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ABSTRACT 

Purpose: BDDCS predicts transporter effects, relying on clinical metabolism and in vitro 

solubility measurements to categorize drugs. In silico models would minimize laboratory 

requirements and help implement BDDCS in early-phase development. Here, we predict 

BDDCS class using GastroPlus™. 

 

Methods: GastroPlus™ Peff  and Do models were used to differentiate extensively from 

poorly metabolized drugs and highly from poorly soluble drugs, respectively. Area under the 

receiver operating characteristic (AUC) was used to assess differentiability. 

 

Results: The GastroPlus™ Peff model differentiates extent of metabolism (AUC = 

0.80±0.04), while the GastroPlus™ Do model differentiates solubility class (AUC = 0.87±0.03). 

Combining Peff and Do predictions, 69.7%, 70.5%, 50.8%, and 19.8% of drugs predicted as 

classes 1, 2, 3, or 4, respectively, were correctly predicted. Of drugs predicted as extensively 

metabolized, >85% are actually extensively metabolized. Of drugs predicted as class 3, 87% 

are highly soluble, while 36% are actually class 1 drugs. 

 

Conclusions: In silico BDDCS predictions can inform pharmacokinetic predictions before 

dose selection. Drugs predicted as extensively metabolized may not require evaluation as 

substrates for gut absorptive transporters. Drugs predicted as class 3 may not require solubility 

characterization, though in vitro permeability should be assessed. Drugs predicted as class 4 

require in vitro or in vivo investigation.  

 

Keywords: Biopharmaceutics Drug Disposition Classification System, BDDCS, Drug 

Disposition, In Silico Prediction, Drug Development, Metabolism, Transporters 



ABBREVIATIONS:  

BDDCS: Biopharmaceutics Drug Disposition Classification System 

GP: Gastro Plus™ 

Peff: effective permeability 

Do: dose number 

INTRODUCTION 

The Biopharmaceutics Drug Disposition Classification System (BDDCS) predicts the 

clinical significance of drug transporters and metabolizing enzymes using clinical measures of 

the extent of metabolism and in vitro measures of solubility in relation to dose. Compounds are 

classified as extensively metabolized when their extent of metabolism ≥ 70% of the dose and 

poorly metabolized when ≤ 30% of the dose is metabolized. Solubility is defined by the dose 

number. Dose number (Do) is the ratio of the compound’s highest dose strength administered 

with 250 mL of water to a compound’s minimum solubility in a pH range of 1-7.5. Thus, when 

the solubility is greater than or equal to the highest dose strength in 250 mL, Do ≤ 1. The entire 

dose will be able to go into solution with 250 mL of water and the drug is classified as highly 

soluble. Alternatively, when Do > 1, the drug is classified as poorly soluble. Drugs can then be 

sorted into one of four categories: highly soluble, extensively metabolized class 1 compounds; 

poorly soluble, extensively metabolized class 2 compounds; highly soluble, poorly metabolized 

class 3 compounds; and poorly soluble, poorly metabolized class 4 compounds. 

BDDCS was developed based on marketed compounds and has demonstrated 

substantial utility for understanding the effects of transporters and metabolizing enzymes for 

these compounds. Ideally, this system can be applied to drugs in development in order to 

predict which transporter and metabolizing enzyme effects will be relevant in the clinic. 

Specifically, metabolizing enzymes are expected to be clinically impactful for class 1 and 2, but 

not class 3 and 4 drugs. Drug transporters are not expected to be clinically relevant in the 



pharmacokinetics of class 1 drugs, but are meaningful for classes 2, 3, and 4 drugs. 

Additionally, gut uptake transporters are unlikely to be clinically relevant for class 2 drugs.  A 

more detailed overview of the predictions has been covered previously(1,2). These predictions 

may be useful in limiting unnecessary experiments, which may decrease development time and 

cost, benefitting both the consumer and the pharmaceutical company. However, the current 

classification system depends upon clinical metabolism data, which generally correlates with in 

vitro measures of permeability, as well as in vitro solubility measurements. Scientists must also 

know the highest dose strength to classify solubility, which is unknown until after clinical studies.  

