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On the Crossroads of Scattering Transform and Machine Learning in Image and Signal Processing

Abstract

Convolutional neural network (CNN) has been effective in solving image and signal processing

problems. On the other hand, scattering transform (ST) mathematically formalizes some properties

that have made the CNN successful in solving these problems. Its network structure is similar to a

CNN, except that it provides interpretable ST coefficients and does not require a gigantic dataset.

The ST network generates a robust representation stable to local deformation while keeping essential

high-frequency components of an input signal through a cascade of wavelet convolutions with

nonlinear operations followed by averaging. In dissertation, motivated by the mathematics behind

analyticity and monogenicity, we propose new ST networks to solve these problems.

We present the novel incorporation of the generalized Morse wavelet into the 1-D ST network

(Morse-STN) for music genre classification, instead of the commonly-used Morlet wavelet. The

reason behind is that the class of generalized Morse wavelets is a superfamily of analytic wavelets,

but the Morlet wavelet is only approximately analytic. A significant improvement in the classifica-

tion accuracy of music genre can be demonstrated in the GTZAN music signal dataset using the

generalized Morse wavelet rather than the Morlet wavelet.

A new Monogenic Wavelet Scattering Network (MWSN) is also proposed for 2-D texture image

classification, instead of using the 2-D Morlet wavelet in the standard 2-D ST network. Our MWSN

extracts valuable hierarchical features with interpretable ST coefficients which help us explain the

result. We illustrate the superior performance of our MWSN over the standard STN from the

experiment in the CUReT texture image database. The improvement can be explained by the

natural extension of 1-D analyticity to 2-D monogenicity.

Lastly, we apply the proposed ST networks in sonar signal classfication. Mine counter-measure

(MCM) is crucial for the US Navy, but it relies on accurate mine detection. We synthesize sonar

signals using both Gabor and real dolphin signals as sources for sonar classification. Then the

generated synthetic aperture sonar (SAS) signals from the underwater objects are classified by

the new ST feature extractors. The result can be explained by the ST coefficients together with
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interpretable simple classifiers such as the logistic regression and the support vector machines, while

deep learning approaches lack interpretability.
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CHAPTER 1

Introduction

The scattering transform network (STN) has an architecture similar to the well-known con-

volutional neural network (CNN). The latter is acclaimed for its ability to extract hierarchical

features [72] for many applications such as image classification [68] and facial recognition [116]

with gigantic training datasets. Even Mallat [82] and Wiatoski [132] formulated the mathematical

analysis of deep CNNs for feature extraction using scattering transform (ST). Despite the popu-

larity of CNN, the CNN overfits in a dataset without sufficient sample size. On the other hand,

the STN works well without being data hungry, and does not require stochastic optimization to

learn convolution filters from data, since it employs predefined wavelet filters. Yet, Mallat showed

that the STN provides a quasi-translation invariant representation from input signals when the

scale tends to infinite resolution, and it is Lipschitz continuous under non-uniform translation [82].

Furthermore, Bruna and Mallat demonstrated the power and effectiveness of the STN by the nu-

merical experiments for image classification [17,18]. Most importantly, the scattering coefficients

allow interpretation on machine learning applications, whereas interpretability is a challenge for

deep learning methods.

We provide an overview of the content for each chapter after the introduction. The overall theme

of the dissertation is the proposal of scattering transform approaches and their machine learning

applications. For each proposed scattering transform approach, the mathematics of analyticity and

monogenicity are leveraged to motivate the novel design of the scattering transform architectures.

The new methods are combined with existing machine learning tools to perform various tasks in

image and signal classification. Results from numerical experiments are presented throughout the

dissertation.

