
UCLA
UCLA Electronic Theses and Dissertations

Title
Towards Theoretical Analysis and Empirical Improvement of Certied Robust Training

Permalink
https://escholarship.org/uc/item/82n337k2

Author
wang, Yihan

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/82n337k2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Towards Theoretical Analysis

and Empirical Improvement of Certified Robust Training

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Yihan Wang

2022

© Copyright by

Yihan Wang

2022

ABSTRACT OF THE THESIS

Towards Theoretical Analysis

and Empirical Improvement of Certified Robust Training

by

Yihan Wang

Master of Science in Computer Science

University of California, Los Angeles, 2022

Professor Cho-Jui Hsieh, Chair

Recently, bound propagation based certified robust training methods have been proposed

for training neural networks with certifiable robustness guarantees. Despite that state-of-

the-art (SOTA) methods including interval bound propagation (IBP) and CROWN-IBP

have succeeded in providing certified robustness with efficient per-batch training complexity,

there are several challenges faced by these certified robust training methods. First, they

usually use a long warmup schedule with hundreds or thousands epochs to increase the

perturbation radius for SOTA performance and are thus still costly. Second, the convergence

of IBP training remains unknown. In this paper, we identify two important issues related

to slow warmup schedule for IBP training, namely exploded bounds at initialization, and

the imbalance in ReLU activation states. These two issues make certified training difficult

and unstable, and thereby long warmup schedules were needed in prior works. We proposed

improvements to mitigate these issues and we are able to obtain 65.03% verified error on

CIFAR-10 (ε = 8
255

) using very short training schedules. For the convergence problem,

we show that for a randomly initialized two-layer ReLU neural network with logistic loss,

ii

with sufficiently small perturbation radius and large network width, gradient descent for IBP

training can converge to zero training robust error with a linear convergence rate with a high

probability, and at this convergence state the robustness certification by IBP can accurately

reflect the true robustness of the network.

iii

The thesis of Yihan Wang is approved.

Baharan Mirzasoleimanbarzi

Quanquan Gu

Cho-Jui Hsieh, Committee Chair

University of California, Los Angeles

2022

iv

To my parents . . .

for their support and love

v

TABLE OF CONTENTS

1 Introduction . 1

2 Interval Bound Propagation and IBP training 3

2.1 Certified Defense . 3

2.2 Interval Bound Propagation (IBP) . 4

2.3 Interval Bound Propagation (IBP) Training 4

2.4 Slow Certified Training with Long Warm-up Schedule 5

2.5 Difficulty in IBP Convergence . 5

3 Fast IBP Training with Shorter Warm-up 7

3.1 Two Issues in Existing IBP training . 7

3.2 Proposed Method for Fast IBP Training . 10

3.2.1 IBP initialization . 10

3.2.2 Batch Normalization . 11

3.2.3 Warmup Regularization . 11

3.2.4 Training Objectives . 13

3.3 Experiments . 14

3.3.1 Settings . 14

4 Convergence Analysis for IBP Training . 17

4.1 Preliminaries . 17

4.1.1 Neural Networks . 17

4.1.2 IBP-based Certified Robust Training 18

vi

4.1.3 Gradient Flow and Gram Matrix . 20

4.2 Convergence Analysis for IBP Training . 22

4.3 Experiments . 22

5 Conclusion . 24

References . 25

vii

LIST OF FIGURES

3.1 We show that certified bounds explode at initialization, in a simple untrained

CNN (the classification layer is omitted) using Xavier initialization. We plot

log Ê(∆i) for each layer i. 10

3.2 Ratios of active and unstable ReLU neurons for CNN-7 on CIFAR-10 with differ-

ent settings. The vanilla ones are not regularized, and “vanilla (w/o BN)” does

not use BN either. 10

4.1 Experimental results. 23

viii

LIST OF TABLES

3.1 List of several weight initialization methods and their difference gain. 9

3.2 Standard and verified error rates (%) of models trained with different methods

respectively on MNIST (εtarget =0.4) and CIFAR-10 (εtarget =8/255). Schedule is

represented as the total number of epochs and the number of epochs in each of the

three phases with ε = 0, increasing ε ∈ (0, εtarget) and final ε = εtarget respectively.

We report the mean and standard deviation of the results on 5 repeats for CNN-7

and 3 repeats for Wide-ResNet and ResNeXt respectively. All models include BN

after every layer (see Sec. 3.2.2). We also report the best run in “Ours (best)”

since main results in prior works did not have repeats. Literature results with

the “†” mark are concurrent works. 15

ix

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor: Cho-Jui Hsieh, who led me to

the area of machine learning robustness and guided me patiently and thoughtfully in my

research and study. I am also grateful to my coauthors Zhouxing Shi and Huan Zhang, who

have closely worked with me on many projects with patience and friendship. Also, I must

sincerely thank Jinfeng Yi, who offered me the internship opportunity at JD.com during the

COVID-19 pandemic where I worked on the Fast IBP training project; and Quanquan Gu for

his class on Deep Learning theory and his valuable support on the IBP convergence project.

Finally, I would like to give my deepest thanks to my parents, without whose support I

would not have the opportunity to study at UCLA.

x

CHAPTER 1

Introduction

As the development of machine learning algorithms, machine learning models have been

successfully applied in many safety-critical areas like autonomous driving. And the safety

of machine learning models has attracted lots of attention. One critical problem of ma-

chine learning is the adversarial examples [SZS13, GSS15, CW17, KGB16, CZC17, MMS18,

SZC18, CZK19], which can fool machine learning models with imperceptible perturbations

that do not change the latent content. The robustness can be evaluated empirically by adver-

sarial attack. And many methods are also proposed to improve the empirical robustness of

models, such as adversarial training [MMS18], which augments the training with adversarial

examples. However, the empirical robustness by adversarial training is not certified, and can

be attacked by stronger attacks [CW17]. Therefore, some recent works propose to evaluate

the robustness by verification, which verify whether the model is safe within a given range

by verifying the worst case in the range [KBD17, ZWC18, WK18, SGM18, SGP19, BTT17,

RSL18, WPW18, XSZ20, WZX21]. Based on the evaluation, certified robust training is pro-

posed to improve the certified robustness by minimizing the upper bound of a certified loss

within the given perturbation range. Among the certified training methods, Interval Bound

Propagation (IBP)[GDS18, MGV18] and CROWN-IBP [ZCX20, XSZ20] can produce the

certified bounds the most efficiently, while CROWN [ZWC18] can produce tighter bounds

with a higher computational complexity. However, there are still several challenges remain-

ing for certified training. First, certified training needs a long warm-up schedule to gradually

increase the perturbation radius ε from zero to the maximum radius in the beginning of the

training. Otherwise, the training can be very easy to be trapped into local minima. Second,

1

certified training suffers significant underfitting problem instead of overfitting. Even the

training certified error is difficult to decrease with a sufficiently large network width. This

indicates that there might be some essential difference between certified training and clean

training. As a simplified case, we focus on IBP training in our discussion, which is also

potentially able to be extended to other certified robust training methods.

