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Research Article: New Research
Cognition and Behavior

Mechanically Induced Motor Tremors
Disrupt the Perception of Time

Keri Gladhill,' Rose De Kock,? Weiwei Zhou,? “Wilsaan Joiner,? and

Martin Wiener'

'George Mason University, Fairfax, Virginia 22030 and 2University of California, Davis, Davis,
California 95616

Abstract

Contemporary research has begun to show a strong relationship between movements and the percep-
tion of time. More specifically, concurrent movements serve to both bias and enhance time estimates.
To explain these effects, we recently proposed a mechanism by which movements provide a secondary
channel for estimating duration that is combined optimally with sensory estimates. However, a critical
test of this framework is that by introducing “noise” into movements, sensory estimates of time should
similarly become noisier. To accomplish this, we had human participants move a robotic arm while
estimating intervals of time in either auditory or visual modalities (n= 24, ea.). Crucially, we introduced
an artificial “tremor” in the arm while subjects were moving, that varied across three levels of ampli-
tude (1-3 N) or frequency (4—12 Hz). The results of both experiments revealed that increasing the fre-
quency of the tremor led to noisier estimates of duration. Further, the effect of noise varied with the
base precision of the interval, such that a naturally less precise timing (i.e., visual) was more influenced
by the tremor than a naturally more precise modality (i.e., auditory). To explain these findings, we fit the
data with a recently developed drifi-diffusion model of perceptual decision-making, in which the
momentary, within-trial variance was allowed to vary across conditions. Here, we found that the model
could recapitulate the observed findings, further supporting the theory that movements influence per-
ception directly. Overall, our findings support the proposed framework, and demonstrate the utility of
inducing motor noise via artificial tremors.

Key words: cue combination; motor movements; time perception

Significance Statement

Our perception of time is naturally tied to movements of the body. Yet, how bodily movements bias or
enhance estimates of time is still not well understood. We recently proposed that time estimates from
body movements are combined with those from other sensory modalities via a Bayesian cue combi-
nation mechanism. This suggests that, by adding noise into body movements, time estimates from
other sensory modalities should also be noisier. Here, we find evidence for this effect across two exper-
iments where human subjects judged intervals of time while moving a robotic arm at different levels of
tremor. These findings support the connection between body movements and time and provide an
additional avenue of research using noisy movements to impact sensory estimates.

Introduction

An abundance of previous research indicates that movement parameters differentially
affect time estimates—in some cases movement biases the perception of time, whereas
in other cases, it improves the precision of time estimates. It has recently been suggested
that these contrasting effects can be explained via a Bayesian cue combination framework
in which, along with sensory input such as auditory and visual information, movement
itself also serves as an additional input for duration information (De Kock et al., 2021a).
This work builds on previous research suggesting that time perception arises through
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our understanding of actions and their consequences (Merchant and Yarrow, 2016; Coull and Droit-Volet, 2018). Similarly,
recent work has suggested that timing in animals may arise exclusively through movements, supporting a close connec-
tion between the motor system and time perception (Robbe, 2023).

Evidence for this framework comes from work over the past decade demonstrating the impact of movements on time
estimates. In particular, we have shown that, when subjects are allowed to freely move a robotic arm, as opposed to hav-
ing the arm restrained in place, their estimation of concurrently presented sensory time estimates is more precise (Wiener
et al., 2019). This effect occurs both within and between subjects, across different task designs, and does not depend on
the type of movement strategy employed. Rather, the effect appears to depend on whether the subject is moving or not. In
a further series of experiments, we additionally found that increasing the viscosity of movements, such that movement
lengths were shortened, also shortened time estimates (De Kock et al., 2021b). Furthermore, this effect was tied to
changes in the perception of duration, rather than to biases in decision-making. Evidence for this difference came from
the application of a drift-diffusion model (DDM) of perception and decision-making in which separable components are
assigned to the perceptual accumulation of evidence or decision variables (Voss, et al., 2004).

The cue combination framework proposes a manner in which noisy estimates are combined optimally by shifting the
temporal estimates toward their more precise input (Ernst and Banks, 2002; Alais and Burr, 2019); therefore, since move-
ments have been shown to be precise, with low variability and high temporal fidelity, the variance of movement time esti-
mates will also be low (Doumas et al., 2008; Brenner et al., 2012). However, the brain also integrates statistics of body
movements such as the speed, length, direction, and area of movement with other sensory inputs (Petzschner et al.,
2015) leading to biases in the perception of time. Previous studies have also demonstrated a “modality-appropriateness”
effect in time perception in which time estimates are “pulled” toward the modality with the lower variance (van
Wassenhove et al., 2008).

The specifics of Bayesian cue combination are that sensory estimates of time (ts) are drawn from a normal distribution,
ts ~ N(u, o), with a specific mean and variance, depending on the fidelity of the sensory modality conveying the temporal
information. When two sensory estimates are available, each conveying a measure of duration, both are combined into a
multisensory estimate. Assuming one signal is from a sensory (S) modality (e.g., auditory, visual) and the other is from
movement (M), each with its own mean and variance, the combined sensorimotor (SM) estimate is given as follows:

Msm = Ws X Ug + Wm X

wherein each independent channel is weighted. In this way, the peak of the SM distribution will be closer to whichever
sensory estimate has the greater weight. The weights themselves for each estimate are then calculated (for M, as example)
as follows:

o8
o2+

Wm =

e

That is, the weight for a given estimate is the ratio of the other modality’s variance over the sum of the variances of both
modalities. For the variance of the combined SM estimate, this can be expressed as the product of the other variances
divided by their sum or as follows:
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The essential result of this combination is that the SM estimate will always be more precise than either of the unisensory
estimates, alone. By calculating these equations across a range of values, predictions can be made of the behavior of mul-
tisensory estimates across a wide range of possible variances (Fig. 1D-F). We note that the sensory estimates in these
cases rely on an estimate of duration, which is progressively determined over time, rather than a quantity encountered
immediately (e.g., pitch, brightness, size). The mechanisms for measuring duration, such as accumulator or state-space
trajectories, have been described elsewhere (Paton and Buonomano, 2018; Tsao, et al., 2022) and are agnostic to the
above calculations; that is, regardless of how time is estimated, the question is what the brain does when two separate
estimates have been calculated by distinct sensory modalities.