Chapter 2 reviews the mathematical background of analyticity and monogenicity. These con-

cepts are utilized in developing the novel scattering transform approaches. The chapter starts by

introducing analytic signal and analytic wavelet transform (AWT), which provides interpretable
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multiscale instantaneous magnitude and phase information for 1-D signal analysis. In particular,

we introduce and compare the Morlet wavelet and generalized Morse wavelets. When one wants

to analyze a 2-D signal, the concept of 1-D analyticity needs to be extended properly. A properly

extended concept of 1-D analytic signal to higher dimension is called the monogenic signal proposed

by Felsberg and Sommer [31]. Based on the monogenic signal theory, Olhede and Metikas proposed

the monogenic wavelet transform (MWT) [91] generalizing the 1-D AWT. The MWT inherits desir-

able properties of AWT on higher-dimensional signals, such as providing multiscale instantaneous

amplitude, local phase, and orientation information. It would lead to better interpretability of

high-dimensional input signals [91].

We then discuss the connections from the CNN to ST in Chapter 3. We provide an overview

of neural network, in particular the CNN, in the beginning of the chapter. Then we draw a part of

the published work written by the dissertation author as the first author on deep neural network:

Turbulence Removal Network (TRN) [20]. While there were multiple contributions in this research,

the main contribution discussed in the dissertation is the first proposal of using deep neural network

to address the problem of turbulence degradation on videos that are scarcely available in public.

Next, we move on to review the architecture of the STN, which has a very similar structure

with the CNN. We further connect the two subjects by their theoretical foundation developed by

Wiatoski [132], with an emphasis on the mathematical theories behind ST. After that, we briefly

describe the machine learning models that were utilized in the numerical experiments together with

the STN in the latter chapters of the dissertation.

After introducing the mathematical background and the connection between CNN and ST, we

discuss the techniques in GPU-enabled STN under the AWT. In particular, we focus on the proposed

STN incorporating the generalized Morse wavelets (Morse-STN) in Chapter 4. Some materials in

this chapter are extracted from the Reference [22] written by the dissertation author, Professor

Saito, and Dr. David Weber. Many previous works on the STN used the Morlet wavelet [81,

Sec. 4.3], which are only approximately analytic. A typical implementation of the STN, such as the

Kymatio package [5], employed the Morlet wavelet as its base filter. Nevertheless, the analyticity

of the wavelet is important for nonstationary and oscillatory input signals since we can represent

them in terms of amplitude, phase, and frequency in a multiscale manner [79]. In this dissertation,

2



we propose the use of Generalized Morse Wavelet (GMW) filters [80] as the base filters in the STN

instead of the popularly-used Morlet wavelet filters. In particular, we evaluated the performance

in music genre classification using the GTZAN music dataset [122].

Then we explore the natural extension from the 1-D ST to 2-D ST in Chapter 5. In our prior

work in Reference [21] written by the dissertation author and Professor Saito, we used MWT to

develop our 2-D STN network. The monogenic scattering transform network (MWSN) is a novel

idea to capture more 2-D geometric features instead of the default 2-D STN using the Morlet

wavelets. In addition to being a theoretically-sound 2-D extension of the AWT, there are several

desirable properties to make the MWT as a natural candidate for building a 2-D STN network

architecture as its base wavelet transform [91]. The MWT has been applied to image denoising [115]

and image compression [57]. The experiment in texture image classification on the CUReT texture

image dataset [26] have shown that we can capture 2-D geometric features more efficiently from

the MWSN than what the Morlet wavelets-based STN could provide.

In Chapter 6, we apply the proposed STN from last chapter in sonar signal classification. Con-

tent in this chapter contributed to the presentation on “Robust Feature Extraction from Acoustic

Wavefields for Object Classification” in the Office of Naval Research (ONR) MCM Virtual Program

Review in 2021 and 2022. We outline the procedures for sonar classification using Gabor function

as the source signal. We use the Helmholtz equation solver to generate the synthetic aperture sonar

(SAS) dataset [13,14,15]. Since the dolphin-based marine mammal systems (MMS) are adopted

as a solution for mine detection and hunting by the US Navy [86], we further use real dolphin clicks

as a source to generate wavefields for sonar signal classification experiments.

