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ABSTRACT

This research examines the behavioral reactions to the impact of changes in the probability of a
non-recurrent incident and how this effects the expected costs of a commute trip. The basic
approach combines the estimation of a travel demand model (estimated with data collected from
a stated preference survey) with a supply side model of a congested highway. We also examine
the impact of various socio-economic variables, including a detailed classification of
occupational groupings. Our demand model is based on a theoretical model developed to explain
how unreliability in travel times affects expected travel costs. We find that expected schedule
delay (early and late), lateness probability, and expected travel time influence the expected costs
of travel. Our parameter estimates confirm the anticipated values of these parameters: lateness
probability has a high disutility, while expected schedule delay early is preferable to expected
schedule delay late, and the disutility of expected travel time is between these two. We do not
find a high level of significance for planning costs, as expressed by the variance in travel times.
Our simulation model shows that schedule costs and lateness probability represent a large
fraction of the total cost to the commuter; these are generally not affected by capacity increases
but can be reduced by decreasing the probability of a non-recurrent incident.

KEYWORDS: Computer Simulation, Dynamic Departure Time Choice, Policy, Travel
Behavior



EXECUTIVE SUMMARY

This research investigates the question: How do travelers react to’changes in the reliability of the

highway system? There is much evidence that people place considerable importance on the

certainty with which they can anticipate travel conditions at any particular time of day. But very

little empirical measurement has been done of just how this affects their travel. What little has

been done is limited to measuring the overall deterrent effect of unreliability on choice of mode

or route.

Yet theoretical analyses of reliability emphasize that its main effect is to make the traveler’s

arrival time at the destination unpredictable. This suggests that one primary form of adjustment

that can be expected is shifts in schedule, for example leaving home earlier in order to provide a

greater buffer against late arrivals at work.

These adjustments may be incomplete, leaving a residual probability of arriving late; this

imposes a cost on the traveler. Also, the adjustments have their own costs: for example time

spent at the destination prior to the desired arrival time may be unproductive or unpleasant

compared to the alternative of starting the trip later. In order to fully evaluate measures that

change the reliability of the highway system, these behavioral adjustments must be anticipated

and their costs measured. This research addresses these tasks through a theoretical model of

scheduling choice in the face of uncertain travel times, and through a survey of commuters in the

Los Angeles region.

The theoretical model (section 3) takes as its starting point two previous types of models found

in the literature: (i) choice of travel schedule in situations of dynamic congestion but no

uncertainty; (ii) choice of travel schedule in situations of uncertainty but no recurrent congestion.
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By merging these strains of literature, we obtain a richer model that explicitly addresses how

people react to both recurrent and non-recurrent congestion by altering their travel schedules, and

that provides a measure of the costs to them of each aspect of the scheduling choice. The theory

suggests that travelers will make substantial but not necessarily complete adjustments to offset

increases in the unreliability of the system, and that these adjustments impose considerable costs.

In our survey work (section 4), respondents are asked a series of questions about their actual

commuting situation, their flexibility regarding arrival time at work, related work traits such as

ability to stay late or take work home, and the nature of their occupation. They are then asked a

set of “stated preference” questions in which they report their preferences among different

hypothetical commuting situations, which are designed to resemble to some degree their actual

commuting situation. Each hypothetical situation specifies a set of five possible travel times for

the commute, each to be realized with equal probability; and a departure time from home (stated

relative to the previously ascertained desired work arrival time). Respondents therefore have the

opportunity to consider how they trade off mean travel time, variation in travel times, and

schedule.

The analysis of actual commutes (section 5) shows that there are wide variations in employers’

degree of flexibility toward travel schedules and in workers’ ability to adjust their work arrival

times. These variations are somewhat related to occupational categories, with roughly the more

structured occupations showing less flexibility. The specific consequences of late arrivals also

differ across occupations, with those in more professionally or business oriented occupations

reporting loss of reputation as the main cost while others are more likely to report lost earnings.

These results offer the possibility that local data on occupational distributions could be used to

ascertain how likely workers in that area might be to shift travel schedules in response to changes

in travel conditions.
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The analysis of the stated preference questions (section 6) leads to a behavioral model of

schedule choice in the face of uncertainty. Implicit in this model are estimates of the costs of

various characteristics of the travel schedule: mean travel time, average “schedule delay early”

(defined as time spent at work prior to the preferred work start time), average “schedule delay

late” (defined as number of minutes that an arrival is later than that preferred work start time),

probability of being late, and standard deviation of travel time. The results show that, consistent

with prior research, people are moderately averse to arriving early at work and more averse to

arriving late, with a substantial discrete penalty to being late at all in addition to a per-minute

cost of lateness. Further investigation shows that these effects differ between wage earners and

salaried workers, and to a lesser degree among various occupational categories. Carpooling did

not seem to affect the results. Finally, the results show that once these scheduling costs are taken

into account, there is little additional residual cost to uncertainty per se.

In order to assess the practical importance of these findings, we performed simulations in which

both recurrent and non-recurrent congestion was generated by a set of hypothetical commuters

making their scheduling choices according to the model estimated as just described. In these

simulations, congestion results from insufficient capacity and uncertainty results from random

“incidents” which reduce capacity in a specified manner. These simulations show that slightly

less than half of the increase in travel costs caused by incidents is due to increased travel time;

the rest is due to scheduling costs, primarily increased probability of arriving late. The latter

occurs despite a small tendency for people to adjust to increasing uncertainty by leaving for work

earlier, which does occur and imposes an additional cost.

These models offer practitioners the basis for making quantitative predictions about the response

to changes in the reliability of the highway system, and for measuring the costs of unreliability

after people’s adjustments are taken into account. Policies for which this type of evaluation is

applicable include capacity expansions, improvements in incident response, and provision of
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information to travelers about travel speeds. Real-time information systems offer a variety of

possibilities for affecting people’s actual distribution of travel times and their knowledge of those

distributions; simulations like those reported here offer ways to predict the results taking account

of the complex and interacting shifts in travel decisions that people are likely to make.
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1. INTRODUCTION

One of the great rediscoveries of transportation analysis is the importance of reliability in

travel times. Based on instinct and direct statements of travelers (Prashker 1979), travel demand

analysts have long suspected that reliability should be one of the important components of travel

demand models and that unreliability is one of the primary costs of road congestion. Yet only

very recently have such models succeeded in finding measurable effects (Small, 1992, pp. 35-

36).

Stated-preference techniques have opened the way to some solid empirical estimates of

travel time reliability. Most of them measure how much people are deterred by a higher standard

deviation of travel times, relative to a higher mean travel time (Bates, 1990; Black and Towriss,

1993; Abdel-Aty et al., 1994b). These effects have real economic costs since individuals are

foregoing the selection of a preferred schedule which would perhaps increase their workplace

productivity.

Congestion also plays a role in traveller choices. Commuters may reschedule their trips

to avoid peak travel periods, again potentially preventing them from arriving at work at some

preferred time. Congested traffic may also increase the unreliability of travel times. That is, the

variance of travel times may be greater during peak travel periods than when traffic is relatively

uncongested. Travel time variance is related to the occurrence of incidents which block highway

capacity and thereby cause bottlenecks in the system.

One of the objectives of this research is to identify and measure the costs associated with

unreliable travel times. This is done by collecting stated preference survey data to measure the

trade-offs between scheduling costs, travel time costs, and costs associated with both travel time

variance and the probability of arriving at work late. The focus here is on morning commute

trips, although similar models could be applied to any trip that has some preferred arrival time.

Our demand models allow estimation of the trade-offs between various cost attributes.

This will then be applied to a simulation of a single route highway facility. The simulation will



allow real congestion effects, due to both recurrent and non-recurrent congestion, to be taken into

account. Commuters may reschedule their trips to avoid congestion and/or travel time variation

resulting in endogenous changes in both congestion and reliability. The simulation methodology

allows a stable pattern of congestion over the morning commute to be achieved, thus allowing for

a better interpretation of the effects of policy changes.

Another important element of our study is the examination of socio-economic differences

in the responses to travel time unreliability. The survey respondents are classified into six

occupational groupings and various tests are conducted to determine significant impacts on each

group. Applying this type of demand model in a simulation experiment allows us to determine

any impacts from future demographic changes. In addition, the significance of various socio-

economic parameters in the demand model could be important for planning the marketing of

Intelligent Transportation System (ITS) information technologies.

This report is organized as follows. First, we present a review of the relevant literature

including previous economic models of traffic congestion and empirical research on travel

reliability. We briefly describe the literature on psychological factors in employment choice and

how this ties into our socio-economic categories. The next section contains a theoretical

derivation of how individuals perceive the costs of travel time uncertainty, providing a

theoretical justification for the demand models. Section 4 describes the data collection process

including a discussion of stated preference techniques. Section 5 presents summary statistics and

an analysis of the occupational categories as we define them. Section 6 provides a detailed

discussion of the demand model results. Section 7 discusses the simulation methodology and

results. Finally, in section 8 we consider implications for policies to reduce both recurrent and

non-recurrent delay, examine the role of traveller information technologies, and make

suggestions for future research.



2. LITERATURE REVIEW

2.1 Economic Models of Congestion, Scheduling, and Reliability

The behavioral mechanisms underlying the choice of departure times has been

extensively studied. This research can be broken into three basic categories. The first focusses

on scheduling choices; how does increased travel time due to congestion affect the choice of late

versus early arrival? The second is a group of models that rely on endogenous scheduling

choices under equilibrium conditions. Finally, we review recent literature that incorporates

travel time reliability into the choice process.

2.1. I Congestion and Scheduling Choice

Some landmarks in the modern economic literature on traffic congestion include Walters

(1961), Downs (1962), and Vickrey (1963, 1969). Walters (1961) and Vickrey (1963) analyzed

the benefits to be gained from congestion pricing of roads, focussing exclusively on the travel

delay due to congestion and the social costs that congestion imposed on all road users, They

showed how using congestion pricing would allow those who most value the travel to pay a

premium to travel at those periods when demand is greatest. The overall effect is a reduction in

congestion at peak hours.

Scheduling of trips is a major cause of congestion. Downs (1962, 1992) explains how

“triple convergence” tends to maintain high levels of congestion even when capacity levels are

increased. Shifts from alternative routes, other modes, and different schedules are the three

converging effects. Commuters tend to have some preferred arrival time and when congestion

delay is reduced, they are more likely to reschedule their trip to arrive at a more preferred time,

perhaps even at the cost of increased travel time.

As emphasized by Vickrey (1969), arriving earlier or later than the preferred time

(usually the official work start time) entails some costs. Cosslett (1977) and Small (1982)

provided the first empirical estimates of these effects. Small (1982) estimates how commuters



who have an official work start time choose their usual travel schedules from among twelve

possible five-minute intervals. The discrete choice specification assumes a fixed penalty

(disutility) for arriving later than 2.5 minutes prior to the work start time. It also assumes

additional per-minute penalties for arriving at work either early (schedule delay early, SDE) or

late (schedule delay late, SDL). Small finds these penalties to vary systematically with personal

and occupational characteristics; on average, the per-minute disutility of SDL is greater than that

of travel time which in turn is greater than that of SDE, and the fixed lateness penalty is

equivalent to about 5 minutes of travel time (Small, 1982, model 1).

Hendrickson and Plank (1984) also estimate values for SDE and SDL. Their model is

based on a mode and departure time logit choice -model. They also include squared terms for

SDE and SDL, but no dummy variable for fixed lateness penalty. While their relative values are

similar to Small (1982),, in that early time is valued less than travel time, and travel time is

valued less than late time, their travel time variable is not statistically significant.

Chu (1993) estimates a model of departure time and mode choice which includes

schedule delay, similar to Small (1982). Abkowitz (198 1) also analyzes the choice of departure

time but without considering schedule delay.

Mannering and Hamed (1990) investigate the work to home departure time decision.

Their results show that high levels of congestion are the main cause of delaying the departure

decision. Socioeconomic characterstics and the availability of other activities near the work

place, while significant, have a much smaller effect. Their study is unique in that it focusses on

the work to home trip during the evening peak while most research has analyzed morning

departures from home to work.

2. I. 2 Equilibrium Modeling with Endogenous Scheduling

There is an extensive literature on modeling equilibria or dynamic adjustment paths using

a simple deterministic demand structure. On the supply side, most such papers use a bottleneck

model that is basically that of Vickrey (1969), except usually simplified by making everyone’s
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desired arrival times identical. Arnott et al. (1990a; 1990b) develop such a model that

equilibriates the trade-offs between schedule delay and queuing delay; the result is that all

commuters face the same costs. They use their model to evaluate various tolling strategies.

Hendrickson and Kocur (198 1) and Fargier (1983) develop equilibrium models that analyze

departure time decisions and their impact on the timing of congestion.

Extensions to these models include incorporating elastic demand (Ben-Akiva et al., 1986;

Arnott et al., 1993), routes through a network (Ben-Akiva et al., 1986; Vythoulkas, 1990; Arnott

et al., 1992) and heteregenous commuters with varying desired arrival times (Newell, 1987).

Small (1992) provides a detailed review of many of these models.

One author, Henderson (1977; 198 l), uses a supply model which applies a conventional

static speed-flow curve to each cohort of travelers. Chu (forthcoming) demonstrates that it is

essential to define that cohort by their arrival time at their destination rather than by their

departure times from home; otherwise, anomalous possibilities occur and equilibria do not exist.

Chu also shows that the Vickrey bottleneck model appears as a limiting case of the Henderson

model in which the speed-flow curve becomes kinked (i.e., the elasticity of travel time with

respect to vehicle-capacity ratio becomes infinite).

Chu (1993) investigates equilibrium behavior in a model with a Henderson-type supply

side, and in which the simple deterministic demand-side specifications just discussed are

replaced by a discrete-choice model of scheduling very similar to that of Small (1982). Our

research extends Chu’s model using stated preference data that includes reliability as an attribute

and by generating a distribution of travel times by deterministically randomizing capacity.

Equilibration then occurs with people responding to the profile of congestion and, at each clock

time, the entire probability distribution of uncertain travel times.

2.1.3 Theoretical and Empirical Research on Travel Reliability

The earliest theoretical work on traveller reactions to uncertain travel times can be

attributed to Gaver (1968). Gaver developed a framework based upon utility maximization to



demonstrate that commuters (or other travellers with a desired arrival time) will depart with a

“head start” time; that is, they anticipate the variance in travel times and plan their departure a

little earlier than if travel times were certain. This is similar to the “safety margin” hypothesis

proposed by Knight (1974). Polak (1987) adds a concave transformation to Gaver’s linear utility

function in order to represent risk aversion, while Bates (1990) develops an analytic model to

account for shifts to earlier departure times as variance increases.

Jackson and Jucker (198 1) assume that travellers trade off the expected travel time

against travel time variance (or standard deviation). This theory ignores any scheduling costs

and does not imply any particular functional form for the relationship between cost and

unreliability. Most empirical work assumes that cost varies linearly with the standard deviation,

as in Jackson and Jucker (198 1). One exception is Senna (1994) who combines the expected

utility approach of Gaver (1968) and Polak (1987) with Jackson and Jucker’s (1981) mean-

variance approach. Senna (1994) defines expected utility in terms of a combined function of

travel times and travel time variance allowing for risk aversion (or proneness) to be measured.