Two predictions made by these equations are that (1) SM estimates of duration will be combined optimally and (2) the
SM estimate will depend on the precision of both modalities. Recently, we tested the first prediction in a study in which
subjects measured either a sensory (auditory) time interval or timed their own movements or both. We found that subjects’
perception of either auditory tones or their own movements were indistinguishable in terms of their precision, yet each
produced systematic errors, with subjects overestimating auditory tone intervals and underestimating the duration of their
own movements. Notably, the combined estimate was in between both and also the most accurate. However, despite this
improvement, subjects exhibited a suboptimal combination of both modalities; yet, the degree of suboptimality depended
on the individual’s overall level of precision, with more precise subjects closer to the optimal estimate (De Kock et al.,
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2023). To clarify, a suboptimal combination in this case would be one in which the observed variance in time estimates is
greater than the variance predicted by the cue combination equations.

For the second prediction of the cue combination framework, when a more precise modality (i.e., movement) becomes
less reliable, or “noisy,” its influence on the estimate will decrease; therefore, if movements are made unreliably or with
uncertainty, they should have less of an influence than other modalities on time estimates (De Kock et al., 2021a).
Furthermore, the size of this effect should vary with the baseline level of precision of the sensory modality. That is, if
the sensory estimate of duration is already precise, then increasing noise in movements will have less of an effect
(Fig. 1F). Conversely, if the sensory estimate is already noisy, increasing noise in movements will have a larger effect.

How can noise be introduced into motor movements? Critically, we conceive of a noisier movement as one that is less
reliable. In other words, one where subjects feel their movements cannot be trusted or depended upon. A common exam-
ple of motor noise is the experience of tremor, which in clinical cases (e.g., Parkinson’s disease and essential tremor) can
severely disrupt motor control (McAuley and Marsden, 2000). In the present study, we applied a tremor to healthy partic-
ipants making arm movements to test whether this source of noise disrupted timing performance. Participants used a
robotic arm to perform a temporal categorization task while experiencing variable tremor frequencies and amplitudes.
We hypothesized that this source of motor noise would disrupt timing precision, but not accuracy, as predicted by the
Bayesian cue combination framework. That is, it is possible for subjects to be inaccurate in their estimates yet consistent
in the estimates made (i.e., a high level of precision).

Materials and Methods

Participants

A total of 48 participants that were right-hand dominant with normal or corrected-to-normal vision completed the
following two experiments (Experiment 1: 24 participants, 15 females; 9 males; mean age, 23 years old; Experiment 2:
24 participants, 18 females; 6 males; mean age, 21 years old) from the University of California (UC) Davis student
population and surrounding area. All participants were screened for handedness using the Edinburgh handedness survey
(Oldfield, 1971) and provided consent as approved by UC Davis Institutional Review Board.

Apparatus

Participants completed both experiments using a robotic manipulandum (KINARM End-Point Lab, BKIN Technologies).
They were seated in an adjustable chair in front of the manipulandum at the height at which their forehead could rest com-
fortably on the apparatus’ headrest. The horizontal display was mirrored from the downward facing LCD monitor posi-
tioned above which occluded the participant’s view of most of their arm in order to reduce feedback of arm and hand
position. Participants gripped the right handle of the apparatus and made movements within the screens perimeter
and reaching movements to circular targets 0.5 cm in diameter, placed 14 cm apart on the sagittal axis of the body.
Each target represented short and long responses counterbalanced across participants. The manipulandum continuously
measured handle position, velocity, and force applied at a sampling rate of 1,000 Hz.

Procedures

Experiment 1: auditory. Participants completed a temporal bisection task in which participants would move to the cen-
tral target location where the manipulandum would lock in place. After 1,000 ms, the warm-up phase would begin by the
handle being released and the words “Get Ready” being displayed on the screen. At this time, participants were told to
move freely within the perimeter of the workspace. While participants moved, a tremor was mechanically induced by
the manipulandum at one of the three amplitudes (1, 2, 3 N) and frequencies (4, 8, 12 Hz), the direction of which was ran-
domly selected from 180° on each trial (note that the tremor rattled in both directions). Following a 2,000 ms delay, a
440 Hz tone sounded for one of the seven durations between 1,000 and 4,000 ms (1,000, 1,260, 1,580, 2,000, 2,520,
3,170, 4,000 ms). When the tone stopped sounding, the participants were to move to one of the two response circles
as quickly and accurately as possible to categorize the auditory tone as a short or long duration compared with all tones
experienced so far (reference-free categorization). If a response was made prior to the auditory tone ending, or if subjects
stopped moving, the trial was discarded, and they were required to re-do the trial. The two targets were located at 105 and
75° equidistant from the starting location with response assignment (short or long) counterbalanced between participants.
A total of 378 trials were run per session. Subjects were not given any explicit instructions regarding their movements or
strategy, simply being allowed to move freely through the workspace.

