UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Structural Learning In Connectionist Systems

Permalink
https://escholarship.org/uc/item/82k8f5q1]

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 7(0)

Authors
Barto, Andrew G.
Anderson, Charles W.

Publication Date
1985

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/82k8f5q1
https://escholarship.org
http://www.cdlib.org/

STRUCTURAL LEARNING IN
CONNECTIONIST SYSTEMS*

Andrew G. Barto and Charles W. Anderson

Department of Computer and Information Sclence
Unlversity of Massachusetts, Amherst MA 01003

Abstract

Although networks of neuron-like computing elements can be constructed to implement sny function or
operation one desires, it is a highly nontrivial problem to devise algorithms that permit networks to learn
reliably and efficiently how to realize desired nonlinear functions without being provided with implementation
details. In particular, learning algorithms that work for single layers of adaptive elements cannot be extended
easily to multilayer or recurrently connected networks where structural changes must be produced. We
describe an approach to this problem which uses stochastic search as does the Boltzmann learning procedure
(Ackley, Hinton, and Sejnowski, 1985), but which is otherwise quite different from that method. We present
several simulations of layered adaptive networks to illustrate our method. In addition, we briefly review a
variety of previous approaches to this general problem in order to place these various methods in perspective
and to suggest a range of alternatives with which the performance of novel methods should be compared.

INTRODUCTION

One goal of connectionist modelling as pursued by researchers in Cognitive Science and Artificial Intelli-
gence is to bridge the gap between the behavior of networks of neuron-like computing elements and complex
forms of behavior that appear at higher levels (Hinton and Anderson, 1981; Feldman, 1985). Learning is
likely to play an important role in this research since it may be necessary in order to take advantage of
the representational potential of connectionist networks (Hinton, 1984), and since these networks contain
obvious parameters that can be adjusted through experience—the connection weights. However, although
networks of neuron-like computing elements can be constructed to implement any function or operation one
desires, it is a highly nontrivial problem to devise algorithms that permit networks to learn reliably and
efficiently how to realize desired nonlinear functions without being provided with implementation details.
In particular, learning algorithms that work for single layers of adaptive elements cannot be extended easily
to multilayer or recurrently connected networks.

A significant advance in this area is the Boltzmann learning procedure recently described by Hinton
and Sejnowski (1983) and Ackley, Hinton, and Sejnowski (1985) that is based on the analogy between
thermodynamic systems and networks of neuron-like elements pointed out by Hopfield (1982). In this paper
we describe an approach to this problem which uses stochastic search as does the Boltzmann procedure,
but which is otherwise quite different from that method. We present several simulations of layered adaptive
networks to illustrate our method. In addition, we briefly review a variety of previous approaches to this
general problem in order to place these various methods in perspective and to suggest a range of alternatives
with which the performance of novel methods should be compared. Most of these studies are quite old, but
we think they are relevant given the renewed interest in networks of this kind.

1. PARAMETRIC VERSUS STRUCTURAL LEARNING

One of the problems with learning systems using the single-layer learning procedures is that learning
proceeds up to a certain point and then stops. When the parameters that are adjusted by the learning
algorithm—in a network, usually the connection weights—reach optimum values, the degrees of freedom of
the system are exhausted even though the problem facing the system may be far from solved. Somehow,
this parametric learning should be augmented with strucferal learning by which the roles of the parameters

*This research was supported by the Air Force Office of Scientific Research and the Avionics Laboratory (Air Force
Wright Aeronautical Laboratories) through contract F33615-83-C-1078. We thank Rich Sutton, P. Anandan, John
Moore, and Harry Klopf for their theoretical contributions and helpful discussions.

43

44

in determining behavior, and not just their values, are altered by the learning process. Since one can always
regard structures as being parameterized, so that adjusting structures amounts to adjusting more parameters,
this distinction is not completely straightforward. However, what we mean by structural learning generally
involves a space of parameters that is so large, and a performance evaluation surface that is so complex, that
the usual algorithms for parametric adaptation do not work. Structural learning is intimately related to the
problem of adaptively developing new representations, for example, by the creation of “new terms,” since it
is the representation that determines the roles of the parameters.

One can view the adjustment of a connection weight in a complex network as a structural adjustment since
it affects the roles of other weights in generating network behavior. A complex network will have very many
adjustable weights, and the relationship between changes in a weight and changes in network performance
(i.e., the gradient of the network performance index with respect to the weight) will be complicated by
nonlinear dependencies on the weights of other elements—dependencies that do not make themselves known
through information locally available to the connection in question. Additionally, even if this gradient could
be determined locally, following it can lead to network performance that is only locally optimal. Global
searches that do not suffer from this deficiency may be too slow for the large search spaces that arise in
structural learning.