Empirically he finds that commuters with fixed arrival times are risk prone, that is, they prefer a

greater variability in travel times. He attributes this to the absence of lateness penalties. Another

possibility is that his modeling approach misses the effects of scheduling costs.

Mirchandi and Soroush (1987) develop a network traffic equilibrium model that

incorporates disutility functions for increased travel time variance. They test the model on

different networks to demonstrate how travellers shift away from routes with increased travel

time variance under congested conditions, but do not consider shifts in scheduling.

The theoretical model developed for this project is an extension of Gaver (1968) and

Polak (1987). The additional contribution is that we include a discrete lateness penalty and also

take changing levels of congestion into account; i.e., we account for the fact that alternative

departure times face a different level of congestion. We also allow a full decomposition of the

various cost elements of the morning commute, such as the expected cost of schedule delay,



lateness, and travel time. This model will be described in Section 3. Additional detail is available

in Noland and Small (1995).

Empirical work on measuring traveller responses to reliability has been slow to develop.

Much of the early work was speculative or used proxy measures to account for reliability.

Guttman (1979) discusses results that show commuters travelling during peak hours have a

greater value of time than off-peak commuters. He attributes this to commuters incorporating the

costs of uncertainty into their valuation of travel time. This is certainly a plausible hypothesis

given that commuters travelling at peak hours may face greater uncertainty and may also have

greater penalties for late arrival. Abkowitz (198 1) defined an expected loss function to represent

traveller perceptions of the loss from early or late arrival. He did not find any statistical

significance to the loss associated with uncertainty and attributes this to possible inaccuracies in

the available data. Abu-Eisheh and Mannering (1988) estimate a departure time and route choice

model. Their model includes a variable for the percent of coordinated traffic signals, which they

interpret as a proxy for travel time variance. They obtain a negative coefficient on this variable

indicating a preference for reduced travel time variance.

Mahmassani and associates (see Mahmassani and Herman, 1989; Mahmassani and

Stephan, 1988; Mahmassani and Tong, 1986; and Chang and Mahmassani, 1988) simulate time of

day departure choices using hypothetical data collected from actual commuters and fed through a

traffic simulation model. These papers focus on day to day variations in travel time as commuters

gain experience with the system. While travel times may be uncertain, these simulations

emphasize how people learn about the shape of the congestion profile as opposed to uncertainties

due to non-recurrent events.

More recent studies utilizing stated preference (SP) techniques have allowed for more

explicit determinations of reliability costs and the trade-offs with other attributes. Black and

Towriss (1993) performed a detailed SP study in London to measure the effect of travel time

reliability. They provided respondents with a set of possible travel times to represent the travel

time distribution. We follow this approach in our survey (see Section 4 and Appendix). The
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results of their estimations show that the standard deviation of travel times is a significant and

negative attribute in the travellers utility function. Their stated preference survey did not contain

any measures for estimating scheduling costs which we include in the present study.

Abdel-Aty et al. (1994a, 1994b) analyze the impact of travel time variability on route

choice. They performed a stated preference survey in Southern California that presented

respondents with the choice of route alternatives. One choice was certain arrival time (five days a

week) while the other had variability (for example, certain travel time four days a week and the

possibility of a longer travel time once a week). In most of the cases presented the route with

variability had a total expected travel time less than the route with certain travel times. The

results indicate that travellers recognize the disutility of variable travel times. The number of

respondents selecting the more variable route diminished significantly when the standard deviation

exceeded about 10 minutes (for a journey that regularly would take 20 minutes).

Abdel-Aty et al. (1994a) estimate a binomial logit model that shows standard deviation of

travel time as being negative and significant in the choice of route. Abdel-Aty et al. (1994b),

using the same data, estimate a Gaussian quadrature model that finds similar results.

Unfortunately there is no cost attribute in their models. The ratio of the coefficients of the

standard deviation of travel time to that of expected savings in travel time ranges from 0.33 to

1 .O, suggesting that travel time reliability is quite important in route choice decisions.

2.2 Incident Delay and its Effect on Travel Time Variance

Day to day variation in travel times can be caused by many different factors. For example,

levels of demand may vary from day to day, or weather conditions may reduce capacity resulting

in increased delays. These effects may not be random since commuters may anticipate the daily

variation in traffic levels and reduced capacity during adverse weather. Random incidents such as

vehicle disablements or accidents result in uncertain travel times. Random incidents cannot be

anticipated by the traveller, although they may have some perception of their probability.



Incident related delay accounts for a large fraction of total delay. Giuliano (1989)

estimated that about 60% of total congestion is due to non-recurrent incidents. These can range

from major accidents that block capacity for an extended period of time to minor incidents such as

disabled vehicles along highway shoulders. Lindley (1987) and Scrank et al. (1993) found a

similar result for cross-sections of major U.S. metropolitan areas.

An unanswered question is how travel time variance is related to total traffic volume.

Intuitively one would expect an increase in standard deviation of travel times during congested

conditions, partly because any reduction in capacity during peak hours will have more severe

consequences on total travel delay. On the other hand, accidents are probably less severe in slow

moving congested conditions than during free-flow conditions. The empirical literature is

inconclusive. Newbery (1990) and Bates (1994) posit some empirical relationships showing a

power relationship between delay and traffic volume but have little faith in them. Hendrickson

and Plank (1984) in an analysis of data from Pittsburgh, find that the coefficient of variation (ratio

of standard deviation to mean travel time) is constant at about 0.13 over the peak period.

Satterthwaite (198 1) reviews the literature and concludes that accident rates do not necessarily

increase with increasing traffic volumes.

The simulations presented in Section 7 will assume constant incident probabilities for peak

and off-peak periods. As will be shown, however, this results in a larger standard deviation of

travel times (and coefficient of variation) over the peak period compared to off-peak periods.

More research is needed to verify this relationship but is beyond the scope of the present study.

2.3 Occupational Categories and Risk Taking

One of the objectives of this study is to examine how socio-economic factors affect

departure time choice decisions when travel times are uncertain. The psychological literature on

risk-taking behavior (see e.g. Kogan and Wallach, 1964) suggests that certain personality types

might prefer risks while others are more risk averse. In terms of commuting behavior this implies

that some personality types may dislike travel time variability more than others who are either
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indifferent to the risk of late arrival or who actually prefer taking risks to minimize their total

travel time.

Epstein and O’Brien (1985) suggest that personality traits are only one factor influencing

choices in risky situations. Personality traits describe a wide set of attitudes, therefore it is

desirable to find an “underlying personality measure” which has predictive power in a wide range

of situations. Holland (1985) has hypothesized that a person’s personality and occupation are

empirically connected. The assumption is that each personality type is a product of a

characteristic interaction amongst a variety of cultural and personal forces. From this experience

individuals learn to prefer some activities which lead to interests and special competencies. This

leads to a personal disposition that results in an individual acting and perceiving with specific

tendencies. People search for environments that will let them exercise their skills and abilities,

express their attitudes and values, and take on agreeable problems and roles. Therefore,

occupational categories generally contain people with similar personality types.

Holland (1958, 1977) developed a Vocational Preference Inventory, a personality

inventory based entirely on occupational titles. This inventory measures the individual’s interest in

different types of vocations. Holland states that these inventories are in fact personality

inventories, assessing prior learning, genes, psychological and sociological influences, or the

behavioral repertoires that such influences create. Consequently people in a vocational group will

have similar personalities, and they will respond to many situations and problems in a similar way.

The theory is interactive in that it assumes that many career and social behaviors are the

outcome of people and environments acting on one another. On the one hand people gravitate

towards their optimal vocation and on the other the work environment molds them towards those

personalities typical of their vocation.

The Holland occupational groups are separated into six categories. These are defined as

“realistic”, “investigative”, “artistic”, “social”, " enterprising”, and “conventional” occupational

types. We now define each in terms of their major characteristics.
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The realistic type prefers activities that entail the explicit, ordered, or systematic

manipulation of objects, tools, machines, and animals and has an aversion to educational and

therapeutic activities. These tendencies lead to the acquisition of manual, mechanical, agricultural,

electrical, and technical competencies and to a deficit in social and educational competencies. The

realistic person values concrete things or tangible personal characteristics such as money, power,

and status.

The realistic person is apt to be:

Asocial Materialistic
Conforming Natural
Frank Normal
Genuine Persistent
Hard-headed Practical

Self-effacing
Inflexible
Thrifty
Uninsightful
Uninvolved

The investigative type prefers observational, symbolic, systematic, and the creative

investigation of physical, biological, and cultural phenomena in order to understand and control

such phenomena, and has an aversion to persuasive, social, and repetitive activities. These

tendencies lead to the acquisition of scientific and mathematical competencies and to a deficit in

persuasive competencies. The investigative type values science.

The investigative type is apt to be:

Analytical Independent Rational
Cautious Intellectual Reserved
Critical Introspective Retiring
Complex Pessimistic Unassuming
curious Precise Unpopular 1

The artistic type prefers ambiguous, free, unsystematized activities that entail the

manipulation of physical, verbal, or human materials to create art forms or products, and has an

aversion to explicit, systematic, and ordered activities. These tendencies lead to the acquisition of

competencies in language, art, music, drama, and writing, and to a deficit in clerical or business

competencies. Artistic types value esthetic qualities.
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The artistic type is apt to be:

Complicated
Disorderly
Emotional
Expressive
Idelistic 

Imaginative
Impractical
Impulsive
Independent
Introspective

Intuitive
Nonconforming
Original
Sensitive
Open

The social type prefers manipulation of others to inform, train, develop, cure, or enlighten,

and has an aversion to explicit, ordered, systematic, activities involving materials, tools, and

machines. These tendencies lead to the acquisition of interpersonal and educational competencies

and to a deficit in manual and technical competencies. The social type values social end ethical

activities and problems.

The social type is apt to be:

Ascendant Helpful
Cooperative Idealistic
Patient Empathic
Friendly Rind
Generous Persuasive

Responsible
Sociable
Tactful
Understanding
Warm

The enterprising type prefers the manipulation of others to attain organizational goals or

economic gain, and has an aversion to observational, symbolic, and systematic activities. These

tendencies lead to the acquisition of leadership, interpersonal, and persuasive competencies, and

to a deficit in scientific competencies. The enterprising type values political and economic

achievement.

The enterprising type is apt to be:

Acquisitive
Adventurous
Agreeable
Ambitious
Domineering

Energetic
Exhibitionistic
Exitement
seeking
Extroverted

Flirtatious
Optimistic
Self-confident
Sociable
Talkative
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The conventional type prefers explicit, ordered, systematic manipulation of data, such as

keeping records, filing materials, reproducing materials, organizing written and numerical data

according to a predescribed plan, operating business machines and data processing machines to

attain organizational or economic goals, and has an aversion to ambiguous, free, exploratory, or

unsystematized activities. These tendencies lead to the acquisition of clerical, computational, and

business system competencies and to a deficit in artistic competencies. Conventional types value

business and economic achievement

The conventional type is apt to be:

Careful Inflexible
Conforming Inhibited
Conscientious Methodical
Defensive Obedient
Efficient Orderlv

Persistent
Practical
Prudish
Thrifty
Unimaginative

The demand models presented in section 6 will attempt to measure the influence of

Holland’s specific occupational groupings on preferences for reliable commuting. These

occupational groups are defined in Holland (1985) as realistic, conventional, artistic, enterprising,

social, and conventional. We summarize the main characteristics of each group in section 5.2.

13



14



3. DEVELOPMENT OF THEORETICAL MODEL

The theoretical model outlined here is a slightly generalized version of that in Noland and

Small (1995), where it is described more fully. Here we present a brief description of the model

and emphasize its relation to the empirical work described in Section 6.

We begin with a theory of scheduling costs under uncertain travel times. As mentioned

above, we build upon prior work by Gaver (1968) Polak (1987), and Bates (1990) by postulating

a cost function for a commuter with a particular preferred arrival time at work, which empirically

is taken to be the official work start time, t,. If the commuter leaves home at time th and the

travel time on a particular day is T, then the commuter will arrive early if th + T < t, and late if

th + T > t,. Small (1982) defines variables to measure how early or late this is: schedule delay

early (SDE) is defined as t, - (th + T) if the commuter is early, and zero otherwise; while schedule

delay late (SDL) is (th + T) - t, if the commuter is late and zero otherwise. This scheduling cost

function, C,, is postulated to be:

C, =oT+P(SDE)+y(SDL)+ODL (1)

where DL is equal to 1 when SDL > 0 and 0 otherwise. The coefficient a is the cost of travel

time, j3 and y are the costs per minute of arriving early and late, respectively, and 0 is an additional

discrete lateness penalty.

We define three elements of total commute time, T. The first is the free-flow travel time,

Tf, which occurs if the highway has no congestion. The extra travel time due to congestion is

defined as T,. This is minimum congested travel time that the commuter knows will occur, i.e.,

recurrent congestion. The added time due to non-recurrent congestion, due for example to

incident related delays (Lindley, 1987; Scrank et. al, 1993),  is defined as T,, a random variable.

We define a probability distribution with a mean and standard deviation for this variable; for

simplicity we assume it is independent of the amount of recurrent congestion and of the time of

day of travel.
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These elements are used to define the maximum early arrival time, T,:

T, = t, - th - Tf - T,. (2)

This is the “head start” time, originally defined by Gaver (1968). This enables us to rewrite the

cost function as follows:

C,(T,)=a[T,+T,+T,]+P(l-D,)[T,-T~]+yD,[T~-T~]+8D,. (3)

The next step is to calculate the expectation of this cost function using a specified

distribution function. Many authors, including Richardson & Taylor (1978), have fit log-normal

curves to travel-time variance data; Giuliano (1989) has verified that non-recurrent congestion

follows a log-normal distribution. Unfortunately, the log-normal distribution is analytically

intractable. Instead we calculate it here for a uniform distribution (like Polak, 1987) and an

exponential distribution (like Gaver, 1968). (Our empirical model uses neither of these

distributions, but instead generates T from a supply model with random capacity reductions, as

specified below).

The uniform distribution for Tr is defined by the probability density function f(T,)=l/T,

for 0 5 Tr 2 Tm and f(T,)=O otherwise. Its mean is 1/2Trr, and its standard deviation is T,lfi .

The expected cost is

EC, = $+(T,)dT. (4)
m0

Assuming that 0 I T, I T,, the chosen departure time can lead to either early or late arrival

depending on the realization of the random variable Tr; expected cost is then

EC, = a(Tr + T, ++‘)+--$J(T.-T,)dT,+--$(T,-T,)+B]dT,
mO m Te

(5)
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= aE( T)‘+ pIZ( SDE) + $( SDL) + 6P,, (7)

where PL = (T, - T,) / T, is the probability of arriving late. We see that for any given choice T,

of travel schedule, expected scheduling cost is simply the sum of expected costs of travel time,

schedule delay early, schedule delay late, and lateness penalty. Note that since randomness in Tr

makes either early or late arrival possible, all four terms can be positive.

