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ABSTRACT OF THE DISSERTATION

Augmented Reality on the Network Edge

by

Xukan Ran

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2021

Dr. Jiasi Chen, Chairperson

Mobile Augmented Reality (AR) is becoming more and more popular, with the AR

market estimated to grow to $61 billion by 2023. However, there is a lack of understanding of

AR performance in terms of accuracy, latency, among others. For example, a virtual object

augmented on the table may drift in the air if the AR accuracy is low. The initialization

latency for the multi-user AR can be long and will significantly impact user experience.

This thesis explores and improves the performance for both deep learning based and SLAM

based AR on mobile devices on the network edge.

First, we propose DeepDecision, a deep learning framework that ties together

front-end devices with more powerful backend “helpers” (e.g., home servers) to allow deep

learning to be executed locally or remotely in the cloud/edge server. The complex interac-

tion between model accuracy, video quality, battery constraints, network data usage, and

network conditions is considered to determine an optimal offloading strategy. Our results

show DeepDecision achieves better accuracy comparing with the baseline method.
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Second, we developed a lightweight change detector which triggers deep neural

networks(DNN) execution when there are significant changes in the input video. When

there are no significant changes, DNN will not be triggered and a lightweight tracking

algorithm will be applied to maintain previous DNN results. The change detector has high

accuracy and very low latency. It helps DNN system to save energy and reach real-time

processing without offloading.

Third, we propose SPAR, a SPatially consistent AR framework for SLAM-based

multi-user augmented reality. SPAR communicates efficiently by only sending the most

relevant environment data while maintaining or even improving the accuracy. We also

propose a geo-distance filter so that after the virtual object is initially resolved, SPAR can

continue to optimize its accuracy. SPAR also has a preliminary automated tool to measure

accuracy in both single-user and multi-user cases. Our results show that SPAR has better

accuracy and initialization latency comparing with the baseline method.
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Chapter 1

Introduction

Thanks to its augmented interactive experience between real world and virtual ob-

jects on the screen, mobile Augmented Reality (AR) is becoming increasingly popular these

days, with the AR market estimated to grow to $61 billion by 2023 [38]. Many companies

are developing mobile AR platforms and integrating AR into their products, such as Apple

ARKit[13], Google ARCore[32], and IKEA Place[49]. Meanwhile, mobile AR has spread

out to a wide range of fields including gaming(Pokemon Go Buddy Adventure), online shop-

ping(JINS Eyeglasses), education(Apollo’s Moon Shot AR), online chatting(Snap Filters)

and physical therapy(Complete Anatomy)[88]. In AR, virtual objects are rendered on the

display and overlaid on top of a user’s field of view (FoV). To provide a seamless integration

with the real world, AR app needs to have an understanding of the surrounding real-world

environment [43]; for example, The IKEA augmented reality app IKEA Place will place

a virtual sofa on a real floor, rather than drawing the sofa unrealistically floating in the

air. The AR algorithms behind the scene require the understanding of the environment
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and can be categorized into two major types: (1) deep learning based AR (e.g., Snapchat

Lenses [34]) in which deep learning is used to classify objects in the real world and overlay

on top of them; (2) SLAM based AR (e.g., Just A Line [37]) in which visual and inertial

sensors are used to create a 3D map of the real world. However, due to the limited resources

from mobile devices, only a few AR apps use deep learning which remains as the bottleneck

for AR[95]. Although SLAM based AR started to emerge on mobile devices, there is a

lack of understanding of the communication requirements and challenges of multi-user AR

scenarios where users can share virtual objects associated with the real world.

We build three systems, DeepDecision, change detector and SPAR, to solve the

above problem. DeepDecision is a measurement-driven mathematical framework that ef-

fectively schedules the deep learning to be executed either locally on the mobile devices or

offloaded to the edge server with a certain input video quality based on accuracy and latency

targets, network conditions and battery conditions. The change detector is a lightweight

machine learning algorithm that detects major changes in the input video. DNN will only

be triggered when major changes are detected to save energy and decrease the latency of the

DNN system without offloading. SPAR is a multi-user augmented reality application that

applies efficient communication strategies to trade off communication latency for spatial

consistency of the virtual objects.

Our experiment results suggest that it’s possible to balance between accuracy and

latency for both deep learning and SLAM based AR. Augmented reality researchers and

developers can apply different strategies to fulfill different demands in various scenarios.
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1.1 DeepDecision as a solution for deep learning based AR

Deep learning shows great promise in providing more intelligence to augmented

reality devices, but few mobile AR apps execute deep learning in real time due to the

lack of infrastructure support. Deep learning algorithms are computationally intensive, and

mobile devices can’t deliver sufficient compute power for real-time processing. For example,

Tensorflow’s Inception deep learning model can process about one video frame per second on

a typical Android phone, preventing real-time analysis[20]. Even with mobile GPU speedup,

the typical processing time can still be up to 600 ms(1.7 frames per second), far from real-

time processing(30 frames per second)[47]. However, we observe that although mobile

devices have limited computation power, sending deep learning to “backend” computers

can result in an effective design as long as the tradeoffs between accuracy and latency are

well studied.

We have done extensive measurements to understand the tradeoffs between video

quality, network conditions, battery consumption and processing delay as well as accuracy.

Based on these measurement and tradeoff studies, we develop DeepDecision, a mobile deep

learning framework that achieves target accuracy and latency under bandwidth and energy

constraints.

Our results show that there exist various tradeoffs between video resolution, model

size, where to run the model as well as accuracy and latency. We also observe that latency

has a reverse impact on accuracy for real-time deep learning detection, as the results will

get stale and thus cause a worse accuracy. We compared our results with remote-only,
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local-only and a “slim” version of MCDNN[40] and find DeepDecision is able to provide

higher accuracy under variable network conditions.

1.2 Change detector as a solution for deep learning based

AR without offloading

Although DeepDecision improves the performance of deep learning system, the

processing purely on mobile devices without offloading is still slow and energy-consuming.

We developed a lightweight machine learning algorithm called change detector to detect

changes in the input video. The deep learning will be applied for the first frame but

will not be triggered again unless major changes have been detected. When there is no

major change, a lightweight tracking algorithm(Lucas-Kanade method[65]) will be applied

to maintain DNN outputs. Such scheme helps the DNN system to save energy and reach

real-time performance without the help of an edge server.

Our experiments show the change detector has high precision and recall. Utilizing

the change detector helps DNN remain or even improve the accuracy, save energy and reach

real-time processing.

1.3 SPAR as a solution for SLAM based multi-user AR

Multi-user augmented reality applications thrive on the mobile app store these

days. Such applications with a common set of virtual objects viewed by multiple users not

only require cooperation among players but also provide interactions between virtual world

and the real world[58]. For example, users can share virtual pokemons with each other
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in Pokemon go buddy adventure at the same physical location; Microsoft Minecraft Earth

AR allows players to build virtual structures or earthworks together on the same real-world

structure and Google Just A Line allows multiple users to draw virtual graffiti in the same

physical space.

Multi-user AR requires network communications in order to coordinate the posi-

tions of the virtual objects on each user’s display, yet there is currently little understanding

of how such apps communicate and how well the application performs. The current multi-

user AR applications such as ARCore and ARKit are closed-sourced and there is also a lack

of study on how to measure accuracy of AR and multi-user AR applications[32, 13].

We develop SPAR, a multi-user augmented reality application on Android that

shares environment and virtual object information among users under WiFi connections.

SPAR has two strategies: SPAR-LARGE and SPAR-SMALL, where SPAR-LARGE shares

environment information near the virtual objects while SPAR-SMALL only shares environ-

ment information scanned at the time when the virtual object is created. The baseline

approach is to share all the environment information. To measure the performance of

SPAR, we propose an automatic tool to quantify how much the virtual objects’ positions

inadvertently change in time and space.

We measure the performance of SPAR in three different mobility patterns and

conclude that both SPAR-LARGE and SPAR-SMALL have better accuracy in all the sce-

narios while SPAR-SMALL has poor latency performance in one scenario due to limited

shared environment information.
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Chapter 2

DeepDecision: A Mobile Deep

Learning Framework for Edge

Video Analytics

2.1 Introduction

Deep learning shows great promise to provide more intelligent video analytics to

augmented reality (AR) devices. For example, real-time object recognition tools could help

users in shopping malls [26], facilitate rendering of animations in AR apps (e.g., detect a

table, and overlay a game of Minecraft on top of it), assist visually impaired people with

navigation [50], or perform facial recognition for authentication [90].

Today, however, only a few AR apps use deep learning due to insufficient infras-

tructure support. Object recognition algorithms such as deep learning are the bottleneck
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for AR [95] since they are computationally intensive, and the front-end devices are often

ill-equipped to execute them with acceptable latencies for the end user. For example, Ten-

sorflow’s Inception deep learning model can process about one video frame per second on

a typical Android phone, preventing real-time analysis [20]. Even with speedup from the

mobile GPU [48, 47], typical processing times are approximately 600 ms, which is less than

1.7 frames per second. In industry, while a few applications run deep learning locally on

a phone (e.g., Apple Photo Album), these are lightweight models that do not run in real

time. Voice-based intelligent personal assistants (e.g., Alexa, Cortana, Google Assistant,

and Siri) mostly transfer the input data to more powerful backends and execute the deep

learning algorithms there. Such cloud-based solutions are only applicable when network

access is reliable.

Our observations. While front-end devices are computationally weak, and sending deep

learning jobs to “backend” computers is inevitable, the following new observations will yield

an effective design:

Tradeoffs between accuracy and latency. AR apps relying on deep learning have different

accuracy/latency requirements. For example, AR used in shopping malls for recommending

products may tolerate longer latencies (fine to let users to wait a second or two) but have

a higher accuracy requirement. In an authentication system that uses deep learning, users

could wait even longer but expect ultra-high accuracy.

Sources of latency. When a deep learning task needs to be executed remotely, both the data

transmission time over the network and the deep learning computation time can introduce

latencies. Prior works (e.g., [47, 40]) focus on optimizing computation latencies (i.e., time
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between the job’s arrival at the computation node and the job’s completion) by designing

sophisticated local scheduling algorithms. We observe that network latencies are often much

longer than the computation latencies, so it is important to optimize the offloading decision

along with the local processing. Furthermore, although deep learning based real-time video

analytics are known to be computationally intense, simple consumer-grade GPUs suffice

for most real-time video analysis (e.g., object detections). Thus, home computers could be

used as “backend helpers” that are dedicated to a small group of users like family members.

In other scenarios, home desktops may not even be needed, as wearable devices such as

smartwatches or head-mounted displays could send computation to a user’s smartphone

nearby.

Video streams and deep learning models as “first class citizens.” Deep learning in an AR

setting is primarily responsible for interpreting data collected from a camera (i.e., video

data). Prior works (e.g., [20, 47, 40]) treat the videos merely as sequences of images and the

deep learning models as rigid computation devices that produce uniform forecasting quality.

Yet these assumptions lead to the illusion that we face a canonical scheduling problem: a

fixed set of computation tasks needs solving, and each deep learning model consumes a

predictable amount of resources and produces predictable output (i.e., forecasting quality

is known). The assumption, however, will substantially reduce the system performance

because they ignore the compressibility of both deep learning models and video streams.

Instead, we ought to treat video streams and deep learning modules as “first-

class citizens” and directly optimize the tradeoffs between video and prediction qualities.

Specifically, video data should not be treated as a sequence of images (i.e., independent
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computation tasks) because this will over-consume network bandwidth; instead, aggressive

leverage of existing technologies for compressing videos (including DFT, delta coding, and

changing resolution etc.) will result in the best use of network bandwidth. Certainly, over-

aggressive compression may cause declines in video analysis quality. Our solution aims

to find the most suitable video encoding scheme that gives the optimal tradeoff between

network consumption and prediction quality.

Our contribution. We propose a distributed infrastructure, DeepDecision, that ties

together computationally weak front-end devices (assumed to be smartphones in this work)

with more powerful back-end helpers to allow deep learning to choose local or remote execu-

tion. The back-end helpers can be any devices that supply the requisite computation power.

Our solution intelligently uses current estimates of network conditions, in conjunction with

the application’s requirements and specific tradeoffs of deep learning models, to determine

an optimal offload strategy. In particular, we focus on executing a convolutional neural

network (CNN) designed for detecting objects in real-time for AR applications. (A simi-

lar framework could be applied to any application that requires real-time video analytics.)

We seek to understand how the changes of key resources (e.g., network bandwidth, neural

network model size, video resolutions, battery usage) in the system impact the decision of

where to compute. An overview of our system is illustrated in Fig. 2.1 and Fig.2.2.

We make the following contributions:

1. Extensive measurements of deep learning models on smartphones to understand the

tradeoffs between video compression, network conditions and data usage, battery consump-

tion, processing delay, frame rate, and machine learning accuracy;
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Figure 2.1: System overview. The front-end device chooses where to analyze the input
video for real-time display.

2. A measurement-driven mathematical framework that efficiently solves an optimization

problem, based on our understanding of how the above parameters influence each other;

3. An Android implementation that performs real-time object detection for AR applica-

tions, with experiments that confirm the superiority of our approach compared to several

baselines.

Organization. Sec. 2.2 explains the background on neural networks, Sec. 2.3 describes

our model and algorithm, and Sec. 2.4 shows our measurements and experimental results.

Finally, Sec. 2.5 discusses related work and Sec. 2.6 summarizes.
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2.2 Background, Metrics, and Degrees of Freedom

Background. We first provide relevant background on CNNs for video analytics

and AR. In video analytics, object recognition (classifying the object) and object detection

(locating the object in the frame) are both needed. In AR, the processing pipeline also

includes drawing an overlay on top of the located and classified object. Neural nets are the

state-of-the-art in computer vision for object recognition and detection, and many existing

neural nets for object recognition build a pipelined solution, i.e., they use one neural net to

detect the boundaries of objects and a second net to inspect contents within each bounding

box. In this work, we use a particular CNN called Yolo [82]. (Our framework can also be

adapted to other popular CNNS such as [83, 63].) Yolo is optimized for processing video

streams in real-time and possesses two salient features: 1. One neural net for boundary

detection and object recognition. Observing that using multiple neural nets unnecessarily

consumes more resources, Yolo trains one single neural network that predicts boundaries

and recognizes objects simultaneously. 2. Scaling with resolution. Yolo handles images with

different resolutions, e.g., when there is a change in the dimension of an input to a convolu-

tional layer, Yolo does not change the kernels and their associated learnable parameters –

this would result in a change of output dimensions. Thus, the compute time of Yolo scales

directly with input’s resolution, e.g., lower resolution images require less computation.

Key performance metrics. AR apps often require service guarantees on two important

metrics:

1. Frame rate: The frame rate is the number of frames that we feed the deep learning

model per second when it’s running locally, or is the video frame rate (FPS) when offloading.
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Figure 2.2: Input parameters and outcomes.

2. Accuracy: The accuracy is a metric that captures (a) whether the object is classified

correctly; (b) whether the location of the object in the frame is correct.

Being a responsible citizen. While purely focusing on these key metrics may maximize

the performance of the video analytics module, other potential impacts on the frontend

device should be considered. For example, running more powerful deep learning models

will consume extra CPU cycles, disrupting other background processes, and draining the

device battery. If the client communicates with the server, the network transmission also

uses battery; Also, if the data transfer is over LTE, the monetary cost to the user in terms

of data quota must also be considered. These factors of battery consumption and network

data usage must be considered holistically alongside the key performance metrics.

Degrees of freedom. There are several degrees of freedom we consider in this work as

shown in left part of Fig. 2.2.

