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The Principles of Invariance for Directly Observable

Irradiances in Plane-Parallel Media
Rudolph W, Preisendorfer

Scripps Institution of Oceanography, University of California

La Jolla, California

INTRODUCTION

In this work we complete the outline of the basic theory of
directly observable irradiacesl in a plane-parallel medium X by
formally deriving the principles of invariance which govern these
irradiances and their associated reflectance and transmittance
functions over arbitrary subslabs of )( « The derivations hold for a
completely general plane-parallel medium setting: The medium is
arhitrarily stratified with reflecting boundaries, and has a given set

of external and internal source conditions,

Some additional results of the present work are: (a) The
derivation of the differential equations governing the reflectance and
transmittance functions associated with arbitrary subslabs in )( for
the up-and-downward irradiances, thereby completing the two-flow
counterpart to the general radiance setting established earlierz;

(b) a theorem which estahlishes the equivalence of the differential

equations governing the values of the observable reflectance function

R(Z,—-) for the medium and the values of the reflectance function R(a)b)
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of an arbitrary subslab of the medium; (¢) simple approximate formulae
for the empirical determination of the reflectance and transmittance
factors asgociated with an arbitrary subslab of X between depths a

and b , 0= b ; and finally; (d) a brief discussion which establishes,
by means of examples, some connections between the present exact R ard
T functions and their classical counterparts in the various Schuster

two-flow models of the light field.

In this way we complete the basic outlines of the exact theory of
the tw -flow analysis of the light field “egun in reference 3, wherein
the exact equations of the two-flow analysis were derived from the
basic equation of transfer. The net result is a chain of deductions
starting from the basic radiance transfer equation, through the
equations governing the observable up-and downwelling irradiances and
the differential equations governing their associated reflectance and

transmittance functions in an arbitrary real plane~-parallel medium,
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FORMAL DERIVATION OF THE IFVARIANT IMBWDDING RELATION

In an earlier sta:«i!y"l we established a useful line of approach that
may be adopted in th: darivation of the principles of invariance far
any member of the general class of one-parameter carrier spaces in
radiative and neutron transuort theory, Thus, in order to establish
the principles of invariance in any one-parameter optical medium (such
as the present plane-parallel medium) it is necessary only to establish
the invariant imbedding relation for that medium, The remaining steps
in the explicit derivation of the statements of the principles of

invariance are given in general in reference 1.

The present section is devoted to the formal derivation of the
invariant imbedding relation governing the pair of irradiance functions
H(°);*) within an arbitrary subslab [a,b] in an arbitrary plane
parallel optical medium over the interval [0, 23, It must be
emphasized that the derivation is farmal in the sense that it gives
all the manipulative steps that must be covered in the passage from the
equations of transfer governing M (*;¥) to the resultant statements
of the principles of invariance, The regulapity conditions (such as
continuity, differentiability, etc,) on the physical scattering and
absorption functions are not given, The emphasis in the present paper
is primarily on physical ideas and concepts; hence regularity
considerations, which are primarily of mathematical interest,

rightfully assume a subordinate role in the following discussions.
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Local Forms of the Principles of Invariance

The starting point of the derivations is the set of exact equations3
governing the up-and downwelling irradiance functions H(-, ¥) over
the general depth subinterval [X,2] € [a,b] (Figure 1) in the

optical medium whose location space extends over the depth interval

EO) 2/] H

[

- dhext) = HEDOERT)+ HET)HET) + wiy(2,T),
d 2 (1)

Here we have set

tx,¥) = -[acz, 1) +biz, )]

(2)
F(2t) -~ xX(2,t),

H

F(2,t) = b(Zt) | (3)

where the functions Q(-) %) , b(-* , FC*)  am X (2, 1)
on [o, Z;] are completely defined in reference 3, The functions
Wy,(',‘!_’) are the general emission functions on Lo, 2/ which implicitly
include the boundary conditions on X . The functions t (¢, %)
on [©2)2,] are the local transmittance functions for the upwelling (4)
and downwelling (-) streams (c f. the corresponding functions for the
radiance context in reference 2), The functions (e, t } on

are the local reflectance functions for their respective streams.
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The set of equations (1), written in the indicated form, are

called the local forms of the principles of invariance. The reason

for the present choice of terriinglogy will become clear after an
examination of the (plobal) statements of the principles of invariance

(see Equations (22), (23) helow).

