximate mean squared error (AMSE) of �̂TAOLS and then
select K to minimize AMSE(�̂TAOLS): For hypothesis testing, a direct approach is to derive the
optimal choice of K that minimizes the Type II error of our proposed Wald test or t test subject
to a control of the Type I error. The direct approaches are ambitious. Phillips (2014) discusses
some of the technical challenges behind the direct approaches. We leave them for future research.

An indirect approach that appears to work well is based on the bias and variance of the LRV
estimator. Following a large literature on LRV estimation, Phillips (2005) proposes to select K
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by minimizing the AMSE of 
̂ de�ned in (8). In the present setting, we have


̂ =
1

K

KX
i=1

�
Ŵu
i

��
Ŵu
i

�0
for Ŵu

i =
1p
T

TX
t=1

ût�i(
t

T
)

where ût = (yt � xt�̂OLS ;�x
0
t)
0 or ût = (yt � xt�̂OLS � �̂OLSt;�x

0
t)
0 depending on whether a

linear trend is present or not. Suppose that we use the cosine and sine basis functions:np
2 cos 2j�r;

p
2 sin 2j�r; j = 1; :::;K=2

o
: (36)

Then the AMSE-optimal K� is given by

K�
MSE =

&�
tr(Im2 +Kmm)(

 
)
4vec (B)0 vec (B)

�1=5
T 4=5

'

for B = ��
2

6

1X
h=�1

h2�u(h); �u(h) = Eutu
0
t�h (37)

where Kmm is the m2 �m2 commutation matrix and Im2 is the m2 �m2 identity matrix.
Recall that K has to be large enough to ensure the consistency of the TAOLS estimator and

the associated tests. Suppose that we are interested in testing the signi�cance of all regressors in
the TA regression without a trend. Then the limiting distribution of the Wald statistic is the F
distribution with the denominator degrees of freedom K � 2d. For this F distribution to have a
�nite variance, we require K � 2d � 5; i.e., K � 2d + 5: So in �nite samples, it is reasonable to
set K equal to K�

MSE;c with

K�
MSE;c = max(2d+ 5;K

�
MSE): (38)

When a linear trend is included, we make an obvious adjustment and set K equal to the following
K�
MSE;c:

K�
MSE;c = max(2d+ 6;K

�
MSE):

There is another reason to avoid a large K. Cointegration is fundamentally a long run
relationship. To estimate the cointegrating vector, we should employ a regression that uses only
the long run variation of the underlying variables. The short run variation can help only when the
short run relationship coincides with the long run relationship. If the two types of relationships
di¤er from each other, then going beyond a reasonable value of K runs the risk of being struck
by short run contaminations. A trade-o¤ between the asymptotic e¢ ciency and robustness with
respect to short run contaminations leads us to consider a moderate K value.

Under the cosine and sine basis functions given in (36), the transformed data consist of the real
and imaginary parts of the Discrete Fourier Transforms (DFT) of the original data. In this case,
a useful rule of thumb choice is provided in Müller (2014) and Müller and Watson (2013). These
papers propose to select a K value to re�ect business cycle frequencies or below. For example,
with T = 64 years of post-World-War-II macro data, the choice of K = 16 value captures the
long run movements of macro data lower than the commonly accepted business cycle period of
T= (K=2) = 8 years.
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4 Cointegration Analysis with Cosine Bases

4.1 Model without time trend

We go back to the model without an intercept and time trend, i.e., the model in (18); but we
drop the augmented term in (19) and consider the following equation

Wy
i =W

x0
i �0 +W0

i (39)

where by de�nition

W0
i =W�x0

i �0 +W0�x
i =

1p
T

TX
t=1

u0t�i

�
t

T

�
:

De�ne the transformed OLS (TOLS) estimator �̂TOLS to be

�̂TOLS =
�
Wx0Wx

��1Wx0Wy: (40)

In general, dropping W�x
i in (19) will lead to an omitted variable bias unless the correlation

between W�x and Wx is zero. The zero correlation is ensured by the following assumption.

Assumption 3 The basis functions satisfy
R 1
0 	i(r)�j (r) dr = 0 with 	i(r) =

R r
0 �i (s) ds for

i; j = 1; :::;K:

Recall that

Wx
i

T
) 
1=2xx

Z 1

0
�i(r)Wx(r)dr = �
1=2xx

Z 1

0
	i(r)dWx (r) ;

W0
j ) �0�x

Z 1

0
�j (r) dw0(r) + �0x


�1=2
xx

Z 1

0
�j(r)dWx (r) ; (41)

for i; j = 1; :::;K where w0 (r) and Wx(r) are independent Brownian motion processes. The
asymptotic distribution of (Wx

i =T;W0
j ) is jointly normal with covariance

cov
�Z 1

0
�i(r)Bx(r)dr;

Z 1

0
�j(r)dB0(r)dr

�
= �
1=2xx

�Z 1

0
	i(r)�j (r) dr

�

�1=2xx �x0:

Thus, T�1Wx
i andW�x

j are asymptotically independent if the basis functions satisfy Assumption
3.