Last but not least, we conclude the common theme and the contributions of this dissertation

and highlight the possible directions for future work in Chapter 7. Supplementary information and

extra contents that are helpful but not strictly relevant to the common theme of the dissertation

topic can be found in the appendix. Appendix A shows the research in multi-detector fetal signal

extraction [63], with the dissertation author as a contributing author of the publication.
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CHAPTER 2

Analyticity and Monogenicity

This chapter is devoted to explain the mathematical concept of analyticity and monogenicity.

In particular, we will introduce the definition and the properties of an analytic signal in Section 2.1.

Later we will describe how analyticity can be extended through the monogenic wavelet transform

(MWT) to have an interpretable representation in 2-D signal analysis. Some nice properties of the

MWT will also be discussed in this chapter.

2.1. Analyticity

A signal is analytic if it is a complex-valued function without negative frequency components

[110]. An analytic signal of a real-valued function is an analytical representation providing useful

information such as phase and amplitude in signal analysis. The relationship between the real and

imaginary components in the Hilbert transform is described below:

Let g(x) be a real-valued signal with its Fourier transform

G(ξ) := F [g(x)](ξ) =

∫ ∞
−∞

g(x)e−2iπξx dx.(2.1)

Then there is a Hermitian symmetry in the Fourier transform G(ξ)

G(−ξ) = G(ξ)∗.(2.2)

Note that the function

G+(ξ) := G(ξ)(1 + sgn(ξ))

=


0, if ξ < 0,

G(ξ), if ξ = 0,

2G(ξ), if ξ > 0

(2.3)
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only contains non-negative frequency components. Due to the Hermitian symmetry, we can express

the Fourier transform G(ξ) in terms of G+(ξ) by

G(ξ) =



1

2
G+(−ξ)∗, if ξ < 0,

G+(ξ), if ξ = 0,

1

2
G+(ξ), if ξ > 0

=
1

2

(
G+(ξ) +G+(−ξ)∗

)
.

(2.4)

The analytic signal g+(x) of g(x) is the inverse Fourier transform of G+(ξ), i.e.,

g+(x) = F−1[G+(ξ)]

= F−1[G(ξ) + sgn(ξ)G(ξ)]

= F−1[G(ξ)] + F−1[sgn(ξ)] ∗ F−1[G(ξ)]

= g(x) +
i

πx
∗ g(x)

= g(x) +
i

π
p.v.

∫ ∞
−∞

g(y)

x− y
dy

=: g(x) + iH[g](x)

=: g(x) + ig(1)(x)

(2.5)

where g(1)(x) is defined as the Hilbert transform H of g(x) and p.v. is the Cauchy principal value

for an improper integral.

Similarly, we can define the anti-analytic signal as

g−(x) := g(x)− ig(1)(x),(2.6)

such that the signal can be expressed as an analytic decomposition:

g(x) =
1

2

(
g+(x) + g−(x)

)
(2.7)
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with

g±(x) = |g±(x)| exp(±2πiϕg(x)),(2.8)

where the square of the amplitude, |g±(x)|2, is the local energy and the phase ϕg(x) is the local

phase structural representation. In conclusion, as the Hermitian symmetry shows that the negative

frequency components are superfluous, we can obtain the analytic signal g+(x) with interpretable

information such as amplitude and phase for 1-D signal analysis.

2.1.1. Example of Analytic Signal. Let a real-valued function

g(x) = 2 cos

(
2π(100) exp(−x)

)
,

= 2Re

{
exp

(
−2πi (100) exp(−x)

)}(2.9)

where x ∈ R, be a chirp signal. The chirp signal g has a decreasing frequency from 100 Hz with

the x-axis as shown in the spectrogram in Figure 2.1. We can numerically compute the Hilbert

transform H of the chirp signal g in the Fourier domain. Analytically, the analytic signal g+ is

g+(x) = g(x) + iH[g](x) = 2 exp
(
−2πi (100) exp(−x)

)
(2.10)

From the analytic representation, the amplitude of the analytic signal is |g+(x)| = 2 and the

phase of the analytic signal ϕg(x) = −100 exp(−x). In particular, the amplitude can be computed

numerically by taking the modulus of the analytic signal as shown in Figure 2.2. The boundary

artifacts from the numerical result are due to the periodization of g via discrete Fourier transform

(DFT) in numerical computations.