Experiment 2: visual. The goal of Experiment 2 was to test the impact of induced tremor on visual interval timing. The
task parameters were identical to the auditory task, except that participants were required to categorize visual intervals
presented as a change in the background luminance of the manipulandum display screen from black to gray (RGB values
of 64, 64, 64; hue, 160; luminance, 60). After the screen reverted to black, subjects indicated whether the durations were
“short” or “long” by reaching to the appropriate target. We tested visual intervals using this global background change
rather than a fixation target to avoid spatiotemporal processing effects unrelated to duration encoding. A total of 378 trials
again were run per session.
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Analysis

In Experiments 1 and 2, movement distance and force measures were taken for each trial. Movement distance was defined
as the summed distance traveled (point-by-point Euclidean distance between each millisecond time frame) during the stimu-
lus tone. Force was similarly defined as the summed instantaneous force during the stimulus tone. In Experiment 1, reaction
time (RT) was defined as the time elapsed between the tone offset and reaching one of the two choice targets, whereas in
Experiment 2, it was the time between the luminance offset and target. Outlier trials were excluded for RT values greater
than three standard deviations away from the mean of a participant’s log-transformed RT distribution (Ratcliff, 1993).
Additionally, we removed all trials with RTs below 200 ms or above 2,000 ms, in order to avoid issues with model fitting.
For each participant, we plotted duration by average proportion of “long” responses. From here, we used the psignifit 4.0 soft-
ware package to estimate individual BP and coefficients of variation (CV) for all frequency and amplitude values (Schitt et al.,
2016); all curves were fit with a cumulative Gumbel distribution to account for the log-spaced nature of tested intervals (Wiener
etal., 2019; De Kock et al., 2021). The BP was defined as the 0.5 probability point on the psychometric function for categorizing
intervals as “long”; the CV was defined as half the difference between 0.75 and 0.25 points on the function divided by the BP.

Computational modeling

To better dissect the results of Experiment 1, we decomposed choice and RT data using a DDM (Ratcliff, 1978; Wiecki et
al., 2013; De Kock et al., 2021b). Due to the low number of trials available per condition, we opted to use hierarchical DDM
(HDDM) as employed by the HDDM package (version 0.9.8) for Python (https:/github.com/hddm-devs/hddm). In this
package, individual subjects are pooled into a single aggregate, which is used to derive fitted parameters by repetitive
sampling from a hypothetical posterior distribution via Markov chain Monte Carlo (MCMC) sampling. From here, the
mean overall parameters are used to constrain estimates of individual-subject estimates. HDDM has been demonstrated
as effective as recovering parameters from experiments with a low number of trials (Wiecki et al., 2013).

A recent extension to the HDDM package, the likelihood approximation network (LAN) module, allows for the “base”
DDM to accommodate a wider variety of models (Fengler et al., 2021). Traditionally, the DDM consists of four param-
eters: the threshold difference for evidence accumulation (a), the drift rate toward each boundary (v), the starting point
or bias toward a particular boundary (z), and the nondecision time (t), accounting for remaining variance due to
nonspecific processes (e.g., perceptual, motor latencies). With the LAN module, additional parameters can be
accessed and adjusted in model construction. For our purposes, we chose the so-called “Lévy Flight” model exten-
sion, in which the noise in momentary evidence accumulation is modified by a parameter (alpha) which interpolates
between a Gaussian distribution and a Cauchy distribution. Recent work has shown that the Lévy Flight model can
accommodate many instances of two-choice decision-making, with the additional feature that it can account for
randomness in choice (Voss et al., 2019). We chose to use this model here, as the alpha parameter allows for another
possible source of noise in the perceptual process.

Our initial model construction began by fitting the data from Experiment 1 using a so-called “full” DDM, as done in our
previous work (De Kock et al., 2021b). In this model, the only condition by which parameters vary is the duration presented
on each trial; all parameters were set to vary. We chose this model setup to replicate both our previous work with this
model, as well as other work on time categorization tasks demonstrating. Model construction was conducted using
the HDDMnnStimCoding class. Model sampling was conducted using 10,000 MCMC samples, with a burn-in of 1,000
samples and a thinning (retention) of every fifth sample. Individual model fits were assessed by visual inspection of the
chains and the MC_err statistic; all chains exhibited low autocorrelation levels and symmetrical traces. The resulting model
contains seven values for each of the four parameters, reflecting each of the seven durations tested.

Once the model fits were obtained for each duration, we next proceeded to model simulation, so as to demonstrate how
changing our three hypothetical parameters (v, a, alpha) could influence precision and RT. To do this, we used the simu-
lator_stimcoding class to generate data (1,400,000 trials each) from three separate models, with three levels within each
model. The levels for each model were conducted by taking the parameter of interest for that model (v, a, or alpha) and
multiplying them by 0.75 for each level; for example, if the drift rate for a given duration was 2, the next level would be
1.5, and the next would be 1.125.

Fits to the behavioral data to assess the effect of frequency and amplitude were conducted by creating a model in which
all five parameters (v, a, t, z, alpha) varied according to the three levels of each (1, 2, 3 N for amplitude; 4, 8, 12 Hz for fre-
quency). Model fitting used the same sampling method as described above, and again chain stability was assessed. We
note that we attempted a similar modeling approach for Experiment 2 but found large instability and autocorrelations in the
chains. This likely reflects the larger variability in Experiment 2 across all conditions.

Results

Experiment 1: auditory categorization

To begin, our first experiment tested 24 individuals on an auditory temporal categorization task (also referred to as tem-
poral bisection), in a manner similar to our previous work (Wiener et al., 2019, De Kock et al., 2021b). Specifically, human
participants sat facing forward while holding a robotic arm manipulandum under an occluding viewscreen (Fig. 1A). On a
given trial, an auditory tone was played for one of seven possible intervals between one and four seconds (log-spaced).
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Figure 1. Experimental setup and cue combination model. A, Subjects sat facing and held a robotic arm manipulandum that was kept below an occluding
viewscreen. The experimental paradigm required subjects to begin each trial by moving the arm to a central starting location. On a given trial, subjects were
required to categorize time intervals into “short” and “long” duration categories by moving the arm cursor to one of the two response locations, counter-
balanced between subjects. B, On any given trial, subjects experienced movement noise in the robotic arm, generated by introducing a tremor on the arm
itself, in a random direction between trials, across one of the three noise levels (low, medium, high). C, Movement noise was designed across three levels of
two dimensions: the amplitude of the noise, expressed in Newton, or the frequency of the noise, expressed in frequency. D, Bayesian cue combination
predictions, in which two signals from separate modalities are combined optimally to form a combined distribution that is more precise than either distribu-
tion alone. If one modality is made less precise (wider width), the combined distribution also lowers in precision while becoming weighted progressively in
location toward the more precise modality. E, Multisensory combination widths, expressed as a function of the precision of both unisensory widths, pro-
vide predictions of precision as a function of either increasing or decreasing levels of noise. F, When the precision of one modality is kept constant, increas-
ing the variance of the other distribution generates variance curves that depend on the base precision of the first modality. Three levels of base precision are
presented here (*0=0.17, 0.24, 0.37); with less precise base modalities, increasing noise in the second modality has progressively larger effects.