1. Adjust the frame resolution. By decreasing the frame resolution, we can decrease the

execution time of a deep learning model, which also lowers the energy cost. However, this

12



may also decrease the accuracy of the model. Conversely, increasing the frame resolution

may increase the accuracy, at the expense of lower frame rate and greater energy drain.

2. Use smaller deep learning models. We may wish to use a smaller neural network to

reduce the run time and the energy cost, at the cost of reducing the prediction accuracies.

Conversely, using a larger deep learning model increases the run time and energy, but boosts

the accuracy.

3. Offload to backend. By sending the computation job to a backend server, we can

substantially reduce the computational burden at front-end devices, increasing the frame

rate. However, this may result in extra startup delay from the network transfer, causing

the server’s result to be stale by the time it is returned to the client, thus decreasing the

prediction accuracy.

4. Compress the video. When offloading, one may wish to compress the video more/less

based on the network conditions. Choosing a low target video bitrate reduces the network

transmission time, but potentially decreases the accuracy. Conversely, using a high video

bitrate may result in higher accuracy but will also result in longer transmission time, making

the detection results stale and decreasing the accuracy.

5. Sample the video at lower frequencies. We do not need to process every frame in the

video; instead we may sample only a small fraction of frames for further processing. In this

way, we may reduce the total computation demand of an AR app.

Each of these operations may impact one or more of the key performance metrics

described above. Furthermore, we may employ multiple operations simultaneously, e.g., we
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can reduce the resolution and use smaller models at the same time. In fact, any subset of

these operations defines a legitimate strategy, although not necessarily optimal.

2.3 Our algorithmic problem

This section describes the problem, our optimization framework, and the algo-

rithms to solve this optimization problem. Challenges: (1) As can be seen from the

previous section and Fig. 2.2, the interactions between the degrees of freedom and the

key performance metrics are complex. For example, some decision variables increase one

key metric but decrease another metric (e.g., higher resolution increases accuracy but de-

creases frame rate); or some decision variables may affect the same metric in multiple ways

(e.g., transmitting the video at a higher bitrate could increase the accuracy, but could also

increase the latency, which decreases accuracy. See Fig. 2.7). Selecting the right combi-

nation of decision variables that maximizes the key metrics, while satisfying energy, cost,

and performance constraints is no easy task. (2) Moreover, many of these tradeoffs cannot

be expressed cleanly in analytic form, making any solution or analysis difficult. For exam-

ple, analyzing the relationship between staleness and accuracy is a challenging task that

depends on the video content, the particular deep learning model being used, the resolution

of the video, and the compression of the video. The lack of analytic understanding of these

tradeoffs is in part due to the complexity of the deep learning models themselves, whose

theoretical properties are not yet well understood.

Our approach: Our approach is therefore to create a data-driven optimization

framework that takes as input the empirical measurements of these tradeoffs, computes
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Variable Description

p frame resolution (pixels2)

r video bitrate (bits/s)

f frame rate (frames/s)

yi(t) model decision at time t

ai(p, r, `i) accuracy of model i (%)

bi(p, r, f) battery of model i (J/s if i = 0, J/frame if i > 0)

`i(p, r, f) total delay when using model i (s/frame)

`CNN
i (p) processing delay from running model i

B network bandwidth (kbps)

L network latency (s)

B target battery usage (J/s)

A accuracy target (%)

F frame rate target (frames/s)

c monetary cost ($/bit, if use cellular network)

C target monetary cost ($/bit)

α parameter that trades off accuracy for frame rate in the ob-
jective function

Table 2.1: Table of Notation. i = 0 represents remote execution, and i = 1, . . . , N represents
local execution on the front-end device.

the optimal combination of decision variables that maximizes the key metrics, and outputs

the optimal decision. Our framework must be general enough to handle any values of

input measurement data while still capturing the tradeoffs between decision variables and

metrics. In this section, we will describe the optimization framework that we designed and

its solution; while Sec. 2.4, we show the actual input data based on our measurements with

real systems, as well as the experimental results from our Android application.

In the DeepDecision system, we divide time into windows of equal size, and solve

an optimization problem at the beginning of each interval to decide the deep learning

algorithm’s configurations: the frame rate sampled by the camera (f), the frame resolution

(p), the video bitrate (r), and which model variant to use (yi). The problem is:
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Problem 1

maximize
p,r,f,y

f + α

(
N∑
i=0

ai(p, r, `i)yi

)
(2.1)

s.t. `i =


`CNN
i (p) + r

f ·B + L if i = 0

`CNN
i (p) if i > 0

(2.2)

N∑
i=0

`CNN
i (p)yi ≤ 1/f (2.3)

r · y0 ≤ B (2.4)

N∑
i=0

bi(p, r, f)yi ≤ B (2.5)

c · r · y0 ≤ C (2.6)

f ≥ F (2.7)

∀i : ai(p, r, f) ≥ A · yi (2.8)

N∑
i=0

yi = 1 (2.9)

vars p, r, f ≥ 0, yi ∈ {0, 1} (2.10)

The objective (2.1) is to maximize the number of frames sampled plus the accuracy of

each frame (see Key Performance Metrics in Sec. 2.2). The relative importance of accuracy

versus frame rate is determined by parameter α. Constraint (2.2) says that the total delay

experienced by a frame is equal to the CNN’s processing time plus the network transmission

time (if applicable). Constraint (2.3) says that the frame rate cannot be chosen to exceed

the processing time of the CNN (remote or local). Constraint (2.4) says that the video

cannot be uploaded at a higher bitrate than the available bandwidth. Constraint (2.5) says
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that the battery usage cannot exceed the maximum target. Constraint (2.6) says that the

monetary cost cannot exceed the maximum target. Constraints (2.7) and (2.8) allow the

application to define a minimum required frame rate and accuracy. Constraint (2.9) says

that only one model may be selected (remote or one of the local models).

If the frame rate, resolution, and video bitrate were known, then Prob. 1 is a

multiple-choice multiple-constraint knapsack program, where the items are the model vari-

ants, an item’s utility is the model’s accuracy, and an item’s weight is in terms of latency,

bandwidth, battery, and monetary cost. The multiple-choice comes from the fact that

for each frame, there is a choice to offload, or process locally (choosing a model size). The

multiple-constraint comes from the latency, bandwidth, battery, and cost constraints. How-

ever, the key difference from the classical problem is that the utility and costs of the items

are also functions of the optimization variables. Moreover, they are generally non-linear

functions, and must be determined empirically from measurements.

A brute-force solution to Prob. 1 would take O(rmax · fmax · pmax ·N). The brute-

force solution is impractical when we need to frequently make new decisions and/or carry

out a grid-search in fine granularity. We need to leverage the mathematical structure of the

problem (based on simple intuitions and confirmed by extensive measurements in Sec. 2.4)

to design a more efficient algorithm. These intuitions are:

1. Accuracy: For remote models, the accuracy per frame depends on a number

of factors: the video resolution, the video bitrate/compression, and the end-to-end delay

(which is itself a function of resolution, bitrate, frame rate, and network latency and band-

width), i.e. a0(p, r, `0) = a0(p, r, `0(p, r, f,B, L)). For local models, the accuracy model can
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be simplified because it depends only on the resolution and delay, since we do not need to

compress the video for transmission over the network, i.e., ai(p, r, `i) = ai(p, `i), i > 0.

2. Battery: When transmitting to the server, the energy per time depends only

on how much data is transmitted over the network, i.e., b0(p, r, f) = b0(r,B). For local

models, the battery usage per time depends on the resolution and the number of frames

processed, i.e., bi(p, r, f) = f · bi(p), i > 0.

3. Latency: The latency per frame when running the CNN locally depends only

on the resolution, since a larger resolution requires more convolutions to be performed, i.e.,

`i(p, r, f) = `CNN
i (p), i > 0. When offloading to the server, however, the total latency is a

function of the CNN processing time plus the network transmission time, i.e., `0(p, r, f) =

`CNN
0 (p) + r

f ·B + L.

Algorithm 1 DeepDecision algorithm

Input: Target cost C, target battery B, cost per bit c, network bandwidth B, network
latency L, model battery usage function bi, model latency function `i, model accuracy
function ai
Output: Frame resolution p∗, video bitrate r∗, frame rate f∗, decision of model variant y∗

1: f ← 1
fCNN
0

. remote model

2: p, r ← arg maxp,r≤min(B,b−1
0 (B|B),C

c
)(f + a0(p, r, `

CNN
0 + r

fB + L))

3: if a0(p, r, f) ≥ A and f ≥ F then
4: umax ← f∗a0(p, r, f)
5: r∗ ← r, f∗ ← f, p∗ ← p,y∗ ← ei

6: for i← 1 to N do . try the local models
7: r ← rmax . don’t need to compress locally
8: p← arg maxp(min( 1

`(p) ,
B

b(p)) + ai(p, `i(p))

9: f ← min( 1
`(p) ,

B
b(p))

10: u← f + ai(p, `i(p))
11: if u > umax and ai(p) ≥ A and f ≥ F then
12: umax ← u
13: r∗ ← r, f∗ ← f, p∗ ← p,y∗ ← ei

14: return p∗, r∗, f∗,y∗
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We are now ready to describe our Alg. 1 that exactly solves Prob. 1 and improves

on the brute-force search efficiency. With some abuse of notation, we define the inverse of

a function g : R2 → R as g−1(y|z) = arg maxx(g(x, z) : g(x, z) ≤ y).

• Line 1-5, i = 0 (remote model): The constraints are: `0 = `CNN
0 + r

f ·B , `
CNN
0 ≤

1
f , b0(r,B) ≤ B, c · r ≤ C, and r ≤ B. Since the objective increases with frame rate

(the f term grows and r
f ·B shrinks, resulting in higher accuracy), we can pick the

maximum frame rate that satisfies the constraints. We next search across resolution

p and bitrate r to find the best combination. Lastly, we check if the frame rate and

accuracy constraints are satisfied.

• Line 6-13, i > 0 (local models): The constraints are: `i(p) ≤ 1
f and f · bi(p) ≤ B.

Since the processing is local, the video bitrate is set to the maximum. The tradeoff

is between the resolution p and frame rate f (setting a higher resolution improves

accuracy, but the CNN takes longer, decreasing the frame rate). For each value of p,

since bi(p) and li(p) are non-decreasing, we can find the maximum f that still satisfies

the constraints, then pick the best p overall. Finally, we check if the frame rate and

accuracy constraints are satisfied.1

The battery, latency, and accuracy functions b−1i , `−1i , ai can easily be pre-stored

(by using hash tables) so that their lookups take constant time. We use linear interpolation

on these functions if the measurement density is insufficient. The running time of our

1We remark that when the frame rate does not satisfy (2.7), we could not have picked a different frame
rate resulting in a feasible solution. This is because the algorithm picks the maximum possible f for each
value of p. A similar argument also holds for accuracy constraint A.
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algorithm takes O(pmax(rmax + N)), which is a significant improvement over the brute-

force solution.

We next make a number of remarks. 1. Utility function. The utility function

in (1) is the sum of frame rate and accuracy. One may also consider other utility func-

tions, e.g., multiplicative f ·
∑N

i=0 ai(p, r, `i)yi, where the intuition is that utility depends on

collecting more frames each with high accuracy. Alg. 1 is still applicable when the utility

function changes (so long as it is monotone in both frame rate and accuracy). We have

experimented with the multiplicative objective function and found that it tends to empha-

size frame rate at the expense of accuracy, and choose solutions with low accuracy but high

frame rate. Therefore, we use the additive objective function (2.1) in the remainder of this

work.

2. Budgets in each time interval. In the current formulation, the user inputs

her battery and monetary constraints as an average usage over time (e.g., $/s, J/s). Al-

ternatively, the user may wish to specify total battery and monetary budgets in each time

period (e.g., $, J), and have the algorithm use dynamic programming to make online deci-

sions. But the multi-stage optimization approach is unlikely to be effective in our setting,

as such an optimization often requires knowledge of the distribution of the users’ future

actions. Predicting users’ future actions is remarkably difficult, and is an area we intend to

explore in the future based on prior literature in similar domains [71].

3. Time dynamics. Alg. 1 runs periodically, and re-computes a new solution

based on current network conditions. For example, if a local model is currently being used,

and the network bandwidth improves, DeepDecision may decide to change to offloading.
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However, if the network bandwidth will only increase temporarily, it may be suboptimal to

switch due to cost overhead (e.g., loading a new deep learning model or establishing a new

network connection takes time). To reduce frequent oscillations, we analyze the conditions

under which a switch should occur, and add this as an outer loop to Alg. 1. We assume

there is a throughput predictor that can estimate the future bandwidth and latency over

a short period of time [93]. Let T be the length of time of the network conditions change,

f∗l , a
∗
l be the optimal solution of Prob. 1 assuming the model decision is fixed to be local,

and f∗r , a
∗
r , r
∗
r be the optimal solution of Prob. 1 assuming the model decision is fixed to be

remote. Due to space constraints, the proof can be found in Sec. 2.7, and here we present

the results directly. DeepDecision should switch from local to remote iff:

f∗r − f∗l ≤ α(a∗l − a∗r) (2.11)

And switch from local to remote iff:

α(a∗l − a∗r) ≤ f∗r
(

1− 1

T

(
r∗rf
∗
r

B
+ L

))
− f∗l (2.12)

Note that the conditions are asymmetric because switching from local to remote incurs

additional delay while waiting for the first result to arrive from the server, thus decreasing

the average frame rate in the objective function (2.1). Intuitively, the factors that encourage

switching from local to remote are: long period of time T of improved bandwidth, high

bandwidth B, and low network latency L.
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2.4 Measurements & Experiments

This section describes our experiments, which serve two purposes. First, we want

to understand the interactions between various factors (e.g., processing time, video quality,

energy consumption, network condition, the accuracies of different deep learning models) on

both the local device and the server. While prior works have carried out limited profiling of

running deep learning on servers [46] or on phones [40], to the best of our knowledge, we are

the first to explicitly consider the input stream as a video rather than a sequence of images,

as well as the impact of network conditions on the offloading strategy, and the tradeoffs of

compressible deep learning models. Second, we seek to understand our algorithm’s behavior

compared to existing algorithms and assess its ability to make decisions on where to perform

computation. These baseline comparison algorithms include:

1. Remote-only solution: All frames are offloaded to the backend. Many industrial

solutions (e.g., Alexa, Cortana, Google Assistant, Siri, etc.) adopt this solution.

2. Local-only solution: All jobs are executed locally. Some specific applications, such as

Google Translate, run a compressed deep learning model locally.

3. Strawman: We implement a “slim” version of MCDNN [40] optimized for the scenario

in which the device serves one application. Our strawman picks the model variant with the

highest accuracy (defined below) that satisfies the remaining monetary or energy budget.

We note that MCDNN does not consider the effects of network bandwidth/latency, how

often the neural net should execute, or the impact of delay on accuracy.
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2.4.1 Testbed Setup

Our backend server is equipped with a quad-core Intel processor running 2.7 GHz

with 8 GB of RAM and an NVIDIA GeForce GTX970 graphics card with 4GB of RAM.

Our front-end device is a Samsung Galaxy S7 smartphone.2 We develop an Android ver-

sion of Yolo based on Android Tensorflow [4] and the Darknet deep learning framework [82].

The Android implementation can run a small deep learning model (called tiny-yolo) with

9 convolutional layers, and a bigger deep learning model (called big-yolo) with 22 convolu-

tional layers. Both models can detect 20 object classes and are trained on the VOC image

dataset [27]. The server runs big-yolo only.

When offloading is chosen by Alg. 1, the front-end device compresses the video

frame and chooses the correct frame rate and resolution, then sends the video stream to the

server. The stream is sent using RTP running on top of UDP [3]. Videos are compressed

using the H.264 codec at one of three target bitrates (100kbps, 500kbps, and 1000kbps).