Alternatively, we can find the phase ϕg
(0)(x) of the chirp signal by the instantaneous frequency

of the chirp signal by the following relationship:

ω0(x) =
1

2π

dϕg
(0)(x)

dx
(2.11)

The instantaneous frequency of the chirp signal is

ω0(x) = 100 exp(−x).(2.12)

6



Figure 2.1. Example of analytic signal from the 1D chirp signal.
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The phase of the chirp signal is the integral of the instantaneous frequency

ϕ(0)
g (x) = ϕ(0)

g (0) + 2π

∫ x

0
100 exp(−τ)dτ

= ϕ(0)
g (0)− 2π(100) exp(−x) + 2π(100)

(2.13)

The phase in Figure 2.3 is identical to ϕ
(0)
g in Equation (2.13) by setting ϕ

(0)
g (0) = 0. The phase

ϕg of the analytic signal g+ and the phase ϕ
(0)
g of the chirp signal are differed only by a constant.

The instantaneous frequency of the analytic signal g+ computed numerically as shown in Figure

2.3 is identical to ω0 except with boundary artifacts in numerical computations.

Figure 2.2. The amplitude of analytic signal from the 1D chirp signal.

2.2. Continuous and Analytic Wavelet Transform

The notion of wavelet is needed in signal analysis. A wavelet, also known as mother wavelet,

ψ(x) ∈ L2(R), is a function whose translated and dilated versions provide a way to perform localized

time-frequency analysis of nonstationary oscillatory signals, such as music and audio signals [81,

Sec. 4.3]. The wavelet has to satisfy the two admissibility conditions in Equations (2.14) and (2.15):

Cψ :=

∫
R

|Ψ(ξ)|2

|ξ|
dξ <∞(2.14)

8



Figure 2.3. The phase and the instantaneous frequency of analytic signal from the 1D

chirp signal.

∫
R
|ψ(x)|2 dx = 1,(2.15)

where Ψ(ξ) is the Fourier transform of the wavelet. In particular, a wavelet is called analytic if it

is complex-valued and vanishes for negative frequencies. That is, Ψ(ξ) = 0 for ξ < 0.

The 1-D continuous wavelet transform (CWT) of a signal g ∈ L2(R) with respect to the mother

wavelet ψ is given by

Wψg(s, b) :=
1√
s

∫
R
g(x)ψ∗

(
x− b
s

)
dx(2.16)

for any scale s ∈ R+, time b ∈ R. In particular, the scale s is a dilation parameter. When s is

small, the wavelet tends to be contracted for capturing rapidly changing details and hence higher

frequency information of the signal g(x). On the other hand, when s is large, the wavelet tends to

be stretched for capturing coarse, slowly varying features and hence lower frequency information

of g(x).

Under the admissibility condition for wavelet ψ, if g ∈ L2(R), then the CWT is invertible, and

the inverse continuous wavelet transform (ICWT) is

g(x) =
1

Cψ

∫
R

∫ ∞
0

1√
s
Wψg(s, b)ψ

(
x− b
s

)
ds

s2
db.(2.17)

9



The CWT defines the analytic wavelet transform (AWT) if ψ is analytic. In this case, any

signal g ∈ L2(R) can be reconstructed after the AWT. That is,

g(x) =
1

Cψ

∫
R

∫ ∞
0

1√
s

Re

(
Wψg(s, b)ψ

(
x− b
s

))
ds

s2
db.(2.18)

The AWT gives an approximation of the instantaneous phase, frequency and amplitude of any

signal g in an area surrounding each time-scale location (s, b) [27, 81]. An application of AWT

is the detection and characterization of singularities using the modulus maxima of the wavelet

transform [120]. More applications in signal and image processing with the features from the

analytic wavelets are outlined by Selesnick et al. [109].

