UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Overparameterization in neural networks: from application to theory

Permalink
https://escholarship.org/uc/item/82p2k90b

Author
Zhang, Kaiqi

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/82p2k90b
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Overparameterization in neural networks
application to theory

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy
in

Electrical and Computer Engineering
by

Kaiqi Zhang

Committee in charge:

Professor Yu-Xiang Wang, Chair
Professor Shiyu Chang

Professor Yufei Ding

Professor Ramtin Pedarsani

June 2023

: from

The Dissertation of Kaiqi Zhang is approved.

Professor Shiyu Chang

Professor Yufei Ding

Professor Ramtin Pedarsani

Professor Yu-Xiang Wang, Committee Chair

May 2023

Overparameterization in neural networks: from application to theory

Copyright (©) 2023
by

Kaiqi Zhang

11

Dedication here

v

Acknowledgements

First of all, I would like to express my heartfelt gratitude to my PhD advisor, Professor
Yu-Xiang Wang, for his continuous guidance and unwavering support throughout my
doctoral journey. His patience, kindness, rich knowledge and profound insights into
research directions have been invaluable in shaping me into a researcher. I am deeply
indebted to him for helping me overcome numerous challenges and obstacles along the
winding path of my PhD.

I would also like to extend my sincere appreciation to my former PhD advisor, Pro-
fessor Zheng Zhang, for introducing me to the captivating field of machine learning. He
played a pivotal role in shaping my thinking, work ethic, and academic development
during the early stages of my career.

In addition to my advisors, I am immensely grateful for the collaboration and con-
tributions of Xiyuan Zhang, Cole Hawkins, Ming Yin, Zixuan Zhang, Minshuo Chen,
Professor Cong Hao, Professor Mengdi Liu, and Professor Tuo Zhao. Their invaluable
support and joint efforts were instrumental in completing the research projects presented
in this thesis. I would also like to acknowledge the support of my office mates, including
Professor Chunfeng Cui, Zichang He, Zhuotong Chen, Jianyu Xu, Chong Liu, Yuqing
Zhu, Dheeraj Baby, and many others, whose discussions and interactions have greatly
enriched my understanding and exploration of new areas within our field.

Lastly, I would like to express my deepest gratitude to my parents for their unwavering
love and support throughout my academic journey. Their unconditional belief in me has
been a constant source of motivation. I would also like to thank my girlfriend, Yimeng
Liu, for her support in both my career and personal life. And last but not least, a special

mention goes to my cat, Princess, who has been by my side throughout these years.

Curriculum Vitae
Kaiqi Zhang

Education

2018-2023 Ph.D. in Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara.

2016-2018 M.S. in Electrical and Computer Engineering, University of Cali-
fornia, Davis.

2012-2016 B.S. in Electronic Engineering. Tsinghua University.

Publications

K. Zhang, X. Zhang, and Z. Zhang, Tucker tensor decomposition on fpga,in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1-8, IEEE, 2019

C. Cui, K. Zhang, T. Daulbaev, J. Gusak, I. Oseledets, and Z. Zhang, Active subspace of
neural networks: Structural analysis and universal attacks, SIAM Journal on Mathemat-
ics of Data Science 2 (2020), no. 4 1096-1122

K. Zhang, C. Hawkins, X. Zhang, C. Hao, and Z. Zhang, On-fpga training with ultra mem-
ory reduction: A low-precision tensor method, in ICLR Workshop on Hardware Aware
Efficient Training, 2021

K. Zhang, C. Hawkins, and Z. Zhang, General-purpose bayesian tensor learning with
automatic rank determination and uncertainty quantification, Frontiers in Artificial In-
telligence 4 (2022) 668353

K. Zhang, M. Yin, and Y.-X. Wang, Why quantization improves generalization: Ntk of
binary weight neural networks, arXiv preprint arXiv:2206.05916 (2022)

K. Zhang and Y.-X. Wang, Deep learning meets nonparametric regression: Are weight-
decayed dnns locally adaptive?, arXiv preprint arXiv:2204.09664 (2022)

vi

Abstract

Overparameterization in neural networks: from application to theory
by

Kaiqi Zhang

Neural networks are rapidly increasing in size, leading to a common occurrence of
overparameterization in deep learning. This presents challenges in both the theory and
application of deep learning. From a theoretical standpoint, it remains an open question
as to why neural networks generalize well despite overparameterization. From an ap-
plication perspective, overparameterization leads to significant computation and storage
costs, which limits the practical application of deep neural networks.

This thesis presents our attempt to address both issues. In terms of application,
we propose training a low-rank tensorized neural network to compress the model and
reduce the computation cost during both training and inference. We also apply Bayesian
methods to evaluate the uncertainty of this model. In terms of theory, we apply a
new method — neural tangent kernel (NTK) — to study the training dynamics of an
infinitely wide neural network. We compare the eigenvalues of the NTK of a vanilla
neural network with that of a binary weight neural network, and show that the latter
decays faster. This explains why binary weight neural networks have lower generalization
gap empirically. We also examine the effect of weight decay on a neural network, and
demonstrate that it induces sparsity in both a parallel neural network and a ResNet,
thus prove that neural networks are locally adaptive, which is not present in any linear
method, including kernels.

For the problems discussed above, we present both theoretical analyses of our method

or statement, and numerical experiments to validate our conclusions.

Vil

Contents

Cirmical Viiad
[Abstractl
[1__Introductionl
(1.1 Background|
(.2 Contributions

2 Bayesian Tensorized Nerual Networks|

[2.3 Bayesian training|o
2.4 Numerical Experiments|

2.5 Conclusionl.

[3 Quantized Tensorized Neural Network Training on FPGA|

3.2 Tensor Train Neural Networkl
[3.3 Rank-Adaptive Tensorized Neural Network
[3.4 Low-Precision Tensorized Trainingf.
[3.5 FPGA implementation| o
[3.6 Experiments and results| o000
I;i' i !:gzllg:lll:ii!!lll -----------------------------------
[3.8 Detailed operations|

[4 NTK of BinaryWeight Neural Networks|
MI Tntroduction] e

(4.3 Preliminary|
4.4 Approximation of binary weight neural network{
4.5 Capacity of Binary Weight Neural Networkl
4.6 Numerical resultl

4.8 Proofs of technical resultsl o000 64
4.9 Additional information about numerical resultl 95
[> Local adaptivity of Weight Decayed DNNfs| 97
b1 Introductionl 97
Hh.2 Related works 101
(5.3 Preliminaryl 103
Hb.4 Main Results: Parallel Rel,LU DNNs 00000000000 L. 109
B.b Proof Overviewl 113
[5.6 Experiment| 118
[H. 7 Conclusion and Discussionl 121
H.8 Proofs of technical results 122
0.9 Additional information about numerical resultl 151
6 Overparameterized ResNets for functions on manifolds| 156
6.1 Introductionl. 156
[6.2 Preliminary and related work| 157
6.3 Main theoreml 160
6.4 Proofoverview | 165
6.5 Discussionl 172
6.6 Proof of technical resultsl 175

1X

Chapter 1

Introduction

1.1 Background

Over the past few decades, neural networks have been rapidly increasing in its width
and depth. With this increase, the number of parameters within a neural network has
also grown rapidly, resulting in a phenomenon called overparameterization. In an over-
parameterized model, the number of parameters is not only larger than necessary but
also exceeds the size of the training set.

Overparameterization has become a significant problem in both empirical studies and
theoretical analysis. Empirically, overparameterization greatly increases the time and
cost to train, store, and deploy a model. This is because the large number of parameters
requires more computational resources to train the model, and the trained model also
occupies more memory space for storage and deployment.

On the theoretical front, it can be found that while a slightly overparameterized
neural network often overfit, a strongly overparameterized neural network can generalize

well. This phenomenon is called “double descent” and it remains largely unexplained.

Introduction Chapter 1

1.2 Contributions

The contributions of this article is two-folded. From the empirical prospective, we
propose several methods to reduce the number of parameters in a neural network with
only a small loss in accuracy. We design an algorithm to train a neural network with
reduced number of parameters directly, and this greatly reduces the computation and
storage cost to train a neural network. We demonstrate that this training algorithm can
be implemented on an embedded device.

From the theoretical prospective, we aim to provide an explanation why neural net-
works generalize well despite overparameterization, and why overparameterized neural
networks outperform other methods. On the limit that the width of a neural network is
infinity, we show that training a binary weight neural network is similar to kernel learning
with Gaussian kernel. As for a neural network with finite width, we show that training
a parallel neural network or a ResNeXt induces sparsity, which reduces the number of
parameters after training and avoids overfitting. We show that these neural networks
enjoy strong adaptivity, which does not exist in traditional models, and this explains
why neural networks outperform traditional machine learning methods including kernel

methods.

Chapter 2

Reducing Overparameterization:

Bayesian Tensorized Nerual

Networks

2.1 Introduction

Overparameterization increases the computation and storage cost of neural networks
and limits its application. In order to reduce the number of parameters in a neural net-
work, many methods have been proposed, including pruning [7, [§], quantization [9] [10],
knowledge distillation [I1], and low-rank approximation [12, [13] 14} [15]. In this section,
we focus on another method to reduce the number of parameters in a neural network
called tensorized neural network [16] (17, [15] [1§]. The key idea is to tensorize its convolu-
tion kernels and fully connected weights into higher order tensors, as shown in Fig. 2.1}

Consequently, different tensor decomposition method such as Tucker decomposition and

This work has been published as K. Zhang, C. Hawkins, and Z. Zhang, General-purpose bayesian
tensor learning with automatic rank determination and uncertainty quantification, Frontiers in Artificial
Intelligence 4 (2022) 668353.

Bayesian Tensorized Nerual Networks Chapter 2

tensor-train (TT) decomposition can be employed to compress the weights. We design a
low-rank-inducing prior for the tensorized neural networks such that the models can be
further compressed during training.

On the other hand, a well known problem of deep neural networks is that deep neu-
ral networks are not uncertainty-aware. As a result, deep neural networks are often
over-confident about its prediction, even when the prediction is incorrect. A solution to
this problem is Bayesian neural networks, which can provide uncertainty estimations for
both the model parameters and the predictive results. Instead of using a single maxi-
mum of posterior (MAP) model for prediction, Bayesian neural networks can estimate
the posterior distribution of the prediction to a data point conditioned on the training
samples.

Following Neal [19], we propose training a Bayesian tensorized neural networks using
using Hamiltonian Monte Carlo (HMC) [20]. HMC approach is an attractive method to
solve tensor learning problems because it avoids the random walks of a standard Markov-
Chain Monte Carlo (MCMC) method and leads to significantly lower computational cost.
Due to the huge amount of training data in many tensor learning problems, estimating the
full gradient can be computationally expensive. Therefore, we replace the full gradient in
a tensor learning problem with the stochastic gradient [21] while achieving a similar level
of accuracy. In summary, we design an efficient and scalable method to train a Bayesian

tensorized neural network.

Bayesian Tensorized Nerual Networks Chapter 2

J J1---JH J J1---JH
(a) The convolutional kernel (b) The fully connected weights

Figure 2.1: Unfolding of the convolutional kernel and the fully connected weights

2.2 Problem formulation

2.2.1 Tensorized neural networks

The majority of the parameters in a typical neural network lay in the weight of
the fully-connected layers and convolution layers. Motivated by this, tensorized neural
networks was proposed to compress a neural network. In a tensorized neural network, the

weights in the fully-connected layers and /or convolution layers are reshaped into tensors,

which is defined below.

Definition 2.1 A tensor W € RIv2xXIn s g high-dimensional array of order n. Here
the order n (also known as “way”) is the total number of dimensions. For a general n-th

order tensor W, its element indexed by (iy,iy- - ,i,) is denoted as Wliyia - - - iy).

Then a tensor decomposition method is applied to decompose the weight tensor into
the product of a series of smaller tensors or matrices. There are three commonly used ten-
sor decomposition methods: Canonical polyadic (CP)decomposition [22], tensor Tucker
decomposition [23], and tensor train decomposition [24]. We focus on tensor train de-
composition, because this often yield the best cost-accuracy trade-off, while we note that
this method can be applied to all the decomposition methods.

For a weight matrix W of size M x J, one can decompose M = Hszl my, and

J = Hszl 7k, then reformulate W as a 2K-dimension tensor W with size m; x j; X
5

Bayesian Tensorized Nerual Networks Chapter 2

<o Xmg X ji. Afterwards, W is approximated by a low-rank tensor-train decomposition
w=[6",....6%], (2.1)

where G¥) € REx-1xmexiexBi is called the TT core, Ry, is the TT rank, Ry = Rk =
1, and [-Jrr denotes the tensor-train product [24]. The convolutional layers can be
decomposed in a similar way. The convolution kernel C is a 4-th dimension tensor in
M x J x H x W, where H and W denote the height and width of the convolution
window. This tensor can be further viewed as a (2K + 2)-dimensional tensor with size
my X Jp X -+ Xmg X jg X Hx W. In our experiments H = W = 3 remain unchanged,

and we only compress along the remaining dimensions, i.e.,
C=[6W,6?, ... G¥) . (2.2)

The shape of each factors G, G?) ... GEE-D GCK) are my xRy, RiXj1 X Ra, . .., Rog—oX

my X Rog_ 1, Rog 1 X jx X H x W, respectively.

2.2.2 Bayesian model

Given the training data D = {x,,y,}_,, we want to find a low-rank tensor W in the
TT format to describe the weight matrices or convolution filters such that y = g(x, W).

Our goal is to estimate the posterior density

N
P(O|D) [[P(Da|©)P(O). (2.3)
n=1
N
Here P(D|O) = [] P(D,|©) is a likelihood function, P(©) is a prior probability density.
n=1

A key advantage of this Bayesian parameterized description is as follows: by properly

6

Bayesian Tensorized Nerual Networks Chapter 2

choosing a prior density P(©), one can control the structure of © and thus automatically
enforce a low-rank representation for X'(©) based on the observed data D. Doing so
overcome the difficulty of rank determination in an optimization-based tensor learning.

Our choice of the likelihood function will be discussed in and the prior
distribution P(©) will be discussed in [Section 2.2.4}

2.2.3 Likelihood function

The choice of the likelihood function is determined by the training task. We provide
two examples below, corresponding to the classification problems and the regression

problems respectively.

Classification problems

Suppose the training dataset is D = {@;,y;}. In most classification problems, the
neural network can give a likelihood y, = f(x;; ©) directly, where f(x;;©) is the prop-
agation function of the network, g, is a vector and each element denotes the probability
that x; belongs to one class. It is usually the softmax of output of the last linear layer.

Suppose y, is a vector with size C', C' is the total number of classes,

1, if x; in class ¢
0, otherwise.

The negative log likelihood is

—log P(y;]0) = (g, — log [(:50)). (2.5)

Bayesian Tensorized Nerual Networks Chapter 2

Regression Problem

In regression problems, it is usually assumed that
P(y;|0) = N(y;|f(z:; ©)), (2.6)

~log P(y,10) = 5 (y, ~ f(2:0))?/o" 2.7

where o is a hyperparameter denoting the variance.

2.2.4 Rank Determination

Here a Gaussian prior is placed over each tensor factor and a Gamma prior is placed

over A,

PGWARAW) = TTA(GW (. -,)

2

Ry,
P(AW) = H Gamma(A\P|a, B), (2.8)

r=1

d d—1
P(©) = Hp<g(k)|A(kfl)’A(k)) HP(A(k))_
k=1 k=1

where v and [are constants. Once the estimated parameter)\gk) is larger than a thresh-
old, we delete one horizontal slice of G*) and one frontal slice of G*+1).
A threshold € can be set to determine the rank. A tensor slice can be eliminated, and

correspondingly the rank can be reduced when
A2 log(gskqu + 5 Skl + a) +log B — €,

where Sy = MyJ, for the fully connected layers and S, 1 = My, Sop = Ji for the

Bayesian Tensorized Nerual Networks Chapter 2

convolutional layers.

2.3 Bayesian training

2.3.1 Stochastic Gradient HMC (SGHMC) Solver

Now we need to estimate the hidden tensor factors and hyper-parameters by com-
puting the posterior density in . Existing methods [25] 26] 25 26] does not apply to
generalized tensor learning problems where resulting Bayesian models violate the required
strong assumptions. Therefore, we we employ Hamiltonian Monte Carlo (HMC) [20] to
make our framework applicable to a broad class of tensor learning problems.

The HMC method avoids the random walks in a standard MCMC framework by

simulating the following dynamic system:

o dp
—=M'p, = =-VU®) (2.9)

Here p is the auxiliary momentum variable with the same dimension as ©, M is a mass

matrix. Here U(©) is the potential energy which is equal to the negative log posterior:

U©O)=—1log P(O|D) = — ZN:log P(D,|0) —log P(O). (2.10)

n=1

The HMC method starts from an initial guess of ©, and its steady-state distribution
converges to our desired posterior density P(©|D).

A standard HMC becomes inefficient when we solve a tensor learning problem with
massive training samples, because computing the gradient requires estimating V log P(D,,|O)
for every index n over the whole data set. This often happens in completing a huge-size

tensor data set or training a tensorized neural network. To reduce the cost, we use the

9

Bayesian Tensorized Nerual Networks Chapter 2

stochastic unbiased estimator of U(©):

U(®) = Z log P(D;|©) — log P(©) + const. (2.11)

D;eB

18l

Here B C D denotes a mini-batch with |B| < N. Then one can update the parameters
via ©© = M~'p and dp — —VU(©). To compensate the noise introduced by the stochas-
tic gradient, we adopt the thermostats method [27] for our tensor learning framework.

Specifically, a friction term c is introduced, i.e.,

d d
d_? = Milpa dlt) = _VU(@) — (p,
S (2.12)

— = —tr(p" M lp) — 1.
T r(p p)

The friction term changes accordingly to keep the average kinetic energy 5 LpT™M~!p con-
stant, thus keeping the distribution of samples invariant.
Our method employs a slightly modified leapfrog approach to solve the Hamiltonian

system because it has a smaller integration error compared with other methods [20]:

Ptte/2 < Py — %G(VU(@O + py),

Otre < Oi + €Pries2,

. (2.13)
Pi+e < Ptte/2 — lE(VU<®t+e) + Ctpt+e/2)7
Ctpe < Ct‘f‘ﬁ(% r(p"™™'p) — 1),
where € is the stepsize, t is the iteration index.
2.3.2 The Potential Function
For all hyperparameters >\1(nk), we sample X&k) = log)\1(nk) and use the log Gamma

distribution as a prior. Denote the training dataset as D = {x,,y,}»_,. The potential

10

Bayesian Tensorized Nerual Networks Chapter 2

Algorithm 1: SGHMC with thermostats

Input : The dataset D, the potential U(0), the mass M, the maximal number
of samples T’

Initialize © by minimizing U(O) using SGD, Adam, etc.

fort=1,2,...T do

Sample the momentum p ~ A(0, M).

Draw a mini-batch B C D to formulate the unbiased potential function U(©)
by equation ([2.11]).

for i =1 tom do

| Update O, p, ¢ using
end
00 «+— 06
end
Output: The sample set of {©®}T

function can be computed as
N
U(©) = —log P(O|D) =) "loss(yn, g(xn, ©)) — log P(6), (2.14)
n=1

where loss(+) is the negative log likelihood and g(-) denotes the neural network. The loss
function can be the cross entropy loss for classification problems and the mean square
error loss for regression problems. After getting the potential function, we can apply the

SGHMC framework to draw samples for the parameters ©.

2.3.3 More General Models

The above descriptions of the prior, the likelihood, and the potential function are all
based on a low-rank tensor-train representation. Our Bayesian tensor learning frame-
work can also be applied to other decomposition of network parameters such as the CP

decomposition and Tucker decomposition.

11

Bayesian Tensorized Nerual Networks Chapter 2

Bayesian Tucker Factorization

The Tucker decomposition projects the original tensor X into a smaller kernel tensor

g,
X =gQQRuU". (2.15)
Similar to Zhao et al. [28], the priors of U®) and G are set as
PUR AR H N(UB (i,)]0, (AR~ (2.16)

’Lkl

and

(2.17)

0/31'[(AFN™)

respectively. Here 3 is a constant scaling factor. For simplicity, we assume [is a constant
instead of a random variable, which is different from Zhao et al. [28]. A®) follows from

the Gamma distribution
Ry
= H CGamma(A®|a, b).

Here, A% is shared between U®) and G. In summary, the prior of the unknown param-

eters © = {G, UM AW} ig

ISH

P(©) = P(GIAD .. AW [T P(URA®) P(A®)

k=1

12

Bayesian Tensorized Nerual Networks Chapter 2

CP Decomposition

Tensor CP decomposition represents a tensor with the sum of a few rank-1 tensors,

namely,

X = Zaf}) o---oad =AW . AD].

r=1
With the parameters © = {A® A, 7}, the prior distribution satisfies P(0©) = [J¢_, P(A®|A)P(A)P(7)

where

N | —
)=

—log P(AM|A) =

d
(]A(k)(:, r)PA =) Iilog)\r> :
k=1

—(a —1)log A, + bA,.

r=1

(2.18)

M=

—log P(A) =

r=1

The negative log prior of 7 is
—log P(1) = —(c— 1) log T + dr. (2.19)

In this work, instead of using A, and 7 directly, we use the log Gamma distribution

7 = log 7 and the inverse Gamma distribution A = A~L. Their prior distributions are

P(F) = exp(c%)df;(_p}(c)—e%)/d) (2.20)
and
P(3) = %< /3" exp(~b/5) (2.21)

13

Bayesian Tensorized Nerual Networks Chapter 2

respectively.

Combing equations |(2.18)} |(2.20)| and [(2.21), we have the negative log prior

R d
“log P(© Z(%Z(A(’“)2/ +Iklog)\>

r=1 k=1
+ (@ +1)log), + j\é) (2.22)
—cT +exp7/d.

2.4 Numerical Experiments

In this section, we present numerical experiments of our Bayesian tensor learning
framework on both tensor completion and tensorized neural network tasks. We omit the

numerical results on tensor regression which is easier than tensorized neural networks.

2.4.1 2-layer NN for Fashion-MNIST

We first consider the Fashion-MNIST dataset [29] by a two layer neural network. The
first layer (FC1) is a 784 x 500 fully connected layer with a ReLU activation and the
second layer (FC2) is a 500 x 10 fully connected layer with the softmax activation. We
convert FC1 as a 8-th order tensor and FC2 as a 4-th order tensor for the tensor-train
decomposition. For the Tucker decomposition, we convert FC1 as a 4-th order tensor

and FC2 into a 3-th order tensor.

2.4.2 6-layer CNN for CIFAR-10

We build a 6-layer convolutional neural network (CNN) containing 4 convolution
layers and 2 fully connected layers. Each convolution layer has a kernel size of 3 x 3

and padding of 1. The number of channels in each convolution layer is 128, 256, 256,

14

Bayesian Tensorized Nerual Networks Chapter 2

Table 2.1: Results of different networks on two datasets. LL: predictive log likelihood
(the larger the better). TT: tensor train decomposition. Tucker: Tucker decomposi-
tion. BF: Bayesian low rank prior.

#Parameters MAP Bayesian

Dataset Network (compression LL Accuracy LL Accuracy
ratio)
5

NN 3'9(71?()10 -0.7118 88.91% | -0.6730 89.41%
Fashion- 2.63 x 10*

MNIST TT-NN (15.1%) -0.6687 87.07% | -0.6337 87.78%
3

BF-TT-NN 402> 10 -0.3317 88.24% | -0.3254 88.64%
(98.8%)
5

Tucker-NN | 227 X307 1 11673 87.20% | -1.0084 87.53%
(1.54x)
4

BF-Tucker-NN 3(1102>8<><1§) -1.2948 87.18% | -0.4405 88.18%
9.91 x 10°

CIFAR. CNN (1x) -0.5337 91.54% | -0.5370 91.53%
5

10 TT-CNN 0-93 > 10 -0.6077 89.00% | -0.5329 90.13%
(14.3%)
4

BF-TT-CNN 7'?132;;)0 -0.3936 86.68% | -0.3623 88.01%

256, respectively. The size of the first fully connected layer (FC1) is 512. A batch
normalization layer and a ReLU activation layer is placed after each convolution and
fully-connected layer. A maxpooling layer with kernel size of 2 x 2 is placed after the

second and the fourth convolution layer.

2.4.3 Results

We use the ADAM method to minimize the negative posterior to get an initial point,
then shrink the rank according to [Section 2.2.4] Afterwards, we generate 7' = 450
samples. The accuracy of this model is evaluated using two criterions: the predictive log
likelihood (LL) and the prediction accuracy. The results for different benchmarks using
different tensor formats are shown in [Table 2.1 We compare the proposed Bayesian

15

Bayesian Tensorized Nerual Networks Chapter 2

J0Max [nInferred

30 6164
25 25 m
202020 20 0 2 - 8
200000 7 20 20 20 20 v
20H In7 o0
00 4 32 32 32 |
10 | 8 10
101 | 201(16|la6 16 [l16 16 |[16 .
IR R | I |

Fbi ;;C; _Fgl FC2 Conv2 Conv3 Conv4 F(Sl FC;
(a) (b) ©
Figure 2.2: The inferred TT rank at different layers. (a): 2 TT-FC layers for Fash-
ion-MNIST. (b): 2 Tucker-FC layers for Fashion-MNIST. (c¢): 4 TT-Conv and 2
TT-FC layers for CIFAR-10
learning with the optimization method that maximize a posterior (MAP) directly. It
is shown that our tensor learning framework outperforms MAP in almost every case
in terms of both the accuracy and the log likelihood (LL). The improvement in log
likelihood indicates that our model can predict the uncertainty better than the MAP
method. Besides, our method achieves a compression ratio of up to 98.8x in Fashion-
MNIST and 127x in Cifar-10 in terms of the number of model parameters compared
with the baseline network.
We also show the estimated tensor-train ranks of the estimated weight matrices and

convolution filters in [Figure 2.2] Clearly, our Bayesian tensor learning framework can

perform model compression in the training process with automatic rank determination.

2.5 Conclusion

We presented applying Hamiltonian Monte Carlo (HMC) to train a Bayesian ten-

sorized neural network representations. A low-rank inducing prior is proposed to reduce

16

Bayesian Tensorized Nerual Networks Chapter 2

the rank during training stage, which enables rank determination during training. Our
method has demonstrated a significant compression ratio in the end-to-end training of
tensorized neural networks, as well as better accuracy than the maximum-a-posterior

training.

17

Chapter 3

Reducing Overparameterization:

Quantized Tensorized Neural

Network Training on FPGA

3.1 Introduction

Despite great success in vast applications, modernized neural networks are often over-
parameterized, leading to prohibitive memory and computing costs in both training and
inference. To overcome this issue, many neural network accelerators targeting efficient
inference on FPGA and ASIC [30, 31, 32, 33, 34] have been proposed to improve the
inference throughput and energy efficiency.

On the other hand, training is much more challenging, as it involves not only forward
propagation but also backward propagation. As a result, most of the training tasks are

still done on high-performance computing platforms such as clusters and cloud servers.

This work has been released as K. Zhang, C. Hawkins, X. Zhang, C. Hao, and Z. Zhang, On-fpga
training with ultra memory reduction: A low-precision tensor method, in ICLR Workshop on Hardware
Aware Efficient Training, 2021.

18

Quantized Tensorized Neural Network Training on FPGA Chapter 3

Besides the expensive hardware and economic cost, these training methods can cause a
huge environmental impact as well. The study [35] shows that training some common
natural language processing models on the cloud could emit 5x as much carbon dioxide
compared with the lifetime emissions of an average American car. This has motivated us
to train neural networks on resource-constrained platforms with much lower energy cost.
Meanwhile, the increasing concerns about data privacy have become another driving force
for training on edge devices [36]. Most of the above-mentioned post-training approaches
[7, 18, 91 10} 11} 12, 13, 14 [15] do not help reducing the training cost except quantization.
By utilizing low-precision quntized arithmetic in optimization solvers [37, [38] B39 40,
411, [42], one can reduce the cost per parameter during training, but the memory cost
reduction is limited to a single order of magnitude even if the most recent ultra low-
precision 4-bit training [40] can be employed. As a result, training neural networks on
FPGA still remains an extremely challenging task.

Can we achieve orders-of-magnitude memory and variable reduction in training? If
we can achieve this ambitious goal, then it becomes possible to train many large neural
networks on FPGA and on other resource-constraint platforms. In this paper, we will
show that it is possible to achieve this goal by exploiting tensor computation [43] and
low-precision arithmetic together. Tensors are a high-dimensional extension of matrices,
and tensor decomposition methods have outperformed many existing matrix compression
algorithms by exploiting hidden low-rank structures in high dimensions. Recently, tensor
decomposition has achieved orders-of-magnitude parameter reduction in post-training
compression of deep neural networks [14], 15, [I7, [I8]. The methods have boosted the
inference performance on various platforms [14 144} 45 46]. However, training a tensorized
neural network from scratch is challenging. The training cost and model performance
are controlled by tensor ranks, which are unknown a priori. Recent works [16, 47, 48]

train a tensorized neural network with a fixed rank parameter, which often requires an

19

Quantized Tensorized Neural Network Training on FPGA Chapter 3

Table 3.1: Memory footprint of a d-dimension tensor of size N x N ... N, its tensor
train (TT) decomposition with rank R, and their quantized representation (LP). F
is the word width of floating point (usually 32 or 64), and D is the word width of
quantized representation (usually < 8).

Parameters Bits

Tensor N4 FN?
TT-Tensor dN R? FdN R?

LP-Tensor N DN¢?
LP-TT-Tensor dN R? DdN R?

expensive manual search and massive training runs.

Paper Contributions. This paper presents, for the first time, an end-to-end neural
network training framework on FPGA with orders-of-magnitude memory reduction. This
work is based on two ideas: (1) a rank-adaptive tensorized model that automatically
reduces training variables and model complexity in training; and (2) a low-precision
tensor optimization solver that further reduces the hardware cost of each training variable.
As shown Table by combining these two methods, we can achieve higher memory
reduction ratios than using any single method alone. With a largely reduced memory
footprint in training, our method can be implemented on various edge devices with very
limited on-chip memory and computation capacity, which is beyond the capability of

existing full-size low-precision training. The specific contributions are summarized below:

e We propose a rank-adaptive tensorized model for end-to-end training. This model
employs a Bayesian method for automatic tensor rank determination and acheives

orders-of-magnitude model compression in the training process.

e We propose a low-precision framework to train the proposed tensorized neural net-
work. This can further reduce the memory footprint. Together with the above
rank-adaptive tensor compression, this method makes it possible to store all model

parameters with limited on-chip memory in a training process.

20

Quantized Tensorized Neural Network Training on FPGA Chapter 3

e We design an embedded FPGA accelerator for the proposed low-precision tensorized
end-to-end training framework. Our FPGA design achieves up to 128 FLOPs per

clock cycle, and achieves 50x speedup compared with embedded CPU.

e We implement our algorithm with a two-layer neural network on a Xilinx MPSoC,

which stores all model parameters on chip and achieves 82.08% testing accuracy on

the Fashion MNIST dataset.

3.2 Tensor Train Neural Network

Training neural networks on edge devices is largely constrained by model size and
computational cost. The FLOPS required is often so high that only expensive GPUs
can finish training runs in reasonable time. Low-rank tensor compression is a promising
solution to reduce both computation and memory cost [15] [16], [17].

To compress the layers of pre-trained models, different decompositions have been
studied [49] 50, 51, 52]. Among these methods, tensor train decompostion often yields
the highest compression ratio with little accuracy loss. Therefore, in this work we focus
on the tensor-train decomposition [24].

A fully-connected layer takes the form of Wa + b where W is the weight matrix, b
is the bias, and x is the input vector. The majority of the parameters in a layer are in
the weight matrix W. To compress the weights of a fully-connected layer, we apply the
Tensor-Train Matrix format as shown in Definition 3.1l

In the fully-connected layer of a neural network, the weight matrix W contains many
parameters. To achieve high compression ratios we reshape it into a high dimensional

tensor W with the same elements as W, and use the tensor-train decomposition to it.

Definition 3.1 Let W € R be a matriz and let i = [['_ in,j = [I°_,jn be a

21

Quantized Tensorized Neural Network Training on FPGA Chapter 3

factorization of its dimensions. To apply the tensor-train matrixz format we reshape W
into a tensor W with dimensions i1 X - -+ X ig X j1 X -+ X jq. The explicit reshape scheme
is given in [16]. The tensor-train matrix (TTM) factorization applies tensor train
decomposition to VW and expresses it as a series of matriz products.

1 2 d
Wil ,,,,, id,J150dd g(: g() :()

HU1,J1,0 7 592,02, SdsJdst

Each TT-core G@ € REn-1xInxJnxBn o1 tensor factor, is an order 4 tensor. The tuple
(Ro, Ry, Ry, ..., Ry) is the TT-rank and as before with Ry = Ry = 1. The Tensor-Train
Matrix factorization requires) R,_11,J, R, parameters, which is usually much smaller
than the original matrix with Hn 1,,J,, number of parameters.

Low-rank optimization and Bayesian inference are the two main approaches used for
rank determination in tensor completion. The first approach relies on the generalization
of the matrix nuclear norm [53] to tensors. Popular approaches achieve rank reduction
by relying on tensor unfolding operators at the cost of high computational expense for
high-order tensors. The second approach, Bayesian inference, utilizes low-rank priors
to deduce the tensor rank in CP or Tucker tensor completion [25]. The tensor-train
decomposition differs from CP or Tucker in that the the ranks of different tensor factors
may couple with each other. The observed data is a linear mapping of a tensor in tensor
completion and it is a nonlinear mapping in neural networks. This nonlinearity prevents
us from directly applying previous work on tensor rank determination to tensorized neural

network.

22

Quantized Tensorized Neural Network Training on FPGA Chapter 3

3.3 Rank-Adaptive Tensorized Neural Network

Most existing methods to produce tensorized neural networks require training an
uncompressed model first, which is computationally expensive. In this section, we propose
to train a low-rank tensorized neural network from scratch by directly updating the
unknown tensor cores via stochastic gradient-descent optimization. This approach does
not form the large uncompressed weight matrices, therefore it can greatly reduce the
memory footprint and training cost. To reduce tensor ranks, we start with a model with
higher tensor ranks, and apply a low-rank regularizer to shrink the tensor rank during
the training process. This approach leads to a better trade-off between accuracy and cost
(in terms of memory and computing) than existing fixed-rank training [16, 47, 48] that

require combinatoral rank search and multiple training runs.

3.3.1 Hierarchical Bayes Model

Determining a proper tensor rank is NP hard. Failure to get an appropriate rank
estimation may cause high training cost or low accuracy. In this work, instead of setting
the rank as a prior, we use a Hierarchical Bayes model to infer the optimal rank in the
training process. The hierarchical structure is shown in [Figure 3.1]

We introduce a set of additional parameters {A\™} to determine the actual Tensor-
Train ranks. Our goal is to determine tensor factors with a low TT-rank so we select a
prior density that specifies a prior belief that the TT-rank is low. Specifically,)\gk) will be
larger if the values in the tensor slice associated with it is larger. It will in turn influence
the regularizer, and penalties more if)\gk) is smaller. At the end of training process, some
of)\I(C") will be small, and the whole slice of G™ will be close to zero, leading to a rank
reduction in the n-th mode.

Additionally, we place a Log-Uniform prior on the hyperparameters A(™, 1 < n <

23

Quantized Tensorized Neural Network Training on FPGA Chapter 3

log uniform

1 1 1 2 2 2 3 3 3
g§) ;) ?()) f)gé)gé)gf)gé)gé)

Figure 3.1: Hierarchical Bayes model for low rank TT neural network.

R
pA™) = TTp) pO™) ~ A

=1

—-1/2

(3.1)

We make two observations about this choice of hyper-prior. Firstly, the prior density,
and therefore the entire Bayesian model, does not contain any manually tuned hyper-
parameters. This enables us to perform one-shot tensorized training on edge devices
without multiple hyperparamter tuning runs. Secondly, the prior density enforces spar-
sity in the vector X and therefore induces structural rank-sparsity on the low-rank tensor
factors.