2. LAYERED AND RECURRENT NETWORKS

Our work to date has been restricted to the study of layered networks that do not have recurrently
connected elements. The Boltzmann learning method, on the other hand, is restricted to symmetrically
connected, hence totally recurrent, networks. In layered networks the entire stage corresponding to the
running of a Boltzmann network or Harmony system (Smolensky, 1983) to “thermal equilibrium” using
simulated annealing appears in a degenerate form: it is just the process of evaluating the input/output
function realized by the network, and no iterative relaxation procedure is required. Hence, layered networks
do not solve nontrivial constraint satisfaction problems. On the other hand, once a layered network has
learned, its performance in computing this function is essentially instantaneous.

We haverestricted attention to layered networks because it seemed to us that obtaining structural learning
in this case would be easier than, and a prerequisite for, obtaining it in the recurrent case. Boltzmann learning
shows that this is not true, but the principle employed there does not appear to extend to asymmetric
networks. We have not yet decided on the best way to extend our approach to the recurrent case, but we
do not think it is inherently limited to nonrecurrent networks. Future research will concern the case of
recurrent but asymmetric networks. We have also been influenced by the extensive history of attempts to
extend single-layer learning results to nonrecurrent networks having multiple layers, and we briefly review
some of these studies in order to place our approach in its proper context.

3. REVIEW OF LAYERED NETWORK STUDIES

Assume that a multilayered network has been designed by defining the output of each element as a
parameterized function of its input, and by specifying the interconnections among the elements. What
values should be assigned to the parameters of the network in order to implement some desired input/output
function? The most straightforward approach is to directly search the space of the network's parameters
for those values that maximize some measure of the network’s overall performance. By a direct search
we mean one in which successive sets of parameter values (i.e., weights) are evaluated by seeing how the
network performs with those values in its required task. Relevant gradient information is not obtained
locally by the adaptive elements, and a centralized search control mechanism is required. Gilstrap (1971),
who has pursued this direct-search approach, used guided random search methods that can be effective
under conditions encountered with multilayered networks. Whatever the search method used, however,
directly searching a space of dimension equal to the number of weights in an entire network is an extremely
time-consuming process for all but the simplest cases.

Most results from early adaptive network research concern layered networks in which only the elements
of the final (output) layer adapt. Examples of such networks are the Perceptron of Rosenblatt (1962) and
networks of “adalines” (sdaptive linear elements) studied by Widrow (1962). In these cases the learning
algorithms are variants of the now well-known error-correction procedures that adjust weights based on the
discrepancy between a unit’s response and its desired response supplied by some agency in the network's

environment (a “teacher”). There are obvious difficulties in extending these error-correction techmiques to
layered networks. Adapting the terms of Hinton and Sejnowski (1983), let us distinguish a network's wisible
elements from its Aidden elements. Visible elements are those whose activity is directly available to the
network’s environment and that are required to assume certain values for various input patterns provided
to the network. Hidden elements are those whose activity is not directly visible and that are somehow to
provide an encoding of input signals that will allow the visible elements to respond correctly. Although in
many tasks it may be possible for the network’s teacher to provide error signals to the network’s visible
elements (since it is these that define the network’s response), it may not be possible for this teacher to
provide analogous error signals to the hidden elements without & priori knowledge of the implementation
details of the desired input/output function. If this knowledge were available, then the problem would be
quite different from the ones in which we are interested: it would be more of a programming problem than
a learning problem.

Some methods rely on the generation of new elements rather than on the adjustment of the parameters of
existing elements. Methods that generate new elements generally divide the learning process into two stages.
In the first stage, the weights of the first layer (i.e., the layer that directly receives the external input signals)
are held constant while one of the familiar single-layer learning algorithms is used by the second layer. In the
second stage, the second layeris held constant while new elements are added to the first layer. Those elements
whose outputs are not significantly influencing the second layer might be discarded to limit the number of
elements. Selfridge’s Pandemonium provides an example of this two-stage learning process (Selfridge, 1959),
where new elements are created by “mutated fission” and “conjugation” of existing elements. Although it is
not described in network terms, the classifier system of Holland (1980) is probably the most highly developed
example of generating new elements via this type of “genetic recombination” process. Uhr and Vossler (1961)
presented another system that effectively adds new elements to the first layer. Each new element is set to
respond to a subpattern of the current input pattern. Reilly, Cooper, and Elbaum (1982) recently proposed
a somewhat related method that incorporates input patterns as “prototypes.”

