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Abstract

Fiber-reinforced ceramic-matrix composites are advanced materi-
als resistant to high temperatures, with application to aerospace engi-
neering. Their analysis depends on the detection of embedded fibers,
with semi-supervised techniques usually employed to separate fibers
within the fiber beds. Here we present an open computational pipeline
to detect fibers in ex-situ X-ray computed tomography fiber beds. To
separate the fibers in these samples, we tested four different archi-
tectures of fully convolutional neural networks. When comparing our
neural network approach to a semi-supervised one, we obtained Dice
and Matthews coefficients greater than 92.28 ± 9.65%, reaching up
to 98.42 ± 0.03%, showing that the network results are close to the
human-supervised ones in these fiber beds, in some cases separating
fibers that human-curated algorithms could not find. The software we
generated in this project is open source, released under a permissive
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license, and can be freely adapted and re-used in other domains. All
data and instructions on how to download and use it are also available.

Keywords: Computer Vision, Deep Learning, Image Segmenta-
tion, 3D Analysis, Metrology.

1 INTRODUCTION

Fiber-reinforced ceramic-matrix composites are advanced materials used in
aerospace gas-turbine engines [51, 35] and nuclear fusion [22], due to their
resistance to temperatures 100–200 ◦C higher than allows for the same ap-
plications.

Larson et al. investigated new manufacturing processes for curing pre-
ceramic polymer into unidirectional fiber beds, studying the microstruc-
ture evolution during matrix impregnation and aiming to reinforce ceramic-
matrix composites [24, 23]. They used X-ray computed tomography (CT) to
characterize the three-dimensional microstructure of their composites non-
destructively, studying their evolution in-situ while processing the materials
at high temperatures [24] and describing overall fiber bed properties and
microstructures of unidirectional composites [23]. The X-ray CT images ac-
quired from these fiber beds are available at Materials Data Facility [5].

Larson et al.’s fiber beds have widths of approximately 1.5mm, containing
5000–6200 fibers per stack. Each fiber has an average radius of 6.4± 0.9µm,
with diameters ranging from 13 to 20 pixels in the micrographs [23]. They
present semi-supervised techniques to separate the fibers within the fiber
beds; their segmentation is available for five samples [25]. However, we con-
sidered their results could be improved using different techniques. This mo-
tivated us to test alternative solutions.

In this study we separate fibers in ex-situ X-ray CT fiber beds of nine
samples from Larson et al. The samples we used in this study correspond
to two general states: wet — obtained after pressure removal — and cured.
These samples were acquired using microtomographic instruments from the
Advanced Light Source at Lawrence Berkeley National Laboratory operated
in a low-flux, two-bunch mode [23]. We used their reconstructions obtained
without phase retrieval; Larson et al. provide segmentations for five of these
samples [25], which we compare to our results.

To separate the fibers in these samples, we tested four different fully
convolutional neural networks (CNN, section 4.1), algorithms from computer

2



vision and deep learning. When comparing our neural network approach to
Larson et al. results, we obtained Dice [13] and Matthews [30] coefficients
greater than 92.28 ± 9.65%, reaching up to 98.42 ± 0.03%, showing that the
network results are close to the human-supervised ones in these fiber beds,
in some cases separating fibers that the algorithms created by [23] could not
find. All software and data generated in this study are available for download.
Instructions are given for downloading the data and using the software. The
code is open source, released under a permissive software license, and can be
adapted easily for other domains.

2 RESULTS

Larson et al. provide segmentations for their fibers (Fig 1) in five of the wet
and cured samples, obtained using the following pipeline [23]:

1. Fiber detection using the circular Hough transform [48, 3];

2. Correction of improperly identified pixels using filters based on con-
nected region size and pixel value, and by comparisons using ten slices
above and below the slice of interest;

3. Separation of fibers using the watershed algorithm [31].

However, their proposed method briefly describes these steps. There are
no details on parameters used, or the source code for their segmentation. We
tried different approaches to reproduce their results, focusing on separating
the fibers in the fiber bed samples. Our first approach was to create a classic,
unsupervised image processing pipeline. We used histogram equalization [45],
Chambolle’s total variation denoising [38, 7], multi-Otsu threshold [34, 28],
and the WUSEM algorithm [12] to separate each single fiber. The result
is a labeled image containing the separated fibers (Fig 2). The pipeline
presented limitations when processing fibers on the edges of fiber beds, not
being equivalent to the solution presented by Larson et al. We restricted the
segmentation region to have a satisfactory result (Fig 2(d)), but the number
of detected fibers is reduced.