Subjects were required to move the cursor indicating arm position to one of the two response locations, equidistant from
the starting location on a given trial. Crucially, we introduced three levels of movement “noise” while subjects moved the
robotic arm, expressed as a tremor applied to the handle (Fig. 1B). We characterized noise across two different dimen-
sions, in which both the amplitude of the tremor (1-3 N) and its frequency (4-12 Hz) could vary from ftrial to trial
(Fig. 1C). Our decision to parametrically vary tremors across these two dimensions was driven by our agnostic view to
what the motor system may consider “noisiness.” Additionally, the direction of the tremor varied randomly between trials.
Similar to our previous studies, subjects were required to categorize the interval as quickly but as accurately as possible
and only enter the response location once the auditory tone had completed; furthermore, subjects were required to
maintain movement throughout the trial, with any violation leading to trial termination (see Extended Data Figure 2-2
for example trajectories).

Analysis of choice and RT data also proceeded similarly to our previous reports, with choice data fit with a psychometric
curve to calculate the bisection point (BP; 0.5 probability of choosing “long”) and the CV (half difference between 0.75 and
0.25 probability points divided by the BP); the BP reflects the level of bias in categorization, whereas the CV reflects the
precision (Fig. 2A). A repeated-measure ANOVA revealed that there were no significant effects of amplitude (F2,46)=0.05;
p =0.955) or frequency (Fz,46)=1.68; p =0.197) nor was there an interaction effect of the two (F4,92)=1.42; p =0.233) on BP
(Fig. 2C). Therefore, participants were not distracted by the induced tremor and were able to accurately complete the task
(Fig. 2). There were also no significant effects of frequency (F2,46)=1.37; p = 0.264), amplitude (F2,46)=0.13; p = 0.879), nor
an interaction effect of frequency and amplitude (F(4,92)=0.08; p = 0.988;) on RT (Fig. 2D).

However, a repeated-measure ANOVA of the CV revealed a significant effect of frequency (F2 46)=3.85; p=0.028;
77?, =0.143); there was no significant effect of amplitude (F(2,46)=0.46; p = 0.636) nor an interaction effect of amplitude
and frequency (F4,92=0.10; p =0.983). A further examination revealed this to be a linear effect, with CV values gener-
ally increasing with frequency (t=2.425; p =0.019; Cohen’s D =0.715) suggesting precision decreased as frequency
increased (Fig. 2B).
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Figure 2. Results from Experiment 1 (auditory categorization). A, psychometric curves fit to response proportions for a representative subject exhibiting a
decrease in precision with increasing motor noise frequency, collapsed across amplitude; vertical lines indicate the BP (0.5 probability of classifying
“long”). B, Average CV for all subjects across all noise amplitudes and frequencies, demonstrating an increase for frequency, with no change for different
amplitudes. C, D, Average BPs and reaction times across all conditions demonstrating no significant differences across either noise type. Error bars rep-
resent standard error; asterisk represents a linear effect at p <0.05. See Extended Data Figures 2-2 and 2-3 for additional results on movement kinematics
and example trajectories.

A control analysis on the direction of the movement tremor was also conducted, by dividing responses into three
separate bins, depending on the direction of the tremor (bin 1, 0-60°; bin 2, 61-120°; bin 3, 121-180°). Here, no effect
of tremor direction was detected for either the BP (F» 46)=0.321; p=0.727) or the CV (F(»,46)=0.755; p = 0.476), suggesting
the direction of the tremor had no effect on either bias or precision.

In addition to the response variables, we also wanted to evaluate the parameters of movements made while encoding
the duration, specifically movement length and force (Extended Data Figure 2-1). A repeated-measure ANOVA for move-
ment length revealed no significant effect of frequency (F2,46)=2.93; p = 0.063) or amplitude (F2,46)=0.01; p = 0.994) nor an
interaction effect (F4,92)=1.97; p=0.106); although the frequency effect is not significant, the data and our hypotheses
suggest a linear effect of frequency but not amplitude on movement length; therefore, we explored the linear comparison
contrast of frequency across all levels of amplitude which revealed a significant effect (t=-2.24; p <0.05). As expected
from previous research (Wiener et al., 2019; De Kock et al., 2021b), movement length increased with duration (F 135 =
254.07; p <0.001).

A repeated-measure ANOVA of movement force revealed a significant effect of frequency (Fp 46=34.41; p <0.001),
amplitude (Fp,46=5.26; p <0.05), and an interaction effect of frequency and amplitude (Fi 02)=9.44; p <0.001). Post
hoc analysis of frequency showed that movement force was not significantly higher at the lowest frequency (Freg4) com-
pared with the mid frequency (Freg8; t=2.36; p=0.081) and significantly higher compared with the highest frequency
(Freq12; t=8.17; p<0.001). Movement force was also significantly higher at the mid frequency (Freg8) compared with
the highest frequency (Freq12; t=5.28; p <0.001). Post hoc analysis of amplitude showed that movement force was
significantly lower at the lowest amplitude (Amp1) compared with the mid amplitude (Amp2; t=—-3.70; p <0.01) and the
highest amplitude (Amp3; t=-2.94; p<0.001). Movement force was also significantly lower at the mid amplitude
(Amp2) compared with the highest amplitude (Amp3; t=—-4.97; p <0.001).