Wu and Benet observed that compounds that are extensively metabolized are also 

highly permeable in humans(3). We and others have shown that in vitro permeability rate 

predicts the extent of metabolism well(4,5). This can be a useful tool in predicting the extent of 

metabolism as a component of BDDCS class using in vitro or in silico methods. 

Some researchers have already made great strides in predicting BDDCS class prior to 

human studies. Varma et al.(5) have shown that BDDCS class can be predicted well using in 

vitro apparent permeability rate as measured in MDCK-LE cells at pH 6.5 for acids and pH 7.4 

for bases and solubility measured at pH 1.2 in PBS for acidic compounds and in FassIF for all 

other compounds. They used an internally developed permeability rate cut-off of 5x10-6 cm/s, 

above which, compounds were predicted to be extensively metabolized, and below which, 

compounds were predicted as poorly metabolized. Dose strength is generally determined prior 

to and during phase I trials. This makes it difficult to accurately predict the dose number of a 

drug. This group proposed a solubility cut-off of 200 µg/mL, which corresponds to a 50 mg dose 

being entirely soluble in 250 mL of water. This approach correctly predicted 84% of the 

compounds in their dataset, specifically 83%, 83%, 88%, and 67% of class 1, 2, 3, and 4 drugs, 

respectively. Additionally, over 90% of the drugs predicted as class 1 or class 2 actually 

belonged to those classes and over 80% of the drugs predicted to be class 3 were actually class 

3, while 40% of the drugs predicted to be class 4 actually were class 4. The small number of 



drugs that actually are class 4 may have contributed to the poor predictions of class 4 

molecules. 

Pharmaceutical companies can universally apply this approach, yet slight modifications 

will be required. Since measured permeability rate is extremely variable between laboratories(6) 

and each laboratory may choose a different method of permeability rate evaluation, each 

laboratory will need to develop a permeability rate standard to predict the extent of metabolism. 

We have investigated compounds that perform well as standards depending on the method of 

investigation (i.e. labetalol for Caco-2, zidovudine for MDCK, or theophylline for PAMPA)(4). 

Additionally, each company will need to decide upon a predicted highest dose strength prior to 

assigning a solubility class. As mentioned above, Varma et al. decided to use 50 mg. Here we 

analyze different dose strengths as an initial predictor of dose in order to predict solubility.  

To ease the time and cost of these predictions during development, an in silico approach 

is preferable. There have been at least two attempts to predict BDDCS class in silico. In 2007, 

Khandelwal et al.(7) developed models using machine learning methods including recursive 

partitioning, random forest, and support vector machines. They used molecular features to 

assign drugs to one of the four BDDCS classes, predicting 33.3% correct overall. In 2012, using 

the extended dataset published by Benet et al.(8), Broccatelli et al.(9) used a binary approach to 

predict the solubility and the extent of metabolism of the drugs before making a class prediction. 

Solubility was predicted using Naïve Bayes, k-nearest neighbor, and support vector machine 

models, where the solubility class was assigned using a consensus model, which predicted the 

class based on how it was predicted in a majority of the models. This model was 77% accurate. 

The extent of metabolism was predicted from a consensus model of a Naïve Bayes and two 

support vector machine models. This model was 79% accurate. When combining the solubility 

and extent of metabolism models to predict BDDCS class, however, this approach was 55% 

accurate. 



We selected a similar approach as Broccatelli et al.(9), predicting extent of metabolism 

and solubility separately, but we decided to use validated commercially available models that 

predict in vitro permeability rate, which serves as a surrogate for the extent of metabolism, and 

that predict solubility and its derived parameter, dose number. We have shown that we can 

reliably predict the extent of metabolism using in vitro methods(4) and an in vitro provisional 

classification system has already been successfully developed by Varma et al.(5). We therefore 

set out to use a previously developed, commercially available in silico model to predict the 

extent of metabolism. Since we know that in vitro permeability rate methods can predict the 

extent of metabolism well, we expected that in silico permeability rate methods may also be able 

to predict the extent of metabolism. We therefore considered the GastroPlus™ effective 

permeability rate model (GP Peff) as a predictor of the extent of metabolism (BDDCS classes 1 

and 2 versus BDDCS classes 3 and 4). Additionally, we evaluated the GastroPlus™ dose 

number model (GP Do) as a predictor of the solubility classification.  