Lemma 5 The cosine functions

�cj(r) =
p
2 cos (2j�r) for j = 1; :::;K (42)

satisfy Assumptions 1 and 3.

The lemma not only shows that Assumption 3 can hold but also gives the set of simple and
commonly-used cosine functions as an example. Although there may be other functions that
satisfy Assumption 3, we have the cosine functions in mind when developing the asymptotic
results in this section. We are not aware of other commonly-used basis functions that also satisfy
Assumption 3.
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Theorem 6 Consider the model in (18). Let Assumptions 1�3 hold. Under the �xed-K asymp-
totics, we have

T (�̂TOLS � �0))MN
�
0; �20


�1=2
xx (�0�)�1
�1=2xx

�
:

It is interesting to see that the transformed OLS estimator is asymptotically unbiased and
mixed normal. To some extent, the use of the special basis functions such as the cosine functions
kills two birds with one stone. There is no need to augment the original regression in order to
achieve the asymptotic mixed normality.

Given the mixed normality of the limiting distribution, it is reasonable to make inference
based on �̂TOLS : The Wald statistic and t statistic are

Fc(�̂TOLS) =
1

(�̂c0)
2 (R�̂TOLS � r)

0
h
R
�
Wx0Wx

��1
R0
i�1

(R�̂TOLS � r)=p; (43)

tc(�̂TOLS) =
R�̂TOLS � r

�̂c0

q
R (Wx0Wx)�1R0

; (44)

where

(�̂c0)
2 =

1

K

KX
i=1

�
Ŵ0
ci

�2
where Ŵ0

ci =W
y
i �W

x0
i �̂TOLS :

Following a proof similar to that of Theorem 3, we can show that

Fc(�̂TOLS))
K

K � d � Fp;K�d and tc(�̂TOLS))
r

K

K � d � t(K � d):

The above results are clearly analogous to the well-known results in a CLNR with K iid obser-
vations and d regressors.

4.2 Model with a linear trend

We consider the cointegration system with a linear trend as given in (29). Dropping the regressors
W�x
i and Wtr

i in (30), we obtain

Wy
i =W

x0
i �0 +

�
Wtr
i �0 +W0

i

�
for i = 1; :::;K (45)

whereWtr
i �0+W0

i =Wtr
i �0+W�x0

i �0+W0�x
i is the composite error. In general, the transformed

OLS estimator obtained by regressing Wy
i on Wx

i is not consistent even if cosine transforms are
used. The reason is that the composite error is not mean zero and is correlated with the included
regressor. In fact,

Wtr
i =

p
2p
T

TX
t=1

t cos(
2�it

T
) = T

p
2T

"
1

T

TX
t=1

t

T
cos(

2�it

T
)

#

= T
p
2T

�Z 1

0
r cos (2�ir) dr +O

�
1

T

��
= O(

p
T ) (46)

using
R 1
0 r cos (2�ir) dr = 0: So the composite error grows with the sample size at the rate of

p
T ,

and as a result the transformed OLS estimator obtained in the absence of the trend term is not
consistent.

16



A simple way to �x this problem is to use shifted cosine transforms. Let

�cT i(r) = �ci (r �
1

2T
) =

p
2 cos

�
2�i(r � 1

2T
)

�
for i = 1; :::;K (47)

be the �nite sample shifted version of f�ci (r)g
K
i=1

2: We de�ne

�Wv
i =

1p
T

TX
t=1

vt�
c
T i

�
t

T

�
for v = y; x; �x and (48)

�Wtr
i =

1p
T

TX
t=1

t�cT i

�
t

T

�
; �W0

i =
1p
T

TX
t=1

u0t�
c
T i

�
t

T

�
: (49)

It follows from Lemma 8 in Bierens (1997) that �Wtr
i = 0 for any i = 1; :::;K. Also, it is easy

to show that T�1=2
PT
t=1 �

c
T i (t=T ) = 0 for all i = 1; :::;K: So utilizing f�cT i (r)gKi=1 as the basis

functions �lters out both the intercept and linear trend in the original equation (29)3: As a result,
we have

�Wy
i =

�Wx0
i �0 +

�W0
i for i = 1; :::;K: (50)

On the basis of this equation, the transformed OLS estimator of �0 is given by

�̂TOLS =
�
�Wx0 �Wx

��1
�Wx0 �Wy.

In view of �cT i(r) = �ci (r) +O(1=T ) uniformly for r 2 [0; 1], we have

�Wx
i ) 
1=2xx �i

d
= 
1=2xx

Z 1

0
�ci (r)Wx(r)dr;

�W�x
j ) 
1=2xx �j

d
= 
1=2xx

Z 1

0
�cj (r) dWx(r); (51)

for i; j = 1; :::;K; and �Wx
i and �W�x

j are asymptotically independent. Using these and the same
proof for Theorem 6, we can prove the theorem below.