Methods for generating new elements are attempts to avoid the combinatorial explosion that would result
from having an element for each of the possible combinations of available signals. The heuristic employed
is that useful higher-order features will tend to be compositions of useful lower-order features. A techmique
using this heuristic may be viewed as a type of beam search (see Barr and Feigenbaum, 1981). The search is
conducted by forming all pairwise (for example) combinations of lower-order features at each stage, and then
removing from consideration all but a certain number of them before forming the next stage’s combinations.
At each stage, the number of features remaining is the beam wnidih of the search. A beam search is not
guaranteed to result in an optimal solution but can be efficient if the beam is sufficiently narrow. Although
not usually associated with networks of adaptive elements, beam search can obviously be related to layered
networks. Ivanhenko's (1971) Group Method of Data Handling, for example, can be regarded as a method
for constructing a layered network using a beam search.

Another approach is to train the first layer of a two-layered network in isolation, independently of the
second layer and of the network’s performance on the required task. Such open-loop procedures are referred
to as clustering methods. Clustering methods are based on the assumptions that the system’s input patterns
tend to fall into natural clusters due to their intrinsic structure, and that detecting these clusters is significant
in some way for the performance of the system. Block, Nilsson, and Duda (1964) used a clustering algorithm
to train the first layer of a two-layered network. Fukushima’s Cognitron (1973) and Neocognitron (1980) are
other examples of clustering algorithms implemented as networks. In these networks an element is selected
for adjustment if its output is sufficiently in excess of the outputs of neighboring elements, and its weights
are adjusted so as to cause it to be more vigorously activated by the current input pattern. This type of
learning has also been discussed by Grossberg (1976a, 1976b) and Rumelhart and Zipser (1985).

For many types of problems, the need is not just to form clusters of input patterns but to form clusters
that are wseful in terms of the network’s interaction with its environment. In order to accomplish this,
the initial layers must use the information contained in an error or evaluation signal that is provided by
the network’s environment. The problem, as discussed above, is that this error or evaluation is directly a
function only of the network’s visible elements. Somehow this information must be used to tune the hidden
elements. Rosenblatt (1962) reported experiments with a stochastic back-propagation scheme for generating
error signals for interior elements, but the simplest way of doing this is to adjust a randomly chosen element
when an error is made by an output element. This approach was analyzed by Alder (1975) who proved an
extension of the Perceptron Convergence Theorem for layered networks. As he pointed out, however, the

45

46

algorithm was “less than efficient.”

Another method for selecting elements to adjust is to select those elements that would require the least
amount of change to correct the network's error. Widrow used this method in networks consisting of two
layers of adalines (1962). This algorithm and similar ones (e.g., Stafford, 1963) require a rather sophisticated
agent to conduct the training of the interior elements. In some cases, the sophistication required by this agent
can be reduced if the network structure is sufficiently constrained. Widrow's (1962) study of “madalines”
(multiple adalines) can be interpreted in this way. Here the final layer implements a fized logical function,
and only the initial layer learns in a manner that depends on this logical function. Systems like this have
been called “committee machines.” Methods similar to this have been discussed recently by Reilly, Cooper,
and Elbaum (1982), mentioned above, and Hampson and Kibler (1982) and seem to offer promising ways of
using networks for nonlinear pattern classification.

Some of the aforementioned methods represent attempts to extend error-correction methods to all ele-
ments of the network, for example, by restricting network operation so that desired responses for interior
elements might be deduced. Another approach is to use elements that do not require desired responses or
error signals but that implement reinforcement-learning algorithms. Such elements are capable of improving
performance with respect to an evaluation signal that assesses the collective actimty of the network com-
ponents. This method differs from what we called direct search since activity patterns rather than weight
settings are directly evaluated and the elements locally estimate the relevant gradient information. Our
own approach and that suggested by Klopf (1972, 1982) fall into this category, and we know of only a
few earlier studies that are similar. In his Ph.D. thesis, Minsky (1954) described the SNARC (Stochastic
Neural-Analog Reinforcement Calculator) which he constructed in 1951. It used components implementing
a simple stochastic reinforcement-learning procedure. Farley and Clark (1954) experimented with stochastic
adaptive elements that are similar in principle to the adaptive elements we have developed. In simulation
experiments, recurrently connected networks of these elements were able to solve some simple discrimination
tasks. Widrow, Gupta, and Maitra (1973) presented an extension of the adaline algorithm to allow it to do
a form of reinforcement learning which they called “selective bootstrap adaptation.” They remarked that
this extension may permit the elements to learn as components of layered networks. We now describe the
reinforcement-learning approach in more detail.