The video frame rate can be set between 2 and 30 frames per second (FPS), and the video

resolution can be set to 176 × 144, 320 × 240, or 352 × 288 pixels. Our app also logs the

battery usage reported by the Android OS, the data usage, and the time elapsed between

sending the frame and receiving the detection result from the server. We feed a standard

video dataset [5] to the smartphone to ensure a consistent testing environment for the

different algorithms.

2We also tested on other smartphones such as the Google Pixel and OnePlus 3T and found similar quali-
tative behaviors. Our system can work on any front-end device by first running performance characterization
offline.
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(a) process time vs. resolution (b) energy vs. resolution

Figure 2.3: Tradeoffs on the front-end device. (2.3a): Processing time increases with reso-
lution, especially for big-yolo. (2.3b): Energy usage increases with resolution, especially for
big-yolo.

Accuracy metric. We measure accuracy using the Intersection over Union (IOU) metric,

similar to [20]:

IoU =
area(R ∩ P )

area(R ∪ P )
(2.13)

where R and P are the bounding boxes of the ground truth and the model under evaluation,

respectively. The average of the object IoUs in the frame gives the frame’s IoU. The average

of the frame IoUs gives the video’s IoU. Our ground-truth model is big-yolo executed on

raw videos (without any compression) at the 352× 288 resolution (we select this particular

resolution out of convenience since pre-trained models are available).

2.4.2 Measuring tradeoffs without network effects

We first study when the phone runs the deep learning locally, without offloading,

to understand baseline performance.
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Impact of video resolution: We vary the image resolution from 160 × 160 to 480 ×

480 pixels. Recall that Yolo can dynamically adjust its internal structure for different

resolutions, so its running time is sensitive to the video resolution. In Fig. 2.3a, we plot the

tradeoff between frame resolution and processing time. When the CNN runs on the phone,

big-yolo’s processing time is between 600ms and 4500ms, whereas tiny-yolo’s processing

time is between 200ms and 1100ms. Since the processing time increases, we also expect the

battery usage to increase. In Fig. 2.3b, we show the tradeoff between frame resolution and

energy consumption per frame. We note that both processing time and energy consumption

scale linearly with the width/height of a video. These two functions are used as input to

Alg. 1 (specifically, `CNN
i (p) and bi(p), for i > 0). We also measure the energy of offloading,

and find its mean value to be 2900 mW, independent of bitrate and frame rate.

Parameterizing accuracy. We next study the correlation between the accuracies of

deep learning models under different image qualities. We use two parameters to determine

the clarity of a video/image sequence. 1. Resolution: This is intuitive, because higher

resolution often corresponds to better image quality; and 2. Bitrate: Resolution by itself

does not determine the image quality, as the number of bits used to encode that resolution

also matters. A low bitrate will cause the video encoder to aggressively compress the frames

and create distortion artifacts, decreasing the video quality and the prediction accuracy.

We seek to understand how the video resolution and bitrate interact with the

model accuracy. To do this, we encode the videos in different combinations of resolutions

and target bitrates, measure their accuracy, and show the results in Fig. 2.4. Which factor

is more important for accuracy, the resolution or the bitrate?
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(a) Accuracy of big-yolo. (b) Accuracy of tiny-yolo.

Figure 2.4: Model accuracy for different video qualities. Accuracy increases with resolution
and bitrate.

We observe that increasing the resolution without increasing the bitrate has a

limited impact on the prediction quality; for example, in Fig. 2.4a the 100kbps bar stays

(almost) flat for different resolutions. However, if the bitrate increases along with resolution,

there can be substantial accuracy improvement, as shown in Fig. 2.4a for the high-resolution

case.

The non-linear interactions between bitrate, resolution, and accuracy suggest the

need for a sophisticated offloading decision module that will carefully consider the complex

tradeoffs between the various resources. In Alg. 1, these tradeoffs are captured by the

function a0(p, r, `0).

2.4.3 Preliminary study of network effects

In this subsection, we measure the preliminary offloading performance in-the-wild

at various locations, including a home, coffee shop, and university campus. We offload

images frames to the server and consider several test locations: when the client is in the
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(b) LTE Data usage

Figure 2.5: Performance in-the-wild. Using LTE to increase the frame rate comes at the
expense of data quota usage.

same subnet as the server, a different subnet but in the same city, and finally when the client

is in a different city than the server. Our eventual goal is to see if the network difference

has significant impact on the system and study the possible LTE cost of such application.

Specifically, our test locations are:

• Coffee 1 (different subnet, different city): A coffee shop in Berkeley, CA. The camera

is pointed towards a window and detects cars and people on the street.

• Apt 1 (different subnet, different city): An apartment in Berkeley, CA with cable

Internet. The scene is a fairly static home environment and mainly detects computer

monitors, cups, and potted plants.

• Apt 2 (different subnet, same city): An apartment in Riverside, CA. The main objects

detected are chairs, refrigerators, and TV monitors.

• Coffee 2 (same subnet, same city): An on-campus coffee shop in Riverside, CA. It

mainly detects chairs, tables, and umbrellas.
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In Fig. 2.5a, we plot the frame rate of the client in these locations, when the client

offloads using WiFi or LTE. Each trial lasts 60 seconds, and repeated 3 times. In general,

the frame rate with WiFi in a city far from the server (Coffee1 and Apt1) show quite a

low frame rate, with each frame taking more than 500 ms to process. When the client

is located in the same city as the server (Coffee 2 and Apt 2), the frame rate over WiFi

seems to be slightly better, particularly if the client is located in the same subnet as the

server. Qualitatively, we observe that in high-latency environments such as the coffee shop,

the detection boxes become inaccurate and are drawn in incorrect locations on the screen.

The reason is because if the camera or the object is moving and the network is slow, the

result returned from the server is stale. We have a more detailed analysis in Sec. 2.4.4 and

Fig. 2.7.

In general, the performance (both in terms of quantitative frame rate and qualita-

tive observations) over LTE seems to be better; however, there is a tradeoff here. Although

LTE may provide a higher frame rate, the typical constraint is data usage, which is limited

and costs money. To delve further into the monetary costs to the user, Fig. 2.5b shows the

LTE data usage in the same scenarios. We can see that the average data usage is about 15

MB/minute, which is fairly high. Assuming a 2GB costs $35, this mean that each minute of

usage costs $0.25. Another possible tradeoff is with accuracy: if LTE has higher bandwidth,

the user can upload higher resolution video frames for higher accuracy, at the expense of

paying more for more data transfers.

With these results in mind, we perform more experiments to study the network

impact and encode the image frames to video streams to save potential LTE cost.
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(a) Startup latency vs. bandwidth (b) Video vs. image offloadings

Figure 2.6: Tradeoffs on the cloud. (2.6a): Network latency dominates compute latency.
(2.6b): Compressing the offloaded video enables higher frame rates than image offloading.

Figure 2.7: Accuracy as a function of total latency (model processing time + network trans-
mission time). Accuracy decreases as the latency increases, due to stale frames, especially
for high-motion videos.

2.4.4 Measuring tradeoffs with network effects

Next, we study the impact of the (communication) network conditions on system

performance. The Samsung Galaxy S7 phone is located in the same subnet as the server,

and for the sake of these measurements, always chooses to offload. We use the tc traffic

control tool to emulate different network conditions and use data usage to estimate LTE

monetary cost.
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End-to-end latency. The end-to-end latency li experienced by the viewer is the sum of

the processing latency `CNN
i plus the network transmission time. We measure the end-to-end

latency of each frame as well as the frame rate, when varying the bandwidth and latency

between the client and the server. The latency with unconstrained bandwidth between the

client and the server is about 30 ms. We repeat each trial 30 times with a frame resolution of

352×288 pixels, and plot the results in Fig. 2.6a. We observe that the network transmission

time consumes the majority of the total latency, while the server’s big-yolo CNN generally

executes in less than 30 ms. This indicates that network transmission is the key driver

of latency and frame rate, rather than the CNN processing time, and that any offloading

strategy should be highly aware of the current network conditions when making a decision.

Impact of latency on accuracy. Network latencies can cause delayed delivery of the

output, decreasing the accuracy. For instance, suppose at time t = 0, a frame is sent to the

back-end server, processed, and the result returned to the front-end device at t = 200 ms.

At that time, if the scene captured by the camera has changed (for example due to user

mobility), the detected object location, and thus the overlay drawn on the display, may

be inaccurate. Hence, any system that performs offloading of real-time scenes must take

this delay into account when measuring the accuracy; however, previous works generally

compute the accuracy relative to the original time of frame capture [40, 47]. To understand

the impact of latency on accuracy, for each video at fixed (resolution, bitrate), we measure

how the accuracy changes as a function of latency (i.e., how changing the round-trip time

will affect prediction accuracy). A sample result for 1000 kbps, 30 FPS videos at 352× 288

resolution is shown in Fig. 2.7, where the height of the bar is the mean accuracy across
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videos and the error bar is the standard deviation. We observe that accuracy decays slowly

for these particular videos, which have relatively little motion. One qualitative observation

we make is that videos with more active subjects (e.g., foreman [5]) tend to have much

shorter half-life than videos with “talking heads” (e.g., akiyo [5]). The relationship between

accuracy and latency is modeled as a0(p, r, `0), where `0 is the latency.

Video compression. Finally, DeepDecision also leverages the benefits of video compres-

sion. In contrast to previous works which mainly consider videos as a sequence of images,

our system encodes the video as a group-of-pictures with I and P frames, significantly

reducing the network bandwidth.

To show this, we measure the frame rate of the offloaded scene when the scene

is encoded as an image versus as a video. (Specifically, to compute the image frame rate,

we divide the network bandwidth by the size of each frame when saved as an independent

image.) We plot the results for different target bitrates in Fig. 2.6b, and observe that

encoding the scene as a video can help us send 10× more frames to the backend when the

network conditions are poor and the target bitrate is low (100 kbps), and 2× more frames

when the network conditions are good and the target bitrate is higher (1000 kbps).

2.4.5 Performance evaluation

We now study the behavior of the DeepDecision, and compare its performance

against baselines.

Different network conditions. First, we examine how our algorithm’s decision changes

for different network conditions (latency and bandwidth). See Fig. 2.8. As the interac-
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(a) Accuracy (b) Video bitrate

Figure 2.8: Better network conditions result in higher accuracy. To achieve good accuracy
when the network latency is large, the bitrate must be carefully chosen to reduce the total
transmission time.

tions between video quality (free variables), network conditions (constraints), and accuracy

(objective) are complex, the decision boundaries formed by our algorithm are non-smooth

and sometimes even discontinuous. In Fig. 2.8a, we plot how the accuracy of the machine

learning model chosen by our algorithm changes with network latency and bandwidth. The

red dots are scenarios where DeepDecision chooses to execute a model locally, and the

plane represents choosing the offload. One can see that when there is no network connec-

tivity, DeepDecision is forced to choose local models. Another scenario where DeepDeci-

sion chooses local models is when the bandwidth is non-zero but the latency is very large

(1000 ms), because there is too much transmission delay to the server, resulting in stale

frames and decreased remote accuracy. Note that sometimes DeepDecision prefers remote

models even their accuracies are lower than local models (when latency is slightly less than

1000 ms, and bandwidth is small but non-zero). This is because backend models are faster

so we can process more frames, which will increase the objective function (2.1). In general,
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Figure 2.9: Impact of energy budget on accuracy and frame rate metrics. With additional
energy budget, DeepDecision must choose which metric to increase.

when the bandwidth increases and/or the network latencies decreases, the performance of

DeepDecision improves.

Fig. 2.8b shows how DeepDecision chooses the video bitrate when the network

conditions change. We note that while the accuracies shown in Fig. 2.8a are deceptively

smooth when we decide to offload, the bitrates chosen by DeepDecision to achieve these

accuracies are highly non-smooth (as a function of network conditions) and sometimes dis-

continuous. In particular, the intuition is that when network latency is high (> 400 ms),

rather than transmitting the video at the maximum possible bitrate, DeepDecision instead

(counter-intuitively) offloads at a slightly lower video bitrate in order to save network trans-

mission time and prevent stale frames from decreasing the accuracy of the remote model

(Fig. 2.7).

Energy target. The battery (i.e., energy target) plays an important role when network

conditions are poor (namely, very long latency or very low bandwidth). See Fig. 2.9 for how
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DeepDecision makes decisions under such a harsh circumstance. This figure illustrates three

major decision variables as determined by our algorithm: accuracy, frames per second (fps),

and resolution. The red dots mean that the DeepDecision decides to run tiny-yolo locally.

The blue dots mean that DeepDecision decides to execute big-yolo locally.

The main observation is that the energy budget needs to exceed a certain threshold

in order to start using big-yolo. When the phone has an extremely small battery target,

it is only able to execute tiny-yolo, which uses less energy (see Fig. 2.3b). If the battery

target increases, the question is whether DeepDecision should use that extra energy to

(a) increase the frame rate of the current model, (b) increase the accuracy of the current

model by increasing the resolution, or (c) bump up the accuracy overall by upgrading to

a more powerful model? Our results in Fig. 2.9 show that initially, DeepDecision will

try to increase the frame rate while keeping accuracy unchanged. Then, with more battery,

DeepDecision tries to increase resolution to allow the current tiny-yolo model to have higher

accuracy. Finally, when the battery target is large, DeepDecision chooses the more powerful

big-yolo model.

Comparison against baselines. In this set of experiments, we evaluate the real-time

performance of DeepDecision. In our testbed, we vary the network bandwidth from 0-1000

kbps, allow the network latency to fluctuate naturally, and plot the accuracy over time

in Fig. 2.10. We also plot the performance of the baseline algorithms (strawman, local-

only, and remote-only).3 DeepDecision estimates the network bandwidth and latency by

3Specifically, local-only runs tiny-yolo with resolution 160×160, and remote-only runs on the server with
a video bitrate of 500 kbps. The strawman is based on [40] and uses a fixed resolution of 320×240 and a
video bitrate of 500 kbps, and picks the model (local or remote) with the best accuracy.
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Figure 2.10: Performance of DeepDecision compared to baseline approaches. DeepDeci-
sion is able to provide higher accuracies under variable network conditions.

sending small 50 kB probe packets every second. It uses 3727mW and 60.6% CPU usage

when executing remotely, and 2060mW with 38.8% when executing remotely.

Initially, DeepDecision chooses a local model, but as the network bandwidth in-

creases over time, it switches to offloading at around t = 20, which boosts accuracy. Past

t = 20, DeepDecision selects the right combination of bitrate and resolution to further max-

imize the accuracy. The local-only approach, on the other hand, always has a low accuracy

since it uses tiny-yolo. The remote-only approach is not able to run initially when the

network bandwidth is low. The strawman approach is slightly more intelligent; it starts

offloading around t = 60 when the network bandwidth is high enough to support the video

bitrate, but suffers from reduced accuracy before that. Moreover, since the strawman uses

a fixed resolution, it does not know how to select the right combination of resolution and

bitrate after it begins offloading and achieves worse accuracy than DeepDecision. Overall,

the accuracy of the model chosen by DeepDecision is always higher than that of the baseline
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approaches. The frame rate is also high (about 15 FPS, capped by the server processing

latency, which is not shown). We see that DeepDecision is able to leverage the changing

of network conditions and always provide the best accuracy model to the user, by adapt-

ing the video bitrate and resolution accordingly, whereas the baseline approaches are less

responsive to changing network conditions.