Fully Bayesian training to fit the model parameters is prohibitively expensive. Instead

we convert the low-rank prior into the form of a regularizer by taking the negative log,

which leads to |(3.3)}

3.3.2 Objective Function

To train a neural network for classification, the typical objective to minimize is the
cross entropy loss between the predicted label f(x) and the ground-truth label y:
1 m
—ZCE(f(%),yi) (3.2)

m <
=1

24

Quantized Tensorized Neural Network Training on FPGA Chapter 3

Algorithm 2: Low-rank tensorized neural network training algorithm.
Input : dataset (z;,y;) € D
ndomly uniformly initialize weights. while Not converge do
Randomly draw a minibatch B C D, calculate the target function +

l} and its gradient with respect to G. Update Qi(l) along (stochastic)
gradient direction using ADAM. Update A with ({3.4)
end

Output: g§”

where m is the size of training set and CE stands for cross entropy loss. In some cases an
additional nonnegative, convex function, eg. -2 norm function, is added to the objective
function as a reqularizer to avoid overfitting or to make the optimization landscape

smoother. In our work, we add a regularizer to shrink the tensor rank:

1 n— .TL .’I’L n
Z Z ||g,,,k||F Z +7“2 10n] 1og(>\,(€)) (3.3)
k

1<n<d—-1 k

Note that the second term does not depend on G, so it is not included when computing
the gradient. The algorithm to minimize the target function is shown in Algorithm [2]

and it is explained in the following sections.

3.3.3 Update rule

In optimization process, we updates the tensor factors using Adam algorithm [54].
On the other hand, we update the rank parameters A by minimizing equation (3.3)

analytically with respect to A:

n 2
)\l(c) P Zgrz,], (34)

1 + T'n— 1ann ryinj

We alternate between updates of tensor factors G and updates of the rank parameters

A to minimize the objective function.

25

Quantized Tensorized Neural Network Training on FPGA Chapter 3

3.4 Low-Precision Tensorized Training

3.4.1 Training Quantized Weights

The update rule of Stochastic gradient descent (SGD) is

Q(H—l) nt |B| Z vgﬁ wl))

ieB

where B C D is the minibatch used in this step, 7 > 0 is the stepsize, ¢ is the loss
function, eg. mean square error (MSE) or cross entropy loss, and f(+; G) represents the
neural network given the trainable tensor factors {G}. In a quantized neural network each
value in G is chosen from a discrete set {kA| — B < kA < B,k € N}, where B = 2'71§
is the bound on the quantized values, b is the number of bits to represent a value, and
A is the quantization precision.

When the stepsize n is small, which is often the case when getting close to the local
minima, the update in a single step can be smaller than the quantization precision A,
which prevents the empirical loss from further decreasing. In order to avoid this problem,
two methods have been proposed: stochastic rounding [39] and Binary connect (BC)
[41]. Their convergence has been analysed in [55] which demonstrates that BC has faster
convergence speed and better stability than stochastic rounding.

In our work, we use the BinaryConnect algorithm to train a tensorized neural net-
work. The BinaryConnect algorithm keeps a high precision copy of all the low precision
parameters in a buffer. In each iteration, the gradients are accumulated in the buffer and
the low precision parameters are updated by quantizing the buffer. The update process

18

26

Quantized Tensorized Neural Network Training on FPGA Chapter 3

)) 1
G+ — g0 _ 18| > Vel f(xi:G). vi) (3:5)

ieB

g(t+1) _ Q(g(t-‘y—l)) (36)
Where @ is the quantization function.
Q(x) = argmin |y — z|,y € {kA| — B < kA < B,k € N}
y

The quantization precision is chosen to avoid clipping;:

max Qi(l)

B=max|g/", Al ==5;

Notice that in such neural networks, the biases are usually not quantized, as this often
greatly hurt the accuracy, while saving only a small amount of computing and storage

resources.

3.4.2 Straight Through Estimator

Quantization functions are not differentiable and backpropagation can’t be used di-
rectly to train a neural network with quantized activations. In order to solve this problem,
the straight through estimator (STE) [56] has been proposed as an approximation to the
gradient of the quantization function. The idea of STE is to use the gradient of a smooth
function is the backpropagation. In [56], the gradient of a 0-1 activation function is ap-
proximated with the gradient of sigmoid function. In [42], it is suggested to use 1}, < as
the approximated gradient of quantization function. This method is often called satu-

rated STE. A detailed analysis of different types of STE is presented in [57]. It is proven

27

Quantized Tensorized Neural Network Training on FPGA Chapter 3

that both ReLU and clipped ReLLU as STE leads to guaranteed convergence, while simple
passthrough can result in divergence in some cases. In this paper, we use clipped ReLLU
and leaky clipped ReLLU function as STE. Considering a ReLLU-like quantized activation
function

o(r) = argmin |y — |,y = {0 < kA < B} (3.7)
ye
the backpropagation rule can be written as

9, 9,
— = <zxr< — .
By 10<z < B)ay (3.8)

where 1(+) is the indicator function.

Table 3.2: Fixed point expression used.

Values bits used
Weights 4
Activation 8
Gradients 16

We summatize our fixed point expression in Table [3.2l We use 4 bits to represent
the weights, 8 bits for activation, and 16 bits for gradients of both activation and model
parameters (tensor factors). The bias has the same representation as activation (8 bits).
In computing the gradients of factors, gradients in a single minibatch are shifted before
accumulated to 16 bits to avoid overflow. Since PE are shared between forward and
backward propagation, they are designed to handle 16 bits data and 4 bits weights. In
forward propagation, only the 8 LSB in data are used, and in backward propagation, all
16 bits are used. This allows the model trained with our method portable to devices with

only 8 bits by 4 bits for inference.

28

Quantized Tensorized Neural Network Training on FPGA Chapter 3

3.4.3 Automatic scale selection

When using fixed point representation, the scaling factor of each value needs to be
carefully designed to avoid overflow or large quantization error. Besides, if the scaling
factors differ by a factor of a power of 2, then a simple bit shift is needed, which takes
almost no hardware resource or time.

In the training process of neural network, the scale of activation an gradients can vary
by several orders of magnitude during the training process, which makes it impossible
to use a fixed scaling factor throughout the training process. In order to deal with this
problem, we used a variable scaling factor, and introduced a mechanism to determine the
scaling factor on the fly. The scaling factors of all values are enforced to be a power of 2 so
that data conversion requires a simple bit shift. We allow a different scaling factor for each
activation, gradient or intermediate result, while it is shared between different samples
or channels. The scaling factors of the weights are fixed, and with 4 bits the available
range is [—1,0.875]. To avoid overflow and make sure the values approximately zero
mean, weights are clipped to the range [—0.91,0.91] after each iteration. To determine
the scaling factor of the activation and gradients, we keep track of the mean of absolute
value during training process, and enforce it to lay in the range between 0.1 and 0.3 by
dynamically adjusting the scaling factor. This allows a small margin to avoid overflow,

while making the most use of the bits to reduce quantization error.

3.5 FPGA implementation

3.5.1 Overall design

In this section we introduce the FPGA implementation for our proposed on-device

rank-adaptive tensorized training for neural networks. The overall FPGA design is shown

29

Quantized Tensorized Neural Network Training on FPGA Chapter 3

DRAM
[T [T T [
T 1 1 1 1 T
Load & store || Load & store PE3
T T T T
Ping-pong buffeﬂ’ing-pong buﬂ:ek
T T I T
PE1 PE2 MPSOC
T T
Storage CPU

Figure 3.2: Overall view of hardward design

in [Figure 3.2l During training, the training samples, activations, and gradients are stored
in the off-chip DRAM. Thanks to our low-rank tensorization, all the model parameters
can be stored in the on-chip BRAM. The overall training involves three steps: forward
propagation, backward propagation, and model parameter update. The forward and
backward propagation are executed on FPGA programmable logic; updates to the tensor
factors G and rank parameters X are executed on the embedded ARM core, which usually
take less than 1% of total computing cost. We design three processing elements (PEs)
to compute the forward and backward propagation: PE1 and PE2 are used in forward
propagation, while PE1, PE2, and PE3 are used in backward propagation. Thus, PE1
and PE2 are shared by forward and backward propagation to reduce resource usage.
PE2 will execute tensor contraction along the last dimension, while PE1 will handle
contraction along other dimensions. The data, activations and gradients involved in
the computation of PE1 and PE2 are cached by ping-pong buffers. Because PE3 only
performs outer product operation, which is memory bounded and cannot benefic from a

buffer, it reads and writes the activations and gradients from the DRAM directly.

30

Quantized Tensorized Neural Network Training on FPGA Chapter 3

| Ping-pong buffer |

Al 0 1] AL 2] | Ping-pong buffer |
Gl 2 1] 2.2 ; Al 1] Al 2]
! N RREIEE
e e M b0 |-o-c
gl[i,]_,]_] gl[i,l,Q] %
b LS et]
1] = —0~0 —©-0
(a) PE1 (b) PE2

Figure 3.3: Hardware architecture of PE1 and PE2

3.5.2 PE design

We designed two PE to handle tensor contraction. The reason for that is there are two
kinds of tensor contraction operations, depending on whether the dimension to contract
is the last dimension in a tensor or not. Data locality in these two cases are significantly
different. In order to deal with that, we designed two kinds of PE to handle these two
different kinds of processes.

The first PE (PE1) does tensor contraction along the last dimension. The design
of PE1 is shown in It consists a two-dimension multiplier array. Each
column of the multipliers share the same data/activation/gradient from the Ping-pong
buffer, and an accumulator is placed at each row of the multiplier array. Each multiplier
is equipped with a small block memory and the weights are loaded the block memory
before performing a tensor operation.

The computation can be written as

abc X bde — ad

The dataflow of this PE is shown in [algorithm 3| In the partial tensor contraction (line

31

Quantized Tensorized Neural Network Training on FPGA Chapter 3

Algorithm 3: Process of PE1.
Input : operand 1 A in off-chip memory, operand 2 G in on-chip memory.
foreach i from 1 to a step § do
Pipeline:
Load Ali : i + 7,:,:] to ping-pong buffer
Partial tensor contraction to A[i : ¢ +7,:,:] and G to get B[i : i 4 7,:], store
to another ping-pong buffer.
Store Bli : i + 7,:] to off-chip memory.
end
Output: Tensor B in off-chip memory.

5), we parallelize the computing along the last dimension (¢) by a factor of 16, and
parallelize along the first dimension (a) by a factor of 8. This requires 128 scalars from
the first operand (data) and 16 continuous (and aligned) data from the second operand
(weight) per clock cycle during computing. To simplify the design, we enforce C' to be
a multiplier of 16, which is equivalent to enforcing the last dimension of both input and
output tensor, mz and ns, to be a multiplier of 16, which brings an additional benefit
that d is always a multiplier of 16.

The second PE (PE2) performs tensor contraction along dimensions other than the
last dimension. The design of PE2 is shown in [Figure 3.3b It consists a two-dimension
multiplier-and-accumulator array. Each column of the multipliers share the same data/activation/gradie
from the Ping-pong buffer, and each row of the multipliers share the same tensor weight
stored in the on-chip memory. Each multiplier is equipped with a small block memory
to store the accumulated result.

The computation can be written as

abe x bd — ade

and shape of operands in each step are shown in [Table 3.6,
The dataflow of this PE is shown in [algorithm 4] In the partial tensor contraction

32

Quantized Tensorized Neural Network Training on FPGA Chapter 3

Algorithm 4: Process of PE2.
Input : operand 1 A in off-chip memory, operand 2 G in on-chip memory.
foreach j from 1 to c step 16 do
foreach i from 1 to a step 1 do
Pipeline:
Load Ali,:, j : j + 15] to ping-pong buffer
Partial tensor contraction to Ali,:, j : j+ 15] and G to get Bli,:, j : j + 15]
store to another ping-pong buffer.
Store Bli,:, j : j + 15] to off-chip memory.
end

end
Output: Tensor B in off-chip memory.

(line 6), we parallelize the computing along the last dimension (c) of the first operand
by a factor of 16, and parallelize along the last dimension of the second operand (d) by
a factor of 8. Again, we enforce ¢ to be a multiple of 16, which has been covered in the
condition above. This requires 128 scalars from the first operand (data) and 8 continuous
(and aligned) data from the second operand (weight) per clock cycle during computing.

The interface of both data and weight has a width of 16. This is enough for weight,
but not enough for data, which is used more heavily during computation. To deal with
this limitation we split the data into parts. In the first PE, data is split by dimension
a. In the second PE, data is split by dimensions a and c. We split the computation into
three steps: loading data from DRAM to the on-chip buffer, performing the multiply-
and-accumulate, and storing the result back to DRAM. Making use of the ping-pong
buffer, the second step, multiply-and-accumulate, can be executed in parallel with other
steps.

We introduce the third PE to perform outer product. The throughput of this step
is bounded by memory bandwidth of storing. Due to this limitation, this PE consists
only a one-dimensional multiplier array so that the throughput of computation matches

the throughput of memory. The computing is parallarized along the last dimension ms

33

Quantized Tensorized Neural Network Training on FPGA Chapter 3

only by a factor of 16. Elements of the second operand is cached, while the first operand
is read from DRAM directly and write through. The detailed operation of each PE is
deferred to

3.5.3 Memory management

In many other neural network accelerators, both data and model parameters are
placed on off-chip DRAM due to limited on chip memory, and are loaded to on-chip
memory only when needed. This incurs overhead in latency and power. In our design,
thanks to the reduction in the number of parameters due to tensorization and quantiza-
tion, it is possible to store all the tensor factors (and bias) on-chip through the entire
training process. This reduces the overhead of data movement between on-chip memory
and off-chip DRAM memory. In summary, we should expect the throughput to be close

to 128 Flops/cycle.

3.6 Experiments and results

3.6.1 MLP

To test the performance of our accelerator, we implemented it for a 2-layer tensorized
neural network for MNIST-like dataset. We used C++ to implement fixed point tensor
contraction and used Pytorch to implement high level methods (ADAM, rank parameters
update). In order to fit the requirement on the shape of tensors, we zero pad the input
to 28 x 32 and decompose it to 7 x 4 x 2 x 16. There are 512 neurons in the hidden
layer decomposed into 4 x 4 x 2 x 16 for the first layer, and 32 x 16 for the second layer.
The output is decomposed into 1 x 16. We trained this model for FashionMNIST dataset

[58], which has the same shape and size as MNIST dataset but is more complicated

34

Quantized Tensorized Neural Network Training on FPGA Chapter 3

Table 3.3: Fashion MNIST training result

Mothod Training Testing Model Mempry
accuracy accuracy parameters in bits
Vanella 95.75% 89.27% 4.67 x 10° 1.49 x 10”

Floating, w/o prior | 92.54% 88.03% 1.48 x 10* 4.74 x 10°
Fixed, w/o prior | 88.31% 86.67% 1.48 x 10* 6.13 x 10*
Floating, w/ prior | 90.17% 87.88% 1.08 x 10* 3.46 x 10°

Fixed, w/ prior 85.45% 84.86% 1.22x 10* 5.11 x 10*

and can better We train the model for 30 epochs and compare both standard floating
point computation in Pytorch (Floating) and our simulator (Fixed), and training with or
without the low rank prior. We report the epoch with highest testing accuracy, and show

our result in [Table 3.3 We also listed the memory footprint of the model parameters

(tensor factors) achieved after training.

3.6.2 Implementation on FPGA

We implemented the forward and backward propagation process on a Avnet Ultra96-
V2 board. This board is equipped with a Xilinx Zynq UltraScale+ XCZU3EG MPSoC
and 2GB off-chip memory. The resource utilization is listed in [Table 3.5 For larger
neural networks, utilization of LUTs and DSPs will not increase as PEs can be reused
for computing across layers, while only the utilization of BRAM will increase, as weights
are stored on chip during training. A maximum of 114MHz clock rate can be achieved.

We compared the time and memory usage to tensorized neural network training be-
tween our implementation on FPGA and that on a embedded computer. The embedded
computer we use is an Raspberry Pi 3B with Quad Core 1.2GHz ARM processor. We
used Pytorch and Tensorly module to implement training algorithm on it. For FPGA,
we set the clock rate to 100MHz. Only the time on forward and backward propagation

is included, as the rest part (optimizer) is the same on both devices. The memory usage

35

Quantized Tensorized Neural Network Training on FPGA Chapter 3

Table 3.4: Time and memory use comparison between floating point training on em-
bedded computer (RPi) and fixed point training on FPGA (FPGA)
Time (s/batch) Memory (MB)
RPi 5.34 1.49
FPGA 0.09 20.06

Table 3.5: Resource utilization of 2-layer tensorized neural network
resource | used available utilization
LUT 56131 70560 79.55%
FF 30155 141120 21.37%
DSP 278 360 77.22%
BRAM 7 432 17.82%

shown in this table excludes the model parameters and training data. For embedded com-
puter, we measured the memory usage by taking the maximum one, minus the memory

usage after loading data and initializing the model but before training.

3.7 Conclusion

In this work, we proposed a new algorithm to train quantized tensorized neural net-
works. By training end-to-end compressed neural networks, our approach produce a com-
pressed model from scratch while saving hardware resources during the training phase.
Our algorithm uses Bayes rule to determine the rank from the training data, and achieved
up to 335 x reduction in memory cost compared to the base model with only a slight loss

in accuracy.

36

Quantized Tensorized Neural Network Training on FPGA Chapter 3

3.8 Detailed operations

3.8.1 Forward propagation

The forward and backward propagation of neural network involves tensor contraction.
Here we use a tensor train with three factors as an example, denote the input dimen-
sions as my, mo, mg, output dimensions as ny,ny, n3, and the rank as rq, 9. the forward

propagation involves the following computation in Einstein summation convention:

m1moms X MaToNg — M11MaT2N3 (39)
mM1MoTong X Mol Mg —> M1 T1M2M3 (310)
mirinaong X mMiring — ninaong (311)

In these expressions, the first operand is the data (input or intermediate results), and

the second operand is the tensor factors of the weights.

3.8.2 Backward propagation

In back propagation, there are two tasks:
e To compute the gradients with respect to the inputs of the layer.

e To compute the gradients with respect to the model parameters (tensor factors) of

the layer.

To compute the gradients with respect to the inputs, the computation in Einstein

37

Quantized Tensorized Neural Network Training on FPGA Chapter 3

summation convention is shown below:

NiNgN3 X NMTY — MAT1 NN (3.12)
MAT1MN2N3 X T1N2MaTy —> T MT2N3 (3.13)
mi1meorong X r9Mmgng — M11M2Ms3 (314)

The first equation is to compute the gradients directly. The second is to compute the
gradients with respect to full weights and then accumulate them and compute the gra-
dients with respect to the factors. The former method is more efficient if batch size is
small and the compressed model is small, while the latter is more efficient if it is the
opposite. In our work, we are starting with a model with large rank (larger model), the
latter method is more efficient. In this work, we are implementing the second method.
The first step, computing the gradient with respect to the full weight matrix, requires a

simple outer product:

mi1meoms X N1NaoNy —» N1 1M M2M31M3

The first operand of this PE is the input to this layer during forward propagation, and the
second operand is the gradient of the output. After the gradient has been accumulated

in a batch, the gradient with respect to the factors can be computed by contracting the

38

Quantized Tensorized Neural Network Training on FPGA Chapter 3

Eq PE a b c d
| | PE1 1My 1 ms ToNg
(3. 10) PE2 my Mol n3 1Mo
(3.11)] PE2 1 miry Nan3 ny
(3.12)) PE2 1 ny Nans mary
(3.13) PE2 my N9 ns MaTs
(3.14) PE1 mims T n3 ms
(3.15) PEL | nymingms 1 nsms Ty
(3 16) PE1 n1m,q 1 T2MMaTo 1
(3.17)) PE2 1 nimy NaMaoTs r1
(3.18) PE2 1 nimi MaMaNzms T4
(3.19) PE2 1 Ty nsms Ty

Table 3.6: PE and operand of each expression.

gradient of full weight with the tensor factors:

N1M1N2MeoNgMsy X T9N3gM3g —» N1 MaTe (315)
N1M1N2MaTo X T'1NoMoTe — N1M1T1 (316)
N1M1N2MaoTe X N1M1T1 —> T1N2MoTy (317)
N1M1N2MoN3M3g X N1M1T1 — T1MoMoN3 M3 (318)
T1M2MoN3MM3 X T1MNoMoTy —> ToNoM3 (319)

Note that the result of the first expression is shared to get the gradient of the first and
second tensor factor.

To compute the gradient with respect to the tensor factors, as in Equation
(3.19)}, and the first and second PE can be reused here. This puts additional requirement
on the shape and rank of the tensor factors. A sufficient condition is that all the ranks
are a multiple of 16. Since we are using models with rank determination, the rank of the
final model will a rank smaller than this pre-specified maximum rank. The final rank is

not necessarily a multiplier of 16.

39

Chapter 4

Infinite Overparameterization: NTK

of BinaryWeight Neural Networks

4.1 Introduction

Traditional statistical learning techniques (e.g., VC-dimension [59]) rely on the num-
ber of parameters to study the generalization ability of a machine learning method.
Because of overparameterization, the traditional statistical learning techniques based on
uniform convergence do not satisfactorily explain the generalization ability of neural net-
works. Furthermore, Zhang et al. [60] showed that neural networks can perfectly fit the
training data even if the labels are random, yet it generalized well when the data are not
random. This seems to suggest that the model capacity of a neural network depends on
not only the model, but also the dataset. Recent studies [61] managed to understand the
empirical performance in a number of different aspects, including modeling stochastic

gradient (SGD) with stochastic differential equation (SDE) [62], studying the geometric

This work has been released as K. Zhang, M. Yin, and Y.-X. Wang, Why quantization improves
generalization: Ntk of binary weight neural networks, arXiv preprint arXiv:2206.05916 (2022).

40

NTK of BinaryWeight Neural Networks Chapter 4

structure of loss surface [63], and overparameterization — a particular asymptotic behav-
ior when the number of parameters of the neural network tends to infinity [64} 65] [66], 67].
Recently, it was proven that the training process of neural network in the overparameter-
ized regime corresponds to kernel regression with Neural Tangent Kernel (NTK) [68]. A
line of work [69, [70] [71], [72] further studied Mercer’s decomposition of NTK and proved
that it is similar to a Laplacian kernel in terms of the eigenvalues.

It has been found that by quantizing the parameters in a neural network, the memory
footprint and computing cost can be greatly decreased with little to no loss in accuracy
[39]. Furthermore, Hubara et al. [73], Courbariaux et al. [41] argued that quantization
serves as an implicit regularizer and thus should increase the generalizability of neural
network comparing to its full precision version. However, there is no formal theoretical
investigation of this statement to the best of our knowledge.

In this paper, we propose modeling a two-layer binary weight neural network using a
model with continuous parameters. Specifically, we assume the binary weights are drawn
from the Bernoulli distribution where the parameters of the distribution (or the mean of
the weights) are trainable parameters. We propose a quasi neural network, which has the
same structure as a vanilla neural network but has a different activation function, and
prove one can analytically approximate the expectation of output of this binary weight
neural network with this quasi neural network. Using this model, our main contributions

are as follows:

e Under the overparameterized regime, we prove that the gradient computed from
BinaryConnect algorithm is approximately an unbiased estimator of the gradient of
the quasi neural network, hence such a quasi neural network can model the training

dynamic of binary weight neural network.

e We study the NTK of two-layer binary weight neural networks by studying the
41

NTK of BinaryWeight Neural Networks Chapter 4

“quasi neural network”, and show that the eigenvalue of this kernel decays at an
exponential rate, in contrast with the polynomial rate in a ReLU neural network
[72, [71]. We reveal the similarity between the Reproducing kernel Hilbert space
(RKHS) of this kernel with Gaussian kernel, and it is a strict subset of function
as the RKHS of NTK in a ReLU neural network. This indicates that the model
capacity of binary weight neural network is smaller than that with real weights, and

explains higher training error and lower generalization gap observed empirically.

4.2 Related work

Quantized neural networks. There is a large body of work that focuses on training
neural networks with quantized weights [74, 37, 39, [75, [76], including considering radi-
cally quantizing the weights to binary [42] [77] or ternary [78] values, which often comes
at a mild cost on the model’s predictive accuracy. Despite all these empirical works,
the theoretical analysis of quantized neural networks and their convergence is not well
studied. Many researchers believed that quantization adds noise to the model, which
serves as an implicit regularizer and makes neural networks generalize better [73, 41],
but this statement is instinctive and has never been formally proved to the best of our
knowledge. One may argue that binary weight neural networks have a smaller parameter
space than its real weight counterpart, yet Ding et al. [7T9] showed that a quantized ReLU
neural network with enough parameters can approximate any ReLLU neural network with
arbitrary precision. These seemingly controversy results motivate us to find another way

to explain the stronger generalization ability that is observed empirically.

Theory of deep learning and NTK. A notable recent technique in developing the

theory of neural networks is the neural tangent kernel (NTK) [68]. It draws the connection

42

NTK of BinaryWeight Neural Networks Chapter 4

between an over-parameterized neural network and the kernel learning. This makes it
possible to study the generalization of overparameterized neural network using more
mature theoretical tools from kernel learning [80, [81].

The expressive power of kernel learning is determined by the RKHS of the kernel.
Many researches have been done to identify the RKHS. Bach [69], Bietti et al. [70] studied
the spectral properties of NTK of a two-layer neural network without bias. Geifman et al.
[71] further studied the NTK with bias and showed that the RKHS of two layer neural
networks contains the same set of functions as RKHS of the Laplacian kernel. Chen
et al. [72] expanded this result to arbitrary layer neural networks and showed that RKHS
of arbitrary layer neural network is equivalent to Laplacian kernel. All these works are
based on neural networks with real weights, and to the best of our knowledge, we are the

first to study the NTK and generalization of binary weight neural networks.

4.3 Preliminary

4.3.1 Neural tangent kernel

It has been found that an overparameterized neural network has many local minima.
Furthermore, most of the local minima are almost as good as the global minima [82].
As a result, in the training process, the model parameters often do not need to move
far away from the initialization point before reaching a local minimum [83] [84, R85]. This
phenomenon is also known as lazy training [86]. This allows one to approximate a neural
network with a model that is nonlinear in its input and linear in its parameters. Using the
connection between feature map and kernel learning, the optimization problem reduces
to kernel optimization problem. More detailed explanation can be found below:

Denote © as the collection of all the parameters in a neural network fg before an

43

NTK of BinaryWeight Neural Networks Chapter 4

iteration, and ©7 as the parameters after this iteration. Let in denote fixed distribution
in the input space. In this paper, it is a discrete distribution induced by the training
dataset. Using Taylor expansion, for any testing data z, let the stepsize be n, the first-
order update rule of gradient descent can be written as (lj,s(+) be the differentiable loss

function and the label is omitted)

0" — © = nEsnin [Veloss(fo(x))]
= NBonin [Veo fo(z) loss'(fo(z))]
for(a') = fo(a') = Ve fo(r') - Eonin [Ve fo(x) loss'(fo(x))]
= NEsin [Vefo(z') - Ve fo(z) loss'(fo(x))]

= NEpmin [K(z, 2") loss'(fo(z))] -

This indicates that the learning dynamics of overparameterized neural network is ap-
proximating the kernel learning with the limiting kernel (in the almost surely sense) to
be defined as:

K(z,2):= lim V{fe(z)- Vefolr).

width— o0

Here as the width of the neural network tends to infinity, the number of parameters will
also go to infinity. The limiting kernel K is usually referred as the neural tangent kernel
(NTK). As the width of the hidden layers in this neural network tends to infinity, this

kernel convergences to its expectation over © [68].

44

NTK of BinaryWeight Neural Networks Chapter 4

4.3.2 Exponential kernel

A common class of kernel functions used in machine learning is the exponential kernel,

which is a radial basis function kernel with the general form

K(z,z') = exp(=(cllz = 2[[)7),

where ¢ > 0 and v > 1 are constants. When v = 1, this kernel is known as the Laplacian
kernel, and when v = 2, it is known as the Gaussian kernel.

According to Moore-Aronszajn theorem, each symmetric positive definite kernel uniquely
induces a Reproducing kernel Hilbert space (RKHS). RKHS determines the functions
that can be learned using a kernel. It has been found that the RKHS of NTK in a ReLLU
neural network is the same as Laplacian kernel [71], [72], and the empirical performance of
a neural network is close to that of kernelized linear classifiers with exponential kernels

in many datasets [71].

4.3.3 Training neural networks with quantized weights

Among various methods to train a neural network, BinaryConnect (BC) [41] is often
one of the most efficient and accurate method. The key idea is to introduce a real-valued
buffer # and use it to accumulate the gradients. The weights will be quantized just

before forward and backward propagation, which can benefit from the reduced computing

complexity. The update rule was shown in (3.6)]

45

NTK of BinaryWeight Neural Networks Chapter 4

4.4 Approximation of binary weight neural network

4.4.1 Notations

In this paper, we use wy;; to denote the binary weights in the ¢-th layer, 8, ;; to denote
its real-valued counterpart, and by; to denote the (real valued) bias. © is the collection of
all the real-valued model parameters which will be specified in Section [4.4.2] The number
of neurons in the /-th hidden layer is d,, the input to the /-th linear layer is &, and the
output is y,. d denote the number of input features. Besides, we use to denote the
input to this neural network, y to denote the output and z to denote the label.

We focus on the mean and variance under the randomness of stochastic rounding.

Denote

e = Elxg |, O, O'Zi := Var|z, |z, 6],

Vﬁ,i =]E’[yﬁ,i Z, @]7 gz‘2,£ = Var[yf,i|ma @]7 g = E[y|@]
We use o(z) = max(z,0) to denote ReLU activation function, and in to denote the
(discrete) distribution of training dataset. E;,[-] := E(z,:)~in[-] denotes the expectation

over training dataset, or “sample average”. We use bold symbol to denote a collection

of parameters or variables wy = [wa], by = [ba], v1 = [v1;], 01 = [0145],7 € [di1],7 € [da].

4.4.2 Problem statement

In this work, we target on stochastic quantization [87], which often yields higher
accuracy empirically compared with deterministic rounding [41]. This also creates a
smooth connection between the binary weights in a neural network and its real-valued
parameters.

Let wy;; = Quantize(By;;), 0045 € [—1, 1] be the binary weights from stochastic quan-

46

NTK of BinaryWeight Neural Networks Chapter 4

FlrStActivation Second Input FlrStActivation Second
layer layer layer layer

<< Qtput

r wy 1 wr Y1 o) Tz W T Wy T1 6 V1 G() M2 W

Input

utput

(a) Binary weight neural network we focus on. (b) Quasi neural network.
tization function, which satisfy Bernoulli distribution:

+1, with probability py;; = eé’i§+17
- (4.1)

—1, with probability 1 — p;;.

This relationship leads to E[wy;|0s.:;] = 04;-

We focus on a ReLU neural network with one hidden layer and two fully connect
layers, which was also studied in Bach [69], Bietti et al. [70] except quantization. Besides,
we add a linear layer (“additional layer”) in front of this neural network to project the
input to an infinite dimension space. We randomly initialize the weights in this layer and
leave it fixed (not trainable) throughout the training process. Furthermore, we quantize
the weights in the first fully connect layer w,;; and add a real-valued buffer 6, ;; which
determines the distribution of wy ;; as in (4.1)), and leave the second layers not quantized.
It is a common practice to leave the last layer not quantized, because this often leads to
better empirical performance. If the second layer is quantized as well, the main result of
this paper will not be changed. This can be easily checked by extending Lemma [4.2] into

the second layer.

Remark 4.1 In many real applications, e.q. computer vision, the dimension of data are

often very large (= 10%) while they are laying in the lower dimension linear subspace, so
47

NTK of BinaryWeight Neural Networks Chapter 4

we can take the raw input in these applications as the output of the additional layer, and

the NN in this case is a two-layer NN where the first layer is quantized.

The set of all the real-valued parameters is © = {6y, ;;, W, i;, be; }. The neural network

can be expressed as

Ty = \/—Zwommk-i-bo“VZE [di]; ;= \/ Zwuﬂu-i-blg,vj € [da;

IEQJ = U(:gl,j),Vj c [dg], Z’LUQJZ'QJ + b2

We follow the typical setting of NTK papers [71] in initializing the parameters except
the quantized parameters. As for the quantized parameters, we only need to specify the

real-valued buffer of the weights in the first layer 0, ;;.

Assumption 4.1 We randomly initialize the weights in the “additional layer” and sec-
ond linear layer independently as wo g, wa; ~ N(0,1), and initialize all the biases to
0. The real-valued buffer of the weights are initialized independently identical with zero

mean, variance Var[f] and bounded in [—1,1].

Remark 4.2 Our theory applies to any initial distribution of 01 ,; as long as it satisfies
the constraint above. One simple example is the uniform distribution in [—1,1], which

has variance Var[f] = 1/3.

4.4.3 Quasi neural network

Given a fixed input and real-value model parameters ©, under the randomness of
stochastic rounding, the output of this binary weight neural network is a random vari-
able. Furthermore, as the width of the neural network d; tends to infinity, we define a

parameter sequence {04, } and prove that with parameters from this sequence, the output
48

NTK of BinaryWeight Neural Networks Chapter 4

of a linear layer tends to Gaussian distribution according to central limit theorem (CLT).
We propose a method to determine the distribution of output and using the model pa-
rameters. Specifically, we give a closed form equation to compute the mean and variance
of output of all the layers py, oy, v, <, and then marginalize over random initialization
of © to further simplify this equation. We prove that ¢, converges to a constant almost
surely using the law of large number (LLN), and simplify the expression by replacing
them with the constant. This allows us to compute g, 1, using a neural-network-style

function for given ©. We call this function quasi neural network, which is given below:

Ty = \/— Zwo kil + bog, Vi € [di]; 11, =\7 291 %1 + b1, Vg € [dal;
(4.2)

po =0 (1), Vi € [da]; y= \/— Z Wiz, + Bbs.

In [Section 4.4.3] we study the distribution of the output of each layer in a binary
weight neural network (BWNN) conditioned on the set of real-valued parameter ©. In
Dection 4.4.3, we prove that the conditioned variance of the output of the first linear
layer studied above converges almost surely to a constant which does not depend on
the data (input). This simplifies the expression computed in to the form
of quasi neural network (4.2), and also give a closed-form expression to () in (4.2).
In we prove that conditioned on the set of real-valued parameter, the
expectation of the gradients of BWNN equals the gradient of quasi neural network on
the overparameterization limit. This indicates that the training dynamics of BWNN at
initialization is the same as training the quasi neural network directly. The training
dynamics beyond initialization are discussed in Before jumping to the

proof, we make the following assumptions:

Assumption 4.2 After training the binary weight neural network as in|(3.5){(5.6), all
49

NTK of BinaryWeight Neural Networks Chapter 4

the real-valued weights 6,;; stay in the range [—1,1].

Based on this assumption, we can ignore constraints that 6,,; € [—1, 1] and the projected
gradient descent reduces to gradient descent. Because of the lazy training property of the
overparameterized neural network, the model parameters 6, ;; stay close to the initializa-
tion point during the training process, so this assumption can be satisfied by initializing
6,:; with smaller absolute value and/or applying weight decay during training. On the
other hand, a common trick in a quantized neural network is to change the quantization
level gradually during the training process to avoid (or reduce) overflow. With this trick,
Assumption are often naturally satisfied, but it introduces the quantization level as

a trainable parameter.

Assumption 4.3 The Fuclidean norm of the input is 1:

|||y = 1,Vx € D C R%

where D denotes the training dataset.

This is a common assumption in studying NTK [69, [70], and can be satisfied by normal-

izing the input data.

Conditioned distribution of the outputs of each layer

First we recognize that as the model parameters are initialized randomly, there are
“bad” initialization that will mess up our analysis. For example, all of 8, ;; are initialized
to 1 (or —1) while they are drawn from a uniform distribution. Fortunately, as the width
dy, ds grows to infinite, the probability of getting into these “bad” initialization goes to

0. We make this statement formal in the following part.

50

NTK of BinaryWeight Neural Networks Chapter 4

Definition 4.1 “Parameter sequence”. Define the parameter sequence, indexed by dy, do,

as
@(dl,dg) — {W(()dl,d2) E Rd,(h? bédl,dQ) e Rdl’egdl,lb) E Rdl,dQ’ bgdl,dZ) E Rdg,

W(id) g g pldd) o R},

where Wo = {wo i}, bo = {boi}, 01 = 01,5,b1 = {b1;}, Wa = {wy;}, the superscripts

are omitted, such that for all di < d,dy < dy, ©4%) Q%) satisfy

Wi W BL 1 q] b = by, 6 = 61,1 dy),

bgdl,dg) _ bgdll,dé)[l : d2]7 -Wéiijl,dg) _ (d d/ [1 d2] bgdl,dg _ b d/ d/)

Vk € [d),i <di,j < ds.