To obtain more accurate results, we evaluated four fully convolutional
neural network architectures: Tiramisu [19] and U-net [37], as well as their
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Figure 1: Slice number 1000 from the sample “232p3 wet”, provided in [25].
The whole sample contains 2160 slices. This slice represents the structure of
the samples we processed: they contain the fiber bed (large circular structure)
and the fibers within it (small round elements).

three-dimensional counterparts, 3D Tiramisu and 3D U-net [52]. We also in-
vestigated whether three-dimensional networks generate better segmentation
results, leveraging the structure of the material.

2.1 Fully convolutional neural networks (CNN) for fiber
detection

We implemented four architectures of fully convolutional neural networks
(CNN) — Tiramisu, U-net, 3D Tiramisu, and 3D U-net — to reproduce
the results provided by Larson et al. Labeled data, in our case, consists
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of fibers within fiber beds. To train the neural networks to recognize these
fibers, we used slices from two different samples: 232p3 wet and 232p3 cured,
registered according to the wet sample. Larson et al. provided the fiber
segmentation for these samples [25], which we used as labels in the training.
The training and validation datasets contained 250 and 50 images from each
sample, respectively, in a total of 600 images. Each image from the original
samples have width and height size of 2560 × 2560 pixels.

During the training procedure, the networks reached accuracy higher than
0.9 and loss lower than 0.1 on the first epoch. Two-dimensional U-net is the
exception, presenting loss of 0.23 at the end of the first epoch. Despite that,
2D U-net reaches the lowest loss between the four architectures at the end of
its training. 2D U-net is also the fastest network to finish its training (7 h,
43 min), followed by Tiramisu (13 h, 10 min), 3D U-net (24 h, 16 min) and
3D Tiramisu (95 h, 49 min, Fig 3).

Still considering the 2D U-net, its convergence on the first epoch does
not seem as stable as the other networks (Fig 4). However, this does not
impair U-net’s accuracy (0.977 on the first epoch). Accuracy and loss for the
validation dataset also improve significantly from the first epoch: Tiramisu
had validation loss vs. validation accuracy ratio of 0.034 while U-net had
0.048, 3D Tiramisu had 0.043, and 3D U-net had 0.043 as well. We attribute
these high accuracies and low losses to the large size of the training set and
the similarities between slices in the input data.

We used the coefficients from the training process to predict fibers in
twelve different datasets in total. These datasets were made available by
Larson et al [25], and we keep the same file identifiers for fast cross-reference:

• “232p1”: wet

• “232p3”: wet, cured, cured registered

• “235p1”: wet

• “235p4”: wet, cured, cured registered

• “244p1”: wet, cured, cured registered

• “245p1”: wet

Here, the first three numeric characters correspond to a material sample,
and the last character correspond to different extrinsic factors, e.g. deforma-
tion. Despite being samples from similar materials, the reconstructed files
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presented several differences, for example regarding amount of ringing ar-
tifacts, intensity variation, noise, therefore they are considered as different
samples in this paper.

We calculated the average processing time for each sample (Fig 5). The
prediction time results are similar to the training ones; 2D U-net and 2D
Tiramisu are the fastest architectures to process a sample, while 3D Tiramisu
is the slowest.

2.2 Evaluation of our results and comparison with Lar-
son et al (2019)

After processing all samples, we compared our predictions with the results
that Larson et al. made available on their dataset [25]. They provided five
datasets from the twelve we processed: “232p1 wet”, “232p3 cured”, “232p3
wet”, “244p1 cured”, “244p1 wet”.