4. LAYERED NETWORKS OF REINFORCEMENT LEARNING
ELEMENTS

Consider an adaptive network operating in an environment that can evaluate the behavior of the network,
that is, of the collective behavior of the network’s elements, but cannot specify the desired behavior of each
individual component.! Suppose that the environment evaluates each of the network’s overt actions by
generating a reinforcement signal that is made available each element of the network.? If we view the
problem from the perspective of an individual element embedded in the interior of this network, we can
gain some understanding of the type of learning capability such an element might have to possess. Even if
the environment deterministically evaluates the network’s actions, the relationship between this element’s
actions and the evaluation signal will not be deterministic because it also depends on the behavior of other
elements. In addition to this, the contingencies faced by the element will vary with time as the other elements
adapt. Thus, even if the overall task faced by the network involves only fixed deterministic contingencies,
the task faced by an individual element will involve nonstationary random contingencies.

If all the elements in the network are able to improve their individual levels of performance under these
conditions, then the collection will also tend to improve its performance. This type of process involves
cooperative behavior more closely related to that discussed in game theory and economics than it is to the
cooperative phenomena of physics to which Boltzmann learning is related. One can regard the elements as
self-interested agents and a network as a “team.” This perspective on connectionist learning is due to Klopf

1By an agency in a network’s environment, we do not necessarily mean an agency outside of the device in which the
network resides; this agency may be another component of the overall learning system, such as a module specialized
for delivering reinforcement to other modules.

3]n the research reported here, we have not focussed on problems created by delayed evaluation. We have extensively
studied these problems and results are reported elsewhere (Barto, Sutton, and Anderson, 1983; Sutton, 1984).

(1972, 1082), whose theory of the “hedonistic neuron” suggests that many aspects of learning, memory, and
intelligence may arise from this type of cooperativity.

5. THE Agz_p LEARNING RULE

Together with R. Sutton, we have studied several types of adaptive elements capable of reinforcement
learning (Anderson, 1982; Barto and Sutton, 1981; Barto, Sutton, and Anderson, 1983; Sutton, 1984), but
the one used in the simulations described here was developed by Barto and Anandan (in press) who called its
learning algorithm the asssociative reward-penalty, or Agp_p, algorithm and proved a convergence theorem.
Details of this learning algorithm are provided in the appendix. Here there is only space to point out the
following. An element implementing this algorithm is a linear threshold device with a randomly varying
threshold. We use the logistic distribution function so that an element fires with probability 1/(1 + ¢~*/T),
where s is the total stimulus strength. Thus, the input/output behavior of the element is identical to
that of the elements used in Boltzmann learning, where T is the "computational temperature.” None of
our results, however, require the use of this specific distribution function. After each action, the element
receives a reinforcement signal taking values +1 and —1 to respectively indicate “reward” and “penalty.” By
updating its weights at each step (see the appendix) the element is able to improve its performance when its
environment provides stimulus patterns and reinforcement feedback according to the following probabilistic
scheme. At each step the environment presents the element with an input pattern z € X C R" (where
R denotes the real numbers). For each pattern z in X and each of the element's actions, y = 0 or 1, the
environment returns “reward” with probability d(z,y) when the element emits action y in the presence
of input pattern z. It delivers “penalty” with probability 1 — d(z,y). The element would maximize its
probability of receiving reward if it responded to each z in X with the action y for which d(z, y) is largest.
Learning ‘tasks like this one are related to instrumental, or cued operant, tasks used by animal learning
theorists (where an input pattern z corresponds to a discriminative stimulus) and to “two-armed bandit”
tasks studied by mathematicians and engineers (e.g., Cover and Hellman, 1970; Narendra and Thathachar,
1074)

Since it need not be true that d(z,1) + d(z,0) = 1, for a given input pattern z it might be true that no
matter what action the unit produces, it usually receives reward (i.e., d(z,1) > .5 and d(z,0) > .5); or it
might be true that no matter what action the element produces, it usually receives penalty (i.e., d(z,1) < .5
end d(z,0) < .5). Given these possibilities, the feedback received from producing one action provides no
information about the suitability of the other action. This property makes this task significantly more difficult
than the tasks usually solvable by neuron-like adaptive elements, yet it is an unavoidable feature of tasks faced
by the hidden elements. Barto and Anandan (in press) prove that the Agp_p algorithm is asymptotically
optimal® for arbitrary probabilistic contingencies if the set X of stimulus patterns is linearly independent.
Interestingly, when the temperature T is zero, the Ag_p algorithm reduces to the Perceptron algorithm
modified to accept reward /penalty feedback instead of training information in the form of desired responses.
So restricted, however, optimal performance is obtainable only for deterministic environments (d(z,y) =0
or 1, for all z and y), and such elements are not able to learn reliably when embedded in networks when a
reinforcement-learning paradigm is used.

