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The Principles of Invariance for Direct ly Observable 

Irradiances in Plane-Paral le l Media 

Rudolph W. Preisendorfer 

Scripps In s t i t u t ion of Oceanography, University of California 

La J o l l a , California 

INTRODUCTION 

In t h i s work we complete the outl ine of the basic theory of 

d i r ec t ly observable i r rad iances 1 in a p lane-para l le l medium X by 

formally deriving the pr inciples of invariance which govern these 

irradiances and the i r associated reflectance and transmittance 

functions over a rb i t r a ry subslabs of X • Th© derivations hold for a 

completely general plane-paral lel medium s e t t i n g : The medium i s 

a r b i t r a r i l y s t r a t i f i e d with re f lec t ing boundaries, and has a given se t 

of external and internal source condit ions. 

Some addit ional r e su l t s of the present work a re : (a) The 

derivat ion of the d i f f e ren t i a l equations governing the ref lectance and 

transmittance functions associated with a rb i t ra ry subslabs in X for 

the up-and-downward i r radiances , thereby completing the two-flow 

counterpart to the general radiance se t t ing established e a r l i e r 2 ; 

(b) a theorem which es tabl ishes the equivalence of the d i f fe ren t i a l 

equations governing the values of the observable refle ctance function 

R . ( Z , - ) for the medium and the values of the reflectance function Roa^b 
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of an a rb i t ra ry subslab of the medium; (c) simple approximate formulae 

for the empirical determination of the reflectance and transmittance 

factors associated with an arb i t ra ry subslab of X between depths QL 

and b , a£ b J ^ d f ina l ly ; (d) a brief discussion which es t ab l i shes , 

by means of examples, some connections between the present exact R. and 

~f functions and the i r c lassical counterparts in the various Schuster 

two-flow models of the l igh t f i e ld . 

In th i s way we complete the basic outlines of the exact theory of 

the tKo-flow analysis of the l i gh t f ield begun in reference 3, wherein 

the exact equations of the two-flow analysis were derived from the 

basic equation of t ransfer . The net r e su l t i s a chain of deductions 

s t a r t i ng from the basic radiance t ransfer equation, through the 

equations governing the observable up-and downwelling irradiances and 

the d i f fe ren t ia l equations governing the i r associated reflectance and 

transmittance functions in an arb i t ra ry rea l p lane-para l le l medium. 
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FORMAL DERIVATION OF THE INVARIANT IMBEDDING RELATION 

In an ea r l i e r study*1 we established a useful l ine of approach tha t 

may bo adopted in tho risrivation of the pr inciples of invariance far 

any member of the general class of one-parameter car r ie r spaces in 

radia t ive and neutron transuort theory. Thus, In order to es tab l i sh 

tho pr inciples of invariance i n any one-parameter optical medium (such 

as the present p lane-para l le l medium) i t is necessary only to es tabl ish 

the invariant imbedding re la t ion for t ha t medium. The remaining steps 

in the exp l ic i t der ivat ion of the statements of the pr inciples of 

invariance are given in general in reference h. 

The present section i s devoted to the formal d er iva t ion of the 

invariant imbedding re la t ion governing the pair of irradiance functions 

H (')~) within an a rb i t r a ry subslab {_Q.} b"} in an a rb i t r a ry plane 

p a r a l l e l optical medium over the in te rva l COi ^ / 3 , I t must be 

emphasized tha t the derivat ion i s formal in the sense that i t gives 

a l l the manipulative steps tha t must be covered in the passage from the 

equations of t ransfer governing H (*, ~Z) to the resu l t an t statements 

of the pr inciples of invariance. The regu la r i ty conditions (such as 

cont inui ty , d i f f e r e n t i a b i l i t y , e t c . ) on the physical sca t ter ing and 

absorption functions are not given. The emphasis in the present paper 

i s primari ly on physical ideas and concepts; hence r egu la r i ty 

considerat ions, which are primarily of mathematical i n t e r e s t , 

r igh t fu l ly assume a subordinate role in the following discussions. 