Remark 4.3 This definition states that for any two terms (sets of parameters) in the

“parameter sequence”, the overlapping parameters are always equal.

Definition 4.2 “Good Initialization sequence”. For any finite do, we call the set of

parameters sequence defined in |Definition 4.1 as a “Good Initialization” {©W)Y} € G if it

satisfies:

o \V/k‘, k‘, hm —_ Z Wo, ki W0,k i 5k,k’,

d1—o0 dl

dy
1 8
K" lim — Wo,kiWo ki <\/i
o Vh KK € [d], lim = Jwopwopiwopn| <4/ =,

Lz

dy
1
o Yk, k' € [d],Vj € [dy], lim — Zwo kitowit:; = Var(0)0y, s, where

d1 — 00 dl

1 k=F
Ok =
0 k=#K.

Here, we omit the superscript (di,ds) again in the statement for the parameters w’s. d

is the input dimension. di,dy are defined in (4.2]).
51

NTK of BinaryWeight Neural Networks Chapter 4

The following Proposition guarantees the “Good initialization sequence” in Defi-

nition 4.2 holds true with probability 1. The proof can be found in [Section 4.8.1]

Proposition 4.1 Under the assumption that all the parameters are initialized as in[As]
for any finite da, the probability that the sequence defined in[Definition 4.1]

1s a “Good Initialization sequence” is 1:

Pr({eWwd®) 4, =12..1ecqG) =1.

Lemma 4.2 Given any fized x, and any fized “Good Initialization sequence” {Og4,} € G
denoted as © in short, for any fized j, define the random sequence y%) = fo,, (). on

)

the limit dy — oo, the distribution of yg‘? converge to Gaussian distribution with mean

v1; and variance <} ; which can be computed by:

d1 dl
[¢ c
yl,j‘@ — N(Vl,j, §12,j)7 = d_1 Z‘%,iﬂh,i + bl,ja §127j = d_1 Z(l - ‘9%”)1’?1
i=1 1=1
(4.3)

This lemma can be proved by Lyapunov central limit theorem and sum of expectation.

See for the details.

Lemma 4.3 Assume that the input to a ReLU layer yi ; satisfy Gaussian distribution

with mean vy ; and variance gfj

Y1, ~ N(I/Lj, §127j).

Vj Vj
(B} s = (X)), 4.4
99 SO(cj) ’ <9> (44)

Denote

NTK of BinaryWeight Neural Networks Chapter 4

where @(x) denotes standard Gaussian function and ®(z) denotes its integration:

o) =zmow (—327). 2w = [e

. 2 .
Then the outpul xo; has mean po; and variance oy ;, with

paj = Elro ;] = gi<1; + 8501,
(4.5)

aij := Var[zs ;] = (gij + uij)sj +14,501,G1; — yfj.

The proof can be found in [Section 4.8.1] From we know that on the limit
d; — oo, conditioned on © and @, for any j, y;; converge to Gaussian distribution.
From continuous mapping theorem, the distribution of x5 ; converge to that shown in
so its mean fip; and variance oy ; converge to that computed in [Lemma 4.3]
Equations and provide a method to calculate the mean and variance of
output conditioned on the input and real-valued model parameters and allow us to pro-

vide a closed-form equation of quasi neural network. We will simplify this equation in

Section 4.4.3]

Convergence of conditioned variance

In this part, we assume that the model parameters are chosen from “Good Initializa-

tion sequence”, which is almost surely on the limit d; — oo as is proven in [Proposition 4.1},

and study the distribution of 14 ; and ¢ ;.

Theorem 4.4 For any fized “Good Initialization sequence” {©q4,} € G, on the limit

dy — 00, for any finite dy, 11 ; converges to Gaussian distribution which are independent

53

NTK of BinaryWeight Neural Networks Chapter 4

of each other, and gfj converges a.s. to

(1 — Var[6)).

~2
1 =

Ul O

With this approximation, we can replace the variance ¢;,; in Equation (4.5) with &
and leave the mean of output in the linear layer as the only variable in the quasi neural
network. Formal proof can be found in [Section 4.8.1] Note the propagation function in
the linear layer (the first equation in (4.3))) is also a linear function in x and §. This
motivates us to compute y using a neural network-like function as is given in , where

a(-) is

G(vi;) = Elo(yi)lvi] = o <V§IZ) +11,;® (@> : (4.6)

S1
This equation gives a closed-form connection between the mean of output of neural
network ¢ and the real-valued model parameter ©, and allows up to apply existing tools
for analyzing neural networks with real-valued weight to analysis binary weight neural

network. Its derivative in the sense of Calculus is:

5 (1) = (ﬂ) . (4.7)

S1

The proof of derivative can be found in [Section 4.8.1}

Gradient of quasi neural network

In this part, we compute the gradients using binary weights as in BinaryConnect
Algorithm, and make sense of the gradient in (4.7)) by proving that it is the expectation

of gradients under the randomness of stochastic rounding.

Theorem 4.5 The expectation of gradients to output with respect to weights computed

by sampling the quantized weights equals the gradients of “quasi neural network” defined
54

NTK of BinaryWeight Neural Networks Chapter 4

above in (4.2)) satisfy

lim lim \/d_Q(9% —E{ % _|gara)):0,

d2—00 d1—00 ael,ij 87~U1,ij]

lim lim J@(9% —E{ %y |gran)) —0,
(%Lj

d2~>oo d1~>oo abl,j

lim lim \/ d1d2< 8y —E|: ay @(dl’d2)):O

da—00 d1—00 aw21j 8w27j

Theorem 4.6 For MSE loss, loss(y) = 5(y — 2)?, where z is the ground-truth label, the

gradient of the loss converges to

o Oloss(¥) [0108(Y) | (draa) |) _
dlgnoo d}1—1>noo Vs (901, . | Ows; © 1) "

. . dloss(y) [0loss(y) | aran |) _
dlgnoo d}l—r>noo Ve (Ob; & [by © 1) "

' . —— (Oloss(y) [Dloss(y) (dl,d2)_ _
dllinoo d}l—r>noo ddy (wy; B | Ows, © IV "

In other words, the BinaryConnect algorithm provides an unbiased estimator to the
gradients for the quasi neural network on this limit of overparameterization. The proof
can be found in and respectively.

Theorem [.4] and Theorem conclude that for an infinite wide neural network, the
BinaryConnect algorithm is equivalent to training quasi neural network with stochastic
gradient descent (SGD) directly. Furthermore, this points out the gradient flow of Bi-
naryConnect algorithm and allows us to study this training process with neural tangent

kernel (NTK).

Asymptotics during training

So far we have studied the distribution of output during initialization. To study

the dynamic of binary weight neural network during training, one need to extend these

%)

NTK of BinaryWeight Neural Networks Chapter 4

results to any parameter during training ©(t),¢ € [0, T]. Fortunately, motivated by [68],
we can prove that as dy, dy — oo, the model parameters O(t) stays asymptotically close
to initialization for any finite T', so-called “lazy training”, so the above results apply to

the entire training process.

Lemma 4.7 For all T such that ftio lg(t) — z||indt stays stochastically bounded, where

I+ lin s defined in as dy = 00,dy = 00, [[wa(T) — wy(0), [[b+(T) —

b1(0)]], [|01(T)—01(0)||F are all stochastically bounded, ||v1(t)—v1(0)|| and ftio | a”alt(t) ||dt

18 stochastically bounded for all x.

The proof can be found in [Section 4.8.1} Note that ||ws| = O(V/d2), ||01]|Fr = O(Vdids),

this results indicates that as do — 0o, the varying of the parameter is much smaller than
the initialization, or so-called “lazy training”. Making use of this result, we further get

the follow result:

Lemma 4.8 Under the condition of [Lemma 4.7, Lyapunov’s condition holds for all T
so y1; converges to Gaussian distribution conditioned on the model parameters O(T).

Furthermore, ¢ ;(T) — 14(0), which equals & almost surely.

The proof can be found in [Section 4.8.1 This result shows that the analysis in
applies to the entire training process, and allows us to study the dynamics

of binary weight neural network using quasi neural network.

4.5 Capacity of Binary Weight Neural Network

As has been found in [68], the dynamics of an overparameterized neural network
trained with SGD is equivalent to kernel gradient descent where the kernel is NTK. As a

result, the effective capacity of a neural network is equivalent to the RKHS of its NTK.

o6

NTK of BinaryWeight Neural Networks Chapter 4

In the following part, we will study the NTK of binary weight neural network using the

approximation above, and compare it with Gaussian kernel.

4.5.1 NTK of three-layer binary weight neural networks

We consider the NTK binary weight neural network by studying this “quasi neural

network” defined as the limiting kernel

dy,d2

d2 da _ _
ay ag, Z y y 8y ay, a.s.

lim i s o ,
im lim > 8b138b1] 2 Ds. D swnn(z,2")

da—00 d1—00 | 891 ij 891 ij
i=1 ’] 1 ’ ’

(4.8)

where O := {wy 45, b1, b2} denotes all the trainable parameters. We omitted the terms
related to by (which is a constant) in this equation.

First prove that the change of kernel asymptotically converges to 0 during training

process.

Theorem 4.9 Under the condition of [Lemma 4.7, K(z,2')(T) — K(z,2')(0) at rate
1/\/dy for any x,x'.

The proof can be found in [Section 4.8.2] Using Assumption [4.3] we confine the input
on the hypersphere §¢7! = {z € R?: ||z||; = 1}. One can easily tell that it is positive
definite, so we can apply Mercer’s decomposition [88] to it.

To find the basis and eigenvalues to this kernel, we apply spherical harmonics decom-

position to this kernel, which is common among studying of NTK [69] [70]:

]CBWNN f IE Zuk Z Yk,] Ylw) (4-9)
Jj=

where d denotes the dimension of x and z’, Y}, ; denotes the spherical harmonics of order

k. This suggests that NTK of binary weight neural network and exponential kernel can
57

NTK of BinaryWeight Neural Networks Chapter 4

be spanned by the same set of basis function. The key question is the decay rate of uy

with k.

Theorem 4.10 The limit of NTK of a binary weight neural network can be decomposed

using (4.9). If k> d, then
Poly, (k)C ™% < wy, < Poly,(k)C . (4.10)

where Poly, (k) and Poly,(k) denote polynomials of k, and C' is a constant.

In contrast, Geifman et al. [71] shows that for NTK in the continuous space, it holds
that

Cik™ < uy, < Cok™,

with constants C', and C5. Because its decay rate is slower than that of the binary weight
neural network, its RKHS covers a strict superset of functions [71].

Proof Sketch: We first compute NTK of quasi neural network, which depends on the
distribution of p; ;. As is shown in Theorem @, 1,5 converge to Gaussian distribution
on the limit of infinite wide neural network. To find the joint distribution of j, ; and
p ; given arbitrary two inputs x,z’, we combine the first linear layer in the quasi neural
network with the “additional layer” in front of it (the first two equations in (4.2))). This

allows up to reparameterize p; ; as

p; = (wj,),

where w; ~ N (0, CvaTr[e]I) denotes the fused weight. A key component in computing the

NTK has the form

Elo(p)o(1)] = Elo((w, 2))o"((w, 2))] = Eju|Elo((w, z))o" ((w, z))[[[w]]]
58

NTK of BinaryWeight Neural Networks Chapter 4

The second equation comes from the law of total expectation. We use 2-norm in this
expression. The inner expectation is equivalent to integration on a sphere, and can be
computed by applying sphere harmonics decomposition to o(+). The squared norm of the
fused weight ||w||? satisfy Chi-distribution, and we use momentum generating function

to finish computing. [|

4.5.2 Comparison with Gaussian Kernel

Even if the input to a neural network x is constrained on a unit sphere, the first linear
layer (together with the additional linear layer in front of it) will project it to the entire
R? space with Gaussian distribution. In order to simulate that, we define a kernel by

randoming the scale of x and x’ beforing taking them into a Gaussian kernel.

lCRGauss (ZE, Qf/) - EH[ICGQUSS(HCL', KQT/)],

_ Nz—a'|?

e > is a Gaussian kernel, k ~ x4 satisfy Chi distribu-

where Kgauss(x, ") = exp (
tion with d degrees of freedom. This scaling factor projects a random vector uniformly
distributed on a unit sphere to Gaussian distributed. The corresponding eigenvalue sat-

isfy
A C7F <y, < A,C7F, (4.11)

where Ay, As, C' are constants that depend on ¢. The dominated term in both
and have an exponential decay rate C~*, which suggests the similarity between
NTK of binary weight neural network and Gaussian kernel. In comparison, Bietti et al.
[70], Geifman et al. [TT] showed that the eigenvalue of NTK decay at rate k=¢, which is

slower that binary weight neural network or Gaussian kernel. Furthermore, Aronszajn’s

99

NTK of BinaryWeight Neural Networks Chapter 4

0.2 101

0.1 5

0.01

Empirical
Empirical
o

0.1 _5

-0.24 _104

T T T T T T T T T T
-0.2 -0.1 0.0 0.1 0.2 -10 -5 0 5 10
Analytical

(b) ' ' (C) (d) Analytical

Figure 4.1: Approximation of quasi neural network. (a)(b): before (a) and after (b)
training, histogram of output under fixed model parameter (blue), and fitted with
Gaussian distribution (red). (c)(d): E(y|©) computed from quasi neural network
(horizontal axis) and by Monte Carlo (Vertical axis). The red line shows y = z.
inclusion theorem suggests Hizwan C Hicnns Where Kyy denotes the NTK of real-
valued weight neural network. In other words, the expressive power of binary weight
neural network is weaker than its real valued counterpart on the limit that the width
goes to infinity. Binary weight neural networks are less venerable to noise thanks to
the smaller expressive power at the expense of failing to learn some “high frequency”
components in the target function. This explains that binary weight neural network
often achieve lower training accuracy and smaller generalization gap compared with real

weight neural network.

4.6 Numerical result

4.6.1 Quasi neural network

In this part, we empirically verify the approximation of quasi neural network by
comparing the inference result of quasi neural network with that achieved by Monte Carlo.
The architecture is the same as that mentioned in Section[4.4.2] with 1600 hidden neurons.
We train this neural network on MNIST dataset [89] by directly applyng gradient descent

to the quasi neural network. To reduce overflow, we add weight decay of 0.001 during

60

NTK of BinaryWeight Neural Networks Chapter 4

training. Figure[d.1|(a)(b) shows the histogram of output under stochastic rounding before
and after training. We arbitrarily choose one input sample from the testing set and get
1000 samples under different stochastic rounding. This result supports our statement
that the distribution of pre-activation (output of linear layer) conditioned on real-valued
model parameters converge to Gaussian distribution. Figure[4.1j(c)(d) compares the mean
of output by quasi neural network approximation (horizontal axis) with that computed
using Monte Carlo (vertical axis). These alignments further supports our method of

approximating binary weight neural network with quasi neural network.

4.6.2 Generalization gap
Toy dataset

We compare the performance of the neural network with/without binary weight and
kernel learning using the same set of 90 small scale UCI datasets with less than 5000 data
points as in Geifman et al. [T1], Arora et al. [90]. We report the training accuracy and
testing accuracy of both vanilla neural network (NN) and binary weight neural network
(BWNN) in Figure[£.2] To further illustrate the difference, we list the paired T-test result
of neural network (NN) against binary weight neural network (BWNN), and Gaussian
kernel (Gaussian) against Laplace kernel (Laplace) using in Table [4.1] In this table, t-
stats and p-val denotes the t-statistic and two-sided p-value of the paired t-test between
two classifiers, and < and > denotes the percentage of dataset that the first classifier
gets lower or higher testing accuracy or generalization bound (training accuracy - testing
accuracy), respectively.

As can be seen from the results, although the Laplacian kernel gets higher training
accuracy than the Gaussian kernel, its testing accuracy is almost the same as the latter

one. In other words, the former has smaller generalization gap than the latter which can

61

NTK of BinaryWeight Neural Networks Chapter 4

Training and testing accuracy Generalization gap
n 1.09(-- Laplace kernel, Training /) 1.01 _ro==———-
2 0.8 - —— Laplace kernel, Testing p % 084 /,_7_—,-_.-,—/’ -—-’__,
£ Y7 —-- Gaussian kernel, Training i = e -7
- -
g —— Gaussian kernel, Testing ,’; g ST L ’ gl
£ 061 ___ NN, Training ,”1 £ 0.67 e /” S
Y= -
‘s —— NN, Testing ~ 4 ° /s ~
[J] . I E /7 7 s
o 0.4 BWNN, Training ,/' ”/I/ = 0.4 v l,/ --- Laplace kernel
€ BWNN, Testing _’/,/’ / ‘qc')’ 1,7 /’ —== Gaussian kernel
§ - o 0.2"’/ / ——== NN
o 1) v, !
o = P BWNN
O.O- T T T T T T T
0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Accuracy Training Accuracy - Testing Accuracy
(a) (b)

Figure 4.2: Accuracy and generalization gap on selected 90 UCI datasets. The lines
show the accuracy metric of a classifier from the lowest to the highest against their
percentiles of datasets.

Table 4.1: Pairwise performance comparison on selected 90 UCI datasets.

Classifier Testing Training-Testing
t-stats p-val < > t-stats p-val < >

NN-BWNN 0.7471 0.4569 53.33% 41.11% | 4.034 0.000 26.67% 67.77%
Laplace-Gaussian | 0.4274 0.6701 51.11% 33.33% | 3.280 0.001 37.78% 53.33%

also be observed in Table [£.1] Similarly, a neural network gets higher training accuracy

than a binary weight neural network but gets similar testing accuracy.

MNIST-like dataset

We compare the performance of neural networks with binary weights (Binary) with
its counterpart with real value weights (Real). We take the number of training samples as
a parameter by random sampling the training set and use the original test set for testing.
The experiments are repeated 10 times and the mean and standard derivation is shown in
Figure [£.3] In the MNIST dataset, the performance of neural networks with or without
quantization is similar. This is because MNIST [89] is simpler and less vulnerable to

overfitting. On the other hand, the generalization gap with weight quantized is much

62

NTK of BinaryWeight Neural Networks Chapter 4

-#- MNIST Real Training -+~ FashionMNIST Real training -$- MNIST Real

-$- MNIST Real Testing FashionMNIST Real testing — MNIST Binary

— MNIST Binary training ~ —— FashionMNIST Binary training -+- FashionMNIST Real
— MNIST Binary testing FashionMNIST Binary testing —— FashionMNIST Binary

Error rate Loss Testing error rate - training error rate Testing loss - training loss
0.20 175 0.200

1.50 0.175

1.25 0.150

0.125

0.100

0.075

0.050

0.025

0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
(a) Number of training samples b) Number of training samples C) Number of training samples (d) Number of training samples

Figure 4.3: Training/testing error rate and loss of neural networks with/without bi-
nary weight. (a) Training and testing error rate. (b) Training and testing loss. (c)
Testing error rate - Training error rate. (d) Testing loss - Training loss.

smaller than without it in FashionMNIST [29] dataset, which matches our prediction.

4.7 Discussion

In this paper, we propose a quasi neural network to approximate the binary weight
neural network. The parameter space of quasi neural network is continuous, and its gra-
dient can be approximated using the BinaryConnect algorithm. We study the expressive
power of the binary weight neural network by studying the RKHS of its NTK and showed
its similarity with the Gaussian kernel. We empirically verify that quantizing the weights
can reduce the generalization gap, similar to Gaussian Kernel versus the Laplacian kernel.
This result can be easily generalized to a neural network with other weight quantization
methods, i.e. using more bits. Yet there are several questions to be answered by future

work:

1. In this work, we only quantize the weights, while much empirical work to quantize
both the weights and the activations has been done. Can we use a similar technique

to study the expressive power of that neural network?

63

NTK of BinaryWeight Neural Networks Chapter 4

2. We study the NTK of a two-layer neural network with one additional linear liner
in front of it, and only the weights in the first layer are quantized. It remains to be
answered whether a multi-layer neural network allow similar approximation, and

whether using more layers can increase its expressive power.

4.8 Proofs of technical results

4.8.1 Gaussian approximation in quantized neural network

Proof of Proposition 4.1

Proof: To prove the first statement in holds a.s., observe that fixing
k,k' and taking i as the variable, wp y;wo x; are independent from each other. Further-
more, E[wggwori] = Ok has identical mean for different 7. In addition, since w is
bounded, > 5 Var[wg giwo i) /i* < Yooy C/i* < co. By the strong law of large num-
ber (SLLN) [Lemma 4.13] the first statement is proved. The third statement can be
proved similarly, observing that E[wg xiwo 67 ;;] = O Var[f] and that both w and 6 are
bounded (which guarantees " Var|wo giwo i3 ;;]/1* < 00).

To prove the second statement in [Definition 4.2| holds a.s., since geometric mean is

no larger than cubic mean,
1 3 3 3
[wo,killwo il [wo il < S (fwol” + [woril” + [woril”),

Since w x; ~ N(0, 1), the expectation of the right hand side equals \/g . We apply SLLN
(Lemma [4.13)) again to finish the proof. |

64

NTK of BinaryWeight Neural Networks Chapter 4

Proof of [Lemma 4.2

We first compute the conditioned mean and variance vy ; and ¢; ;. Notice that for any

dy, conditioned on any ©, x; is deterministic,

vij = By, yml@]

d Z]Ewl W1,ij5 'rll—i_ﬁblj
V 1

[c
“\Va Z 01,4521, + Bbr
i=1

G1,; = Vary, [y17j|@}

- E'UJI [yi]’@} -]Ewl [y17j|@]2

di di
ZZEw1 wlzgw123|9]xllez +2Bb1]\/ ZE wlz]|@ T4

=1 /=1
dy di

dl 2291 1]917,]'171 iL14 — 25bl,j\/dE1;91,ijxl,i

=1 /=1
dy di

dzz [wiijw1,0|0] — 91119113)%1
1

=1 i'=1

T d Z(E[w%zﬂ@] - efzg)xi

The second line is because E,,, [wy w1 |0] = Ey, [w145|O]E[w;,1;|©] = 601,461,7; when
i
Next, we need to prove that for any “good initialization sequence” {O4 } € G, {y(dl)}

converge to Gaussian distribution conditioned on © € G by verifying Lyapunov’s condi-

65

NTK of BinaryWeight Neural Networks Chapter 4

tion. Note that for any j € [da],

& ¢
=\ > wnirr + b
=1

Define X; = wy ;;21,. As mentioned above, its mean and variance (conditioned on ©) is

B, [Xi]|O] = 015714, Vary, [X;]0] = By, [X7]|0] — By, [X;]0]° = (1 — 67 ;)]

Since © € G, Vj € [dy] for some finite ds,

d1 dl

1 . 1 2 2
d}l—r>noo - Zvafwl [X;]0] = d}floo d; ;(1 —073;)27;
1 di d 9
J—] - — 2 L. .
- d}l—{noo ddl — (1 01,@]) < kz_; w07k1$k>
N - (4.12)
3
d
= Jim_ k;1(1 — Var[0]) o papzy = 1 — Var[6]

The fourth equality comes from the definition of G, and the fifth equality is because

66

NTK of BinaryWeight Neural Networks Chapter 4

|z|]]2 = 1. The third order absolute momentum can be bounded by

lim —ZEM | X; — E,, [X;|0]%|©]

d1~>00
d1
1
= lim — E Ewl w“j 011] LL’lz‘ }@]
d1~>oo dl
d1

(4.13)

=1 k=1
d
lim — E E \wo kiWo, k! Wo, k' Hﬂﬁkwk/l’k”
d1—>00 dl
i=1 kK k"=1
8
< 8y —d?
™

The last inequality comes from the definition of “Good Initialization”: for all © € G,

di
1 8
lim — E Wo, ki Wo k' Wo, ki <)
dl—)OO dl -1 T

and because ||z||2 = 1, |zg| < 1 for all k£ € [d]. Note that using the strong law of large
number, one can prove that the third order absolute momentum converges almost surely
to a constant that doesn’t depend on d. On the other hand, we are proving a upper

bound for all © € G which is stronger than almost surely converge.

67

NTK of BinaryWeight Neural Networks Chapter 4

i it B X — B, [Xi[O)°/€]
dioe (L Var, [X,[6])2

& ik B X - Ew[XlO]F16)]
v }% SoL, Vary, [X;[6])2

|l & S B [1X - Ea [X6]6)
o 022 T Vara (X))
8y/Ba
=Yg (1~ Varld])
=0

This proves that Lyapunov’s condition for all “Good Initialization”, so conditioned on

© € G, y1,; converges to Gaussian distribution.

Proof of [Lemma 4.3

To compute E,, [z2 /0] and Var,, [z2 /0], we first compute E,, [0(y1 ;)|0] and E,, [0(y1,;)?|©)].
Recall o(z) = z1(x > 0),

_1($—V17j)2
Eulrtnfel = [Fm‘”‘p(z T

o 1
= /.. (S15Y +1v14) eXp

S1,5

B S| LaYy | La)y
=q1,j 7Mmye><p §’y Y+ e 7M\/ﬁeXp 52/ Y,

1,5

68

NTK of BinaryWeight Neural Networks Chapter 4

> 1 1(x—uv,)?
Eu, [0(y1,4)%0] = / z? exp (—5%) dx
0)

V27 S
[+ mt e (—502) d
1, S15Y 1,5 \/ﬁ p 2y Y
§1’j
; /OO 2 1 L) dy +2 /OO Lo d
= xp | —= V1 xp | —=
gl,] 71/1,]-y \/% p 2y) S1,5V1,5 oy y\/% p 2y Y
S1,5 S1,5
i 1 1
2 L9
+ vy /_Vl,j o exp < 7Y > dy.

We only need to compute

/°° o, < 1 2)d
— exX — = .
v - A Gt

S1,j

For « = 0,1,2. When o = 0, this is integration to Gaussian function, and it is known

that there’s no analytically function to express that. For sack of simplicity, define it as
51,5

* 1 1,
S14 = exp | —= dy ;= &(—=).
b /”1] V2T p(2y) Y (§1,j
<1,j

When o = 1, this integration can be simply solved by change of the variable and we

denote it as gy ;:

':/OO 1€X —12d: iex —1@2
0= [, vaer (v) =ygree | 5 (o))

°1,5

69

NTK of BinaryWeight Neural Networks Chapter 4

When a = 2, we can do integration by parts and express it using s;; and ¢ ;:

> 1 1
2 2
,Ly_’y Vo < 2y> Y

S1,j

< 1.\ 1

= — - d=1?
/_»l,jymm(2y> 2"
S1.4

5J

oo 2
/ 1 (; 2) I e ; (yl’j>
:lm' V2T P 2y Y S1,5 V2T P 2 \q,

Using the definition of mean and variance,

p2j = Eu, [0(51,7)0], 03 ; = Eu, [0(y1,1)*|0] — Euy [0 (31,5)10)%,

we can come to the result.

Proof of [Theorem 4.4

In this part, we take © = {wy, 01, w2, by, b1,be} as the random variables and condi-
tioned mean and variance derived above p, 01,11, as functions to ©. From Eq. (4.3)),
as d; — oo, v tend to iid Gaussian processes, and there covariance converges almost

surely to its expectation. We then focus on computing the expectation of covariance.

70

NTK of BinaryWeight Neural Networks Chapter 4

For any j # j', we take the expectation over random initialization of ©:

Ee[vyv1,5]
U
=Ko a7 Z Zel,ijel,i’j/xl,ixl,i’ + Z (01,421,:b; + 61 4521,:05) + B b;bj
Lt =1
di dy
ZZE@ [01.4;]Eo 61051 Be1,m1.4] + B°Eolb;by]
dy i=1 i'=1

5 Z(Ee [01,:/Ee[z1,]Ee [b;] + Ee[b1,:5/|Ee|z1,:]Ee [by])

=1

=0
(4.14)

which indicates that they are independent.

Computation of ¢ ; was already finished implicitly in Section We write it
explicitly here. From (4.3)), on the limit d; — oo,

dy
C
g12,j = d_lz(Q%U)

c dy d
= E 1— 92 E Wo. ki Wo k' X Lt
dd1 (1 7,])R g

i=1 k,k'=1

c
2
= d E l‘kxk'— E wo kiwo k(1 — 07 Z])

k.k'=1

=~ Z w0 (1 — Var(f])

kK =1

_ a(1 — Var[d])||z[|3

= (1 = Varlt])

The fourth line comes from the definition of G.

71

NTK of BinaryWeight Neural Networks Chapter 4

Derivative of activation function in quasi neural network

Let

Its derivative is

The second line is because

(x) = (),

A (z) = % iﬂexp (—%ﬁ)
Lo 1)
= —zp()

Proof of Theorem [4.5|

To make the proof more general, we make ¢; ; a parameter of the activation function
in quasi neural network as &(-;<;,;). To get the derivative with respect to 6 ;;, we first

get the derivative with respect to vy ;.

0y _ 0y O, :\/IMQ)
aylvj 8:“/2,]’ aVLj d2 J Jr 51

72

NTK of BinaryWeight Neural Networks Chapter 4

then apply chain rule:

oy c
_ [e A1
awlj dQ u?,ja (5)

ag 83} 8V1j c -,
—= Wo— _ . .) 4'16
abl,j aVLj (9[)17]- d2 BwZ’]O— (Vlv]7 gly])’ ()
ag 6@ 8V1]
B o i0' (5 41
06,5 Ovi 801#] d1d2 —— W2, 1,30 (V1,55 G1,5). (4.17)

On the other hand, let’s first write down the gradient with respect to weights w;; in

quantized neural network and take their expectation conditioned on ©:

£ [2[o4)] = [o o] s
i 2

8w2,j
} \/ 4 szj wi 10 (Y1 |@ (d1, d2)} (4.19)

ay ag 691;
el dQ)] ,/—d1d2w2,jx1zE [0 () [0

Eu, |5— (0" | =E, ,
! {81)27]-] ! 8y17j abgd
(4.20)

E ay @(d17d2)_ :E ay ayl]
v awl,ij] v 891,;’ awl,ij

By definition, pg; = limg, o By, [72,]0@%)]. On the other hand, from (4.6]), one

can tell using continuous mapping theorem that

I/ .
7' (v j5615) =@ (ﬁ) = lim Ply;; > 0] = lim E,, ["(y 17j)‘@(d1’d2)} ,

S1,5 d1—00 d1—00

Taking them into (4.15))-(4.20|) finishes the proof.

Proof of Theorem (4.6

Observe that conditioned on ©, y;; depends only on {w;,;,i € [di]}, and that
{wy5,1 € [di]} N {wijr,0 € [di]} = 0 for j # j'. Because of that, y; ; are indepen-

dent of each other. Similarly, xs ; are independent of each other conditioned on ©. For

73

NTK of BinaryWeight Neural Networks Chapter 4

MSE loss,

1
loss(y) = 5(3/ - 2)%, Ty YA
According to the chain rule

Oloss(y) 3loss(y) 0y

Y —2) 5, 4.21
26 o5 o8 W3 (4.21)
for any 6 € {61,;,b1;, w2}, which leads to
Oloss(y c
Bw;-) - d_(y 22, (4.22)
)
Jloss(y o0y Ov B
abl(- D~ ~ o (%iy \ dy 7025 = 2)0'(551), (4.23)
J J 001
Oloss(y dy Ov
a@f-) = 0y 000y~ | TR LACEDD) (4.24)
i J OVLij

On the other hand, in the original binary weight neural network, according to the

chain rule,

[Oloss(y) T c

Ew @(dhdg) == —]E,w @(dl d2 425

1 I aw2,j] 1 [(y ’ } , ()

[0l

E., Oloss(y) @(dl,dz) szj 0 —2) /<y1j)‘@(d1,d2)}7 (4.26)
| Obi; | :
[0loss(y) | - a,

B, | Qw4 o ’d2)_ \ d1d2w2’x“Ew [(y = 2)0" (1) |0)], (4.27)

Note that y is not independent form x5 ; or o’(y; ;), which is the main challenge of the

proof. To deal with this problem, we bound the difference between (4.22)-(4.24) and

74

NTK of BinaryWeight Neural Networks Chapter 4

(4.25))-(4.27)), which requires bounding their covariance.

B [rass10] [, =l
wy xZJw23|@ dl’d2 —i—ZEwl Lo ;Lo

((dl,d2)]>
J'#7
(+0_2] w25 +Zﬂ2,Jﬂ2,J’w23 >

T2,j E :w2,yx2,y

J'#J

02]w2,j + Z H2,5 b2 51 W3 51)
(4.28)

Notice that by definition

da
C
\ dy Dtttz jwa g =By, [%J d”} Eu, M@“”d”]
J'=1

The second term equals E,, (3 ;|O]|E,, [y|O] and the first term converges to 0 when

dy — oco. Taking it into (4.22)) and (4.25) finishes the proof of the first equation.

75

NTK of BinaryWeight Neural Networks Chapter 4

Similarly,

Ewl [O-/(ylj)y‘@(dl’dﬂ]
C &
\/ d_QU/(?Jl,j) Z wa,j0(Y1,5)
j=1
C

- d_2 (Ewl [U(yl,j>0'/(y1,j)w27j}@(dl,dQ)]

= E,, Qld1,d2)

+ %:Ew1 (y1,57) (Z/Lj)wzj’!@(dl’dz)}) (4.29)
3'#3
lim o, | (41,1)y[04
d1—>OO
c
= d_ (]Ewl [O'(yljj)’l,Uij‘@(dl’ U) + ZEwl y1] |@ 12]M2J1w2]) ,
2 ’#J
c
s ((1_E [o (ylj)l@]>ﬂ2jw2J+ZEw1 yly)|@]ﬂ2j’w21)
Jj'=1

Notice that by definition

= ZMQ W g = hm E[‘@(dl dQ)}

and the first term converges to 0 when dy — oo. Taking it into (4.23))(4.24) (4.26)) (4.27)

finishes the proof.

Proof of [Lemma 4.7

In this part, we denote a := % for a € {wy,0;,0,}, and express each time-depent
variable as a function of time ¢. We define an inner product under the distribution of

training dataset

(@, b)in = Ein[a(z)b(2)],

76

NTK of BinaryWeight Neural Networks Chapter 4

and the corresponding norm

lallin = V@, a)in = vEila(z)?].

If a(x) is a vector, ||a|in = /Ei[||la(z)][?]. Note this inner product and norm define a
Hilbert space (not to be confused with the RKHS induced by a kernel), so by Cauchy-

Schwarz inequality,

(@, B)in| < [[@]linl[b]lin, Ve, b,

As is shown in [£.4.3] on the limit dy,— oo, the dynamics of training this neural

network using gradient descent can be written as:

i 0) = [Bla6) = 2 1)
b5 (8) = 4Bl 0)30) = 205 01505050
B135(1) = ﬁEm[wQ,j(tﬂLi(Q(ﬂ —2)6" (11,3();61,5(1))]

where dot denotes the derivative with respect to t. Note the activation function
7(+;61,j(t)) depends on ¢ ;, which makes it time dependent. One can further write down

the dynamics of v ;(t) as

v 4(t) = \/dilz 01,45 (t)z1:(1) + by (1)

7

NTK of BinaryWeight Neural Networks Chapter 4

Rewrite these two differential equations in matrix form:

o) = f G0 — 2)paa 1)
:5[., (v (1) 0 wa(®))],

61(1) = | 7B [(00) =)1 © (5 (v (8)) 0 wal)].

1/1(75) 1/ d101:131 —f-bl

where o denotes elementwise product and ® denotes outer product. Here we slightly

abuse the notation &(+), which represents elementwise operation when applied to a vector.