Computational modeling

The results of Experiment 1 support, in principle, the predictions of the Bayesian cue combination model. That is, if two
sensory modalities both convey estimates of time, these estimates will be combined optimally to improve perceived dura-
tion. However, if one of those modalities becomes noisier, and so less reliable, the overall precision will decrease as the
noise increases (Hartcher-OBrien et al., 2014). Furthermore, the decrease in precision should diminish with increasing
noise, depending on the precision of the unchanged modality. If movement represents a sensory channel for estimates
of duration, then increasing noise in movements should decrease the precision of time estimates. This prediction was
borne out in our data; however, alternative explanations to the findings exist. Indeed, decreases in timing precision
(increases in CV) can be explained by numerous effects in the timekeeping process; noisier time estimates may result
from a poorer ability to encode time or from an impairment in remembering those durations or also a difference in how
those durations are judged (Allman et al., 2014). In our previous report, we had shown that increasing movement viscosity
shifted response bias (changes in the BP) while sparing precision (De Kock et al., 2021b). There, we found through com-
putational modeling of behavior that the effect likely arose from a difference in perception rather than a change in decision-
making. We chose to take a similar approach here.

To begin, we opted to again employ a DDM framework. The classic DDM is able to account for a wide variety of effects in
choice and RT by accounting for the shape of response distributions across different experimental levels (Ratcliff, 1978).
The typical DDM assumes that information is accumulated over time in a noisy stochastic process toward one of the two
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response thresholds, with a given boundary separation. The rate of accumulation is determined by the drift rate parameter
(v) and is corrupted by white noise on a moment-by-moment basis during the accumulation process, until the boundary is
reached, given by the threshold parameter (a). Additional parameters include a delay in the initiation of accumulation,
known as nondecision time (t) and starting-point bias toward one of the two boundaries (2).

Here, we used the HDDM (version 0.9) package for model construction and simulations (Wiecki et al., 2013). HDDM
allows for the construction and fitting of hierarchical DDMs by constraining individual-level parameter estimates on the
basis of group-level ones in addition to prior distributions for the given parameters. For the present study, we employed
the recently updated LAN extension to HDDM, in which a wider number of possible models are now supported by training
through artificial neural networks (Fengler et al., 2021). These model extensions include those with collapsing boundary or
leak parameters. Of relevance to the present study, the LAN extension also includes a so-called Lévy Flight model (Voss et
al., 2019). In this model, the noise for the momentary sensory evidence is modified by the parameter (alpha), which deter-
mines the shape of the noise distribution. This parameter, which ranges between 1 and 2, interpolates the shape of the
noise distribution between a Gaussian distribution at higher values and a Cauchy distribution at lower values. The
Cauchy distribution includes heavy tails in both directions and so allows for large “jumps” in evidence accumulation
toward either of the decision boundaries. As the Cauchy is narrower overall than the Gaussian, the accumulation process
may be less noisy moment-to-moment yet overall may shift randomly by a large amount.

For our model simulations, we suggest that “noise” may be considered by changing either the drift rate, threshold, or
alpha parameters (Fig. 3A). To accomplish this, we began by fitting a DDM-Lévy model to our full dataset, with all param-
eters included [v, a, t, z, alpha] but only duration as a conditional parameter. We chose to include these parameters on the
basis of our previous work and others demonstrating these parameters (excluding alpha) as the best for accounting for
behavior on this particular task and also to follow a priori assumptions. Once the fitted parameters were obtained, we
next simulated three separate datasets using these same parameters but by varying each of the three parameters
described above across three different levels (see Materials and Methods).

For the drift rate, when considered as an absolute value (i.e., the drift rate may be considered either signed, pointing toward
one boundary or another, or unsigned, indicating overall slope), lower drift rates would indicate a slower accumulation pro-
cess, which has been shown to relate to the overall signal-to-noise ratio in perception. We simulated three separate datasets
with three drift rates (high, medium, low) and observed that as the drift rate lowers, the psychometric curves becomes less
steep, indicating a decrease in precision. Notably, the RT shape across intervals also changes, with lower drift rates asso-
ciated with longer RTs, but only for the longest and shortest interval in the stimulus set. For the threshold parameter, lowering
the threshold also resulted in a decrease in precision, yet here the RT distribution shifted uniformly across all intervals, with

Threshold

a Drift rate

Proportion Long

Proportion Long

o o
O

Reaction Time (s)

Reaction Time (5)

~

1000 1500 2000 2500 3000 3500 4000
Time(ms)

1000 1500 2000 2500 3000 3500 4000
Time(ms)

1000 1500 2000 2500 3000 3500 4000
Time(ms)

c I j ! |
25 - 1.52 0.06
Driftrate | 13 Threshold Alpha e
245 e | o @ 004
a2 ] J f 0.05 @ 0.02 ®go0 ©
24 0 (]
13 ® “ b g o°
Ji -0.05 & % & &
235 ? @ D 502 '..
: J 1.28 0.4 @® ~ ‘ e°
-0.04
23 126 -0.15 ) o0
02 @] 006
8 12 4 8 12 4 8 12 002 0 002 004 006 40 20 0 20 40
Frequency Slope Slope

(CV * Frequency)

(RT * Frequency)