MATERIALS AND METHODS 

Predicting Extent of Metabolism 

We assigned extensively metabolized compounds a 1 as the positive class and poorly 

metabolized compounds a 0 as the negative class. We evaluated how well the GP Peff 

predictions were segregated between extensively and poorly metabolized compounds, with the 

expectation that poorly metabolized compounds would have low predicted in silico permeability 

rates and that extensively metabolized compounds would have high predicted in silico 

permeability rates, using a receiver operating characteristic curve (ROC). When the area under 

the ROC curve (AUC) was greater than 0.8, the permeability rate model was considered 

capable of segregating extensively from poorly metabolized compounds.  



The receiver operating characteristic curve is a method of determining how well a 

continuous feature predicts a binary classification outcome. In this case, the continuous feature 

is in silico permeability rate, while the binary classification outcome is extent of metabolism 

(extensive versus poor). The continuous feature is rank-ordered and the true positive rate 

(sensitivity) is plotted against the false positive rate, which is equal to 1-true negative rate 

(specificity) at each continuous value, resulting in high AUCs (> 0.8) when there is good 

segregation between the continuous values allotted to the classifications, or low AUCs (0.5-0.8) 

when the continuous values are not well segregated between the classifications. An AUC of 0.5 

indicates complete integration of the continuous values between the segregated classes where 

essentially every other rank-ordered value belongs to one class. We further investigated specific 

performance measures at a threshold that would maximize the average between sensitivity and 

specificity. 

• Sensitivity: the percent of highly metabolized compounds that were correctly 

assigned an extensive metabolism classification by high GP Peff 

• Specificity: the percent of poorly metabolized compounds that were correctly 

assigned a poor metabolism classification by low GP Peff 

• Positive Predictive Value: the percent of high GP Peff compounds (thus 

predicted to be extensively metabolized) that are extensively metabolized 

• Negative Predictive Value: the percent of low GP Peff compounds (thus 

predicted to be poorly metabolized) that are poorly metabolized  

• Accuracy: the percent of all compounds that were correctly assigned their 

metabolism class 

• The average between sensitivity and specificity, and the average between 

positive and negative predictive value were also evaluated. 

Predicting Solubility 



We evaluated the dose number predictions in GastroPlus™ (GP Do) for their ability to 

predict the actual dose number and solubility classification. We used known doses for the 

predictions, and when doses were unknown, we used 100 mg, which is the recommended dose 

prediction by the program, and is the dose that we selected for predictions based on dose 

analysis. The ability of GP Do to predict solubility was evaluated with ROC curves. Because a 

low dose number (≤ 1) indicates a highly soluble compound, while a high dose number (> 1) 

indicates a poorly soluble compound, when we evaluated predicted dose number, we classified 

poorly soluble compounds as the positive class to generate the ROC plot, but calculated the 

performance parameters by assigning highly soluble compounds the positive class. We further 

investigated specific performance measures at a threshold that would maximize the average 

between sensitivity and specificity. 

• Sensitivity: the percent of highly soluble compounds that were correctly 

assigned a high solubility classification  

• Specificity: the percent of poorly soluble compounds that were correctly 

assigned a poor solubility classification 

• Positive Predictive Value: the percent of compounds assigned a high solubility 

classification (by a low dose number) that are truly highly soluble 

• Negative Predictive Value: the percent of compounds assigned a poor solubility 

classification (by a high dose number) that are truly poorly soluble 

• Accuracy: the percent of all compounds that were correctly assigned their 

solubility class 

• The average between sensitivity and specificity, and the average between 

positive and negative predictive value were also evaluated.  