First, we compared our predictions to their results using receiver oper-
ating characteristic (ROC) curves and the area under curve (AUC, Fig 6).
AUC is larger than 98% for all comparisons; therefore, our predictions are ac-
curate when compared with the semi-supervised method suggested by Larson
et al. The 2D versions of U-net and Tiramisu have similar results, performing
better than 3D U-net and 3D Tiramisu.

We also examined the binary versions of our predictions and compared
them with Larson et al. results. For each slice from the dataset, similarly to
the volume, we used a hard threshold of 0.5; values above that are considered
as fibers, while values below that are treated as background. We used Dice
[13] and Matthews [30] correlation coefficients for our comparison (1). The
comparison using U-net yields the highest Dice and Matthews coefficients for
three of five datasets. Tiramisu had highest Dice/Matthews coefficients for
the “244p1, cured” dataset, and both networks have approximate results for
“232p1, wet”. 3D Tiramisu had the lowest Dice and Matthews coefficients
in our comparison.

3 DISCUSSION

The analysis of ceramic matrix composites (CMC) depends on the detec-
tion of its fibers. Semi-supervised algorithms such as the one presented by
Larson et al [23] can perform satisfactorily for that end. However, their
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Tiramisu U-net 3D Tiramisu 3D U-net
Sample Dice Matthews Dice Matthews Dice Matthews Dice Matthews
232p1, wet 97.58 ± 2.29% 96.55 ± 2.93% 97.58 ± 2.20% 96.60 ± 2.13% 94.54 ± 6.73% 92.28 ± 9.65% 95.59 ± 0.74% 93.71 ± 1.03%
232p3, cured 98.21 ± 0.04% 97.47 ± 0.06% 98.26 ± 0.04% 97.53 ± 0.06% 95.25 ± 6.36% 93.39 ± 8.88% 95.90 ± 1.00% 94.21 ± 1.30%
232p3, wet 97.79 ± 2.15% 96.87 ± 2.70% 97.85 ± 2.12% 96.98 ± 1.99% 94.86 ± 6.90% 92.76 ± 9.87% 95.68 ± 1.97% 93.92 ± 2.36%
244p1, cured 98.42 ± 0.03% 97.83 ± 0.05% 98.38 ± 0.04% 97.78 ± 0.05% 94.55 ± 7.74% 92.67 ± 10.54% 96.30 ± 1.25% 94.97 ± 1.54%
244p1, wet 98.08 ± 2.53% 97.39 ± 3.15% 98.10 ± 2.39% 97.43 ± 2.23% 94.81 ± 7.81% 92.97 ± 10.71% 96.67 ± 1.00% 95.45 ± 1.31%

Table 1: Dice and Matthews coefficients for each sample, obtained from the
comparison of our neural network results and data from Larson et al [25]. U-
net yields the highest Dice and Matthews coefficients for three of five samples.
Tiramisu had highest Dice/Matthews coefficients for one of the datasets. 3D
Tiramisu had the lowest Dice and Matthews coefficients.

specific algorithm lack information on the parameters necessary for replica-
tion. Reimplementing such methods without that information would lead to
inaccurate results, since the reported approach includes manual steps that
require human curation.

Convolutional neural networks are being used successfully in the segmen-
tation of different two- and three-dimensional scientific data (e.g., [4, 43, 16,
29, 39, 27]), including microtomographies. For example, fully convolutional
neural networks were used to generate 3D tau inclusion density maps [2],
to segment the tidemark on osteochondral samples [42], and 3D models of
structures of temporal-bone anatomy [33].

Researchers are studying fiber-analysis detection for a while, using differ-
ent tools. There are several approaches using tracking, statistical approaches,
or classical image processing (e.g., [10, 6, 40, 44, 50, 14, 15, 9]). To the best
of our knowledge, there are two different deep learning approaches for this
problem:

• Yu et al. [47] use an unsupervised learning approach based on Faster
R-CNN [36] and a Kalman filter based tracking. They compare their
results with Zhou et al. [50], reaching a Dice coefficient of up to 99 %.

• Miramontes et al. [32] reach an average accuracy of 93.75% using a 2D
LeNet-5 CNN [26] to detect fibers in a specific sample.