Theorem 7 Consider the model in (29). Let Assumptions 1 and 2 hold. Suppose that the shifted
cosine transforms are used. Then under the �xed-K asymptotics,

T (�̂TOLS � �0))MN
�
0; �20


�1=2
xx (�0�)�1
�1=2xx

�
:

It follows from the theorem and the arguments similar to the proof of Theorem 3 that

Fc(�̂TOLS))
K

K � d � Fp;K�d and tc(�̂TOLS))
r

K

K � d � t(K � d); (52)

where Fc(�̂TOLS) and tc(�̂TOLS) are de�ned in the same way as in (43) and (44).

2The cosine weight functions �cTi (t=T ) are known as Chebishev time polynomials of even orders. See Hamming
(1973) for details. Bierens (1997) shows that the cosine basis functions enjoy a certain optimality property for
hypothesis testing.

3Sun (2011) also uses the cosine basis functions in OS LRV estimation in order to achieve invariance with respect
to the intercept and linear trend.
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For a cointegration model without a trend, it is not hard to show that Theorem 6 and
the asymptotic results for the test statistics thereafter remain the same if we use the shifted
cosine transforms in place of the original cosine transforms. That is, for a cointegration model
without a trend, it does not matter asymptotically whether the shifted cosine transforms or
the original cosine transforms are employed. However, the shifted cosine transforms lead to the
TOLS estimator that is invariant to the presence of a linear trend. This is a nice property that
is not enjoyed by the original cosine transforms. For this reason, the shifted cosine transforms
are preferred over the original cosine transforms.

4.3 Augment or not: asymptotic e¢ ciency comparison

Suppose that we use the shifted cosine transforms. Regardless of whether there is a linear time
trend, we have two di¤erent estimators of �0, both of which are asymptotically mixed normal.
The �rst one is the TAOLS estimator and the second one is the TOLS estimator. The di¤erence
is whether the underlying regression is augmented or not. In this subsection, we address the
relative e¢ ciency of the two estimators.

For the model without a time trend, it follows from (22) and Theorem 6 that the asymptotic
variances of �̂TAOLS and �̂TOLS conditioning on (�; �) are

VTAOLS = �20�x

�1=2
xx (�0M��)

�1
�1=2xx ; (53)

VTOLS = �20

�1=2
xx (�0�)�1
�1=2xx ; (54)

where we call that � = (�1; :::; �K)
0 ; � = (�1; :::; �K)

0 ; �i =
R
�ci (r)Wx(r)dr and �i =

R
�ci (r) dWx(r):

For the model with a linear time trend, we know that a = 0 in Theorem 4. So no trans-
formed time trend can be included in the transformed and augmented regression. In this
case, we can follow the same proof of Theorem 4 and show that the asymptotic variance of
�̂TAOLS is �

2
0�x


�1=2
xx (�0M��)

�1

�1=2
xx : On the other hand, the asymptotic variance of �̂TOLS is

�20

�1=2
xx (�0�)�1


�1=2
xx as indicated by Theorem 7. That is, the asymptotic variance formulae in

(53) and (54) hold regardless of whether a linear trend is included in the model or not.
For any conforming vector c 2 Rd; we have

c0(V �1TAOLS � V
�1
TOLS)c

=
c0


1=2
xx

�0�x
(�0M�� �

�20�x
�20

�0�)


1=2
xx c

�0�x

=
c0


1=2
xx

�0�x

�
�0 (IK � P�) � �

�
�20 � �0x
�1xx�x0

�20

�
�0�

�


1=2
xx c

�0�x

=
c0


1=2
xx �0

�0�x

�
IK �

�
�0x


�1
xx�x0
�20

�
� P�

�
�


1=2
xx c

�0�x

= ~c0
�
IK � %2 � P�

�
~c (55)

where ~c = �

1=2
xx c=�0�x, P� = �(�0�)�1�0; and

%2 =
�0x


�1
xx�x0
�20

= argmax
`

�
`0�x0p
`0
xx`�0

�2
2 [0; 1]: (56)

By de�nition, %2 is the squared long run canonical correlation coe¢ cient between u0t and uxt:
If %2 = 0, then c0(V �1TAOLS � V �1TOLS)c = �~c0P�~c � 0 almost surely: In this case, the asymptotic
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variance of �̂TAOLS is always larger than the asymptotic variance of �̂TOLS : Intuitively, when
the long run canonical correlation between u0t and uxt is zero, including the additional regressor
W�x will not help reduce the size of the error term in the transformed regression. However, the
presence of W�x reduces the strength of the signal in Wx even though they are asymptotically
independent. That is why �̂TAOLS is asymptotically less e¢ cient. On the other hand, when
%2 = 1; which holds if the long run variation of u0t can be perfectly predicted by uxt; we have
c0(V �1TAOLS � V �1TOLS)c = ~c0 (IK � P�) ~c � 0 almost surely. In this case, the bene�t of including
the additional regressor W�x outweighs the cost, and it is worthwhile to include W�x to get the
asymptotically more e¢ cient estimator �̂TAOLS :