When T, < 0 or T, > T,, Noland and Small (1995) show that equation (7) still holds,

although certain terms are then equal to zero because E(SDE)=O in the case T, < 0, and E(SDL)

= PL = 0 in the case T, > T,. What this means is simply that with the uniform distribution it is

possible to choose the head start so as to guarantee early arrival or so as to guarantee late arrival.

The exponential distribution for T, is defined by the probability density function,

f( T ) = 1 ,tx)
r

b ’

which applies for 0 I T,. The parameter b is the mean and the standard deviation of the

distribution. Assuming that T, 2 0,’ expected cost is:

EC, = t ]C(T,)eXdT,  + ifC(T.)e-TddT,.
0 T.

(8)

(9)

=a(Tf+T,+b)+P(T,-b)+e-*%@+bp+by), (10)

=a(Tf+TX+b)+P(T,-P,b)+P,(B+by). (19

By taking the conditional expectation of Tr, conditional on Tr < T, or Tr > T,, one can rewrite

(11) as:

EC, =aE(T)+PE(SDE)+yE(SDL)+8P,,

where PL = e-*A is the probability of arriving late. Equation (12) is identical to (7).

(12)

‘Noland & Small (1995) provide more detail on cases when T, < 0.
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In addition to producing mis-matched schedules, travel time uncertainty may also impose

an inconvenience due to the inability to plan one’s activities exactly. We call this “planning cost”,

Cn, and assume it is a function of the standard deviation S of uncertain travel time Tr, with

coefficient cr. Total expected cost is therefore

EC=EC,+C, (13)

= aE( T) + PE(SDE) + yE(SDL) + @Pi, + crf( S) . (14)

This is the basic model that we estimate in section 6. Our expectation is that l3 < a < y and that

all coefficients are positive.2

In Noland and Small (1995), we permit head-start T, to be chosen to minimize expected

scheduling cost, EC,. However, here we assume instead that head-start is chosen from a random

utility model in which disutility is proportional to EC. We expect this to lead to similar qualitative

behavior, such as a shift toward earlier schedules in response to increased standard deviation of

travel time.

2Since the estimation procedure is based on utility maximization the coefficients would all be negative when
specified in a utility function.
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4. SURVEY DESIGN AND DATA COLLECTION PROCESS

In order to empirically estimate the trade-offs among reliability, mean travel time, and

scheduling decisions, we developed a stated-preference survey and administered it to a sample of

677 commuters in the Los Angeles region who had already taken part in a recent panel study

undertaken by David Brownstone and Thomas Golob. This strategy enabled us to take advantage

of information already compiled about employer, work start time, and travel conditions. It also

provided an 80 percent response rate, ultimately resulting in 543 usable questionnaires.

The questionnaire is divided into three parts. The first concentrates on the respondent’s

occupation and related work characteristics. The second measures the daily work and individual

constraints on the timing of the commute. The third consists of questions about current

commuting experiences and reactions to hypothetical changes in it.

This third part includes a set of nine stated preference choices. Each choice is between

two alternative commutes to work, each with a specified distribution of travel times and a

specified departure time from home. Departure time is presented in minutes prior to the “usual

arrival time,” which was ascertained from a question in the previous panel about the commuter’s

actual commuting situation and which here takes the role of work start time in the theory

developed above. The travel mode is not specified. A sample question is shown in Figure 4-l;

see Appendix A for a sample copy of the complete survey including the SP questions. Our

empirical demand model, discussed in section 6, is estimated from the answers to the SP questions

(based on nine repeated measures given to each respondent).

The question format is a compromise between the need to describe a travel time

distribution that would be realistic to the respondent, and the need to keep the question simple

enough to be understood. Based on the experience of Black and Towriss (1993), who studied

different question formats with this tradeoff in mind, the travel time distribution in the current

study is described as a five point discrete distribution, where each possible travel time has an equal

probability. The possible travel times were determined by choosing a log-normal distribution with
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a given mean and standard deviation, then picking the lst, 3rd, 5th, 7th, and 9th decile points,

each rounded to the nearest minute. The standard deviation was chosen to be larger for those

commuters whose current actual travel time was longer.

To represent a travel time distribution as a discrete distribution is clearly a simplification.

Two aspects could be problematic. First, it restricts the domain of the probability distribution,

creating an artificial certainty as to the maximum possible delay that could occur. Second, one

cannot adequately capture the skewness of the underlying distribution using only five points. To

counteract any hidden skewness effects, all the sets of travel times we presented to respondents

are derived from distributions with the same skewness, which means we cannot study the effects

of third or higher moments of the travel time distribution.

In order to reduce some of the problems that have been identified in stated preference

questions (Bonsall, 1985; Bradley and Kroes, 1990),  the questions were designed to be realistic

and relevant to the respondents. For example, the distributions presented were customized so as

not to deviate too far from the respondent’s current mean travel time. In order to avoid

“affirmation bias,” the questions were designed as abstract alternatives with no obvious way to

promote any particular political philosophy through the answer. Finally, following a pilot study in

which questions about tolls elicited responses that were clearly political statements, the price

attribute was dropped from the design; this means that we can measure ratios of cost coefficients

but not the actual costs.

As for the design of the independent variables, Hensher and Barnard (1990) demonstrate

that an orthogonal design will contain some combinations of attribute levels for which one

alternative completely dominates another, making that choice not very informative and possibly

boring the respondent. As an alternative to orthogonal statistical design, we selected from a

complete factorial design the largest subset of non-dominated alternatives in order to form the

choice sets.

The three attributes specified in the SP design were assigned three levels (high, medium,

and low), leading to a 33 matrix of attribute combinations. Out of this matrix of 27 attribute
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combinations the largest subset of non-dominated attribute combinations was chosen. This subset

consists of seven attribute combinations, which are presented in Table 4- 1.

Randomly drawn pairs of the three attribute levels were assigned to each individual to

create nine repeated measure SP questions. Respondents were not presented the same pair twice.

The respondents were also divided into 5 groups based on their usual commuting time from home

to work with each group having a separate set of attribute combinations designed for it. The 5

travel time groups and their attribute levels are listed in Table 4-2. Departure time levels were

calculated as a linear combination of the mean travel time and the standard deviation to determine

three departure time levels. The lowest of the three levels was the departure time being equal to

the expected travel time. The medium level was the expected travel time plus one standard

deviation, while the highest level was the expected travel time plus two standard deviations.

As mentioned above, the 5 travel times were computed by choosing a log-normal

distribution. The variance of the corresponding normal distribution was assumed to be constant at

0.3. The 5 points were chosen as the 1st 3rd, 5th, 7th,  and 9th deciles of the chosen log-normal

distribution. The actual values presented were, however, approximate due to rounding to zero

decimal places. During our estimations (see Section 6) we recalculate the standard deviation

based on the actual rounded values presented to the respondent. Table 4-3 displays the complete

set of alternatives for each travel time group.
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FIGURE 4-l

SAMPLE STATED PREFERENCE QUESTION

Departure 15 minutes
before your usual
arrival time

Please circle
your choice: A

Departure 10 minutes
before your usual
arrival time

B
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TABLE 4-l

DESIGN OF ATTRIBUTE LEVELS FOR SP QUESTIONS

mean travel time

high
medium
high
medium
low
medium
low

Standard deviation of
travel time
medium
high
low
medium
high
low
medium

departure time

Mean travel timeMean travel time 1 Standard deviation of travel timeStandard deviation of travel time
Travel time groupTravel time group LowLow Medium HighMedium High LowLow Medium HighMedium High
Less than 20 minutesLess than 20 minutes 77 1010 1515 11 33 55
20 - 29 minutes20 - 29 minutes 2020 2525 3030 11 44 66
30 - 39 minutes30 - 39 minutes 3030 3535 4040 11 55 88
40 - 54 minutes40 - 54 minutes 4040 4545 5555 11 55 99
55 minutes or more55 minutes or more 5555 6060 7070 11 66 1111

low
low
medium
medium
medium
high
high

TABLE 4-2

ATTRIBUTE LEVELS FOR EACH TRAVEL TIME GROUP
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TABLE 4-3

STATED PREFERENCE CHOICES, BY TRAVEL TIME GROUP

Possible travel times
Travel time group Mean Standard Departure 1st 2nd 3rd 4th 5th

travel time deviation time decile decile decile decile decile
of travel
time

Less than 20 minutes 15 3 15 12 13 14 16 20
10 5 10 5 7 9 12 18
15 1 16 14 14 15 15 17
10 3 16 7 8 9 11 15
7 5 12 2 4 6 9 15
10 1 12 9 9 10 10 12
7 3 13 4 5 6 8 12

20 - 29 minutes 30 4 30 26 27 29 32 38
25 6 25 19 21 24 27 34
30 1 31 29 29 30 30 32
25 4 29 21 22 24 26 31
20 6 26 14 16 19 22 29
25 1 27 24 24 25 25 27
20 4 28 16 17 19 21 26

30 - 39 minutes 40 5 40 35 37 39 42 48
35 8 35 27 30 33 38 47
40 1 41 39 39 40 40 42
35 5 40 30 32 34 37 44
30 8 38 22 25 28 33 42
35 1 37 34 34 35 35 37
30 5 40 25 27 29 32 39

40 - 54 minutes 55 5 55 50 52 54 57 63
45 9 45 36 39 43 48 59
55 1 56 54 54 55 55 57
45 5 60 40 42 44 47 54
40 9 49 31 34 38 43 54
45 1 47 44 44 45 45 47
40 5 50 35 37 39 42 48

55 minutes or more 70 6 70 64 66 69 72 79
60 11 60 48 53 58 64 77
70 11 71 69 69 70 70 72
60 6 66 54 56 59 62 69
55 11 66 43 48 53 59 72
60 1 62 59 59 60 60 62
55 6 77 49 51 54 57 64
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5. SUMMARY STATISTICS AND ANALYSIS OF OCCUPATIONAL
CATEGORIES

5.1 Demographics of Sample

Table 5-l shows the distribution of ages by gender in the sample. There were slightly

more males (53.2%) in our sample, than females and more than 25% of the sample was over the

age of 50, while the bulk were between the ages of 30 and 49. These are prime working years

and since we are concerned with commuting trips, this bias is acceptable.

Tables 5-2 and 5-3 show the income distribution of the sample both by personal earned

income and total household income. The sample has a higher median income than average, which

is not uncommon for mail surveys.

5.2 Occupational Variables

Table 5-4 shows that most of the respondents received benefits in their employee

compensation packages. Only 3.5% of employees did not receive benefits and 4.1% were self-

employed. Most of the employees in our sample also had a fixed monthly salary (see Table 5-5).

This may indicate that our sample is underrepresenting people employed in less secure and

transitory job occupations.

Table 5-6 shows the distribution of industry types in our sample. The largest category

was “manufacturing, durable goods” with a share of 22.1% followed by “health services” with a

15.8% share.

The survey respondents were allocated to occupational groups by their answers to

question 6 (What is your title in your work organization?) and question 7 (What is your

occupation?). We spent considerable effort to accurately determine occupational codings  for the

survey respondents. Answers to questions 6 and 7 were compared to titles in Holland’s

occupational dictionary. This dictionary lists all the occupational titles in U.S. Employment
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Service (1977) and gives their codes according to the Holland classification scheme outlined

above. If the occupational title was not listed in the Holland dictionary, we matched it with the

Department of Labor Occupational Dictionary (U.S. Employment Service, 1977), which gives

descriptions of all occupational titles and a title of similar activities. We chose similar job titles if

the respondent’s occupation was not listed in the Holland code book. Some of the respondents

were personally contacted to clarify their job titles.

Table 5-7 shows the distribution of the Holland occupational categories in our sample. A

surprisingly high number of respondents were in the “enterprising” category (34.9%). This may

be a sampling bias indicating that these type of individuals are more likely to fill out surveys; in

any case we obtained a good sampling from all the occupational categories, except “artistic” and

our statistical methodology allows us to control for the effect of different occupational categories

(see section 6.2).

5.3 Work Related Time Constraints, Lateness Penalties, and Slack Time

The next set of tables explores in detail the nature of the constraints and preferences

commuters have regarding the timing of their travel to work. These questions reveal great variety

in how people’s employment situation accomodate the vagaries of commute time. There are

systematic differences among occupational groups, although generally less than the differences

within each occupational group. In each table, the occupational differences are shown by

presenting the actual count of respondents in each cell of the table, and below that the expected

count that would occur if members of that occupational group had the same distribution of

answers as the entire sample (the expected count is therefore the “row total” multiplied by the

“column percent”).

Different occupational groups place different time requirements on employees. Employees

in Realistic and Conventional occupations tend to have the strictest arrival time requirements.

Respondents in these two categories have a greater frequency of indicating that it is important to

arrive on time every day. At the other extreme, people in Investigative occupations tend to have
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work requirements where it is practically never important to arrive at work at a particular time.

People in Enterprising occupations tend to report that it is important to arrive on time only on

some days (See Table 5-8).

Different employers have different rules and conditions affecting whether employees are

able to begin work if they arrive before the official  work start time. This can result in different

occupational categories having different values for schedule delay early (SDE). Employers of

people in Realistic and Conventional occupations tend to not want their employees to start work

earlier than the official time, while employers of people in Investigative and Enterprising

occupations appear less likely to object (Table 5-9).

Similar patterns are apparent with regard to working late and taking work home. It tends

to not occur in Realistic and Conventional occupations, but does occur in Enterprising

occupations (see Tables 5-10 and 5-l 1). Additional analysis (not shown) showed similar

relationships when we consider the employee’s ability to change work constraints. This may

indicate that the constraints are primarily set by the employers.

When asked if there would be “negative consequences” from arriving late, 10.5% of the

respondents answered that they would be paid less, 49.4% felt that their reputation would suffer,

24.5% would have stress from rushing things, 13.8% stated that there would be some other kind

of negative consequences, while 3 1.1% stated that there would not be any negative consequences,

(The percentages do not add up to 100 because some respondents gave more than one answer).

People most likely to lose earnings due to lateness are in Realistic and Conventional

occupations, while people least likely to lose earnings due to lateness are in Investigative and

Enterprising occupations (see Table 5- 12).

Arriving at work late can cause a loss of reputation to the employee. This tends to be

more prevalent among those in the Realistic occupational group, but not for the Artistic and

Social groups (see Table 5-13). About one-fourth of the individuals in all occupational groups

experience greater stress and feel more rushed when they arrive at work late (see Table 5-14),
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with the Pearson Chi-square test indicating no statistical difference between the occupational

categories.

People in Realistic occupations have the lowest likelihood of avoiding negative

consequences due to lateness, while those working in Artistic and Enterprising occupations

report avoiding negative consequences more often than those in other occupational groups (Table

5-15). When asked if it is OK to arrive 15 minutes late, people in Realistic and Social

occupations answer ‘no’, while those in Enterprising and Investigative occupations tend to indicate

that they can arrive 15 minutes late (see Table 5-16). The method of how an employee is paid

(e.g. a fixed monthly salary versus an hourly wage) should be a good indicator of whether one

experiences negative consequences from arriving late. This is confirmed in Table 5-17; hourly

wage-earners are more likely to answer that they have negative consequences from lateness than

salaried employees or people who are paid on comission.