6. A MINIMAL CASE OF COOPERATIVE LEARNING

Fig. 1 shows a network of two Ag_p elements, e; and e3. Only e, receives input patterns from the
environment, and only the action of e, is available to the environment (e, is hidden; e, is visible). Suppose
the network’s output, the output of e3, affects the probability of reward for both elements in a manner that
depends on the stimulus pattern presented to e;. If there were no means for e; to communicate with e;,
the elements would be capable of achieving only limited reward frequencies. The action of e; influences the
reinforcement received by both elements, but in the absence of a communication link, e; remains blind to
the discriminative stimulus z. On the other hand, in the absence of a communication link, e; can sense the
discriminative stimulus but cannot influence the network’s actions. The complementary specialties of the
two elements have to be combined in order for each to attain optimal performance. If the weight connecting

¥More precisely, it is e-optimal for each z € X, to use the terminology of learning antomata theory (see Narendra
and Thathachar, 1974).

47

48

m
3

=G) —

Figure 1: A two-element series In a simple discrimination task

e; to e; can be adjusted properly, the network can respond correctly. However, the correct value of the
interconnecting weight depends on how e; has learned to respond to z. Conversely, the correct behavior of
e; depends on the value of the interconnecting weight. Thus the two elements must adapt simultaneously in
a tightly-coupled cooperative fashion.

To be more specific, we set up the simulation in the following way. A training step consists of presenting a
randomly chosen input signal to the network, computing the network’s output, determining the reinforcement
signal, and then updating the weights.! The stimulus signals, z = 0 and z = 1, are equally likely to occur at
each step, and the success probabilities implemented by the network’s environment are given by the following
table:

z | d(z,0) d(z,1)

0 .9 A
1 & § 9

Thus it is optimal for the network as a whole to respond to z = 0 with visible action 0 to obtain reward
with probability .9, and to respond to z = 1 with action 1 to obtain reward with probability .9, yielding an
overall reward probability of .9. If the discrimination is not made so that the network responds identically
to all input patterns, the overall success probability is (.9 +.1)/2 = .5. Since each element also adaptively
adjusts its threshold (more precisely, the mean value of its threshold by adjusting a “threshold weight”),
there are two ways the network can solve this problem—both elements can implement the identity map, or
both can invert their input signal—and there are many ways it can fail.

Fig. 2a and 2b show the behavior of the network for a typical sequence of 500 training steps with A = .04
and p = 1.5 (see the appendix). Fig. 2a shows the evolution of the behavior of ¢; in terms of two graphs. The
first shows the conditional probability that e, fires (y! = 1) given that its input is 0, and the second shows
the same thing for input 1. Both of these probabilities start at .5 since the weights are initially zero. Fig. 2b
shows the evolution of the mapping implemented by e; and e; acting together by showing the probability
that e; fires (y? = 1) for the different values of the network input z. Fig. 2c shows the evolution of the
overall reward probability. Fig. 2d is a histogram of the number of steps required to reach a criterion of 98%
of optimal performance for each of 100 sequences of trials. In all of the sequences the network reached this
criterion before 1,500 steps. In about half of the sequences both elements learned to implement the identity
map, and in the other half, both became inverters.

A series of two elements in a discrimination task provides one of the simplest examples we could devise
to demonstrate cooperative reinforcement learning. We interpret the result as illustrating cooperativity in
the literal game-theoretic sense, with the interconnecting link representing a “binding agreement” by which
the elements form a coalition for mutual benefit.

4Note that in contrast to Boltzmann learning, the weights are updated after the each presentation of a single input
pattern,

a) L of — . . —

Pr{y, = 1|z =0} 0.