For the slow warm-up schedule of certified training, we identified two issues in IBP

training. The first is the exploded bounds problems. The certified bounds of intermediate

layers can explode when passed through the layers, which leads to very loose bounds at the

last layer and can harm the training performance. To address this, we propose to use a special

initialization for IBP training and an explicit regularization to stabilize the certified bounds

at initialization. The second is the imbalanced ReLU status problem. The relaxation for

ReLU neurons in IBP training encourages the ReLU neurons to be inactive for tight bounds,

which can harm the capacity of network and harm the certified robustness. We proposed

to add BatchNormalization layers after each convolutional layer to mitigate the imbalance

problem and also use an explicit regularizer to control the ReLU imbalance pattern. With

these improvements, we are able to achieve state-of-the-art certified robust accuracy in 160

epochs in total compared to thousands or hundreds of training epochs in previous work.

For the difficulty in IBP training, we give the first convergence analysis of IBP training.

We show that for a randomly initialized two-layer ReLU neural network with logistic loss,

with sufficiently small perturbation radius and large network width, gradient descent for IBP

training can converge to zero training robust error with a linear convergence rate with a high

probability, and at this convergence state the robustness certification by IBP can accurately

reflect the true robustness of the network. On the other hand, if the perturbation radius is

relatively large, the convergence is not guaranteed even with large network width, which is

essentially different from standard training.

2

CHAPTER 2

Interval Bound Propagation and IBP training

2.1 Certified Defense

Robust training can be formulated as solving a min-max optimization problem:

min
θ

E(x,y)∈X

[
max
δ∈∆(x)

L(fθ(x + δ), y)

]
, (2.1)

where fθ stands for a neural network parameterized by θ, X is the data distribution, x is

a data example, y is its ground-truth label, δ is a perturbation constrained by specification

∆(x), and L is the loss function. Empirical robust training like adversarial training [GSS15,

MMS18] solves the inner-max of 2.1 by adversarial attack. While adversarial training can

obtain effective empirical robustness, it is not certifiable robust and can be attacked by

stronger attack methods [CW17]. In contrast, certified robust training methods compute a

certified upper bound for for the inner maximization, which can give a provable guarantee

on the robustness after training.

For certified robust training, some works applies semidefinite relaxation for small net-

works, and another line of works use linear relaxation based bound propagation [GDS18,

MGV18, ZCX20, XSZ20, ZWC18]. Among the linear relaxation based methods, Interval

Bound Propagation (IBP) [GDS18, MGV18] is one of the most efficient methods that prop-

agate the upper and lower bounds in the forward pass.

3

2.2 Interval Bound Propagation (IBP)

We consider a network fθ with L layers, indexed by i = 1, 2, ..., L. We use hi to denote the

pre-activation output value of the i-th layer, and hi,j denotes the j-th neuron in the i-th layer.

We also use zi = ReLU(hi) to denote the post-activation value. For a convolutional or fully-

connected layer, we use Wi and bi to denote its parameters, where Wi ∈ Rri×ni ,b ∈ Rri ,

and ri and ni are called the “fan-out” and “fan-in” number of the layer respectively [HZR15].

This is straightforward for a fully-connected layer, and for a convolutional layer with kernel

size k, cin input channels and cout output channels, we can still view the convolution as an

affine transformation with ni = k2cin and ri = cout. In particular, we use h0 = x + δ to

denote the input layer perturbed by δ (z0 is not applicable).

In IBP [MGV18, GDS18], it computes and propagates lower and upper bound intervals

layer by layer until the last layer.

For pre-activation hi, its interval bounds can be denoted as [hi,hi], where hi ≤ hi ≤

hi (∀‖δ‖∞ ≤ ε). Similarly, there are also post-activation interval bounds [zi, zi]. For an

affine layer with weight Wi, we can formulate the bound propagation as

hi = Wi,+zi−1 + Wi,−zi−1 + bi, hi = Wi,+zi−1 + Wi,−zi−1 + bi, (2.2)

2.3 Interval Bound Propagation (IBP) Training

In IBP training, we can extend the network with a loss operation, for which we can also get

its interval bounds by propagating from its inputs. And for Loss L, we can get its upper

and lower bounds within the perturbation set δ ∈ ∆(x) as L ≤ L ≤ L. Then in certified

training, we can relax 2.1 as

min
θ

E(x,y)∈X
[
L(fθ(x), y)

]
, (2.3)

4

2.4 Slow Certified Training with Long Warm-up Schedule

Certified robust training including IBP and CROWN-IBP training remains costly and chal-

lenging, mainly due to their unstable training behavior – they could easily diverge or stuck

at a degenerate solution without a long “warmup” schedule. The warmup schedule here

refers to training the model with a regular (non-robust) loss first and then gradually in-

creasing the perturbation radius from 0 to the target value in the robust loss (some previous

works also refer to it as “ramp-up”). For example, generalized CROWN-IBP in [XSZ20]

used 900 epochs for warmup and 2,000 epochs in total to train a convolutional model on

CIFAR-10 [KH09].

2.5 Difficulty in IBP Convergence

Despite being one of the most successful certified defense methods, the convergence properties

of IBP training remained unknown. For natural neural network training (training without

considering adversarial perturbation, aka standard training), it has been shown that gradient

descent for overparameterized networks can provably converge to a global minimizer with

random initialization [LL18, DZP18, DLL18, JGH18, ALS18, ZCZ18]. Compared to natural

neural network training, IBP-based robust training has a very different training scheme, and

thus requires a different convergence analysis. First, in the robust training problem, input

data can contain adversarial perturbations, and the training objective is to minimize a robust

loss rather than a natural loss. Second, IBP training essentially optimizes an augmented

network which contains IBP bound computation rather than standard neural networks, as

illustrated in [ZCX20]. Third, in IBP training, the activation state of each neuron depends

on the certified bounds rather than the value in natural neural network computation, and

this introduces additional perturbation-related terms in the convergence analysis for IBP.

Also, some empirical experiments show that convergence of IBP-based robust training is

much more difficult than standard training. And in some settings, this difficulty can not be

5

addressed by simply enlarging width like standard training.