One way to avoid lateness penalties from late arrival is to leave home earlier and allow for

some slack time at one’s destination. As is expected, workers in those occupational categories

that are least tolerant of late arrival are more likely to budget some slack time into their schedule.

This is shown in Table 5- 18. Realistic, Social, and Conventional occupational groups are more

likely to budget slack time into their schedule, while Investigative and Enterprising occupational

groups are less likely to. We also found that when commutes are lengthier individuals do not

budget any additional slack time into their schedules, as can be seen by the insignificant chi-square

test in Table 5-19.

5.4 Reported Reactions to Congested Traffic Conditions

We presented the survey respondents with several questions which posed hypothetical

situations involving increases in congested traffic. For example, respondents were asked what

their response would be if congested conditions leading to at least a 15 minute delay occurred

twice as frequently as under current conditions. Results are shown in Table 5-20. We found that

half would reserve more time for commuting, whereas 44% reported that they would not change
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their current commuting habits. Changes in residence or work location were minimal, and about

10% indicated that they would be willing to pay a toll to guarantee an on-time arrival.

We increased the severity of the hypothetical situation by asking what the response would

be if the 15 minute delay were permanent. Surprisingly we obtained a poor response rate for this

question. This may be attributable to the omission of the choice ‘not change your commuting

habits’. Probably the most interesting result from this question is that again about 10% of those

who responded would be willing to pay a toll to guarantee on-time arrival. About half of these

10% had also indicated that they would pay a toll for occasional delays (Table 5-20). Therefore,

some people will pay a toll for occasional delay but will seek other options if delays are

permanent, while others will not pay a toll for occasional delay but will if delays are permanent.

These results are not conclusive but do indicate that one may get different behavioral responses to

recurrent as opposed to non-recurrent congestion.

We also presented the hypothetical situation where one expects to be stuck in immobile

traffic for at least 30 minutes and is then given the choice of using a bypass for a fee. 85 % of the

respondents indicated that they would be willing to pay a fee, and the willingness to pay was

dependent on income. People in higher income groups are more willing to pay a fee, and the fee

that they are willing to pay is higher (See Table 5-21). People in different occupations have

different levels for their willingness to pay a fee: people in Realistic, Investigative, and

Conventional occupations are more likely to not pay anything, whereas people in Social and

Enterprising occupations are more willing to pay a fee (Table 5-22). The willingness to pay a fee

was not dependent on commuting distance or time, household income, form of employment

contract (i.e., hourly wage versus monthly salary), or carpooler status.

5.5 Summary of Preliminary Analysis

These results suggest that there are differences in the behavior of individuals dependent on

the type of occupational category in which they are employed. While it is unclear whether these

constraints are imposed by the employer or are determine by specific individual traits, the theory
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proposed by Holland (1985) is that invididual characteristics will be partly determined by the

environment of the type of occupation selected, as well as determining the occupation selected.

Therefore, it is not surprising to find some differences in scheduling considerations for different

occupational categories.

In summary, we found the Enterprising and Investigative occupational groups to be less

sensitive to timing and work place constraints. These occupational groups tend to be composed

of professional and entrepreneurial individuals; they may seek more control over their work

schedules and therefore these type of jobs allow for more flexibility. In our demand models that

follow (see Section 6.2) we pursue these relations more explicitly using the stated preference

questions in our survey.
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TABLE 5-l

AGE AND GENDER DISTRIBUTIONS

Age Male Female Row Total Row Percent
20-29 15 17 32 6.1%
30-39 75 81 156 29.8%
40-49 94 91 185 35.3%
50-59 59 46 105 20.0%
60-69 32 9 41 7.8%
70-100 4 1 5 1.0%

TABLE 5-2

279 245 524 100%
53.2% 46.8%

PERSONAL EARNED INCOME DISTRIBUTION

Earned income r>er vear
Less than $ 10,000
$ 10,000 to $ 14,999
$ 15,000 to $ 19,999
$20,000 to $24,999
$25,000 to $29,999
$30,000 to $34,999
$35,000 to $39,999
$40,000 to $44,999
$45,000 to $49,999
$ 50,000 to $ 54,999
$ 55,000 to $59,999
$ 60,000 to $ 64,999
$65,000 to $ 69,999
$ 70,000 to $ 74,999
$75,000 to $ 84,999
$ 85,000 to $94,999
$ 95,000 to $ 119,999
$ 120,000 or more
Missing
Total

19 3.5%
35 6.4%
45 8.3%
60 11.0%
50 9.2%
52 9.6%
56 10.3%
36 6.6%
37 6.8%
26 4.8%
14 2.6%
17 3.1%
19 3.5%
19 3.5%
12 2.2%
24 4.4%

1 543 100% II
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TABLE 5-3

HOUSEHOLD INCOME DISTRIBUTION

Household’s annual gross income Frequency Percent
Less than $ 15,000 6 1.1%
$ 15,000 to $24,999 8 1.5%
$25,000 to $34,999 25 4.6%
$35,000 to $44,999 50 9.2%
$45,000 to $54,999 67 12.3%
$ 55,000 to $64,999 46 8.5%
$65,000 to $ 74,999 59 10.9%
$75,000 to $ 84,999 66 12.2%
$85,000 to $94,999 58 10.7%
$95,000 to $ 119,999 62 11.4%
$ 120,000 to $ 149,999 46 8.5%
$ 150,000 or more 30 5.5%
Missing 20 3.7%
Total 543 100%

TABLE 5-4

FORM OF EMPLOYEE COMPENSATION

Form of compensation Frequency
An employee with benefits 487

Percent
89.7%

An employee without benefits 19 3.5%
An independent contractor within a company 7 1.3%
Self-employed / An entrepreneur 22 4.1%
Other 7 1.3%
Missing 1 0.2%
Total 543 100%
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TABLE 5-5

TYPE OF PAYMENT OF EARNED INCOME

Type of Payment
A fixed monthly salary

Frequency
387

Percent
71.3%

II An hourly wage 131 24.1%
Comission 11 2.0% II
Missing
Total

14 2.6%
543 100%

TABLE 5-6

DISTRIBUTION OF INDUSTRY CATEGORIES

Industry Frequency
Mining 1
Construction 18
Manufacturing, nondurable goods 52
Manufacturing, durable goods 20
Transportation 19
Public utilities, Post, Telecommunications 16
Wholesale trade 18
Retail trade 12
Finance, Insurance, Real Estate 53
Business and Repair services 7
Personal Services 5
Entertainment and Recreation 9
Health services 86
Educational services 28
Other professional services 79
Public administration 8
Missing 12
Total 543

Percent
0.2%
3.3%
9.6%
22.1%
3.5%
2.9%
3.3%
2.2%
9.8%
1.3%
0.9%
1.7%
15.8%
5.2%
14.5%
1.5%
2.2%
100%
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TABLE 5-7

DISTRIBUTION OF HOLLAND OCCUPATIONAL CATEGORIES

Holland Occupational Categories Frequency
Rea l i s t i c   79
Investigative 100
Artistic 16
Social 80
Enterprising 178
Conventional 57
Total 510

Percent
15.5
19.6
3.1
15.7
34.9
11.2
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TABLE 5-8

FREQUENCY OF IMPORTANCE OF ON-TIME ARRIVAL BY OCCUPATIONAL
GROUPS

Survey Question: HOW OFTEN IS IT IMPORTANT THAT YOU ARRIVE AT A PRECISE
PRE-DETERMINED TIME ?

Holland Practically Once a Two to Two to Every day Row Row
Occupational never month or four times four times Total Percent
Categories less a month a week
Realistic 17 3 7 10 47 84 15.8%

24.5 2.8 10.1 13.0 33.5
Investigative 47 3 13 16 28 107 20.2%

31.2 3.6 12.9 16.5 42.7
Artistic 4 0 3 3 7 17 3.2%

5.0 0.6 2.0 2.6 6.8
Social 17 4 9 15 36 81 15.3%

23.6 2.7 9.8 12.5 32.3
Enterprising 57 7 30 33 57 184 34.7%

53.7 6.2 22.2 28.4 73.5
Conventional 13 1 2 5 37 58 10.9%

16.9 2.0 7.0 9.0 23.2
Column Total 155 18 64 82 212 531
Column Percent 29.2% 3.4% 12.1% 15.4% 39.9% 100%

Pearson Chi-Square (49.65, 20); p = 0.00025

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-9

FLEXIBILITY TO ARRIVE AT WORK EARLY, BY OCCUPATIONAL GROUPS

Survey Question: DOES YOUR EMPLOYER ALLOW YOU TO ARRIVE AND START
WORK BEFORE YOUR NORMAL WORKING HOURS ?

Holland
Occupational
Categories
Realistic

Investigative

Artistic

Social

Enterprising

Conventional

Column Total 418 109 527
Column Percent 79.3% 20.7% 100%

Yes - can No - cannot
start work start work
earlv earlv
54 29
65.8 17.2
88 18
84.1 21.9
13 4
13.5 3.5
65 16
64.2 16.8
158 24
144.4 37.6
40 18
46.0 12.0

Pearson Chi-Square (21.32,5), p = .00071

Row Row
Total Percent

83 15.7%

106 20.1%

17 3.2%

81 15.4%

182 34.5%

58 11.0%

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-10

FLEXIBILITY TO WORK LATE, BY OCCUPATIONAL GROUPS

Survey Question: DOES YOUR EMPLOYER ALLOW YOU TO STAY AND CONTINUE
WORKINGAFTER YOUR NORMAL WORKING HOURS?

Holland Yes - can
Occupational work late
Categories
Realistic 61

72.0
Investigative 93

91.9
Artistic 14

14.7
Social 74

70.2
Enterprising 172

158.6
Conventional 42

48.5
Column Total 456
Column Percent 86.7%

No - cannot Row Row
work late Total Percent

22 83 15.8%
11.0
13 106 20.2%
14.1
3 17 3.2%
2.3
7 81 15.4%
10.8
11 183 34.8%
24.4
14 56 10.6%
7.5
70 526
13.3% 100%

Pearson (Chi-Square (29.52, 5) p = .00002

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-11

FLEXIBILITY TO WORK AT HOME, BY OCCUPATIONAL GROUPS

Survey Question: DOES YOUR EMPLOYER ALLOW YOU TO TARE WORK HOME
AFTER YOUR NORMAL HOURS OR WORK AT HOME INSTEAD OF AT YOUR WORK
SITE?

Holland Yes - can No - cannot Row Row
Occupational work at work at Total Percent
Categories home home
Realistic 30 55 85 16.3%

44.4 40.6
Investigative 6 1 43 104 19.9%

54.3 49.7
Artistic 12 5 17 3.3%

8.9 8.1
Social 41 39 80 15.3%

41.8 38.2
Enterprising 111 68 179 34.2%

93.4 85.6
Conventional 18 40 58 11.1%

30.3 27.7
Column Total 273 250 523
Column Percent 52.2% 47.8% 100%

Pearson Chi-Square (3 1.12, 5), p = . 0 0 0 0 l

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-12

LOST PAY DUE TO ARRIVING AT WORK LATE, BY OCCUPATIONAL GROUPS

Holland Yes - I get
Occupational paid less
Categories
Realistic 15

8.9
Investigative 7

11.2
Artistic 2

1.8
Social 11

8.5
Enterprising 8

19.4
Conventional 13

6.1
Column Total 56
Column Percent 10.5%

No - I do not Row Row
get paid less Total Percent

70 85 15.9%
76.1
100 107 20.1%
95.8
15 17 3.2%
15.2
70 81 15.2%
72.5
177 185 34.7%
165.6
45 58 10.9%
51.9
477 533
89.5% 100%

Pearson Chi-Square (23.5 1, 5), p = .00027

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-13

LOSS OF REPUTATION DUE TO ARRIVING AT WORK LATE, BY
OCCUPATIONAL GROUPS

Holland Yes - my N o - m y Row Row
Occupational reputation reputation does Total Percent
Categories suffers not suffer
Realistic 50 35 85 15.9%

42.3 42.7
Investigative 56 51 107 20.1%

53.2 53.8
Artistic 3 14 17 3.2%

8.5 8.5
Social 35 45 81 15.2%

40.3 40.7
Enterprising 90 95 185 34.7%

92.0 93.0
Conventional 30 28 58 10.9%

28.8 29.2
Column Total 265 268 533
Column Percent 49.7% 50.3% 100%

Pearson Chi-Square (11.19, 5), p = .04782

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-14

INCREASED STRESS AND RUSHING DUE TO LATENESS, BY OCCUPATIONAL
GROUPS

Holland ,
Occupational
Categories
Realistic

Investigative

Artistic

Social

Enterprising

Conventional

Column Total
Column Percent

Yes - I feel No - I don’t
more stress feel more

stress
20 65
21.2 63.8
23 84
26.7 80.3
4 13
4.2 12.8
28 53
20.2 60.8
46 139
46.2 138.8
12 46
14.5 43.5
133 400
25.0% 75.0%

Pearson Cl&Square (5.36, 5) p = .37400

Row Row
Total Percent

85 15.9%

107 20.1%

17 3.2%

81 15.2%

185 34.7%

58 10.9%

533
100%

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-15

NO NEGATIVE CONSEQUENCIES DUE TO LATENESS, BY OCCUPATIONAL
GROUPS

Holland
Occupational
Categories
Realistic

Investigative

Artistic

Social

Enterprising

Conventional

Column Total 366 167
Column Percent 68.7% 31.3%

Negative No negative
consequences consequences
from late arrival from late arrival
69 16
58.4 26.6
69 38
73.5 33.5
8 9
11.7 5.3
59 22
55.6 25.4
121 64
127.0 58
40 18
39.8 18.2

Pearson Chi-Square (12.31, 5) p = .03073

Row Row
Total Percent

85 15.9%

107 20.1%

17 3.2%

81 15.2%

185 34.7%

58 10.9%

533
100%

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-16

ABILITY TO ARRIVE AT WORK 15 MINUTES LATE, BY OCCUPATIONAL
GROUPS

Survey Question: IS IT OK TO ARRIVE 15 MINUTES LATE?

Holland
Occupational
Categories
Realistic

Investigative

Artistic

Social

Enterprising

Conventional

Column Total
Column Percent

Yes - it is No - it is not Not
OK to arrive OK to arrive Applicable
15 min. late 15 min. late
37 42 5
43.8 30.2 10.0
68 26 13
55.8 38.4 12.7
10 6 1
8.9 6.1 2.0
28 40 13
42.3 29.1 9.6
103 52 28
95.5 65.7 21.8
30 24 3
29.7 20.5 6.8
276 190 63
52.2% 35.9% 11.9%

Pearson Chi-Square (33.57, 10), p = .00022

Row Row
Total Percent

84 15.9%

107 20.2%

17 3.2%

81 15.3%

183 34.6%

57 10.8%

529
100%

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-17

NEGATIVE CONSEQUENCES FROM LATE ARRIVAL, BY METHOD OF
EMPLOYEE COMPENSATION

Survey Question: ANY NEGATIVE CONSEQUENCES FROM LATENESS?