Their norm are bounded by

gillos(t) = w20 < [T Bal(5) = sl = \[7 510) = 2O .
<TI0 =Tl < 150 = Lol O

110 = B 0] < 5 [Bula6) = 21561 (0) 0 wale)]
(4.31)
< By ZEal(0(0) = (0] = 5, 10t6) = s,

2 16:(0) = 63 0l < =B (50) — 2l © (7 w1(0) o walt)]

< ,/@Em [(5(t) — 2) |21 |||l wa(1)]]]

&
50 = =l il 0]

— \/dEQHy(t) — zllin|[w2 ()],

(4.32)

78

NTK of BinaryWeight Neural Networks Chapter 4

Vs, %||u1(t)—u1(0)”g/toHa”l >Hdt

- \/dIﬁ“el(t) —0O) el + 2 [5:(0) Bi(O)]

< —d%d2||y(t)—ZHmez(t)HleHmelH

_ (4.33)

+80 /2150 = allea(o)]
(1+6) \f I5(6) = #lnllos(0)],
Gl (6) = 1Ol < (14 8), [1500 = <l (o)

Here we make use of the fact that ¢/(z) < 1, ¢(z) < x regardless of the value of
s1.;(t), that limg, e ||Z1]lin/v/di = 1 as long as © € G, and that wy is not updated
during training. In the last equation, we make use of 6; = 2(0.(t) — 6,(0)),b; =
2 (b, (1) - b1<o>>.

Define A(t [\/T [wa(t) = wa (0[] + [[wa (0)]]) + /3 (Iwa(t) = v2(0)[in +
[1(0)[[in), then

< V145 \f 150) — lnllzr@lln + (1 + 8) \f 15(0) — llmllwa(0)]
<V1+p A

Observe that A(0) is stochastically bounded. Using Gronwall’s Lemma, for any finite

A(T) < A(0) exp (/t_o VT Bdt) = A(0) exp(v/T+ 5T)

so A(T) is stochastically bounded for all finite 7" as dy — co. Furthermore,

\f wa(T u_\f (lwa(T) — w3(0)] + [ws(0)])

79

NTK of BinaryWeight Neural Networks

which is also stochastically bounded. Integrating (4.30))-(4.33)) from 0 to 7" finishes the

proof.

Proof of [Lemma 4.8

From (4.3)), it’s easy to get the dynamics of ¢;:

2c
2,(T) — Z 2, / 6145 (6)]16.4, (1)
20 2 hd
S doati [(60t
1= t

2c c T
< — _ 2 .]E’Ln (t i i(t) — ~/ (¢ ’ (¢ dt
= d\ didy ;xl /t:o w2 ()714(5(1) — 2)6" (v1,5(1); 61,5(1)))|

2c c & 9 T
< — [— xi; wa i ()| Eip |21 (y(t) — 2)|dt
dl dlinz:; 1, t:0| 27]()l | 17(())‘
di T
2c c
< dle; 1, t:o| 2 (O llz1illin () — 2|

= 3/2 leszlZHzn/ C)||y(t) — 2||indt

T
< 5 Zx“nxunm mioe C0) [3(0) = #lhudt s
t—=

(0,7]

Here we assume that , /7 |[w»(?)]] is stochastically bounded by C(t). Since C(?) is finite

for all ¢ € [0, T], it’s easy to check the term after max operator is stochastically bounded.

The remaining task is to bound term before max operator. From standard Gaussian

process analysis, z ; satisfy Gaussian distribution. From the law of large number (LLN),

80

NTK of BinaryWeight Neural Networks Chapter 4

as d; — 00,
dy
1
=23 il = Efed ol
L=t

almost surely, where the expectation is taken over w;, and this limit is also bounded.

Because of that, as dy,d; — oo, the difference |¢} ;(T') — <7 ;(0)| converges to 0 at rate

8-
M)

Notice that the proof of Lyapunov’s condition (4.13)) doesn’t depend on time 7" from
the third line. Since ¢; ;(T) stochastically converges to ¢; ;(0) for all finite 7', Lyapunov’s
condition holds for all T" thus x5 ; always converges to Gaussian distribution conditioned

on model parameter.

4.8.2 NTK of neural networks with quantized weights
Spherical harmonics

This subsection briefly reviews the relevant concepts and properties of spherical har-
monics. Most part of this subsection comes from Bach [69] Section D.1. and Bietti et al.
[70] Section C.1.

According to Mercer’s theorem, any positive definite kernel can be decomposed as

K(z,2') = Z)\i@(x)@(a:’),

where ®(+) is called the feature map. Furthermore, any zonal kernel on the unit sphere,
ie., K(z,2') = K(zT2') for any z,2" € R% ||z]s = ||2'|]s = 1, including exponential

kernels and NTK, can be decomposed using spherical harmonics |(4.9)
0o N(dk)
K(z,2'") = Z)\k Z Y (@)Y ;(2").
k=1 j=1

81

NTK of BinaryWeight Neural Networks Chapter 4

Legendre polynomial. We have the additional formula
(d.k)
Y Yiy(@)Yiy(a') = N(d, k) Py(a""),
j=1

where
(2k+d—2)(k+d—3)!
kl(d — 2)!

N(d, k) =

The polynomial Py is the k-th Legendre polynomial in d dimension, also known as Gegen-

bauer polynomials:

Pi(t) = (—%) k FFLT?I)Q — 1)@=/ (%)k (1 — ¢2)k+(@=3)/2,

It is even (resp. odd) when k is odd (reps. even). Furthermore, they have the orthogonal

property
/1 P, (t)P-(t)(l _ t2)(d_3)/2dt - 5~wd_1 1
-1 k] - Y wd_Q N(d, k)?
where
ord—2
T)

denotes the surface of sphere §9~! in d dimension, and this leads to the integration

property

| Pt Pet . a)dr() = 2= Pella)

for any x,y € §¢°1. 7(w) is the uniform measure on the sphere.

NTK of quasi neural network

We start the proof of the Theorem by the following lemmas:

82

NTK of BinaryWeight Neural Networks

Chapter 4

Lemma 4.11 The NTK of a binary weight neural network can be simplified as

(o) + 87) 50+ 50

(4.34)
SV =E[G(n)a W),

where [, 1] ~ N (0, %),

S = Elr ! | — 1 2Ty
= xmxu] = —Var[0]

are the pre-activation of the second layer.

Proof:

dl d2 _ _ d2 _ _ d2 _ _

: ~ 9Jy oy oy oy 9y oy
K(z,z') = E + E + §

() L1 8917@ (96’1715 = (%Lj (%Lj = awz’j awz’j

d1,dz

C ~ ~
2 Y wt el #n)o)

2,5
i=1,j=1

d2 d2
s . . 1
7 o' (v14)0' (v ;) + =

7 > (viy)a(ny)
j=1

i=1

c d1 d2
= — Z 351155/11 Z w;j&/(Vl,j)&/(Vi,j)
didz 7=1

where (v,7') has the same distribution as (vy;,v5;) for any j. We make use of the

fact E[w%j] = 1, and from central limit theorem, xy;, 2} ; and ju; 4, iy ; converge to joint

83

NTK of BinaryWeight Neural Networks Chapter 4

Gaussian distribution for any fixed z, 2" as d; — oo

/
E[xl,i%,i]: 5 Wi Ty E Wit T

k'=1

1
- aE[kZ: whziai]

- é(x, ')
Similarly,
= = ZE 1ij | E = C—ZVar[H]
E[pq 547 ;] J ZE I ,L] xmxl]} dVar[é’] (x,x")
|
Proof of Theorem [4.9

Remind that as is proved in Theorem 4.8} ¢; ;(T") — ¢1,(0) for any T satisfying a mild
condition, and ¢ +(0) is nonzero almost surely. Making use the fact that &(-;<) is contin-
uous with respect to ¢, and its first and second order derivative is stochastically bounded,
the change of kernel K induced by ¢; ; converges to 0 as d;,dy — 0o. This reduces to this
quasi neural network to a standard neural network with activation function &(-), which
is twice differentiable and has bounded second order derivative. From Theorem 2 in [68],

the kernel during training converges to the one during initialization. For the ease of the

84

NTK of BinaryWeight Neural Networks Chapter 4

readers, we restate the proof below. On the limit dy — oo, d; — oo,

< |Anoier (Z 2 (005 (4,(0)[6"(01,5(8)) = & (1,5(0))
D wh (008" (1, (0))[6'(04,,(1)) = 5'(v4,5(0))]

NTK of BinaryWeight Neural Networks Chapter 4

From Theorem [£.8] and observing that ¢'(x),5”(z) are bounded by constants, one can
verify that each summation term is stochastically bounded by +/ds, so as dy — o0,

K(t) — K(0) converges to 0 at rate \/ds.

Spherical harmonics decomposition to activation function

Following Bach [69], we start by studying the decomposition of action in quasi neural

network (4.6) and its gradients (4.7): for arbitrary fixed ¢ > 0, —1 < ¢t < 1, we can
decompose equation (4.6) and (4.7) as

G(ct) = i AN (d,) Py(1), (4.35)
5'(ct) = i NN (d, k) Py (1), (4.36)

where Py is the k-th Legendre polynomial in dimension d.

Lemma 4.12 The decomposition of activation function in the quasi neural network

satisfies
1. My, =0 if k 15 odd,
2. M\ >0 if k is even,

3. A < Poly(k)(C/vVk)™* as k — oo when k is even, where Poly(k) denotes a poly-

nomial of k, and C' is a constant.
Its gradient satisfies
1. N, =0 if k is even,
2. N, > 0if k is odd,

86

NTK of BinaryWeight Neural Networks Chapter 4

3. X, =< Poly(k)(C/Vk)™* as k — oo when k is odd, where Poly(k) denotes a polyno-

mial of k, and C' is a constant.

Proof:

Let’s start with the derivative of activation function in quasi neural network:

where ¢ is a constant. We introduce the auxiliary parameters z,w € R? s.t. |[|z]ls =
|w|l2 = 1 and let ¢ = wTx By Cauchy-Schwarz inequality, —1 < w”z < 1. Following

[69], we have the following decomposition to ¢ (w’z):

&' (w"x) =Y NN(d, k) Py(wx),

k=1

where N(d, k) and Pg(-) are defined in section 4.8.2) A} can be computed by

1
N, = w‘“/ &' () Py(t)(1 — t1)4=2/2qy
Wq J-1

(Y e o (3) a-erva

To solve this itegration, we can apply Taylor decomposition to &'(+):

1)n ~2n+1

1 1 < (—1)"e
5 (ct) = = Ut 4.37
olet) 2+\/_27rnz_%2”n!(2n+1) (4.37)

We will study the following polynomial integration first

1 d k
/ e = (1 . t2)k+(d_3)/2dt.
o \at

When o < k, this integration equals 0 as P, is orthogonal to all polynomials of degree less
87

NTK of BinaryWeight Neural Networks Chapter 4

than k. If (¢ — k) mod 2 # 0, this integration is 0 because the function to be integrated

is an odd function. For a > k and k = o mod 2 (k is odd), using successive integration

by parts,
' d\" k+(d—3)/ p ol ' k k+(d—3)/
o _ 42N\Nk+(d=3)/2 34 _ (__ : a— _ 42\k+(d—3)/2
/_175 (dt) (1) dt = (—1) (a_k>!/_lt (1—2) it
= (=1 a! /ﬂ/Q sin®~*(x) cos* @2 (z)dx
(Oé-k?)‘ w/2

_ (—1)C, al(2k +d — 3)!!
N (=K a+k+d—2)IV

(4.38)
where Cy is a constant that depends only on d mod 2.
Combining (4.37)) and (4.38)), we have A\y = 0 when k is even and k # 0. When £ is
odd,

, 1" T(d=1)/2) ws Cq 1 (@ =212k 4+ d—3)
i-(5) 1 >

k=73 (k+(d—1)/2) wa vor &= (—)W a+k+d-—2)1"

Following [69, [7T] we take d as a constant and take k to infinity. Let 5 = (a«—k)/2 >0

we have

(k+(d—1)/2) wy \/7 (28)N(28 + 2k + d — 2)!!
e (Y T —1)/2) wir Ca = (—1)PEPHD(B + k/2)D(k + (d — 1)/2)
= () <) L(k+(d—1)/2) Zfd \/d_wz BIT(B + k + d/2)26-42

e 121kr((_1)/2 wg—1 C
= (=D <§) T(k+(d—1)/2) j;d \/%Z 9B, k).

) 1* T(d=1)/2) wi1 Cq = (=1)Pe2R(28 4+ k — 2)1(2k + d — 3)!!
Ay = (—1)k+D/2 (5) = d-1 _d Z

N | —

where =< means the radio converge to a constant which doesn’t depend on k or [as

88

NTK of BinaryWeight Neural Networks Chapter 4

k — oco. Here we introduced the function g(5, k) for simplification, and it satisfies

9(8, k) (28 4k —3)

gB—1,k) 28028+2k+d—2)

which indicates that g(3, k) decays at factorial rate when 8 > ¢2/2. If k> ¢?/2, B < k
regime dominates the summation.

Using Stirling’s approximation, one can easily prove
L(k+2) < T(k)k”

When £k > d,

(—1)PPHET (B + k/2)T(k + (d —1)/2)
BIT(B + k + d/2)28-k/2

8 k/2
_ (711) AT (K + (d — 1)/@%

k/2 &2 B
— Tk + (d— 1)/2)%%22) (‘Z) %

g(B, k) =

This splits g(, k) into two parts: the first part depends only on k and the rest part

only depends on . The summation of the second part over [yields

89

NTK of BinaryWeight Neural Networks Chapter 4

this leads to the expression for \:

F e (1) _T@=1)/2) T (k/2) &
N, = (—1)k+D/ <§> R @D T = 0/ g (=)

NPT
kv (E\ 2°D(R/2) &

. k 9
o (_1\k+D)2 (€]€ —d/2 _¢
~ (<1) (2\/;) - exp(~2)

Similarly, the activation function of quasi neural network has the Tayler expansion

a(z) = s (ét) + xP (ét)
B % * g 27+ 4 2"; + 1)t2n+2'
So A\, = 0 when £ is odd, and when £ is even:
M = (1) (1) D((d=1)/2) was Ca i B (2B + k — 2)1(2k +d — 3)!
2) T'(k+(d—-1)/2) wy \/_7r (260208 + 2k +d —2)!!

Furthermore, when k > d,

Computing covariance matrix

In this part, we prove Theorem “ 0| by computing ©(® and »(1).

Theorem NTK of a binary weight neural network can be decomposed using

90

NTK of BinaryWeight Neural Networks Chapter 4

equation (@ If k> d, then

Poly, (k)(C)™* < uy < Poly,(k)(C)~*

where Poly, (k) and Poly,(k) denote polynomials of k, and C is a constant.
We make use of the results in Section 4.8.2 and remind that \j, A}, depends on ¢, we

make this explicit as A\g(¢), A, (¢). We introduce an auxiliary parameter w ~ N(0, I), and

denote ¢ = C\;aré[z@] = 1Y3;af[]9} ;2w = w/||wlla, then the decomposition of kernel 1)

can be computed by

S0 — By [(1) (1)
= Eunion [5(6w, 2))5(ew, ')
~ By [5(6(0.0)3(e(0,))dr ()

= Ejuy D ul@llw]))*N(p, k) Bel(z,2)),
5O =By 67 (11) & (1))

= Eju Y M(Ellwl))?N (p, k) Pe((z, 2')).

First compute (). According to Lemma 16 in Bietti et al. [70],
/2 12
ok = Ewn(o,n) A= EHwH[)\k J-

Remind that

el = (- (el [o (IR,

91

NTK of BinaryWeight Neural Networks Chapter 4

o g = Ejju (N (€]|w])))?

~9 2\ Fk ~2 2
- _a [Cllw]]e |
= EHwHk < 4k‘ exXp 9
~2 2\ k ~2 2
— k¢ (k/e)_kEEHUIH (C HZ)H) exp (_C H;UH)

Because w ~ N(0,1), ||w||? satisfy Chi-square distribution, and its momentum gen-

erating function is

Mx(t) = Elexp(t|jw]*)] = (1 —2t)~*?
It’s k-th order derivative is

d+ 2k —2)!

M = B{Jul expleul)] = 2 2y

Let t = —c*/2, we get

=2 2
o Elwi*\] _ (d+2k -2
E {HwH €xXp <_ 9 - (1 + 62)d/2+k(d — 2)!!

T(k+d/2)
I'(d/2)

g 2 d/2+k 1
T\ (14 P)e k

-\ 2k d/2+k
¢ 2k
=(2) kikfe)™* | ——
o (2> (H1e) ((Hé?)e)

~ k
Y S
2(1+ @)

when £ is odd, and 0 when k is even.

— 2k (1 + 62)_k_d/2

SO

92

NTK of BinaryWeight Neural Networks Chapter 4

Similarly,

-\ 2k d/2+k
c 2k
=(z) kkfe)™* | ———
o (2) (h1e) ((1—|—62)e)

~ k
Y G
21+ &)

when k is even, and 0 when k is odd.

Finally, using the recurrence relation

k k+d—-3

tht) = g g3 D+ 53

Py (t)
taking them into (4.34) finishes the proof.

Gaussian kernel

ICRGauss (l’, IL‘/) = E[KGauss(ﬁxa Iil'/)]

_E leXp (_W)}
el 2

This indicates that this kernel can be decomposed using spherical harmonics (4.9)), and

93

NTK of BinaryWeight Neural Networks Chapter 4

when k > d, the coefficient

2 d—2 2
oo () (9) T () 2]

22 d\ & 1 R\
< E |exp (—g) I <§> jzoj!I‘(k: +d/2+7) (?>]
_ I'(d/2) K2\ 2%

Z JID(k+d/2 +) (?) o (_F>

N T(@/2) Tk+2j+d/2) (2)“%‘(1 ><k+2j+d/2>
T Tk+d/2+5) T(d[2) e 114/

C(E) (o2 S (e

(cfe) = ())

2
Note that +£2 exp ((ﬁ)) is always smaller than 1 so wuy is always decreasing with

M2 L

X

k.

4.8.3 Additional Lemmas

Lemma 4.13 (Kolmogorov’s Strong Law of Large Number (SLLN)) Suppose X, X, ...

are independent variables such that E[X,] = p and Y Var[X,]/n* < co. Then, # —

W oa.e..

Lemma 4.14 (Continuous mapping theorem) Let {X,}, X be random elements de-

fined on a metric space S. Suppose a function g : S — S’ (where S" is another metric

94

NTK of BinaryWeight Neural Networks Chapter 4

Table 4.2: More results in UCI dataset experiment.
. Training Testing
Classifier Accuracy P90 P95 Accuracy P90 P95
NN 96.194£8.03% 96.67% 91.11% | 77.62+16.10% 73.33% 56.67%
BWNN | 93.554+10.39% 84.44% 76.67% | 77.83+16.57% 77.78% 54.44%
Laplacian | 93.524+9.65% 85.56% 76.67% | 81.62+14.72% 97.78% 91.11%
Gaussian | 91.08+10.63% 76.67% 58.89% | 81.40+14.85% 95.56% 87.78%

space) has the set of discontinuity points D, such that Pr[X € D, = 0. Then

X, 5X = g(X)Sg(X)
X, 25X = g¢(X,)39X) (4.39)
X, B X = gX.) =2 gX)

4.9 Additional information about numerical result

4.9.1 Toy dataset

In neural networks (NN) experiment, we used three layers with the first layer fixed.
The number of hidden neural is 512. In neural network with binary weights (BWNN)
experiment, the setup is the same as NN except the second layer is Binary. We used
BinaryConnect method with stochastic rounding. We used gradient descent with learn-
ing rate searched from 1073,1072,107!. For Laplacian kernel and Gaussian kernel, we
searched kernel bandwidth from 2724 to 2%y by power of 2, and p is the medium of
pairwise distance. The SVM cost value parameter is from 10~2 to 10* by power of 2.

More results are listed in Table [£.2] Accuracy are shown in the format of mean =+
std. P90 and P95 denotes the percentage of dataset that a model achieves at least 90%

and 95% of the highest accuracy, respectively.

95

NTK of BinaryWeight Neural Networks Chapter 4

4.9.2 MNIST-like dataset

Similar to the toy dataset experiment, we used three layer neural networks with the
first layer fixed, and only quantize the second layer. The number of neurons in the hidden

layer is 2048. The batchsize if 100 and ADAM optimizer with learning rate 1073 is used.

96

Chapter 5

Finite Overparameterization: Local

adaptivity of Weight Decayed DNNs

5.1 Introduction

The theory based on NTK discussed in the last section can explain why neural net-
works generalize despite overparameterization, yet it fails to explain why neural networks
outperform traditional machine learning methods including kernel methods. To solve this
problem, in this paper, we study DNNs in nonparametric regression problems, aiming to
separate it from other methods from the prospective of adaptivity.

Nonparametric regression is a classical branch of statistical theory and methods with
more than half a century of associated literatures [91) 92 93] 04, 95| 06, O7]. Nonpara-
metric regression addresses the fundamental problem:

e Let y; = f(x;) + Noise for i = 1,...,n. How can we estimate a function f using

data points (z1,¥1), ..., (Zn, ¥») in conjunction with the knowledge that f belongs to a

This work has been published as K. Zhang and Y.-X. Wang, Deep learning meets nonparametric
regression: Are weight-decayed dnns locally adaptive?, arXiv preprint arXiv:2204.09664 (2022).

97

Local adaptivity of Weight Decayed DNNs Chapter 5
Elylz] = f(x)

J

Y

Doppler-like functions Free knots Splines with adaptive orders

Can Weight Decayed ReLU DNN estimate such functions with
heterogeneous smoothness optimally (using noisy observations)?

Figure 5.1: Hlustration of a function with heterogeneous smoothness and the problem
of locally adaptive nonparametric regression.

function class F7
Function class F typically imposes only weak regularity assumptions such as smoothness,
which makes nonparametric regression widely applicable to real-life applications under
weak assumptions.
Local adaptivity. We say a nonparametric regression technique is locally adaptive if
it can cater to local differences in smoothness, hence allowing more accurate estimation
of functions with varying smoothness and abrupt changes. A subset of nonparametric
regression techniques were shown to have the property of local adaptivity [98] in both
theory and practice. These include wavelet smoothing [94], locally adaptive regression
splines [LARS, 98|, trend filtering [99, [100] and adaptive local polynomials [T0T], 102].
In light of such a distinction, it is natural to consider the following question: Are NNs
locally adaptive, i.e., optimal in learning functions with heterogeneous smoothness?

This is a timely question to ask, partly because the bulk of recent theory of NN
leverages its asymptotic Reproducing Kernel Hilbert Space (RKHS) in the overparame-
terized regime [68] 103], T04]. RKHS-based approaches, e.g., kernel ridge regression with
any fixed kernels are suboptimal in estimating functions with heterogeneous smoothness
[105]. Therefore, existing deep learning theory based on RKHS does not satisfactorily
explain the advantages of neural networks over kernel methods.

We build upon the recent work of Suzuki [I06] and Parhi et al. [107] who provided

encouraging first answers to the question above. Specifically, Parhi et al. [I07, Theorem

98

Local adaptivity of Weight Decayed DNNs Chapter 5

8] showed that a two-layer truncated power function activated neural network with a
non-standard regularization is equivalent to the LARS. This connection implies that
such NNs achieve the minimax rate for the (high order) bounded variation (BV) classes.
A detailed discussion is provided in [Section 5.8.1] Suzuki [106] showed that multilayer
ReLLU DNNs can achieve minimax rate for the Besov class, but requires the artificially
imposed sparsity-level of the DNN weights to be calibrated according to parameters of
the Besov class, thus is quite difficult to implement in practice.

Oono et al. [I0§], Liu et al. [I09] replaced the sparse neural network with Resnet-
style CNN and achieved the same rate, but they similarly require carefully choosing the
number of parameters for each nonparametric class. We show that ¢y regularization
suffices for muldly overparameterized DNNs to achieve the optimal “local adaptive” rates
for many nonparametric classes at the same time.

Parallel neural networks. We restrict our attention on a special network architec-
ture called parallel neural network [110), [ITI] which learns an ensemble of subnetworks
— each being a multilayer ReLU DNNs. Parallel NNs have been shown to be more
well-behaved both theoretically [110, 112], 113| 111], 114] and empirically [115] 116]. On
the other hand, many successful NN architectures such as SqueezeNet, ResNext and
Inception (see [ITI] and the references therein) use the idea similar to a parallel NN.

Weight decay, also known as square ¢, regularization, is one of the most popular
regularization techniques for preventing overfitting in DNNs. It is called “weight decay”
because each iteration of the gradient descent (or SGD) shrinks the parameter towards
0 multiplicatively. Many tricks in deep learning, including early stopping [117], quanti-
zation [73], and dropout [I18] behaves like /5 regularization. Thus even though we focus
on the exact minimizer of the regularized objective, it may explain the behavior of SGD
in practice.

Summary of results. Our main contributions are:

99

Local adaptivity of Weight Decayed DNNs Chapter 5

Table 5.1: Comparison with the results in the literature

layers Activation Function Minimax Remark

space rate

Parhi et al. 2 truncated BV™ Yes Non-standard activa-

[107) 119] power tion and regularization

(when m > 1).

Schmidt- >3 ReLU Holder Uptoalog With sparsity con-

Hieber [120] factor straint.

Suzuki [106] >3 ReLU Besov & Uptoalog With sparsity con-
m-Besov factor straint.

Ours >3 ReLU Besov & Up to n° Requires only ¢y regu-
BV factor larization.

1. We prove that the (standard) ¢, regularization in training an L-layer parallel ReLLU-

activated neural network is equivalent to a sparse ¢, penalty term (where p = 2/L)

on the linear coefficients of a learned representation (Proposition 5.5)).

2. We show that the estimation error of ¢, regularized parallel NN can be close to
the minimax rate for estimating functions in Besov space. Notably, the method
can adapt to different smoothness parameter, which is not the case for many other

methods.

3. We find that deeper models achieve closer to the optimal error rate. This result
helps explain why deep neural networks can achieve better performance than shal-

low ones empirically.

Besides, we have the following technical contributions which could be of separate

interest:

e We provide a way to bound the complexity of an overparameterized neural net-

work. Specifically, we bound the metric entropy of a parallel neural network in

Theorem 5.6, and the bound does not depend on the number of subnetworks.

e We propose a method to handle unconstrained function subspace when bounding

the estimation error as in Equation |(5.6)|

100

Local adaptivity of Weight Decayed DNNs Chapter 5

The above results separate parallel NNs with any linear methods such as kernel ridge
regression. To the best of our knowledge, we are the first to demonstrate that standard
techniques (/5 regularization and ReLLU activation) suffice for DNNs in achieving the op-

timal rates for estimating BV and Besov functions. The comparison with previous works

is shown in [Table 5.1l More discussion about related works are shown in [Section 5.2

5.2 Related works

NN and kernel methods. Jacot et al. [68] draws the connection between neural
networks and kernel methods. However, it has been found that neural networks often
outperform any kernel method, especially when the learning rate is relatively large [121].
A series of work tried to distinguish NN from kernel methods by providing examples of
function spaces that NN provably outperform kernel methods [122, [123]. However, these
papers did not consider the local adaptivity of nerual networks, which provides a more
systematic explanation.

NN and splines. Besides Parhi et al. [107] which we discussed earlier, Parhi
et al. [124] IT9] also leveraged the connections between NNs and splines. Parhi et al.
[124] focused on characterizing the variational form of multi-layer NN. Parhi et al. [119]
showed that two-layer ReLLU activated NN achieves minimax rate for a BV class of order
1 but did not cover multilayer NNs nor BV class with order > 1, which is our focus.

Weight-decay regularization with sparsity-inducing penalties. The connec-
tion between weight-decay regularization with sparsity-inducing penalties in two-layer
NNs is folklore and used by Neyshabur et al. [125], Savarese et al. [126], Ongie et al.
[127], Ergen et al. [128, [114], Parhi et al. [I07, 119], Pilanci et al. [129]. The key un-
derlying technique — an application of the AM-GM inequality (which we used in this

paper as well) — can be traced back to Srebro et al. [I30] (see a recent exposition by

101

Local adaptivity of Weight Decayed DNNs Chapter 5

Tibshirani [I31]). Tibshirani [I31] also generalized the result to multi-layered NNs, but
with a simple (element-wise) connections. Besides, Ergen et al. [I32] proved that training
a two-layer convolution neural network (CNN) with weight decay induces sparsity, and
points to a potential extension to these works including our work.

Finally, it was brought to our attention that while Savarese et al. [I26] mainly consider
two-layer NNs, a set of results about L-layer parallel NNs was presented in Appendix
C of their paper, which essentially contains same arguments we used for proving the
equivalence to an /5,7, regularized optimization problem in Proposition The difference
is they applied the insight to understand the interpolation regime while we focused on
analyzing MSE in the noisy case.

Proposition is the Savarese et al. [126] showed that a parallel networks of depth
L have an inductive bias for the Ly, sparse model, and explicit weight decay causes the
solutions of these networks to have a sparse last layer with at most n nonzero weights.

Resnet-type convolution neural networks. A recent series of work [108, [109]
proves that an arbitrary parallel neural network can be approximated by a resnet-type
convolution neural networks. These works do not require the model to be sparse, thus
are easier to train, yet they still require the architecture (the width and depth of each
residual block, the number of residual blocks) to be tuned based on the dataset, and the
estimation error analysis is based on the number of parameters. Besides, the number of
residual block need to increase with n, making the entire too deep to train in practice.

Approximation and estimation. The approximation-theoretic and estimation-
theoretic research for neural network has a long history too [133] [134] 135, 120, [106].
Most existing work considered the Holder, Sobolev spaces and their extensions, which
contain only homogeneously smooth functions and cannot demonstrate the advantage of
NNs over kernels. The exceptions including Suzuki [I06], Oono et al. [I08], Liu et al.

[109] which, as we discussed earlier, requires modifications to NN architecture for each

102

Local adaptivity of Weight Decayed DNNs Chapter 5

Table 5.2: Symbols used in this paper

symbol Meaning
a/a/A scalars / vectors / matrices. | [a,b] {r€R:a <z <b}
By, Besov space. [n] {reN:1<z<n}
| -|Bg, Besov quasi-norm . | -|lr Frobenius norm.
| -1lss, Besov norm. |-ll, ¢,-norm.
M,,(-) m' order Cardinal B-spline d Dimension of input.
bases.
Mprs(-) m" order Cardinal B-spline M # subnetworks in a paral-
basis lel NN.
function of resolution k at L # layers in a (parallel)
NN.
position s. w Width of a subnetwork.
o(+) ReLU activation function. n # samples.
W b Weight and bias in the (-th | R,Z,N Set of real numbers, inte-
layer in the j-th subnetwork. gers, and nonnegative in-
tegers.

class. In contrast, we require tuning only the standard weight decay parameter. Most
importantly, in all previously works, the estimation error of the model (eg. the covering
number) depends on the number of nonzero parameters in the model, while our work
provides a bound that depends on the norm of the weights instead of the number of

subnetworks.

5.3 Preliminary

5.3.1 Notation and Problem Setup.

We denote regular font letters as scalars, bold lower case letters as vectors and bold
upper case letters as matrices. a < b means a < Cb for some constant C' that does not
depend on a or b, and a = b denotes a < b and b < a. See for the full list of
symbols used.

Let fy be the target function to be estimated. The training dataset is D, :=

{(zi,v5),yi = fo(xi) + €,1 € [n]}, where z; are fixed and ¢; are zero-mean, inde-
103

Local adaptivity of Weight Decayed DNNs Chapter 5

pendent Gaussian noises with variance 2. In the following discussion, we assume

€ [0,1)4, fo(z;) € [-1,1], Vi.

We will be comparing estimators under the mean square error (MSE), defined as
MSE(f) = Ep, Z?Zl(f(wz) — fo(x;))? The optimal worst-case MSE is described by
R(F) := min; maxj,er MSE(f). We say that f is optimal if MSE(f) < R(F). The
empirical (square error) loss is defined as L(f) := 1 o (f(2;)—y:)2. The corresponding

population loss is L(f) := E[L S (f(x:) —))?|f] where 3] are new data points. It is
clear that E[L(f)] = MSE[f] + o2.

5.3.2 Besov Spaces and Bound Variation Space
Besov space

Definition 5.1 Modulus of smoothness: For a function f € LP(QQ) for some 1 < p < oo,

the r-th modulus of smoothness is defined by

wrp(fit) = sup AL,

heR%:||h||2 <t

(=17 f(z + jh), ifv € Q,x+rheqQ,

0, otherwise.

Definition 5.2 Besov space: For 1 < p,q < oo, > 0,7 := [a]| + 1, define

([@ wptror®)’, §< o

_ =0
|flag, =

sup t_awr,p(fv t)? q =0,
t>0

104

Local adaptivity of Weight Decayed DNNs Chapter 5

and define the norm of Besov space as:

1fllsg, = IFllp + 1 flBg,-

A function f is in the Besov space By, if || f||pa, is finite.

Here o > 0 determines the smoothness of functions, 1 < p < oo determines the
averaging (quasi-)norm over locations, 1 < ¢ < oo determines the averaging (quasi-
Jnorm over scale which plays a relatively minor role. Smaller p is more forgiving to
inhomogeneity and loosely speaking, when the function domain is bounded, smaller p
induces a larger function space. On the other hand, it is easy to see from definition
that B, C By, if ¢ < ¢. Without loss of generalizability, in the following discussion
we will only focus on By .. When p = 1, the Besov space allows higher inhomogeneity,
and it is more general than the Sobolev or Holder space. Note that the Besov space
for 0 < p,q < 1 is also defined, but in this case it is a quasi-Banach space instead of a
Banach space and will not be covered in this paper.

Functions in Besov space can be decomposed using B-spline basis functions. Any
function f in Besov space B% ,a > d/p can be decomposed using B-spline of order

p,q’

m,m > a: let £ € RY,

[@) =3 3 sl /) Myso(@) (5.1)

k=0 seJ(k)
where J(k) = {27%s : s € [-m,2" + m]? C Z9}, My ps(x) := M,,(28(z — s)), and

M (x) = Hle Mj,(z;) is the cardinal B-spline basis function which can be expressed as

105

Local adaptivity of Weight Decayed DNNs Chapter 5

a polynomial:
M, () = — —1)/ , x—7)"
0= (" e

=t S (") ()

J +

(5.2)

7j=1

Furthermore, the norm of Besov space is equivalent to the sequence norm:

S (g(a—d/ok 0\ =

Hewa g, = (3@ P4 {ens(NYallp)?) " = 1l
k=

0

See e.g. Dung [136, Theorem 2.2] for the proof.
The Besov space is closely connected to other function spaces including the Holder

space (C*) and the Sobolev space (W;'). Specifically, if the domain of the functions is

d-dimensional [106], 137],
e Va e N, By C W C By, and By, = W3

p,00?

e For 0 < <ooand o€ N,C* = B, .

o If a>d/p, By, CC°

Bounded variation (BV) space

is a more interpretable class of functions with spatially heterogeneous smoothness

[94]. It is defined through the total variation (TV) of a function.

Definition 5.3 Total Variation (TV): The total variation (T'V) of a function f on an

interval [a, b] is defined as

np—1

TV(f) = sup Z |f (i) — fl2s)]

106

Local adaptivity of Weight Decayed DNNs Chapter 5

where the P is taken among all the partitions of the interval [a,b].

In many applications, functions with stronger smoothness conditions are needed,

which can be measured by high order total variation.

Definition 5.4 High order total variation: the m-th order total variation is the total

variation of the (m — 1)-th order derivative

TVI(f) =TV (FY)

Definition 5.5 Bounded variation (BV): The m-th order bounded variation class is the

set of functions whose total variation (TV) is bounded.
BV (m) .= {f: TV(f"™) < oo},
Bounded variation class is tightly connected to Besov classes. Specifically [138]:
B ¢ BV(m) C B! (5.3)
This allows the results derived for the Besov space to be easily applied to BV space.

Other Function Spaces

Definition 5.6 Holder space: let m € N, the m-th order Holder class is defined as

cm = {f : max | D*f(z) = D'f(2)] < oo,Vr,z € Q}

la|=k HLIZ‘ — Z||2

where D* denotes the weak derivative.

107

Local adaptivity of Weight Decayed DNNs Chapter 5

. K . _
ming, L(3; f5) + AN F M W20 ming, 5y L0, a5 65) + X M Jag[/E.

(a) Parallel NN with ¢5 regularization (b) Sparse Regression with Learned Represen-
tation

Figure 5.2: Parallel neural network and the equivalent sparse regression model we
discovered.