6

CHAPTER 3

Fast IBP Training with Shorter Warm-up

3.1 Two Issues in Existing IBP training

In this section, we analyze the issues in existing IBP training. In particular, we identify two

issues, including exploded bounds at initialization, and also the imbalance between ReLU

activation states.

3.1.0.1 Exploded Bounds at Initialization

For simplicity, we assume the network has a feedforward architecture in this analysis, but the

analysis can also be easily extended to other architectures. For affine layer hi = Wizi−1 +bi,

the IBP bound computation is as follows:

hi = Wi,+zi−1 + Wi,−zi−1 + bi, hi = Wi,+zi−1 + Wi,−zi−1 + bi, (3.1)

where Wi,+ stands for retaining positive elements in Wi only while setting other elements to

zero, and vice versa for Wi,−. hi can be viewed as a function with the post-activation value

of the previous layer zi as input, denoted as hi(zi). In Eq. (3.1), the IBP bounds guarantee

that hi ≤ hi(zi) ≤ hi (∀zi ≤ zi ≤ zi) for element-wise “≤”. We then check the tightness of

the interval bounds:

∆i = hi − hi = |Wi|(zi−1 − zi−1) = |Wi|δi−1, (3.2)

7

where ∆i denotes the gap between the upper and lower bounds, which can reflect the tightness

of the bounds, and |Wi| stands for taking the absolute value element-wise. At initialization,

we assume that each Wi independently follows a distribution with zero mean and variance

σ2
i , and the distribution is symmetric about 0. For a vector or matrix with independent

elements following the same distribution, we use E(·) to denote the expectation of this

distribution. We can view each element in vector ∆i as a random variable that follows the

same distribution, and we denote its expectation as E(∆i), to measure the expected tightness

at layer i. As Wi and δi−1 are independent, we have E(∆i) = niE(|Wi|)E(δi−1). Detailed in

Appendix ??, we further have E(δi) = E(ReLU(hi)− ReLU(hi)) = 1
2
E(∆i), and

E(∆i) =
ni
2
E(|Wi|)E(∆i−1). (3.3)

Empirically, we can estimate E(∆i) given a batch of concrete data, by taking the mean,

and we use Ê(∆i) to denote the result of the empirical estimation.

We define a metric to characterize to what extent the certified bounds become looser,

after propagating bounds from layer i− 1 to layer i:

Definition 1. We define the difference gain when bounds are propagated from layer i− 1 to

layer i:

E(∆i)/E(∆i−1) =
ni
2
E(|Wi|). (3.4)

Bounds are considered to be stable if the difference gain E(∆i)/E(∆i−1) is close to 1.

A large difference gain indicates exploded bounds, but it cannot be much smaller than

1 either to avoid signal vanishing in the model. We find that weight initialization in prior

works have large difference gain values especially for layers with larger ni. For example, for

the widely used Xavier initialization [GB10], the difference gain is 1
4

√
ni, and it can be as

large as 45.25 when ni = 32768 for a fully-connected layer in experiments.

This indicates that certified bounds explode at initialization. We illustrate the bound

8

explosion in Figure 3.1. And in 3.1, we show difference gains for different initializations.

We show both closed form result and empirical values for a 7-layer CNN model with ni ∈

{27, 576, 1152, 32768} (without BN). The concrete values are obtained by computing the

mean of 100 random trials respectively. For orthogonal initialization, obtaining a closed

form of difference gain is non-trivial so we omit its closed-form result, but it has large

difference gains under empirical measurements.

As a result, long warmup schedules are important in previous works, to gradually tighten

certified bounds and ease training, but this is inefficient.

Table 3.1: List of several weight initialization methods and their difference gain.

Method Adopted by
Difference Gain

Closed form ni = 27 ni = 576 ni = 1152 ni = 32768

Xavier (uniform) [GB10] [ZCX20, XSZ20] 1
4

√
ni 1.30 6.00 8.48 45.25

Xavier (Gaussian) [GB10] -
√

1
2π

√
ni 2.07 9.57 13.54 72.2

Kaiming (uniform) [HZR15] -
√

3
4

√
ni 3.20 14.70 20.77 110.85

Kaiming (Gaussian) [HZR15] -
√

1
π

√
ni 2.93 13.54 19.15 102.13

Orthogonal [SMG13] [GDS18] - 2.09 9.58 13.54 72.22
IBP Initialization This work 1 1.01 1.00 1.00 1.00

3.1.0.2 Imbalanced ReLU Activation States

We show another issue in existing certified training, where the models have a bias towards

inactive ReLU neurons. Here “inactive ReLU neurons” are defined as neurons with non-

positive pre-activation upper bounds (hi,j ≤ 0), i.e., they are always inactive regardless of

input perturbations. Similarly, active ReLU neurons have non-negative pre-activation lower

bounds (hi,j ≥ 0). There are also unstable ReLU neurons with uncertain activation states

given different input perturbations (hi,j ≤ 0≤hi,j). In IBP training, inactive neurons have

tighter bounds than active and unstable ones as shown in Figure ?? in Appendix ??, and

thus the optimization tends to push the neurons to be inactive. We show this imbalance

ReLU status in Figure 3.2 (vanilla w/o BN), and it is more severe when the warmup is

9

Conv
n = 27

Conv
n = 576

Conv
n = 576h0 h1 h2 h3 FC

n = 43264
h4

0
1
2
3
4

log(�̂�(Δi))

0 1 32 4 Layer i

Figure 3.1: We show that certified bounds
explode at initialization, in a simple un-
trained CNN (the classification layer is omit-
ted) using Xavier initialization. We plot
log Ê(∆i) for each layer i.

Vanilla w/o BN Vanilla w/ BN Ours
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ra
tio

 o
f R

eL
U

ne
ur

on
s active

unstable

Figure 3.2: Ratios of active and unstable
ReLU neurons for CNN-7 on CIFAR-10 with
different settings. The vanilla ones are not
regularized, and “vanilla (w/o BN)” does
not use BN either.

shorter. Too many inactive neurons indicates that many neurons are essentially unused or

dead, which will harm the model’s capacity and block gradients as discussed by [LSS19] on

standard training.

3.2 Proposed Method for Fast IBP Training

3.2.1 IBP initialization

We propose a new IBP initialization for IBP training. Specifically, we independently ini-

tialize each element in Wi following a normal distribution N (0, σ2
i), and we aim to choose

a value for σi such that the difference gain defined in Eq. (3.4) is exactly 1. When ele-

ments in Wi follow the normal distribution, we have E(|Wi|) =
√

2/πσi, and thereby we

take σi =
√

2π
ni

, which makes the difference gain ni
2
E(|Wi|) exactly 1. This initialization

can further be calibrated for non-feedforward networks such as ResNet, please refer to [] for

details.