Method of
Compensation

Fixed Monthly Wage

Hourly Wage

Commission

Yes - there
are negative
consequences
140
122.2
22
41.4
5
3.5

No - there are
no negative
consequences
247
264.8
109
89.6
6
7.5

Row Row
Total Percent

387 73.2%

131 24.8%

11 2.1%

Column Total 167 362 529
Column Percent 31.6% 68.4% 100%

Pearson Chi-Square (18.02, 2) p = .00012

Top number in cell is actual count, bottom number is expected count if that group had the same
distribution of answers to the question as the entire sample.
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TABLE 5-18

SLACK TIME, BY OCCUPATIONAL GROUP

Survey Question: HOW MANY MINUTES BEFORE ;YOU ACTUALLY STARTED
WORK DID YOU ARRIVE AT YOUR WORK PLACE?

Holland No slack
Occupational time
Categories
Realistic 37

48.2
Investigative 66

60.6
Artistic 9

9.6
Social 41

45.9
Enterprising 120

104.8
Conventional 29

32.9
Column Total 302
Column Percent 56.7%

Slack time

48
36.8
41
46.4
8
7.4
40
35.1
65
80.2
29
25.1
231
43.3%

Row Row
Total Percent

85 15.9%

107 20.1%

17 3.2%

81 15.2%

185 34.7%

58 10.9%

533
100%

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.

Pearson Chi-Square (14.49, 5), p = .01280

45



TABLE 5-19

SLACK TIME, BY COMMUTE DISTANCE

Survey Question: HOW MANY MINUTES BEFORE YOU ACTUALLY STARTED
WORK DID YOU ARRIVE AT YOUR WORK PLACE?

Holland
Occupational
Categories
5 miles or less

6- 10 miles

11 -15 miles

16 - 25 miles

more than 25 miles

missing

Column Total
Column Percent

No slack Slack time
time

54 39
52.1 40.9
50 57
59.9 47.1
67 46
63.3 49.7
62 44
59.3 46.7
62 51
63.3 49.7
9 2
6.2 4.8
304 239
56.0% 44.0%

Pearson Chi-Square (7.69, 5), p = .17409

Row Row
Total Percent

93 17.1%

107 19.7%

113 20.8%

106 19.5%

113 20.8%

11 2.0%

543
100%

Top number in cell is actual count, bottom number is expected count if that travel distance group
had the same distribution of answers to the question as the entire sample.
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TABLE 5-20

REACTIONS TO INCREASED PROBABILITY OF TRAVEL DELAY

Start to car-pool if you now drive alone.
Start to drive alone if you now carpool.
Change work and commuting hours.
Change your residence.
Change your work place.
Be willing to pay a road toll to guarantee timely arrival.
Reserve more time for commuting.
Not change your commuting habits.
Other

Number Percent
27 5.0%

4 0.7%
81 14.9%
19 3.5%
15 2.8%
56 10.3%

269 49.5%
237 43.6%

45 8.3%

Note: percent totals do not sum to 100 due to respondents selecting multiple answers.
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TABLE 5-21

PRICE ONE IS WILLING TO PAY TO BYPASS A 30 MINUTE TRAFFIC JAM, BY
INCOME LEVEL

Less than $25,000 - $50,000 - $65,000 - $95,000 ROW Row
$25,000 $49,999 $64,999 $94,999 and above Total Percent

Nothing 12 26 31 6 1 76 15.0%
5.7 27.9 26.4 11.3 4.7

$0.50 9 57 30 12 6 114 22.5%
8.6 41.9 39.7 16.9 7.0

$1.00 8 60 58 24 7 157 31.0%
11.8 57.7 54.6 23.3 9.6

$2.00 5 20 29 14 9 77 15.2%
5.8 28.3 26.8 11.4 4.7

$3.00 1 13 16 7 5 42 8.3%
3.2 15.4 14.6 6.2 2.6

$5.00 3 10 12 12 3 40 7.9%
3.0 14.7 13.9 5.9 2.5

Column Total 38 186 176 75 31 506
Column Percent 7.5% 36.8% 34.8% 14.8% 6.1% 100%

Pearson Chi-Square (19.45, 10). p = 0.03489

Top number in cell is actual count, bottom number is expected count if that income group had the
same distribution of answers to the question as the entire sample.
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TABLE 5-22

PRICE ONE IS WILLING TO PAY TO BYPASS A 30 MINUTE TRAFFIC JAM, BY
OCCUPATIONAL GROUP

NothingNothing

$0.50$0.50

$1.00$1.00

$2.00$2.00

$3.00

$5.00

Column Total
Column PercentColumn Percent

Realis- Investi- A r t i s t i c Social Enter- Conven
tic gative prising -tional

22 19 1 6 22 11
12.7 16.2 2.6 12.1 28.5 8.9

21 18 1 23 46 10
18.7 23.8 3.9 17.8 41.8 13.0

16 26 5 27 60 26
25.2 31.9 5.2 24.0 56.2 17.5

14 19 9 7 27 3
12.4 15.8 2.6 11.8 27.7 8.6

7 9 1 7 14 4
6.6 8.4 1.4 6.3 14.8 4.6

2 13 0 8 14 3
6.3 8.0 1.3 6.0 14.0 4.4
82 104 17 78 183 57

15.7% 20.0% 3.3% 15.0% 35.1% 10.9%

Pearson Cl-G-Square (60.37, 25), p = 0.00009

Row Row
Total Percent

81 15.5%

119 22.8%

160 30.7%

79 15.2%

42 8.1%

40 7.7%

521
100%

Top number in cell is actual count, bottom number is expected count if that occupational group
had the same distribution of answers to the question as the entire sample.
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6. ESTIMATION OF DEMAND MODELS

6.1 Discrete Choice Model Estimation

The estimation procedure used to analyze our data set is a multinomial logit model. This

is a qualitative choice model, applicable to situations where the dependent variable is discrete, i.e.

the set of choice alternatives is limited and exhaustive and the alternatives are mutually exclusive.

The model calculates a probability that the decision maker will choose a particular alternative

from the set of alternatives, given the observed data.

Each individual is assumed to choose the alternative which gives the highest utility. The

utility of an alternative, i, is divided into two components, observed, Vi, and random utility, ei.

The observed utility is derived from the data, and the random component accounts for all the

unobserved characteristics of the individual and both unobserved alternatives and independent

variables. The probability that individual, n, will choose alternative, i, from a set of alternatives,

C,, is,

Pi, = Pr[V, + e, > Vjn + ej,, j #i] (15)

Different choice models can be estimated based on assumptions made about the random

component, e. If a normal distribution is assumed, the choice model is probit. An extreme value

distribution results in a logit model. For practical purposes there is generally little difference in

the results. Logit models are more commonly used and are used in our estimations. Ben-Akiva

and Lerman (1985) provide details on estimation procedures.

The formula for probability of choosing alternative i in a logit model is

P,(i) = c eibeq.W.
In our application, there are only two alternatives in the choice set.

( 1 6 )
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The results of logit estimations can be interpreted by examining the t-statistics as in

conventional regression analysis. The repeated measures approach taken in our SP survey,

however, results in upward biased t-statistics because some of the observations are not

statistically independent of each other. Unfortunately, there are no easy procedures for correcting

this bias. Instead, we note that the true t-statistic (i.e. true standard error divided by estimated

coefficient) lies between the reported t-statistic and an “adjusted t-statistic” which treats the

repeated observations as though their error were perfectly correlated. The adjusted t-statistic is

found, as suggested by Louviere and Woodworth (1983) by dividing the reported t-statistic by

the square root of the number of repeated measures (~6 in our data set).

We also use the p” measure as defined in Ben-Akiva and Lerman (1985),

p” = 1-(L(b)-K) /L(O) ( 1 7 )

L(b) is the log-likelihood at its maximum value, K is the number of parameters estimated, and

L(0) is the log-likelihood when all the parameters are zero. This measure is similar (although not

analogous) to the adjusted R2 in regression analysis and allows us to compare alternative model

specifications using the same data.

6.2 Results of Estimations

We now present the results of the demand models estimated with the data. First, we

describe a series of basic models without socio-economic or other dummy variables included.

These give some interesting comparisons with previous work and also allow us to highlight the

basic behavioral trade-offs between the various attributes. We then explore the interactions of

various socio-economic and other dummy variables to develop a comprehensive demand model.

6.2. I Basic Models

The basic models estimated in this section focus on the information obtained from the

stated preference questions in our survey. Those questions, as discussed in section 4 (see Figure

4-l), provide trade-offs between mean travel time, departure time choices, and the distribution of
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travel times. To correspond with our analytical model (equation 14) we need to determine the

expected schedule delay (both early and late) and the lateness probability from these questions.

Schedule delay, early and late, were defined in Section 3. We modified that framework

slightly in order to match the format of the question shown in Figure 4-1, in which we used the

words “usual arrival time” instead of “official work start time” as the basis for representing

people’s most preferred arrival time; we did this to avoid having to make elaborate descriptions of

how to count time in the elevator, walking through the office, and so forth. The stated-preference

question format specifies “departure [Ta] minutes before your usual arrival time”, where a specific

number is inserted for Ta; that number is therefore taken to be a measure oft, - th in the notation

of section 3. (The notation Ta indicates minutes ahead of desired arrival time.) The definition of

early and late schedule delay given just prior to equation (1) is therefore the following in the

current notation:

SDLi =
T, -T.,,if > 0,
0 otherwise;

SDE; =
T-T,, if >O,
0 otherwise. (19

T, and the five values of Ti are stated directly in the question. The expectations of T, SDE and

SDL are derived by summing, over the five possible values and dividing Ti, SDE, or SDL, by five.

For example, using the sample question in Figure 4-1, for choice A we have three possibilities of

arriving early since the departure time is 15 minutes before usual arrival time, (i.e. T, is 15

minutes) and travel times (Ti) are 12, 13, 14, 16, and 20. In three cases one can arrive early, by 3,

2, and 1 minute. Therefore to calculate E(SDE) we sum the early arrivals (3 + 2 + 1 + 0+ 0) and

divide by 5 to get a value of E(SDE) equal to 6/5 = 1.2 minutes. In choice B, E(SDE) is 1.8

minutes. E(SDL) is calculated in a similar manner and would be 1.2 minutes in choice A and 2

minutes in choice B.
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The lateness probability is determined discretely by counting the number of possible travel

times that will result in a late arrival and dividing by 5. Using the sample question in Figure 4-1,

choice A has 2 possibilities of arriving late (16 and 20 minute travel times) which result in a 40%

lateness probability (PL = 0.40). Choice B also has a 40% lateness probability (PL = 0.40). The

design of the SP questions provided only three discrete levels of lateness probability: 0%, 20%,

and 40%.

The standard deviation of the travel time is defined in the usual way as the sum of five

terms [Ti - E(T)12  divided by 5.

Our first step in analyzing the results is to estimate a simple model that contains only the

trade-off between mean travel time and the standard deviation of travel time. The result is shown

in Table 6- 1, column 1. Both attributes are highly significant in explaining choice and both

estimated coefficients have the expected negative sign (i.e., the larger the travel time and/or the

standard deviation, the less desirable the alternative). For comparison, column 2 shows the results

of Black and Towriss (1993). They also include money in their estimations.

A useful comparison is the ratio of the coefficient of standard deviation to that of E(T).

We find the ratio to be 1.32 while Black and Towriss have a ratio of 0.55. Thus our estimation

indicates that each minute of standard deviation is about 30% more costly than each minute of

mean travel time. One of the key differences between our study and Black and Towriss is that

they did not specify the head start time as we do; therefore it is natural that they found people less

averse to travel time variation because in the survey people can anticipate its effects by adjusting

their schedules.3  We can also take that into account, but to do so we need to estimate the full

model of equation (14). MVA Consultancy (1992) suggest that the most plausible value for the

ratio is between 1.1 and 2.2, based on the extremely limited empirical information available.

3Black and Towriss (1993) did include a money cost in their survey. As mentioned previously, we found a large
politically motivated bias in our pre-test and so excluded a cost variable from our final survey design.
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Table 6-2 shows the result of estimating the full model of equation (14) with planning cost

assumed proportional to the standard deviation of travel time. Planning cost has a positive and

significant coefficient, which is contrary to the theory. The coefficient for the mean travel time is

also less than that for E(SDE), which implies that people prefer to be in traffic than to arrive early.

As an alternative we specify planning cost as proportional to the coefficient of variation (standard

deviation divided by mean travel time) and find that while this is statistically insignificant, it does

have the appropriate sign. This is shown in Table 6-3, column 1, and henceforth will be referred

to as our “Basic Model”.

All coefficients in the basic model have the expected negative signs. They also have the

expected relative magnitudes: E(SDE) is less onerous than E(T) which is less than E(SDL).

However, we were surprised that the relative magnitude of E(SDL) was not much greater than

E(T). In fact, the adjusted T-Stat implies that it may not even be significant. The adjusted T-

Stats for the lateness probability and the coefficient of variation are also not significant.

It is possible that E(SDL), PL, and the coefficient of variation are too highly correlated to

distinguish their effects seperately. Column 2 (Table 6-3) shows that when P, is removed the

coefficients of the other two increase, and the ordinary T-Stat (though not the adjusted T-Stat) of

the coefficient of variation becomes significant.

When the coefficient of variation is removed from the model (Table 6-3, column 3) the

other coefficients do not noticeably change. The coefficient on lateness probability does increase

slightly, indicating that it is picking up some of the explanatory power of the coefficient of

variation. This result seems to suggest that our hypothesized “planning cost” is not as important a

variable in the commuters’ choice as the other variables. Alternatively, we may not have specified

an appropriate functional form for planning cost. In any case, it appears that much of the

uncertainty inherent in unreliable commuting trips is better explained by the schedule delay and

lateness probability variables. Table 6-3, Column 4 shows a specification in which lateness

probability is entered as a dummy variable equal to 1 when PL > 0; our other coefficients maintain
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the same relative magnitude, but this specification does not fit nearly as well as the model of

column (3) which specified PL directly.

The relative importance of the schedule delay variables with respect to travel time was

first detected by Small (1982). We present his model for comparison in column 5. This model

contained no uncertainty in travel time, and therefore no planning cost (coefficient of variation).

The bottom of Table 6-3 shows the ratios of the coefficients for E(SDE) and E(SDL)

relative to travel time for each model. As can be seen, when the lateness probability is not

included, we get very similar results to the model that Small estimated. This is an encouraging

result, as it indicates that the respondents to the questionnaire interpreted the trade-offs in the SP

questions appropriately.

These models show that all the components of the scheduling cost, C,, in equation (14)

are important determinants of the travel choices individuals make. We believe these are the

underlying factors behind the aversion to travel time uncertainty found by other researchers, such

as Black and Towriss (1993). Whether planning cost is a significant factor when scheduling

variables are taken into account remains unproven due to the statistical insignificance of the

coefficient of variation in our basic model. It may be that it is a lesser factor whose importance is

too small for us to measure.