Figure 3. Computational modeling using a DDM framework with Lévy Flights. A, DDM framework in which evidence is accumulated to a boundary for cat-
egorizing a time interval as long or short. The rate of accumulation on a given trial is determined by the drift parameter (v; colored lines represent three
possible drift rates on different trials), while the boundary for the response is determined by the threshold parameter (a; dashed lines represent different
possible levels on different trials); additionally, the momentary noise of the distribution is determined by the noise transformation parameter (alpha) which
determines the relative shape of momentary noise, interpolating between a Gaussian distribution and a Cauchy distribution (heavy tailed) at higher and
lower levels, respectively. B, Choice and RT findings from simulated models with each of the three possible parameters varying over three different levels.
All three models lead to changes in choice precision by increasing parameter values, but with different RT predictions. C, Fits of the DDM-Lévy model,
collapsed across amplitude, reveal significant changes in all three parameters with increasing movement noise frequency (left three panels). However,
only the drift rate effect correlates with the CV effect of behavior, whereas the threshold effect correlates with changes in RT.
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responses becoming quicker for lower threshold. This effect is due to lower thresholds leading to faster responses, which
require less evidence accumulation. For the alpha parameter, we again observed a decrease in precision but for lower values
of alpha instead of higher values. That is, as the noise more closely approximated a Cauchy distribution, the shallower the
psychometric curve became. Furthermore, RTs increased with lower alpha values but only for the middle durations; this
effect likely results from a longer amount of time necessary with a more constrained evidence accumulation regime to reach
a specified boundary, thus lengthening the time before a response is committed (Fig. 3B).

Altogether, all three models could provide an explanation for decreases in precision resulting from increases in noise, yet
with differing predictions for RT. After fitting the full model to our data, we observed that all three parameters additionally
shifted with changes in frequency (Fig. 3C). More specifically, we observed a decrease in drift rate as frequency increases
(F2,46)=9.962; p <0.001), in addition to a decrease in threshold (F 46 =14.661; p <0.001) and an increase in alpha (F 4¢)=
4.98; p=0.011). Across these parameters, we note that only the change in the drift rate and threshold were consistent
with the model simulation results; an increase in alpha predicts better precision rather than a decrease as observed in our
behavioral data. However, for the drift rate and threshold, either may match the behavioral data. To determine which,
we calculated the slope of a linear regression across frequency for both the drift rate and threshold and correlated those
values between-subject with the slope of the CV values across frequency. Here, we observed that only the drift rate effect
significantly correlated with the CV effect (Pearson’s r=—0.451; p =0.026; Spearman’s r = —0.413; p = 0.044), whereas the
threshold effect did not (Pearson’s r=—-0.213; p=0.317; Spearman’s r=—0.281; p = 0.182). Conversely, we found that the
threshold effect could explain changes in RT across frequency levels (Pearson’s r=0.296; p = 0.159; Spearman’sr=0.413;
p =0.044; we note the lack of a Pearson’s effect here is likely driven by an outlier, for which the Spearman effect is not
affected), whereas drift could not (Pearson’s r=-0165; p=0.438; Spearman’s r=-0.086; p =0.685). Although the RT
effect was not significant, we note that theoretically the threshold parameter should be able to explain any between-
subject differences in RT.

Experiment 2: visual

The overall findings of Experiment 1 and computational modeling both support the notion that increasing the frequency
of movement noise leads to a decrease in perceptual timing precision in accordance with Bayesian cue combination.
However, recall in the cue combination framework that the overall effect of increasing noise on one modality will depend
on the base level of precision in the other modality; if the unchanged modality’s precision is high, then the impact of
increasing noise in the second modality will diminish with higher levels of noise, whereas if the unchanged modality’s pre-
cision is low, then increasing noise in the second modality will have a larger effect with less diminishment. To test this pos-
sibility, we repeated our temporal categorization task in a new sample of subjects (n = 24) but with the visual modality used
for timing instead of auditory. It is well documented that the fidelity of perceptual timing is worse for visual than for auditory
stimuli, such that precision is lower for the former than the latter (van Wassenhove et al., 2008; Shi et al., 2013; Wiener et
al., 2014). In place of an auditory tone, the visual interval was demarcated by a global change in luminance of the view-
screen (see Materials and Methods). This was done so that subjects would be able to easily attend to the onset/offset
of the stimulus regardless of where they were looking on the screen or where the cursor was located (see Extended
Data Figure 2-2 for example trajectories).

As in Experiment 1, we also analyzed BP and CV as measure of bias and precision (Fig. 4A), respectively, using repeated-
measure ANOVAs. Similar to those results, there was no effect of amplitude (F,46)=2.23; p=0.119) or frequency (F(o,46)=
0.42; p =0.66) nor an interaction effect (F4 92 =0.39; p =0.814) on BP, again suggesting participants were also not distracted
by the noise or stimuli and were able to accurately complete the task (Fig. 4C). There was again no effect of frequency (F(2,46)=
2.28; p=0.114), amplitude (F,4¢)=0.83; p =0.443), or an interaction effect (F4 92 =0.82; p=0.515) on RT (Fig. 4D). A control
analysis on tremor direction again was conducted on choice responses, which once again failed to find any effect on either the
BP (F(2,46) =0.067; p= 0935) or the CV (F(2,46) =0.455;p= 0637)

For the CV, we again found no effect of amplitude (F(2 46)=1.01; p =0.374) or an interaction effect of amplitude and fre-
quency (F,92)=1.58; p=0.188). However, we did not observe a main effect of frequency (F,46)=2.61; p =0.084; 77,23 =
0.102); we note that the linear contrast was significant (f4e=2.121; p=0.039; D =0.625), indicating an overall increase
in CV with higher frequencies. Following our a priori hypotheses, we analyzed simple main effects with frequency as
the simple effect factor and amplitude as the moderator. Here, we found a significant effect of frequency only for the high-
est amplitude of three Newtons (F o 4¢)= 3.844; p =0.029), but not for either of the lower amplitudes (p =0.414 and 0.766,
respectively), indicating that the CV did significantly increase but only for the highest amplitude (Fig. 4B).