10

3.2.2 Batch Normalization

Batch normalization (BN) [IS15] normalizes the input of each layer to a distribution with

stable mean and variance. It can improve the optimization for DNN as shown in prior

works for standard DNN training [IS15, Van17, STI18]. In addition, for IBP training, BN

can normalize the variance of bounds, and it can also improve the balance of ReLU acti-

vation states by shifting the center of upper and lower bounds to zero (before the addi-

tional linear transformation which comes after the normalization). In prior certified training

works [GDS18, ZCX20, XSZ20], they only used BN for some layers in some models but

not all layers, and they did not identify the benefit of BN in certified training. We em-

pirically demonstrate that fully adding BN to each affine layer can significantly mitigate

the imbalance ReLU issue and improve IBP training. We follow the BN implementation

by [WSM18, XSZ20] for certified training, where the shifting and scaling parameters are

computed from unperturbed data.

Note that our previous analysis on IBP initialization considers a network without BN.

BN which rescales the output of each layer can still affect the tightness of IBP bounds,

and the effect of IBP initialization may be weakened. This is a limitation of the proposed

initialization which could possibly be improved by considering the effect of BN in future

work.

3.2.3 Warmup Regularization

To further address the aforementioned two issues in Sec. 3.1, and to explicitly stabilize the

tightness of certified bounds and balance ReLU neuron states, we add two regularizers in

the warmup stage of IBP training, The regularizers are principled and motivated by the two

issues we discover.

11

3.2.3.1 Bound Tightness Regularizer

Similar to the goal of stabilizing certified bounds at initialization, we also expect to keep the

mean value of ∆i in the current batch, Ê(∆i), stable along the warmup. Note that Ê(∆i)

is empirically computed from a concrete batch and different from the expectation E(∆i) at

initialization In the initialization, we aim to make E(∆i) ≈ E(∆i−1). Here, we relax the goal

to making τ Ê(∆i) ≤ Ê(∆0) with a configurable tolerance value τ (0<τ≤1), to balance the

regularization power and the model capacity. We add the following regularization term:

Ltightness =
1

τm

m∑
i=1

ReLU(τ − Ê(∆0)

Ê(∆i)
), (3.5)

where the training is penalized only when τ Ê(∆i) > Ê(∆0) due to the clipping effect by

ReLU(·).

3.2.3.2 ReLU activation states balancing regularizer

To balance ReLU activation states, we expect to balance the impact of active ReLU neurons

and inactive neurons respectively. Here, we consider the center of the interval bound, ci =

(hi + hi)/2, and we model the impact as the contribution of each type of neurons to the

mean and variance of the whole layer, i.e., Ê(ci) and Var(ci) respectively. Note that in the

beginning almost all neurons are unstable, and gradually most neurons become either active

or inactive. Therefore, we add this regularizer only when there is at least one active neuron

and one inactive neuron, which generally holds true unless at the training start. We use

αi to denote the ratio between the contribution of the active neurons and inactive neurons

respectively to Ê(ci), and similarly we use βi to denote the ratio of contribution to Var(ci).

They are computed as:

αi =

∑
j I(hi,j > 0)ci,j

−
∑

j I(hi,j < 0)ci,j
, βi =

∑
j I(hi,j > 0)(ci,j − Ê(ci))

2∑
j I(hi,j < 0)(ci,j − Ê(ci))2

,

12

and in general αi, βi > 0. We regard that the activation states are roughly balanced if

αi and βi are close to 1. With the same aforementioned tolerance τ , we expect to make

τ≤αi, βi≤1/τ , which is equivalent to making min(αi, 1/αi) ≥ τ, min(βi, 1/βi) ≥ τ . Thereby

we design the following regularization term:

Lrelu =
1

τm

m∑
i=1

(
ReLU(τ −min(αi,

1

αi
)) + ReLU(τ −min(βi,

1

βi
))

)
. (3.6)

3.2.4 Training Objectives

Certified robust training solves the robust optimization problem as Eq. (2.1), and when the

inner maximization is verifiably solved, the base training objective without regularization is:

Lrob = L(fθ,x, y, ε), where L(fθ,x, y, ε) ≥ max
‖δ‖∞≤ε

L(fθ(x + δ), y), (3.7)

such that L(fθ,x, y, ε) is an upper bound of L(fθ(x+δ), y) given by a robustness verifier, e.g.,

IBP. In our proposed method, we first initialize the parameters with our IBP initialization,

and then we perform a short warmup with gradually increasing ε (0 ≤ ε ≤ εtarget), where

εtarget stands for the target perturbation radius that is usually equal to or slightly larger than

the maximum perturbation radius used for test.

Our training objective L combines the ordinary objective Eq. (3.7) and the proposed

regularizers:

L = Lrob + λ(Ltightness + Lrelu), (3.8)

where λ is for balancing the regularizers and the original Lrob loss. For simplicity and

efficiency, we use IBP to compute the bounds in Lrob and the regularizers. During warmup,

we also gradually decrease λ from λ0 to 0 as ε grows, where λ = λ0(1 − ε/εtarget). After

warmup, we only use L = Lrob for final training with εtarget. Note that in the regularizers,

the value of each ReLU(·) term has the same range [0, τ], and thus in Eq. (3.8) we directly

sum up them without weighing them for simplicity. In test, we still only use pure IBP bounds

13

without any other tighter method.

3.3 Experiments

In the experiments, we demonstrate the effectiveness of our proposed method for training cer-

tifiably robust neural networks more efficiently while achieving better or comparable verified

errors.

3.3.1 Settings

We adopt two datasets, MNIST [LCB10], CIFAR-10 [KH09]. Following [XSZ20], we consider

three model architectures: a 7-layer feedforward convolutional network (CNN-7), Wide-

ResNet [ZK16] and ResNeXt [XGD17]. According our discussion in Sec. 3.2.2, we also

modify the models to fully add a BN after every convolutional or fully-connected layer. For

target perturbation radii, we mainly use εtarget = 0.4 for MNIST, εtarget = 8/255 for CIFAR-

10, and εtarget = 1/255 for TinyImageNet, following prior works. We mainly compare with

the following SOTA baselines on all the settings (note that in our main results, we also make

these baselines use models with full BNs unless otherwise indicated):

14

Table 3.2: Standard and verified error rates (%) of models trained with different methods
respectively on MNIST (εtarget =0.4) and CIFAR-10 (εtarget =8/255). Schedule is represented
as the total number of epochs and the number of epochs in each of the three phases with
ε = 0, increasing ε ∈ (0, εtarget) and final ε = εtarget respectively. We report the mean and
standard deviation of the results on 5 repeats for CNN-7 and 3 repeats for Wide-ResNet
and ResNeXt respectively. All models include BN after every layer (see Sec. 3.2.2). We also
report the best run in “Ours (best)” since main results in prior works did not have repeats.
Literature results with the “†” mark are concurrent works.