Note that fraction order of Holder space can also be defined. For simplicity, we will
not cover that case in this paper.

Definition 5.7 Sobolev space: let m € N, 1 < p < oo, the Sobolev norm is defined as

1/p
A llwe = | DO IIDFIE |

la|<m

the Sobolev space is the set of functions with finite Sobolev norm:

Wi = A{f | fllwp < oo}

Minimax MSE

It is well known that minimax rate for Besov and 1D BV classes are O(n_%id) and

O(n~(m+2)/(2m+3)) yegpectively . The minimax rate for linear estimators in 1D BV classes

is known to be O(n~(m+1/2m+2)) [9g 94].

108

Local adaptivity of Weight Decayed DNNs Chapter 5

5.4 Main Results: Parallel ReLU DNNs

Consider a parallel neural network containing M multi layer perceptrons (MLP) with
ReLU activation functions called subnetworks. Each subnetwork has width w and depth
L. The input is fed to all the subnetworks, and the output of the parallel NN is the sum-
mation of the output of each subnetwork. The architecture of a parallel neural network
is shown in [Figure 5.2a This parallel neural network is equivalent to a vanilla neural
network with block diagonal weights in all but the first and the last layers (Figure 5.2(c)).
Let W](-e) and bgz) denote the weight and bias in the /-th layer in the j-th subnetwork

respectively. Training this model with ¢, regularization returns:

argmin L(f Z Z Hi, (5.4)

&) (0
{W;7b;7} j=1 ¢=1

where f(x) = Zj\il fr(x) denotes the parallel neural network, f;(-) denotes the j-th

subnetwork, and A > 0 is a fixed scaling factor. We choose not to regularize the bias

terms bgg) to provide a cleaner equivalent model (Proposition 5.5). If the bias terms

are regularized, the result will be similar. Besides, we ignore the computation issue and
focus on the global optimal solution to this problem. In practice, in deep neural network,
the solution obtained using gradient descent-style methods are often close to the global

optimal solution [65].

Theorem 5.1 For any fited « —d/p > 1,q > 1,L > 3, define m = [a — 1]|. For any

Jo € By, given an L-layer parallel neural network satisfying

e The width of each subnetwork is fixzed satisfying w > O(md). See
for the detail.

—2/L
e The number of subnetworks is large enough: M 2 n2a/d+1 2/(pL)

109

Local adaptivity of Weight Decayed DNNs Chapter 5

Under the assumption as in[Lemma 5.18, with proper choice of the parameter of reqular-
1zaton X\ that depends on D, a,d, L, the solution f parameterized by satisfies

2a/d(1-2/L)

MSE(f) = C(w, L)O(n~ 22/ 21617) + =%k, (5.5)

where O shows the scale up to a logarithmic factor, cg > 0 is a numerical constant from

a/d
Thearem Cw,L) = (w4_4/LL2_4/L)2a/d+21*2/(PL> depends polynomially on L.

We explain the proof idea in the next section,but defer the extended form of the theorem
and the full proof to Before that, we comment on a few interesting aspects
of the result.

Near optimal rates and the effect of depth. The first term in the MSE bound is
the estimation error and the second term is (part of) the approximation error of this
NN. Recall that the minimax rate of a Besov class is O(n_#id). The gap between the
estimation error and the minimax rate is because the minimax rate can be achieved by

an /o sparse model, while the parallel NN is equivalent to an ¢, sparse model (will be

shown in [Proposition 5.5)), which is an approximation to ;. As the depth parameter L

increases, p = 2/L gets closer to 0, the MSE can get arbitrarily close to the minimax
rate and the trailing constant term in |(5.5)|can be arbitrarily small. Close to the optimal

rate can be achieved if we choose L 2 logn:

Corollary 5.2 Under the conditions of Theorem[5.1, for any fo € By, there is a nu-

7q7

merical constant C' such that when we choose C'logn < L < 100C logn,

2a

MSE(f) = O30,

where O hides only logarithmic factors and the o(1) factor in the exponent is O(1/log(n)).

Sparsity and comparison with standard NN. We also note that the result does not
110

Local adaptivity of Weight Decayed DNNs Chapter 5

depend on M as long as M is large enough. This means that the neural network can
be arbitrarily overparameterized while not overfitting. The underlying reason is sparsity.
As it will become clearer in {5 regularized training of a parallel L-layer
ReLU NNs is equivalent to a sparse regression problem with an ¢, penalty assigned to
the coefficient vector of a learned dictionary. Here p = 2/L which promotes even sparser
solutions than an ¢; penalty. Such ¢, sparsity does not exist in standard deep neural
networks to the best of our knowledge, which indicates that parallel neural networks
may be superior over standard neural networks in local adaptivity.

Adaptivity to function spaces. For any fixed L, m, our result shows the parallel
neural network with width w = O(md) can achieve close to the minimax rate for any
Besov class as long as o < m. In other words, neural networks can adapt to smoothness
parameter by tuning only the regularizaton parameter. As will be shown in [Theorem 5.6}
overestimating o with m only changes the logarithmic terms in the MSE bound — a mild
price to pay for a more adaptive method.

Hyperparameter tuning. We provide an explicit choice of A in[Lemma 5.18 underlying
our theoretical result. Empirically, it can be determined empirically, e.g. using cross
validation.

Fixed design v.s. random design. We mainly focus on bounding the error at sample
covariates (the fized design problem) to be comparable to classical nonparameteric regres-
sion results. One can easily apply the technique in this paper to achieve the estimation

error bound on the random design problem:

Theorem 5.3 Under the same condition as|Theorem 5.1, the solution f parameterized
by |(5.4) satisfies

ni—2/L

. ~ A—4/L2—4/L ___20/d
EpMSE(f) < O <<w—L) e‘CGL)

111

Local adaptivity of Weight Decayed DNNs Chapter 5

where O shows the scale up to a logarithmic factor, and cg is the constant defined in
Ep indicates that the expectation is taken with respect to the training set

D, E; indicates that the expectation is taken with respect to the domain of f.

The proof is similar to that of [Theorem 5.1l The main difference lays in the proof
of the estimation error. For f, part, the estimation error can be bounded using VC-
dimension, which is 1. For fj part, the estimation error can be bounded using its covering
number, e.g. Lemma 8 in Schmidt-Hieber [120].

Representation learning and adaptivity. The results also shed a light on the role
of representation learning in DNN'’s ability to adapt. Specifically, different from the two-
layer NN in [I07], which achieves the minimax rate of BV (m) by choosing appropriate
activation functions using each m, each subnetwork of a parallel NN can learn to ap-
proximate the spline basis of an arbitrary order, which means that if we choose L to be
sufficiently large, such Parallel NN with optimally tuned A is simultaneously near optimal
for m = 1,2,3,.... In fact, even if different regions of the space has different orders of
smoothness, the paralle NN will still be able to learn appropriate basis functions in each
local region. To the best of our knowledge, this is a property that none of the classical
nonparametric regression methods possess.

Synthesis v.s. analysis methods. Our result could also inspire new ideas in estimator
design. There are two families of methods in non-parametric estimation. One called
synthesis framework which focuses on constructing appropriate basis functions to encode
the contemplated structures and regress the data to such basis, e.g., wavelets [94]. The
other is called analysis framework which uses analysis regularization on the data directly
(see, e.g., RKHS methods [96] or trend filtering [99]). It appears to us that parallel
NN is doing both simultaneously. It has a parametric family capable to synthesizing

an O(n) subset of an exponentially large family of basis, then implicitly use sparsity-

112

Local adaptivity of Weight Decayed DNNs Chapter 5

inducing analysis regularization to select the relevant basis functions. In this way the
estimator does not actually have to explicitly represent that exponentially large set of
basis functions, thus computationally more efficient.

Bounded variation classes. Thanks to the Besov space embedding of the BV class

(5.3)}, our theorem also implies the result for the BV class in 1D.

Corollary 5.4 If the target function is in bounded variation class fo € BV (m), For any
fized L > 3, for a neural network satisfying the requirements in with d = 1
and with proper choice of the regularization factor X\, the NNf parameterized by
satisfies

(2m+2)(1—2/L)

MSE(f) = C(w, L)O(nfm) + O(e*CGL),
where C(w, L) is the same as in|(5.5) except replacing o with m.

It is known that any linear estimators such as kernel smoothing and smoothing splines
cannot have an error lower than O(n~(Gm+1/m+2)) for BV (m) [94]. When L > O(m?),
the first term in the MSE of NN decreases with n faster than that of the linear methods.
When n is large enough, there exists L such that the MSE of NN is strictly smaller than

that of any linear method. This partly explains the advantage of DNNs over kernels.

5.5 Proof Overview

We start by first proving that a parallel neural network trained with /5 regulariza-
tion is equivalent to an /,-sparse regression problem with representation learning
tion 5.5.1)); which helps decompose its MSE into an estimation error and approxmation

error. Then we bound the two terms under an £,-sparse constrained problem setting in

[Section 5.5.2| and [Section 5.5.3| respectively.

113

Local adaptivity of Weight Decayed DNNs Chapter 5

Notably, we adapted the generic statistical learning machinery (a self-bounding ar-
gument) for studying this constrained ERM problem [106, Proposition 4] to bound the

estimation error. This adaption is non-trival because there is an unconstrained subspace

with no bounded metric entropy. Specifically, [Proposition 5.16| shows that the MSE of

the regression problem can be bounded by

MSE(f) _0< I NSE(f) + N3 L) +dF) 5)

N———— ~~

approximation error estimation error

(5.6)

in which F decomposes into F| x F, where /| is an unconstrained subspace with
finite dimension, and J is a compact set in the orthogonal complement with a -covering
number of N'(Fj,0, || - ||ls) in || - [|so-norm. This decomposes MSE into an approximation
error and an estimation error. The novel analysis of these two represents the major

technical contribution of this paper.

5.5.1 Equivalence to /, Sparse Regression

It is widely known that ReL.U function is 1-homogeneous: o(az) = ac(x),Va > 0,z €
R. In any consecutive two layers in a neural network (or a subnetwork), one can multiply
the weight and bias in one layer with a positive constant, and divide the weight in another
layer with the same constant. The neural network after such transformation is equivalent

to the original one:

1
WOe(Whg + b = ~We(cWWx + cbM), Ve >0,z (5.7)
C

This property can be applied to each subnetwork (instead of the entire model in a

standard NN), and we can reformulate to an ¢, sparsity-regularized problem:

114

Local adaptivity of Weight Decayed DNNs Chapter 5

Proposition 5.5 There exists an one-to-one mapping between A > 0 and X' > 0 such

that|(5.4) is equivalent to the following problem:

M
argmin L(D" a;f;) + N {a;} 137
(W a;} =1 (5.8)
st [Wlp < eVd, Vi e [M]; [WY9r <avw,Vje M, 2< <L,
(0 5(4)

where f;(+) is a subnetwork with parameters V_V] ;b

This equivalent model is demonstrated in |Figure 5.2bl The proof, which we defer to
section 5.8.2) uses AM-GM inequality and the observation that the optimal solution
will have norm-equalized weights per layer. The constraint ||V_V§-1) lr < V4, ||W§€)|| S

Vw,V¢ > 1 is typical in deep learning for better numerical stability. The equivalent

model in [Proposition 5.5|is also a parallel neural network, but it appends one layer with

parameters {a;} at the end of the neural network, and the constraint on the Frobenius
norm is converted to the 2/L norm on the factors {ax}. Since L > 2 in a typical
application, 2/L < 1 and this regularizer can enforce a sparser model than that in
The same technique can also be used to prove that an ¢y constrained
neural network is equivalent to the 5,7, constrained model as in .

There are two useful implications of Proposition [5.5. First, it gives an intuitive
explanation on how a regularized Parallel NN works. Specifically, it can be viewed as a
sparse linear regression with representation learning. Secondly, the conversion into the
constrained form allows us to decompose the MSE into two terms as in and bound
them separately.

We emphasize that Proposition by itself is not new. The same result was previ-
ously obtained by Savarese et al. [126] Appendix C (see Section [5.2| for more details) and

the key proof techniques date back to at least Burer et al. [139]. Our novel contribution

115

Local adaptivity of Weight Decayed DNNs Chapter 5

is to leverage this folklore equivalence for proving new learning bounds.

5.5.2 Estimation Error Analysis

Previous results that bound the covering number of neural networks [135], [106] depends
on the width of the neural networks explicitly, which cannot be applied when analysing
a potentially infinitely wide neural network. In this section, we leverage the ¢,-norm
bounded coefficients to avoid the dependence in M in the covering number bound, and

focus on a constrained optimization problem:

M

arg min ﬁ(Zajf]), st||{aj}||§ﬁ <P, (5.9)
(W8 a3 =1

and {Wy) , g)} satisfy the same constraint as in |(5.8)] The connection between the

regularized problem and the constrained problem is defered to [Lemma 5.18|

Theorem 5.6 The covering number of the model defined in|(5.9) apart from the bias in

the last layer satisfies

log N'(F, 8) < w2/ (0=2/1) [2\/g P/r=57m 57 Log(wP' /), (5.10)

This theorem provides a bound of estimation error for an arbitrarily wide parallel

neural network as long as the total Frobenius norm is bounded. The proof can be found

in [Section 5.8.3 It requires the following lemma, whose proof is deferred to [Section 5.8.3;

Lemma 5.7 Let G C {R? — [—c3, 3]} be a set with covering number satisfying log N (G,d) <

klog(1/0) for some finite cs3, and for any g € G,|a| < 1, we have ag € G. The covering

116

Local adaptivity of Weight Decayed DNNs Chapter 5

number of F = {Zf\il a;9;

g €G,lak < P0<p< 1} for any P > 0 satisfies
log N(F, €) S kPT7(3/c5) 77 log(csP/0)
up to a double logarithmic factor.

5.5.3 Approximation Error Analysis

The approximation error analysis involves two steps. We first analyse how a subnet-
work can approximate a B-spline basis, which is defered to [Section 5.8.4] Then we show
that a sparse linear combination of B-spline bases approximates Besov functions. Both

add up to the total error in approximating Besov functions with a parallel neural network

(Theorem 5.9)).

Proposition 5.8 Let o« —d/p > 1,7 > 0. For any function in Besov space fo € By, and
any positive integer M, there is an M-sparse approzimation using B-spline basis of order
m satisfying 0 < a < min(m,m — 1+ 1/p): fi = Z£1 Ay, M i;.s;, for any positive
integer M such that the approzimation error is bounded as || fir — follr < M‘O‘/d||f0||33’q,

and the coefficients satisfy

H{Qkiakmsi}kmsi

» S follsg, -

The proof as well as the remark can be found in [Section 5.8.4]

Theorem 5.9 Under the same condition as|Proposition 5.8, for any positive integer M,

any function in Besov space fo € By, can be approzimated by a parallel neural network

with no more than O(M) number of subnetworks satisfying:

117

Local adaptivity of Weight Decayed DNNs Chapter 5

1. Each subnetwork has width w = O(md) and depth L.

2. The weights in each layer satisfy HW,(f) |lF < O(y/w) except the first layer HW,(:) |lFr <

O(Vd),

3. The scaling factors have bounded 2/L-norm: P’ : = ||{aj}||§ﬁ < ML),

4. The approximation error is bounded by

1f = folls < (eaM=/" 4 ese™%) || f |15,

where ¢y, 5, cg are constants that depend only on m,d and p.

Here M is the number of “active” subnetworks, which is not to be confused with the
number of subnetworks at initialization. The proof can be found in [Section 5.8.4]

Using the estimation error in and approximation error in [['heorem 5.9}
by choosing M to minimax the total error, we can conclude the sample complexity of
parallel neural networks using ¢, regularization, which is the main result
of this paper. See for the detail.

5.6 Experiment

We empirically compare a parallel neural network (PNN) and a vanilla ReLU neural
network (NN) with smoothing spline, trend filtering (TF) [99], and wavelet denoising.
Trend filtering can be viewed as a more efficient discrete spline version of locally adaptive
regression spline and enjoys the same optimal rates for the BV classes. Wavelet denois-
ing is also known to be minimax-optimal for the BV classes. The results are shown in
We use two target functions: a Doppler function whose frequency is decreas-

ing([Figure 5.3(a)-(c)(h)), and a combination of piecewise linear function and piecewise
118

Local adaptivity of Weight Decayed DNNs Chapter 5

Observation —— Parallel Neural Network
—— Target function —— Neural Network 2.04
34 —— Trend Filtering 0.204 —— Trend Filter
Wavelet Denosing) Smoothing Spline 1.54
Smoothing Spline Wavelet Denoising
'+ —— Parallel Neural Network 1.0
21 4 — Neural Network 0.15
B ’]
¥ 2 0.54
14 0.104 0.04
-0.5
0.05 4
04
-1.0
™ ™ ™ ™ ™ ™ 0.00 T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 25 50 75 100 12515017200 0.0 0.2 0.4 0.6 0.8 1.0

Degree of freedom

(a) Dopler, DoF=30. (b) MSE versus DoF. (¢) Active subnetworks.

1.2
Observation —— Parallel Neural Network 0.8
P —— Target function —— Neural Network
1.04 —— Trend Filtering —— Trend Filter
Wavelet Denosing Smoothing Spline 061
0.8 Smoothing Spline Wavelet Denoising
—— Parallel Neural Network 0.4
0.6 1 , S
{ Neural Networ}(. 10-2 4
k 3
0.4 B 0.2
0.2
004 |||
0.01
-0.21
-3
-0.2 E 1o -
0.0 0.2 0.4 0.6 0.8 1.0 25 50 75 100 125 150 175 200 0.0 0.2 0.4 0.6 0.8 1.0

Degree of freedom

(d) “Vary”, DoF=50. (e) MSE versus DoF (f) Active subnetworks.

1.2 —— Parallel Neural Network
—— Neural Network 3
0.19 J—
Trend Filter 0.005 4
Smoothing Spline
0.002 4
W w
2 2 0.001
0.05
0.0005 -
4 —— Neural Network
—— Trend Filter
0.0002 - Smoothing Spline
0.03 L\?ear Minimax
=== Minimax
0.00 0.05 010 0.15 0.20 0.00 005 0.10 0.15 020 102 10° 10? 10° 104
Number of samples Number of samples
3 M M 3 « 79
(g) Zoom in to (a)(d) (h) MSE versis n, Dopler (i) MSE versis n, “Vary

Figure 5.3: Numerical experiment results of the Doppler function (a-c,h), and “vary”
function (d-f,g). All the “active” subnetworks are plotted in (c)(f). The horizontal
axis in (b) is not linear.

cubic function, or “vary” function (Figure 5.3(d)-(f)(i)). We repeat each experiment 10
times and take the average. The shallow area in [Figure 5.3(b)(e) shows 95% confidence

interval by inverting the Wald’s test. The degree of freedom (DoF) is computed based

119

Local adaptivity of Weight Decayed DNNs Chapter 5

on Tibshirani [T40)].

As can be shown in the figure, both TF and wavelet denoising can adapt to the
different levels of smoothness in the target function, while smoothing splines tend to be
oversmoothed where the target function is less smooth (the left side in (a)(d), enlarged
in (g)). The prediction of PNN is similar to TF and wavelet denoising and shows local
adaptivity. Besides, the MSE of PNN almost follows the same trend as TF and wavelet
denoising which is consistent with our theoretical understanding that the error rate of
neural network is closer to locally adaptive methods. Notably PNN, TF and wavelet
denoising achieve lower error at a much smaller degree-of-freedom than smoothing splines.

There are some mild drops in the best MSE one can achieve with Parallel NN vs TF
in both examples. We are surprised that the drop is small because Parallel NN needs to
learn the basis functions that TF essentially hard-coded. The additional price to pay for
using a more adaptive and more flexible representation learning method seems not high
at all.

In [Figure 5.3|(c)(f), we give the output all the “active” subnetwork, i.e. the subnet-
works whose output is not a constant. Notice that the number of active subnetworks is
much smaller than the initialization. This is because ¢y regularization in weights induces
¢, sparsity and the weight in most of the subnetworks reduces towards 0 after training.
More details are shown in [Section 5.9

In [Figure 5.3(h)(i), we plot the MSE versus the number of training samples for
“Doppler” and “Vary” respectively. It is clear that parallel NN works the best over-
all. In (i), we further compare the scaling of the MSE against the minimax rate (n=4/°)
and the minimax linear rate (n=%4), i.e., the best rate kernel methods could achieve.
As is predicted by our theory, when n is large, the MSE of parallel neural networks and
trend filtering decreases at almost the same rate as the minimax rate, while smoothing

splines, as expected, is converging at the (suboptimal) minimax linear rate. Interestingly,

120

Local adaptivity of Weight Decayed DNNs Chapter 5

vanilla NN seems to converge at the optimal rate too on this example. It remains an
open question whether vanila NN is merely “lucky” on this example, or it also achieves

the minimax rate for all functions in BV(m).

5.7 Conclusion and Discussion

In this paper, we show that a deep parallel neural network can be locally adaptive
with standard /s regularization. This confirms that neural networks can be nearly optimal
in learning functions with heterogeneous smoothness which separates them from kernel
methods.

Specifically, we prove that training an L layer parallel neural network with standard
{5 regularization is equivalent to an f5/;-penalized regression model with representation
learning. Since in typical application L > 2, standard regularization promotes a sparse
linear combination of the learned bases. Using this method, we proved that a parallel
neural network can achieve close to the minimax rate in the Besov space and bounded
variation (BV) space by tuning the regularization factor.

Our result reveals that one do not need to specify the smoothness parameter a (or
m) when training a parallel neural network. With only an estimation of the upper bound
of a (or m), parallel neural networks can adapt to different degree of smoothness, or
choose different parameters for different regions of the domain of the target function.
This property shows the strong adaptivity of deep neural networks.

On the other hand, as the depth of neural network L increases, 2/L tends to 0 and the
error rate moves closer to the minimax rate of Besov and BV space. This indicates that
when the sample size is large enough, deeper models have smaller error than shallower
models, and helps explain why empirically deep neural networks has better performance

than shallow neural networks.

121

Local adaptivity of Weight Decayed DNNs Chapter 5

5.8 Proofs of technical results

5.8.1 Two-layer Neural Network with Truncated Power Acti-

vation Functions

We start by recapping the result of Parhi et al. [I07] and formalizing its implication
in estimating BV functions. Parhi et al. [I07] considered a two layer neural network with
truncated power activation function. Let the neural network be

M
fl@) = vjo™(wiz +b;) + (), (5.11)

Jj=1

where w;, v; denote the weight in the first and second layer respectively, b; denote the
bias in the first layer, ¢(z) is a polynomial of order up to m, ¢ (x) := max(z,0)™. Parhi

et al. [I07, Theorem 8] showed that when M is large enough, The optimization problem

M

PR .
IglgL(f)+§Z(|Uj|2+|wj!2) (5.12)
) le

is equivalent to the locally adaptive regression spline:
mfini()+ ATV (™) (2)), (5.13)

which optimizes over arbitrary functions that is m-times weakly differentiable. The

latter was studied in Mammen et al. [08], which leads to the following MSE:

Theorem 5.10 Let M > n — m, and f be the function parameterized by the
minimaizer of (5.12)), then

MSE(]?) _ O<n—(2m+2)(2m+3))'
122

Local adaptivity of Weight Decayed DNNs Chapter 5

We show a simpler proof in the univariate case due to Tibshirani [141]:

Proof: As is shown in Parhi et al. [I07, Theorem 8|, the minimizer of |(5.12)| satisfy
oy = oy, ¥k
so the TV of the neural network fyy is

M
TV (fyn) = TV () + Y fojljw; " TV (0 ()

j=1
M

= ;™
j=1

1 M
= 5D (s + ™)
j=1

which shown that |(5.12)|is equivalent to the locally adaptive regression spline |(5.13)| as
long as the number of knots in |(5.13)[is no more than M. Furthermore, it is easy to

check that any spline with knots no more than M can be expressed as a two layer neural
network . It suffices to prove that the solution in has no more than n — m
number of knots.

Proposition 1 in Mammen et al. [98] showed that there is a solution to f (x)
such that f (x) is a mth order spline with a finite number of knots but did not give a
bound. Let the number of knots be M, we can represent f using the truncated power

basis

fo) = asle =)7 + (@) = 3 a0 (2) + ela)

where ¢; are the knots, ¢(x) is a polynomial of order up to m, and define aj(.m)(x) =

(z — ;)7

Mammen et al. [98] however did not give a bound on M. Parhi et al. [I07]’s Theorem 1

123

Local adaptivity of Weight Decayed DNNs Chapter 5

implies that M < n — m. Its proof is quite technical and applies more generally to a
higher dimensional generalization of the BV class.
Tibshirani [141] communicated to us the following elegant argument to prove the
same using elementary convex analysis and linear algebra, which we present below.
Define II,,(f) as the L?*(P,) projection of f onto polynomials of degree up to m,

L (f) == f — [L,(f). Tt is easy to see that
IT: f(z) = Zajﬂrfmaj(.m) (7)

Denote f(x1.,) := {f(z1),..., f(x,)} € R™ as a vector of all the predictions at the

sample points.
M M
i f (1) = Y a;TT508™ (21) € T Conv{Zo\™ (z1.1)} - > laj]
j=1 J=1

M
€ Conv{:I:H;UJ(.m) (T1n)} - Z ;]
j=1

where Conv denotes the convex hull of a set. The convex hull Conv{j:a§m) (1)} -
ij\il la;| is an n-dimensional space, and polynomials of order up to m is an m + 1
dimensional space, so the set defined above has dimension n —m — 1. By Carathéodory’s
theorem, there is a subset of points in this space

{HLJ(m)(xlm)} C {Hiaj(.m)(xlm)}, 1<k<n-m

m= jk

such that
I f(x) =Y adl-o™ (@), Y Ja] <1

In other word, there exist a subset of knots {¢;,j € [n — m]} that perfectly recovers

124

Local adaptivity of Weight Decayed DNNs Chapter 5

Ik f (x) at all the sample points, and the TV of this function is no larger than f :

This shows that

for all z; in n onbservation points.

The MSE of locally adaptivity regressive spline [(5.13)[was studied in Mammen et al.

[98, Section 3|, which equals the error rate given in [Theorem 5.10} |

This indicates that the neural network is minimax optimal for BV (m).

Let us explain a few the key observations behind this equivalence. (a) The truncated
power functions (together with an mth order polynomial) spans the space of an mth
order spline. (b) The neural network in is equivalent to a free-knot spline with M
knots (up to reparameterization). (¢) A solution to ([5.13)) is a spline with at most n —m

knots [107, Theorem 8|. (d) Finally, by the AM-GM inequality

v+ Jw; 7™ = 2] ||w;|™ = 2|c;]

where ¢; = v;|w;|™ is the coefficient of the corresponding jth truncated power basis. The
mth order total variation of a spline is equal to > [c;|. It is not hard to check that the
loss function depends only on ¢;, thus the optimal solution will always take “=" in the

AM-GM inequality.

125

Local adaptivity of Weight Decayed DNNs Chapter 5

5.8.2 Equivalence Between Parallel Neural Networks and p-

norm Penalized Problems

Proof of |Proposition 5.5|

We make use of the property from |(5.7)[to minimize the constraint term in while
keeping this neural network equivalent to the original one. Specifically, let W®, ™M . WD) p@)

be the parameters of an L-layer neural network.
fx) = WEe(WEDg(oWz +bW)) + b)) 4 plb),

which is equivalent to

~(L-1)

f(x) = WHe(ap_ WEVe(. o(a Wz + 5(1)) ..)+b b

)+,

as long as ay > 0,][1_, oF = [[i., IW©O||p, where W) .= WO By the AM-GM

T W@ e

inequality, the /5 regularizer of the latter neural network is

L L I 2/L L 2/L
S WOl =3 a2 > L (H)) (H uw%)
=1 =1 =1 =1
and equality is reached when ay = ay = --- = . In other word, in the problem |(5.4)]
it suffices to consider the network that satisfies
1 2 L .
W e = [WPp = = WP ||p, V) € [M], ¢ € [L). (5.14)

126

Local adaptivity of Weight Decayed DNNs Chapter 5

Using again, one can find that the neural network is also equivalent to
M —_ —_— p—
F@) =3 a;WEe(W Vo (oWz + 58y)+ 8 7Y) + 617,
j=1

where

L 4 1 L l
I W e WS (T W IR/)

A A T 50 (5.15)

Y

x7(£
W < 89,

where the last two equality comes from the assumption Choosing Y = ¢;v/w

expect £ = 1 where M) = ¢,1/d, and scaling 5" accordingly and taking the regularizer

in |(5.4)|into |(5.15)| finishes the proof.

5.8.3 Covering Number of Parallel Neural Networks

Proof of [’heorem 5.6

The proof relies on the covering number of each subnetwork in a parallel neural
network (Lemma 5.11)), observing that |f(z)| < 2¢7lwf~!v/d under the condition in
Lemma 5.11) and then apply |[Lemma 5.7, We argue that our choice of condition on

159]]5 in [Lemma 5.11|is sufficient to analyzing the model apart from the bias in the last
layer, because it guarantees that /w||W®A,_; ()| < ||b“||2. This leads to

IWOL (@)oo < (WO A (@) 2 < Va|[p]2 < [169]|oc

If this condition is not met, W® A4,_ (x) +b® is either always positive or always negative
for all feasible = along at least one dimension. If (W A4, () +b®)); is always negative,
one can replace b\); with —max, |[W®A,_;(x)||« without changing the output of this
model for any feasible . If (W A,_;(x)+ b)), is always positive, one can replace b¥));

127

Local adaptivity of Weight Decayed DNNs Chapter 5

with max, [|[W® A, ()|, and adjust the bias in the next layer such that the output
of this model is not changed for any feasible x. In either cases, one can replace the bias
b") with another one with smaller norm while keeping the model equivalent except the

bias in the last layer.

Lemma 5.11 Let F C {f : R? — R} denote the set of L-layer neural network (or a

subnetwork in a parallel neural network) with width w in each hidden layer. It has the

form

f(x) = WDe(WEDg(oWV z + bW,)+ b)) 4 p),
WO e R WO p < Vd, b € R, [[pV]|; < Vduw,
WO e R WO p < v, b € R, ||5Y|, < 27w Vdw, VE=2,...L -1,

W e R WD |5 < Vw, bE) =0
(5.16)

and o(+) is the ReLU activation function, the input satisfy ||x||2 < 1, then the supremum

norm d-covering number of F obeys

log N (F,0) < ez Lw?®log(1/5) + cg

where c; is a constant depending only on d, and cg is a constant that depend on d,w and

L.
Proof of [Lemma 5.11]

First study two neural networks which differ by only one layer. Let gy, g, be two neural
networks satisfying with parameters Wy, by,..., Wy, by, and W/, b},... W’ b

respectively. Furthermore, the parameters in these two models are the same except the

128

Local adaptivity of Weight Decayed DNNs Chapter 5

(-th layer, which satisfy

IWe = Willr < e [l — byl < €

Denote the model as

ge(x) = Bo(WeAe(x) + by), gy () = Be(WyAe(z) + b))

where Ay(x) = o(W,_10(...0(Wix +by)...) + by_1) denotes the first £ — 1 layers in
the neural network, and A,(z) = Wro(...0(Wypi0(x) + bey1)...) + br) denotes the
last L — ¢ — 1 layers, with definition A;(x) = x, By (x) = x.

Now focus on bounding ||A(z)||. Let W € R™"™ |W|p < vVm/,z € R™,b ¢

R™, [[bll2 < v/m
lo(Wz +b)l[2 < [Wz + b2

< [Wlz[|zl2 + [[b]l2
< [W]lrllz|2 + (b2
< vm'||z||y + vm

where we make use of || - |2 < || - ||#. Because of that,

[Az (2)[|2 < Vd + Vdw < 2Vdw,

[As() 12 < V|| As(@)||2 + 2wV dw < dwv/dw,
(5.17)

[Ac(2)]2 < V| A ()]s < 2Vdw(2w) 2.

Then focus on B(x). Let W € R™"™ |W|r < vVm/,z, 2’ € R™ b € R™ |b|, <

129

Local adaptivity of Weight Decayed DNNs Chapter 5

v/m. Furthermore, || — 2'||2 < ¢, then

lo(Wz +b) —o(Wa' +b)|; < [[W(x -z, < [W]rlle -2,

which indicates that ||B(z) — B(z) |2 < (Vw):=*||lx — ||,

Finally, for any W, W’ € R™"™ x ¢ R™ b, b € R™, one have

[(Wzx+b) — (Wx+b)|s=[(W-W)x+(b-b)|:
< |W — W|lo||z]|2 + [|b —]2

< W = Wpllz]z + vVml|b = b«

In summary,

lge(x) — go(x)| = [Be(WeAi(x) + by) — Be(WiA() + by)|

IN

(V) [(WeAe(z) + be) — (WiA() + by) -

< (V)" ([We = WillpllAe(z) 2 + [|be — byll2)

OU=1)y (LH=3)/2J1/2¢ | (L=)/2¢

IN

Let f(x), f'(z) be two neural networks satisfying|(5.16)|with parameters Wy, by, ..., Wy, by
and W1, b, ..., W], b, respectively, and ||W, —W/||r < €, ||be — b)||r < €. Further define

fe be the neural network with parameters Wy, by, ..., Wy, by, Wy 1, by, ..., W, b}, then

[f(z) = (@) <|f(x) = @)+ [fi(z) = fa(@)[+ - + [fra(2) = f/(2)]
< i 9(=2) g1/2,, (L+H=3)/2¢ | (L-D)/2¢
(=1

130

Local adaptivity of Weight Decayed DNNs Chapter 5

For any 6 > 0, one can choose

o o

= Q=3 2g1/2 T G0z

€

such that |f(z) — f'(z)] < 0.

On the other hand, the e-covering number of {W € R™™ : |W|r < vm'} on
Frobenius norm is no larger than (2v/m//e + 1)™*™ and the é-covering number of {b €
R™ . ||b]l2 < 1} on infinity norm is no larger than (2/€+ 1)™. The entropy of this neural

network can be bounded by
log N'(f;6) < w?Llog(28 w1 /6 + 1) + wLlog(2Ltw =124 2 /5 4 1)

Proof of [Lemma 5.7

Let € be a positive constant. Without the loss of generality, we can sort the coefficients
in descending order in terms of their absolute values. There exists a positive integer M
(as a function of €), such that |a;| > € for i < M, and |a;| < € for i > M.

By definition, Me? < S"M Ja,[P < P so M < P/e?, and |a;|? < P, |a;] < PY* for all
1. Furthermore,

Z |la;| = Z |a;|P|a;|" P < Z |a;|Pe P < Pel P

i>m i>M i>M

Let g; = argmin ¢ [|g — 515 gillo Where G is the ¢'-convering set of G. By definition of

131

Local adaptivity of Weight Decayed DNNs Chapter 5

the covering set,

M M M M
Zaigi(w) - Z PYrgi(x)|| < Z(%’gi(fﬂ) — PYPgi(a))|| + Z a;gi(x)
i=1 i=1 . i=1 so Ili=Mt1 o
< MPYPS 4 ey PP,
(5.18)
Choosing
e = (8/2c3P)T7,8 = P75 (§/2¢3) 7 /2, (5.19)

we have M < Pﬁ(é/Zc;;)_%,MPl/pé’ < 0/2,c3Per™P < §/2, s0 < 0. One can

compute the covering number of F by

log N (F,8) < MlogN(G,d") < kMlog(1/d") (5.20)

Taking |(5.19)|into |(5.20)| finishes the proof.

5.8.4 Proof of Approximation Error
Approximation of Neural Networks to B-spline Basis Functions

Lemma 5.12 Let M, s be the B-spline of order m with scale 27 in each dimension
and position s € R%: My, s(x) := M,,(2"(x —8)), M,, is defined in|(5.2). There exists a
neural network with d-dimensional input and one output, with width wq,, = O(dm) and

depth L < log(cqm/€) for some constant cq, that depends only on m and d, approximates

the B spline basis function M, ;. s(x) := M,,(2"(x — s8)) as defined in|Section 5.5.4. This

neural network, denoted as Mmk,s(w), x € R?, satisfy
o |]\~4mk3(a:) — Mprs(®)| <€, if 0 < 28(x; —s;) <m+1,Vi € [d],

o Mmks(a:) =0, otherwise.