2.5 Related Work

Deep learning: Recently, applying CNNs to object classification has shown excellent per-

formance [57, 83]. [82] also used CNNs to perform object detection with an emphasis on

real-time performance. [46] compares the speed and accuracy tradeoffs of various CNN

models. However, none of these works have considered the performance of CNNs on mobile

phones. Several works have studied model compression of CNNs running on mobile phones.

[47] uses the GPU to speed up latency, while [72] considers hardware-based approaches for

deciding important frames. Our approach is complementary to these in that we can lever-

age these speedups to local processing, while also considering the option to offload to the

edge/cloud.

Mobile offloading: [22] developed a general framework for deciding when to offload, while

[77, 92] specifically study interactive visual applications. These frameworks cannot directly

be applied to our scenario because they do not take into account that machine learning

models may be compressed when executed locally as opposed to remotely. [20, 39, 94]

explore remote-only video analytics on the edge/cloud, whereas we focus on client-side

decisions of where to compute. Specifically, [20] considered modifying the data (sending a
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subset of frames) to reduce latency, while we also consider modifying the machine learning

model to reduce latency. [39] offloads processing from Google Glass to nearby cloudlets.

[94] performs resource profiling similar to our work, but focuses on server-side scheduling

whereas we focus on client-side decisions. [79] provides some initial on-device profiling.

The closest to our work is perhaps [40], which decides whether to offload CNNs to the

cloud; however, they do not consider the current network conditions or profiling of video

compression, energy consumption, or machine learning accuracy, which can greatly impact

the offloading decision.

2.6 Summary and Future Work

In this chapter, we developed a measurement-driven framework, DeepDecision,

that chooses where and which deep learning model to run based on application requirements

such as accuracy, frame rate, energy, and network data usage. We found that there are

various tradeoffs between bitrate, accuracy, battery usage, and data usage, depending on

system variables such as model size, offloading decision, video resolution, and network

conditions. Our results suggest that DeepDecision can make smart decisions under variable

network conditions, in contrast to previous approaches which neglect to tune the video

bitrates and resolution and do not consider the impact of latency on accuracy. Future work

includes using object tracking to reduce the frequency of running deep learning, generalizing

the algorithm for a larger set of edge devices, and customizing the algorithm for different

categories of input videos. The hope is that architectures such as DeepDecision will enable

exciting real-time AR applications in the near future.
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2.7 Proof

Local → remote

Suppose we are currently using a local model, and the network bandwidth improves

temporarily. Intuitively, we should only switch to offloading if the bandwidth improves a

lot, or if the change will last a long time. We consider the cost incurred by switching as a

time cost; specifically, upon ceasing the local model, there is a gap of time between when

the last result from the local model was given, the first new result from the server arrives.

This gap reduces the frame rate and the overall accuracy.

We can analyze this as follows. Let T be the length of time of the network band-

width improvement. Let f∗local, a
∗
local be the solution of Prob. 1 assuming the model de-

cision is fixed to be local, and f∗remote, r
∗
remote be the solution rate of Prob. 1 assuming

the model decision is fixed to be remote. Suppose we stay on the local model. Then the

utility is f∗local + a∗local. If we switch to the remote model, then the new frame rate is

f∗rem−
(
rf0
B

+L)f∗
remote

T , where the second term represents the frames not processed during the

switching process. Rearranging terms, we can find the condition to switch from the local

-> remote model:

a∗local − a∗remote ≤ f∗remote

(
1− 1

T

(
r∗remotef

∗
remote

B
+ L

))
− f∗local (2.14)

Intuitively, this shows that the factors that contribute to switching are: long length

of time T of improved bandwidth, bandwidth B is large, and network latency L is low. The

algorithm should only switch if condition (2.14) is satisfied.
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Remote → local

We now analyze the opposite case, where the algorithm may currently be using

a remote model, the network conditions decrease, and the algorithm considers switching

to a local model. However, if the time T of the poor network conditions is small, then it

may not be worth switching. This case is different from the local-¿remote case because the

switch is basically instantaneous: the algorithm stops sending to the remote server, and can

immediately start using the local model, without any connection setup time. Analytically,

the condition for switching from remote to local is:

f∗rem − f∗loc ≤ a∗loc − a∗rem (2.15)

Considering both switching conditions (2.14) and (2.15) together, we realize some-

thing interesting. There is some kind of inherent stability. In general, it is likely that

the frame rate of the server model will be greater than the frame rate of the local model:

f∗rem > f∗loc. It is also likely that the accuracy of the server model will be greater than the

accuracy of the local model: a∗rem > a∗loc Condition (2.14) to switch from local to remote

would be easily satisfied, except for the “network conditions term”,
(

1− 1
T

(
r∗remf∗

rem
B + L

))
.

Condition (2.15) to switch from remote to local would be difficult to satisfy, but at least

it does not have the disadvantage of the network conditions term. So given the current

decision, the system does not easily switch to another decision, meaning the system has

some kind of inherent stability.
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Chapter 3

Change Detector for Power Thrifty

Object Detection and Tracking

3.1 Introduction

AR is popular in the market today [66] with potential applications in many fields

including training, education, tourism, navigation, and entertainment, among others [18].

In AR, the user’s perception of the world is “augmented” by overlaying virtual objects onto

a real-world view. These virtual objects provide relevant information to the user and remain

fixed with respect to the real world, creating the illusion of seamless integration. Examples

of AR apps used today include Pokemon Go, Google Translate, and Snapchat filters.

An important task in the AR processing pipeline is the detection and tracking

of the positions of real objects so that virtual annotations can be overlaid accurately on

top [54, 20, 61]. For example, in order to guide a firefighter wearing an AR headset, the
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AR device needs to analyze the camera frame, detect regions of interest in the scene (e.g.,

victims to be rescued), and place overlays at the right locations on the user display [74].

Commercial AR platforms such as ARCore and ARKit can understand the 3D geometry of

the scene and detect surfaces or specific instances of objects (e.g., a specific person), but

lack the ability to detect and track complex, non-stationary objects [36, 61].

To track real objects, AR apps can use tracking by detection techniques [86],

wherein each camera frame is examined anew to detect and recognize objects of interest;

both object locations (e.g., bounding boxes) and class labels are output. Tracking by

detection is used, for example, by the open-source ARToolKit [1] to track fiducial markers

in the scene. To go beyond this to detect non-fiducial objects in the scene being viewed, one

can employ state-of-the-art DNN-based object detectors which yield high object recognition

and detection precision (with regards to objects in general). However, a naive plug and play

of DNN-based object detection and recognition into a tracking by detection framework will

exacerbate the already high battery drain of mobile devices, which is of great concern to

mobile users [42]. While the screen, camera, and OS do consume a large portion of the user’s

battery (3-4 W in our measurements), continuous repeated executions of DNNs (even those

models optimized for mobile devices, e.g., [82, 45]) will also consume a major portion (1.7-3

W) of the battery.

Recent works have targeted improving the energy efficiency of DNNs (e.g., by

using specialized hardware [47] or via model compression [41]); however, they focus on indi-

vidual DNN executions on individual input images [47], rather than understanding energy

consumption across time, as is needed in AR or other continuous tracking applications.
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Invoking DNN executions on every captured frame in an AR application will cause high

energy expenditure even with such mobile-optimized methods.

In this chapter, we ask the question: How can AR apps achieve good object

detection and tracking performance and yet consume low energy? To answer this, we make

the key observation that while using a DNN is important for detecting new objects, or

when significant changes to a scene occur, lightweight incremental tracking can be used to

track objects otherwise, in between DNN executions. This saves precious computation and

energy resources, but requires initial knowledge of the object to be tracked (which must be

supplied by the DNN). To realize such an approach, however, a key question that needs to be

answered is “when should DNNs be invoked and when is incremental tracking sufficient to

maintain similar accuracies as the DNN?” Although tracking by detection and incremental

tracking have been studied together to a limited extent [100, 56], these prior approaches

either trigger the DNN at a very high frequency (e.g., every 10 frames), use heavyweight

object trackers, and/or assume complete offline knowledge of the video. These limitations

make such methods inappropriate for real-time AR applications and/or mobile platforms

with battery limitations.

As our main contribution, we design and implement MARLIN (Mobile Augmented

Reality using LIghtweight Neural network executions), a framework that addresses the criti-

cal problem of limiting energy consumption due to object tracking for AR, while preserving

high tracking accuracy. Specifically, MARLIN chooses between DNN-based tracking by

detection and incremental tracking techniques to meet three goals: (a) good tracking per-

formance, (b) very low energy drain, and (c) real-time operations. Briefly, MARLIN first
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Figure 3.1: Overview of MARLIN’s architecture

performs DNN-based tracking by detection on an initial incoming frame to determine the

object locations. Once such objects are detected, MARLIN performs incremental tracking

on them to continuously update the locations of the relevant AR overlays; the tracker also

checks every frame for significant changes to the object (e.g., a car door opening) to deter-

mine if tracking by detection needs to be re-applied. In addition, MARLIN employs a novel

change detector that looks for changes to the background (e.g., appearance of new objects)

that are likely in the AR scenarios of interest.

In this chapter, we will talk about the overview of MARLIN and the design and

performance of its core function, change detector.

3.2 MARLIN System Overview

Fig. 3.1 provides an overview of MARLIN’s architecture, composed of pipelined

operations from a camera (left) to a display (right). The input to this pipeline is a frame

from the camera and the output is a view with overlaid augmented objects (specifically,
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overlaid bounding boxes in this work) on top of the physical objects (e.g., a person). Each

input frame from the camera is buffered before being fetched by the “MARLIN Manager”

module. MARLIN Manager is a real-time scheduler that assigns each incoming frame to

one or more of the three modules viz., the object tracker, the change detector, and the DNN

object detector. These modules act as workers for MARLIN Manager, i.e., each module

only processes frames that are assigned to it by MARLIN Manager.

By default, MARLIN Manager assigns a new frame to the object tracker. The

object tracker updates the locations of the objects from the previous frame to the current

one. In addition to tracking objects, it returns a “track status” which indicates the fidelity of

tracking and alerts MARLIN Manager of any changes to the current set of tracked objects.

To check for new objects in a scene (that require tracking), MARLIN Manager

assigns an input frame to the change detector module. In addition to this input frame, the

change detector needs to know the locations of the current set of tracked objects (so that

those are ignored). By ignoring objects that are already tracked with high accuracy by the

object tracker, the change detector avoids unnecessary alerts. It only analyzes the parts of

the frame that are “external” to the current set of tracked objects, and issues an alert to

MARLIN Manager if there are significant changes in these parts.

MARLIN Manager only sends a frame to the DNN object detector if it needs to

detect and classify new objects in that frame, or when features relating to currently tracked

objects change significantly. This is because the DNN is the most energy-draining module

in MARLIN and must only be invoked on a need to basis. It (MARLIN Manager) uses

tracking information and the output of the change detector to determine if the frame should
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be assigned to the DNN. Finally, the object tracker provides information that specifies the

object locations and the class labels to the “overlay drawer.” The latter draws virtual

overlays (bounding boxes) on top of the actual objects in the frame and forwards the

augmented frame to the display.

3.3 Lightweight Change Detector

3.3.1 Overview of Change detector

While the object tracker tracks stable objects and triggers a DNN only when

significant changes occur relating to these (i.e., a person’s posture changes by quite a bit),

MARLIN must also be able to handle new objects that appear in the scene (e.g., a person

appears). To this end, we design a change detector which detects changes not pertaining to

the objects already being tracked (i.e., new objects coming into view). The key challenge in

designing such a change detector is avoiding high false positives with respect to previously

tracked objects (causing extraneous DNN executions). However, our experiments with

existing approaches [9, 102, 101] show high false positive rates of approximately 20-100%,

resulting in numerous unnecessary DNN executions consuming high energy, even on a simple

video with one slowly moving object and a moving camera (detailed results omitted due to

space). Towards preventing such false positives, our key idea is to “hide” existing objects

from the change detector by changing the corresponding pixels to a common value, whose

value does not change across frames.

Functional description: When the change detector receives a frame (and the

locations of currently tracked objects) from MARLIN, it converts the frame into a feature
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vector via the following steps: (i) It first colors all rectangular boxes corresponding to the

locations of the currently tracked objects white (maximum pixel intensities for red, green

and blue channels) to generate what is called a colored image; (ii) It resizes this to

128 × 128 pixels to form a new image (resized colored image), and also calculates the

histograms of the red, green, and blue channels of resized colored image; (iii) Finally,

it recasts resized colored image, which is a 2D array of pixels, into a single row vector,

and appends the three histograms to the end of the row (resulting in another row vector).

Thus, it converts an input image of size 640x480x3 (width, height, channels) into a feature

vector of size 1x49920 of floating point numbers. This means that we compress it by a

factor of 18 (from 921,600 to 49,920 numbers) because we want to quickly perform change

detection and do not need all information contained in the frame. Specifically, we focus on

the color features and do not use other features such as keypoints, which we experimentally

found to be computationally expensive (also shown in [23]).

We reiterate that any changes to tracked objects (now “whited out” in step (i)

above) are handled by the object tracker. To detect changes external to these objects,

the change detector uses a random forest classifier with the color features as the input

vector. The forest consists of 50 decision trees (total 55,796 nodes). Each (binary) tree has

a maximum depth of 20 and each node in the tree is a logical split that takes a variable

(an element in the feature vector) and checks its value against a threshold that was learned

during model training. These thresholds represent natural colors of backgrounds (e.g., sky

or grass or whited-out pixel) and foregrounds (e.g., tiger or elephant) in order for each node

to decide whether or not this frame contains a significant change. The output of each tree is
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obtained by reaching a leaf node (after moving through splits down the tree) and the final

detection result is by a majority vote across all the trees. We also tried other lightweight

classifiers such as Support Vector Machines, but found experimentally that random forest

had the highest change detection accuracy.

Runtime execution: MARLIN invokes the change detector after the object

tracker, which provides the updated objects’ locations in the current frame. The change

detector then uses the supervised classifier to detect changes to the input feature vector. It

inputs the above feature vector to the classifier and outputs 1 (change detected) or 0 (no

change detected).

Exceptions: In most cases, the change detector reports a change prior to the

handling of the subsequent frame. If in the rare case, the change detector finishes its checks

after a subsequent frame arrives, the change detection result will be used by MARLIN to

trigger the DNN (if needed) as soon as the result is received.

3.3.2 Change detector model training

The change detector is implemented as a random forest classifier trained with

100,000 video frames from the ImageNet dataset. Because the video clips were of different

lengths, to avoid biasing the change detector towards longer videos, we randomly chose

30 frames from each video for training. The training set is divided into four subsets: (1)

unmodified frames with at least one new object (change status is true); (2) frames with

existing tracked objects colored white but with at least one new object in the background

(change status is true); (3) frames where all objects in the scene were already tracked and

colored white (change status is false); (4) unmodified background frames with nothing else

47



(change status is false). This labeling resulted in 50% of the training set being labelled

with change status is true and the other 50% labeled as change status is false.

We experimented with various classifiers (random forest, support vector machines,

shallow neural network), and with other input features (e.g. edges, colors, histogram of

gradients). On the 10,000-frame validation set, the random forest classifier using color

histogram and pixel input features achieved the best performance across all tested models,

with 88.0% precision and 81.7% recall on the binary classification task. In comparison, e.g.,

SVM using HOG features has 64.9% precision and 61.4% recall.

3.4 Related Work

Using the sum of absolute differences is a naive method of change detection, and is

susceptible to noise from illumination or background changes [9, 78]. Background/foreground

subtraction methods using GMM [101] and KNN [102] are more robust, but assume static

cameras, which is not true for AR. Alternatively one could use object detection to check if

there are changes over time (e.g. [30]); however, the feature extraction step of such methods

are heavy-weight and unsuitable for mobile devices.