Dataset
Schedule

Method
CNN-7 (with full BN) Wide-ResNet (with full BN) ResNeXt (with full BN)

(epochs) Standard Verified Standard Verified Standard Verified

MNIST

70 (0+20+50)

Vanilla IBP 2.59 ± 0.06 12.03 ± 0.09 3.18 ± 0.05 12.93 ± 0.17 4.09 ± 0.46 15.36 ± 0.94
CROWN-IBP a 2.75 ± 0.12 12.04 ± 0.22 3.39 ± 0.05 13.10 ± 0.15 4.22 ± 0.53 15.24 ± 0.78

Ours 2.33 ± 0.08 11.03 ± 0.13 2.77 ± 0.02 11.76 ± 0.07 3.22 ± 0.08 13.43 ± 0.17
Ours (best) 2.20 10.82 2.75 11.69 3.17 13.20

Literature results Warmup Total (epochs) Standard Verified
[GDS18] (2K+10K) steps 100 1.66 15.01 b

[ZCX20] (9 + 51) epochs 200 2.17 12.06
†IBP+ParamRamp [LGW21] e (9 + 51) epochs 200 2.16 10.88

†CROWN-IBP+ParamRamp [LGW21] e (9 + 51) epochs 200 2.36 10.61

CIFAR-10

70 (1+20+49)
Vanilla IBP 58.72 ± 0.27 69.88 ± 0.10 58.85 ± 0.22 69.77 ± 0.32 60.10 ± 0.27 71.19 ± 0.21

CROWN-IBP a 63.19 ± 0.36 71.29 ± 0.19 62.76 ± 0.23 71.82 ± 0.30 64.75 ± 0.50 72.50 ± 0.20
Ours 56.64 ± 0.48 68.81 ± 0.24 56.74 ± 0.40 68.71 ± 0.29 59.33 ± 0.86 70.62 ± 0.59

160 (1+80+79)

Vanilla IBP 53.80 ± 0.71 67.01 ± 0.29 54.31 ± 0.46 67.45 ± 0.21 55.23 ± 0.12 68.28 ± 0.15
CROWN-IBP a 58.76 ± 0.76 69.67 ± 0.38 60.39 ± 0.33 70.07 ± 0.42 61.08 ± 0.35 71.26 ± 0.11

Ours 51.72 ± 0.40 65.58 ± 0.32 51.95 ± 0.27 65.91 ± 0.14 53.68 ± 0.33 66.91 ± 0.40
Ours (best) 51.06 65.03 51.63 65.72 53.38 66.41

Literature results Warmup Total (epochs) Standard Verified
[GDS18] (5K+50K) steps 3,200 50.51 68.44 c

[ZCX20] (320 + 1600) epochs 3,200 54.02 66.94
[BV20] N/A d 800 48.3 72.5
[XSZ20] (100 + 800) epochs 2,000 53.71 66.62

†IBP+ParamRamp [LGW21] e (320 + 1600) epochs 3,200 55.28 67.09
†CROWN-IBP+ParamRamp [LGW21] e (320 + 1600) epochs 3,200 51.94 65.08

†`∞-dist net (other architecture) [ZCL21] f N/A f 800 48.32 64.90

a CROWN-IBP here follows [XSZ20] with loss fusion for efficiency, but we found it does not perform well
with a short training schedule under our settings and usually requires a longer schedule to achieve good
results.

b Some test results in [GDS18] are obtained with costly mixed integer programming (MIP) and linear
programming (LP); we take IBP verified errors for fair comparison following [ZCX20].

c Additional PGD adversarial training was involved for this result, according to [ZCX20].
d [BV20] used a different training scheme and train the network layer by layer.
e [LGW21] use IBP-based and CROWN-IBP-based training respectively with their parameterized activa-
tion, and they use a tighter linear bound propagation method for testing instead of IBP.

f [ZCL21] use a very different model architecture with `∞ distance neurons rather than traditional DNNs,
but still need a long schedule on both ε and `p norm where p is gradually increased until ∞.

15

We conduct certified robust training using relatively short warmup schedules to demon-

strate the effectiveness of our proposed techniques for fast training. We show the results

in Table 3.2 for MNIST, CIFAR-10. Compared to Vanilla IBP and CROWN-IBP, our im-

proved IBP training consistently achieves lower standard errors and verified errors under

same schedules respectively, where BN is added to the models for all these three training

methods. We find that CROWN-IBP with loss fusion [XSZ20] tends to require a larger

number of epochs to obtain good results and it sometimes underperform Vanilla IBP under

short schedules, but disabling loss fusion can make it much more costly and unscalable. In

terms of the best results, we achieve verified error 10.82% on MNIST εtarget = 0.4, 65.03% on

CIFAR-10 εtarget = 8/255, and 82.36% on TinyImageNet εtarget = 1/255, which makes a no-

table improvement over literature SOTA [GDS18, XSZ20] that used long training schedules.

Compared to concurrent works [LGW21, ZCL21] which use different improvement tech-

niques, we have comparable verified errors, but they still need long training schedules. For

reference, we tried [ZCL21] which used a different architecture with “`∞ distance neurons”

rather than convolution-based DNNs. On CIFAR-10 using 160 total epochs by reducing

their training schedule proportionally, their verified error is 68.44% which is much higher

than ours. Overall, the results demonstrate that our improved IBP training is effective for

more efficient certified robust training with a shorter warmup. For more experiments, please

refer to [SWZ21].

16

CHAPTER 4

Convergence Analysis for IBP Training

4.1 Preliminaries

4.1.1 Neural Networks

We consider a similar network architecture as used in [DZP18] – a two-layer ReLU network.

Unlike [DZP18] which considered a regression task with a square loss, here we consider

a classification task where IBP is usually used, and we consider binary classification for

simplicity. On a training dataset {(xi, yi)}ni=1, for every i ∈ [n], (xi, yi) is a training example

with d-dimensional input xi(xi∈Rd) and label yi(yi∈{±1}), and the network output is:

f(W, a,xi) =
1√
m

m∑
r=1

arσ(w>r xi), (4.1)

where m is the width of hidden layer (the first layer) in the network, W ∈ Rm×d is the weight

matrix of the hidden layer, wr(r∈ [m]) is the r-th row of W, a ∈ Rm is the weight vector of

the second layer (output layer) with elements a1, · · · , am, and σ(·) is the activation function.