SIO Ref: 59-73 - I -

Local Forms of the Principles of Invariance 

The s t a r t i ng point of the derivations i s the set of exact equations-^ 

governing the up-and downwelling irradiance functions H(*j X ) over 

the general depth subinterval L"x,2] C [>>fcO (Figure 1) in the 

optical medium whose locat ion space extends over the depth in te rva l 

CO, 2 / 1 s 
4 

_ d\L<-*\*}. -, y ( 2 , 1 ) ^ 2 - , * ) + H ^ T l H Z . ^ t ^ ^ l l . 
d* (1) 

Here we have set 

( 2 > 

K*,±) * bf2,±; , (3) 

where the functions a(',i) , b ( ', t ) , -PC«, ± ) and c<f«;;/-J 

on ["o, Z/] are completely defined in reference 3. The functions 

ur^(')'t) are the general emission functions on £ol 2,7 which implicitly 

include the boundary conditions on " X . The functions i. C ')~t ) 

on L~°)2i"D are the local transmittance functions for the upwelling (+) 

and downwelling (-) streams (c f. the corresponding functions for the 

radiance context in reference 2). The functions H # > ± ) on 

are the local reflectance functions for their respective streams. 
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The s e t of equations (1 ) , wr i t ten in the indicated form, are 

called the local forms of the pr inciples of invariance. The reason 

for the present choice of terrdn0 logy wi l l become clear af ter an 

examination of the (global) statements of the pr inciples of invariance 

(see Equations (22), (23) below). 

The Green's Function Approach 

Our present l ine of approach to the invariant imbedding r e l a t i o n 

w i l l be through the Green's function associated with the se t of 

equations (1) . Toward th i s end, we introduce the operators 

0+ % _ + L_ , (U) 

Ma,*) 

where we have se t 

Si <*) 

To assure unambiguous use of (U), let J be any differentiable function 

on C°>?il > t n e n Pi f is defined by: 

d^Ui) -i(t,±)f(i) ... 
D±tu) — — ' (6) 
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With the adoption of the operators Ot; , the s e t ( l ) may be 

wri t ten (read upper signs together, lower signs toge ther ) : 

(7) 

By means of the set (7 ) , i t follows t ha t , for example: 

= H 0V> •+ 
H(zr i + 

Hence the set (l) may be reduced to the simple and compact 

oner at or form» 

L± H(2,T) + # * ( * , + ) - O 

where 

(8) 

L t * D± D+ - 1 (9) 

and 

D , , ^ 
<Z,±) J 

(10) 
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Now assuming the existence of a Green's function Q^CX*- *>,2) o n 

Lx>2 ]X fa, J.J f0r each of the operators /_ + in (8) (which should 

certainly exist in all physical situations) we may represent the 

functions H('jf) on Z^,i~S a s : 

H(%±) = 

O^ X S: H *: 2 * h 

(11) 

The Invariant Imbedding Relation 

To obtain the requ is i t e form of the invariant imbedding r e l a t i on 

we simply adopt a pair of general Dirac-del ta source conditions at 

the a rb i t r a ry levels % and •£ . Thus, UXj ( - , ~£) are chosen so tha t 

US* ( •, i ) S O on (x, Z \ , and in pa r t i cu l a r : 

$ 4 ( V - ) « $ - ( ^ f ) - H<a,-> <fry-*» "*• H C2, + ) J(«j^J(i2) 

where :X ̂  ^ i j? . It follows from (11), with the adopted forms in 

(12) that 

H(^-) =• MC^y-) <S+ (*>*; 3,^ ) 
(13) 

>> 
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and 

(1U) 

The special values of the Green's functions occurring in (13) aid 

(III) define the requisite complete reflectance and transmittance 

functions over fjX) I J . Thus, we set: 

(15) 

(16) 

(17) 

(18) 

With these definitions, the pair of values £ H (^J*") i ^^;~)j is 

related to the pair Q H (i?,-t), hU^,-)] by means of the linear operator 

1V) (X ill)* 

!><V),h/̂ ,-)"] = [^^+).H^r)l tyu*/1},* ) (19) 

where 
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Oript,^, i) 
(20) 

We have novr reached the stage represented by Equation ( l ) in 

reference h. 