The model with the highest p2 (and the largest likelihood function) and that matches our

theoretical formulation is the basic model in column 1 of Table 6-3. For this reason we will utilize

this model in the simulations presented in section 7. The next section expands our understanding

of individual demand by adding various socio-economic factors into the basic demand model.
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TABLE 6-1

SIMPLE MODEL COMPARED WITH BLACK AND TOWRISS MODEL

E(trave1 time)
T-Stat
Adj. T-Stat

Simple Model Black and
Towriss

model (cars
only) (1993)

(1) (2)
-0.0996 -0.0635

(-17.517) (-8.90)
(-5.839)

standard deviation -0.1263 -0.0352
T-Stat (-12.669) (-3.17)
Adj. T-Stat (4.223) -

Money
T-Stat

-0.0082
(-6.34)

N = 4340

r(p>
-2826.5

o2 0.0598

Note: The measure of fitness was computed as ‘is’ = l-(L(B)-K)/L(O),  where
K equals the number of estimated parameters, L(B) is the log-likelihood value
evaluated at the estimated parameters, and L(0) = -3008.3 is the log-likelihood
value evaluated setting all coefficients equal to zero. Sample size is equal to N
above. .
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TABLE 6-2

MODEL WITH PLANNING COST PROPORTIONAL TO STANDARD DEVIATION

E(travel time)
T-Stat
Adj. T-Stat

E( SDE)
T-Stat
Adj. T-Stat

E(SDL)
T-Stat
Adj. T-Stat

lateness probability
T-Stat
Adj. T-Stat

standard deviation
T-Stat
Adj. T-Stat

-0.0556
(-4.656)
(-1 .552)

-0.1311
(-11.386)
(-3.795)

-0.3036
(-5.085)
(-1.695)

-2.564
(-6.426)
(-2.142)

0.1510
(5.098)
(1.699)

N = 4340

r.(p>
-2747.3

o2 0.085 1
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TABLE 6-3

RESULTS OF MODEL ESTIMATIONS

*  Small’s model also contains coefficients to adjust for rounding errors in reported measurements. The variable
definitions are somewhat different also. The travel time, SDE and SDL variables are actual reported values as
opposed to expected values; the lateness probability was a dummy variable for those choices involving actually
arriving at work late, whose expectation would be the lateness probability in the context of the present paper.

Basic
Model

(1)

without without with Small
lateness coefficient lateness (1982),

probability of variation probability model 1*
dummy

(2) (3) (4) (5)
E(trave1 time) -0.1051 -0.1285 -0.0976
T-Stat (-10.148) (-15.451) (-11.052)
Adj. T-Stat (-3.383) (-5.150) (-3.684)

E(SDE) -0.093 1
T-Stat (-10.606)
Adj. T-Stat (-3.535)

E( SDL) -0.1299
T-Stat (-2.694)
Adj. T-Stat (-0.898)

lateness probability -1.3466 -1.529
T-Stat (-3.704) (-4.495)
Adj. T-Stat (-1.235) (-1.498)

coef. of variation -0.3463 -0.6674
T-Stat (- 1.403) (-2.908)
Adj. T-Stat (-0.467) (-0.969)

lateness probability dummy

-0.0966
(-11.004)
(-3.668)

-0.2807
(-10.594)
(-3.531)

-0.0945
(-10.854)
(-3.618)

-0.1280
(-2.656)
(-0.885)

-0.1133
(-14.442)
(-4.814)

-0.1000
(-11.544)
(-3.848)

-0.2856
(-10.683)
(-3.561)

-0.1466
(-2.469)

-0.106
(-2.79)

-.065
(-9.29)

-0.254
(-8.47)

-0.58
(-2.76)

(-0.823)
N = 4340
rip> -2759.6 -2766.5 -2760.6 -2767.7

32 0.0810 0.0790 0.0810 0.0786

Coeffkient Ratios
E(SDE) / E(T)
E(SDL) / E(T)

0.886 0.752 0.968 0.883 0.613
1.236 2.184 1.311 2.521 2.396
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6.2.2 Inclusion of Occupational and Socio-Economic Factors

As discussed previously, we hypothesize that various personality traits, as identified by

occupational decisions, may influence travel behavior, especially with regard to risk taking and

uncertain travel times. We developed a demand model that includes these occupational categories

plus other socio-economic factors.

We analyzed various socio-economic factors that are generally important in travel

decisions. In particular, household income and personal income may influence the value of

reliability; however, we found that these variables were not significant in our sample. Probably

this is because we do not include a cost variable. Having school age children may also increase

the valuation of reliability, due mainly to increased scheduling concerns (i.e., the need to chaffeur

children to school and other activities). We found some significance to this effect as will be

discussed further below.

Variables associated with the commute itself may also influence the value of travel time

variability. For example, people with longer commutes may tolerate larger deviations in travel

time, whereas carpoolers may value reliability more due to the need for schedule coordination; in

both cases, however, we found no significant effects. Given the lack of any significant differences

between those who car-pool and single occupant drivers, we do not pursue any additional analysis

of the effect of car-pooling in our congestion simulations.4

We attempted to first find a robust, sparse demand model which would capture the

essence of the effects of unreliable travel time without hard to measure variables or variables

whose values depend on the subjective assessments of the respondent (such as whether employers

impose sanctions for late arrival), These models are reported in table 6-4; selected coefficient

ratios (marginal rates of substitution) are shown in table 6-5.

Model (6) is the basic model (1) with the addition of the wage-earner indicator interacted

with the time and scheduling variables. The coefficient of variation of the travel time (standard

4Given the lack of any significant differences between those who carpool and single occupant drivers, we do not
pursue any additional analysis of the effect of carpooling in our congestion simulations.
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deviation of travel time divided by mean travel time) is interacted with the dummy variable for

school-aged children in the household.

The results indicate that wage earners are less sensitive than salaried employees to time

spent traveling, time early, or time late. (These are indicated by the positive coefficients on the

wage-earner interactions, which partly offset the negative coefficients of the corresponding non-

interacted variables.) Wage earners are more sensitive than salaried workers, however, to the

probability of being late (although this difference is not statistically significant). These seem

plausible descriptions of workers who value time less but are more subject to sanctions when late.

Since the schedule-delay-late variable seemed to covary with the probability of lateness,

we dropped one of them in model (7) and the other in model (9). Model (7) indicates a greater

aversion towards schedule delay early for both salaried workers and wage-earners, but a twice as

large aversion towards schedule delay late for wage-earners than for salaried persons. Model (9),

which uses lateness probability PL to proxy all effects of late arrivals, fits considerably better

than model (7) according to the log-likelihood.

We then added one subjective variable to each of specifications (7) and (9), forming (8)

and (10) respectively. The new variable is a dummy called “penalty,” which takes a value of one if

the respondent indicates that he or she cannot arrive late without negative consequences. This

variable is intended to capture the employer’s policy toward lateness, and so is interacted with

either expected schedule delay late or lateness probability. In both cases it produces a negative

coefficient, one that is marginally significant in model (8) but not significant in model (10). We do

not pursue this variable further because of the danger that it is endogenous, possibly being used to

justify behavior that is chosen for other reasons,

Table 6-6 shows the results of adding dummy variables for various occupational groups.

We first repeat model (9) of the previous tables as a starting point. This seems to be a well

performing model, sparse enough to support adding additional interactions. Model (11) then adds

occupational variables determined as follows.
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The six Holland occupational groups are Realistic, Investigative, Artistic, Social,

Enterprising, and Conventional (as discussed in detail in Section 2). Preliminary exploration

discussed in section 5 indicated that the realistic and conventional groups are somewhat similar

and we combine them into one group; the artistic group behaves quite unlike any others (possibly

due to its small numbers in this sample). The other three groups, which involve personal and

intellectual skills and perhaps a greater degree of initiative on the job, seemed similar enough to

group together; we take those as the base group with respect to which the others are measured.

The result of this approach is model (11). It indicates that people in realistic-conventional

occupations tend not to mind long commutes, scheduled early arrival or even the probability of

arriving late as much as people in other occupations. The coefficients for Artistic occupations

indicates similar tendencies, but the coefficients are not significant.

On the whole, it appears that the wage-earner indicator does a better job than the Holland

occupational codes of separating people according to their response to scheduling considerations.
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TABLE 6-4 /.

RESULTS OF TRAVEL DEMAND MODEL ESTIMATIONS

Basic Model without PL without PL without without
with socio- variables variables, with E( SDL) E( SDL)
economic penalty variables variables, with
variables penalty

(6) (7) (8) (9) (10)
E(trave1  time) -0.1239 -0.1444 -0.1448 -0.1091 -0.1089
T-stat -10.657 -15.054 -15.056 -10.649 -10.617

E(trave1  time) x wage earner 0.0797 0.0675 0.0668 0.0696 0.0692
T-stat 3.866 3.857 3.817 3.972 3.946

E( SDE) -0.1041 -0.1067 -0.1071 -0.0962 -0.0966
T-stat -9.970 -10.231 -10.250 -9.701 -9.725

E(SDE) x wage earner 0.0567 0.0525 0.052 1 0.0512 0.05 14
T-stat 2.841 2.653 2.633 2.699 2.707

E(SDL) -0.1491 -0.2720 -0.1902
T-stat -2.667 -9.172 -4.617

E(SDL) x wage earner 0.1026 -0.0107 0.0128
T-stat 0.897 -0.201 0.238

E(SDL) x wage earner -0.1289
T-stat - -2.824

PL -1.1293 -2.0730 -1.815
T-stat -2.721 -9.375 -6.416

PL x wage earner -0.8765 -0.2306 -0.1430
T-stat -1.088 -0.62 1 -0.380

PL x penalty -0.4333
T-stat -1.450

coef.  of variation -0.2922 -0.6082 -0.6165 -0.2811 -0.2744
T-stat -1.104 -2.449 -2.481 -1.058 -1.032

coef.  of variation x child6-15 -0.6580 -0.6828 -0.6486 -0.6479 -0.6313
T-stat -1.577 -1.647 -1.564 -1.546 -1.506
N = 4258
rc0 -2702.0 -2709.3 -2705.3 -2705.7 -2704.6

,P -2 0.0809 0.079 1 0.0803 0.080 1 0.0804

Notes: In each case, the t-statistic shown may be divided by 3 to obtain the “adjusted” or lower-bound t-statistic (see text).

The measure of fitness was computed as p 2 = l-(L(O>K)IL(O),  where K equals the number of estimated parameters, L(B) is
the log-likelihood value evaluated at the estimated parameters, and L(O)=-295 1.4 is the log-likelihood value evaluated setting
all coefftcients  equal to zero. Sample size for the socio-economic models is 4,258.
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TABLE 6-5

COEFFICIENT RATIOS OF TRAVEL DEMAND MODELS

Salaried:
E(SDE) / E(T)
E(SDL)/E(T)
PLWU

Basic Model
with socio-
economic
variables

(6)

0.840
1.203
9.115

without PL
variables

(7)

0.739
1.884

without PL
variables, with

penalty

(8)

0.740
1.314

without
E( SDL)
variables

(9)

0.882

19.001

without
E(SDL)

variables, with
penalty

(10)

0.887

16.667

Wage-earners:
E(SDE)/B(T)
E(SDL)/E(T)
PLWT)

Salaried with lateness penalty:
E(SDL)/E(T)
PLFV

Wage-earners with lateness penalty:
E(SDL)/E(T)
h /E(T)

1.072 0.705 0.705 1.139 1.139
0.889 3.676 2.274 -

45.380 58.3 19 49.320

2.204
- 20.646

3.927
60.234
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TABLE 6-6

TRAVEL DEMAND MODEL WITH OCCUPATIONAL VARIABLES

E(T)
E(T) x wage earner

E(SDE)
E(SDE) x wage earner

PL
PL x wage earner

coef. of variation
coef. of variation x child 15

E(T) x realistic-conventional
E(T) x artistic

E(SDE) x realistic-conventional
E(SDE) x artistic

PL x realistic-conventional
PI, x artistic
N = 4258
JW

-2P

Coefficient
-0.1217

0.0620

-0.1170
0.0334

-2.270
-0.4238

-0.2744
-0.6083

0.0460
0.0897

0.0834
0.0847

0.7768
0.5247

-2694.1

0.0824

T-Stat
-10.973

3.454

-10.519
1.702

-9.508
-1.107

-1.029
-1.444

2.628
1.586

4.395
1.181

2.096
0.568
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7. SIMULATIONS WITH ENDOGENOUS CONGESTION

We now combine the demand analysis of the basic model of Table 6-3, column 1, with a

supply side model of a congested highway corridor to simulate the effect of non-recurrent events

on actual congestion patterns. This procedure will allow us to examine scheduling shifts due to

either a reduction in incident probabilities or an expansion of capacity. We also examine the

expected costs to commuters of these policy options.

First we discuss the basic simulation procedure and methodology. We then briefly present

the travel conditions generated by the simulations. This is followed by an analysis of the pattern

of scheduling shifts and the relative components of total travel costs.

7.1 Simulation Methodology

A simulation was performed to determine how uncertain capacity will affect the

equilibrium pattern of congestion, total commuter costs, and the per person average travel delay.

The simulation model used is essentially that of Chu (1993) but modified to account for random

events that reduce the capacity of the highway facility. We also substitute our demand model for

his. Capacity reducing events result in non-recurrent congestion and may be due to accidents,

minor incidents such as breakdowns, or adverse weather conditions. The probability of a capacity

reducing incident occurring can be considered an exogenous policy variable. For example,

specific measures to reduce the probability of an incident may include a state vehicle inspection

program or increased enforcement of traffic regulations. The simulations analyzed in this report

focus on changes in this variable and the level of capacity.

The simulation is an iterative process that balances the demand model with a supply side

model of congestion. The demand model is applied to a synthetic sample of 5000 individuals.

Their “work start” times (actually departure times from the congested highway) were generated

randomly from a normal distribution with mean = 8:00 am and standard deviation = 60 minutes;

their free flow times were generated from a distribution with mean = 20 minutes and standard
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deviation = 5 minutes.5 Although our respondents faced only two choices in the SP questions, we

assume that when faced with a larger choice set they would apply a multinomial logit choice rule

to that larger set using the same estimated utility function. In our simulation there are eleven

choices, ranging from E(SDE)  = 20 minutes to E(SDL) = 20 minutes. The intermediate values

for both E(SDE) and E(SDL) are 15, 10, 5, and 3 minutes, as well as the expectation of arriving

on-time (0 minutes). Alternatively, we can express this as a choice ofE(SD) ranging from -20 to

+20.

For each member of the synthetic sample, the demand model determines the probabilities

of each of the eleven possible values of E(SD). Each of these choice probabilities is then

allocated to a 10 minute clock time increment using that individual’s “work start” time. For

example, if an individual has a work start time of 8:30 am (540 minutes), then we sum the

probability ofE(SD) into the absolute time slots which precede this work start time (e.g., the

summation of the probabilities that expected E(SD) is -20 minutes would be allocated to the time

increment between 8: 10 and 8:20 am). Sample enumeration, which consists of summing the

choice probabilities for each individual in the synthetic sample, allows us to determine the

estimated traffic volume for each 10 minute time slot.

Our supply model applies the following simple speed-flow relationship to each time slot:

where T is the travel time in minutes, V is the number of vehicles leaving the highway per hour, C

is the capacity of the facility, E is the elasticity parameter, I is the length of the facility (assumed to

be equal to 5 miles), and To and T1 are constants. The supply model of equation (20) has a long

history in transportation engineering and economics, dating back at least to the U.S. Bureau of

5Work start times are usually at discrete intervals, such as 8:00 am, 8:30 am, etc. Our “work start” times represent
the point at which individuals depart the highway facility. Presumably they would have some extra travel after
they have left the highway to get to their final job location, and this would vary across the population, smoothing
the distribution of “work start” times.