132

Local adaptivity of Weight Decayed DNNs Chapter 5

e The weight in each layer has bounded norm |[WW||p < 285\ /w, except the first

layer where |[WW ||z < 28/E4/d.

Note that the product of the coefficients among all the layers are proportional to 2*,

instead of 2F™

when approximating truncated power basis functions. This is because the
transformation from M, to M, s only scales the domain of the function by 2% while
the codomain of the function is not changed. To apply the transformation to the neural
network, one only need to scale weights in the first layer by 2%, which is equivalent to
scaling the weights in each layer bt 2¥/% and adjusting the bias according.

As for the proof, we follow the method developed in Yarotsky [135], Suzuki [106],

while putting our attention on bounding the Frobenius norm of the weights.

Lemma 5.13 (Yarotsky [135, Proposition 3]) : There exists a neural network with
two-dimensional input and one output fy(x,y), with constant width and depth O(log(1/9)),

and the weight in each layer is bounded by a global constant cy, such that
o |fulm,y) —wy| <6V O0<a,y<1,
o fu(z,y) =0,V =0o0ry=0.

We first prove a special case of |Lemma 5.12| on the unscaled, unshifted B-spline basis

function by fixing £k =0,s = 0:

Proposition 5.14 There exists a neural network with d-dimensional input and one out-
put, with width w = w(d,m) =~ dm and depth L < log(c(m,d)/€) for some constant w, c

that depends only on m and d, denoted as Mm(m), x € R, such that

o |My(x) — My(x)| <€ if 0 <z; <m+1,Vi € [d], while M,,(-) denote m-th order

B-spline basis function,

o Mm(w) =0, ifx; <0 orxz; >m+1 for any i € [d].
133

Local adaptivity of Weight Decayed DNNs Chapter 5

e The weight in each layer has bounded norm |[W®||p < /w.

Proof: We first show that one can use a neural network with constant width wy, depth
L =~ log(m/e;) and bounded norm |[W®||x < OK4A), [WO||r < O(vw), Yl =2,...,L
to approximate truncated power basis function up to accuracy € in the range [0,1]. Let
m = 21“2052 "2t m; € {0,1} be the binary digits of m, and define m; = Z;':o mg,y =

[logy, m], then for any x

zy = a7 x (arziv)mV
@ o] = [x (o) e X
(5.21)
(272, 2] = [27* x (27)™, 2% x 2]
[z, 23] = [2° x 20 2y X 3]

Notice that each line of equation only depends on the line immediately below. Replacing

the multiply operator x with the neural network approximation shown in
demonstrates the architecture of such neural network approximation. For any z,y € [0, 1],
let |fu(z,y) —ay| < o0,|z — & < 01, |y — dy| < g, then |fu(Z,7) — xy| < 01 + 09 + 0.
Taking this into |(5.21)| shows that €; = 270 = md, where ¢€; is the upper bound on the
approximate error to truncated power basis of order m and 0 is the approximation error
to a single multiply operator as in

A univariate B-spline basis can be expressed using truncated power basis, and ob-

134

Local adaptivity of Weight Decayed DNNs Chapter 5

serving that it is symmetric around (m + 1)/2:

M) = L35 (" T

‘;ml—i-l 2]
= % | A)/ (—1) <m]+ 1) (min(z,m +1—2) —j)7
m [(md1)/2] m min(x, m —x)—J\™
e

j=1

A multivariate (d-dimensional) B-spline basis function can be expressed as the prod-

uct of truncated power basis functions and thus can be decomposed as

M (x) = HMm(x2>
((m+1)/2)md d]—(m+1)/2] m+ 1\ /min(z;,m+1—xz) — j\™
BT U(2. (M))

(5.22)

Using |[Lemma 5.13] one can construct m 4 1 number of neural networks, and each of
them has width wy and depth L = O(log(m/e;), such that the (j + 1)-th neural network
approximates (ﬁ)’}f with error no more than ¢; for any 0 < x < (m + 1)/2. The
weighted summation of these subnetworks can approximate the univariate B-spline basis

function with error no more than

1R (m+1 de*™
d 1)/2)"— ~
om0 3 (M s e

where we applied Stirling’s approximation.

A multivariate B-spline basis is the product of univariate B-spline basis along each

135

Local adaptivity of Weight Decayed DNNs Chapter 5

dimension
d

My () = [] Mon(z2).

i=1

We can construct a neural network to approximate this function by parallizing d
number of neural networks to approximate each B-spline basis function along each di-
mension, and use the last L; = log(d/d) layers to approximate their product. The totol

approximation error of this function is bounded by

m+1

dwnﬂz (m;_l)el—i—(d—)o ~ f/—;deled(S

where § and ¢; has the same definition as above. Choosing § = A& T and recall

j=1

€1 ~ mo proves the approximation error.
|
The proof of the for general k, s follows by appending one more layer in
the front, as we show below. Proof: [Proof of Using the neural network

proposed in |[Proposition 5.14] one can construct a neural network for appropximating

M, s by adding one layer before the first layer:

o (2" 42 — 2%s)

The unused neurons in the first hidden layer is zero padded. The Frobenius norm of the

weight is 2| 14| = 2v/d. Following the proof of [Proposition 5.5 rescaling the weight

in this layer by 27%, and the weight matrix in the last layer by 2*, and scaling the bias

properly, one can verify that this neural network satisfy the statement. |

Sparse approximation of Besov functions using B-spline wavelets

Proof of [Proposition 5.8|

136

Local adaptivity of Weight Decayed DNNs Chapter 5

Ding [136, Theorem 3.1] Suzuki [106, Lemma 2] proposed an adaptive sampling
recovery method that approximates a function in Besov space. The method is divided
into two cases: when p > r, and when p < r.

When p > r, there exists a sequence of scalars \j,j € P%(u), Py(p) == {j € Z% :

5| < p,Vi € d} for some positive y, for arbitrary positive integer k, the linear operator

Qulfm) = Y ap(HMps(x), aps(f)= Y. Nfls+27%)

s€J (k.m,d) GEL4,Pi(y)

has bounded approximation error

1f = Qe(f,2)llr < C27°| £l g,

where f is the extrapolation of f, J(k,m,d) = {s : oks € 72, —m/2 < okg, < ok 4
m/2,Vi € [d]}. See Dung [136, 2.6-2.7] for the detail of the extrapolation as well as

references for options of sequence A;.

Furthermore, Qz(f) € B2, so it can be decomposed in the form |(5.1)| with M =

p.q

> 02" +m —1)* S 25 components and [[{Gs}is | S 1Q7(f)llzg, S [1f15g, where
is the coefficients of the decomposition of Qz(f). Choosing k = log, M/d leads to the
desired approximation error.

On the other hand, when p < r, there exists a greedy algorithm that constructs

G =Qe)+ D) cru,(f) My,

k=k+1 j=1

where k = logy (M), k* = [e ' log(AM)] + k + 1,1, = AM2<=B] for some 0 < ¢ <

137

Local adaptivity of Weight Decayed DNNs Chapter 5

a/6—1,6 =d(1/p—1/r),A > 0, such that

If = Gl < M fl| g,

and

i
Z(2k+m—1)d+ Z ny < M.

k
k=0 k=k+1
See Ding [136, Theorem 3.1] for the detail.

Finally, since a — d/p > 1,

k
||{2kick‘i,3i}k‘i,3i||p < Z 2k||{cki73i}si||p
k=0

k
_ Z o(=(a=d/pDk(ola=d/pk | fer 1 ,)
k=0

(5.23)

k
S 3 2 f gy

k=0

~ /s,

where the first line is because for arbitrary vectors a;,i € [n], || Y1, aill, < Do, llaillp,

the third line is because the sequence norm of B-spline decomposition is equivalent to

the norm in Besov space (see [Section 5.3.2)).

Remark 5.1 The requirement in|Proposition 5.8: o —d/p > 1 is stronger than the con-

dition typically found in approximation theorem o — d/p > 0 [136], so-called “Boundary
of continuity”, or the condition in Suzuki [106] o« > d(1/p — 1/r); . This is because
although the functions in By, when 0 < a — d/p < 1 can be approzimated by B-spline
basis, the sum of weighted coefficients may not converge. One simple example is the step

function faep(x) = L(z > 0.5), fouep € Bi . Although it can be decomposed using first

order B-spline basis as in|(5.1), the summation of the coefficients is infinite. Actually one
138

Local adaptivity of Weight Decayed DNNs Chapter 5

only needs a ReL U neural network with one hidden layer and two neurons to approximate

this function to arbitrary precision, but the weight need to go to infinity.

Remark 5.2 Note that when o — d/p = 1, the sequence norm|(5.23) is bounded (up to

a factor of constant) by k*||f||pg,, which can be proven by following except the

last line. This adds a logarithmic term with respect to M compared with the result in

[Proposition 5.8, This will add a logarithmic factor to the MSE. We will not focus on this

case in this paper of simplicity.

Sparse approximation of Besov functions using Parallel Neural Networks

Proof of [I’heorem 5.9

The proof is divided into three steps:

1. Bound the O-norm and the p-norm of the coefficients of B-spline basis in order to

approximate an arbitrary function in Besov space up to any € > 0.

2. Bound p’-norm of the coefficients of B-spline basis functions where p’ = 2/L,0 <

p’ < 1 using the results above .

3. Add the approximation of neural network to B-spline basis computed in

into Step [2]

Proof: Using [Proposition 5.8 one can construct M number of NN according to

Lemma 5.12 such that each NN represents one B-spline basis function. The weights in

the last layer of each NN is scaled to match the coefficients in [Proposition 5.8, Taking p’

in [Lemma 5.15(as 2/L and combining with |[Lemma 5.12|finishes the proof. [

Lemma 5.15 For any a € RM, 0 < p/ < p, it holds that:

lally < M'“7/7||a]7.
139

Local adaptivity of Weight Decayed DNNs Chapter 5

Proof:

12 P
Ziailp’=<laialp’>é(21) (Zw’w) = M5 oY

i

The first inequality uses a Holder’s inequality with conjugate pair I and 1 /(11— %). [

5.8.5 Proof of the Main Theorem

Proof of [I’heorem 5.1

Proof: First recall the relationship between covering number (entropy) and estima-

tion error:

Proposition 5.16 Let F C {R? — [—F, F|} be a set of functions. Assume that F can
be decomposed into two orthogonal spaces F = JF| x F. where F| is an affine space
with dimension of N. Let fo € {R? — [—F, F]} be the target function and f be the least

squares estimator in F:

f: arg min Z(yz - f(-f’fi))Q, Yi = fo(xi) + €, € ~ N(0, 02)i.i.d.,

fer 4

then it holds that

MSE(f) < O arg min MSE(/) + N +log N (i,) +2

+ (F+40)d).
g - (F+0)0)

The proof of |Proposition 5.16| is defered to the section below. We choose F as the

set of functions that can be represented by a parallel neural network as stated, the (null)
space F| = {f : f(x) = constant} be the set of functions with constant output, which
has dimension 1. This space captures the bias in the last layer, while the other parameters

contributes to the projection in Fj. See [Section 5.8.3| for how we handle the bias in the
140

Local adaptivity of Weight Decayed DNNs Chapter 5

other layers. One can find that Fj is the set of functions that can be represented by a
parallel neural network as stated, and further satisfy > | f(«;) = 0. Because F C F,
N(F,6) < N(F,6) for all § > 0, and the latter is studied in [Theorem 5.6}

In [Theorem 5.1] the width of each subnetwork is no less than what is required in
Theorem 5.9, while the depth and norm constraint are the same, so the approximation

error is no more that that in {Theorem 5.9, Choosing r = 2,p = 2/L, and taking

[Theorem 5.6| and [Theorem 5.9 into this [Proposition 5.16| one gets

X 242/(1-2/L) [2 dp’ﬁ(;—li/ﬁ 1 P/s
MSE(f) < min MSE(f) + — vd BWP/0) | g

feF n (5.24)
w2+2/(1—2/L)L2 _ 1-2/(pL)

— 90 /d _2/L _
< M2/ M =2/t §~T27T (log(M /6) + 3) + 6,
n

where [|f||pg,,m and d taken as constants. By choosing

A—4/L]2-4/L Jp1-2/(L) _
5= 2 M= (

ni—2/L

n1—2/L

wA—4/L]2-4/L

Y

1
> Za/d+1—2/(pL)

we get
R . A-4/Lp2-4/L 2o/l
MSE(f) < O ((w Yy) e‘%L> (5.25)

where MSE(f) shows the MSE of the solution to constrained optimization problem
by optimally choosing M (or P’).

Finally, under the assumption in[Lemma 5.18| for any constrained optimization prob-
lem, there exists a regularized optimzation problem, whose MSE is not larger than the

MSE of the constrained optimization problem up to a factor of a constant. This closes

the connection between |(5.8)| and |(5.9)| and finishes the proof.

Note that the empirical risk minimizer (ERM) of the parallel nerual network sat-

isfy that the (2/L)-norm of the coefficients of the parallel neural network satisfy that

141

Local adaptivity of Weight Decayed DNNs Chapter 5

H{aJ}HZé = H{d]M}H;ﬁ where {a; 5} is the coefficient of the particular M-sparse ap-
proximation, although {a;} is not necessarily M sparse. Empirically, one only need
to guarantee that during initialization, the number of subnetworks M > M such that
the M-sparse approximation is feasible, thus the approximation error bound from Theo-
rem 5.9 can be applied. Theorem |5.9| also says that ||{a]}||§ﬁ = ||{EL]M}||§§§ < ML
thus we can apply the covering number bound from Theorem with P’ = M'=2/rL,
Finally, if X is optimally chosen, then it achieves a smaller MSE than this particular X,

which has been proven to be no more than O(M~%/%) and completes the proof.

Proof of [Proposition 5.16)

For any function f € F, define f, = argmin,cx >.©(f(x;) —h(x;))* be the projec-
tion of f to F, and define f| = f — f| be the projection to the orthogonal complement.
Note that f| is not necessarily in F. However, if f € F, then f| € F. y;. and y; are
defined by creating a function f,, such that f,(x;) = v;, Vi, e.g. via interpolation. Because
JF| and F| are orthogonal, the empirical loss and population loss can be decomposed in

the same way:

D) =5 S U@ — @)+t L) = (@) — @) + o
B =+ (i) —) Bo(7) = 5 Y (@) — pial@)),
MSE|(f) = Eo |5 (i) - fur(@)?], MSEL(f) = Bo |5 S (1) — for@)?],

such that L(f) = Lj(f) + L (f),L(f) = f/||(f) + L (f). This can be verified by

decomposing f , fo and y into two orthogonal components as shown above, and observing

that >0 fii(x;) fo(x;) = 0,Yf1, fo.
142

Local adaptivity of Weight Decayed DNNs Chapter 5

First prove the following claim

Claim 5.17 Assume that f = argming [A/(f) s the empirical risk minimizer. Then
fiL= arg min .z lA}L(f),f” = argmingcr, lA}H(f), where f| is the projections of f in F.,

and f” = f— fL respectively.

Proof: Since f € F, by definition fH € F|. Assume that there exist fi, f|’|, and either

Li(f1) < Lyi(fo), or Ly(f}) < Ly(f}). Then

L(fy = LU+ f) = Ly(fL + f) + Lo(fo + f) = Ly(Fp) + Lo(FD)

< Ly(fi) + Loi(fo) = Ly(fo+ fi) + Lou(fo+ fy) = L(f)

which shows that f is not the minimizer of [A/(f) and violates the assumption.
|
Then we bound MSE | (f). We convert this part into a finite dimension least square

problem:

fL=argmin L, (f)
feFL

= arg min 1 Z(f(wz) — for(z) — €1)?

n
fer o

n

— argmin 1 D (f@) = for (@) —e1)® + €

feFL n i=1
N
= arg min — Z(f(wz) — for(m:) — €1 — 671H>2

n
fer o

1 n
= arg min — flx:) — foo(x;) —€)?
uin 3 2(/(@) — foa(@:) —)
The forth line comes from our assumption that F, is orthogonal to F, so Vf € F|, f +

JoL + €1 is orthogonal to €.

Let the basis function of F, be hy, hs, ..., hy, the above problem can be reparame-

143

Local adaptivity of Weight Decayed DNNs Chapter 5

terized as

1
arg min — || X8 — y||?
gerN T

where X S RnXN : Xz - hj<wz)7y = Yoo + €Yo, = [fOL(xl)a'”afOL(xnﬂue -

€1, ..., €y]. This problem has a closed-form solution
0 = (XTX) X"y

Observe that fo; € Fy, let y,, = X0, The MSE of this problem can be computed by

o 1 1 3 . .
L(f1) = 11X —yo [I* = —X(X"X) "X (X6" + €) — X6"|”

1
= X (XTX) X’
n

Observing that IT := X(XTX) !XT is an idempotent and independent projection

whose rank is N, and that E[ee’| = 021, we get

2

)) 1 1
MSE. (/1) = E[L(f1)] = ~ |Te|]* = ~tr(Tee”) = —tx(II)
which concludes that
A N
MSE, (f) = 0(—02>. (5.26)

See also [142], Proposition 1].
Next we study MSEj(f). Denote of = & 2 € B = max; |¢]. Using Jensen’s

inequality and union bound, we have

exp(tE[E]) < Elexp(tE)] = E[max exp(t|e;|)] < ZE[exp(ﬂeiD] < 2nexp(t?o?/2)

=1

144

Local adaptivity of Weight Decayed DNNs Chapter 5

Taking expectation over both sides, we get

log2n to?
< +

EIE] < t 2

maximizing the right hand side over ¢ yields

E[E] < 04/2log 2n.

Let]:"H be the covering set of 7 = {f} : f € F}. For any f” €]:"H,

n n

B = 1) = 3 S (w0~ @) = D))+
= %il i (2 () — fon (i) —) + = ;NUQ
- 3D a2 = (o))+
_ %iei@ﬁ(wi) 2y (@) + et 6

The first term can be bounded using Bernstein’s inequality: let h; = €;(f;(2:) — fo(x:)),
by definition |h;| < 2EF,

Var[hi] = Ele}(f (z:) — foy(z:))]
= (fi(=:) — foy(z:)*E[€}]
= (fj(=;) — foy(x:))?0?

145

Local adaptivity of Weight Decayed DNNs Chapter 5

using Bernstein’s inequality, for any fH €]:"”, with probably at least 1 — 9,,

2 (fila) - foi(:)) 02 1og(1/6,) + -

i=1

- EJ = 8EFlog(1/5,)
n

_ 2\/(Lll(f|) _n- N02> 2021log(1/9,) n 8EFlog(1/4,)

n n 3n
- n-—N 8o%log(1/6 8EFlog(1/6
< e<L||(f||) — 02) n ne(/%) | Sn(/9p)

the last inequality holds true for all € > 0. The union bound shows that with probably

at least 1 — 6, for all f| € 7,

n— N02> N 802 log(N (Fy,6)/p) N 8EF log(N(Fy,0)/6p)
ne 3n

Ly(fi) = Ly(fp) < 6(Lu(f||) -
n—N 4

o —6&.

n

+
n

By rearanging the terms and using the definition of L(f”), we get

80 logW(F),0)/0,) | 8EFlogW(F),0)/6) _ -

n—N P
7)<)+ = B t

(1—¢) (Ln(fn) -

Taking the expectation (over D) on both sides, and notice that E[&ﬁ] = 2=No2. Fur-

thermore, for any random variable X, E[X] = [* zdP(X <), we get

max ((1 — e)MSE)(f}) — E[ﬁn(fu)])

fi€F
80 8Fo+/2log2n ! n—N ,
< _ _ 5.27
< (ne + =) (log N (7. 0) B log(d,)d,) ot (527)
2 Foy/2log?2 - N
= (P BV 0 N 8) 1) -
ne 3n n

where the integration can be computed by replacing d with ¢*. Though it is not integrable

146

Local adaptivity of Weight Decayed DNNs

Chapter 5

under Riemann integral, it is integrable under Lebesgue integration.

Similarly, let fH = arg minfe]-‘” Ly(f),

Ly(fi) = Ly(fp) = % S a2 (@) — 2y @) + o — 57

=1

n

with probably at least 1 — d,, for any € > 0,

ne

- % Z &(2f () = 2fo (=) < 6<L||(f||) -

Litfy < @+ (Li(f) - = ne 3n

Taking the expectation on both sides,

802 n 8Fo+/2log2n n n—N ,

—_— o-.
ne 3n n

E[Ly(f))] < (1+ e)MSE(f)) +

n— N02> | 80%log(1/6,) | 8EFlog(1/d,) "

n— N02> N 802 log(1/d,) N 8EFlog(1/6,)

3n ’

(5.28)

Finally, let f, := arg mingz Zle(f”(wz) — f(=;))? be the projection of f” in its J-

covering space,

MSE”(f”) =K _— (f\\(mz) - fOH(wi))Q]

<E|= > (ful@) = foy(@:)?] +4F6

~

= MSE(f.(z:)) + 4F4,

and similarly

147

= B[S ()~ @)+ - S (@) — L) i) + fulw) — 2op(0)

(5.29)

Local adaptivity of Weight Decayed DNNs Chapter 5

We can conclude that

R 1 s a 802 8Fo+/2log2n n—N
MSE)(fy) < 1— E<E[LH(]+ (— ™)(10gN(f||,5) 1) - — 02)
+4F¢
1 A oA
< :(E[Lu(f”)] + (4F + 04/8log2n)d
2 Foy/2log?2 —N
b (5% 4 BTV (g N (5) 4+ 1) - T 0?) 4 4Fs
ne 3n n
1 I
2 AT _
+ (87;'6 8 32nlog2n>(logj\/(]:||,(5) vy - N02> +AFS
1+e < 1 /80% 8Fay/2log2ny\ /log N (F,d) + 2
= 1—(—:MSE”(fH>+E< + 3)(1—e€ >
n <4F . 4F + clr_/8610g2n>5,

where the first line comes from |(5.27)] and second comes from |(5.29)| the thid line is

because f” = argmingcr, IA/H(f), and the last line comes from |(5.28)l We also use that
fact that IA}H(J‘?) < Ly(f),Vf. Noticing that MSE(f) = MSE;(f) + MSE_ (f), combining
this with finishes the proof.

Lemma 5.18 Assume that these ezists Cy,Cy > 1 (which may depend on the target
function), for all P' > 0, there exists A > 0, such that the soltion to the regularized

optimization problem denoted as f, satisfy
CP < ({1, < P,

2/L =

then the MSE of the reqularized optimization problem satisfy

MSE(f) < CMSE(f)

148

Local adaptivity of Weight Decayed DNNs Chapter 5

where C' is a constant that depends on Ci,Cly, f 1s the solution to the constrained

optimzation problem|(5.9), and

) < MSE(f) o _a-2p)
~ P’ N

Proof: The MSE of the regularized problem can be achieved by taking our assumtion

into |(5.6), We only need to prove the selection of \. We apply the decomposition as in

[Proposition 5.16} and only need to consider F|, as 7, is not imfluenced by regularization

or constrained. From the definition of f and A, we have

LOf) + MAai i)z < L) + Ni{as i)z

Ly(f) + M{az I3z < Ly(f) + Ali{a i)

From |Proposition 5.16, we get

2/L

o a2k, s
<a+ E)MSE(JE) Lo (l gN(||{nJ}||2/L7)> n)\H{dj}Hz/L

. log N'(|[{a; }|2/%, oL
<1—e>MSE<f>—0< - (”{n}”/ >> + Al 1)
(5.30)

2/L

log N'(|[{a; Y127 .6)

2/L°

Observing that MSE(f) > 0, and ~ MSE(f) for the optimally chosen

n

P’ taking the assumtion into the inequality proves the choice of . |

Remark 5.3 Define R()\) := R(argmin L(f) + AR(f)), where R(f) = ||{a]}||§ﬁ is the

reqularizer term of a parallel NN (f). Notice that R(\) is a non-increasing function of
lambda (as proved below), the assumption in is equivalent to that if R(\)

contains any uncontinuous points, then the uncontinuous points should not be larger than

% in ratio. On the other hand, if X is chosen as \ = O(MSIE(), then from|(5.30), we

149

Local adaptivity of Weight Decayed DNNs Chapter 5

get

log N ([I{a;}3/5, >>

n

M{a; 30, < O(MSE(f)) + o<

< O(MSE(f)) + ~O((I{a}2/5) =)

If the constant term in X is large enough, the above inequality yields two sets of solutions:

3IH

M%H@§<O<MJH@§+ Mﬁﬂ)) O(|{as }I7)-

and

Ia 2% = O((nx)).

In the first case, one can easily see f'mm that MSE(f) < O(MSE(f)), which says
that the MSE of the regularized problem is close to the minimaz rate; in the later case,
the generalization gap of the reqularized problem is bounded by O(n% NE2) | which s
much larger than the former case. So a sufficient condition of the above assumption
is that the model does not overfit significantly (by orders of magnitude) more than the
constrained version. In our experiment, we find that the latter case is very difficult to
happen, possibly because of the implicit reqularization during training, and the connection
between A and effective degree of freedom is actually smooth. Notably, as L gets larger,
in the second case ||{&3}H§ﬁ increases exponentially with L (the constant terms depends
at most polynomially on L), which suggests that the latter case is less likely to happen

for deep neural networks.

Claim 5.19 For fized D, the reqularized problem satisfy that R(\) as defined above is

strictly non-increasing with \.

Proof: We provide a short proof by contradiction: suppose that there exists lambda; <

A2, and the solution satisfy (f1) < R(f2) where R(f) = ||{aj}||;ﬁ is the regularizer term
150

Local adaptivity of Weight Decayed DNNs Chapter 5

of a parallel NN, f;, fo are the solution to the regularized problem with A\ = Ay, Ay re-
spectively. Then by definition of f1, fo, we have L(fy) + MR(f1) < L(f2) + MR(f2) ,

s0 A\ > FEEEEL L(f) + MR(f) < L(A) + AaR(f1), s0 Ay < HE=EEL which i

controversal to our assumption that A\; < As. [|

5.9 Additional information about numerical result

5.9.1 Target Functions

The doppler function used in [Figure 5.3(d)-(f) is
f(z) =sin(4/(x +0.01)) + 1.5.

The “vary” function used in [Figure 5.3(g)-(i) is

f(z) = My(x/0.01) + M ((z — 0.02)/0.02) 4+ M, ((x — 0.06)/0.03)
+ My ((z — 0.12)/0.04) + Ms((z — 0.2)/0.02) + M;((z — 0.28)/0.04)

+ M;s((z — 0.44)/0.06) + Ms((x — 0.68)/0.08),

where M, M3 are first and third order Cardinal B-spline bases functions respectively.
We uniformly take 256 samples from 0 to 1 in the piecewise cubic function experiment,
and uniformly 1000 samples from 0 to 1 in the doppler function and “vary” function
experiment. We add zero mean independent (white) Gaussian noise to the observations.
The standard derivation of noise is 0.4 in the doppler function experiment and 0.1 in the

“vary” function experiment.

151

Local adaptivity of Weight Decayed DNNs Chapter 5

5.9.2 Training/Fitting Method

In the piecewise polynomial function (“vary”) experiment, the depth of the PNN
L = 10, the width of each subnetwork w = 10, and the model contains M = 500
subnetworks. The depth of NN is also 10, and the width is 240 such that the NN and
PNN have almost the same number of parameters. In the doppler function experiment,
the depth of the PNN L = 12, the width of each subnetwork w = 10, and the model
contains M = 2000 subnetworks, because this problem requires a more complex model
to fit. The depth of NN is 12, and the width is 470. We used Adam optimizer with
learning rate of 1073. We first train the neural network layer by layer without weight
decay. Specifically, we start with a two-layer neural network with the same number of
subnetworks and the same width in each subnetwork, then train a three layer neural
network by initializing the first layer using the trained two layer one, until the desired
depth is reached. After that, we turn the weight decay parameter and train it until
convergence. In both trend filtering and smoothing spline experiment, the order is 3,
and in wavelet denoising experiment, we use sym4 wavelet with soft thresholding. We
implement the trend filtering problem according to Tibshirani [99] using CVXPY, and
use MOSEK to solve the convex optimization problem. We directly call R function

smooth.spline to solve smoothing spline.

5.9.3 Post Processing

The degree of freedom of smoothing spline is returned by the solver in R, which is
rounded to the nearest integer when plotting. To estimate the degree of freedom of trend
filtering, for each choice of A, we repeated the experiment for 10 times and compute the

average number of nonzero knots as estimated degree of freedom. For neural networks,

152

Local adaptivity of Weight Decayed DNNs Chapter 5

we use the definition [140]:
20°df = Elly’ — gl — Ely - 93 (5.31)

where df denotes the degree of freedom, o2 is the variance of the noise, y are the labels,
y are the predictions and y’ are independent copy of y. We find that estimating
directly by sampling leads to large error when the degree of freedom is small. Instead,

we compute

20%df = Ellyo — 9115 — Elly = 915 + Elly — gol3 — lyo — oll3 (5.32)

where df is the estimated degree of freedom, E denotes the empirical average (sample

mean), y, is the target function and gy is the mean of the target function in its domain.

Proposition 5.20 The expectation of |(5.32) over the dataset D equals|(5.51).

Proof:

20%df = Ep[E|ly, — 912 — Elly —)12 + Elly — G012 — [lyo — oll2]
=Elly, — 92 — Elly — 9112 + Ep[E[(y — yo)(y + yo — 250)]]

—Elly - 913~ Ely — 9l + E| D ei(2ui + & — 240)
=1

=Ely, — 9l — Elly — 95 + no?

=Elly’ - 9l - Elly — 913

where D denotes the dataset. In the third line, we make use of the fact that Ele;| =
0,E[e?] = 02, and in the last line, we make use of E[¢/] = 0,E[¢)’] = 02, and ¢ are
independent of y; and yo [|

One can easily check that a “zero predictor” (a predictor that always predict 7o, and it
153

Local adaptivity of Weight Decayed DNNs Chapter 5

always predicts 0 if the target function has zero mean) always has an estimated degree
of freedom of 0.

In [Figure 5.3(h)(i), we take the minimum MSE over different choices of A, and plot
the average over 10 runs. Due to optimization issue, sometimes the neural networks are
stuck at bad local minima and the empirical loss is larger than the global minimum by
orders of magnitude. To deal with this problem, in [Figure 5.3(h)(i), we manually detect
these results by removing the experiments where the MSE is larger than 1.5 times the

average MSE under the same setting, and remove them before computing the average.

5.9.4 More experimental results
Regularization weight vs degree-of-freedom

As we explained in the previous section, the degree of freedom is the exact information-
theoretic measure of the generalization gap. A Larger degree-of-freedom implies more
overfitting.

In figure[Figure 5.4] we show the relationship between the estimated degree of freedom
and the scaling factor of the regularizer \ in a parallel neural network and in trend
filtering. As is shown in the figure, generally speaking as A decreases towards 0, the
degree of freedom should increase too. However, for parallel neural networks, if X is
very close to 0, the estimated degree of freedom will not increase although the degree of
freedom is much smaller than the number of parameters — actually even smaller than the
number of subnetworks. Instead, it actually decreases a little. This effect has not been
observed in other nonparametic regression methods, e.g. trend filtering, which overfits
every noisy datapoint perfectly when A — 0. But for the neural networks, even if we do
not regularize at all, the among of overfitting is still relatively mild 30/256 vs 80/1000.

In our experiments using neural networks, when A is small, we denoise the estimated

154

Local adaptivity of Weight Decayed DNNs

Chapter 5

(SR

Degree of freedom

250

200

150

100

Degree of freedom

50

0090%q

10°1 10

Degree of freedom
= = ~N ~ w
o I o G o
S =3 =3 o S

I
=)

=)

500

400

w
o
=3

Degree of freedom
N
o
S

=
o
=3

0
10-10

107°

Figure 5.4: The relationship between degree of freedom and the scaling factor of the
regularizer A. The solid line shows the result after denoising. (a)(b)in a parallel NN.
(¢)(d) In trend filtering. (a)(c): the “vary” function. (b)(d) the doppler function.

degree of freedom using isotonic regression.

We do not know the exact reason of this curious observation. Our hypothesis is that

it might be related to issues with optimization, i.e., the optimizer ends up at a local

minimum that generalizes better than a global minimum; or it could be connected to the

“double descent” behavior of DNN [I43] under over-parameterization.

155

Chapter 6

Finite Overparameterization:
Overparameterized ResNets for

functions on manifolds

6.1 Introduction

In the previous chapter, we delved into the local adaptivity of deep neural networks
in the context of nonparametric regression. Unfortunately, the practical applications of
this theory are limited by the curse of dimensionality, a common issue in nonparametric
regression. This phenomenon refers to the exponential increase in the number of samples
required as the dimension of the data increases. While nonparametric regression tech-
niques are typically restricted to low-dimensional data due to the curse of dimensionality,
deep learning is frequently utilized for high-dimensional data and is observed to perform
well in this case.

One possible explanation to this effect is that in real world applications, the high
dimension data often follows a lower dimension latent space. In other words, the high di-

156

Overparameterized ResNets for functions on manifolds Chapter 6

mension data lay on a low dimension manifold. An estimator only needs to Approximate
the target function on this manifold, thus the sample complexity depends exponentially
only on the latent dimension, thus overcome the problem of curse of dimensionality.

A series of work shows that neural networks can approximate functions on a low
dimension manifold and overcome the curse of dimensionality [I09]. In this work, we
demonstrate that a weight decayed ResNet and ResNeXt can adapt to the smooth func-
tions on a low dimension manifold. Notably, the adaptivity does not require tuning the
architecture of the neural network, but only the weight decay parameter. Our inves-
tigation encompasses both vanilla neural networks and convolutional neural networks

(CNNs), utilizing both ResNet and ResNeXt architectures.

6.2 Preliminary and related work

6.2.1 Besov function and smooth manifold

Besov spaces, denoted as By, are a family of function spaces that are widely used

in the field of functional analysis and harmonic analysis. The detained definition of

Besov space is deferred to [Section 5.3.2] and [Section 6.5.2] It is parameterized by three

parameters «, p and ¢, where « defines the smoothness of functions in the function space,
p and ¢ defines the norm to measure the smoothness. When p = ¢ = 2, it reduces to
Sobolev space. It is known that linear estimators, including kernel methods, can achieve
the minimax rate on Sobolev space, but not on more generalized Besov space; the latter
requires the estimator to be locally adaptivity. Estimators with this property includes
wavelet smoothing [94], locally adaptive regression splines [LARS, O8], trend filtering
[99, 1T00] and adaptive local polynomials [T0T], 102].

In real application, the pre-image of the target function may not be the Euclidean

157

Overparameterized ResNets for functions on manifolds Chapter 6

space, but rather a manifold with lower intrinsic dimension denoted as d. A manifold is
a topological space and there exists a continuous bijection mapping between this space
and a d-dimensional Euclidean space. In typical applications, d < D, where D is the
dimension of the Euclidean space called the ambient dimension. The detailed definition
is deferred to [Section 6.5.1]

It has been found that if the data are distributed near a low dimension smooth mani-
fold, neural networks can explore this low dimension data structure and the performance
of the neural networks can be improved [144, [145], [146], [147]. Our work aims to find if

weight-decayed overparameterized neural networks can benefit from data structure.

6.2.2 ResNet and ResNeXt

W j-th column

‘ 1 | x|
142 +D Wz + D T
Wis: [D id m u

=

! (=)

(a) (b)
Figure 6.1: (a) Demonstration of the convolution operation W x z, where the input is
z € RPX% and the output is W * z € RPX%", Here W;...is a D x w matrix for the
j-th output channel. (b) Demonstration of the ConvResNeXt. fi11...fnn are the
building blocks, each building block is a convolution neural network.

ResNets was proposed to mitigate the vanishing/exploding gradients in deep neural
networks [I48]. The key technique is to add identity mappings, also known as residual
connections, that skip the connections of every L layers. This divides the neural networks

into multiple building blocks. Each block can be represented as

y=flz;w)+o

158

Overparameterized ResNets for functions on manifolds Chapter 6

where f(x; w) denotes a feedforward neural network.

ResNeXt [I49] is an extension to the ResNet A parallel architecture is introduced
to each building block, which enables multiple “paths” in each block. This approach
allows for improving the performance without increasing the number of parameters. The
detailed definition can be found in [Section 6.3

Initially, ResNet and ResNeXt were proposed for convolutional neural networks (CNNs),
but the concept can be applied to vanilla neural networks as well. This paper investigates
both vanilla neural networks and CNNs, applying the ResNet and ResNeXt architectures.