There are many scenarios between these two extreme cases. Whether the asymptotic distri-
bution of �̂TAOLS has a larger variance than that of �̂TOLS depends on the value of %

2:

Proposition 8 If %2 � d=K, then �̂TAOLS has a smaller asymptotic variance than �̂TOLS ; i.e.,
asymvar(�̂TAOLS)� asymvar(�̂TAOLS) is negative semide�nite. Otherwise, �̂TAOLS has a larger
asymptotic variance than �̂TOLS :

4.4 AMSE Rule

For the cosine basis function f
p
2 cos 2i�rgKi=1 we can follow Phillips (2005) and Sun (2011) and

show that the AMSE-optimal K� is given by

Kc�
MSE =

&�
1

16

tr(Im2 +Kmm)(

 
)
4vec (B)0 vec (B)

�1=5
T 4=5

'

'
�
1

16

�1=5
K�
MSE = K�

MSE(0:57) (57)

whereK�
MSE is the AMSE-optimalK given in (37) for the basis functions given in (36). Following

the same argument for (38), we recommend making an adjustment in �nite samples and set K
equal to max (Kc�

MSE ; d+ 5) :
Given the smaller choice ofK, the use of cosine basis functions rather than the complete cosine

and sine basis functions may lead to a less e¢ cient estimator of �0. However, the cosine basis
functions enjoy two advantages that the complete basis functions do not. First, it automatically
�lters out the time trend regressor so that we do not have to worry about the estimation error in
trend extraction. Second, the use of cosine basis function renders it unnecessary in some scenarios
to include the �rst di¤erence regressor in the regression and thus saves some degrees of freedom.
These two advantages may o¤set the e¢ ciency loss from having to select a smaller K:

5 Simulation Study

5.1 DGP without time trend

We compare the �nite sample performance of our method with several existing methods in the
literature. Our �rst DGP is a cointegration regression model without a time trend. We follow
Phillips (2014) and consider:

yt = �0 + x
0
t�0 + u0t

xt = xt�1 + uxt
; ut =

�
u0t
uxt

�
= �ut�1 + �t (58)
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where

�t =

�
�0t
�xt

�
� i.i.d N (0;�) ; � = � � Id+1, � = Jd+1;d+1 � '+ Id+1 � (1� ')

and Jp;q is the p � q matrix of ones. The parameter � controls the persistence of individual
components in ut = (u0t; u

0
xt)

0 2 Rd+1 and the second parameter ' characterizes comovements
among the components of ut: The dimension d of xt is set to be 2, and the true coe¢ cients are
set to be �0 = 3 and �0 = (1; 1)

0:
We are interested in testing H0 : �0 = (1; 1)

0 vs H1 : �0 6= (1; 1)0: We consider the Wald type
of tests based on four di¤erent estimators: the FM-OLS estimator of Phillips and Hansen (1990),
the TIV estimator of Phillips (2014), the IM-OLS estimator by Vogelsang and Wagner (2014), and
the TAOLS estimator proposed in this paper. The �rst two tests employ the increasing-smoothing
asymptotic approximation and use chi-square critical values. The IM-OLS test employs the �xed-
b asymptotic approximation with simulated critical values4. The TAOLS test employs the �xed-K
asymptotic approximation and scaled standard F critical values.

For the FM-OLS and IM-OLS methods, we consider the Bartlett, Parzen and Quadratic
Spectral kernels with the smoothing parameter b selected by the data-driven method given in
Andrews (1991). The plug-in model used is the VAR(1). For the TIV and TAOLS estimators, we
consider the cosine and sine basis functions given in (36) with K selected based on the formula
in (37). The results reported here are obtained without making the adjustment given in (38).
However, the lower bound of K � 2d+ 1 is imposed.

Figures 1 and 2 and Table 1 report the empirical size of di¤erent tests for

� 2 f0:05; 0:20; 0:35; 0:50; 0:70; 0:90g and ' = 0:75:

The empirical size is computed using 10,000 simulation replications. The nominal size of all tests
is 5%. Table 2 reports the average of the data-driven smoothing parameters. It is clear that, for all
values for � and sample sizes T 2 f100; 200g; the TAOLS test with F critical values outperforms
all other tests by a large margin. For example, when � = 0:9 and T = 200; the empirical size of
the tests based on the FM-OLS (Bartlett), IM-OLS (Bartlett) and TIV estimators is reported to
be as high as 74%, 35% and 72%, respectively: There is some reduction in size distortion when
other kernels are employed for the FM-OLS and IM-OLS methods: 45% for FM-OLS (QS) and
17% for IM-OLS (QS), but the size distortion is still substantial. In contrast, our proposed F
test has either no size distortion or small size distortion. Simulation results not reported here
show that using the F critical values can also dramatically reduce the size distortion of the TIV
test. Our �ndings are consistent with the literature on heteroskedasticity and autocorrelation
robust (HAR) inference such as Sun (2013, 2014a), Sun, Phillips, and Jin (2008), and Kiefer and
Vogelsang (2005) which provide theoretical justi�cations and simulation evidence on the accuracy
of the �xed-smoothing approximations.