Evaluating Measured Solubility as an Indicator of FDA Solubility 



Measured solubility as reported by Benet et al.(8) or Hosey et al.(1) was compared 

between BDDCS classes using Kruskal-Wallace one-way analysis of variance and comparing 

each class against one another with Dunn’s multiple comparison test. 

Evaluating Dose 

We evaluated how simulated doses of 50, 75, 100, and 200 mg would affect the 

solubility classification of orally administered drugs. We first calculated what the dose number 

would be given a known experimentally measured solubility using the following equation: 

𝐷𝑜𝑠𝑒  𝑁𝑢𝑚𝑏𝑒𝑟 =
𝐻𝑖𝑔ℎ𝑒𝑠𝑡  𝐷𝑜𝑠𝑒  𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ  (𝑚𝑔)

250  𝑚𝐿  𝑥  𝑀𝑖𝑛𝑖𝑚𝑢𝑚  𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦  (𝑚𝑔𝑚𝐿)
 

We then evaluated the performance of solubility assignment at various simulated doses 

compared to actual solubility assignment. When dose number ≤ 1, the drug is considered highly 

soluble, and when dose number > 1, the drug is considered poorly soluble. Performance of the 

simulated dose was evaluated with the following: 

• Sensitivity: the percent of highly soluble compounds that were correctly 

assigned a high solubility classification at the simulated dose 

• Specificity: the percent of poorly soluble compounds that were correctly 

assigned a poor solubility classification at the simulated dose 

• Positive Predictive Value: the percent of compounds assigned a high solubility 

classification at the simulated dose that are truly highly soluble 

• Negative Predictive Value: the percent of compounds assigned a poor solubility 

classification at the simulated dose that are truly poorly soluble 

• Accuracy: the percent of all compounds that were correctly assigned their 

solubility class 

• ROC AUC, the average between sensitivity and specificity, and the average 

between positive and negative predictive value were also evaluated. The 



measured solubility at which the greatest average between sensitivity and 

specificity was obtained and associated with the dose that would determine the 

boundary between extensively and poorly metabolized compounds (Dose 

number = 1) using the dose number equation given above. 

We additionally evaluated the accuracy of predicting each class and the predictive value 

of each class, assuming the extent of metabolism was already known.  

Predicting BDDCS Class 

The BDDCS Class was predicted using the Peff model to predict the extent of 

metabolism with the Do model from GastroPlus™ to predict the solubility class. The thresholds 

that delineate the classifications were selected using optimal thresholds based on maximum 

averages between sensitivity and specificity. Accuracy and predictive values of each class were 

calculated. 

RESULTS 

Evaluating Measured Solubility as an Indicator of FDA Solubility 

Significant differences were found between the measured solubility of high FDA solubility 

(classes 1 and 3) and low FDA solubility (classes 2 and 4) drugs (Figure 1). 



 

Figure 1.  
 

Additionally, a significant difference was observed between classes 1 and 3 (p < 0.05). 

The ROC AUC between class 1 and 3 is 0.61. The solubility boundary conditions of classes 1 

and 3 versus 2 and 4 are detailed in Table I. This indicates what dose would be required under 

certain conditions to change the FDA solubility classification of a drug.  

Table I. Boundary Conditions of Currently Classified Drugs 

BDDCS Boundary Solubility Dosing Condition 
Class 2 or 4 2.5 mg/mL maximum If solubility is > 2.5 mg/mL, the drug will only 

be poorly soluble if requiring a dose > 625 mg 
Class 1 or 3 0.002 mg/mL minimum If solubility is < 0.002 mg/mL, the dose must 

be < 0.5 mg to be a high solubility drug 

Evaluating Dose 



Class 4 drugs had significantly higher doses than each of the other classes for orally 

administered drugs as seen in Figure 2. The dose of class 4 drugs was also significantly higher 

than class 1 and 2 drug for intravenously administered drugs, and had a higher mean and 

median dose value than class 3 drugs, although the difference was insignificant. Alternatively, 

class 1 drugs had the lowest doses for orally administered and intravenously administered 

drugs, although there was no significant difference in the doses of class 1 and 2 intravenously 

administered drugs. 