The Green's Function Approach

Our present line of approach to the invariant imbedding relation
will be through the Green's function associated with the set of
equations (1), Toward this end, we introduce the operators

g - t(zt)
Dy = * ? (L)

N F(z,¥)

where we have set

— d
ds = ¥ 5 (5)

To assure unambiguous use of (L), let )C be any differentiable function

on [0,2,] , then D1+ f is defined hy:

dyfez) ~toa, 2y fa)

_ ' (6)
g & ——
D+ $(2) b2, T
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With the adoption of the operatars D+ , the set (1) may be

written (read upper signs together, lower signs together):

v (2,1)
"’(Z) + )
By means of the set (7), it follows that, for example:
|
| - S (Z) -)
| Dy [ P=H(Z, )] = Dy N+ + Dy [ P ]
= H(z-) + WYET) ‘”’"Z’ ’
Hence the set (1) may be reduced to the simple and compact
operator formi
i Ly H2F)+ Pr (1) =0 (8)
|
‘ where
Ll‘ = D:t D; -1 (9)
and

(10)
, £ wh (Z,F)
M2, F) (2,
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Now assuming the existence of a Green's function C;_,_(x,--, e,2)on
Ex:”-lel, 2] for each of the operators [ + in (8) (which should
certainly exist in all physical situations) we may represent the

functions H(,¥) on [x,27] as:

z
H(y,t) = L 97_5I (#)2) G (2759 ,2) dz’ o)

asxs;sz’sb

The Invariant Imbedding Relation

To obtain the requisite form of the invariant imbedding relation
we simply adopt a pair of gereral Dirac-delta source conditions at
the arbitrary levels X and Z . Thus, Wh(-, 1) are chosen so that

uj’,)(-,i)‘.-.—: O on (.)(,Z') , and in particular:
B, (4-)= P_(y4) = H(x=) Qly=X) + H(2)¥) 5(‘1*?)](12)

where X <4 s Z , It follows from (11), with the adopted forms in

(12) that

H(‘j,*’) = H(X,—)G+(I;X)':j,£) (13)

+ H(24) Gy (x,2:9,2) )
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and
Hiy+) = HX,=) Ga(x,%; 9, 2)

+ H(ZEA) G- (2, %;9,2)
(1k)

The special values of the Green's functions occurring in (13) ad

(1L) define the requisite complete reflectance and transmittance

functions over [, £7] . Thus, we set:

")

‘T( xR (15)

G’.’.(_X) A ) jli)

Gelx,2: 4 2) = Rz, 9x) (16)
Go(x,x;4,2) F R(x92l (an
G.(x, 25 4,2) = T(zyx) (18)

With these definitions, the pair of values LH (y;t), H(‘j;“)] is

relatod to the pair [ H (Z1), M (X,-)] by means of the linear operator
m (117'2)3

[H(9 4, Hy=)] = [H(2A), Hz-)] ey, 2) (9

where



SIO Ref: 59-73 -9 -

Tz, x> R(2,9x)
%(J(J‘j;%) = (20)
QRcx9,2)  Texrg )

We have now reached the stage represented by Equation (1) in

reference l.

THE PRINCIPLES OF INVARIANCE

Following the methodology established in reference L, we obtain
from (1¢) the following two main statements of the principles of
invariance over the arbitrary subslab [X(;2 J of [a,b] < [0,2/)

(Figure 1):

. Heym) = Hx-) T(29) + H (94 RE9,x]

1. H(y,+) = H(£,+)T(2,fj) + H(y-) R(y,7Z)

(21)
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Then the same principles for the particular slab [jﬂ ,6'3 are:

Hy,b) = Hb,+1T(b,4) + H(y,~)R(y,b) 2

H(Yr~)= H@r) Ta9) + H(y+) R(9,a) 23)

And in particular:

Ha,t) = Hbt) T(ba) + H(a-) Rieb) (2k)
= H(24) T (2,a4) + H(a,) R(a,z)

H(b,-) = H(-) Tea,b) + H(b+) R(ba) (25)
= H(x,=) T(x,b) + H(py4) R(b) X)

The functions T(¢;-) and R(-, ) defined on
Layb]x[a,b] < Co, 2,7 xCo, 2,7

are the standard transmittance and reflectance functions for the slab

[a,b7<c Lo, 23
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FUNCTIOMAL RELATIONS GOVSRMING THE R AND T FUNCTIONS

The functional relations governing the stardard R and T functions
are obtained by applying suitahble differentiation and limiting arguments
to the set I - IV and the local forms of the principles of invariance
(i.e., the set of equations (1)), Thus, to find the functional
relation governing R (a, h) associated with the slab [o,b] < [o,2,7]
let H(&;~) be arbitrary and set M(by+)> O ; then, differentiate

principle I (equation (22)) with respect to i

cHig,t) ol H(y,~)

—
o~

R(v,b) ~+ H(9,-) d Ry, b)

oluy oly oly (26)