3.5 Summary

In this chapter, we developed a novel lightweight change detector that looks for

video background changes. It has very high precision(88.0%) and recall(81.7%), and is

applied to trigger DNN detection. When DNN is not triggered, lightweight tracking algo-
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rithms will be applied to save energy. Our experiment shows the change detector has a very

low power consumption of 0.1W and a very low latency of 4ms per frame.
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Chapter 4

Multi-User Augmented Reality

with Communication Efficient and

Spatially Consistent Virtual

Objects

4.1 Introduction

Augmented Reality (AR) applications have recently exploded in popularity among

smartphone users. In AR, a user’s field-of-view (FoV) is overlaid with virtual objects, which

should remain fixed with respect to the real world in order to provide a seamless transition

between the real world and the virtual objects. As AR becomes more popular, a natural

question is: can we share the virtual objects with other users? Based on the off-the-shelf
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AR apps currently available, the answer is “yes”. For example, Pokemon Go released the

Buddy Adventures feature in December 2019, which allows multiple users to view their

virtual creatures together in the same real world space. Other multi-user AR applications

currently available include Just a Line, where multiple users can collaboratively draw virtual

graffiti, and Minecraft, where users can build structures together from virtual blocks.

Yet despite their emerging popularity, little is known about the network commu-

nications of multi-user AR apps. The fact that these apps involve multiple users clearly

indicates that some form of network communication is required. However, it is currently

unknown how these apps communicate, what they are communicating, and how the data

communications impact user experience. This work seeks to address this key gap in knowl-

edge, and propose solutions to the problems that we find in this space.

Through our measurements of off-the-shelf multi-user AR apps (detailed in Sec. 4.2),

we find that users experience multiple seconds of latency between one user placing a virtual

object to it appearing on another user’s display. Moreover, the virtual objects can appear

at different locations, with respect to the real world, on each user’s display. These two prob-

lems – latency and spatial inconsistency – are key factors in AR user experience [98, 58, 21],

and we find that they depend on the communicated information between the AR devices.

Thus the goal of this work is to optimize the network communications of multi-user AR

apps, to enable fast and accurate coordination of the virtual objects across AR displays. For

example, in a classroom, students equipped with AR devices should be able to see the same

virtual chemistry molecule and manipulate it, with the virtual molecule remaining con-

sistent across students. However, uncoordinated or laggy updates to the virtual molecule
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would break the illusion of seamless integration with the real world, and result in artifacts

such as other users appearing to touch non-existent parts of the virtual molecule.

We meet and address several technical challenges towards realizing this vision. (1)

Firstly, multi-user AR apps share a large initial data burst containing information about

the real world environment, in order to render the virtual objects at the correct locations

on each AR display. This leads to multiple seconds of latency whenever users move to a

new area and wait for virtual objects to appear. To address this, we propose communication

strategies that adapt to the positions of the virtual objects in order to reduce communication

latency. (2) Next, as the user moves around, the AR device continuously observes new

information about the real world. These observations can be processed to update the virtual

objects’ positions with respect to the real world, but the update may actually harm the

positioning accuracy if the wrong information is used. To address this, we propose a new

“feature geo distance” metric that allows the AR app to select the right camera frames to

re-align the virtual objects’ positions with other users. (3) Finally, multi-user AR apps do

not know if their virtual objects are drifting in time or in space. Without knowing that the

virtual objects are experiencing positioning issues, these apps does not know when problems

need to be corrected. To address this, we develop a methodology and tool to automatically

quantify spatial inconsistency issues of the virtual object across time and across users.

While there has been research on object detection and cloud/edge offloading for

AR (e.g., [53, 61, 80]), these works typically consider a single user viewing the virtual

objects, rather than multi-user coordination. They also do not incorporate simultaneous

localization and mapping (SLAM), which is part of off-the-shelf AR systems today to en-
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Figure 4.1: Multiple AR devices try to ensure consistent views of a virtual object, despite
different coordinate systems.

able 3D understanding, but contribute to the latency and spatial inconsistency issues that

we observe. Industry players have started to look at multi-user AR [35, 67, 14], but focus

mainly on application development and not the communication aspects of the underlying

platform. To the best of our knowledge, no prior work has systematically examined AR spa-

tial consistency issues when there are multiple users, and their dependency on the network

data transmissions between the devices.

In summary, we study the emerging application of multi-user AR and its network-

ing aspects. In particular, we focus on rendering virtual objects that are clustered around

a common “anchor” point in the real world [35]; this is common in typical multi-user AR

apps (e.g., all the virtual Pokemon or virtual graffiti are placed near each other). We call

our system SPAR (SPatially Consistent AR). Our contributions include:
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• We measure the performance and network usage of off-the-shelf AR apps, and identify

problems of high latency, spatial drift, and spatial inconsistency of the virtual objects

over time and across users.

• We develop new methods for efficient communication and computation of the AR devices.

Specifically, SPAR performs the following: (i) it adapts the communicated information

to the virtual object positions, to reduce latency; (ii) it efficiently computes the virtual

objects’ positions in each user’s display through lightweight coordinate system alignment,

to create spatial consistency; (iii) it continuously updates the positions of the virtual

objects with respect to the real world using a new update metric, to maintain spatial

consistency; and (iv) it automatically quantifies the spatial drift and consistency of the

virtual objects, to evaluate performance.

• We perform evaluation on Android AR devices, extending VINS [60], a 6DoF-based AR

platform, with multi-user capabilities. We work with open-source systems because ex-

isting AR platforms from Android, Apple, and Microsoft [35, 14, 67] are closed source

and thus their internal code cannot be modified for experimentation. Our results show

that SPAR can decrease the total latency by up to 55%, while decreasing the spatial

inconsistency of the virtual objects by up to 60%, compared to a baseline method of

communicating the full data or off-the-shelf AR platforms. We also show that our tool

can estimate a virtual object’s spatial drift and inconsistency with a low RMSE of only

0.92 cm, compared to manual human labeling.

In the remainder of this chapter, we discuss the measurements that motivate this work

(Sec. 4.2), a brief background (Sec. 4.3), the overall system architecture (Sec. 4.4), and the
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(a) Spatial inconsistency across two AR devices.
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Figure 4.2: Quantifying spatial drift and inconsistency. The resolving devices suffer from
spatial drift of 2-4 cm and fail to resolve if their orientation with respect to the host is more
than 60◦.
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design of the individual components (Sec. 4.5). We then evaluate the system (Sec. 4.7),

discuss related work (Sec. 4.9), then conclude (Sec. 4.10).

4.2 Motivation: Spatial Drift, Inconsistency, and Latency of

Off-the-Shelf Mobile AR

To showcase the issues of virtual object spatial inconsistency and latency in multi-

user AR, we examined several off-the-shelf AR Android apps. The four Android apps we

tried were Google CloudAnchor [35], Google Just a Line [37], Minecraft [69], and Pokemon

Go [73], running on Pixel 4 smartphones. We have two users, Alice and Bob, who perform

the following sequence of user interactions:

1. Place initial virtual object: Alice places a virtual object by tapping the screen.

2. Render initial virtual object: Bob waits for it to appear on his screen.

3. Subsequent user interactions: Alice taps the screen to move a virtual object or place

new virtual objects (only Just a Line and Minecraft have this feature). Bob waits for

the update to be reflected on his screen.

Our main finding is that there is significant delay and spatial inconsistency between when

Alice places the first virtual object and Bob renders it on the screen (steps 1 and 2 above),

thus motivating the work in this chapter. Similar results hold when there are multiple

receiving users (i.e., multiple Bobs) who wish to view Alice’s virtual objects. Below, we

detail our quantitative measurements.

56



Spatial drift and inconsistency: We experimented 5 times with CloudAnchor,

with each trial lasting 1 minute with Bob moving 1 m (small area) to 4 m (large area) in

the real world. In these experiments, we observed two types of spatial issues relating to the

virtual object’s position:

• Spatial drift: For a single user, the virtual object can drift in position over time.

• Spatial inconsistency: When there are multiple users, the virtual object can appear in a

different location, relative to the real world, on each user’s display, as shown in Fig. 4.2a.

In the single-user case (Fig. 4.2b), the spatial drift is around 2-3 cm in both the large

and small areas, for both ARCore [32] and VINS-AR [60] platforms. In the multi-user

case, spatial inconsistency results are larger (results later in Sec. 4.7), and moreover we

observe that when the two devices are placed more than 60◦ apart, the virtual object fails

to resolve, as shown in Fig. 4.2c. We also observed similar issues with Magic Leap, but focus

on smartphone-based AR in this work due to the ubiquity of smartphone devices. These

spatial drift, inconsistency, or failure to resolve a virtual object can cause serious issues

when multiple users interact in a shared AR session (e.g., multiple users jointly building

a tower of building blocks), and are key contributors to user experience in AR [98, 58].

This motivates SPAR’s goal of reducing spatial drift and inconsistency. Similar to prior

work [89], we focus on positioning errors, as we did not observe much rotational error our

experiments. The low rotational error we observe may be due to our use of visual-inertial

SLAM as the basis for our AR system, which generally has less rotational error than pure

visual SLAM [55].
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(a) Just a Line network trace. (b) Communication latency.

Figure 4.3: AR apps transmit a large amount of environment data for the initial virtual
object, resulting in mult-second communication latency.

Additionally, from running these experiments, we found that using absolute tra-

jectory error to evaluate SLAM accuracy doesn’t fit for AR applications, and manually

measuring the position of the virtual object is laborious and time-consuming, with each

measurement requiring several seconds per frame for a human to examine the image and

record the virtual object’s position. This motivates SPAR’s spatial drift and inconsistency

estimation tool, to reduce the amount of human labor and enable AR apps to automatically

quantify these issues.

Communication latency: We next examine the data transfer between the AR

users. Fig. 4.3 shows a representative network trace from Just a Line (other apps have a

similar pattern, not shown for brevity). We observe a large data transfers for the initial

object placement (steps 1 and 2), 9-20 Mb, and smaller data transfers during the subse-

quent user interactions (step 3), < 100 kb. These large initial data transfers prolong the

communication latency. With an upload bandwidth of 8 Mbps (the average in our lab), the

initial communication latency is plotted in Fig. 4.3b. The communication latency of > 2 s

for the ARCore-based apps (CloudAnchor and Just a Line) is a lower bound on the user-
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experienced delay (while Minecraft and Pokemon Go have lower communication latency,

they suffer from higher spatial inconsistency). This latency is a key contributor to user ex-

perience in multi-user AR [98, 21], thus motivating SPAR’s goal of reducing user-perceived

latency.

Connection between latency and spatial inconsistency: We discover there

is a critical connection between the aforementioned spatial inconsistency and latency issues

we observed. Off-the-shelf AR platforms use similar methods [35, 14, 67] to share real world

environment information between users during step 1, resulting in the large spikes of data

observed in Fig. 4.3. This environmental information helps align the coordinate systems

of the AR devices, enabling each device to render the virtual objects at fixed positions in

the real world. In other words, the data communicated during the placement of the initial

virtual object (step 1) directly impacts the spatial drift and inconsistency. This motivates

SPAR’s communication-efficient strategies to decrease communication latency, while trading

off with spatial drift and inconsistency.

4.3 Brief Background on AR

Current AR platforms such as Google ARCore, Apple ARKit, and Microsoft

Hololens rely on simultaneous localization and mapping (SLAM). SLAM solves the problem

of when a device is in an unknown environment, how to build a consistent map and localize

itself at the same time [25]. In a typical single-user AR scenario, the AR device uses SLAM

to construct a point cloud representing the 3D coordinates of features in the real world,

and also estimates its own location and orientation (known as pose). To compute the point
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cloud, SLAM selects a subset of camera frames (known as keyframes), extracts features

from the keyframes, runs SLAM algorithms on the features, and outputs the 3D coordi-

nates of the features in each keyframe (i.e., the point cloud) and the estimated device pose.

These SLAM algorithms includes keyframe matching to localize the device with respect to

its past trajectory. Each keyframe data structure contains feature descriptors, 2D feature

coordinates with respect to the camera image, and 3D feature coordinates with respect to

the real world. The 3D feature coordinates are relative to an origin point in the real world,

which is called the device’s world coordinate system.

To render virtual objects for AR, the device records the pose of the virtual object

(defined as its location and orientation, which can be provided by user input or by an object

detector). The AR device runs SLAM continuously to update its own pose estimate and

the 3D coordinates of the features in the point cloud, and then draws the virtual object on

the display when its FoV overlaps with the virtual object’s pose.

4.4 System Architecture

4.4.1 System Architecture of Existing Applications

There are two primary communication architectures in current SLAM-based mo-

bile AR systems: cloud-based and P2P-based. We describe a hosting device (Alice, or A,

the “host”) who places the virtual objects, and a resolving device (Bob, or B, the “re-

solver”) who wishes to view the same virtual objects. Alice places a virtual object in its

environment, and wishes to share this information with a newly joined device, Bob.
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(a) End-to-end latency of current mobile AR
apps.

(b) Time to align coordinate systems on a server
versus mobile device in SPAR base.

(c) SPAR base (P2P version) reduces latency by optimizing
data transmissions.1

Figure 4.4: Latency breakdown starting from device A placing a virtual object to device B
rendering it on the display.
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Figure 4.5: Cloud-based architecture, similar to Google
ARCore.

(1) Send map 
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Figure 4.6: P2P architecture, similar
to Apple ARKit.

Cloud-based: In a centralized architecture, the cloud collects device pose infor-

mation from the AR devices, performs processing, and returns results as needed. Cloud-

based architectures are used, for example, by Google ARCore [35] and MARVEL [19]. The

information exchange is illustrated in Fig. 4.5, and described below:

1. Device A sends: A sends its SLAM map (or the related camera frames), and the

virtual object’s coordinates to the cloud.

2. Device B sends: B sends a piece of its map corresponding to its current location (or

the related camera frames) to the cloud.

3. Cloud aligns coordinate systems: The cloud runs SLAM (if camera frames only were

sent), then aligns A’s map and B’s map piece, and computes the virtual object’s pose

in B’s coordinate system.

4. Cloud sends virtual object’s coordinates: The cloud sends the computation result to

device B.
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5. B draws virtual object : B draws the virtual object in its world coordinate system.

P2P-based: In a de-centralized or P2P architecture, AR devices communicate

directly with each other, without the assistance of a central entity. Such an architecture

is followed, for example by Apple ARKit [14]. The process is illustrated in Fig. 4.6 and

described below:

1. Device A sends: A sends its SLAM map (or related camera frames)and the virtual

object’s coordinates to B.

2. Device B aligns coordinate systems: B runs SLAM (if only camera frames were sent),

then aligns A and B’s coordinate systems, and computes the virtual object’s pose in

B’s coordinate system.

3. B draws virtual object : B draws the virtual object in its world coordinate system.

In summary, these two architectures require similar types of computation, but at different

locations (i.e., on the device or in the cloud), which impacts the information exchange

between the devices.

Measurements: We conducted measurements of several AR applications uti-

lizing the above architectures in a controlled lab setting. We used Samsung Galaxy S7

smartphones with WiFi connectivity (50 Mbps download and upload speed), unless other-

wise mentioned. Each measurement was repeated 3 times, with the averages plotted. In

Fig. 4.4a, we show end-to-end latency measurements of three AR apps: CloudAnchor [33]

and Just a Line [37] (Google ARCore demo apps), and AR MultiUser [15] (Apple ARKit

demo app). We observe that latencies between device A placing a virtual object and device
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B drawing the virtual object are quite long, from 7-18 s. The cloud-based apps tend to

have longer communication times and shorter coordinate system alignment times, because

of cloud compute resources. On the other hand, the P2P app has shorter communication

time but longer coordinate system alignment time due to running the joint computations

on the mobile device (in this case an iPad), leading to longer end-to-end latency overall.