In cases where the number of blocks in a ResNeXt architecture is reduced to 1,
it essentially becomes a parallel neural network, observing the impact of the residual
connection is negligible in this case. Parallel neural networks will be discussed in detail
in the next section.

It has been found that both parallel neural networks and ResNets achieve near-
minimax rates on a wide range of function classes up to a logarithmic factor [106, 108,

109], which separates them from other neural network architectures.

6.2.3 Parallel neural network and ¢, sparse model

A series of work shows that regularization in neural networks induces sparsity. Parhi
et al. [I07, Theorem 8] showed that a specific regularization in a two-layer neural network
is equivalent to enforcing ¢; sparsity. The key technique, the AM-GM inequality, was
applied in a variety of works including Srebro et al. [130] Tibshirani [131], etc. Zhang
et al. [6] showed that training a parallel neural network with weight decay is equivalent
to training an ¢, sparse model where p = 2/L, L is the number of layers. Making use of

this result, they prove that weight decayed parallel neural networks are locally adaptive.

159

Overparameterized ResNets for functions on manifolds Chapter 6

6.3 Main theorem

In this paper, we investigate ResNeXt, a neural network that utilizes residual con-
nections and parallel architecture. Both feedforward neural networks and convolution

neural networks can be used as the building blocks.

Definition 6.1 Let the hidden dimension (or the number of channels) of the ResNeXt
be h. The neural network comprises N residual blocks, each building block has a parallel
architecture with M building blocks, and each building block contains L layers. If the
feedforward neural network is used in the building blocks, denote the width of each block
as w. If the convolution neural network is used in the building blocks, define the number

of channels as w and the size of the kernel be K. A ResNeXt can be represented as

f:Wout' <1+Zf]\/,m> 0---0 <1+Zf1,m>

Fom = W™« ReLUW™™ % .. ReLU(W "™ x @)),

where x denotes the matriz-vector product when the feedforward neural network is used
wn the building blocks, and convolution operation when convolution neural network is used
in the building blocks.

With a weight decay regularization applied on the residual blocks and the last fully
connected layer separately, let the sum norm of all the residual blocks be bounded by Bi.s

and the norm of the last linear layer be bounded by By :

N M L
SN S IWE 2 < Brey, ([Woul® < Bow
/=

n=1m=1 1

All the blocks above contains no bias. The missing representation power from the bias

can be compensated by appending a padding layer in front of the model. Specifically,

160

Overparameterized ResNets for functions on manifolds Chapter 6

the input is padded with a scalar ‘1’. If the building blocks are feedforward neural
networks, an additional scalar “0” is padded to the input, such that h = D + 2, where D
is the dimension of the input; If the building blocks are convolution neural networks, an
additional channel containing ‘0’s is padded such that h = 2 and the dimension of the
input to the ResNeXt is w;, = D + 1. The channel with “0” is used to accumulate the
output. Besides, another linear layer is included after all the building blocks to project
the hidden space to a 1-dimensional output space.

Without the loss of generalization, assume that target function is bounded fy(x) €
0, 1], V& € M. Correspondingly, assume that the output of the neural network is clipped
to [0, 1].

6.3.1 Approximation theory

In this section, we provide a universal approximation error of ResNeXts for Besov

functions on a smooth manifold:

Theorem 6.1 For any Besov function fo on a smooth manifold satisfying p,q > 1, —
d/p>1,

| follBg ,(rm) < C,

for any P > 0, for any ResNeXt architecture defined in [Section 6.3 with the feedforward

neural network as the building blocks and with parameters M, N, L, B,cs, Bout satisfying

L >3,
MNZCMP, wZC’l(dm—i—D), BreSSCQL, ()
6.1
Bout < C5CF((dm + D)L)*(CpP)F 727,
there exists an instance f of this ResNeXt class, such that
1 = folleo < C;Cpq (C4P~/% + C5 exp(—CsL1og P)) (6.2)

161

Overparameterized ResNets for functions on manifolds Chapter 6

where C1, Cy, C3 are universal constants and Cy, Cs, Cg are constants that only depends
on d and m, d is the intrinsic dimension of the manifold and m is an integer satisfying

0 <a<min(m,m—1+1/p),

The approximation error of the network is bounded by the sum of two terms. The first
term is a polynomial decay term that decreases with the size of the neural network,
and represents the trailing term of B-spline approximation. The second term reflects
the approximation error of neural networks to piecewise polynomials, and it decreases
exponentially with the number of layers. The proof is deferred to and the
appendix.

When the building blocks of the ResNeXt are the convolution neural networks, a

similar result can be proven:

Theorem 6.2 Under the same condition as for any ResNeXt architecture
defined in[Section 0.3 with the convolution neural network as the building blocks and with
parameters M, N, Byes, Bouwt, K and depth L' satisfying L' = L + Ly — 1,L > 3, where

LO - [%—I; and

MN > CuP, w>Ci(dm+ D), By < CoL/K,

(6.3)
Bout < C3C3((dm + D)LK)*(CpP)2 27,
there exists an instance of this ResNeXt class that has the approximation error
I = folloo < C;Cpq (C4P~/% + C5 exp(—CsL1og P)) (6.4)

where C1, Cy, C3,Cy, Cs, Cg are the same constants as in|Theorem 6.1

This theorem is the direct result of ['heorem 6.1 and [Section 6.6.4, of which the latter

shows that any L-layer feedforward neural network can be reformulated as an L+ Ly — 1-
162

Overparameterized ResNets for functions on manifolds Chapter 6

layer convolution neural network.

6.3.2 Estimation theory

Theorem 6.3 For any error function L that is 1-Lipschitz in its first argument, and the

architecture of the neural network satisfy the condition in|Theorem 6.1 and|Theorem 6.2,

for any function fo in the Besov space on a smooth manifold
fo € B2 (M), fo(x) €[0,1] V& € M C [-1,1]",

the empirical risk minimize f = arg min [, loss(f(x),y)] of a ResNeXt in|(6.1) satisfies

A f(_%w?f—_;L3LL—_22 za/d<f¥ff/(1L;iﬁ>2/<pL)
Ep[loss(f(x), y)] < En[L(fo)] + C1(-)

+ Cgexp(=Cs(L — Lo)),

where the logarithmic terms are omitted. Cyg is the constant defined in and
C7,Cs are constants that depend on Cy,Cp,d,m. K =1, Ly = 1 when the
building blocks are feedforward neural networks ; K is the size of the convolution kernel,
Ly = [%1 when the building blocks are convolution neural networks.

Furthermore, for the mean square error loss

n

MSE(f) = %Z(f(wz) — fol@:))?

i=1

A tighter bound can be established:

. K towis L1 a1 DT {27
MSE(f) < CoEp[MSE(fy)] + Cw(n)

+ Cll exp(—Cﬁ(L — Lo))

163

Overparameterized ResNets for functions on manifolds Chapter 6

where Cy, Cio and C1q1 are some universal constants.

We would like to make the following remarks about the result:
e Strong adaptivity: by setting the width of the neural network to w = 2C, the model
can adapt to any Besov functions on any smooth manifold satisfying dm < D by tuning
only the regularization parameter. This increases the estimation error by no more than
a constant term, which is a mild price to pay for a more adaptive method.
e No curse of dimensionality: the above rate only depends polynomially on the
ambient dimension D and exponentially on the hidden dimension d. Since in real data,
the hidden dimension d can be much smaller than the ambient dimension D, this result
shows that neural networks can overcome the curse of dimensionality when the data are
on a low-dimension manifold.
e Overparameterization is fine: the number of building blocks in a ResNet and
ResNeXt does not influence the estimation error as long as it is large enough. This
matches the empirical observations that neural networks generalize well despite overpa-
rameterization.
e Close to minimax rate: with weight decay, overparameterized ResNet and ResNeXt
can achieve close to the minimax rate in estimating functions in this class, and when
the number of training samples n is large enough, deeper models and achiever lower
estimation error. As a reference, the lower bound of the 1-Lipschitz error for any estimator
0 is
o/d
min max L(0(D), [*) Z n~2e/dT,
where 2 notation hides a factor of constant. The proof can be found in [Section 6.6.8
e Deeper is better: with larger L, the error rate decays faster and get closer to the
minimax rate. This indicates that deeper model can achieve better performance than

shallower models when the training set is large enough.

164

Overparameterized ResNets for functions on manifolds Chapter 6

By choosing L = O(log(n)), the second term in the error can be eliminated and close

to the minimax rate can be achieved:

Corollary 6.4 For any ResNet or ResNeXt satisfying the condition in[Theorem 6.3, and
the depth of each block is L = O(log(n)), then the estimation error of the empirical Tisk

minimazer under 1-lipschitz loss is
f 3y~ zadirr (1=o(1)
Ep[loss(f (), y)] < Eplloss(fo)] + O(n~ 2e/d),
and that of the MSE loss is
f) —5osdd (1-0(1))
Ep[MSE(f(z),y)] < O(Ep[MSE(fo)] +n 2e/&7),

where fy is any function satisfying the condition in O(-) shows that the

logarithmic term is omatted.

The proof of is deferred to [Section 6.4.2] and [Section 6.6.7] The key

technique is computing the critical radius of the local Gaussian complexity by bounding
the covering number of weight-decayed ResNets and ResNeXts. This technique provides
a tighter bound than choosing a single radius of the covering number as in Suzuki [106],
Zhang et al. [6], for example. The covering number of an overparameterized ResNeXt

with norm constraint is one of the key contribution of this paper.

6.4 Proof overview

6.4.1 Approximation error

We follow the method in Liu et al. [I09] to construct a neural network that achieves

the approximation error we claim. It is divided into the following steps:
165

Overparameterized ResNets for functions on manifolds Chapter 6

1. Decompose the target function into the sum of locally supported functions.

2. Locally approximate the decomposed functions using cardinal B-spline basis func-

tions.
3. Approximate the cardinal B-spline basis functions using neural networks.

4. Use a parallel neural network to Approximate the target function.

Decompose the target function into the sum of locally supported functions.

From the definition of the Besov function on a smooth manifold, we can decompose
the target function as the sum of locally supported Besov functions on a low dimensional
subspace. This decomposition exists for any construction of atlas of the manifold M.
See for the detail.

In this work, we adopt a similar approach to [109] and partition M using a finite
number of open balls on R”. Specifically, we define B(c;,r) as the set of unit balls with
center ¢; and radius r such that their union covers the manifold of interest, i.e., M C
USM B(e;,). This allows us to partition the manifold into subregions U; = B(c;, r) UM,
and further decompose a smooth function on the manifold into sum of locally supported

smooth functions with linear projections.

Lemma 6.5 Approximating Besov function on a smooth manifold using B-spline: Let
f € By, (M). There exists a decomposition of f:

Cm

@)= Jiodi@) x 1(€ Blei,r))

i=1

andfi € B®

0 Z?:Af ”fiHB;},q < C|fllsg,m), @i + M — R? are linear projections,

B(e;, r) denotes the unit ball with radius r and center c;.

166

Overparameterized ResNets for functions on manifolds Chapter 6

The lemma is inferred by the existence of the partition of unity, which is shown below

for reference:

Proposition 6.6 (Existence of a C*> partition of unity, Proposition 1 in [109])

Let {Uy}aca be a locally finite cover of a smooth manifold M. There is a C* partition

of unity {pa taca such that supp(ps) € U,.

Locally approximate the decomposed functions using cardinal B-spline basis

functions.

In the second step, we decompose the locally supported Besov functions achieved in
the first step using B-spline basis functions. The existence of the decomposition was
proven in [I36], and was applied in a series of words Zhang et al. [6], Suzuki [106], Liu
et al. [I09]. The difference between our result and previous work is that we define a norm

on the coefficients and bound this norm, instead of bounding the maximum value.

Proposition 6.7 For any function in the Besov space on a compact smooth manifold
fre B;jq(/\/l), any N > 0, there exists an approrimated to f* using cardinal B-spline

basis functions:
Cm P

F=3" tiks,Mus,s, 0 6 x 1z € B(ey,r))

i=1 j=1
where m is a integer satisfying 0 < a < min(m, m—1+1/p), My, s = M, (28(-—s)), M,
denotes the B-spline basis function defined in the approximation error is bounded
by
1f = Fllse < CraCps P~/

and the coefficients satisfy

{25 @ik, 0, }igllp < Cusll fllsg,)
167

Overparameterized ResNets for functions on manifolds Chapter 6

The proof is deferred to [Section 6.6.1] As will be shown below, the scaled coefficients
2k; aik;s;, corresponds to the total norm of the parameters in the neural network to

approximate the B-spline basis function, so this lemma

Approximate the cardinal B-spline basis functions using neural networks.

As has been shown in [6l [106], [109], a neural network can approximate B-spline basis

functions, and the error decreases exponentially with the number of layers.

Lemma 6.8 (Lemma 11 in [6]) Let M, be the B-spline of order m with scale 27"
in each dimension and position s € R M,y s(x) = M, (28(x — 8)), M, is defined
m . There exists a neural network with d-dimensional input and one output, with
width wa,m = O(dm) and depth L < log(Cha/€) for some constant C4 that depends only
onm and d, approzimates the B spline basis function My, s(x) := M,,(2"(x — s)). This

neural network, denoted as Mm,k,s(a}), x € R?, satisfy
o |Mmk3(m) — Mpps(@)] <€, if 0 <2%(x; —s;) <m+1,Vi € [d],
o Mmks(:l;) =0, otherwise.

e The total square norm of the weights is bounded by 22*/*CysdmL for some universal

constant Cys.

Use a ResNeXt to Approximate the target function.

Using the results above, the target function can be(approximately) decomposed as
Cym P

Z Zai,kj,Sij,kj,Sj o¢; x 1(z € B(e;,1)). (6.5)

i=1 j=1

168

Overparameterized ResNets for functions on manifolds Chapter 6

We first demonstrate that a ReLLU neural network can approximate

Yy X 1(.%' c Br,i)

where x satisfy that yx1 =y for all y, and yx& = 0 if any of x or y is 0, and the soft
indicator function 1(x € B, ;) satisfy 1(x € B,;) =1 when z € B,;, and 1(z € B.;) =0
when x ¢ B,y ;. The detail is deferred to .

Then, we show that it is possible to construct a ResNeXt with MN = P, W, =
0,...,0,1], such that each building block takes the input from the first D+ 1-th channels
and accummulates the output to the D + 2-th channel. The k-th building block (the

position of the block does not matter) approximates
ai,k]',S]' Mm,kj,sj o ¢'L X l(x E B(CZ7 r))

where ¢ = ceiling(k/N),j = rem(k, N). Each building block has width C;(md + D)
and depth L, where 0 < a < min(m,m — 1 + 1/p), where a sub-block with width D
and depth L — 1 approximates the chart selection, a sub-block with width md and depth
L — 1 approximates the B-spline function, and the last layer approximates the multiply

function. The norm of this block is bounded by
L ..
> W3 < 0@ dmL + DL). (6.6)
=1

Making use of the 1-homogeneous property of ReLLU layers, we can further scale all

the weights in the residual blocks by %, and scale W, by B such that the new network

we construct satisfy the constraint in|(6.1)l See [Section 6.6.3|for the detail.

169

Overparameterized ResNets for functions on manifolds Chapter 6

6.4.2 Estimation error

We first prove the covering number of an overparameterized ResNeXt with norm-

constraint as in [Lemma 6.9] then compute the critical radius of this function class using

the covering number as in [Corollary 6.16| The critical radius can be used to bound the

estimation error for 1-Lipschitz loss as in [Iheorem 6.17] or for MSE using self-bounding
trick as in [I'heorem 6.18] The proof is deferred to

Lemma 6.9 Consider a neural network defined in[Section 6.3. Let the last layer of this
neural network is a single linear layer with norm ||Woul|% < Bow. Let the input of this
neural network satisfy ||x|l2 < 1,Vz, and is concatenated with 1 before feeding into this

neural network so that part of the weight plays the role of the bias. The covering number

of this neural network is bounded by
log (-, 8) S wLBIT" K4 (BY2 exp((K Bys/ L)) T 275 070 (6.7)

where the logarithmic term is omitted, K = 1 when the feedforward neural network is the
building blocks and K 1is the size of the convolution kernel when the convolution neural

network is the building blocks.

Proof: Using AM-GM inequality, From|[Proposition 6.19] [Proposition 6.21}and [Propo{

sition 6.22, if any residual block is removed, the perturbation to the output is no more
than

(KBm/L)L/QB;'L/L? eXp((KBTeS/L)L/2)

where B,, is the total norm of parameters in this block, K = 1 when the feedforward
neural network is the building blocks and K is the size of the convolution kernel when
the convolution neural network is the building blocks. Because of that, the residual

blocks can be divided into two kinds depending on the norm of the weights B, < €
170

Overparameterized ResNets for functions on manifolds Chapter 6

(“small blocks”) and B,, > € (“large blocks”). If all the “small blocks” are removed, the

perturbation to the output for any input ||z|l2 < 1 is no more than

exp((K Byes/ L)"') B >~ (KB, /L)"?

out
m:Bp,<e
< exp((KBres/L)"?)By; Y (KB, /L)(Ke/L)"*™!
m:Bp,<e

< exp((K Byes/ L)) K Byey Byl (e/ L) * 7 /L

out

1
. L/2—-1 . .
Choosing € = L (2 @ /L)L(S/s)KL/QB Bl/2> , the perturbation above is no more
eXp res res

out

than §/2. The covering number can be determined by the number of the “large blocks”

in the neural network, which is no more than B/e.

Taking our choice of € into [Proposition 6.15/and noting that for any block, B, Lpest <

B;{j exp((K Bres/L)*/?) finishes the proof, where By, is the upper bound of the input to

this block as defines in [Proposition 6.15] and L. is the Lipschitze parameter of all the

layers following the block.

Taking our choise of € into [Proposition 6.15| and 7?7 finishes the proof.

Remark 6.1 The proof of[Lemma 6.9 shows that under weight decay, the building blocks
in a ResNet or ResNeXt is sparse, i.e. only a finite number of blocks contribute non-
trivially to the network even though the model can be overparameterized. This explains
why a ResNet or ResNeXt can generalize well despite overparameterization, and provide
a new prospective in explaining why residual connections improves the performance of

deep neural networks.

171

Overparameterized ResNets for functions on manifolds Chapter 6

6.5 Discussion

In this paper, we study the approximation and estimation error of a ResNet and
ResNeXt. We show that with property weight decay, the blocks in a ResNet or ResNeXt
converges to a sparse representation, so the covering number of a ResNet and ResNeXt
does not depend only on the total norm of the parameters and not on the number of
residual blocks, which allows an overparameterized neural network to generalize. Sup-
pose that the target function is supported on a smooth manifold, the estimation error
of ResNet and ResNeXt depends only weakly on the ambient dimension of the target
function, which shows that these models do not suffer from the curse of dimensionality,
thus can adapt to functions on a smooth manifold.

sectionIntroduction to Besov space and smooth manifold For the ease of the readers,

in this section, we provide detailed definition of the Besov space and smooth manifold.

6.5.1 Smooth manifold

Definition 6.2 (Chart) A chart on M is a pair (U, ¢) such that U C M is open and

¢ : U RY where ¢ is a homeomorphism (i.e., bijective, ¢ and ¢~ are both continuous).

In a chart (U, ¢), U is called a coordinate neighborhood and ¢ is a coordinate system on
U. Essentially, a chart is a local coordinate system on M. A collection of charts which

covers M is called an atlas of M.

Definition 6.3 (C* Atlas) A C* atlas for M is a collection of charts {(Un, da)taca

which satisfies |J,c 4 Ua = M, and are pairwise C* compatible:

$a 005" ¢p(Ua NUs) = ¢o(Ua NU) and ¢g0 ¢, : ¢a(Ua N Us) = ¢3(Us N Up)

are both C* for any o, B € A. An atlas is called finite if it contains finitely many charts.
172

Overparameterized ResNets for functions on manifolds Chapter 6

Definition 6.4 (Smooth Manifold) A smooth manifold is a manifold M together with

a C™ atlas.

Classical examples of smooth manifolds are the Euclidean space, the torus and the unit

sphere. Furthermore, we define C* functions on a smooth manifold M as follows:

Definition 6.5 (C*® functions on M) Let M be a smooth manifold and f : M — R
be a function on M. A function f : M — R is C*® if for any chart (U, ¢) on M, the

composition fo ¢t : ¢(U) — R is a continuously differentiable up to order s.

We next define the C'*° partition of unity which is an important tool for the study of

functions on manifolds.

Definition 6.6 (Partition of Unity, Definition 13.4 in [150]) A C* partition of unity
on a manifold M is a collection of C*° functions {pa}aca with po : M — [0, 1] such that

for any x € M,

1. there is a neighbourhood of x where only a finite number of the functions in {pa }aca
are nonzero;

2. Zpa(x) =1.

acA

An open cover of a manifold M is called locally finite if every x € M has a neighbourhood
which intersects with a finite number of sets in the cover. The following proposition shows

that a C'*° partition of unity for a smooth manifold always exists.

Proposition 6.10 (Existence of a C* partition of unity, Theorem 13.7 in [150])
Let {Uy}aca be a locally finite cover of a smooth manifold M. Then there is a C* par-

tition of unity {pa}2, where every p, has a compact support such that supp(pa) C U,.

Let {(Ua,) }aca be a C* atlas of M. Proposition guarantees the existence of

a partition of unity {p4 }aca such that p, is supported on U,.
173

Overparameterized ResNets for functions on manifolds Chapter 6

To characterize the curvature of a manifold, we adopt the geometric concept, reach.

Definition 6.7 (Reach [151}, 152]) Denote
G = {x eRP :3p# qe M such that ||z — pls = ||z — g2} = inf ||z - y||2} .
Yy

as the set of points that have at least two nearest neighbors on M. The closure of G is

called the medial axis of M. Then the reach of M 1is defined as

= inf inf ||z — y|s.
m=Jof, mtlle =yl

Reach has a simple geometrical interpretation: for every point z € M, the radius
of the osculating circle is at least 7. A large reach for M indicates that the manifold

changes slowly, as illustrated in Figure [6.2]

', \l s
‘\ = +_J
Slow Change: Large T Rapid Change: Small 7

Figure 6.2: Illustration of manifolds with large and small reach.

6.5.2 Besov functions on a smooth manifold

We next define Besov function spaces on the smooth manifold M, which generalizes
more elementary function spaces such as the Sobolev and Holder spaces.
The definition of Besov class can be found in [Section 5.3.21

We define Bg q functions on M.

Definition 6.8 (B, , Functions on M [153] [154]) Let M be a compact smooth man-

ifold of dimension d. Let {(U;, ;)Y be a finite atlas on M and {p; Y be a partition
174

Overparameterized ResNets for functions on manifolds Chapter 6

of unity on M such that supp(p;) C U;. A function f: M — R is in By (M) if

Cm
118y, == D I(fpi) 0 & |l 3 ey < 0. (6.8)
i=1

1

Since p; is supported on Uj;, the function (fp;) o ¢; " is supported on ¢(U;). We can

)

extend (fp;) o ¢; ' from ¢(U;) to R? by setting the function to be 0 on R\ ¢(U;). The

extended function lies in the Besov space By (R?) [154, Chapter 7).

6.6 Proof of technical results

6.6.1 Locally approximate the decomposed functions using car-

dinal B-spline basis functions.

In this section, we provide the proof to[Proposition 6.7|From the definition of By, (M),

and applying [Proposition 6.6 there exists a decomposition of f* as

Cnm Cm

= Z(fz) = Z(fi0¢i_l) o ¢; X 1y,

i=1 i=1

where f; := f*- p;, p; satisfy the condition in [Definition 6.6, and fio¢; ' € By - Using

|Pr0position 5.8|, for any 7, one can approximate f; o ¢i_1 with f;:

P

fi - § ai,k]',Sij,kj,Sj

j=1

such that || f; 0 ¢; ' [|loe < C1M /4, and the coefficients satisfy ||{2% ax, s, };ll, < Cisllfi o

o; |Bg,- Define

Cm
]?:Z]Eio@ x 1y,
i1

175

Overparameterized ResNets for functions on manifolds Chapter 6

one can verify that ||f — fllee < C12CpN~%4. On the other hand, using triangular

inequality (and padding the vectors with 0),

Cm Cm
125 aigy.s, iglly <D 125 @ik, 0, 5lle < Cusllfi 0 67 sy, = Cusll £l Bg o),
=1 =1

which finishes the proof.

6.6.2 Neural network for chart selection

In this section, we demonstrate that a feedforward neural network can approximate
the chart selection function z x 1(x € B(c¢;,r)), and it is error-free as long as z = 0 when

r < d(x,¢;) < R. We start by proving the following supporting lemma:

Proposition 6.11 Fiz some constant B > 0. For any x,c € RP satisfying |x;| < B
and |¢;| < B fori=1,...,D, there exists an L-layer neural network d(z; ¢) with width
w = O(d) that approzimates d*(x;¢) = S0, (x; — ¢;)? such that |d*(x; ¢) — d*(z;)| <
8D B2 exp(—CysL) with an absolute constant Cyg > 0 when d(x; ¢) < 7, and d>(x; ¢) > 72

when d(x;c) > 7, and the norm of the neural network is bounded by
L
Z IWell% + ol < Ci7DL
=1

Proof: The proof is given by construction. By Proposition 2 in Yarotsky(2017), the
function f(z) = z? on the segment [0,2B] can be approximated with any error ¢ > 0
by a ReLU network g having depth and the number of neurons and weight parameters
no more than clog(4B%/¢) with an absolute constant c¢. The width of the network g
is an absolute constant. We also consider a single layer ReLU neural network h(t) =
ReLU(t) — ReLU(—t), which is equal to the absolute value of the input.

Now we consider a neural network G(x;c) = Zl’; 190 h(z; — ¢;). Then for any
176

Overparameterized ResNets for functions on manifolds Chapter 6

x,c € RP satisfying |z;| < B and |¢;| < B fori =1,..., D, we have
D

G(z;¢) = d*(@se)| < |) gohlwi—c) =) (1)

=1 i=1
D

S Z |g ¢} h(l’z — C,L'> — (LCZ — Ci)2|
=1

< De.
Moreover, define another neural network

F(xz;c) = —ReLU(7* — De — G(z;¢)) + 7°
G(z;c) + De if G(z;¢) < 7% — De,

72 if G(z;¢) > 7% — De,

which has depth and the number of neurons no more than ¢ log(4B?/¢) with an absolute
constant . The weight parameters of G are upper bounded by max{72, D¢, clog(4B?/¢)}
and the width of G is O(D).

If d*(x;¢) < 72, we have

|F(x;¢) — d*(z;¢)| = | — ReLU(7* — De — G(x; ¢)) + 7° — d*(z; ¢)|
|G(x; ¢) — d*(x; ¢) + De| if G(z;¢) < 7° — De,

2 — d*(x; c) if G(x;c) > 7% — De.

For the first case when G(z;¢) < 72 — De, |F(x;¢) — d*(x;¢)| < 2De since d*(x; c)
can be approximated by G(x;¢) up to an error €. For the second case when G(x;c) >
72 — De, we have d*(z;¢) > G(x;c) — De > 7 — 2De and . Thereby we also have
|F(x; c) — d*(x; ¢)| < 2De.

177

Overparameterized ResNets for functions on manifolds Chapter 6

If d*(x; ¢) > 72 instead, we will obtain G(z;¢) > d*(x;¢) — De > 72 — De. This gives
that F(x;c) = 72 in this case.

Finally, we take ¢ = 4B? exp(—L/c’). Then F(x;c) is an L-layer neural network with
O(L) neurons. The weight parameters of G are upper bounded by max{7?,4DB?exp(—L/c),cL/}
and the width of G is O(D). Moreover, F'(x; c) satisfies | F(x; ¢)—d*(x; ¢)| < 8DB? exp(—L/)

if *(x;c) < 7% and F(x;c) = 72 if d*(x;¢) > 72 |

Proposition 6.12 There exists a single layer ReLU neural network that approximates
X, such that for all 0 < x < C,y € {0,1}, xxy = x when y = 1, and xxy = 0 when

either x =0 ory = 0.

Proof: Consider a single layer neural network g(z,y) := AsReLU(A;(x,y)") with no

bias, where
1 —-C
Al =) A2 =

0 1 C

Ql-

Then we can rewrite the neural network g as g(x,y) = —CReLU(—xz/C+y)+CReLU(y).
If y =1, we will have g(z,y) = —CReLU(—z/C + 1) + C = z, since z < C. If y = 0,
we will have ¢g(z,y) = —CReLU(—xz/C) = 0, since > 0. Thereby we can conclude the
proof. [|

By adding a single linear layer

1

y:

after the one shown in [Proposition 6.11] where A = 8 DB?exp(—C'L) denotes the error

in [Proposition 6.11] one can approximate the indicator function 1(x € B(¢;,r)) such that

it is error-free when d(x, ¢;) < r or > R. Choosing R < 7/2,r < R—2A, and combining

with |Proposition 6.12] the proof is finished. Considering that f; is locally supported on

178

Overparameterized ResNets for functions on manifolds Chapter 6

B(e;,r) for all ¢ by our method of construction, the chart selection part does not incur

any error in the output.

6.6.3 Constructing the neural network to Approximate the tar-

get function

In this section, we provide the proof to Combining [Lemma 6.8] [Proposi-|

{tion 6.11]and |Proposition 6.12] by putting the neural network in|[Lemma 6.8 and [Proposi-|

tion 6.11]in parallel and adding the one in|Proposition 6.12| after them, one can construct

a feedforward neural network with bias with depth L, width w = O(d) + O(D) = O(d),
that approximates My, i, s, () x 1(x € B(c;,r)) for any i, j.
To construct a ResNeXt that approximates fy, we follow the method in Oono et al.

[108], Liu et al. [I09]. Specifically, let the neural network constructed above has parameter

V~V§”), Bﬁi’j), e ,W(Li’j), bg’j) in each layer, one can construct a feedforward block without
bias as
~ .. ~ 'L y ~ .. ~ 7/ . 0 0
(4,9) ng) bi g 0 (4,4) Wéz,]) bé i (4.4)
Wi = . W, = W, = 0 0
0 1 0 0 1 < (i)
Wi b

Remind that the input is padded with [1,0]” before feeding into the neural network, the
above construction provide an equivalent representation to the neural network including
the bias, and route the output to the last channel. From |[Lemma 6.8] it can be seen that
the total square norm of this block is bounded by .

To approximate our decomposition of the target function as in , we only need

|1/L

to scale the all the weights in this block with |a;,s;|'/", setting the sign of the weight

in the last layer as sign(a;,s;), and place CyP number of these blocks in a ResNeXt.

179

Overparameterized ResNets for functions on manifolds Chapter 6

Since this block always output 0 in the first D 4 1 channels, the order and the placement
of the feedforward blocks does not change the output. The last fully connected layer can
be simply set to

Wour = [0,...,0,1], by = 0.

Combining [Proposition 5.8 and [Lemma 5.15| the norm of this ResNeXt we construct

satisfy

a2/L (22k/LC'15dmL + CNDL)

’i7k'j,8j

BT@S S

M-

1

IA

M M€
7

I
—_
<.

Il

(Qkai,kwsj)Q/L(CmdmL + CNDL)

M~

7 1

S (CMP)172/(pL) H{2kai7kj7sj}Hi/L(Clg)dmL + CUDL)
< (C0p) Y (Cp P) 2/ ®1)(Cy5dm L + Cy7 DL,

Bout S 1

By scaling all the weights in the residual blocks by Bre 2, and scaling the output layer
by B,PGQQ, the network that satisfy can be constructed.

Notice that the chart selection part does not introduce error by our way of construc-

tion, we only need to sum over the error in [Section 6.4.1] and [Section 6.4.1 and notice

that for any «, for any linear projection ¢;, the number of B-spline basis functions M,, 1, s
that is nonzero on « is no more than m?log P, the approximation error of the constructed

neural network can be proved.

6.6.4 Constructing a convolution neural network to approxi-

mate the target function

In this section, we prove that any feedforward neural network can be realized by

a convolution neural network with similar size and norm of parameters. The proof is

180

Overparameterized ResNets for functions on manifolds Chapter 6

similar to Theorem 5 in [108].

Lemma 6.13 For any feedforward neural network with depth L, width w, input dimen-
sion h and output dimension h', for any kernel size K > 1, there exists a convolution
neural network with depth L' = L + Ly — 1, where Ly = (%W number of channels
w' = 4w, and the first dimension of the output equals the output of the feedforward neu-
ral network for all inputs, and the norm of the convolution neural network is bounded
as

L’ L

D IWiIE <4 W7 + dwl
(=1 (=1

where Wi € RV W, € Rv** (=2 ... L —1; Wy € R™ are the weights in the
feedforward neural network, and Wi € RExwxh W/ g RExwxw p—9 [/ —1; Wy €

REXPxw qre the weights in the convolution neural network.

Proof: We follow the same method as Oono et al. [108] to construct the CNN that
is equivalent to the feedforward neural network. By combining Oono et al. [I0§] lemma

1 and lemma 2, for any linear transformation, one can construct a convolution neural

h—1

7= | convolution layers and 4 channels, such that the first

network with at most Ly = [
dimension in the output equals the linear transformation, and the norm of all the weights
is no more than

Lo
D AIWYIE < W3 + 4L, (6.9)

(=1

where W is the weight of the linear transformation. Putting w number of such con-
volution neural networks in parallel, a convolution neural network with L layers and
4w channels can be constructed to implement the first layer in the feedforward neural
network.
To implement the remaining layers, one choose the convolution kernel W; +L0_1)[:
Ji,7] = 10,..., Wi, j],...,0],V1 < 4,5 < w, and pad the remaining parts with 0, such
181

Overparameterized ResNets for functions on manifolds Chapter 6

that this convolution layer is equivalent to the linear layer applied on the dimension of
channels. Noticing that this conversion does not change the norm of the parameters in
each layer. Adding both sides of by the norm of the 2 — L-th layer finishes the

proof. [|

6.6.5 Covering number of a neural network block

Proposition 6.14 If the input to a ReLU neural network is bounded by ||x||2 < Biy,, the

covering number of the ReL U neural network defined in |Proposition 6.19 is bounded by

L2y, w?L
NI < (P

Proof: Similar to [Proposition 6.19) we only consider the case |[W||r < +/B/L.

For any 1 < ¢ < L, for any Wh,... Wy_q, Wy, W), Wiyi1,... Wy, that satisfy the above
constraint and |W, — W}||r < €, define g(...;Wi,... W) as the neural network with

parameters Wy, ... Wy, we can see

Ng(a;s Wi, oo Wy, Wo, Weya, .. . W) — g(a; W, .o Wy, W, Wy, ... WL)||2
< (B/L)L=972|\Wy — W)||o||ReLU (Wo_y . .. ReLU (W1 (z)))]|2

< (B/L)EY2B; .

Choosing € = %, the above inequality is no larger than /L. Taking the sum

L(B/L
over ¢, we can see that for any Wiy, W{, ..., W, W] such that ||W, — W/||r <,

lg(a; Wh, ... W) = g(z; Wi, ... W))lla <6,

182

Overparameterized ResNets for functions on manifolds Chapter 6

Finally, observe that the covering number of W, is bounded by

2

2Bw\"
NW [Wle < Bhe - l1e) < (—) (6.10)
Substituting B and € and taking the product over ¢ finishes the proof. [|

Proposition 6.15 If the input to a ReLU neural network is bounded by ||x||s < B, the

covering number of the ReLU neural network defined in |Proposition 6.19 is bounded by

Bin(B/L)L/2wL>w2L

N - 1a) < (P

Proof: Similar to [Proposition 6.19, we only consider the case |W||r < +/B/L.

For any 1 < ¢ < L, for any Wh,... Wy_q, Wy, W), Wyi1,... Wy, that satisfy the above
constraint and |W, — W}||r < €, define g(...;Wi,... W) as the neural network with

parameters Wy, ... Wy, we can see

lg(a;s Wi, .. . Wy, Wo, Weyr, .. . W) — glas Wi, .o . Wy, W, Wey, ... WL)||2
< (B/L)E972|Wy — W)||o|| ReLU (W,_y ... ReLU (Wy(2))) ||

< (B/L)* V2B e.