THE PRINCIPLES OF INVARIANCE 

Following the methodology established in reference h, we obtain 

from ( i f ) the following two main statements of the pr inciples of 

invariance over the a rb i t ra ry subslab £CX > £ J of £"<2;jj"] ^ [ 0, 2 \\ 

(Figure 1 ) : 

X. H ( * , + ) =• Hf£,+ ) T ( 2 , ^ ) -»- H (*),-) R(V>Z) 

JLm H c ^ r ) *= HCZ,-) T(3,D + H<%M&(V>x) 

(21) 
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Then the same principles for the particular slab £a i o 3 are: 

I , N ( ^ , t ) = HCb, + )T(b,*) + H(V,-)R(y,l>) 

And in particular: 

ar H C ^ / O - HC6,+)T^,a) + H ^ r ) Rr<?,fc) 
- H f V ) T ( ^ a ) t tffa,-) £^ ,2- ) 

- H(=(r) TG*,(>) + H(M) £(b)X) 

The functions TC-j -) and R(' ; <) defined on 

are the standard transmittance and reflectance functions for the slab 
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FUNCTIONAL RELATIONS GOVW'ING THE R AND T FUNCTIONS 

The functional re la t ions governing the standard R. and "7* functions 

are obtained by applying sui table d i f fe ren t ia t ion and l imit ing arguments 

to the se t I - IV and the local forms of the pr inciples of invariance 

( i . e . , the se t of equations ( l ) ) . Thus, to find the functional 

re la t ion governing (ZCOib) associated with the s lab [Ojh~J C £o} ?,~] 

l e t kCQ)-) be a rb i t ra ry and se t M(b) 4-) ̂ rO ; then, d i f fe ren t ia te 

pr inciple I (equation (22)) with respect to M : 

cUft 0LM du (26) 

Now l e t M - > a . Then from ( l ) (with U/o (•{£) = O on f f i ^ l ) 

(27) 
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where the l a s t equali ty i s obtained by means of I I I (Equation (2U)) 

once again using the present boundary condition: H ((?;+) — 0, In a 

s imilar way we obtain: 

(28) 

Since 

cW^M 3(Ua,b) 
\ K W l , 3 ^ * oW ^ 

^ 
<3. 

and HCO-r) is arbitrary, the limit operation /ow applied to 

(26) yields: 

It is informative to compare this with statement I1 of reference 2. 

The similarity is striking. Recall that the statement I' in reference 

2 is an operator statement: the quantities appearing in that statement 

are operators and not functions as in (29) above. Hence the indicated 

relative positions of the operators in I' of reference 2 are absolutely 

essential; but in (29) — since multiplication in the real number 
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system is commutative — the various factors can be rearranged at will 

within each terira. Thus, if desired, (29) can be put in a form even 

more closely resembling its operator counterpart in I' of reference 2. 

The essential pattern of derivation of the functional relations is 

now clear: it proceeds in precisely the manner established in reference 

2. The only difference worth noting is that we are now working with 

real-valued functions, instead of function-valued operators. The 

results are: 

ay 

U' - 3li*iM _ lie*-) + H<M) ^(o,b)~]1(o,b) 
da. 