We assume the activation is ReLU as IBP is typically used with ReLU. For initialization,

we set ar ∼ unif[{1,−1}] and wr ∼ N(0, I). Following [DZP18], we assume the second

layer is fixed after initialization, and we only train the first layer. Since we consider binary

classification, we use a logistic loss. For training example (xi, yi), we define ui(W, a,xi) :=

yif(W, a,xi), and then the loss for this example is computed as l(ui(W, a,xi)) = log(1 +

17

exp(−ui(W, a,xi))), and the standard training loss on the whole training set is

L =
n∑
i=1

l(ui(W, a,xi)) =
n∑
i=1

log

(
1 + exp(−ui(W, a,xi))

)
. (4.2)

4.1.2 IBP-based Certified Robust Training

In the robust training setting, for some original input xi (∀i ∈ [n]), we consider that the

actual input to the model may be perturbed into xi + ∆i by perturbation ∆i. For a widely

adopted setting in the adversarial robustness area, we consider `∞ perturbations, where the

perturbation is bounded by an `∞ ball with radius ε(0 ≤ ε ≤ 1), i.e., ‖∆i‖∞ ≤ ε. For

the convenience of subsequent analysis and without loss of generality, we set the following

assumption on each xi:

Assumption 1. ∀i ∈ [n], we assume there exists some ξ > 0, such that xi ∈ [ε, 1]d, ‖xi‖2 ≥

ξ.

This assumption can be easily satisfied by normalizing the training data. Through out

the remaining part of this paper, we assume this assumption holds. In [DZP18], they also

assume there are no parallel data points, and in our case we assume this holds under any

possible perturbation, formulated as:

Assumption 2. For perturbation radius ε, we assume that

∀i, j ∈ [n], i 6= j, ∀x′i ∈ B∞(xi, ε), ∀x′j ∈ B∞(xj, ε), x′i ∦ x′j,

where B∞(xi, ε) stands for the `∞ ball with radius ε centered at xi.

IBP training computes and optimizes a robust loss L, which is an upper bound of the

standard loss for any possible perturbation ∆i(∀i ∈ [n]):

L ≥
n∑
i=1

max
∆i

{
log
(

1 + exp(−yif(W, a,xi + ∆i))
)
| ‖∆i‖∞ ≤ ε

}
.

18

To compute L, since log(·) and exp(·) are both monotonic, for every i ∈ [n], IBP first

computes the lower bound of ui(W, a,xi + ∆i) for ‖∆i‖∞ ≤ ε, denoted as ui. Then the IBP

robust loss is:

L =
n∑
i=1

log(1 + exp(−ui)), where ui ≤ min
∆i

ui(W, a,xi + ∆i) (i = 1, 2, · · · , n). (4.3)

For all i ∈ [n], IBP computes and propagates an interval lower and upper bound for each

neuron in the network, and then ui is equivalent to the lower bound of the final output

neuron. Initially, the interval bound of the input is [xi − ε · 1,x + ε · 1]. Given constraints

of ∆i, we have the interval bound of each neuron in the first layer:

∀r ∈ [m], σ
(
w>r xi − ε‖wr‖1

)
≤ σ

(
w>r (xi + ∆i)

)
≤ σ

(
w>r xi + ε‖wr‖1

)
. (4.4)

Then these interval bounds are propagated to the second layer. We focus on the lower bound

of ui, which can be computed from the bounds of the first layer by considering the sign of

multiplier yiar:

ui = yi
1√
m

m∑
r=1

arσ(w>r (xi + ∆i)) (4.5)

≥ 1√
m

m∑
r=1

1(yiar = 1)σ
(
w>r xi − ε‖wr‖1

)
+ 1(yiar = −1)σ

(
w>r xi + ε‖wr‖1

)
:= ui. (4.6)

Then the IBP robust loss can be obtained as Eq. (4.3). And we define u := (u1, u2, · · · , un).

For certified robust training, we can define a certified robust accuracy in IBP train-

ing, which is the percentage of examples that IBP bounds can successfully certify that the

prediction is correct for any possible perturbation. For every example i(i ∈ [n]), it is consid-

ered as classified correctly and robustly under IBP verification, if and only if ui > 0 where

ui is computed from IBP. Let ũi be the exact solution of the minimization in Eq. (4.3)

rather than relaxed IBP bounds, we can also define a true robust accuracy, where the

19

robustness of prediction requires ũi > 0. The certified robust accuracy by IBP is a provable

lower bound of the true robust accuracy.

4.1.3 Gradient Flow and Gram Matrix

To analyze the convergence of IBP training, we adopt a continuous time analysis with gradi-

ent flow, which is gradient descent with infinitesimal step size and is also used in prior works

for standard training [ACH18, DLL18, DZP18]. In the gradient flow for IBP training,

∀r ∈ [m],
dwr(t)

dt
= − ∂L(t)

∂wr(t)
, (4.7)

where w1(t),w2(t), · · · ,wm(t) are rows of the weight matrix at time t, and L(t) is the IBP

robust loss defined as Eq. (4.3) using weights at time t.

Under the gradient flow setting as Eq. (4.7), for all i ∈ [n], we analyze the dynamics of

ui during IBP training, and we use ui(t) to denote the value of ui at time t:

d

dt
ui(t) =

m∑
r=1

〈
∂ui(t)

∂wr(t)
,
dwr(t)

dt

〉
=

n∑
j=1

−l′(uj)Hij(t), (4.8)

where l′(uj) is the derivative of the loss, H(t) is defined as Hij(t) =
∑m

r=1

〈
∂ui(t)

∂wr(t)
,
∂uj(t)

∂wr(t)

〉
(∀1 ≤ i, j ≤ n), and we provide a detailed derivation in Appendix ??. With the definition

of H, we can describe the dynamic of ui under the gradient flow using H.