Now let tj-»a.. Then from (1) (with Wy (1) =Q0on [a,bL] )

AH4,t)

e S

= |im a [‘H(‘Jﬁ’)‘c(‘o,*} + Hy,-) Hj,—)]

‘JQ

= [;.;(a,+)1c(a,+) + H(Q,—”(“i’}j

(27)
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where the last equality is obtained by means of III (Equation (2L))
once again using the pressnt boundary conditinon: H(b,+)= O, In a

similar way we obtain:

.
= limy o T HA) gm0 + HYp) Feyit )

= H (a)"l) [:%(‘("‘, + 2(C(/b) /—(kj;‘f‘)j ’

(28)

Since

\ dRiy,b) D R(abl
"My >a o!g - da

and H(a,—) is arbitrary, the limit operation ,nmj_,a applied to
(26) yields:

/' JR(ab)

. da = F(a,-) + [t *’%("-l"‘ﬂ Reab) + k(a,+)122(a,b)(29)

It is informative to compare this with statement I' of reference 2.
The similarity is striking. Recall that the statement I' in reference

2 is an operator statement: the quantities appearing in that statement

are operators and not functions as in (29) above, Hence the indicated

relative positions of the operators in I' of reference 2 are absolutely

essential; but in (29) =~ since multiplication in the real number
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system is commutative -~ the various factors can be rearranged at will
within each term, Thus, if desired, (29) can be put in a form even

more closely resembling its operator counterpart in I' of reference 2,

The essential pattern of derivation of the functional relations is
now clear: it proceeds in precisely the manner established in reference
2, The only difference worth noting is that we are now working with
real-valued functions, instead of function-valued operators. The

resuvlts are:

T 2TA8) o Ty 4 k(b -) R(bya)] T (ab)

9
b (30)
m 2 R(ab) =~ F(b=) T(ah) T(ha)
———-—-—ab (31)

ml - 3T(a,6\ - [{(q)-—) + Flapq) R(Q;b)j T(Glb) (32)

da

The set (29) - (32) is associated with downwelling flux and applies

to the boundary conditions: H(&,~) arbitrary, [H(b,+)=0 , Another
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set follows for upwelling flux and is found by repeating the above

steps now for arbitrary H(bt) s and H(a,~)= O ,

Observe that the system (29) and (32) supplies just enough

relations so that one may, in princinle, solve for the R_and T functiors

for both the upwelling and downwelling streams. Thus Equation (29) may
be used to determine R (a,b) . Then Equation (32) is used to find
T(a,b) +« Enowing R(a,b) and T(g,b) allows the determination
of T(b,&) by means of (31) and R(b,a) by means of (30). In
practical procedures leading to the determination of the pairs
Q(ay > Teab) a4 R(va) s T(ba) , it is best to
establish the appropriate functional relations belonging specifically
to the latter pair, the standard factors for the upwelling stream

(see, e.g., references 5 and 6 where this procedure was followed for

the discrete-space setting.)

One final observation should be made concerning the nature of the
present K and T functions., As a nreliminary to the observation,
recall that R and T entities have been derived for the linear lattice
and cubic lattice contexts in discrete optical medias’é. In each of
the latter cases, these entities are essentially independent of the
directional structure of the light field. In the present case,
however, the R and T functions are virtually carved out of the
living light field, so that a particular p#ir Rta,b) , Tc(a,b) g
for exanple,is in a one to one correspondence with the observable

radiance distributions at the fixed levels O-and b . While the
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notation does not explicitly carry along this fact, it may be
immediately verified by examining the definitions of the functions
a(,%t) and b¢(-,t) in terms of which £(¢-,*) and k(-,T)

are defined,

EQUIVALENCE THEORT™M FOR REFLECTANCE EQUATIONS

In &n earlier study7 it was shown that the differential equation

governing the observahle reflectance function R (*;~) on [o, 2]

defined by:

H(Z,+)

R€2m)= 735

at each depth Z in [ O, 2,7}, was of the form:

. ‘ 2 -
_ daﬁ' "= b)Y~ c@IR(R) - @ RYES),

where

C(2) = Q(Z,—) + 0(Z,+) + b(2,-) +b(2,+)

Now let EZ\ Lf] be an arbitrary variable subinterval of [o, z,j
with b fixed, 0% 2< b = Z{ , Then from a comparison of (33)

with (29) am (2), we have the following remarkable
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THEOREM: Let X be an arbitrarily stratified source-free plane-parallel

optical medium over the depth interval Loi2:17) with arbitrary boundary

lighting conditions, Then over a common arbitrary variable subinterval

L2,61C00) 27 4he differential equatdgons governing the observable
reflectance function R (*)—) and the standard reflectance function

R(-) b) associated with L2, bJ are identical.