Our study builds upon previous work by using similar material samples,
but it expands tests to many more samples as well as it includes the im-
plemention and training of four architectures: 2D U-net, 2D Tiramisu, 3D
U-net, and 3D Tiramisu, used to process twelve large datasets (≈ 140 GB),
and comparing our results with the gold standard data provided by Larson
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et al. [25] for five of them. We used ROC curves and their area under curve
(AUC) to ensure the quality of our predictions, obtaining AUC larger than
98% (Fig 6). Also, Dice and Matthews coefficients were used to compare our
results with Larson et al’s solutions (Table 1), reaching coefficients of up to
98.42 ± 0.03%.

When processing a defective slice, the 3D architectures perform better
when compared to the 2D ones, since they leverage from information of the
material structure (Fig 7).

Based on our research, we recommend using the 2D U-net to process mi-
crotomographies of CMC fibers. Both 2D networks lead to similar accuracy
and loss values (1) in our comparisons; however, U-nets achieve these num-
bers in a shorter time, when compared to Tiramisu. The 3D architectures,
while presenting the advantage of performing better in defective samples
(Fig 7), do not achieve general results comparable to the 2D architectures.
Satisfactory results using the 3D architectures could be achieved with more
training time; however, one should notice that the training we proposed
(Fig 3) and the consequent predictions (Fig 5) required a considerable com-
puting time, and more training could lead to marginal improvements when
compared to their 2D alternatives.

Our CNN architectures perform to the level of human-curated accuracy —
i.e., Larson et al. semi-supervised approach —, sometimes even surpassing
Larson et al. algorithm. For instance, the 2D U-net process fibers their
algorithm could not find (Fig 8).

Using the data processed by the U-net architecture, we can render a
three-dimensional visualization of the fibers (Fig 9). Despite the absence of
tracking, the segmentation provided by the U-net identifies the fibers across
the stack.

In this paper, we presented deep learning solutions to analyze microto-
mographies of CMC fibers in fiber beds. The data used is publicly available
[25] and was acquired in a real materials design experiment. Our solutions
are comparable to human-curated results, being capable of predicting fibers
in large stacks of microtomographies without human intervention.

Despite the encouraging results we achieved in this study, there is further
space for improvements. For example, we aim to study how an ensemble
of our trained networks would perform in these samples. Another proposal
would be to work with different thresholds at the last layer of your network.
We maintained a hard threshold of 0.5, that suited the sigmoid on the last
layer of the CNN we implemented. We could also use conditional random
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field networks for that end.

4 METHODS

4.1 Fully convolutional neural networks

We implemented four architectures — two dimensional U-net [37] and Tiramisu
[19], and their three-dimensional versions — to attempt reproducing the re-
sults provided by Larson et al. We used supervised algorithms: they rely on
labeled data to learn what are the regions of interest — in our case, fibers
within microtomographies of fiber beds.

All CNN algorithms were implemented using TensorFlow [1] and Keras
[8] on a computer with two Intel Xeon Gold processors 6134 and two Nvidia
GeForce RTX 2080 graphical processing units. Each GPU has 10 GB of
RAM.

To train the neural networks on how to recognize the fibers, we used
slices from two different samples: “232p3 wet” and “232p3 cured”, registered
according to the wet sample. Larson et al. provided the fiber segmentation
for these samples, which we used as labels in the training. The training
and validation procedures processed 350 and 149 images from each sample,
respectively; a total of 998 images. Each image from the original samples
have width and height size of 2560 × 2560 pixels.

To feed the two-dimensional networks, we padded the images with 16
pixels, of value zero, in each dimension. Then, each image was cut into tiles
of size 288 × 288, each 256 pixels, creating an overlap of 32 pixels. These
overlapping regions, which are again removed after processing, avoid artifacts
on the borders of processed tiles. Therefore, each input slice generated 100
images with 288× 288 pixels, in a total of 50,000 images for the training set,
and 10,000 for the validation set.

We needed to pre-process the training images differently to train the
three-dimensional networks. We loaded the entire samples, each with size
2160 × 2560 × 2560, and padded their dimensions with 16 pixels. Then, we
cut slices of size 64× 64× 64 voxels, each 32 pixels. Hence, the training and
validation sets for the three-dimensional networks have 96,000 and 19,200
cubes, respectively.