(30) 

(31) 

(32) 

The set (29) - (32) is associated with downwelling flux and applies 

to the boundary conditions: H(0>~) arbitrary, \-{ ( <oj\-)^0 . Another 
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set follows for upwelling flux and is found by repeating the above 

steps now for arbitrary U(b\+) f an(ji ^ ^ _ ) _ Q # 

Observe that the system (29) and (32) supplies just enough 

relations so that one may, in principle, solve for the R_ and T function; 

for both the upwelling and downwelling streams. Thus Equation (29) may 

be used to determine £ (C{) b) . Then Equation (32) is used to find 

~T(0.,\)) • Knowing £(tf}b) and T(aib) allows the determination 

of 7 £ b , a ) by means of (31) and (l(b,a) by means of (30). In 

practical procedures leading to the determination of the pairs 

l((*)h) > J(a,b) and (LCb,al > T(b,CL) , it is best to 

establish the appropriate functional relations belonging specifically 

to the latter pair, the standard factors for the upwelling stream 

(see, e.g., references 5 and 6 where this procedure was followed for 

the discrete-space setting.) 

One final observation should be made concerning the nature of the 

present K. and T functions. As a nreliminary to the observation, 

recall that R. and T entities have been derived for the linear lattice 

and cubic lattice contexts in discrete optical medial6. In each of 

the latter cases, these entities are essentially independent of the 

directional structure of the light field. In the present case, 

however, the ft- and ""T" functions are virtually carved out of the 

living light field, so that a particular pair (I (O,h) , T(H/b) 

for example;is in a one to one correspondence with the observable 

radiance distributions at the fixed levels (X and b . While the 



SIO Ref: 59-73 - 15 -

notation does not exp l i c i t l y carry along th i s fac t , i t may be 

immediately ver if ied by examining the def ini t ions of the functions 

a( ' ,t. ) and b( •> t ) in terms of which k C-. ± ) and \-( - ,*£ ) 

are defined. 

EQUIVALENCE THEOREM FOR REFLECTANCE EQUATIONS 

In fn e a r l i e r study? i t was shown tha t the d i f f e ren t i a l equation 

governing the observable reflectance function iZ (')~) on [ o, 2 \~) 

defined by: 

at each depth £ in £0, £,") } was of the form: 

- l i ^ J l U b(*rl- CCZ)d<lH * b ( 2 , + ) ^ r ) , , „ . 

where 

CIS.) * C U * , - ) 4- C i ( i , * ) + bil,-) -f- \o<2, +) 

Now l e t £ i t b J be an a rb i t ra ry variable subinterval of £0, 2{~\ 

with V) fixed, Q <- F 5- b -5 2 1 , Then from a comparison of (33) 

with (29) and (2 ) , we have the following remarkable 
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THBOREMt Let X be an a r b i t r a r i l y s t r a t i f i e d source-free plane-paral le l 

opt ical medium over the depth in terval CoiiQ with a rb i t ra ry boundary 

l ight ing conditions. Then over a common a rb i t r a ry var iable subinterval 

C 2 j „•! C C Q\ £ i J the d i f fe ren t ia l equqftjona governing the observable 

reflectance function R ( ' ) " ) and the standard reflectance function 

R ( ' ) b) associated with LZib^l are i den t i ca l . 

This theorem, coupled with the r e su l t s of reference 7, can lead to 

some in teres t ing prac t ica l methods of evaluating the standard reflectance 

(and hence transmittance) functions for a rb i t r a ry subslabs in X . 

The discussion of these methods here would, however, cons t i tu te too 

great a digression from our present goals . We w i l l be content for the 

present to derive two simple aporoximate rules of thumb which may be 

used to estimate the magnitudes of /$.(<2;b) a r i d ~T(0)b) for an 

arb i t ra ry subinterval C ° > b"3 of £ Ojit~} , 
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A RULE OF THUMB FOR EMPIRICAL ESTIMATES OF THE STANDARD REFLECTANCE 