Next, we investigate the �nite sample power of each procedure. The power is size-adjusted
so that the comparison is meaningful. The DGP�s are the same except that the parameters of
interest are from the local alternative hypothesis � = �0+ �=T . The choice rules for K and b are
also the same as before. Each power curve is drawn against k�k, which measures the magnitude
of the local departure. Figures 3�6 present the size-adjusted power curve of each procedure for

4 In our simulation, we use the simulated critical values reported by Vogelsang and Wagner (2014) in their
supplementary materials.
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� 2 f0:35; 0:50; 0:70; 0:90g, ' = 0:75 and T = 100; 200: The results are brie�y summarized as
follows.

First, the FM-OLS test with second-order kernels such as Parzen and QS kernels yields
the highest power under all DGP�s we consider. The TAOLS method outperforms the IM-OLS
method when � = 0:35 and 0:50; but it starts to under-perform the IM-OLS when the dependence
becomes strong, i.e., � = 0:75 and 0:90: It is not surprising that the FM-OLS method achieves
higher power because it e¤ectively uses both low and high frequency components to estimate the
cointegrating vector with modi�cation only in the second stage. However, the FM-OLS method
can be fragile if there are high frequency contaminations. In addition, the FM-OLS test has very
large size distortion. For example, for T = 200; the empirical size of the FM-OLS test with the
QS kernel is 26% when � = 0:75. It increases to 45% when � = 0:90:

Second, the power of the TAOLS test is lower especially when the dependence is strong such
as � = 0:75 and 0:90: This can be explained by the small K values selected by the AMSE rule.
According to Table 2, the average values of K�s are 7.12 (� = 0:75) and 6.00 (� = 0:90) which
are very close to the lower bound of the admissible values for K5. So, even though using a small
K gives us very successful size control in �nite samples, there is a power loss.

Third, Figures 7 and 8 show that the power of the TAOLS test increases, as K increases. The
power starts to dominate that of the FM-OLS method as K crosses some threshold value. For
example, when � = 0:75, with K = 24 the power of the TAOLS test is slightly higher than that
of the FM-OLS (QS) test. When � = 0:90; the TAOLS test becomes more powerful than the
FM-OLS test when K increases to 10; which is close to the lower bound of 2d+ 5 given in (38).
There is always a trade-o¤ between power improvement and size distortion. Simulation results
not reported here show that the empirical size of the TAOLS test under � = 0:90 increases from
6% to 10% when K increases from 6 to 10. That is, had we used the adjusted formula in (38),
we would have obtained a test that is as nearly powerful as the FM-OLS test. The cost of doing
so is the increase of size distortion ranging from 1 percentage point to 5 percentage points. This
is a relatively small cost comparing with the size distortion of 40% for the FM-OLS(QS) test.

To sum up, when we use the data-driven K given in (37), the TAOLS-based F test is remark-
ably accurate. It is much more accurate than the FM-OLS and TIV tests that use the chi-square
approximation. It is more accurate than the IM-OLS test, which also uses a �xed-smoothing
approximation. However, the size accuracy is achieved at the cost of some power loss, espe-
cially when the process is highly autocorrelated. When we use the adjusted K given in (38), the
TAOLS-based F test becomes as powerful as the FM-OLS test, but there is some sacri�ce in size
accuracy. However, the size distortion is still much lower than that of the FM-OLS chi-square
test. Depending on our tolerance towards size distortion, we may use either (37) or (38) to select
K.

5.2 DGP with a time trend

The second data generating process generalizes (58) by including a linear time trend:

yt = �0 + �0t+ x
0
t�0 + u0t

xt = xt�1 + uxt

5 It follows from Theorem 3 that K has to be larger than 2d+ 1, which is 5 in the present setting.
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where the true parameters are (�0; �0; �
0
0) = (3; 0:05; 1; 1): We �x � at 0:75 and consider %2 2

f0:05; 0:20; 0:35; 0:50; 0:75; 0:90g: It is straightforward to obtain the LRV 
 of ut as


 = (I ��)�1� (I ��)�10 =
�

1

1� �

�2
� �

=

�
1

1� �

�2
�
�

1 ' � J1;d
' � Jd;1 Jd;d � '+ Id � (1� ')

�
: (59)

It then follows that

%2 =
d'2

1 + ' (d� 1) :

From the above formula, we can back out the value of ' that produces the desired value of %2.
As before, we compare the performances of various Wald type tests. For the FM-OLS, IM-OLS

and TAOLS methods, we consider the same tests as in the previous subsection except that we
take the linear trend into account. We also consider the shifted cosine transforms, leading to the
TAOLS-C and TOLS-C estimators and the corresponding tests where the underlying transformed
regressions do not include a trend term.