We implemented data augmentation in our pipeline, aiming for a network
capable of processing samples with different characteristics. We augmented
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the images on the training sets using rotations, horizontal and vertical flips,
width and height shifts, zoom and shear transforms. For that, we used Keras
embedded tools within the ImageDataGenerator module to augment images
for the two-dimensional networks. Since Keras’s ImageDataGenerator is not
able to process three-dimensional input so far, we adapted the ImageDataGenerator
module. The adapted version we used in this study is named ChunkDataGenerator,
and is available in the Supplementary Material.

To reduce the possibility of overfitting, we implemented dropout regu-
larization [41] in our pipeline. We followed the suggestions in the original
papers for U-net architectures: 2D U-net received a dropout rate of 50% in
the last analysis layer and in the bottleneck, while 3D U-net [52] did not re-
ceive any dropout. The Tiramisu structures received a dropout rate of 20%,
as suggested by Jégou et al [19].

For a better comparison, we maintained the same training hyperparam-
eters when possible. Due to the large amount of training data and the sim-
ilarities between training samples (2D tiles or 3D cubes), our preliminary
tests indicated that we would have a higher accuracy for all networks in the
first training epochs. Therefore, we decided to train all architectures during
five epochs. The 2D architectures were trained with batches of four images,
while the batches for 3D architectures had two cubes each. For all archi-
tectures, we used a learning rate of 1E − 4, and binary cross entropy [49]
as the loss function. We followed the original papers regarding to optimiza-
tion algorithms: we used the Adam optimizer [20] in the U-net architectures,
while the Tiramisu ones were trained using the RMSProp optimizer [11].
We implemented batch normalization [18] in all architectures, including the
2D U-net. Ronneberger et al. do not suggest it in their preliminary study,
although it is known that architectures using batch normalization tend to
converge faster.

4.2 Evaluation

We used Dice [13] and Matthews [30] correlation coefficients (Equations 1, 2])
to evaluate our results, assuming that the fiber detections from [25] contain
a reasonable gold standard.

Dice =
2 × TP

2 × TP + FP + FN
(1)
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Matthews =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FN)(TN + FP )
(2)

Dice and Matthews coefficients receive true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) pixels, which are deter-
mined as:

• TP: pixels correctly labeled as being part of a fiber.

• FP: pixels incorrectly labeled as being part of a fiber.

• TN: pixels correctly labeled as background.

• FN: pixels incorrectly labeled as background.

TP, FP, TN, and FN are obtained when the prediction data is compared
with a certain gold standard, which in this study is Larson’s semi-supervised
segmentation data [25].

4.3 Visualization

Imaging CMC specimens at high-resolution as Larson et al samples [25] leads
to large datasets — each stack we used in this paper has around 14 GB after
the reconstruction, for example1.

Frequently, the specialist needs software to visualize the result of their
data collection, but most of them fail to produce meaningful graphs without
considering advanced image analysis and/or computational platforms with
generous amounts of memory. One may use Jupyter Notebooks [21], which
enable domain scientists to quickly probe specimens imaged with X-ray mi-
croCT during their beamtime. For this reason, the figures in this paper are
all generated on standard laptops with no more than 16 GB of RAM, which
is the typical computation system at hand.

We used matplotlib [17] and ITK [46] (Fig 9) to generate our figures.
Despite our use of methods that consider either global or local information,
we designed protocols that allow any user to visualize essential content from
their experiments recorded as 3D image stacks.

1The exceptions are the registered versions of cured samples 232p3, 235p4 and 244p1,
with 11 GB each, and the sample 232p3 wet with around 6 GB.
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5 DATA AVAILABILITY

The supplementary data generated in this study is available at https://

datadryad.org/stash/dataset/doi:10.6078/D1069R, under a CC0 (pub-
lic domain) license.

6 CODE AVAILABILITY

The software we produced throughout this study is available at https://

github.com/alexdesiqueira/fcn_microct/, under a BSD license.
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Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia
Abdalla, and Carol Willing. Jupyter notebooks – a publishing format for
reproducible computational workflows. In F. Loizides and B. Schmidt,
editors, Positioning and Power in Academic Publishing: Players, Agents
and Agendas, pages 87 – 90. IOS Press, 2016.