T L) I Y) e e . o e
0. 1 i
b) 200 +oial numoen 300)
Priyi=1e =0} (. 5pr--fd------ccrmmemeicacccccmmmciccccecamamcccacsamacaacacaaoaa]
0- " 1 1‘
300 400 S00
" d : .
Pr(yz - llz = l} 0.
0- 0 L i i i L 1]
0 100 200 300 400 500

TRIAL NUNDCHR

REWARD

PROBABILITY

...

d)

NUMBER OF

TRAINING
SEQUENCES

OVER 2000

TRIALS UNTIL SOLUTION (MEAN=579)

Figure 2: Simulation results for the two-element serles. See text for explanation.

49

Address

Figure 3: Network for the multiplexer task

7. A NONLINEAR TASK

In the task just described, cooperative learning is required only because the network lacks a direct pathway
from input to output. The task itself is easily within the capabilities of a single element. Here we discuss
a task that cannot be solved by a single linear threshold element, or any single-layer network of them. The
network shown in Fig. 3 has six input components and a single principal output (from element 5). There are
39 weights to adjust, one associated with each of the pathway intersections and one threshold weight for each
element. The reward contingencies implemented by the network's environment force the network to learn
to realize a multiplexer circuit in order to obtain optimal performance. A multiplexer is a device with n
address inputs and 2" data inputs (here n = 2). Given a pattern over the address pathways, i.e., an address,
a multiplexer’s output is equal to whatever signal (0 or 1) appears on the data line associated with that
address. It therefore routes signals from different input pathways to a single output pathway depending on
the “context™ provided by the pattern over the address pathways. For each of the 64 possible input patterns,
we rewarded each element of the network with probability 1 if the visible element (number 5) produced the
correct output, and we penalized each element with probability 1 otherwise. The input patterns were chosen
randomly for presentation to the met. All of the elements implement the Ag_p algorithm with T = .5
except for the visible element (number 5) which uses T' = 0 (and therefore essentially uses the Perceptron
algorithm).

This is a highly nonlinear task since the natural generalizations over the set of input patterns tend to
be wrong with respect to the required actions of the network. Consequently, it does not show the strengths
of distributed representations (see Hinton, 1984), but it represents a rather stringent test of the learning
method. The hidden elements (elements 1-4) are necessary in order to create new features to permit the
visible element to respond correctly. Fig. 4 is a histogram of the number of steps required for the network to
respond 99% correctly for 1,000 consecutive steps for each of 30 sequences of trials with p = 1 and A = .01
(see the appendix). The average number of steps required was 133,149, or about 2,080 presentations of each
stimulus pattern. In every sequence the network reached the criterion before 350,000 steps.

8. DISCUSSION

The multiplexer simulation suggests that layered networks of Ag_p elements are able to learn to im-
plement associative mappings that are beyond the capabilities of individual elements. More importantly,
they are able to do this when being directed by evaluative feedback that is based on knowledge of “what”
the network as a whole should accomplish but no knowledge of “how” the network should accomplish it.
Although we have not yet proved convergence for networks of Ag—p elements, all of our simulations suggest

50

NUMBER OF

TRAINING

i

SEQUENCES

| 0 Dm0l g U

50000 100600 150000 200000 250000 300000 350600

TRIALS UNTIL SOLUTION (MEAN=133 1490)

Figure 4: Simulation results for the multiplexer task. See text for explanation.

extremely reliable performance. However, these results also suggest that, like Boltzmann learning, the pro-
cess may take a considerable amount of time. It is difficult to evaluate the learning rate of Ag_p networks
without comparing their performance with that of other learning algorithms, and we are currently in the
process of performing comparative simulation studies using some of the algorithms mentioned in Section
3. At present we only know that for relatively small networks the simplest direct search generally yields
almost no improvement in performance by the time the Ar_p networks are performing near optimally.
There are also a number of methods for accelerating convergence that have been developed for conventional
pattern-classification algorithms with which we have not yet experimented.

Despite these important questions regarding learning rate, the learning method we have described has
a number of attractive features. First, the training procedure does not require any elaborate or centralized
control structures—it is a more or less “natural” consequence of the adaptive elements interacting with
one another under contingencies that are simple to implement. Second, if their initial architectures permit,
petworks of Ar_p elements tend to learn the easy parts of a problem quickly so that performance tends
to remain relatively high while the hard parts of the problem are being learned. Appropriate architectures
are those in which hidden elements are not strictly interposed between layers but rather form auxiliary
side networks. This is illustrated by the multiplexer network in which the input pathways to the network
connect to the visible element as well as to the hidden elements. Finally, although it is not illustrated by
the simulations described here, networks of Agr_p elements are able to learn in environments that cannot
directly instruct even the visible elements but can only evaluate the consequences of their activity on some
other process. As has been suggested elsewhere (Barto, Sutton, and Brouwer, 1981), this may be important
for sensorimotor learning tasks where evaluative feedback is a function of the spatial result of a network’s
actions.