From Eq. (4.6), ∀i ∈ [n], r ∈ [m], derivative
∂ui(t)

∂wr(t)
can be computed as follows:

∂ui(t)

∂wr(t)
=

1√
m
yiar

(
A+
ri(t)(xi − ε sign(wr(t))) + A−ri(t)(xi + ε sign(wr(t)))

)
,

20

where sign(wr(t)) is element-wise for wr(t), and we define indicators

A+
ri(t) := 1(yiar = 1,wr(t)

>xi − ε‖wr(t)‖1 > 0), (4.9)

A−ri(t) := 1(yiar = −1,wr(t)
>xi + ε‖wr(t)‖1 > 0), (4.10)

where terms (wr(t)
>xi − ε‖wr(t)‖1 > 0) and (wr(t)xi + ε‖wr(t)‖1 > 0) stand for the active

status of the activation. Then elements in H can be written as (∀1 ≤ i, j ≤ n):

Hij(t) =
1

m
yiyj

m∑
r=1

a2
r

(
A+
ri(t)(xi − ε sign(wr(t))) + A−ri(t)(xi + ε sign(wr(t)))

)>
(
A+
rj(t)(xj − ε sign(wr(t))) + A−rj(t)(xj + ε sign(wr(t)))

)
(4.11)

=
1

m
yiyj

(
x>i xj

m∑
r=1

αrij(t)− ε
(m∑
r=1

(βrij(t)xi + βrji(t)xj)
> sign(wr(t))

)
+ ε2d

m∑
r=1

γrij(t)
)
,

(4.12)

where αrij(t) = (A+
ri(t) + A−ri(t))(A

+
rj(t) + A−rj(t)), (4.13)

βrij(t) = (A+
ri(t) + A−ri(t))(A

+
rj(t)− A−rj(t)), (4.14)

γrij(t) = (A+
ri(t)− A−ri(t))(A+

rj(t)− A−rj(t)). (4.15)

Further, we define Gram matrix H∞ which is the elementwise expectation of H(0), to char-

acterize H(0) on the random initialization basis:

∀1 ≤ i, j ≤ n, H∞ij := E∀1≤r≤m,wr∼N(0,I),ar∼unif[{−1,1}]Hij(0),

where Hij(0) depends on the initialization of weights wr and ar. We also define λ0 :=

λmin(H∞) as the smallest eigenvalue of H∞.

21

4.2 Convergence Analysis for IBP Training

We present the following main theorem which shows the convergence of IBP training under

certain conditions on perturbation radius and network width:

Theorem 1 (Convergence of IBP Training). Suppose Assumption 1 and 2 hold for the

training data, and the `∞ perturbation radius satisfies ε ≤ O(min(
δ2λ20
d2.5n3 ,

√
2dR

log(
√

2πd
R
ξ)

)), where

R = cδλ0
d1.5n2 , c =

√
2πξ

384
. For a two-layer ReLU network (Eq. (4.1)), suppose its width for the

first hidden layer satisfies m ≥ Ω

((
d1.5n4δλ0

δ2λ20−εd2.5n4

)2
)

, and the network is randomly initialized

as ar ∼ unif[{1,−1}],wr ∼ N(0, I), with the second layer fixed during training. Then for

any confidence δ(0< δ < 1), with probability at least 1 − δ, IBP training with gradient flow

can converge to zero training error.

Theorem 2 (Convergence Rate of IBP Training). With the same assumptions and notations

in 1 and t ≤ cδλ0
√
m

d1.5n3 , we have

L(t) ≤ exp

(
2L(0)

)
L(0) exp

(
− λ0t

2

)
,

where L(0) is the IBP loss at initialization t = 0, and wr(t) is the weight wr at time t.

The proof is inspired by the convergence analysis of standard training based on Neural

Tangent Kernel [DZP18]. Please refer to [WSG21] for detailed proof.

4.3 Experiments

We further conduct experiments to compare the convergence of networks with different width

m for natural training and IBP training respectively. We use the MNIST [LCB10] dataset

and choose digit images with label 2 and 5 to construct a binary classification dataset. And

we use a two-layer fully-connected ReLU network with a variable width. In each experiment,

we train the model for 70 epochs. For IBP training, we keep ε fixed throughout the whole

22

500 2000 5000 10000 80000
Model width m

0.00

0.01

0.02

0.03

0.04

Er
ro

r standard training
IBP training with = 0.04
IBP training with = 0.001

(a) Final training error of standard train-
ing and IBP (with ε ∈ {0.001, 0.04}) respec-
tively, when the width m of the model is var-
ied.

0.04 0.05 0.1 0.2

 perutbration radius

0.1

0.2

0.3

0.4

Er
ro

r

hidden layer width=2000
hidden layer width=5000

(b) Final training error of IBP training (on
models with width 2000 and 5000 respec-
tively), when the perturbation radius ε is
varied.

Figure 4.1: Experimental results.

training process. For all the experiments, we use the SGD optimizer. We present results

in Figure 4.1. First, compared with standard training, for the same network width m, IBP

has higher training errors (Figure 4.1a). Second, for relatively large ε (ε = 0.04), even

if we enlarge m up to 80,000 which is limited by the memory of a single GeForce RTX

2080 GPU, IBP certified robust error is far away from 0 (Figure 4.1a). This is consistent

to our main theorem that when ε is too large, simply enlarging m can not guarantee the

convergence. Moreover, when ε grows even larger, it can be difficult to even start the

training, although standard training is possible. IBP training stucks in a local minima of

random guess (with errors close to 50%) at the beginning of training (Figure 4.1b). Therefore

in IBP-based training, existing works typically use a scheduling on ε to gradually increase

ε from 0 until the target value. Theoretically, we believe that this is partly because λ0 can

be very small with a large perturbation, and then the training can be much more difficult,

while this difficulty cannot be alleviated by simply enlarging the network width m. Overall,

the empirical observations match our theoretical results.

23

CHAPTER 5

Conclusion

This paper theoretically analyzes the challenges and difficulty in IBP-based certified robust

training, and also provides empirical improvement for fast and better IBP training. However,

there is still a significant performance gap between certified robust training and empirical

defense methods like adversarial training, and this demands a deeper understanding of the

neural networks and more essential improvements in the future.

24

REFERENCES

[ACH18] Sanjeev Arora, Nadav Cohen, and Elad Hazan. “On the Optimization of Deep
Networks: Implicit Acceleration by Overparameterization.” In International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 244–253, 2018.

[ALS18] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A convergence theory for deep
learning via over-parameterization.” arXiv preprint arXiv:1811.03962, 2018.

[BTT17] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan
Kumar. “Piecewise Linear Neural Network verification: A comparative study.”
CoRR, abs/1711.00455, 2017.

[BV20] Mislav Balunovic and Martin Vechev. “Adversarial training and provable de-
fenses: Bridging the gap.” In International Conference on Learning Representa-
tions, 2020.

[CW17] Nicholas Carlini and David Wagner. “Adversarial examples are not easily de-
tected: Bypassing ten detection methods.” In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, pp. 3–14. ACM, 2017.

[CZC17] Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh. “At-
tacking visual language grounding with adversarial examples: A case study on
neural image captioning.” arXiv preprint arXiv:1712.02051, 2017.