 

Figure 2.  

The Effect of Dose Changes on Dose Number 

Table II shows how changing a dose (from 50, 75, 100, or 200 mg) affects how well the 

solubility class (1 and 3 versus 2 and 4) was predicted using the measured solubility and with a 

theoretical dissolution volume of 250 mL. 



Table II. The Effect of Dose Changes on Dose Number 

Performance Measure Dose (mg) 
 50 75 100 200 
% of Highly Soluble Compounds Correct (Sensitivity) 0.87 0.84 0.82 0.77 
% of Poorly Soluble Compounds Correct (Specificity) 0.78 0.84 0.89 0.97 
% of Those Predicted to Be Highly Soluble Correct (PPV) 0.88 0.90 0.93 0.98 
% of Those Predicted to Be Poorly Soluble Correct (NPV) 0.77 0.75 0.74 0.70 
Average between Sensitivity and Specificity 0.83 0.84 0.86 0.87 
Average between PPV and NPV 0.82 0.82 0.83 0.84 
Accuracy 0.84 0.84 0.85 0.84 
ROC AUC 0.82 0.84 0.85 0.87 

 

Table III shows how changing the dose will affect the accuracy of the solubility class 

predictions for classes 1-4 and the predictive value assuming the extent of metabolism is 

known. For example, the predictive value of drugs predicted to be class 1 when the dose is 50 

mg is the percentage of class 1 and 2 drugs having dose number ≤ 1 that belong to class 1. 
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The ROC AUC of solubility as a predictor of solubility class when dose was not 

estimated was 0.93. The optimal average between sensitivity and specificity was found at 0.4 

mg/mL, which corresponds to a 100 mg dose to achieve a dose number = 1.  

Using In Silico Models to Predict the Extent of Metabolism and Solubility Class 

Figure 3 shows the ROC plots and performance measures for the GP Peff model as a 

predictor of the extent of metabolism and the GP Do as a predictor for solubility class. Since 

AUC values were ≥ 0.80, each of these models significantly discriminated their predicted 

classes. A threshold of 1.72 x 104 cm/s resulted in the highest average between sensitivity and 

specificity for the GP Peff model, while a threshold of 1.11 resulted in the highest average 

between sensitivity and specificity for the GP Do model. The performance measures are listed at 

these thresholds on Figure 3. 



 

Figure 3.  

Predicting BDDCS Class 

Figure 4 depicts the predicted Peff versus the predicted dose number, as calculated in 

GastroPlus™ for the drugs in our dataset. The results of these predictions are outlined in Table 

IV. Table V shows how drugs were predicted compared to their actual class. 

 

 



 

Figure 4.  

Table IV. Performance of BDDCS In Silico Predictions 

BDDCS Class Predictive Value Accuracy 
1 69.7 54.1 
2 70.5 57.8 
3 50.8 69.3 
4 19.8 45.2 

Table V. Confusion Matrix of BDDCS Predictions 

Actual Predicted 
 1 2 3 4 

1 152 46 69 14 
2 36 134 13 49 
3 27 2 97 14 
4 3 8 12 19 

DISCUSSION 



BDDCS is a powerful system that predicts when transporters are clinically irrelevant. We 

expect that almost all drugs are substrates for some transporters, and that in vitro experiments 

will often predict that a drug is a substrate for a transporter. However, we are unaware of any 

examples of highly soluble, extensively metabolized class 1 drugs that exhibit clinically relevant 

transporter effects. That is, the disposition of the drug is independent of the function of 

transporters. This is extremely powerful in predicting potential drug-drug interactions and 

understanding barriers to organ access. For instance, Broccatelli et al.(10) have shown that 

while efflux transporters can effectively decrease the central nervous system concentrations of 

class 2 drugs and uptake transporters and efflux transporters affect central nervous system 

access for class 3 and 4 drugs, class 1 drugs have no barriers to central nervous system 

access. Since transporters can be so important in mediating systemic and organ drug exposure, 

they must be evaluated during development. However, successful BDDCS class prediction, 

particularly of class 1 drugs, could be used to reduce the time and cost of development by 

eliminating unnecessary transporter studies. Alternatively, it can be used to inform which 

transporter studies may be necessary for class 2, 3, and 4 drugs and alert the developer to 

possible transporter interactions. 