APPENDIX
THE Agr_p ALGORITHM

Assume that at the start of the (*! step, the environment provides an element implementing the Ag_p

algorithm with a pattern vector z(t) = (z,(¢),...,z,(¢)) of real numbers. The element then emits an action
y(t) that is determined by a random thresholding process:
_)1, ifs(t)+n(t) >0
t —]
v(®) { —1, otherwise; (1)

where #(t) = Y7, wi(t)zi(t) is the weighted sum of the input signals and the {n(t),¢ > 1} are independent,
identically distributed random variables (we used the logistic distribution with T = .5 in the simulations).
Let r(¢) denote the reinforcement that evaluates the consequences of y(t). It takes the values +1 and -1
to respectively indicate “reward” and “penalty.” The weights, w;, 1 < i < n, are updated according to the

following equation: 0 — B0l (0 l
| elr(t)y(t) — Eqy(t)]e(t) }]zi(t if r(t) = +1; ,
auilt) = {AP["(‘)U(‘) - E{y(t)]s(t)}]z:(t) ifr(t) =-1 (2)

51

52

where Aw;(t) = w;(t+ 1) —w;(t), p> 0,and 0 < A < 1. E{y(t)]e(t)}, the expected value of the output
given the weighted sum, depends on the distribution function used. For the logistic distribution function, it

Ewl(0) = Sy

which is a sigmoidally-shaped function of #(¢) with limits of —1 and +1 for #(t) respectively approaching
—00 and +0o. In the simulations we recoded the values of y(t) to be 1 and O instead of 1 and —1 when the
elements communicated with one another.

If one lets the random variable p(¢) in (1) be identically zero (the deterministic “zero temperature”
case) and interprets the term r(¢)y(f) in (2) as a training signal giving the element’s desired response, then
the Ag_p algorithm becomes an asymmetric form of the Perceptron algorithm. Additionally, if the input
pattern z(t) is held constant and non-zero over ¢, then the Ag_p algorithm reduces to a stochastic learning
automaton algorithm (see Narendra and Thathachar, 1974); specifically it reduces to a nonlinear reward-
penalty algorithm of the non-absorbing type as defined by Lakshmivarahan (1979). Barto and Anandan (in
press) discuss the Az_p algorithm is more detail and prove a convergence theorem.

REFERENCES

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. A learning algorithm for Boltzmann Machines. Cognitive
Science, 1985, 9, 147-169.

Alder, M. D. A convergence theorem for hierarchies of model neurones. SIAM J. Comput., 1975, 4, 192-201.

Anderson, C. W. Feature generation and selection by a layered network of reinforcement learning elements:
Some initial experiments. COINS Technical Report 82-12, University of Massachusetts, Amherst, 1982,
Barr, A. & Feigenbaum, E. A. The handbook of artificial intelligence, Volume 1. Los Altos, California:
Kauffman, 1981.

Barto, A. G. & Anandan, P. Pattern recognizing stochastic learning automata. IEEE Trans. on Systems,
Man, and Cybernetics, in press.

Barto, A. G., & Sutton. R. S. Landmark learning: An illustration of associative search. Biological Cyber-
nefics, 1981, 42, 1-8.

Barto, A. G., Sutton, R. S., & Anderson, C. W. Neuronlike elements that can solve difficult learning control
problems. IEEE Trans. on Systems, Man, and Cybernetics, 1983, 13, 835-846.

Barto, A. G., Sutton, R. S., & Brouwer, P. 5. Associativesearch network: A reinforcement learning associative
memory. Biological Cybernetics, 1981, 40, 201-211.

Block, H. D., Nilsson, N. J., & Duda, R. O. Determination and detection of features in patterns. In Ton,
J. T. & Wilcox, R. H. (Eds.), Compster and information sciences: Collected papers in lcarning, adaptation,
and control in information systems. Washington, D. C.: Spartan Books, 1964, 75-110.

Cover, T. M., & Hellman, M. E. The two-armed bandit problem with time-invariant finite memory. IEEE
Transactions on Information Theory, 1970, 16, 185-195.

Farley,B. G., & Clark, W. A. Simulation of self-organizing systems by digital computer. I.R.E. Transactions
on Inf. Theory, 1954, 4, T6-84.

Feldman, J. A. (Ed.) Special issue on connectionist models and their applications. Cognitive Science, 1985,
9.