68



Public Roads (1964). It was incorporated into the Urban Transportation Planning Process

computer software used widely in the U.S. (Branston, 1976, p. 230) and has also been used in

many economic models of congestion including Vickrey (1963), Mohring (1979), and Kraus

(1981), with values of s ranging from 2.5 to 5. Small (1992, pp. 70-73) finds that equation (2)

fits quite well the data from a dynamic simulation of city streets in Toronto (with E = 4.08) and

the data from an aggregate analysis of Boston express roads (with E = 3.27). Since the precise

function is less important for our purposes than its general ability to measure rapidly increasing

congestion, we forego an extensive empirical estimation and simply used the parameters of U.S.

Bureau of Public Roads (1964) namely: E = 4 and T l/To = 0.15. We also set To= 1.0

minutes/mile to represent a free-flow speed of 60 miles per hour.

It is assumed that the volume used in (20) is calculated at the point where the flow leaves

the highway, as defined by Chu (1995). The capacity is assumed equal to 1200 vehicles/hour

except for random reductions due to incidents. It is these random capacity reductions that make

T stochastic.

We assume that the probability of an incident is the same for every 10 minute increment of

clock time. We also assume that each incident is independent of other incidents, except that for

simplicity, we assume that only one incident can occur within a given time interval. We also

assume that no additional incidents occur during the time when the capacity is reduced. The

probability of a capacity reduction is assumed independent of traffic volume; although, as we will

show, the resulting standard deviation of travel times varies and is higher over the peak period.

Three levels of incident severity were defined, given that an incident had occurred. These

were based on the fraction of capacity blocked. We specify three levels of capacity reduction:

50%, 30%, and 10%, occurring with conditional probabilities of 10%, 20%, and 70%,

respectively.6

6Analysis  of variations in severity level and probabilities found no substantive differences to variations in incident
probabilities.
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The duration of each reduction in capacity must also be specified. Incident durations have

been determined to occur with a log-normal distribution (Giuliano, 1989; Golob et al., 1987). We

instead set three levels based on the clock time intervals. The probability that the incident lasted

for only 10 minutes (1 interval) was set to 50%, for 20 minutes (2 intervals), 30%, and for 30

minutes (3 intervals) 20%. These durations result in a given individual facing the possibility of a

capacity reduction with a probability equal to 1.7 times the specified incident probability for a

given 10 minute interval. Therefore, variation in incident durations are essentially equivalent to

variations in the incident probability for a given period.

For the sake of exposition, we calculated the distribution of travel time values assuming

10,000 trips. This allowed us to calculate travel time values given a range of incident probabilities

and the specified severity probabilities. For example, if we assumed a 2% incident probability,

then there would be 200 trips with some reduction in capacity. If for each incident there was a

50% chance of a 10% reduction in capacity, then 100 trips would have capacity reduced by this

amount in the calculation of the travel time using the speed-flow equation (20) above. This was

done for each 10 minute clock interval, resulting in a complete description of the the travel time

distribution for that time interval, including the mean travel time and the standard deviation of

travel time.7

This distribution was then fed back into the demand model. This allows us to calculate a

new distribution of expected schedule delays for each individual. The demand model also uses the

ratio of standard deviation to the mean travel time, the latter also includes the free flow travel

time for each individual. From this the demand model allocates each individual stochastically to a

clock time interval and we can enumerate over the entire synthetic sample. This process

continues until the number of individuals in each time interval remains essentially constant (or

changes by a very small amount) from one iteration to the next. We then evaluate the congestion

profile, the average travel delay, and the total cost.

7We initially used a random monte carlo process to generate incident probabilities and duration levels. However,
we found that given the constraints of processing time we could not eliminate random fluctuations which created
large deviations in our results.
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7.2 Travel Conditions Generated by Simulations

The travel conditions generated by the simulations are a function of our assumptions about

incident probability levels, the severity of those incidents, the probability of a given level of

severity occuring,  and the incident duration. The travel conditions give the values that are used in

the demand model and that represent the equilibirium level of the system. Here we review these

values and briefly discuss their realism and the rationale behind how they are generated.

Figure 7-l graphs the average travel time generated for each ten minute clock interval, for

each of four alternate values for the incident probability. This travel time includes the minimum 5

minute free-flow time to travel along the 5 mile corridor which is simulated, but does not include

the average of individual free-flow times (which averaged an additional 15 minutes). The amount

above the 5 minute free-flow time is the extra travel time for each interval due to normal

congestion and non-recurrent congestion. The graph shows that as the incident probability

increases, the travel time at the peak will also increase while off-peak times stay at the free-flow

speed. This is because the capacity reduction does not result in any congestion during the off-

peak periods. Figure 7-2 shows the travel delay which occurs only because of non-recurrent

congestion, ranging from peaks of about 2.5 minutes up to 5.5 minutes in our simulations.

The standard deviation of travel time and the coefficient of variation vary over the peak

also (see Figure 7-3 and Figure 7-4). The maximum standard deviation and coefficient of

variation occur at the most congested time. This is because any reduction in capacity at this time

will have a much greater impact on travel times than a capacity reduction when traffic volumes are

less. Incidents during off-peak hours will not have any impact on travel times since there is ample

capacity, even after an incident causes a reduction in capacity. The increase in standard deviation

(and the coefficient of variation) over the peak occurs despite modelling a constant incident

probability for each clock interval. The coefficient of variation ranges up to about 0.14 which

matches empirical measurements ranging from 0.08 to 0.2 as reported by Bates (1990)
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The probability of arriving at work late for any given choice of schedule shows an

expected pattern. As the probability of a capacity reduction increases, lateness probability

increases. Figures 7-5, 7-6, and 7-7 show this pattern for four different values of incident

probability if one chooses departure time to to have E(SDE)  = 0 (on-time arrival), E(SDE) = 5,

and E(SDE) = 20, respectively. The simulations generate a maximum lateness probability of

slightly over 40% in the on-time case (with a 25% incident probability); this is a good match to

the range of lateness probabilities in our stated preference questions which had three levels of 0%,

20%, and 40%. As can be seen by the three graphs, the lateness probability only occurs when

there is traffic congestion; when the capacity reduction generates any excess congestion within a

given clock interval then lateness probability increases abruptly from the 0% level. However, the

commuter can lower their lateness probability considerably by leaving earlier.

7.3 Travel Delay and Scheduling Shifts from Incident Reduction and Capacity
Expansion

Reductions in non-recurrent delay (expressed as incident probabilities) can decrease

average travel times. Increases in capacity can have a similar effect. Both may also have an

impact on scheduling choices which may reduce the benefits of reductions in peak travel time by

allowing more commuters to travel during peak hours. There may be reductions in scheduling

costs associated with any shift to the peak.

Figure 7-8 shows how average travel delay is reduced as the incident probability

decreases. Both total delay and delay due only to non-recurrent congestion decrease with

decreasing incident probability. The relationship is essentially linear and directly related to the

probability of an incident occurring. Obviously, policies that reduce the probability of an incident

blocking capacity will result in a decrease in average travel times. Figure 7-9 shows the percent

of total delay that is due to non-recurrent delay. As the incident probability increases so does the

percent of total delay which is due to non-recurrent delay, but at a diminishing rate. That is, one
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gets less effect from reducing incident probabilities from 25% to 20% as one does from reducing

it from 20% to 15%.

Figure 7-10 shows the effect on average travel delay for a doubling of highway capacity

from 1200 vehicles per hour to 2400 vehicles per hour. This is obviously very effective at

reducing travel delay. Figure 7-8 showed that for a capacity of 1200 vehicles per hour,

eliminating incident probabilities results in a reduction in average delay to about 2.5 minutes per

vehicle. This is comparable to increasing the capacity, as shown in Figure 7-10, to about 1400

vehicles per hour for an incident probability level of 20%. While we don’t know what the costs of

reducing the an incident probability would be, we do know that freeway capacity expansions are

generally very costly. Therefore, if reducing travel delay is the only objective, this shows the

relative trade-offs of two possible alternative strategies for reducing delay.

Scheduling costs involved in commuting decisions may be as important as travel time

costs. Figure 7-l 1 shows that reducing the probability of an incident results in significant shifts in

schedules: many commuters who previously planned to arrive early or late now choose to instead

arrive at their desired work start time. Figure 7-12 shows the overall shift, with about 400 (out of

5000) more commuters choosing to arrive with schedule delay of zero when incident probabilities

are zero, compared to an incident probability level of 25%.

Such shifts do not occur as a result of increasing capacity as is shown in Figure 7- 13.

Figure 7- 14 shows the difference in schedule delay choices between capacity level 1200 and 2400

for each incident probability level. The greatest shift occurs with an incident probability of 25%

with a very small increase of about 50 (out of 5000) commuters choosing to arrive with no

schedule delay (compared to about 400 in the above case with incident probability reductions).

Despite the scheduling benefits of incident reductions, the overall congestion profile does

not really change. Figure 7- 15 shows this profile for incident probability equal to 25% and 0%.

There is a slight increase in peak travel when there are no incidents, but it is essentially negligible

and will have only a minor impact on increasing average travel delays; therefore, the scheduling

cost reductions do not seem to be off-set by significantly more congestion at the peak.
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7.4 Components of Total Travel Costs

The expected travel costs can be calculated using the demand model (Table 6-3, column

1) and the equilibrium travel conditions generated by the simulations. These are calculated for

different incident probability levels and different capacity levels.

Figure 7-16 displays the average total cost (omitting free-flow travel time costs) by

incident probability level and the percentage of each cost component is shown in Table 7- 1. The

costs are disaggregated into components related to travel time, schedule delay early and late,

lateness probability, and the coefficient of variation. Schedule delay early costs make up the

largest segment of the total costs, but this proportion decreases with increasing incident

probability When incident probability is high, travel time costs account for the largest proportion

of total costs because of the high level of non-recurrent congestion. The “planning cost” as

indicated by the coefficient of variation is relatively minor, but does increase with increasing

incident probability. The costs associated with the probability of arriving late also increase. The

major reduction in total costs with decreasing probability of an incident can be attributed to

decreases in costs of schedule delay early and lateness probability.

Figure 7-17 and Table 7-2 show a similar brakedown for simulations with increasing levels

of capacity. Total costs decrease by about the same amount when capacity is doubled from 1200

to 2400 as in the case when incident probabilities are reduced from 25% to 0%. The source of

the decrease in costs is, however, different. When capacity is increased the main reduction comes

from reductions in the travel time costs associated with both recurrent and non-recurrent

congestion. Scheduling costs and lateness probability remain essentially the same. The “planning

cost” is again negligible, as is its relative decrease with increasing capacity.

The cost calculations shown above are averages over all the clock intervals of the

simulations. This averages peak and off-peak travellers together. Those choosing to travel at

peak periods, due perhaps to job or other constraints, will face higher total costs, than those

travelling at off-peak hours. The relative contribution of the various components will also differ.
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Figure 7-18 and Table 7-3 show the cost components for an off-peak period (between the clock

interval 6:35 am to 6:45 am). Travel time costs due to non-recurrent capacity reductions are

negligible. There is also very little variation in total costs as the incident probability increases.

Most of the increase is due to the costs of the probability of arriving late increasing.

During the peak period, travel time costs are a significant fraction of the total costs, which

increase significantly as the incident probability increases (see Figure 7-19 and Table 7-4).

Lateness probability costs also show an increase while scheduling costs do not change much and

their total percent contribution decreases.
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TABLE 7-l

Components of Total Cost by Incident Probability (capacity = 1200)

Incident Probability Average
cost

Travel
Time

E(SDE) E(SDL) Coef. of
Variation

Lateness
probability II

0
0.1
0.15
0.2
0.25
Difference between
highest & lowest
incident
mobabilities

$1.51 27.92% 43.88% 10.91% 0.00% 17.29%
$1.89 30.83% 36.86% 9.51% 1.13% 21.67%
$2.07 32.00% 34.54% 9.08% 1.41% 22.97%
$2.24 33.04% 32.68% 8.75% 1.57% 23.96%
$2.39 33.99% 31.17% 8.50% 1.65% 24.69%
$0.88 44.33% 9.52% 4.39% 4.46% 37.30%

TABLE 7-2

Components of Total Cost by Capacity (Incident Probability = 0.2)

1 Capacity

II (vehicle&r)
Average
cost -
($/trip)

Travel E(SDE)
Time

E(SDL) Coef. of
Variation

Lateness
probability

1200 $2.24 33.04% 32.68% 8.75% 1.57% 23.96%
1500 $1.76 18.08% 41.67% 10.75% 1.02% 28.49%
1800 $1.56 10.10% 47.20% 11.90% 0.61% 30.18%
2100 $1.46 5.90% 50.37% 12.55% 0.37% 30.81%
2400 $1.41 3.60% 52.03% 12.91% 0.23% 31.23%
Difference between
highest & lowest
capacity

($0.83) 83.68% -0.61% 1.61% 3.88% 11.44%

I
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TABLE 7-3

Components of Total Cost During Off-peak Intervals, by Incident Probability (capacity =
1200)

Incident Probability Average Travel
cost Time

E(SDE) E(SDL) Coef. of
Variation

Lateness
probability II

0
($/trip)

I $1.11 1 2.86% 60.09% 14.19% 0.00% 22.86%
0.1 $1.27 3.65% 55.77% 12.85% 0.17% 27.56%
0.15 $1.34 4.03% 54.44% 12.39% 0.23% 28.91%
0.2 $1.40 4.42% 53.48% 12.01% 0.27% 29.82%
0.25 $1.46 4.81% 52.79% 11.70% 0.31% 30.38%
Difference between $0.3 5 11.05% 29.42% 3.73% 1.30% 54.49%
highest & lowest
incident
probabilities

TABLE 7-4

Components of Total Cost During Peak Intervals, by Incident Probability (capacity = 1200)

Incident Probability Average
cost
($/trip)

Travel
Time

E(SDE) E(SDL) Coef of
Variation

Lateness
probability

0 $2.02 44.73% 32.82% 8.78% 0.00% 13.67%
0.1 $2.62 46.86% 26.40% 7.60% 1.61% 17.54%
0.15 $2.89 47.72% 24.34% 7.25% 1.96% 18.74%
0.2 $3.16 48.47% 22.72% 6.99% 2.13% 19.69%
0.25 $3.40 49.13% 21.37% 6.80% 2.20% 20.50%
Difference between $1.3 8 55.57% 4.61% 3.90% 5.42% 30.50%
highest & lowest
incident
Probabilities
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FIGURE 7-2
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FIGURE 7-4
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FIGURE 7-7
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FIGURE 7-8
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FIGURE 7-9
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FIGURE 7-10
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FIGURE 7-12
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FIGURE 7-13
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FIGURE 7-14
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FIGURE 7-15
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FIGURE 7-16
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FIGURE 7-17
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FIGURE 7-18
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FIGURE 7-19

s4.00
s3YJ
s3.00
nso
s2m
sl.33
SLca
so.50
SOJX

Average total cost (peak PA
without freeflow travel costs, cap = 91 00

m travel time (w/o freeflom SDE
m std dev/t.rav time m lateness prob

m SDL

96



8. CONCLUSIONS AND POLICY IMPLICATIONS

The research reported here leads to a number of conclusions about the factors that

determine commuters’ behavior and the resulting congestion patterns in situations of uncertain

travel times. We also discuss some implications for policy and future research directions.