Comparing Architectures in SPAR baseline

Given our understanding of the above architectures, which architecture is more

suitable in different scenarios? The P2P architecture has advantages in terms of scalability

(there is no central bottleneck link), and privacy (information doesn’t need to be sent

to the cloud). However, updates to virtual objects can take time to propagate across

the devices, potentially resulting in inconsistent information. The cloud architecture has

advantages in terms of compute power, and can synchronize updates about the virtual

objects across devices, but relies on Internet connectivity. Another possibility is a hybrid

architecture, where the devices share information only amongst themselves, but one device

acts as a “master” node that undertakes communication and computation efforts. Such

an approach essentially assigns one of the devices to take the role of the cloud, but places

heavy computation and communication demands on the master node.

Given that these architectures are currently implemented in different mobile OSes

(iOS and Android) and are closed source, an apples-to-apples comparison of their system

performance metrics cannot be made between them, nor can modifications be made. Our

idea is to develop an open-source reference system that allows comparison of the differ-

ent communication architectures. To do this, we build on an open-source state-of-the-art
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SLAM system for single users [76], and add multi-user capabilities and the ability to switch

between the communication architectures observed in the commercial mobile AR platforms.

This will enable accurate measurements of the performance of each component of the AR

computation and communication pipeline. Our system, SPAR, will provide researchers and

developers with insight into the system requirements of multi-user mobile AR, guidelines

on architectural decisions, and understanding of which parts of the AR pipeline can be

optimized.

We first implemented an initial prototype of SPAR with two Android devices

and we call it SPAR base, which is P2P based. At this time, no optimization is done to

SPAR base, i.e., device A sends all the generated environment information(map) to device

B and device B scans the data to find a match and compute the transformation between

A and B. SPAR base allows device A to place a virtual cube and device B to receive and

render the cube in its FoV, with full control over all components of the system, including

SLAM algorithms, communication protocol, communication frequency, coordinate system

alignment frequency, etc. In Fig. 4.4b, we show some initial measurements of SPAR base,

comparing the computation time of coordinate system alignment of P2P and server-based

architectures. We can see that the edge server-based computation time is lower, suggesting

that an edge-server based architecture may be ideal as communication latency is also low

in edge scenarios [85]. Specifically, the map alignment time with the P2P architecture is

seven times longer than in the server-based architecture, which suggests great potential for

both the edge- and cloud-based architectures. In fact, the server-based architecture can still
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tolerate an additional 10 seconds of communication latency and still have lower end-to-end

latency than the P2P architecture (Fig. 4.4b).

Black box testing: To ensure that the results produced SPAR base reflect

existing AR systems, we will perform black box testing. We will choose a set of sample AR

apps and scenarios, and tune SPAR base until its results are similar to those observed in

commercial platforms (e.g., Google ARCore). While we cannot have perfect reproduction of

commercial platforms, due to their opaqueness, we explicitly try to match their performance

for a given set of test cases. In our initial results with SPAR base, the computation latency of

the server-based architecture (upper bar in Fig. 4.4b) is roughly comparable to computation

latency of Google ARCore’s server-based architecture (the “B send map + server align”

bar in Fig. 4.4a). (SPAR base is slightly slower because its computation latency includes

the DBoW generation time, which we were not able to measure in ARCore because it is

closed-source.) Similarly, SPAR base’s P2P computation latency (lower bar in Fig. 4.4b) is

comparable to ARKit’s P2P computation latency (“B align” in Fig. 4.4a).

4.4.2 System Architecture Design

We designed SPAR to optimize the performance of SPAR base. SPAR consists

of the following components that work together in concert, as shown in Fig. 4.7. As a

reminder, for illustrative purposes, we describe a hosting device (Alice, the “host”) who

places the virtual objects, and a resolving device (Bob, the “resolver”) who wishes to view

the same virtual objects. When there are multiple resolvers (i.e., multiple Bobs), each Bob

performs steps 2 and 3 below.
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Figure 4.7: SPAR system overview. The modules work together for fast multi-user AR with
spatially consistent virtual objects.

(1) Adaptive AR communications: A naive approach to share AR information

between Alice and Bob would be sending all of Alice’s SLAM data to Bob(s). However,

this approach is not cognizant of AR, and can be very slow; To reduce this communication

latency, we design an intelligent mechanism that adapts the data transmissions to the

content of the AR scene. Specifically, only areas of the real world in which Alice was near

the virtual objects, and the virtual objects were visible, are sent to Bob(s).

(2) Coordinate system alignment: Using the received information, Bob next de-

sires to render the virtual objects at the correct locations in the real world. However, since

Bob and Alice can open the AR app from different positions in the real world, they lack

a common frame of reference to accurately describe the pose (location and orientation) of

the virtual objects. Current single-user AR does not have this problem because there is

only one device and thus one world coordinate system. We propose a lightweight coordi-

nate system alignment method, which allows Bob to align himself inside Alice’s coordinate
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system. The key idea is to reuse some functionality from single-user AR for path loop detec-

tion [76], which that is already running on the device, making our method very lightweight

yet accurate.

(3) Updated AR rendering: After the initial rendering of the virtual objects, Bob

may continue to move around the world. As Bob observes new information about his

environment, he can use this information to re-align his coordinate system with Alice and

update the positions of virtual objects. But how can Bob know if these updated positions

are more or less accurate? To enable Bob to predict whether the spatial inconsistency

improved with the new observations, we propose a new metric, feature geo distance, which

has good correlation with spatial inconsistency. The intuition behind this metric is that if

Bob observes areas close to the virtual objects, these observations can likely improve spatial

consistency.

(4) Spatial inconsistency and drift estimation tool: The above operations can affect

where the virtual object is rendered on Bob’s display. We develop a spatial inconsistency

and drift estimation tool to quantify these impacts on the rendered virtual objects. This

tool runs as an overlay in SPAR, collecting logs from the AR devices, and computing the

drift and spatial inconsistency offline. The chief challenge lies in finding a fixed real-world

reference point from which to accurate measure how the position of the virtual object

changes over time or across users.
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Figure 4.8: Adaptive AR communication strategies. SPAR-Small selects keyframes and
point clouds from when the host creates a virtual object. SPAR-Large selects information
from when the host is near a virtual object and it is visible.

4.5 System Design

In this section, we discuss the main modules of SPAR: adaptive AR commu-

nications (Sec. 4.5.1), coordinate system alignment (Sec. 4.5.2), updated AR rendering

(Sec. 4.5.3), and the spatial inconsistency and drift estimation tool (Sec. 4.5.5).

4.5.1 Adaptive AR Communications (Host)

To align the positions of the virtual objects with respect to the real world in

each AR display, the host sends a set of keyframes, the associated point cloud with those

keyframes, and the virtual objects’ coordinates to a resolver. A virtual object’s coordinates

are a small 4 × 4 transformation matrix, but set of keyframes can become very large if

many keyframes are sent. While a simple strategy is to send all of the keyframes, this can

grow very large as the hosting device continues to collect more data, incurring significant

communication latency. For example, in our experiments (details in Sec. 4.7), the host col-
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lects approximately 110 keyframes after 1-2 minutes, consuming 40 Mb even after applying

standard compression techniques [2], resulting in 5 seconds of communication latency on

an 8 Mbps uplink connection. Note that these 110 keyframes were already downsampled

by SLAM; in other words, the basic downsampling done by SLAM is insufficient and still

results in high communication latency. We therefore ask: Can we adapt which keyframes

and associated point cloud information are sent, in order to decrease the communication

latency?

Our idea is to intelligently adapt what information is sent based on the AR scene,

balancing between sending enough information to enable good coordinate system alignment

between the host and resolver, but less information to reduce the communication latency.

We base our strategies on an insight unique to the AR setting: only keyframes close to

the virtual object in time and space are needed. We propose two adaptation strategies:

(1) an aggressive SPAR-Small strategy (yellow outline in Fig. 4.8), which only selects the

keyframes that are close in time to when the virtual object was created, and (2) a more

comprehensive SPAR-Large strategy (red outline in Fig. 4.8), which only selects keyframes

from when the host is near the virtual object, and the virtual object is visible on the display.

The intuition behind the SPAR-Small strategy is that when the host creates the

virtual object by tapping on the device’s display, the information about the scene observed

around this time is likely sufficient for a resolver to recreate the same virtual objects. The

intuition behind the SPAR-Large strategy is two-fold: visibility is important because if the

virtual object is not visible on the screen, the camera is usually facing another direction

and the observed features may not be useful; and nearness is important because if the host
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Figure 4.9: Coordinate system alignment to transform a virtual object from the host’s world
coordinate system to the resolver’s world coordinate system.

moves in a large environment, the number of keyframes may be large, so nearness can filter

out far-away keyframes. The output of this module is a reduced set of keyframes and their

associated point clouds, FA, sent from the host to a resolver.

4.5.2 Coordinate System Alignment (Resolver)

Next, given that a resolver has received the set of keyframes and associated point

cloud FA and the virtual object’s coordinates pworldA in the host’s world coordinate system,

how can a resolver determine the position of the virtual objects in its own world coordinate

system, which is needed for rendering? The main challenge is that each device’s world

coordinate system is initialized at an arbitrary origin point (typically wherever the device is

when the AR application is launched), and the devices may be launched randomly by users
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from different locations in space. Some existing AR apps [37, 73] side step this problem

by requiring that the users open their AR apps when the phones are exactly side-by-side,

but this is an unnecessary burden on user experience. The goal of the SPAR’s coordinate

system alignment module is to enable the AR apps to launch from arbitrary starting points,

while correctly positioning the virtual objects in each user’s AR display.

Multi-user PnP: The specific technical goal is to transform a virtual object’s co-

ordinates, which are provided in the host’s world cooordinate system (left circle in Fig. 4.9a)

to a resolver’s world coordinate system (right circle in Fig. 4.9a). An intermediate step is

the host’s device coordinate system (middle circle in Fig. 4.9a). Since the host knows the

definitions of its own world coordinate system and its device coordinate system (left to

middle circle in Fig. 4.9a), it can estimate the appropriate transformation RA, tA (i.e., its

pose) using SLAM (line 5 in Alg. 2). However, the missing transformation is from the host’s

device coordinate system to a resolver’s world coordinate system, Rp, tp (middle to right

circle in Fig. 4.9a).

Our key idea is to use real-world features, which remain fixed, to estimate this

transformation. Specifically, we propose a multi-user PnP method, which is a re-purposing

of the single-user PnP method [99] that already runs on AR platforms. We utilize existing

functions in a new way in order to avoid implementation of complex new functionality

and keep the system lightweight. However, the existing single-user PnP function can only

query for a given keyframe within a device’s own world coordinate system, not between

two devices’ coordinate systems. For example, when running on Bob’s device, the inputs to

single-user PnP are a query keyframe with associated point cloud, and the output is the an
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estimate of Bob’s pose in Bob’s world coordinate system (left side of Fig. 4.9b). However, for

multi-user PnP, we realize that we can query one of Alice’s keyframes instead, and compute

the pose of Alice’s device in Bob’s coordinate system (right side of Fig. 4.9b), using exactly

the same PnP function. This gives us the transformation Rp, tp (line 6 in Alg. 2), and

enables us to compute the complete chain of transformations Rp(RAp
world
A + tA) + tp (line 7

in Alg. 2) needed to render the virtual objects in Bob’s display.

Algorithm 2 Coordinate System Alignment

Inputs: set of keyframes and associated point clouds from host FA, virtual object
coordinates in host’s world coordinate system pworldA , set of incoming keyframes {fB}
Parameters: feature geo distance threshold Tfeature
Outputs: virtual object coordinates in resolver’s world coordinate system pworldB

1: DBoWA ← ConstructDBoW(FA) . receive FA + process
2: for each new keyframe fB do
3: fA ← MatchKeyframe(DBoWA, fB)
4: if fA 6= null then
5: (RA, tA)← DevicePose(fA)
6: (Rp, Tp)← MultiUserPnP(fA, fB)
7: pworldB ← Rp(RAp

world
A + tA) + tp . coordinate system alignment

8: if FeatGeoDist(fB, p
world
B ) < Tfeature then return pworldB . feature geo

distance filter

4.5.3 Updated AR Rendering (Resolver)

Given the initial rendered virtual objects from Sec. 4.5.2, we next discuss what

happens as a resolver moves around and collects more information about the real world. Can

this new information be used to re-compute the coordinate system alignment and update

the poses of the virtual objects for improved spatial consistency? A naive solution of using

the most recent keyframe and associated point cloud to update the poses of the virtual

objects can lead to bad results, however, if the keyframe was observed at a distant point
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Figure 4.10: Feature geo distance is the average distance from real world features to a
virtual object.

far from the virtual object. This is because the coordinate systems would be well aligned

at that distant point, but lose alignment in areas closer to the virtual objects, resulting in

spatial inconsistency with other users. So when should the new information be used?

Our approach is to develop a new metric to help estimate which new keyframes and

associated point clouds will produce the best alignment and improve the spatial consistency.

Simple estimation schemes such as selecting keyframes from the host and resolver with the

lowest pixel-by-pixel differences or Hamming distance are possible, but in our experience,

this results in keyframe matches that are distant from the virtual object, resulting in poor

coordinate system alignment and thus spatial inconsistency issues.

Instead, we leverage our understanding of the AR scenario: features near the virtual

object are more important for coordinate system alignment. We propose a new metric based

on this, “feature geo distance”. The feature geo distance is defined as the average distance

to a virtual object over the common features in a pair of matched keyframes, as illustrated

in Fig. 4.10. Specifically, given a set of features i with coordinates (xi, yi, zi) from keyframe

fB, and the 3D coordinates of the virtual object pworldB , we compute the feature geo distance
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as:

FeatGeoDist(fB, p
world
B ) =

∑
i∈fB ||(xi, yi, zi)− p

world
B ||

M

where M is the number of common features. We compute the feature geo distance on each

pair of matched frames, and only update the pose of a virtual object if the feature geo

distance is less than a threshold (line 8 in Alg. 2). Essentially, we use feature geo distance

as a predictor of spatial inconsistency (this correlation is evaluated in Sec. 4.7.3).

4.5.4 Motivation of measurement tool: Issues with Manual Labeling and

Absolute Trajectory Error

In this section, we provide insight into why manual labeling or ATE are insufficient

for measuring drift of an AR virtual object. Note that neither manual labeling nor ATE

measurements are needed for casual users of SPAR, but are only needed to evaluate SPAR in

this chapter.

Manual Labeling: In the case of manual labeling, in our experience, it took

approximately 10-30 seconds to hand-annotate the position of a virtual object in each

frame. For an AR app updating its display at 30 frames per second (FPS) running for 5

minutes, this could take up to 1.25 hours to measure a virtual object’s drift for the duration

of a user’s experience. Clearly, this is infeasible and unwieldy, particularly if multiple users

are participating in the AR experience and each of their frames need to be annotated.

Absolute Trajectory Error: ATE does not provide sufficient information about

the position of the virtual object, since the device trajectory and ATE only have information
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about the position of the device. The device position is insufficient knowledge about the

virtual object, because rendering the virtual object involves projecting the virtual object

onto the AR display, which requires both device position and rotation provided by SLAM.

Therefore, ATE alone cannot tell the AR device where the virtual object is rendered on the

display, and hence what its spatial drift is.