14



[22] T. Koyanagi, Y. Katoh, T. Nozawa, L. L. Snead, S. Kondo, C. H.
Henager, M. Ferraris, T. Hinoki, and Q. Huang. Recent progress in the
development of sic composites for nuclear fusion applications. Journal
of Nuclear Materials, 511:544–555, Dec 2018.

[23] Natalie M. Larson, Charlene Cuellar, and Frank W. Zok. X-ray com-
puted tomography of microstructure evolution during matrix impregna-
tion and curing in unidirectional fiber beds. Composites Part A: Applied
Science and Manufacturing, 117:243–259, February 2019.

[24] Natalie M. Larson and Frank W. Zok. In-situ 3d visualization of com-
posite microstructure during polymer-to-ceramic conversion. Acta Ma-
terialia, 144:579–589, Feb 2018.

[25] Natalie M. Larson and Frank W. Zok. Ex-situ xct dataset
for ”x-ray computed tomography of microstructure evolution dur-
ing matrix impregnation and curing in unidirectional fiber beds”.
http://dx.doi.org/doi:10.18126/M2QM0Z, 2019.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, Nov 1998.

[27] Wei Li, Kevin G. Field, and Dane Morgan. Automated defect analysis
in electron microscopic images. npj Computational Materials, 4(11):1–9,
Jul 2018.

[28] P.-S. Liao, T.-S. Chen, and P.-C. Chung. A fast algorithm for mul-
tilevel thresholding. Journal of Information Science and Engineering,
17(5):713–727, 2001.

[29] Boyuan Ma, Xiaoyan Wei, Chuni Liu, Xiaojuan Ban, Haiyou Huang,
Hao Wang, Weihua Xue, Stephen Wu, Mingfei Gao, Qing Shen, and
et al. Data augmentation in microscopic images for material data min-
ing. npj Computational Materials, 6(11):1–9, Aug 2020.

[30] Brian W. Matthews. Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta
(BBA) - Protein Structure, 405(2):442–451, 1975.

15



[31] Fernand Meyer. Topographic distance and watershed lines. Signal Pro-
cessing, 38(1):113–125, July 1994.

[32] Silvia Miramontes, Daniela M. Ushizima, and Dilworth Y. Parkinson.
Evaluating fiber detection models using neural networks. In George Be-
bis, Richard Boyle, Bahram Parvin, Darko Koracin, Daniela Ushizima,
Sek Chai, Shinjiro Sueda, Xin Lin, Aidong Lu, Daniel Thalmann, and
et al., editors, Advances in Visual Computing, Lecture Notes in Com-
puter Science, page 541–552. Springer International Publishing, 2019.

[33] Soodeh Nikan, Sumit K. Agrawal, and Hanif M. Ladak. Fully automated
segmentation of the temporal bone from micro-ct using deep learning.
In Medical Imaging 2020: Biomedical Applications in Molecular, Struc-
tural, and Functional Imaging, volume 11317, page 113171U. Interna-
tional Society for Optics and Photonics, Feb 2020.

[34] N. Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics, 9(1):62–66, 1979.

[35] Nitin P. Padture. Advanced structural ceramics in aerospace propulsion.
Nature Materials, 15(8):804–809, Aug 2016.

[36] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
r-cnn: Towards real-time object detection with region proposal net-
works. IEEE transactions on pattern analysis and machine intelligence,
39(6):1137–1149, 2017.

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. In Nassir Navab,
Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, editors,
Medical Image Computing and Computer-Assisted Intervention – MIC-
CAI 2015, Lecture Notes in Computer Science, pages 234–241. Springer
International Publishing, 2015.

[38] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total vari-
ation based noise removal algorithms. Physica D: Nonlinear Phenomena,
60(1):259–268, 1992.

[39] Yu Saito, Kento Shin, Kei Terayama, Shaan Desai, Masaru Onga, Yuji
Nakagawa, Yuki M. Itahashi, Yoshihiro Iwasa, Makoto Yamada, and

16



Koji Tsuda. Deep-learning-based quality filtering of mechanically exfo-
liated 2d crystals. npj Computational Materials, 5(11):1–6, Dec 2019.