Table 3 and Figures 9 and 10 report the empirical size of each test. We observe the dominating
�nite sample performances of TAOLS, TOLS-C and TAOLS-C compared to other testing methods
such as FM-OLS and IM-OLS. The decent performances of TAOLS-C and TOLS-C methods
indicate that the shifted cosine transforms successfully �lter out the linear trend and remove the
endogeneity bias.

Figure 11 compares the �nite sample power performances of TAOLS-C and TOLS-C when
T = 200. The simulation evidence is consistent with our theoretical results in Section 4.3: as
%2 decreases, the e¢ ciency of TAOLS-C relative to TOLS-C decreases. So, the power curves of
TOLS-C and TAOLS-C cross each other at a certain value %2 2 (0; 1).

6 Conclusion

This paper provides a simple, robust and more accurate approach to parameter estimation and
inference in a triangular cointegrating system. Cointegration is fundamentally a long run rela-
tionship. Our approach echoes this key observation by focusing only on data transformations
that capture the long run variation and covariation of the underlying time series. In this respect,
our approach resembles the frequency domain approach that uses only low-frequency informa-
tion, but it avoids the complications of frequency domain techniques. From a practical point of
view, our approach enjoys two major advantages. First, the more accurate approximations we
derived under the so-call �xed-K asymptotics are the standard F and t distributions. Second,
test statistics can be obtained from the usual regression output. So our asymptotic F and t tests
are just as easy to implement as the F and t tests in a classical linear normal regression. A
simulation study shows that our tests are much more accurate than the chi-square tests.

A key open question is how to select the number of basis functions. While we have suggested
a data-driven approach, it does not directly target at the problem under consideration. It will
be interesting to select the number of basis functions to minimize the approximate mean squared
error of the point estimator of the cointegration vector. If we are interested in interval estimation
or hypothesis testing, then the number of basis functions should be oriented at optimizing the
underlying objects such as the coverage probability error, the interval length, and the type I and
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type II errors. There may also be room to select optimal basis functions. We hope to address
some of these questions in future research.

7 Appendix of Proofs

Proof of Theorem 1. By the de�nition of ̂TAOLS and �T ; we have

�T (̂TAOLS � 0) = (��1T ~W0 ~W��1T )
�1��1T

~W0W0�x: (60)

Note that ~W��1T =
�
Wx=T , W�x

�
where

Wx=T = (Wx
1=T; :::;Wx
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By Assumption 1 and the continuous mapping theorem,
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1=2xx �i; (61)

and
1p
T
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t=1

�j(
t

T
)uxt ) 
1=2xx

�Z 1

0
�j(r)dWx(r)

�
:= 
1=2xx �j ; (62)

hold jointly over i; j = 1; :::;K: So

Wx=T ) (
1=2xx �
0)0 and W�x ) (
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0)0;
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Similarly, we have

W0�x =
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) (�0�x�1; �0�x�2; :::; �0�x�K)
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where � = [�1; :::; �K ]0 � N(0; IK). The above convergence holds jointly with (63), i.e.,�
~W��1T ;W0�x

�
)
�
~�; ~�
�
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�
�
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Using this result, we have

�T (̂TAOLS � 0) = (��1T ~W0 ~W��1T )
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The weak limit can be written more explicitly as
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So the representations in (22) and (23) hold.

Proof of of Proposition 2. Part (i): By Lemma A in Section 6 of Phillips (2005), we have
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)

for any �xed K. Then, it is straightforward to show that
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where U0�x = (u0�x;1; :::; u0�x;T )0 and S� = P� � P��X(�X 0P��X)
�1�X 0P�: Note that

S� = �

(�
��0

��1 � ���0��1 �0�Xp
T

��
�X 0�p

T

��
��0

��1��0�Xp
T

���1 �X 0�p
T

�
��0

��1)
�0

= �
n
IK +O

�
T�1

�
�
�
IK +O

�
T�1

��
W�x

�
W�x0 �IK +O �T�1��W�x

	�1W�x0 �IK +O �T�1��o�0
= �(IK � P�x) �0 + op(1);

we have

X 0

T 3=2
S�

X

T 3=2
=
X 0�

T 3=2
(IK � P�x + op(1))

�0X

T 3=2

=
Wx0

T
(IK � P�x)

Wx

T
+ op(1);

and

X 0

T 3=2
S�

U0�x

T 1=2
=

�
X 0�

T 3=2

�0
(IK � P�x + op(1))