AND TRANSMITTANCE FUNCTIONS 

From the statements III and IV (Equations (3U) and (35) of the 

principles of invariance we have, for every subinterval La)b J of £o,£t~)i 

H(o^) = H(b,i) T(b,a) + M f f l i - i g ^ W 

H(br) = H '«r> T(o,b) + H(bj-H R(b,a.l 

Now, the functions R. and T on C<9 > 2Y3 > L~o, 2 ,3 generally 

possess polarity-3* as may be seen from general qua l i t a t ive arguments , 

or d i r ec t l y from (29) - : ( 3 2 ) . , That i s , in general, ~T(a>b] ^ T(bfi\ 

and aC°^)b) ^ R(b>&) • However, for some p rac t i ca l purposes, the 

general order of magnitude of |?(<a;b) and ~TC<*.)b) can be estimated 

by assuming tha t ' £ f a , b ) = &(b,a).t a^d -JJ(#,),) * ^ ( i ^ ) , . , . j 

In th is case, the preceding pa i r of equations can be solved for (Z(<2)b) 

and ~T(<X]b)( •». iThe . resul t is*.-, i . . 

. . . ) i • • / . 

MCO/-) H (ferO ~ HCa/f) H ( M / 
C H l ( Q f l - H V W 
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How good are these rules? The larger the magnitude of the 

difference: | d - k | , the more accurate each i s , since for fixed C*. , 

0. -S: b < OP in an in f in i t e ly deep medium, we have, respect ively from 

(3U) and (35)J 

J a - W - c o ( 3 6 ) 

im T(a,\o) - O (37) 

On the other hand, for small values of \c*. — h.\ > C*. fixed, it can be 

shown from (2h) that, 

[a-M — o U-bl (28) 

ex is t s i f ^ 0 , 4 - ) = lo(a)-] S bfo; and a £ a ; - f - ) ~ OCQ,~) 

Thus, the estimate (3U) of ^C^jr>) i s accurate if the corresponding 

values of the backward scat ter ing functions for each stream and the 

absorption functions for each stream are nearly equal at depth Ck. , 

F inal ly , i t i s clear from (35) t ha t , for fixed O- , 

|rty! t...* T(*,b) - ( , (39) 

as expected. 
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CONNECTIONS WITH THE CLASSICAL THEORY 

The c lass ica l Schuster two-flow theory of the l i gh t f ie ld describes 

the irradiances in a boundryless, sourceless, i so t rop ica l ly sca t te r ing 

homogeneous slab over an in te rva l £o) 2>3 i r radia ted at the upper 

level ( 2 =* O) by a d i rec t iona l ly uniform radiance d i s t r ibu t ion and 

with HCZ-) + )~/0 • The theory proceeds on the assumption tha t 

b f i f j - ) = b ( 2 , + ) H . b * a n d a (l)-l = <XC2i+) = CL*" ( i . e . tha t 

the backward sca t te r ing and absorption functions for each stream are 

ident ical and have the constant s tarred values over the s lab . ) We can 

immediately deduce the values !Z(0)2 ) and T(O)H) associated with 

th is s lab , on the basis of the present general theory. To do t h i s , we 

merely r e c a l l the statement of the equivalence theorem for reflectance 

equations proved above. This allows us to use the expression for 

dCiij~) given in (7) of reference 7: 

R% - R. C(2»~) ex?{-[c1--4kc-)b«)~] W * . ) \ 
£ ( j ? t _ ) ; = r -r, (40) 

Refer to reference 7 for definitions and notation. We need only 

observe that, under the present setting, 
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^ „ ^ Q 

zL *—* z 

R(2,,-) - O 

and finally, that 

where -# is the diffuse absorption coefficient of the classical theory. 

Hence 

[l - exP{-2Jki~) ] 

b * s m h A 2 ( l4 l ) 

— ? 

which is the usual form for the reflectance of a slab of depth ^ over 

an arbitrary interval £o, £ "3 • 

The remaining form for T (Ot &) can now be deduced immediately 

from relation IV' (Equation (32)), but the point of this section has 

essentially been made: the classical two-flow theory is an elementary 

special case of the present theory of directly observable quantities 

in real light fields. 
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