We again analyzed movement length and force in addition to the response variables (Extended Data Figure 2-1). A
repeated-measure ANOVA of movement length showed no significant effect of amplitude (F,46)=2.68; p=0.079) and
no significant effect of frequency (Fp.46=2.06; p=0.139) nor an interaction effect (F4 92)=0.96; p=0.431). Given the
marginal effect of amplitude and the linear nature of the data, we decided to explore the linear comparison of amplitude
averaged over all levels of frequency which revealed a significant effect (tue =2.30; p <0.05). As expected from previous
research (Wiener et al., 2019; De Kock et al., 2021b) and Experiment 1 results, movement length increased with duration
(F(6,138) = 30925, p< 0.001 )

A repeated-measure ANOVA on movement force, however, revealed a significant effect of amplitude (Fp 46)=4.04;
p <0.001), frequency (F,46=43.20; p <0.001), and an interaction effect (F 02=4.76; p <0.001). Post hoc analysis of
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Figure 4. Results from Experiment 2 (visual categorization). A, Psychometric curves fit to response proportions for a representative subject again exhibiting
a decrease in precision with increasing movement noise frequency (highest amplitude). B, Average CV for all subjects across all noise amplitudes and
frequencies; in contrast to Experiment 1, an increase in CV across frequency was observed only for the highest amplitude noise (3 N). C, D, Average
BPs and reaction times across all conditions again demonstrating no significant differences across either noise type. Error bars represent standard error.
See Extended Data Figures 2-2 and 2-3 for additional results on movement kinematics and example trajectories.

amplitude showed that movement force was significantly lower at the lowest amplitude (Amp1) compared with the mid
amplitude (Amp2; t=-3.40; p <0.01) and highest amplitude (Amp3; t=-5.50; p <0.001). It was also significantly lower
at the mid amplitude (Amp2) compared with the highest amplitude (Amp3; t=—4.97; p <0.001). Post hoc analysis of fre-
quency showed that movement force was significantly higher at the lowest frequency (Freg4) compared with the highest
frequency (Freq12; t=7.24; p<0.001) and not significantly higher than the mid frequency (Freqg8; t=7.83; p=0.081).
Movement force was also significantly higher at the mid frequency (Freq8) compared with the highest frequency
(Freg12; t=7.83; p <0.001).

Cross-modal comparisons

In order to investigate differences between the two modalities (Exp 1., auditory; Exp 2., visual), we conducted a mixed-
model ANOVA with modality as the between-subject factor. Although at first glance it appears that movement force
was overall higher in the visual modality (Exp. 1) than in the auditory modality (Exp. 2), this difference was not significant
(F1,46=0.92; p=0.341). Movement length was found to increase as frequency increased in the auditory modality (Exp. 1);
however, in the visual modality (Exp. 2), movement length increased as amplitude increased. We again compared across
modalities and found that movement length was not significantly longer in the visual modality (Exp. 2) compared with the audi-
tory modality (Exp. 1; F1,46)=3.47; p =0.069). Together these findings suggest that increases in the size of the tremor led to
increased movement force and longer movement lengths, whereas increases in the speed of the tremor led to decreased
movement force and so shorter movement lengths. Previous research has suggested that increases in movement length
lead to increases in time perception (Wiener et al., 2019; De Kock et al., 2021b); therefore, a logical next step was to compare
the BP across the two modalities to see if this was the case here as well. However, cross-modal analysis revealed no signifi-
cant differences on BP between groups (F(1 46 = 2.83; p = 0.099). In addition to response variables and movement parameters,
we also verified that there were no significant differences of modality on RT (F(1 4= 1.48; p=0.230). This finding further
supports the suggestion that the effects of frequency and amplitude on the different movement parameters did not influence
the perception of time but was simply due to the nature of controlling the robotic arm with the increasing size and speed of
movements.

Lastly, and most important, was the cross-modal comparison of CV which revealed precision was overall lower (higher
CV values) in the visual modality compared with the auditory modality (F(1,46)=10.01; p <0.01; 77?, =0.179). Additionally, we
evaluated the size of the effect of frequency on each modality as, according to the cue combination framework, the influ-
ence of noise on modality should depend on the base precision of the unchanging modality, and so if the visual modality is
less precise, then noise should have a larger effect. To test this, we calculated slope values for each effect and compared
them. For the auditory group, we used the average effect of frequency, collapsed across amplitude, whereas for the visual
group, we only used the effect of frequency for the highest amplitude (Fig. 5). Here, a significant difference was found, with
the effect of noise having a larger influence for the visual group than the auditory one (Mann Whitney U=170; p =0.014;
rank biserial correlation=-0.41).

Discussion

The overall purpose of these experiments was to test the proposed Bayesian cue combination framework which suggests
that movement serves as an additional channel of temporal information that has high precision and low temporal fidelity
which improves the precision of time perception. We therefore considered, if movement became unreliable or noisy, we
should see a decrease in the precision of timing in that, it will be pulled toward the more precise sensory input. We additionally
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Figure 5. Slope comparisons between experimental groups. The left panel displays linear regressions of the CV for individual subjects and group averages
(bold lines; red, visual; blue, auditory) across the three noise frequencies. The right panel displays density estimates of the distribution of slope values for
each. We observed that subjects performing the task with visual stimuli, in addition to higher CV values overall, exhibited a larger influence of noise fre-
quency, as exhibited by a significantly higher slope value for these subjects.

wanted to investigate whether this effect would differ between auditory and visual stimulus. Given previous findings that
auditory temporal perception is more precise than visual (Wiener et al., 2014; Mioni et al., 2016), we hypothesized that noisy
movements would lead to less precise estimations of time with visual stimuli compared with auditory.