�0U0�xp
T

=
Wx0

T
(IK � P�x)W0�x + op(1): (68)

Combining these two representations and using Theorem 1, we have
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Part (ii): For any conformable vector c and � 2 R; we have
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where G(�) is the cdf of the standard normal distribution. Note that
R 1
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de�nite with probability one. By the de�nition of weak convergence and the continuous mapping
theorem, it su¢ ces to show that
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for any f 2 L20[0; 1] as K !1 where k�kL2 is the L2 norm. But
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where the last equality follows from the result that �i
i:i:d� N(0; Id) for i = 1; :::;K. For the termPK
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As a result, we have
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as K !1: In view of the mean and variance orders, we have
PK
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i = Op (1). It then follows

that
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Combining (70) and (74) yields

�0M�� = �0� � �0P�� = �0� + op(1))
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as desired.

Proof of of Theorem 3. We prove only the result for the Wald statistic as the proof goes
through for the t statistic with obvious modi�cations. Using (65), we have
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we have
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where
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�
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�
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= �2p and �
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d
= �2K�2d:
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�
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So conditional on �; the numerator and the denominator in (76) are independent chi-square
variates. This implies that
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conditional on �: But the conditional distribution does not depend on the conditioning variable
�; so it is also the unconditional distribution. We have therefore proved that
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Proof of Theorem 4. We follow the same step as in the proof of Theorem 1. We consider
only Ftr(�̂TAOLS): The proof for ttr(�̂TAOLS) is similar.
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So part (i) of the theorem holds. In particular,
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Following the same steps in the proof of Theorem 3, we have (�̂tr0�x)
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Proof of Lemma 5. The cosine functions clearly satisfy Assumption 1. Note that
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satisfy Assumption 3.

Proof of Theorem 6. We have
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where the (i; j)th element of P� = �(�0�)�1�0 is
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So, we have E[pii] = E[pjj ], i.e., all the diagonal elements of E[P�] are same. In other words,
E[p11] = E[p22] = ::: = E[pKK ] = � for some �: This gives us
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= d

and so � = E[pii] = d=K for i = 1; :::;K: For the o¤-diagonal elements, we note that the
distribution of pi;j is symmetric around zero, which implies that E[pij ] = E[pji] = 0 for all i 6= j:
Therefore,
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and this immediately leads to the desired result.
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Figure 1: Empirical size of various tests for ' = 0:75 and T = 100:
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Figure 2: Empirical size of various tests for ' = 0:75 and T = 200:
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T = 100

TAOLS TIV FM-OLS IM-OLS
� DFT Bartlett Parzen QS Bartlett Parzen QS
0.05 0.0473 0.1629 0.1448 0.1572 0.1515 0.1051 0.0879 0.0988
0.20 0.0498 0.2161 0.1876 0.1776 0.1705 0.0986 0.0790 0.0813
0.35 0.0504 0.3017 0.2557 0.2044 0.1919 0.0821 0.0725 0.0749
0.50 0.0542 0.4809 0.3843 0.2451 0.2329 0.0758 0.0684 0.0669
0.75 0.0478 0.7153 0.6901 0.3955 0.3777 0.1389 0.0953 0.0756
0.90 0.0712 0.7520 0.7923 0.6220 0.6114 0.4349 0.1757 0.1017

T = 200

TAOLS TIV FM-OLS IM-OLS
� DFT Bartlett Parzen QS Bartlett Parzen QS
0.05 0.0472 0.0961 0.0981 0.1045 0.1028 0.0681 0.0779 0.0600
0.20 0.0532 0.1269 0.1299 0.1219 0.1162 0.0944 0.0813 0.0822
0.35 0.0529 0.1622 0.1704 0.1399 0.1332 0.0826 0.0721 0.0815
0.50 0.0534 0.2248 0.2629 0.1670 0.1594 0.0841 0.0738 0.0705
0.75 0.0560 0.5754 0.6183 0.2693 0.2571 0.1192 0.1012 0.0960
0.90 0.0603 0.7237 0.7371 0.4631 0.4494 0.3460 0.2226 0.1674

Table 1: Empirical size of various tests for ' = 0:75.