[40] R. M. Sencu, Z. Yang, Y. C. Wang, P. J. Withers, C. Rau, A. Parson,
and C. Soutis. Generation of micro-scale finite element models from
synchrotron x-ray ct images for multidirectional carbon fibre reinforced
composites. Composites Part A: Applied Science and Manufacturing,
91:85–95, Dec 2016.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, Jan 2014.
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Figure 2: Rendering fibers detected in the limited region of interest by the
classic pipeline. We exemplify the classic image processing pipeline using
Fig 1 as the input image. This solution presented limitations when process-
ing fibers on the edfes of fiber beds. (a) Histogram equalization and TV
Chambolle’s filtering (parameter: weight=0.3). (b) Multi Otsu’s resulting
regions (parameter: classes=4). Fibers are located within the fourth re-
gion (in yellow). (c) Binary image obtained considering region four in (b)
as the region of interest, and the remaining regions as the background. (d)
the processed region from (c), as shown in Fig 1. (e) Regions resulting
from the application of WUSEM on the region shown in (d) (parameters:
initial radius=0, delta radius=2, watershed line=True). Colormaps:
(a, c, d) gray, (b) viridis, (e) nipy spectral.
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Figure 3: Accuracy (a) and loss (b) through time for each training epoch.
All networks were trained during five epochs, reaching accuracy higher than
0.9 and loss lower than 0.1 on the first training epoch, except for the two-
dimensional U-net. However, 2D U-net is the fastest to finish training, and
reaches the lowest loss between the candidates. We attribute the subtle
loss increase or accuracy decrease on the start of each epoch to the data
augmentation process.
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Figure 4: Accuracy vs. loss on the first epoch. Accuracy surpasses 0.9 and
loss is lower than 0.1 for all networks during the first epoch, except for 2D U-
net (loss of 0.23). The large size of the training set and the similarities in the
data are responsible for such numbers. Validation accuracy and validation
loss on the first epoch are represented by diamonds.
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Figure 5: Mean and standard deviation for prediction times for each sam-
ple. As with processing, during training 2D U-net and 2D Tiramisu were
the fastest architectures to process a sample in one hour, on average. 3D
Tiramisu, being the slowest, takes in average more than a day to process one
sample.
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Figure 6: Receiver operating characteristic (ROC) and area under curve
(AUC) from the comparison between the prediction for each network and
the segmentation made available for five samples by Larson et al [25]. ROC
curves were calculated to all slices in a dataset; their mean areas and standard
deviation intervals are presented. AUC is larger than 98% in all comparisons,
showing that our predictions are accurate when compared with Larson et al.
semi-supervised method. The 2D versions of U-net and Tiramisu perform
better when compared to their 3D alternatives.
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Figure 7: A defective slice on the sample “232p3 wet” and the segmentation
resulting from each architecture. While the 2D architectures results are im-
paired by the defects present in the input image, the 3D ones leverage from
the sample structure to present a better segmentation result. (a) Original
defective image, (b) U-net prediction, (c) 3D U-net prediction, (d) Tiramisu
prediction, (e) 3D Tiramisu prediction.
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Figure 8: Visual comparison between 2D U-net and Larson et al. results
for sample “232p3 wet”. Each part of this image is obtained combining
both ours and Larson et al.’s results; we compared each slice, and presented
the ones that return the lowest Matthews comparison coefficient. Labels
present the Matthews coefficient for each slice. (b, c) slices presenting fibers
found only by U-net (in red), while some well-defined structures close to the
borders are found only by Larson et al. (in yellow). Slice size: 256 × 256.
Colors set according to the comparison. Blue: true positives; red: false
positives; yellow: false negatives; gray: true negatives. For more details on
the comparison coefficients, please see 4.2.
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Figure 9: Fibers on the sample “232p3 wet” processed using the U-net archi-
tecture. As seen in the longitudinal cut, this pipeline identifies fibers across
the sample height despite the absence of tracking.
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