We next describe an experiment we conducted to illustrate why ATE cannot be

used to evaluate the spatial drift of an AR virtual object; i.e., why ATE or the device

trajectory does not accurately capture the spatial drift of an AR virtual object. This

experiment is illustrated in Fig. 4.11. We use ARCore as the AR platform. We started the

experiment by creating a virtual object (the tower of shapes) on the floor, and then move

backward (in the y direction), without any left/right movement (in the x direction). The

height of the device is also fixed so there is also no up and down movement (z direction). In

the 3D plot of Fig. 4.11, we plot the SLAM-estimated device trajectory (blue line), which

is a straight line in the XY plane. The SLAM-estimated trajectory matches well with the

ground truth device trajectory (red line). Intuitively, we might expect this accurate device

position estimate to mean the virtual object won’t drift.

However, the SLAM-estimated device trajectory gives us no information about

the position of the virtual object on the display, and the virtual object does in fact drift,

despite the accurate device position estimates. In Fig. 4.11, we show screenshots of the

virtual object at 3 different times. At time 1, the virtual object is directly above the piece

of paper. At time 2, the virtual object drifts backward from the paper (towards the user),

and at time 3 it drifts forward (away from the user). We don’t know where the virtual
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M
ove direction

Time 1, Virtual 
object is created

Time 2, Virtual object drifts backward

Time 3, Virtual object drifts forward

Figure 4.11: The virtual object drifts back and forth as the user moves. However, simply
looking at the device trajectory/ATE alone gives little information about how the virtual
object drifts.

object is or how much the virtual object drifts by looking at the device trajectory alone,

until we see the screenshots of the virtual object. In other words, the accuracy of the device

trajectory estimation is not tightly correlated with the drift of the virtual object.

Moreover, in the multi-user scenario, each AR app can update its virtual object

position, and then our tool can compute the position difference (spatial inconsistency) of

the virtual object between any two users. However, we can’t compute the spatial incon-

sistency across multiple users just from ATE or the trajectory because of the lack of time

synchronization and rotation information from ATE alone.
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Figure 4.12: Conceptual example of computing spatial drift and inconsistency.

4.5.5 Design of Spatial Inconsistency and Drift Estimation Tool

In this section, we discuss our design of a tool to automate and improve human

eyeball-based accuracy estimation.

Overall idea: Our method, in short, is to place one or more markers (e.g., ArUco

markers [84]) into the real world before running the AR app. The markers’ location and

orientation can be accurately estimated by the devices using PnP [99, 6], and used as

reference points from which to measure and compare the virtual object’s position as rendered

by each device. We use ArUco markers as opposed to natural features in the scene because

pose estimation from natural features is not accurate enough for our purposes, resulting in

extremely noisy tool output.

As shown in Fig. 4.12, Alice and Bob will draw the virtual object at a and a′,

respectively, relative to their current pose. In an ideal multi-user AR scenario, the virtual

object’s resulting locations (end of a and a′ arrows) are exactly the same; however, in

practice they can be spatially inconsistent (red line in Fig. 4.12). In order to measure the
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difference between the endpoints of a and a′ (i.e., the spatial inconsistency), the marker is

used as a common reference point. Specifically, we develop the following methodology:

1. Using the keyframe f and f ′ from the host and a resolver, respectively, the tool

calculates the b and b′ vectors from the device to the marker (see Fig.4.12) using the

marker present in the keyframe and the single-user PnP method. (lines 1-2 in Alg. 3)

2. The c and c′ vectors from the real-world marker to the virtual anchor are computed

as c = a− b, c′ = a′ − b′. (lines 3-4 in Alg. 3).

3. The tool outputs ||c− c′|| (length of the red line in Fig. 4.12), which is the magnitude

of the spatial inconsistency between the two devices. (line 5 in Alg. 3).

The above procedure estimates the spatial inconsistency of multiple users at a single instance

in time. A similar procedure can be used to compute the spatial drift of a single user over

time, by letting a, b, c be Alice’s observations at t = 0, and a′, b′, c′ be Alice’s observations at

t = 1. The output ||c− c′|| in that case represents the spatial drift between t = 0 and t = 1.

An additional wrinkle is that the above steps rely on a, b, c being in the same coordinate

system. However, because they are computed by different functions in the AR platform,

they typically are not output in the same coordinate system, because of the way that the

real world and the devices are modeled and stored in AR/VR systems [59, 86]. We use a

variation of the techniques described in Sec. 4.5.2 to reconcile these coordinate systems and

produce the spatial inconsistency and drift estimates.
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Algorithm 3 Spatial Inconsistency Estimation

Inputs (device 1): virtual object coordinates a, coordinate system transformation g0,
frame f
Inputs (device 2): virtual object coordinates a′, coordinate system transformation g′0,
frame f ′

Outputs: Spatial inconsistency ||c− c′||

1: (g2, b)← SingleUserPnP(f) . device 1 estimate
2: (g′2, b

′)← SingleUserPnP(f ′) . device 2 estimate
3: c← g1(g0(a))− g2(b)
4: c′ ← g1(g

′
0(a
′))− g2(b′)

5: return ||c− c′|| . output spatial inconsistency

4.6 Implementation

AR devices: We use Samsung Galaxy S7 smartphones running Android 8 as

the AR devices. Our AR system is developed in C++ with the Android NDK on top of

VINS [68, 76, 60], an open-source AR platform, which we extend with multi-user capabilities

with 3000 additional lines of code. VINS has comparable baseline spatial drift issues as

ARCore, as shown in Fig. 4.2b, so we believe it is a reasonable platform on which to

test our proposed systems. We use FAST feature and BRIEF descriptors. For coordinate

system alignment, we use DBoW2 [29] to speed up keyframe matching, OpenCV [16] for

basic PnP functionality, and Boost [2] for data serialization and compression for efficient

network transmissions. Communications are accomplished through sockets, where the host

acts as a socket server and the resolvers connect to download the set of keyframes via a

TCP connection. The devices are connected to a TP-Link AC1900 WiFi router.

Replay framework: To enable experimentation with different algorithms under

repeatable conditions (e.g., the same mobility patterns of the users), we developed a replay

framework that replays the same sequence of camera frames from the host and a resolver,
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and allows SPAR or other baselines to be run on top. This involves saving the host’s

point cloud, keyframes, and virtual objects’ coordinates, along with the resolvers’ point

clouds and keyframes. Then for each trial, the framework loads the host’s point cloud and

keyframes, run the desired algorithms, and emulates a resolver’s experience as new camera

frames arrive one-by-one, adaptive communications occur, and coordinate system alignment

and updated AR rendering are performed. If successful, the virtual object will be drawn

on the resolver’s keyframes and we record the latency and spatial inconsistency.

Tool: The spatial drift and inconsistency tool runs offline on an edge server in

our implementation; in general, it could be run on any device, including one of the AR

devices themselves. It is written in Python3 using OpenCV [17], Numpy, and its quaternion

library. The tool takes as input the keyframes from each AR device, the AR app’s log

of the corresponding virtual object positions and orientations, the measurements of the

ArUco marker, and the calibration matrices of AR device cameras. Since that different AR

platforms (e.g., VINS, ARCore) typically output data in slightly different formats, we wrote

ad hoc parsing and conversion functions for VINS.

4.7 Evaluation

SPARWe evaluate SPAR’s performance in terms of computation and communica-

tion latency, bandwidth consumption and spatial inconsistency. The main findings are that

SPAR-Small and SPAR-Large lower average latency by up to 55% on average, and provide

improved spatial inconsistency, especially when a virtual object first appears, by 11%-60%,

compared to baseline approaches.
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Figure 4.13: User mobility pattern test cases.

4.7.1 Setup

Scenarios: We perform experiments in the lab and in a home environment. A host places

a virtual object (in our case, a virtual cube), walks around the area, and sends the relevant

data once to a resolver. This resolver then walks around the scene and tries to render the

virtual cube at the correct location. We evaluate the performance from the point of view

of a resolver at two time instances: (i) initially, when the virtual object is first displayed

(Sec. 4.7.2), and (ii) subsequently as the resolver continues to move around and update

the virtual object’s position (Sec. 4.7.3). We also evaluate the performance of the tool to

estimate spatial drift and inconsistency during these two phases (Sec. 4.7.4). The average

WiFi speed was 8 Mbps upload and 50 Mbps download in the lab, and 8 Mbps upload and

20 Mbps download at home.

The user mobility pattern test cases are illustrated in Fig. 4.13 and described

below.
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• Scenario 1: Small area: The host and a resolver are mostly stationary, and move within

a 1 m × 1 m area.

• Scenario 2: Large area + same initial position: The host and a resolver start at the same

place facing the same direction. Each user moves independently within a 4 m × 4 m area.

• Scenario 3: Large area + different initial position: The host and resolver start at different

places. They both move independently within a 4 m × 4 m area.

Each scenario is repeated 25 times, with each trial lasting 40-90 seconds.

Baselines: Along with the SPAR-Large and SPAR-Small strategies proposed in Sec. 4.5.1,

we compare against several baselines, All and ARCore:

• All: The host sends all keyframes and associated point clouds (already downsampled by

SLAM) to a resolver.

• SPAR-Small: The host sends 5 keyframes and their associated point clouds from before

and after creating a virtual object (10 time instances total). This strategy geared towards

small environments.

• SPAR-Large: The host sends keyframes and associated point clouds for which the virtual

object is visible within the FoV and the host is within Tkeyframe = 3 m of the virtual

object. This strategy is more conservative and geared towards large environments.

• ARCore [32]: ARCore is a highly optimized, closed-source production level AR platform

with cloud processing. We include this comparison for reference; our goal is to showcase

the improvements of our proposed methods in the open-source VINS platform, which

could then be incorporated into optimized production platforms. Due to API restrictions,
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the ARCore experiments differ slightly in that VINS creates a virtual object before the

host moves, while ARCore creates it after the host moves.

We also experimented with two other baselines using the individual nearness and visibility

criteria from SPAR-Large, but their results were similar to the other baselines and omit-

ted. We didn’t compare performance with other AR platforms such as Hololens or ARKit

because they run on different hardware (Hololens, iPhone/iPad), so it is difficult to have

a fair comparison with SPAR, which is prototyped on Android (although its methods are

generalizable).

Metrics: We evaluate several metrics:

• Latency of Initial Virtual Object Appearance (s): This latency consists of several compo-

nents:

• Save: The time the host spends to adapt the AR data in preparation for transmission.

• Communication: The time spent to communicate the selected data to a resolver. For

ARCore, this includes the cloud processing time.

• Load : The time a resolver spends to load the host’s data and initialize SLAM process-

ing.

• Resolve: The time for a resolver to move close to a virtual object and perform coordi-

nate system alignment.

• Spatial drift and inconsistency (cm): As discussed in Sec. 4.2, spatial drift is defined as

the distance that a resolver’s virtual object changes over time(assuming a ground truth
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Figure 4.14: SPAR reduces total latency by up to 55% compared to All and ARCore
baselines, on average. Note that the latency here is the initialization latency, when the user
first loads the AR app. Once this initialization has happened, subsequent updates to the
virtual objects’ locations and orientations happen in real-time.

stationary virtual object). Spatial inconsistency is defined as the distance between a host

and resolver’s virtual object instances at a given time.

• Failure rate: A virtual object can fail to appear on a resolver’s screen if the coordinate

system alignment cannot find similar enough matching frames. We count the number of

times this failure occurs.

4.7.2 Initial AR rendering

We first discuss the initial rendering of the virtual object on the resolving user’s

display. We seek to answer the following questions: Does the adaptive AR communication

strategy reduce latency? Are the virtual objects rendered with low spatial inconsistency?

Latency: We plot the average latency of a virtual object’s initial appearance,

along with its breakdown, in Fig. 4.14 for each scenario and baseline method. The SPAR-
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Large and SPAR-Small strategies generally have lower latencies than the All and ARCore

baselines, with SPAR-Small performing well in small environments like scenario 1, and

SPAR-Large generally performing well in larger environments such as scenarios 2 and 3.

The All baseline generally has higher latency than SPAR because it sends the full AR data,

resulting in more than 3 seconds of communication latency. One exception is scenario 3,

where SPAR takes more time than All. This is because the latency measurement includes

the time for the user to walk closer to the virtual object. SPAR uploads fewer keyframes

and typically needs more time to find a keyframe match in scenario 3, but once the virtual

object does appear, it has significantly lower spatial inconsistency, as discussed later on in

Fig. 4.16a. This illustrates the tradeoff between latency and spatial inconsistency. We also

note that scenario 3 is considered a challenging scenario, with many off-the-shelf AR apps

(such as Pokemon Go and Just a Line) simply avoiding such scenarios by asking players to

stand side-by-side during initialization.

Finally, the ARCore baseline also has high total latency, because it sends large

amounts of data for cloud processing. In general, there is a tradeoff between the communi-

cation and resolve latency: a low communication latency (as in SPAR-Small) implies scanty

information for coordinate system alignment, so a resolver has to take more time to find a

match before coordinate system alignment is successful, resulting in higher resolve latency.

In summary, the SPAR-Large strategy achieves good balance of communication

and resolve latency, and can save an average of 15% total latency compared to All and 40%

compared to ARCore, on average across all scenarios.
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Figure 4.15: SPAR scales communication time with the number of resolvers.

(a) First appearance of virtual object. (b) Resolver 1m away from virtual object.

Figure 4.16: SPAR improves spatial inconsistency, especially in large areas (scenarios 2, 3)
by 11%-60% on average, compared to All and ARCore.
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Scalability: We also examine how SPAR scales as the number of resolvers in-

creases, by varying the number of resolvers from 1 to 4. Since all of the resolvers com-

municate with the host simultaneously over a shared bottleneck wireless connection, we

focus on the communication latency only, as the save, load and resolve processes run in

parallel on the individual devices and thus scale up easily. The average communication

latency across all scenarios is shown in Fig. 4.15. Both SPAR-Small and SPAR-Large scale

well with the number of resolvers, with approximately 0.5 s of latency for each additional

resolver. However, All suffers from long communication latency when there are more than

2 resolvers.

Spatial inconsistency: We next examine the virtual objects’ spatial inconsis-

tencies, and plot their mean and standard deviation at two time instances: when a virtual

object initially appears on a resolver’s display, typically far away (Fig. 4.16a), and later

when a resolver moves closer, around 1 m from a virtual object (Fig. 4.16b). The reason we

plot two different time instances is because as a resolver moves closer to a virtual object,

it observes more information about the environment and can update the position of the

virtual object, changing the spatial inconsistency values.

SPAR-Small performs well at the initial appearance of the virtual object (< 8 cm

spatial inconsistency in all scenarios), and reduces the spatial inconsistency as the resolver

gets closer to the virtual object. One drawback of SPAR-Small is that it has high latency

in the large environments it was not designed for (see Fig. 4.14). In large environments

(scenarios 2 and 3), SPAR-Large has lower spatial inconsistency than the All baseline when

the virtual object first appears (Fig. 4.16a), and compared to the ARCore baseline when
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close to a virtual object (Fig. 4.16b). Hence SPAR-Small and SPAR-Large work well for

the respective environments they were designed for. Examples from scenario 2 are shown

in Fig. 4.17.

(a) Host (b) SPAR-Small (c) SPAR-Large

Figure 4.17: Screenshots of the virtual object seen by the resolver under different adaptive
AR communication strategies.

Surprisingly, the All baseline does not have the lowest spatial inconsistency, despite

communicating full information about the environment. This is because the abundance of

information sometimes results in coordinate system alignment far from the virtual object,

leading to poor alignment near the virtual object and thus spatial inconsistencies. ARCore

performs worse in the larger scenarios 2 and 3 when a resolver is close to the virtual object

(Fig. 4.16b). Note that we do not record ARCore’s initial spatial inconsistency because the

resolver is too far away from the virtual object to measure clearly (SPAR does not have

this issue because it can produce detailed logs for analysis).