While BDDCS classes have been successfully predicted in vitro, there are currently no in 

silico predictive methods that are sensitive enough to apply during drug development. 

Therefore, we examined the potential to predict BDDCS class using commercially available in 

silico methodology. We used predicted dose number from GastroPlus™ to predict solubility and 

predicted Peff as a surrogate predictor of the extent of metabolism.  

During early development, it is advantageous to predict transporter effects, yet dose is 

frequently unknown until clinical studies. Varma et al.(5) have suggested utilizing a 50 mg dose 

(equivalent to a solubility of 200 µg/mL at a dose number = 1) as an initial prediction to predict 

BDDCS class. We analyzed 4 doses to determine their effect on predicting BDDCS class when 

solubility is known. The performance is relatively stable across the dosages. This is likely 



because there is a significant difference in measured solubility independent of dose (Figure 1) 

and thus only large changes in dose will have an effect on the dose number of many drugs. 

Currently, transporter studies are carried out for all drugs. Because BDDCS predictions could 

potentially be used to eliminate transporter studies, which are unnecessary for class 1 drugs, 

but are important to ensure the safety and efficacy of other drugs, we wished to be conservative 

with the false prediction rate of class 1 drugs. At 100 mg, only 7% of the compounds that are 

predicted to be class 1 when the extent of metabolism is known to be extensive are false 

positives, while 80% of the class 1 compounds were still correctly predicted when 100 mg was 

used as the dose (Table III). When we evaluated how measured solubility is segregated 

between classes 1 and 3 versus classes 2 and 4 using ROC analysis, we found that a dose of 

100 mg maximized the average between sensitivity (the percent of class 1 and 3 drugs correctly 

predicted by measured solubility alone) and specificity (the percent of class 2 and 4 drugs 

correctly predicted by measured solubility alone). Thus, we selected 100 mg as an estimated 

dose when dose is unknown. 

Predicting BDDCS Class 

While GP Do predicts solubility class well and GP Peff predicts the extent of metabolism 

well (Figure 2), combining these to predict BDDCS class results in poor predictability and 

accuracy for each class (Table IV). However, by analyzing where the errors occurred, these 

predictions may still be useful.  

Of class 1, 2, 3, or 4 drugs, 95%, 94%, 99%, and 93% are correctly predicted by at least 

one property, respectively. Additionally, 90% of the drugs that are predicted as extensively 

metabolized class 1 or 2 drugs by a high in silico Peff actually are extensively metabolized (Table 

V). Since class 1 and 2 drugs do not require gut uptake transporters for absorption and are not 

clinically relevant substrates of them, it is unlikely that drugs predicted to be class 1 or 2 will 

need to be evaluated for gut uptake. Of the drugs predicted to be class 3, 87% are highly 



soluble (actually class 1 or class 3), but 36% of the drugs predicted to be class 3 are extensively 

metabolized. Since such a large proportion of these drugs are actually extensively metabolized, 

it may be advantageous to carry out in vitro permeability rate studies to predict the extent of 

metabolism and potentially eliminate unnecessary transporter studies, if the drug is indeed a 

class 1 drug. Solubility characterization, however, is likely unnecessary at this stage. Finally, 

since only 20% of the drugs predicted to be class 4 in silico are actually class 4 drugs, and only 

40% predicted to be class 4 by in vitro measures are actually class 4, a BDDCS classification 

may only be assigned to these drugs after clinical studies and dose selection.  