This theorem, coupled with the results of reference 7, can lead to
some interesting practical methods of evaluating the standard reflectance
(and hence transmittance) functions for arbitrary subslabs in X .
The discussion of these methods here would, however, constitute too
great a digression from our present goals. We will be content for the
present to derive two simple apnroximate rules of thumb which may be
used to estimate the magnitudes of R (a,b) amd T (a,b) for an
arbitrary subinterval [a,b] of [0,2:],
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A RULE OF THUMB FOR EMPIRICAL ESTIMATES OF THE STANDARD REFLECTANCE
AND TRANSMITTANCE FUNCTIONS

From the statements III and IV (Equations (3L) and (35) of the

principles of invariance we have, for every subinterval L_aﬁﬂ of [0,2:):
Hca,t) = H(b1) T(mal) + H(a,-) R(a,b)

H(b-) = Ham T(abl + Hb+ Riba)

Now, the functions R and T on [,7,3x[0,2,] generally
6

possess polarity »6 as may be seen from general qualitative arguments-,
or directly ‘from-(29) -:(32)+, That is, in general, | (a,b)# T (ba)
and R({«a)b) =+ R(pca) . However, for some practical purposes, the
general order of magnitude of K (@,b) and T(a,;b) can bte estimated
by assumirg. that: R (aQ;b) = R(bya)., -and T7(a,b) z"?r;'(!',)-a ).y

In this case, the preceding pair of equations can be solved for (R (& )/9)

and T(aybl)f ‘o The result ise. ..

H(a-YH(a+) — H(b=) H(by)

e

Hca) — HAY;H)

2

Rc¢a,b) (3L)

v

H(a,-) N (b=) — th(a,;+) H(bhA
T(ah = —— (35)

Ha~)— Hibt)
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How good are these rules? The larger the magnitude of the
difference: |a~b| , the more accurate each is, since for fixed o ,
O b < ® in an infinitely deep medium, we have, respectively from

(34) and (35):

lim Riayb) = R(a,-)

la-b| - (36)

lim T(a,b) = O (37)
la~bl-—=>n

On the other hand, for small values of |[a-b] , Q@ fixed, it can be

shown from (2L) that,

Reab) _ |
= b(al
hm{a—blﬁo [a-bl “ (28)

exists if b(a,+) = b(o,~]£— b(a) and Qa(a,+)= a(a,-) .
Thus, the estimate (3L) of R (@, b) is accurate if the corresponding
values of the backward scattering functions for each stream and the
absorption functions for each stream are nearly equal at depth &,

Finally, it is clear from (35) that, for fixed O ,

lw«\w—b‘_’o T(ah) = |, (39)

as expected,
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CONNECTIONS VITH THE CLASSICAL THEORY

The classical Schuster two-flow theory of the light field describes
the irradiances in a boundryless, sourceless, isotropically scattering
homogeneous slab over an interval [ @, 2. irradiated at the upper
level (2 = O) by a directionally uniforni radiance distribution and
with H(% ,+)=0, The theory proceeds on the assumption that

* (i.e., that

b(2y-)=b(2,+)= lo* and a(i;-) = A(Z4t) = A
the backward scattering and absorption functions for each stream are

identical and have the constant starred values over the slab,) We can
immediately deduce the values [ (0; 2 ) and T(0,#Z) associated with
this slab, on the basis of the present general theory., To do this, we
merely recall the statement of the equivalence theorem for reflectance

equations proved above, This dlows us to use the expression far

R(2,,-) given in (7) of reference 7:

Yz
Reg ~ Rux C(21,7) E-XP{"[Cz-"l‘o(-)b(H] (2?2_2,)}
. (40)

R(#e,~) = 7 .
| - C(%,~) exp{——[cz-4b(-)b(+)'_] (Zz~2.)}

Refer to reference 7 for definitions and notation, We need only

observe that, under the present setting,
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£ > 0
Zz_ D 2
R(Z4~-) = O

and finally, that

Cetedbrbe)]® = 2[a¥(a*+2b¥)]"

= 24

where z is the diffuse absorption coefficient of the classical theory.l

Hence

[1- exp{-2£2Y)

R~ 2‘% X {’{-Zﬁz}

R(O)i) =

b ginh & 2 (1)

>
(a¥+ b¥) sinh k2 + Pk cosh k2

i

which is the usual form for the reflectance of a slab of depth 2 over

an arbitrary interval [o0,%7],

The remaining form for T (U, #) can now be deduced immediately
from relation IV'! (Equati-n (32)), but the point of this section has
essentially been made: the classical two-flow theory is an elementary

special case of the present theory of directly observable quantities

in real light fields.
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