[CZK19] Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, and Jong-Seok Lee.
“Evaluating robustness of deep image super-resolution against adversarial at-
tacks.” In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 303–311, 2019.

[DLL18] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. “Gra-
dient descent finds global minima of deep neural networks.” arXiv preprint
arXiv:1811.03804, 2018.

[DZP18] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. “Gradient de-
scent provably optimizes over-parameterized neural networks.” arXiv preprint
arXiv:1810.02054, 2018.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks.” In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pp. 249–
256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. JMLR Workshop and
Conference Proceedings.

25

[GDS18] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli
Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. “On the effective-
ness of interval bound propagation for training verifiably robust models.” arXiv
preprint arXiv:1810.12715, 2018.

[GSS15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
harnessing adversarial examples.” In ICLR, 2015.

[HZR15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.” In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
December 2015.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift.” In International conference
on machine learning, pp. 448–456. PMLR, 2015.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel:
Convergence and generalization in neural networks.” In NIPS, 2018.

[KBD17] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochender-
fer. “Reluplex: An efficient SMT solver for verifying deep neural networks.” In
International Conference on Computer Aided Verification, pp. 97–117. Springer,
2017.

[KGB16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial examples in
the physical world.” arXiv preprint arXiv:1607.02533, 2016.

[KH09] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features
from tiny images.” Technical Report TR-2009, 2009.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database.” ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist,
2, 2010.

[LGW21] Zhaoyang Lyu, Minghao Guo, Tong Wu, Guodong Xu, Kehuan Zhang, and Dahua
Lin. “Towards Evaluating and Training Verifiably Robust Neural Networks.”,
2021.

[LL18] Yuanzhi Li and Yingyu Liang. “Learning Overparameterized Neural Networks
via Stochastic Gradient Descent on Structured Data.” In Advances in Neural
Information Processing Systems, pp. 8168–8177, 2018.

[LSS19] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. “Dying
relu and initialization: Theory and numerical examples.” arXiv preprint
arXiv:1903.06733, 2019.

26

[MGV18] Matthew Mirman, Timon Gehr, and Martin Vechev. “Differentiable abstract
interpretation for provably robust neural networks.” In International Conference
on Machine Learning, pp. 3575–3583, 2018.

[MMS18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. “Towards deep learning models resistant to adversarial attacks.”
In ICLR, 2018.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. “Semidefinite relax-
ations for certifying robustness to adversarial examples.” In Advances in Neural
Information Processing Systems, pp. 10877–10887, 2018.

[SGM18] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin
Vechev. “Fast and Effective Robustness Certification.” In Advances in Neural
Information Processing Systems, pp. 10825–10836, 2018.

[SGP19] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. “An ab-
stract domain for certifying neural networks.” Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):41, 2019.

[SMG13] Andrew M Saxe, James L McClelland, and Surya Ganguli. “Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks.” arXiv preprint
arXiv:1312.6120, 2013.

[STI18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. “How
does batch normalization help optimization?” In Proceedings of the 32nd interna-
tional conference on neural information processing systems, pp. 2488–2498, 2018.

[SWZ21] Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. “Fast
Certified Robust Training via Better Initialization and Shorter Warmup.” arXiv
preprint arXiv:2103.17268, 2021.

[SZC18] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao.
“Is Robustness the Cost of Accuracy?–A Comprehensive Study on the Robust-
ness of 18 Deep Image Classification Models.” In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 631–648, 2018.

[SZS13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural networks.”
In ICLR, 2013.

[Van17] Twan Van Laarhoven. “L2 regularization versus batch and weight normalization.”
arXiv preprint arXiv:1706.05350, 2017.

27

[WK18] Eric Wong and Zico Kolter. “Provable Defenses against Adversarial Examples
via the Convex Outer Adversarial Polytope.” In International Conference on
Machine Learning, pp. 5283–5292, 2018.

[WPW18] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana.
“Efficient formal safety analysis of neural networks.” In Advances in Neural In-
formation Processing Systems, pp. 6367–6377, 2018.

[WSG21] Yihan Wang, Zhouxing Shi, Quanquan Gu, and Cho-Jui Hsieh. “On the Con-
vergence of Certified Robust Training with Interval Bound Propagation.” In
International Conference on Learning Representations, 2021.

[WSM18] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. “Scaling
provable adversarial defenses.” In NIPS, 2018.

[WZX21] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and
J Zico Kolter. “Beta-CROWN: Efficient Bound Propagation with Per-neuron
Split Constraints for Complete and Incomplete Neural Network Verification.”
arXiv preprint arXiv:2103.06624, 2021.

[XGD17] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. “Ag-
gregated residual transformations for deep neural networks.” In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1492–1500,
2017.

[XSZ20] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie
Huang, Bhavya Kailkhura, Xue Lin, and Cho-Jui Hsieh. “Automatic pertur-
bation analysis for scalable certified robustness and beyond.” Advances in Neural
Information Processing Systems, 33, 2020.

[ZCL21] Bohang Zhang, Tianle Cai, Zhou Lu, Di He, and Liwei Wang. “Towards Certify-
ing `∞ Robustness using Neural Networks with `∞-dist Neurons.” arXiv preprint
arXiv:2102.05363, 2021.

[ZCX20] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, and Cho-Jui
Hsieh. “Towards stable and efficient training of verifiably robust neural net-
works.” In International Conference on Learning Representations, 2020.

[ZCZ18] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. “Stochastic gradi-
ent descent optimizes over-parameterized deep relu networks.” arXiv preprint
arXiv:1811.08888, 2018.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks.” arXiv
preprint arXiv:1605.07146, 2016.

28

[ZWC18] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.
“Efficient neural network robustness certification with general activation func-
tions.” In Advances in neural information processing systems, pp. 4939–4948,
2018.

29

	Introduction
	Interval Bound Propagation and IBP training
	Certified Defense
	Interval Bound Propagation (IBP)
	Interval Bound Propagation (IBP) Training
	Slow Certified Training with Long Warm-up Schedule
	Difficulty in IBP Convergence

	Fast IBP Training with Shorter Warm-up
	Two Issues in Existing IBP training
	Proposed Method for Fast IBP Training
	IBP initialization
	Batch Normalization
	Warmup Regularization
	Training Objectives

	Experiments
	Settings

	Convergence Analysis for IBP Training
	Preliminaries
	Neural Networks
	IBP-based Certified Robust Training
	Gradient Flow and Gram Matrix

	Convergence Analysis for IBP Training
	Experiments

	Conclusion
	References