Choosing € = the above inequality is no larger than /L. Taking the sum

6
L(B/L)(L—l)/2)

over ¢, we can see that for any Wiy, W{, ..., W, W] such that ||W, — W/||r <,

lg(a; W, ... W) = ga; W,... Wi)l < 0.

Finally, observe that the covering number of W, is bounded by

2

NUW < Wil < Bhoe, | - 1) < (2Bw) | (6.11)

€

183

Overparameterized ResNets for functions on manifolds Chapter 6

Substituting B and € and taking the product over ¢ finishes the proof. [|

6.6.6 Proof of Lemma 6.9: covering number of ResNet and

ResNeXt

From [Proposition 6.19] [Proposition 6.21| and |Proposition 6.22] if any residual block is

removed, the perturbation to the output is no more than (K By, /L)“/2BY? exp((K Byes/L)/?)
where B,, is the total norm of parameters in this block, K = 1 when the feedforward
neural network is the backbone and K is the size of the convolution kernel when the
convolution neural network is the backbone. If all the blocks with norm no more than e

is removed, the perturbation is no more than

exp((K Bres /L)) Bl > (KB /L)?

m:By, <e

< exp((K Bres/ L)) Byl Y~ (KB /L)(Ke¢/L)"*
m:Bp, <e
< exp((K Byes/L)"*)K*?B, ., BY?(e/L)**>' /L

out

1
(SL) L/2—1
2exp((Bres/L)E/2) KL/2Byes B2

Choosing € = L , the perturbation above is no more

than 0/2. In this case, the remaining number of blocks is no more than B,.s/¢. Combining

this with [Proposition 6.15/and 7?7 finishes the proof.

6.6.7 Proof of Theorem 6.3

For 1-Lipschitz loss, the proof is a direct application of Theorem 14.20 in Wainwright

[155]. Define f = arg min s Eplloss(f)]. any function class OF that is star-shaped around

184

Overparameterized ResNets for functions on manifolds Chapter 6

f, the empirical risk minimizer f = argmin; r loss, (f) satisfy

Ep[loss(f)] < Ep[loss(f)] + 106, (2 + 6,) (6.12)

with probability at least 1 — ¢; exp(—cond?) for any ¢, that satisfy , where ¢y, co
are universal constants.

The function of neural networks is not star-shaped, but can be covered by a star-
shaped function class. Specifically, let {f — f : f € F™} c {f; — C fi. fe €
FConvd .= 9F. Any function in OF can be represented using a ResNeXt: one can put
two neural networks of the same structure in parallel, adjusting the sign of parameters
in one of the neural networks and summing up the result, which increases M, B, and
Bou by a factor of 2. This only increases the log covering number in by a factor
of constant (remind that B, = O(1) by assumption).

Taking the log covering number of the ResNeXt , the sufficient condition for the

above inequality is

1-3/L 52
n

_1/2 L1/232 4/LK1 2/L (B /t eXP((KBTes/L)L/z))l 2/L51 v

,p

(6.13)

1-2/L 11— 2/L

1— —1 1/L
50 > K (W L)% BET (BY2 exp((K Bres/ L)M/2)) TH/E 5578 g 1517E

where < hides the logarithmic term. Finally, from [Theorem 6.1], the minimum width of

each subnetwork is w = O(D + dm). Because loss is 1-Lipschitz, we have

loss(f) < loss(f) + [1f = fll-

Choosing

1-2/L

2 3L—4 _ 3L—2
K- (D + dm) L—2 [L= >_2a/d(171/L)+172/pL
n

P=of

185

Overparameterized ResNets for functions on manifolds Chapter 6

and taking it into [['heorem 6.1 and [['heorem 6.2 finishes the proof.

For MSE loss, the proof depends on [I'heorem 6.17 and [Theorem 6.18] which infers

that ||f — foll2 < IIf* = fol|2 + 62 + 02/n both in expectation and with high probability.

Taking d,, in into it finishes the proof.

6.6.8 Lower bound of error

Without the loss of generalization, assume that 815231) > 0.5 for —e < y < e. Define

the function space

_) - M) (g — i
F {f jh%;:lisa x M™ ((x _7)/3)}, (6.14)
where M (™) denotes the Cardinal B-spline basis function that is supported on (0,1)%, j =
[j1,...,ja]. The support of each B-spline basis function splits the space into s number
of blocks, where the target function in each block has two choices (positive or negative),
so the total number of different functions in this function class is |F| = 2**. Using Diing

[136, Theorm 2.2], we can see that for any f € F,

€ o
1FllBg, < "5 =

For a fixed fy € F, let D = {(x;,y;)}", be a set of noisy observations with y; =
f(x;) + €, € ~ SubGaussian(0,0*I). Further assume that x; are evenly distributed in
(0, 1)? such that in all regions as defined in|(6.14), the number of samples is n; := O(n/s?).

Using Le Cam’s inequality, we get that in any region, any estimator 6 satisfy

C,.e
Ep[||0(D) — J> T
sup Eof|0(P) ~ foll) > 7

186

Overparameterized ResNets for functions on manifolds Chapter 6

as long as (=5)% < %, where || -||; := n% > s@—j)cfo.je |/ ()| denotes the norm defined in

os%

the block indexed by ¢, C,, is a constant that depends only on m. Choosing s = O(nﬁ),

we get

sup Ep[||0(D) — foll;] > n~ 2+
foEF

Observing 2371, L((f(2:))) = 0530, |f (@) = fo(@)| = & X jeqqa |/ — foll finishes

the proof.

6.6.9 Supporting theorem

Corollary 6.16 (Corollary 13.7 and Corollary 14.3 in Wainwright [155]) Let

|

denotes the local Gaussian complexity and local Rademacher complexity respectively,

n n

%; w;g(x;)

% ; Eig(wi)

gn(57 f) = Ewi aRn(57 F) = Eei

sup
9EF lglln<d

sup
9EF llglln<d

where w; ~ N(0,1) are the i.i.d. Gaussian random variables, and €; ~ uniform{—1,1}
are the Rademacher random variables. Suppose that the function class F is star-shaped,

for any o >0, any § € (0, 0] such that

6 " g N Ty < 2
—_— O . 00 __'
satisfies
L 6.15)
) < — .
Gn(6,F) < 5 (

Furthermore, if F is uniformly bounded by b, i.e. Vf € F,x|f(x)] < b any d > 0 such

that
52

\/lOgN(F,M, || ' Hoo)dﬂ < ?

64 [On

\/ﬁ 82 /2b4o

187

Overparameterized ResNets for functions on manifolds Chapter 6

satisfies

52
Ra(0,F) < =-. (6.16)

Theorem 6.17 (Theorem 14.1 in Wainwright [155]) Given a star-shaped and b-uniformly

bounded function class F, let 9, be any positive solution of the inequality

52
Rn(57]:) S ?7

where
n

=1

R.(0, F) =E, sup sup

finF || fl2<6

|

denotes the localized population Rademacher complexity, then for any t > 0,,, we have

IFI5 <2 fI2 4+t foral feF

with probability at least 1 — ¢y exp(—cont?/b?).

Theorem 6.18 (Theorem 13.13 in Wainwright [155]) Let §,, be any positive solu-
tion satisfying the inequality [(6.15) for the function class OF = {f1 — fo|f1, fo € F}.

There are universal positive constants (co, c1,c2) such that for any t > 0,, with proba-

bility greater than 1 — ci exp(—contd, /0?), the nonpara-metric least-squares estimate f

satisfies the bound

; L+~ 2 Co
1f=follz < ——If = follh + —————+
1—v (1 =)td,

for any v € (0,1).

188

Overparameterized ResNets for functions on manifolds Chapter 6

Proposition 6.19 An L-layer ReLU neural network with no bias and bounded norm

L
S IWE < B,
(=1

is Lipschitz continuous with Lipschitz constant (B/L)"/?

Proof: Notice that ReLU function is 1-homogeneous, similar to Proposition 4 in [6],
for any neural network there exists an equivalent model satisfying [|[W||z = ||[Wy || for
any £, /', and its total norm of parameters is no larger than the original model. Because of
that, it suffices to consider the neural network satisfying |[Wy||p < v/B/L for all £. The
Lipschitz constant of such linear layer is |[W|||2 < [|[W/|||r < v/ B/L, and the Lipschitz

constant of ReLLU layer is 1. Taking the product over all layers finishes the proof. |

Proposition 6.20 An L-layer ReL U convolution neural network with convolution kernel

size K, no bias and bounded norm

L
> Wi < B.
(=1

is Lipschitz continuous with Lipschitz constant (K B/L)"/?

This proposition can be proved by taking [Proposition 6.23] into the proof of

tion 6.19

Proposition 6.21 Let f = fpost0 (14 fyn+ fother) © fore be a ResNeXt, where 1+ fyn+
fother denotes a residual block, fye and fpost denotes the part of the neural network before
and after this residual block, respectively. fnn denotes one of the feedforward block in
this residual block and foner denotes the other residual blocks. Assume fpre, fNN, fpost are

Lipschitz continuous with Lipschitz constant Lye, Lnn, Lpost Tespectively. Let the input

189

Overparameterized ResNets for functions on manifolds Chapter 6

be x, if the residual block is removed, the perturbation to the output is no more than

LpreLNNLpost HxH

Proof:

|fpost o (]- + fNN + fother) o fpre(x> - fpost o (]- + fother) o fpre(x”
S Lpost|(1 + fNN + fother) o fpre(l‘) - (1 + fother) o fpre(m)|
= LpostlfNN o fpre(x”

< Lypre LN Lpost|| 7|

Proposition 6.22 The neural network defined in with arbitrary number of
blocks has Lipschitz constant exp((K Byes/L)"/?), where K = 1 when the feedforward
neural network is the backbone and K is the size of the convolution kernel when the

convolution neural network is the backbone.

Proof: Note that the m-th block in the neural network defined in can be

represented as y = f,,(x; wy,)+x, where f,, is an L-layer feedforward neural network with

no bias. By |Proposition 6.19 and [Proposition 6.20 such block is Lipschitz continuous

with Lipschitz constant 1+ (K B,,/L)"/?, where the weight parameters of the m-th block
satisfy that S22 W, ™| < By, and =M B, < Bhes.

Since the neural network defined in is a composition of M blocks, it is
Lipschitz with Lipschitz constant L,.,. We have

M L/2 M L/2
KB, KB,
Lres < 1 (1 + (T)) < exp (E (T)))

m= m=1

where we use the inequality 1 + z < exp(z) for any = € R. Furthermore, notice that

Zn]\f:l(KBm/L)L/2 is convex with respect to (Bj, Ba,...,By) when L > 2. Since
190

Z%zl B,, < B,.s and B,, > 0, then we have z:%:l(KBm/L)L/2 < (K Byes/L)"? by

convexity. Therefore, we obtain that L., < exp((K Byes/L)"?). [|
Proposition 6.23 For any x € R, w € RX, K < d, ||Conv(x, w)||s < VK||z||2||w]|.

Proof: For simplicity, denote z; = 0 for ¢ < 0 or ¢ > d.

| Conv (@, w)|l3 = S0, (@li — 55+ i+ 551, w)?

d . _ . _
< i lleli = 557 i+ 5B w3

< Kllz||2|wll2

where the second line comes from Cauchy-Schwarz inequality, the third line comes by

expanding [|z[i — 551 : i + £-1]||2 by definition and observing that each element in x

appears at most K times. |

191

Bibliography

1]

[10]

[11]

K. Zhang, X. Zhang, and Z. Zhang, Tucker tensor decomposition on fpga, in 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 1-8, IEEE, 2019.

C. Cui, K. Zhang, T. Daulbaev, J. Gusak, I. Oseledets, and Z. Zhang, Active
subspace of neural networks: Structural analysis and universal attacks, STAM
Journal on Mathematics of Data Science 2 (2020), no. 4 1096-1122.

K. Zhang, C. Hawkins, X. Zhang, C. Hao, and Z. Zhang, On-fpga training with
ultra memory reduction: A low-precision tensor method, in ICLR Workshop on
Hardware Aware Efficient Training, 2021.

K. Zhang, C. Hawkins, and Z. Zhang, General-purpose bayesian tensor learning
with automatic rank determination and uncertainty quantification, Frontiers in
Artificial Intelligence 4 (2022) 668353.

K. Zhang, M. Yin, and Y.-X. Wang, Why quantization improves generalization:
Ntk of binary weight neural networks, arXiv preprint arXiv:22006.05916 (2022).

K. Zhang and Y.-X. Wang, Deep learning meets nonparametric regression: Are
weight-decayed dnns locally adaptive?, arXiv preprint arXiv:2204.09664 (2022).

Y. LeCun, J. S. Denker, and S. A. Solla, Optimal brain damage, in NIPS,
pp. 598-605, 1990.

K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov, Structured Bayesian
pruning via log-normal multiplicative noise, in NIPS, pp. 67756784, 2017.

S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,
arXiv:1510.00149 (2015).

A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, Incremental network quantization:
Towards lossless cnns with low-precision weights, arXiv:1702.03044 (2017).

G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural network,
arXiv:1503.02531 (2015).

192

[12] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
Low-rank matriz factorization for deep neural network training with
high-dimensional output targets, in ICASSP, pp. 6655-6659, 2013.

[13] J. Xue, J. Li, and Y. Gong, Restructuring of deep neural network acoustic models
with singular value decomposition., in Interspeech, pp. 2365-2369, 2013.

[14] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, Compression of deep
convolutional neural networks for fast and low power mobile applications,
arXiw:1511.06530 (2015).

[15] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, Speeding-up
convolutional neural networks using fine-tuned cp-decomposition, arXiv preprint
arXiv:1412.6553 (2014).

[16] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, Tensorizing neural
networks, in Advances in neural information processing systems, pp. 442-450,
2015.

[17] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov, Ultimate tensorization:
compressing convolutional and fc layers alike, arXiv preprint arXiv:1611.03214
(2016).

[18] C. Cui, C. Hawkins, and Z. Zhang, Tensor methods for generating compact
uncertainty quantification and deep learning models, arXiv preprint
arXiv:1908.07699 (2019).

[19] R. M. Neal, Bayesian training of backpropagation networks by the hybrid monte
carlo method, tech. rep., Citeseer, 1992.

[20] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid monte carlo,
Physics letters B 195 (1987), no. 2 216-222.

[21] T. Chen, E. Fox, and C. Guestrin, Stochastic gradient hamiltonian monte carlo, in
International conference on machine learning, pp. 1683-1691, 2014.

[22] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products,
Journal of Mathematics and Physics 6 (1927), no. 1-4 164-189.

[23] L. R. Tucker, Some mathematical notes on three-mode factor analysis,
Psychometrika 31 (1966), no. 3 279-311.

[24] 1. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific
Computing 33 (2011), no. 5 2295-2317.

193

[25] Q. Zhao, L. Zhang, and A. Cichocki, Bayesian cp factorization of incomplete
tensors with automatic rank determination, IEEFE transactions on pattern analysis
and machine intelligence 37 (2015), no. 9 1751-1763.

[26] C. Hawkins and Z. Zhang, Robust factorization and completion of streaming
tensor data via variational bayesian inference, arXiv preprint arXiv:1809.01265
(2018).

[27] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and H. Neven, Bayesian
sampling using stochastic gradient thermostats, in Advances in neural information
processing systems, pp. 3203-3211, 2014.

[28] Q. Zhao, L. Zhang, and A. Cichocki, Bayesian sparse tucker models for dimension
reduction and tensor completion, arXiv preprint arXiv:1505.02348 (2015).

[29] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, arXww preprint arXiw:1708.07747
(2017).

[30] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks, IEEE journal of
solid-state circuits 52 (2016), no. 1 127-138.

[31] Y. Chen, K. Zhang, C. Gong, C. Hao, X. Zhang, T. Li, and D. Chen, T-dla: An
open-source deep learning accelerator for ternarized dnn models on embedded fpga,
in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 13-18, IEEE, 2019.

[32] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, Optimizing fpga-based
accelerator design for deep convolutional neural networks, in Proceedings of the
2015 ACM/SIGDA international symposium on field-programmable gate arrays,
pp. 161-170, 2015.

[33] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu, and
D. Chen, Fpga/dnn co-design: An efficient design methodology for 1ot intelligence
on the edge, in 2019 56th ACM/IEEFE Design Automation Conference (DAC),
pp. 1-6, IEEE, 2019.

[34] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan, D. Chen,
and Y. Lin, Autodnnchip: An automated dnn chip predictor and builder for both
frgas and asics, in The 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 40-50, 2020.

[35] E. Strubell, A. Ganesh, and A. McCallum, Energy and policy considerations for
deep learning in NLP, in Proc. Annual Meeting of the Association for
Computational Linguistics, pp. 3645-3650, 2019.

194

[36]

S. Teerapittayanon, B. McDanel, and H.-T. Kung, Distributed deep neural
networks over the cloud, the edge and end devices, in Intl. Conf. Distributed
Computing Systems, pp. 328-339, 2017.

[. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, Quantized
neural networks: Training neural networks with low precision weights and
activations, The Journal of Machine Learning Research 18 (2017), no. 1
6869-6898.

U. Koster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable, O. Elibol,
S. Gray, S. Hall, L. Hornof, et. al., Flexpoint: An adaptive numerical format for
efficient training of deep neural networks, in NIPS, pp. 1742-1752, 2017.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep learning with
limited numerical precision, in International Conference on Machine Learning,
pp. 1737-1746, 2015.

X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani,
K. El Maghraoui, V. V. Srinivasan, and K. Gopalakrishnan, Ultra-low precision
4-bit training of deep neural networks, NIPS 33 (2020).

M. Courbariaux, Y. Bengio, and J.-P. David, Binaryconnect: Training deep
neural networks with binary weights during propagations, in Advances in neural
information processing systems, pp. 3123-3131, 2015.

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1, arXiv preprint arXiv:1602.02830 (2016).

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, STAM
review 51 (2009), no. 3 455-500.

C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, TIE: energy-efficient
tensor train-based inference engine for deep neural network, in ISCA,
pp. 264-278, 2019.

P. Zhen, B. Liu, Y. Cheng, H.-B. Chen, and H. Yu, Fust video facial expression
recognition by deeply tensor-compressed Istm neural network on mobile device, in
Proceedings of the jth ACM/IEEE Symposium on Edge Computing, pp. 298-300,
2019.

H. Huang, L. Ni, K. Wang, Y. Wang, and H. Yu, A highly parallel and energy
efficient three-dimensional multilayer cmos-rram accelerator for tensorized neural
network, IEEE Trans. on Nanotechnology 17 (2017), no. 4 645-656.

195

[47] G. G. Calvi, A. Moniri, M. Mahfouz, Q. Zhao, and D. P. Mandic, Compression
and interpretability of deep neural networks via tucker tensor layer,
arXiv:1903.06133 (2019).

[48] V. Khrulkov, O. Hrinchuk, L. Mirvakhabova, and I. Oseledets, Tensorized
embedding layers for efficient model compression, arXiv:1901.10787 (2019).

[49] M. Zhou, Y. Liu, Z. Long, L. Chen, and C. Zhu, Tensor rank learning in cp
decomposition via convolutional neural network, Signal Processing: Image
Communication 73 (2019) 12-21.

[50] G. G. Calvi, A. Moniri, M. Mahfouz, Z. Yu, Q. Zhao, and D. P. Mandic, Tucker
tensor layer in fully connected neural networks, arXiv preprint arXiv:1903.06133
(2019).

[51] M. Yin, S. Liao, X.-Y. Liu, X. Wang, and B. Yuan, Compressing recurrent neural
networks using hierarchical tucker tensor decomposition, arXiv preprint
arXiw:2005.04366 (2020).

[52] A. Tjandra, S. Sakti, and S. Nakamura, Compressing recurrent neural network
with tensor train, in 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 4451-4458, IEEE, 2017.

[53] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of
linear matriz equations via nuclear norm minimization, SIAM review 52 (2010),
no. 3 471-501.

[54] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[55] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, Training quantized
nets: A deeper understanding, in Advances in Neural Information Processing
Systems, pp. b811-5821, 2017.

[56] Y. Bengio, N. Léonard, and A. Courville, Estimating or propagating gradients
through stochastic neurons for conditional computation, arXiv preprint
arXiv:1808.3432 (2013).

[57] P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, and J. Xin, Understanding
stratght-through estimator in training activation quantized neural nets, arXiv
preprint arXiv:1903.05662 (2019).

[58] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, arXiww preprint arXiw:1708.07747
(2017).

196

[59] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and
the vapnik-chervonenkis dimension, Journal of the ACM (JACM) 36 (1989), no. 4
929-965.

[60] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep
learning requires rethinking generalization, arXiv preprint arXiw:1611.03530
(2016).

[61] F. He and D. Tao, Recent advances in deep learning theory, arXiv preprint
arXiw:2012.10931 (2020).

[62] E. Weinan, J. Han, and Q. Li, A mean-field optimal control formulation of deep
learning, Research in the Mathematical Sciences 6 (2019), no. 1 1-41.

[63] F. He, B. Wang, and D. Tao, Piecewise linear activations substantially shape the
loss surfaces of neural networks, arXiv preprint arXiv:2003.12236 (2020).

[64] D. Li, T. Ding, and R. Sun, Ouer-parameterized deep neural networks have no

strict local minima for any continuous activations, arXiv preprint
arXiv:1812.11039 (2018).

[65] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, The loss
surfaces of multilayer networks, in Artificial intelligence and statistics,
pp. 192-204, PMLR, 2015.

[66] Z. Allen-Zhu, Y. Li, and Y. Liang, Learning and generalization in
overparameterized neural networks, going beyond two layers, arXiv preprint
arXiv:1811.04918 (2018).

[67] S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang, Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks,
arXiv preprint arXiv:1901.08584 (2019).

[68] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel: Convergence and
generalization in neural networks, in Advances in neural information processing
systems, pp. 8571-8580, 2018.

[69] F. Bach, Breaking the curse of dimensionality with conver neural networks, The
Journal of Machine Learning Research 18 (2017), no. 1 629-681.

[70] A. Bietti and J. Mairal, On the inductive bias of neural tangent kernels, in
Advances in Neural Information Processing Systems, pp. 12893-12904, 2019.

[71] A. Geifman, A. Yadav, Y. Kasten, M. Galun, D. Jacobs, and R. Basri, On the
similarity between the laplace and neural tangent kernels, arXiv preprint
arXiw:2007.01580 (2020).

197

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

L. Chen and S. Xu, Deep neural tangent kernel and laplace kernel have the same
rkhs, arXiv preprint arXiv:2009.10683 (2020).

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized
neural networks, in Proceedings of the 30th international conference on neural
information processing systems, pp. 4114-4122, Citeseer, 2016.

M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, Fast neural networks without
multipliers, IEEE transactions on Neural Networks 4 (1993), no. 1 53-62.

T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, Pruning and quantization
for deep neural network acceleration: A survey, Neurocomputing 461 (2021)

370-403.

T. Chu, Q. Luo, J. Yang, and X. Huang, Mixed-precision quantized neural
networks with progressively decreasing bitwidth, Pattern Recognition 111 (2021)
107647.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, Xnor-net: Imagenet
classification using binary convolutional neural networks, in European conference
on computer vision, pp. 525-542, Springer, 2016.

H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, Ternary neural networks
for resource-efficient ai applications, in 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 2547-2554, IEEE, 2017.

Y. Ding, J. Liu, J. Xiong, and Y. Shi, On the uniwversal approximability and
complexity bounds of quantized relu neural networks, arXiv preprint
arXiv:1802.03646 (2018).

B. Bordelon, A. Canatar, and C. Pehlevan, Spectrum dependent learning curves in

kernel regression and wide neural networks, arXiww preprint arXiv:2002.02561
(2020).

J. B. Simon, M. Dickens, and M. R. DeWeese, Neural tangent kernel eigenvalues
accurately predict generalization, arXiv preprint arXiv:2110.03922 (2021).

D. Soudry and Y. Carmon, No bad local minima: Data independent training error
guarantees for multilayer neural networks, arXiv preprint arXiv:1605.08361
(2016).

S. S. Du, X. Zhai, B. Poczos, and A. Singh, Gradient descent provably optimizes
over-parameterized neural networks, arXiv preprint arXiv:1810.02054 (2018).

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, Gradient descent finds global minima
of deep neural networks, in International Conference on Machine Learning,
pp. 1675-1685, PMLR, 2019.

198

[85] Y. Li and Y. Liang, Learning overparameterized neural networks via stochastic
gradient descent on structured data, arXiv preprint arXiv:1808.01204 (2018).

[86] L. Chizat, E. Oyallon, and F. Bach, On lazy training in differentiable
programming, arXiv preprint arXiv:1812.07956 (2018).

[87] Y. Dong, R. Ni, J. Li, Y. Chen, J. Zhu, and H. Su, Learning accurate low-bit deep
neural networks with stochastic quantization, arXiv preprint arXiv:1708.01001

(2017).

[88] H. Q. Minh, P. Niyogi, and Y. Yao, Mercer’s theorem, feature maps, and
smoothing, in International Conference on Computational Learning Theory,
pp. 154-168, Springer, 2006.

[89] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et. al., Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (1998), no. 11
2278-2324.

[90] S. Arora, S. S. Du, Z. Li, R. Salakhutdinov, R. Wang, and D. Yu, Harnessing the
power of infinitely wide deep nets on small-data tasks, arXiv preprint
arXiw:1910.01663 (2019).

[91] E. A. Nadaraya, On estimating regression, Theory of Probability & Its
Applications 9 (1964), no. 1 141-142.

[92] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and C. De Boor, A
practical guide to splines, vol. 27. Springer-Verlag New York, 1978.

[93] G. Wahba, Spline models for observational data, vol. 59. Siam, 1990.

[94] D. L. Donoho, I. M. Johnstone, et. al., Minimaz estimation via wavelet shrinkage,
The annals of Statistics 26 (1998), no. 3 879-921.

[95] S. Mallat, A wavelet tour of signal processing. Elsevier, 1999.

[96] B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines,
reqularization, optimization, and beyond. MIT press, 2001.

[97] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning.
MIT Press, 2006.

[98] E. Mammen and S. van de Geer, Locally adaptive regression splines, The Annals
of Statistics 25 (1997), no. 1 387-413.

[99] R. J. Tibshirani, Adaptive piecewise polynomial estimation via trend filtering, The
Annals of Statistics 42 (2014), no. 1 285-323.

199

[100] Y.-X. Wang, A. Smola, and R. Tibshirani, The falling factorial basis and its
statistical applications, in International Conference on Machine Learning,
pp. 730-738, PMLR, 2014.

[101] D. Baby and Y.-X. Wang, Online forecasting of total-variation-bounded sequences,
in Neural Information Processing Systems (NeurIPS), 2019.

[102] D. Baby and Y.-X. Wang, Adaptive online estimation of piecewise polynomial
trends, Neural Information Processing Systems (NeurIPS) (2020).

[103] M. Belkin, S. Ma, and S. Mandal, To understand deep learning we need to
understand kernel learning, in International Conference on Machine Learning,
pp. 541-549, PMLR, 2018.

[104] S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang, On ezact
computation with an infinitely wide neural net, in Proceedings of the 33rd
International Conference on Neural Information Processing Systems,
pp. 8141-8150, 2019.

[105] D. L. Donoho, R. C. Liu, and B. MacGibbon, Minimaz risk over hyperrectangles,
and implications, The Annals of Statistics (1990) 1416-1437.

[106] T. Suzuki, Adaptivity of deep relu network for learning in besov and mized smooth
besov spaces: optimal rate and curse of dimensionality, arXiv preprint
arXiv:1810.08033 (2018).

[107] R. Parhi and R. D. Nowak, Banach space representer theorems for neural
networks and ridge splines., J. Mach. Learn. Res. 22 (2021) 43-1.

[108] K. Oono and T. Suzuki, Approximation and non-parametric estimation of
resnet-type convolutional neural networks, in International conference on machine
learning, pp. 4922-4931, PMLR, 2019.

[109] H. Liu, M. Chen, T. Zhao, and W. Liao, Besov function approximation and binary
classification on low-dimensional manifolds using convolutional residual networks,
in International Conference on Machine Learning, pp. 6770-6780, PMLR, 2021.

[110] B. D. Haeffele and R. Vidal, Global optimality in neural network training, in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7331-7339, 2017.

[111] T. Ergen and M. Pilanci, Path reqularization: A convezxity and sparsity inducing
reqularization for parallel relu networks, arXiv preprint arXiv:2110.09548 (2021).

[112] H. Zhang, J. Shao, and R. Salakhutdinov, Deep neural networks with multi-branch
architectures are intrinsically less non-convex, in The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 1099-1109, PMLR, 2019.

200

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

T. Ergen and M. Pilanci, Global optimality beyond two layers: Training deep relu
networks via convex programs, in International Conference on Machine Learning,
pp. 2993-3003, PMLR, 2021.

T. Ergen and M. Pilanci, Revealing the structure of deep neural networks via
convex duality, in International Conference on Machine Learning, pp. 3004-3014,
PMLR, 2021.

S. Zagoruyko and N. Komodakis, Wide residual networks, arXiv preprint
arXiw:1605.07146 (2016).

A. Veit, M. J. Wilber, and S. Belongie, Residual networks behave like ensembles of
relatively shallow networks, Advances in neural information processing systems 29
(2016) 550-558.

Y. Yao, L. Rosasco, and A. Caponnetto, On early stopping in gradient descent
learning, Constructive Approximation 26 (2007), no. 2 289-315.

S. Wager, S. Wang, and P. Liang, Dropout training as adaptive reqularization,
arXiv preprint arXiv:1307.1493 (2013).

R. Parhi and R. D. Nowak, Near-minimax optimal estimation with shallow relu
neural networks, arXiv preprint arXiv:2109.08844 (2021).

J. Schmidt-Hieber, Nonparametric regression using deep neural networks with relu
activation function, The Annals of Statistics 48 (2020), no. 4 1875-1897.

A. Lewkowycz, Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari, The large
learning rate phase of deep learning: the catapult mechanism, arXiv preprint
arXiv:2003.02218 (2020).

Z. Allen-Zhu and Y. Li, What can resnet learn efficiently, going beyond kernels?,
Advances in Neural Information Processing Systems 32 (2019).

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari, When do neural
networks outperform kernel methods?, Advances in Neural Information Processing
Systems 33 (2020) 14820-14830.

R. Parhi and R. D. Nowak, What kinds of functions do deep neural networks
learn? insights from variational spline theory, arXiv preprint arXiw:2105.03361
(2021).

B. Neyshabur, R. Tomioka, and N. Srebro, In search of the real inductive bias:
On the role of implicit reqularization in deep learning, arXiwv preprint
arXiv:1412.6614 (2014).

201

[126]

[127]

[128]

[129]

[130]

[131]

132]

[133]

[134]

[135]

[136]

[137]

138

[139)]

P. Savarese, I. Evron, D. Soudry, and N. Srebro, How do infinite width bounded
norm networks look in function space?, in Conference on Learning Theory,
pp. 2667-2690, PMLR, 2019.

G. Ongie, R. Willett, D. Soudry, and N. Srebro, A function space view of bounded
norm infinite width relu nets: The multivariate case, in International Conference
on Learning Representations, 2019.

T. Ergen and M. Pilanci, Convexr geometry and duality of over-parameterized
neural networks, Journal of machine learning research (2021).

M. Pilanci and T. Ergen, Neural networks are convex reqularizers: Fxact
polynomial-time convex optimization formulations for two-layer networks, in
International Conference on Machine Learning, pp. 7695-7705, PMLR, 2020.

N. Srebro, J. D. Rennie, and T. S. Jaakkola, Mazimum-margin matriz
factorization., in NIPS, vol. 17, pp. 1329-1336, Citeseer, 2004.

R. J. Tibshirani, Fquivalences between sparse models and neural networks, .

T. Ergen and M. Pilanci, Implicit convex reqularizers of cnn architectures:
Convex optimization of two-and three-layer networks in polynomial time, arXiv
preprint arXiv:2006.14798 (2020).

G. Cybenko, Approximation by superpositions of a sigmoidal function,
Mathematics of control, signals and systems 2 (1989), no. 4 303-314.

A. R. Barron, Approximation and estimation bounds for artificial neural
networks, Machine learning 14 (1994), no. 1 115-133.

D. Yarotsky, Error bounds for approximations with deep relu networks, Neural
Networks 94 (2017) 103-114.

D. Dung, Optimal adaptive sampling recovery, Advances in Computational
Mathematics 34 (2011), no. 1 1-41.

V. Sadhanala, Y.-X. Wang, A. J. Hu, and R. J. Tibshirani, Multivariate trend
filtering for lattice data, arXiv preprint arXiv:2112.14758 (2021).

R. A. DeVore and G. G. Lorentz, Constructive approximation, vol. 303. Springer
Science & Business Media, 1993.

S. Burer and R. D. Monteiro, A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization, Mathematical Programming 95
(2003), no. 2 329-357.

202

[140] R. J. Tibshirani, Degrees of freedom and model search, Statistica Sinica (2015)
1265-1296.

[141] R. J. Tibshirani. Personal communication, Jan. 24,, 2022.

[142] D. Hsu, S. M. Kakade, and T. Zhang, An analysis of random design linear
regression, arXiv preprint arXiv:1106.2363 (2011).

[143] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, Deep
double descent: Where bigger models and more data hurt, Journal of Statistical
Mechanics: Theory and Ezperiment 2021 (2021), no. 12 124003.

[144] C. K. Chui and H. N. Mhaskar, Deep nets for local manifold learning, Frontiers in
Applied Mathematics and Statistics 4 (2018) 12.

[145] U. Shaham, A. Cloninger, and R. R. Coifman, Provable approximation properties
for deep neural networks, Applied and Computational Harmonic Analysis 44

(2018), no. 3 537-557.

[146] J. Schmidt-Hieber, Deep relu network approzimation of functions on a manifold,
arXiv preprint arXiv:1908.00695 (2019).

[147] M. Chen, H. Jiang, W. Liao, and T. Zhao, Nonparametric regression on
low-dimensional manifolds using deep relu networks: Function approximation and
statistical recovery, Information and Inference: A Journal of the IMA 11 (2022),
no. 4 1203-1253.

[148] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778, 2016.

[149] S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He, Aggregated residual
transformations for deep neural networks, in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1492-1500, 2017.

[150] L. W. Tu, Manifolds, in An Introduction to Manifolds, pp. 47-83. Springer, 2011.

[151] H. Federer, Curvature measures, Transactions of the American Mathematical
Society 93 (1959), no. 3 418-491.

[152] P. Niyogi, S. Smale, and S. Weinberger, Finding the homology of submanifolds
with high confidence from random samples, Discrete & Computational Geometry
39 (2008) 419-441.

[153] D. Geller and I. Z. Pesenson, Band-limited localized parseval frames and besov

spaces on compact homogeneous manifolds, Journal of Geometric Analysis 21
(2011), no. 2 334-371.

203

[154] H. Tribel, Theory of function space i, Monographs in Mathematics 78 (1992).

[155] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2019.

204

	Curriculum Vitae
	Abstract
	Introduction
	Background
	Contributions

	Bayesian Tensorized Nerual Networks
	Introduction
	Problem formulation
	Bayesian training
	Numerical Experiments
	Conclusion

	Quantized Tensorized Neural Network Training on FPGA
	Introduction
	Tensor Train Neural Network
	Rank-Adaptive Tensorized Neural Network
	Low-Precision Tensorized Training
	FPGA implementation
	Experiments and results
	Conclusion
	Detailed operations

	NTK of BinaryWeight Neural Networks
	Introduction
	Related work
	Preliminary
	Approximation of binary weight neural network
	Capacity of Binary Weight Neural Network
	Numerical result
	Discussion
	Proofs of technical results
	Additional information about numerical result

	Local adaptivity of Weight Decayed DNNs
	Introduction
	Related works
	Preliminary
	Main Results: Parallel ReLU DNNs
	Proof Overview
	Experiment
	Conclusion and Discussion
	Proofs of technical results
	Additional information about numerical result

	Overparameterized ResNets for functions on manifolds
	Introduction
	Preliminary and related work
	Main theorem
	Proof overview
	Discussion
	Proof of technical results