Fukushima, K. A model of associative memory in the brain. Kybernetic, 1973, 12, 58-63.

Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernetice, 1980, 36, 193-202.

Gilstrap, L. O., Jr. Keys to developing machines with high-level artificial intelligence. Design Engineering
Conference, ASME, New York, 1971.

Grossberg, S. Adaptive pattern classification and universal recoding: I. Parallel development and coding of
neural feature detectors. Biological Cybernetics, 1976a, 23, 121-134.

Grossberg, S. Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction,
illusions. Biological Cybernetice, 1976b, 23, 187-202.

Hampson, S., & Kibler, D. A boolean complete nenral model of adaptive behavior. Department of Informa-
tion & Computer Science Technical Report No. 190, University of California, Irvine, CA, 1982.

Hinton, G. E. Distributed representations. Technical Report CMU-CS-84-157, Carnegie-Mellon University,
Pittsburgh, PA, 1984.

Hinton, G. E., & Anderson, J. Parallel models of associative memory. Hilsdale, N. J.: Erlbaum, 1981.

Hinton, G. E., & Sejnowski, T. J. Analyzing cooperative computation. Proceedings of the Fifth Annual
Conference of the Cognilive Science Society, Rochester N.Y., 1083.

Holland, J. H. Adaptive algorithms for discovering and using general patterns in growing knowledge-bases.
International Journal of Policy Analysis and Information Systems, 1980, 4, 217-240.

Hopfleld, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc.
Natl. Acad. Sci. USA, 1082, 79, 2554-2558.

Ivanhenko, A. G. Polynomial theory of complex systems. JEEE Transactions on Systems, Man, and Cyber-
netics, 1971, 1.

Klopf, A. H. Brain function and adaptive systems—A heterostatic theory. Air Force Cambridge Research
Laboratories Research Report, AFCRL-72-0164, Bedford, MA., 1972 (A summary appears in Proceedings
International Conference on Systems, Man, Cybernetics). IEEE Systems, Man, and Cybernetics Society,
1974, Dallas, Texas.

Klopf, A. H. The hedonistic nexron: A theory of memory, learning, and intelligence. Washington, D.C.:
Hemisphere, 1082,

Lakshmivarahan, S. e-optimal learning algorithms—Non-absorbing barrier type, Technical Report EECS
7901, School of Electrical Engineering and Computer Sciences, University of Oklahoma, Norman Oklahoma,
1979.

Minsky, M. L. Theory of neural-analog reinforcement systems and its application to the brain-model problem.
Princeton Univ. Ph.D. Dissertation. 1954.

Narendra, K. 5., & Thathachar, M. A. L. Learning automata—a survey. JEEE Transactions on Systems,
Man, and Cybernetics, 1974, 4, 323-334.

Reilly, D. L., Cooper, L. N., & Elbaum, C. A neural model for category learning. Biological Cybernetics,
1082, 45, 35-41.

Rosenblatt, F. Principles of nexrodynamics. New York: Spartan Books, 1962.

Rumelhart, D. E., & Zipser, D. Feature discovery by competitive learning. Cognitive Science, 1985, 9,
75-112.

Selfridge, O. G. Pandemonium: A paradigm for learning. Proceedings of the Symposium on the Mechanisation
of Thought Processes. Teddington, England: National Physical Laboratory, H.M. Stationary Office, London,
2 vols., 1959.

Smolensky, P. Harmony theory: A mathematical framework for stochastic parallel processing. Proc. Nat.
Conf. on Artificial Intelligence AAAI-83, Washington, DC, 1983.

Stafford, R. A. Multi-layer learning networks. In Garvey, J. E. (Ed.), Symposiem on self-organizing systems.
Office of Naval Research, 1963.

Sutton, R. S. Temporal aspects of credit assignment in reinforcement learning. Univ. of Massachusetts
Ph.D. Dissertation, 1984.

Uhkr, L., & Vossler, C. A pattern recognition program that generates, evaluates and adjusts its own operators.
Proc. Western Joint Comp. Conf., 1961, 555-569.

Widrow, B. Generalization and information storage in networks of adaline “neurons.” In Yovits, M., Jacobi,
G., & Goldstein, G. (Eds.), Self-organizing systems. Spartan Books, 1962.

Widrow, B., Gupta, N. K., & Maitra, S. Punish/reward: Learning with a critic in adaptive threshold systems.
IEEE Transactions on Systems, Mon, end Cybernetics, 1973, 5, 455-465.

53

	cogsci_1985_43-53