In summary, SPAR-Small’s spatial inconsistency in small scenarios ranges from

2-3 cm at a virtual object’s first appearance, which is 20% better than the All baseline;

while SPAR-Large achieves 6-9 cm spatial inconsistency in large scenarios, which is 11%-

35% better than ARCore when near a virtual object. SPAR’s accuracy in scenario 1 and 2
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Figure 4.18: The feature geo distance metric filters good keyframes for coordinate system
alignment, resulting in lower spatial inconsistency for a resolver.
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is generally consistent with or improves over ARCore, with most challenging scenario being

scenario 3, where SPAR still outperforms ARCore on average.

Failure rates: In our experiments, SPAR-Small failed to resolve twice in scenario

2. Since we have 75 trials total across scenarios, this gives a failure rate of 2.7%. The cause

of failure may be because SPAR-Small too aggressively reduces the amount of AR data

transmitted, as it only save 10 keyframes and their associated point cloud, making it hard

to perform coordinate system alignment and render a virtual object. The other baselines

did not fail throughout our experiments, so on the whole, despite SPAR-Small having lower

spatial inconsistency and good latency, SPAR-Large is preferable in general for its more

consistent performance.

4.7.3 Subsequent AR rendering

In this section, we isolate the impact of SPAR’s “Updated AR Rendering” module

(Sec. 4.5.3). To validate our hypothesis that feature geo distance correlates with spatial

inconsistency (see Sec. 4.5.3), we plot the spatial inconsistency versus feature geo distance

in Fig. 4.18a over 3 trials. Each point on Fig. 4.18a represents a specific pair of matched

keyframes; the y-axis records the spatial inconsistency resulting from coordinate system

alignment with that matched pair. We can see that as the feature geo distance increases,

spatial inconsistency gets worse. This suggests that feature geo distance can be used to select

good keyframes for coordinate system alignment, and thus improves the virtual object’s

spatial inconsistency.

Since we use a feature geo distance threshold Tfeature = 3 m in Alg. 2, in Fig.

4.18b we plot the average spatial inconsistency and standard deviation when the feature geo
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distance is less than and greater than the threshold. It includes 6 trials and 310 matched

keyframes, with 170 frames having geo distance less than 3 m, and 140 frames greater

than 3 m. The average spatial inconsistency for frames with feature geo distance greater

than 3 m is nearly 40 cm, but applying the threshold filters out those frames and reduces

spatial inconsistency by more than 50%. This reinforces our message that the feature geo

distance can be an efficient way to filter out keyframe matches that result in larger spatial

inconsistency.

Finally, to illustrate how the feature geo distance metric impacts AR rendering,

in Fig. 4.18c we plot the time series of a particular trial in scenario 2. We compared our

“feature geo distance filter” approach (blue line) to a simple “no filter” baseline (red line)

that updates a virtual object’s position using the resolver’s most recent keyframe. Since

in scenario 2, a resolver is initially near the virtual object, then moves away, then moves

close again, the expectation is that the feature geo distance of the most recent keyframe will

follow a similar pattern, first being low, then high, then low, Because the baseline approach

uses the most recent keyframe for matching, this suggests that the virtual object’s spatial

drift will get worse and then better. Fig. 4.18c shows the baseline approach matches

our expectation, while our proposed approach achieves a better (lower) spatial drift by

intelligently selecting the right keyframes according to the feature geo distance metric.

In summary, the feature geo distance metric provides a good way to select which

keyframe the resolver should use to update the virtual object’s position, and can reduce

spatial drift by 50% on average compared to a baseline “no filter” approach of using the

most recent keyframe for coordinate system alignment.

92



Sp
at

ia
l D

rift
 b

y 
Ey

es
 (c

m
)

RMSE = 0.92 cm
0

2

4

Spatial Drift by Tool (cm)
0 5 10

(a) Manual vs. automatic labeling.

Sp
at

ia
l D

rift
 (c

m
)

0

1

2

3

Keyframe Index
0 20 40 60

(b) Spatial drift over time.

(c) Trajectory of the device. (d) Zoomed in of (c).

Figure 4.19: Spatial drift and inconsistency estimation tool. The tool matches manual
human labeling with an RMSE of 0.92 cm.

4.7.4 Spatial Drift and Inconsistency Tool

In this section, we evaluate the final component of SPAR, the spatial drift and

inconsistency tool proposed in Sec. 4.5.5. We wish to compare the drift/inconsistency

values reported by the tool vs. the human-observed values, in order to evaluate the tool’s

accuracy. We first evaluate the tool’s performance qualitatively. We plot an example time

series of the tool’s output in Fig. 4.19b. This time series shows that the virtual object

moves by less than 3 cm every 1 second or so, which we qualitatively observe to be true

during the experiment. To understand these results, in Fig. 4.19c we plot the trajectory of

the resolver in space, with respect to the virtual object (blue line, a from Fig. 4.12) and
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ArUco marker (red line, b from Fig. 4.12). These trajectories are identical, except for an

offset, as expected since they are with respect to different reference points. However, it is

when this offset changes over time (c = a− b) that spatial drift occurs. We can see this in

Fig. 4.19b and Fig. 4.19d, where the circled points correspond to varying offset and thus

higher spatial drift.

To evaluate the tool’s performance quantitatively, we prepare the following test

setup. We place a real 1 cm × 1 cm grid paper in the scene, initialize the virtual object

on top of the grid paper, and painstakingly go through each keyframe and manually record

the coordinates of the virtual object on the grid paper. We then choose random pairs of

keyframes and plot the spatial drift from the manual labeling vs. the spatial drift output

by the tool. Fig. 4.19a shows the results. The RMSE is 0.92 cm. We see good agreement

between the manual labels and the tool’s output, indicating that our proposed method can

successfully estimate spatial drift (spatial inconsistency is computed in a similar manner).

Any disagreement between the manual labels and the tool’s output are, we believe, due

to fundamental limitations of SLAM in computing the device trajectory (e.g., Fig. 4.19c),

which the tool relies on. In terms of computation time, the tool is able to generate estimates

for tens of keyframe pairs in about one second, whereas manual labeling by humans takes

several seconds per keyframe pair.

4.8 Discussion

Multiple virtual objects: Although our experiments focused on sharing one

virtual object between users, SPAR could easily generalize to multiple virtual objects, be-
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cause the common coordinate system it computes (Sec. 4.5.2) can be used to represent the

poses of multiple virtual objects. Specifically, for each resolver, coordinate system align-

ment would be performed once, and each virtual object projected and rendered onto the

AR display based on its pose in the computed coordinate system. This would result in

the each virtual object experiencing similar spatial inconsistency and latency as the single

object case.

Scalability: The spatial inconsistency experienced by SPAR users would not be

substantially impacted as number of users increases. This is because each resolver performs

its computations (Sec. 4.5.2, Sec. 4.5.3) in parallel with other clients, so the computed

coordinate system, virtual object poses, and hence spatial inaccuracy results of each resolver

are independent of each other. This is similar to performing a 2-user (a host and a resolver)

experiment multiple times. The main performance bottleneck that depends on the number

of users is the communication bandwidth, which impacts the latency, as shown in Fig. 4.15

and discussed in Sec. 4.7.2.

SLAM and marker-based AR: SPAR is designed for SLAM-based AR, which

is common in off-the-shelf AR systems such as Google ARCore, Apple ARKit, and Microsoft

Hololens. We use VINS-MONO [60] as the basis for our AR system, which is designed for

static environments, so SPAR inherits these limitations (SLAM in dynamic environments

is an active area of research). Another class of AR systems is marker-based AR [31]. Since

marker-based AR only need the marker information to position and render the virtual

objects, the host only needs to distribute the marker information (e.g., ArUco marker),

rather than keyframes and features as in SLAM-based AR. The marker information can be
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compactly represented as an image or ID number, and thus is communication-efficient in

which case SPAR is not needed.

Cloud vs. P2P architectures: SPAR currently uses a P2P architecture to

distribute AR information directly to each resolving client, as do Apple ARKit and Microsoft

Hololens. A P2P architecture is a natural fit for AR, since AR information only needs to

be distributed in a geographically restricted area. However, SPAR could be modified to

run coordinate system synchronization on a central node, such as a cloud or edge server

(for example, Google ARCore uses the cloud), although privacy is a concern. In this case,

communication latency may increase, but computation latency may decrease, requiring

further evaluation of the tradeoffs.

4.9 Related Work

Mobile AR systems: Object detection and image recognition for AR, on device

or offloaded to the edge/cloud, has been investigated [20, 39, 61, 80, 62, 96, 11, 52, 64] in

order to place virtual objects in the real world. These works are orthogonal to ours as we

assume that the virtual objects’ locations is given (by object detection or user input), and

we focus on how AR users can coordinate this information with others. VisualPrint [53]

uses visual fingerprints for localization, whereas we use SLAM for localization as common

in commercial AR platforms. While MARVEL [19] studies 6-DoF based AR systems, they

assume the real world is pre-mapped, whereas we assume that devices are placed in an

unknown environment. Edge-SLAM [10] considers offloading parts of SLAM to an edge

server, whereas SPAR does not require infrastructure support. GLEAM [75] focuses on
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lighting rendering for virtual objects, which is complementary to this work. Recent work [91]

proposes geo-visual techniques for fast localization in urban areas; however, their AR system

is single-user whereas we focus on multi-user scenarios.

Multi-user AR: CARS [97] shares results from object detection among multiple

users, whereas this chapter focuses on more general 3D coordinate system alignment to

share virtual objects including those placed by object detection. CarMap [8] proposes

efficient map compression, without any virtual objects; in contrast, SPAR uses knowledge

of the virtual object positions when deciding what to communicate. Several works [81, 12]

present only preliminary measurements of multi-user AR. While industry multi-user AR

systems such as Google ARCore [35], Apple ARKit [14], and Microsoft HoloLens [67] are

close-sourced, we study communication and spacial inconsistency aspects of multi-user AR

through an open-source system [60].

Multi-agent SLAM: Some SLAM systems [44, 7] focus on coordinate system

alignment, while other work [51, 24] assumes advanced sensors such as 2D laser scanner or

3D LiDARs. In contrast, this chapter focuses on efficient SLAM-based communications on

commodity smartphones, which have a large potential user base. Zou et al. [103] hardcodes

transmitting the SLAM data up to every 5 frames, while CCM-SLAM [87] transmits SLAM

information whenever it is updated. Instead, we select the appropriate keyframes and their

associated point clouds based on the locations of the virtual objects. This is done on top

of the default keyframe selection already performed by SLAM frameworks such as ORB-

SLAM2 [70] or VINS [76].
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In terms of frameworks, we work with VINS-AR [60], which is an Android version

of VINS-Mono [76], both of which are single-user SLAM and do not consider communication

and consistency issues of multi-user AR. Other open-source SLAM systems are either not

tested on Android [87, 28] or do not utilize IMU sensors [70].

4.10 Summary

In this chapter, we investigated communication and computation bottlenecks of

multi-user AR applications. We found that off-the-shelf AR apps suffer from high commu-

nication latency and inconsistent placement of the virtual objects across users and across

time. We proposed solutions for efficient data communications between AR users to re-

duce latency while maintaining accurate positioning of the virtual objects, as well as a

quantitative method of estimating these positioning changes.

Our implementation on an open-source Android AR platform demonstrated the

efficacy of the proposed solutions. Future work includes extending our spatial inconsistency

tool to other AR platforms such as ARCore, as well as incorporating depth cameras.
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Chapter 5

Conclusions

Augmented reality algorithms require the understanding of the environment and

can be categorized into two major types: deep learning based AR and SLAM based AR. In

this work, we talked about three systems: DeepDecision, change detector and SPAR. These

systems study the tradeoffs between accuracy and latency of augmented reality applications

where DeepDecision and change detector target deep learning based AR and SPAR targets

SLAM based AR.

DeepDecision is a measurement-driven mathematical framework that effectively

schedules the deep learning to be executed either locally on mobile devices or offloaded to

the edge server. DeepDecision sets the resolution and quality of input video based on la-

tency and accuracy requirements and network conditions. Change detector is a lightweight

machine learning algorithm that detects significant changes from the input video so that

deep learning will only be applied to significant different frames to save energy and reach

real-time performance without offloading. SPAR is a SLAM-based, multi-user mobile aug-
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mented reality application that has efficient data communications between users to reduce

latency while maintaining accuracy of the virtual objects. SPAR also has an automatic

measurement tool to evaluate the drift of virtual objects for both single-user and multi-user

scenarios.

100



Bibliography

[1] Artoolkit. http://www.hitl.washington.edu/artoolkit/.

[2] Boost c libraries. https://www.boost.org/.

[3] libstreaming. https://github.com/fyhertz/libstreaming, 2017.

[4] Tensorflow android camera demo. https://github.com/tensorflow/tensorflow/

tree/master/tensorflow/examples/android, 2017.

[5] xiph.org video test media. https://media.xiph.org/video/derf/, 2017.

[6] D. F. Abawi, J. Bienwald, and R. Dorner. Accuracy in optical tracking with fiducial
markers: an accuracy function for artoolkit. In IEEE ISMAR, Nov 2004.

[7] Mahmoud A Abdulgalil, Mahmoud M Nasr, Mohamed H Elalfy, Alaa Khamis, and
Fakhri Karray. Multi-robot slam: An overview and quantitative evaluation of mrgs ros
framework for mr-slam. In International Conference on Robot Intelligence Technology
and Applications, pages 165–183. Springer, 2017.

[8] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. Carmap: Fast
3d feature map updates for automobiles. In USENIX NSDI, pages 1063–1081, 2020.

[9] D Stalin Alex and Amitabh Wahi. Bsfd: Background subtraction frame difference al-
gorithm for moving object detection and extraction. Journal of Theoretical & Applied
Information Technology, 60(3), 2014.

[10] Ali J Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. Edge-slam: edge-assisted
visual simultaneous localization and mapping. In ACM MobiSys, pages 325–337, 2020.

[11] K Apicharttrisorn, X Ran, J Chen, SV Krishnamurthy, and AK Roy-Chowdhury.
Frugal following: Power thrifty object detection and tracking for mobile augmented
reality. ACM SenSys, 2019.

[12] Kittipat Apicharttrisorn, Bharath Balasubramanian, Jiasi Chen, Rajarajan Sivaraj,
Yi-Zhen Tsai, Rittwik Jana, Srikanth Krishnamurthy, Tuyen Tran, and Yu Zhou.
Characterization of multi-user augmented reality over cellular networks. In IEEE
SECON, 2020.

101



[13] Apple. Arkit - apple developer. https://developer.apple.com/arkit/.

[14] Apple. Creating a multiuser ar experience. https://developer.apple.com/

documentation/arkit/creating_a_multiuser_ar_experience.

[15] Apple. Swiftshot. https://developer.apple.com/documentation/arkit/

swiftshot_creating_a_game_for_augmented_reality.

[16] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[17] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[18] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, and Pan Hui. Mobile
augmented reality survey: From where we are to where we go. IEEE Access, 5:6917–
6950, 2017.

[19] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. MARVEL:
Enabling mobile augmented reality with low energy and low latency. ACM Sensys,
2018.

[20] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile devices.
ACM SenSys, 2015.

[21] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu,
Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, et al. An empir-
ical study of latency in an emerging class of edge computing applications for wearable
cognitive assistance. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, pages 1–14, 2017.

[22] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last longer with
code offload. ACM MobiSys, 2010.

[23] Tuan Dao, Amit K Roy-Chowdhury, Harsha V Madhyastha, Srikanth V Krishna-
murthy, and Tom La Porta. Managing redundant content in bandwidth constrained
wireless networks. IEEE/ACM Transactions on Networking (TON), 25(2):988–1003,
2017.
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