While using in silico methods to predict BDDCS class may not predict the exact BDDCS 

class well, we have analyzed the data with respect to how predictions may influence 

generalized transporter studies. More than 70% of drugs predicted as class 2, 3, or 4 actually 

belong to one of those classes. While class 2 drugs do not require gut uptake studies, but class 

3 and 4 do, gut efflux studies, as well as hepatic and brain transporter studies are necessary for 

all class 2, 3, and 4 drugs. Therefore, by carrying out transporter studies for drugs predicted to 

be in classes 2, 3, or 4 by the in silico methodology outlined here, only 30% of the transporter 

studies are ultimately unnecessary and “wasteful”. This is still better than needlessly testing all 

class 1 drugs. Unfortunately, improving in silico predictability of class 1 drugs is necessary to 

eliminate transporter studies for even drugs predicted to be class 1 since 30% of the drugs 

predicted to be class 1 are actually class 2, 3, or 4 drugs. This is problematic since, if 

transporters were not evaluated, 30% of the drugs may have transporter effects that need to be 

evaluated prior to human dosing.  

In Figure 5, we show a chart that can be used to interpret which studies need to be 

carried out when in silico predictions of certain classes are made. Additionally, uptake transport 

studies should be conducted for drugs that are predicted to be class 3 after considering 

permeability rate.  



 

Figure 5.  

Alternative Methods 

We have envisioned several other methods of predicting BDDCS class in silico. Data-

mining approaches that predict each of the four classes individually (a quartenary classification 

approach) such as support vector machines may be useful. However, our preliminary attempts 

at this classification have been less successful than using the binary approach outlined here. 

Alternatively, we could develop models that predict the [binary] extent of metabolism and the 

continuous solubility, continuous dose number, or binary solubility. However, several attempts 

have been made at predicting continuous solubility finding that continuous solubility is not useful 

in predicting BDDCS class without knowing the dose. Therefore, predicting dose number or a 

binary solubility classification would likely be the most effective remaining approaches.  



Benet et al.(8) showed that in silico predictions of the minimum solubility of drugs over 

the pH range 3-7.5 are well segregated between class 2 and 3 drugs, but are unexpectedly 

similar when comparing class 1 and 4 drugs. Similarly, CLogP, serving as a permeability rate 

surrogate, is able to differentiate between classes 2 and 3, but confounds classes 1 and 4. 

These relatively simple in silico parameters are therefore able to predict when a drug is likely to 

be class 2 or 3, but a drug having a more moderate LogP (0 < LogP < 2) or predicted minimum 

solubility is unable to be accurately classified. Additionally, we have shown that there is no 

significant difference in the measured or calculated LogP of extensively metabolized class 1 and 

2 compounds and class 3 and 4 compounds primarily eliminated as unchanged drug in the bile, 

although both are significantly higher than the LogP of renally eliminated compounds(4). 

Therefore, LogP is an unreliable indicator of BDDCS class. While we continue to investigate 

these confounding factors, currently the best prediction approach remains in vitro. These in vitro 

measures can reasonably predict BDDCS class prior to in vivo studies. 

CONCLUSIONS 

BDDCS has been successfully applied to understand and predict the disposition of 

currently marketed drugs. It could be applied with extensive utility prior to carrying out clinical 

studies during development, but would require non-clinical information. In vitro approaches have 

been successfully developed to predict the BDDCS class of new molecular entities. While in 

silico approaches thus far have limited predictive utility, some information may be garnered to 

direct transporter studies prior to dose selection. 
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Legends to Figures: 
	  
Figure 1. Distribution of measured solubility between BDDCS classes 1-4. 
 
Figure 2. Highest dosage strength of orally and non-orally administered compounds by BDDCS 
class. 
 
Figure 3. Receiver operating characteristic curves of GastroPlus™ predicted dose number and 
effective permeability. 
	  
Figure 4. Predicted BDDCS class. Drugs with properties falling within each box are classified 
according to their predicted permeability rate and predicted dose number. Compounds in the 
green box are predicted as class 1, yellow as class 2, blue as class 3, and red as class 4. The 
legend shows the actual class of each drug. 
	  
Figure 5. Interpreting necessary further studies given an in silico BDDCS prediction. 
	  