Our primary research conclusions are summarized as follows:

1. Scheduling decisions interact substantially with reliability.

Improvements in the reliability of the system cause people to reschedule

their trips so as to arrive closer to their more preferred arrival times. This

rescheduling seems to have only minimal effect on congestion and

reliability patterns, probably because people’s desired arrival times are

dispersed so rescheduling does not make much difference to the amount of

bunching of trips.

2. Scheduling accounts for an important part of the costs of congestion

and of unreliability. As the probability of a capacity-reducing incident is

increased in our model, commuters’ total travel costs increases. Nearly half

the increase (44 percent) is due to the extra travel time due to incidents,

and almost as much (37 percent) is due to the extra probability of late

arrival at work; the remaining 15 percent is due to other scheduling

considerations such as spending more time at work before work begins.

This implies that greater flexibility at the workplace would substantially

reduce the costs of unreliability to commuters.

3. Once the costs of non-optimal schedules are taken into account,

uncertainty in travel time has only a very small additional cost. As

just noted, costs rise as incident probability is increased, and slightly under
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half of this is due to increased average travel time. Of the rest, 92 percent

is explained by costs of early or late arrival at work; the “planning cost” or

residual pure cost of uncertainty accounts for only 9 percent. Therefore we

are able to explain most of people’s aversion to uncertainty in terms of their

being unable to avoid the costs of early or late arrival. This is an important

finding because earlier studies measuring people’s aversion to uncertainty

have not distinguished among the causes.

4. People’s workplace environments differ widely in the degree of

flexibility toward travel schedules and the ability to adjust work

times. These differences may or may not be susceptible to change through

transportation policy; in part they reflect real differences in work

requirements due to the nature of the work. Another important feature is

that many people face significant constraints on some days but not others.

5. People’s behavior when facing uncertainty in travel time can be

explained by a simple model with basic scheduling variables.

Socioeconomic and occupational variables do little to improve the fit of the

model. The most important socioeconomic variable of those we measured

is an indicator of whether the person is paid by an hourly wage or by salary;

hourly workers are less averse to travel time and to time spent at the

workplace before work begins, but they are equally or more averse to

being at risk for arriving late.

6. Some systematic differences are also observed among occupational

groups as defined by the Holland occupational codings. People in

occupations classified as “conventional” or “realistic,” who deal in a

routinized way with objects or data, tend to place lower values on time

spent traveling or waiting for work to begin. Members of these
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occupational groups also report having relatively strict arrival time

requirements and relatively little flexibility toward working late or taking

work home; as a result they budget more slack time at the workplace

before work begins.

7. Occupational groups differ in their reported consequences of arriving

late. The most common consequence, reported by nearly half the sample,

is loss of reputation. This is especially common among the more

professionally or business oriented occupations (“investigative” and

“enterprising”). People in “conventional” and “realistic” occupations, on

the other hand, are more likely to suffer a deduction from their pay. One

consequence of late arrival seems to be consistent across all occupational

groups: about one-fourth of respondents say that arriving late increases

stress and makes them feel rushed.

Our results suggest that one of the more effective courses of government policy to reduce

the costs associated with unreliability is to encourage more flexible work schedules. Late arrival

and adherence to strict schedules seems to be the greatest source of both stress and the costs of

unreliability. Many occupational categories and professions may require employees to have

coordinated schedules; this is obviously dependent on the nature of the specific business or

professional activity. It is therefore difficult for policy interventions to mandate the removal of

strict work schedules. Probably the best that can be done is to encourage flexible work schedules.

Future research efforts could seek to determine how worker productivity could be affected by

allowing more flexibility.

We have shown how reducing the probability of incidents and non-recurrent congestion

can affect the costs of schedule delay. Policies aimed at reducing incident probability may be

more effective than policies increasing capacity at reducing costs to society. There is an
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assumption that capacity increases can also reduce the probability of incidents and their severity

(i.e., the number of lanes blocked); however, our review of the literature did not show any clear

indication that this is the case. There is a clear need for research to analyze the incidence,

severity, and duration of non-recurrent events in both congested and uncongested conditions, and

the effect on travel time variance. Methodologies for determining the cost of specific policies and

how they reduce travel time variance are needed to perform cost/benefit analysis of alternative

methods for decreasing non-recurrent congestion. For example, what would be the effects on

travel time variance, travel costs, and traveler benefits of a capacity expansion relative to a

freeway service patrol?

We found that our hypothesized “planning cost” did not seem to account for a large

fraction of the total costs of unreliable travel. However, if advanced traveller information systems

become widely available, it could effect these costs; that is, people will need to plan to use them.

Future research could determine whether the benefits of these systems will exceed both the

monetary costs and planning costs of using them.
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FIRST SOME QUESTIONS ABOUT YOU AND YOUR WORK

1. Are you the same person who filled out the last transportation survey?

0; Yes
0, No

2. Have you changed jobs since February 1994?

q  l Yes
0, No

3. Which industry do you work in? (Please, check only one)

EXAMPLE: If you drive a delivery car for a bank, you are working in Finance
industry, not in Transportation.

Cl, Agriculture, Forestry, and
Fisheries

0, Mining
Cl, Construction
Cl, Manufacturing, nondurable goods
Cl, Manufacturing, durable goods
Cl, Transportation
Cl, Public utilities, Post, and

Telecommunications
Cl, Wholesale trade
0, Retail trade

Cl,, Finance, Insurance, and Real
estate

q  ,, Business and Repair services
Cl,, Personal services
[7,, Entertainment and Recreation

services
Professional and related services:

Cl,, Health services
q  ,, Educational services
Cl,, Other professional and

related services. .Cl,, Public admrmstratlon

4. People have different arrangements for getting paid. Are you:

Cl, An employee with benefits
Cl, An employee without benefits
Cl, An independent contractor within a company
Cl, Self-employed / An entrepreneur
Cl, O the r



5. Is your earned income based on

Cl, A fixed monthly salary
Cl2 An hourly wage

6. What is your title in your work organization?

7. What is your occupation?

8. How long have you been in your current occupation? years months

9. In any occupation we need to deal with recurring situations by undertaking certain
activities as part of our work. Please read the list of activities below. Choose one
activitv that best describes vour work, and write 1 in front of it. Similarly, choose a
second activity that is the next best description and write 2 in front of it.

Interpretation of feelings, ideas, or facts in terms of personal viewooint.

Precise attainment of set limits. tolerances. or standards.

A varietv of dutie$ often characterized by frequent change.

Repetitive operations carried out according to set procedures or sequences.

Dealing with ueoole beyond giving and receiving instructions.

Performing under stress when confronted with the critical or unexpected, or when
taking risks. .

Evaluation of information.

Influencing oeoole in their opinions, attitudes, or judgements about ideas or
things.

Direction, control, and planning of an entire activity or the activities of others.



NOW WE WOULD LIKE TO KNOW ABOUT THE CONSTRAINTS ON YOUR
DAILY WORK SCHEDULE

10. Does your employer allow you to arrive and start work before your normal
working hours?

q  2 No
Cl, Yes e 11. If yes, could you do that on any day without prior

arrangements?

Cl1 Yes, I could arrive and start working before my normal hours.

Cl2 No e Please, check all reasons that apply:

0,

q  ,
05

The work requires the presence of co-workers.
customers. or clients.
I have another job.
I car-pool with family members and could not change
the timetable.
I carpool with other working people.
I have to stay at home until a reiative/nursejmaid/day
help arrives or until children leave for school.
I am too tired to arrive and start working eariier.
Other

12. Does your employer allow you to stav and continue working after your normal
working hours’?

q  lr p  No
4 \Yes w 13. If yes, could you continue working after your normal hours

on any day without prior arrangements?

Cl, Yes, I could continue working after my normal hours.

q  2 No e Please. check all reasons that apply:

The work requires the presence of co-workers,
customers, or clients.
I have another job.
I carp001 and can’t change the timetable the same day.
I need to be at home to take care of my family.
I have hobbies/ social gatherings arranged after work.
I am too tired or hungry to continue working.
Other



14. Does your employer allow you to take work home after your normal hours or
work at home instead of at your work site?

15. If ves. could vou work at home on any day without prior
arrangements’?

Cl! Yes, I could work at home.

Cl, ?Jo e Please, check all reasons that apply:

Cl1 The work requires the presence of co-
workers. customers, or clients.

0, The work requires special equipment not avaiiabie
at home.

0, I do not have avaiiabie the space or isoiatton
J

required for working at home.
0, I have another job.
U5 titer my normA work hours I want to spend the time

at home wtth my fxniiy and do househoid work.
!J, I have hobbies/ social gatherings arranged after work.
Cl, I am too tired to work at home after my

normal work day.
,a, O t h e r

16. What is your official work start time ? ( Please. check and fill out only one)

Cl, Regular : a m  / p m . (circle am or pm)- -

Cl, It varies: It is mostly : am / pm , sometimes : am / pm.- - - w

or - - a m  / p m .

Cl, I have no official work start time. but I usually start

between : a m  / p m  a n d : a m  / p m .- - - -



17. How often is it important that you arrive at work at a precise ore-determined
time3 ,.- -

0 I Practically never.
0, Once a month or less frequently.
0, Two to four times a month.
Cl, Two to four times a week.
Cl, Every day.

= 18. Why is it important to arrive at a pre-determined time’?

Please indicate with numbers , 1 being most frequent reason.

-i Employer monitors arrival close&.
L Group work or appointments with co-workers.
1 Appointments with clients.
-1 Dead -line for compieting work.
i O t h e r
p5 O t h e r

19. Are there negative consequences if you arrive late? (check all that appiy)

0, Yes, I get paid less.
Cl3 Yes. my reputation as an empioyeei employer suffers.
0, Yes. I have to rush things and it creates stress.
0, Yes.
Cl5 No negative consequences.

NEXT WE WOULD LIKE TO KNOW MOUT YOUR COMMUTING
EXPERIENCES AND OPINIONS

20. Was your morning commuting time around March 1, 1994 different because of the
January 17, 1994 earthquake?

Cl., Yes, it was longer every morning by approximateiy minutes.
I& Yes, it was sometimes longer.
q  ., There was no change in my commuting time due to the earthquake.



21. Consider the last ten working davs. On the average, how many minutes before you
actually started to work did you arrive at your workplace?

Cl, I started to work immediately.
0 I arrived minutes before I started working.

= 22. If you arrived earlier than when the you actually started to work,
how did you spend that time? (Please, check &! that apply)

cl, Got organized for work.
Cl, Talked with co-workers.
Cl, Had refreshments.
Cl, Read papers/magazines.
Cl, Waited/rested in the car.
0, Changed clothes / showered.
Cl, Other

23. The morninP commutinP time varies from day to day. Think about your last 10
commuting days to work. Mark in the table how many days fall into different
commuting time categories. Make sure that the total number of days equals 10.
( If you have several job sites, consider the last ten times you commuted to the job
site you most often commute to in the morning.)

5 or less 6 to 10 11 to 15 16 to 25 26 or more
minutes minutes minutes minutes minutes

davs davs days days days

24. How often are you delayed from your usual work arrival time by 15 minutes or
more because of unusuallv bad traffic conditions ? ( check only one)

Cl, Once a week.
Cl, Twice a month.
Cl, Once in l-2 months.
0, 1-5 times a year.
0, Less than once a year.



3:--. You just stated how ot‘ten you are delayed from work 15 minutes or more because
of unusual traffic conditions. Suppose that those traffic conditions wouid occur
twice as often as thev do now. Would you ( check all that apply):

Start to carp001 if you now drive alone.
Start to drive alone if you now car-pool.
Change your work and commuting hours.
Change your residence.
Change your work piace.
Be willing to pay a road toil to guarantee timely arrivai.
Reserve more time for commuting.
Not change your commuting habits.
Other

16. If your morning commuting time Lvere :o permanentlv increase  hv !S rninures
because of traffic conditions. wouid you ( check all that appiy):

Start to carp001 if you now drive aione.
Start to drive aione if you now carpooi.
Change work and commuting hours.
Change your residence.
Change your work piace.
Be willing to pay a road toll to decrease the commuting time.
Reduce or drop some of your free time activities.
Other

27. Suppose durine vour rerruiar morning commute you found yourseif in a tratiic
jam where you expected to stand in immobile traffic for 30 minutes or more.
If you could bypass the traffic jam and continue uninterrupted by paying a fee.
would you be willing to pay a fee of

a) S 0.50 0, Y e s
0, N o

b) S 1.00 0, Y e s d) S 3.00 Cl, Y e s
q  2 No q  , No

c) s 2.00 II! Y e s
cl, N o

e) S 5.00 !I, Y e s
a, N o



28. If your morning commuting time would permanently decrease by 15 minutes due to
traffic improvements, how would you use the time? ( check all that apply)

Sleep longer.
Have longer breakfast.
Read newspaper.
Watch IV / listen to the radio.
Spend time with family.
Do chores.
Arrive at work earlier.
Other

29. Consider vour usual mornincl commute to work when answering the next set of
questions.

Below are nine pairs of scenarios for your usual morning commute. In these
scenarios you do not know what the exact travel time will be, but you know it will be
one of the five listed travel times (each has an equal chance). The deparrure time is
expressed in minutes before your usuai arrival time at the work place. You can refer to
question 21 for your usual arrival time.

EXPLIMPLE:  Suppose that the five possible travel times are 18, 19, 20. 21. and
22 minutes. If you depart 20 minutes before your usual arrival time. it means that you
wiil arrive 2: 1, or 0 minutes eariier or 1 or 2 minutes later than your usual arrival
time.

departure 20 minutes
before your usual
a r r i v a l  t i m e .

Please consider how you feel about the time spent at home and in traffic, and
how early or late you feel comfortable of arriving at your work place. Then look at
each pair tid circle either A or B as the alternative you would be most likely to
choose. It is possible that neither one of the alternatives describes your commuting in
real life. In such a case circle the alternative you would be most likely to choose if you
had no other alternatives.



1st PAIR OF SCENARIOS

Please circle
your choice: A B

2nd PAIR OF SCENARIOS

Please circle
your choice: A B

3rd PAIR OF SCENARIOS

Please circle
your choice: A B



Please circle
your choice: A B

5th PAIR OF SCENARIOS

Time : minutes

4 5 6 8 12

IT'"','":""::'

Please circle
your choice: A B

6th PAIR OF SCENARIOS

Please circle
your choice: A B



7th PAIR OF SCENARIOS

Please circle
your choice: A B

8th PAIR OF SCENARIOS

I I , 1

Time : minutes I I Time : minutes 1.
t 1 t
1 7 8 9 1115 1 1 4 5 6 8 12 1
I I I I

Please circle
your choice: A B

9th PAIR OF SCENARIOS

Please circle
your choice: A B