T = 100

TAOLS/TIV FM-OLS IM-OLS
� K Bartlett Parzen QS Bartlett Parzen QS
0.05 19.0040 0.0292 0.0556 0.0276 0.0289 0.0548 0.0272
0.20 14.2524 0.0543 0.0749 0.0372 0.0547 0.0747 0.0371
0.35 10.7156 0.1113 0.1015 0.0504 0.1123 0.1016 0.0505
0.50 8.0284 0.2461 0.1403 0.0697 0.2443 0.1396 0.0693
0.75 6.0310 0.8882 0.2796 0.1389 0.8775 0.2711 0.1347
0.90 6.0012 0.9983 0.5234 0.2611 0.9946 0.4966 0.2480

T = 200

TAOLS/TIV FM-OLS IM-OLS
� K Bartlett Parzen QS Bartlett Parzen QS
0.05 36.1384 0.0139 0.0283 0.0142 0.0138 0.0280 0.0140
0.20 25.6522 0.0250 0.0397 0.0197 0.0252 0.0398 0.0198
0.35 18.6720 0.0541 0.0550 0.0273 0.0548 0.0552 0.0274
0.50 13.5976 0.1257 0.0771 0.0383 0.1264 0.0772 0.0383
0.75 7.1238 0.7303 0.1603 0.0796 0.7267 0.1583 0.0786
0.90 6.0078 0.9997 0.3351 0.1664 0.9990 0.3219 0.1599

Table 2: Averages of the data-driven smoothing parameters K and b for ' = 0:75.
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Figure 3: Size-adjusted power curves at � = 0:35; ' = 0:75 and T = 200:
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Figure 4: Size-adjusted power curves at � = 0:50; ' = 0:75 and T = 200:
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Figure 5: Size-adjusted power curves at � = 0:75; ' = 0:75 and T = 200:
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Figure 6: Size-adjusted power curves at � = 0:90; ' = 0:75 and T = 200:
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Figure 7: Size-adjusted power curves at � = 0:75; ' = 0:75 and T = 200 with K values between
8 � 36.
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Figure 8: Size-adjusted power curves at � = 0:90; ' = 0:75 and T = 200 with K values between
6 � 18.
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T = 100
TAOLS TOLS FM-OLS IM-OLS

%2 DFT Cosine Cosine Bartlett QS Bartlett QS
0.05 0.0554 0.0586 0.0795 0.8011 0.4374 0.2816 0.1182
0.20 0.0507 0.0564 0.0822 0.7992 0.4189 0.2733 0.1182
0.35 0.0518 0.0580 0.0763 0.7911 0.4143 0.2481 0.0941
0.50 0.0499 0.0633 0.0846 0.7902 0.4071 0.2283 0.0845
0.75 0.0521 0.0662 0.0839 0.7551 0.3473 0.1749 0.0709
0.90 0.0514 0.0632 0.0830 0.6894 0.2795 0.0899 0.0668

T = 200
TAOLS TOLS FM-OLS IM-OLS

%2 DFT Cosine Cosine Bartlett QS Bartlett QS
0.05 0.0556 0.0527 0.0597 0.6760 0.2524 0.1839 0.1133
0.20 0.0549 0.0545 0.0577 0.6772 0.2657 0.1846 0.1122
0.35 0.0524 0.0522 0.0623 0.6862 0.2617 0.1667 0.1056
0.50 0.0502 0.0524 0.0587 0.6846 0.2582 0.1565 0.1021
0.75 0.0502 0.0517 0.0546 0.6800 0.2356 0.1106 0.0892
0.90 0.0491 0.0514 0.0632 0.6469 0.1911 0.0711 0.0927

Table 3: Empirical size of various tests in the cointegration model with a linear time trend and
� = 0:75:

T = 100
DFT Cosine FM-OLS IM-OLS

%2 K K Bartlett QS Bartlett QS
0.05 6.0916 6.0000 0.7713 0.1232 0.8092 0.1282
0.20 6.0606 6.0002 0.8014 0.1273 0.8317 0.1313
0.35 6.0414 6.0000 0.8255 0.1314 0.8483 0.1333
0.50 6.0336 6.0000 0.8567 0.1358 0.8622 0.1346
0.75 6.0534 6.0000 0.8801 0.1373 0.8342 0.1277
0.90 6.2974 6.0092 0.8177 0.1260 0.7084 0.1105

T = 200
DFT Cosine FM-OLS IM-OLS

%2 K K Bartlett QS Bartlett QS
0.05 8.2486 6.0372 0.4947 0.0670 0.5292 0.0684
0.20 7.9748 6.0184 0.5403 0.0697 0.5711 0.0710
0.35 7.6838 6.0136 0.5928 0.0726 0.6173 0.0736
0.50 7.4500 6.0100 0.6451 0.0754 0.6571 0.0756
0.75 7.0746 6.0080 0.7548 0.0808 0.7233 0.0778
0.90 7.4216 6.0984 0.7596 0.0786 0.6650 0.0717

Table 4: The averages of K and b selected by the AMSE rule in the cointegration model with a
linear time trend and � = 0:75:
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Figure 9: Empirical size of various tests for the cointegration model with a linear trend for
� = 0:75 and T = 100:
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Figure 10: Empirical size of various tests for the cointegration model with a linear trend for
� = 0:75 and T = 200:
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Figure 11: Size-adjusted power curves of the TAOLS-C and TOLS-C F tests and other tests with
%2 2 f0:05; 0:20; 0:35; 0:50; 0:75; 0:90g, � = 0:75 and T = 200.
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