Different levels of amplitude or frequency did not have a significant effect on accuracy in either the auditory or visual
version of the study suggesting that participants were able to appropriately complete the task and the noise did not serve
as a distractor from the timing task. This distinction is important, as one might expect that increased tremors would lead
subjects to pay less attention to the timing task. However, in that case, the prediction is that the time estimates themselves
would also become more biased to be shorter (Brown, 1997; Fortin, 2003), which was not the case. There were also no
significant effects of frequency or amplitude on RT within or between either experiments.

We did find an effect of precision in that an increase in frequency but not amplitude led to a less precise perception of
time for auditory stimuli, whereas for visual stimuli, the effect of frequency was only found at the highest level of amplitude.
Specifically, for Experiment 1 (auditory), participants were most precise at the lowest frequency level (4 Hz) with a leveling
off between the mid (8 Hz) and high frequency (12 Hz). For Experiment 2 (visual), we found the same pattern but only for the
highest amplitude (3 N), whereas for low (1 N) and mid (2 N) amplitudes, there were no significant differences in precision.
Therefore, when participants timed auditory tones, increasing the speed of the tremor but not the size of the tremor caused
a decrease in precision. One explanation for this difference is the difference in baseline precision between auditory and
visual modalities; that is, since auditory time estimates are already very precise, small disruptions to movements will
lead to a change in their overall precision. In contrast, since visual time estimates are already less precise, a larger amount
of noise is necessary in movements to induce an effect, as the noise in movements must exceed the noise of visual time
estimates such that the cue combination begins to favor them over movements. As such, larger noise is only achieved in
the visual experiment at a high amplitude.

The computational modeling conducted in our study allowed us to identify possible sources of noise in the perceptual pro-
cess. By relying on a DDM framework that incorporates Lévy Flights, we observed that the behavioral effect could be
explained by a shallower drift rate. Decreases in drift rate have been associated with a lower signal-to-noise ratio and so relate
to the rate of evidence accumulation in the perceptual process (Voss et al., 2004; Palmer et al., 2005; Rohenkohl et al., 2012).
In our case, when the drift rate was lower, we observed a similar finding to our behavioral data. Furthermore, fits of this model
to the behavioral data revealed that changes in the drift rate correlated with changes in precision, supporting the conclusion
that the effects were driven by perception-level changes rather than biases in decision-making or changes in strategy.

As for movement parameters during temporal encoding, in the auditory version (Exp. 1), we found there to be a linear
effect of frequency but not amplitude on movement length; specifically, movement length significantly decreased linearly
with an increase in frequency for the two higher amplitude levels (Amp2 and Amp3) but not at the lowest amplitude (Amp1).
Notably, for the visual version of the study (Exp. 2), there was a linear effect of amplitude but not frequency where move-
ment length significantly increased linearly with an increase in amplitude for the lowest frequency (Freg4).
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We also observed differences in movement length between experiments in that movement length was overall longer in
the visual study (Exp. 2) compared with the auditory study (Exp. 1); however, it was only marginally significantly different.
Given previous findings and in line with proposed framework, we would expect a difference in movement length would
lead to a biasing effect of time perception; however, there was no a significant difference between the two experiments
on BP which suggests that movement length did not influence time perception in this case.

The results of our experiment have particular implications for the study of movement disorders. Notably, time perception
abilities are impaired in pathologies of movement, such as Parkinson’s disease (Singh et al., 2021), Huntington’s disease
(Lemoine et al., 2021), or cerebellar degeneration (Breska and Ivry, 2021) but also in essential tremor (Pedrosa et al., 2016),
Tourette’s syndrome (Vicario et al., 2010), and dystonia (Conte et al., 2017). Conversely, individuals with highly trained
coordination, such as professional athletes or musicians, exhibit enhanced timing abilities (Cicchini et al., 2012; Chen
et al., 2016). Our observation that introducing a tremor to otherwise healthy individuals disrupts perception suggests
an intrinsic link between motor symptomatology and perceptual processes. This link may further go beyond perception
into the cognitive domain as well. Indeed, work with subjects with attention-deficit/hyperactivity disorder, where well-
known timing disruptions exist (Smith et al., 2002), has shown that ancillary movements can lead to improvements in per-
ceptual processes (Hartanto et al., 2016). Similarly, recent work in Parkinson’s patients has linked deficits in SM timing to
cognitive impairments (Singh et al., 2021). A corollary, implied by the present findings, is that by improving motor symp-
toms one could also improve both perception and cognition. Therefore, one might suggest that motor rehabilitation can
also lead to other benefits in these patients. In the case of timing, it is possible to improve SM estimates through repeated
training, which can lead to functional and morphological changes in SM brain regions (Bueti et al., 2012), yet whether this
also improves other symptoms is unknown.

A second future avenue of research relates to the frequencies employed in the present study. Here, we chose the
specific range (4-12 Hz) to reflect that observed in motor system tremors (McAuley and Marsden, 2000). We note, how-
ever, that the higher end of the tremors is closer to that identified as the so-called SM “mu” rhythm (8-13 Hz; Pineda,
2005). While traditionally involved in movements, recent work has linked mu oscillations to motor-related changes in time-
keeping processes, both for single intervals and rhythmic ones (lwasaki et al., 2018; Ross et al., 2022). Notably, mu
rhythms exhibit suppression during action initiation. One possibility, then, is the effects observed in the present study
relate to a kind of resonance with mu oscillations via the induced tremor, thus leading to the observed disruption.
Neural recordings, combined with a wider array of tremor frequencies, could shed light into this possibility, which would
provide a distinct mechanism by which tremors exert their influence on the motor system.

Overall, our method, which relies on a novel use of a robotic arm to mimic tremors, was able to effectively alter timing
performance. We suggest that our findings are not due to changes in attention or decision-making but instead result from a
fundamental change in perceptual processing, which follows from the Bayesian cue combination account. In conjunction
with our other findings, we now find converging evidence to support the cue combination account for how movements
influence perceptual time estimates, which in turn supports the hypothesis that movements themselves act as a timekeep-
ing process with high fidelity.
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