2.2.1. Example of analytic wavelet transform. Let

g(x) = 1.5 sin
(

2π(16)x
)
1[0.1,0.3) + 2 sin

(
2π(32)x

)
1[0.5,0.7)(2.19)

be an initial signal, where x = 0 : 1
500 : 1. Figure 2.4 visualizes the signal g, which is supported

on [0.1, 0.3) ∪ [0.5, 0.7). We will use AWT to illustrate how to extract time-frequency information

from the initial signal.

Figure 2.4. An example of a signal g.

10



We can choose an analytic wavelet for AWT. One candidate is Gabor wavelet, which is an

approximately analytic wavelet defined as

ψ(x; s, x0, k0) = e−
(x−x0)

2

s2 e−ik0(x−x0),(2.20)

where s controls the rate of exponential decay from the center x0, and k0 controls the modulation

Figure 2.5. An example of Gabor wavelets that are approximately analytic.

rate in the complex exponential. Figure 2.5 shows the frequency response of the filter bank from

ψ(x; s, x0, k0) when x0 = 0, s = 2, k0 = 1 with frequency limit from 10 Hz to 40 Hz. The wavelet

has wider bandwidth when it has a higher center frequency. We will discuss the different wavelet

classes more in the next subsection.

The AWT of the signal g(x) under the analytic wavelet ψ(x; s, x0, k0) can be visualized by a

scalogram in Figure 2.6. We can obtain the time-frequency representation of the initial signal g(x).

The scalogram is more interpretable than the plot of the original signal g(x), showing the decay

of amplitude at different frequencies from the two supported intervals. Since the time-frequency

representation from the scalogram is more structured, the representation is extensively used for

feature extraction of the initial 1-D signal.

11



Figure 2.6. Scalogram of the AWT.

2.3. Morlet and Generalized Morse Wavelets

In the last section, we described the use of analytic wavelets in an example for extracting

the time-frequency representation from a signal through wavelet transform. In practice, there are

different choices of analytic wavelet in numerical computations. We will also outline the properties

of the Morlet Wavelets and Generalized Morse Wavelets (GMWs).

2.3.1. Morlet Wavelet. One of the oldest complex-valued wavelets proposed by Jean Morlet

(1984) whose origin can be traced back to Dennis Gabor (1946). Mathematically, the Morlet wavelet

is defined as [138]:

ψν(t) := cνπ
−1/4e−t

2/2
(

eiνt − e−ν
2/2
)
,(2.21)

where, cν :=
(

1 + e−ν
2 − 2e−3ν2/4

)−1/2
. Figure 2.7 visualizes the Morlet wavelet with ν = 0.5π

and ν = π. It is basically a Gabor wavelet function with a correction to get ψ̂ν(0) = 0. In fact, its

12



(a) Morlet with ν = 0.5π (b) Morlet with ν = π

Figure 2.7. Examples of Morlet wavelet. The blue and red colours in the plots
correspond to real and imaginary parts.

Fourier transform is:

ψ̂ν(ω) = cνπ
−1/4e−(ν−ω)2/2

(
1− e−νω

)
,(2.22)

which gives us ψ̂ν(0) = 0 while ψ̂ν(−0.43578) ≈ −1.70923 × 10−9 for ν = 2π. Hence the Morlet

wavelet is not strictly analytic.

The Morlet wavelet was extensively used in the scattering transform network (STN) litera-

ture and software implementation which we will discuss in the next chapters. However, Lilly and

Olhede [78, 80] numerically demonstrated that even small leakage to negative frequencies in the

Morlet wavelet can result in abnormal transform phase variation.

2.3.2. Generalized Morse Wavelet (GMW). A follow-up question that we need to address

is in practice which analytic wavelet is suitable. It turns out that the Generalized Morse Wavelets

(GMWs) is a promising superfamily of truly analytic wavelets [80,92]. The GMWs in the frequency

domain can be defined as

(2.23) Ψβ,γ(ω) :=

∫
R
ψβ,γ(t)e−iωt dt = H(ω)αβ,γω

βe−ω
γ
,

13



where β > 0, γ ≥ 1 are two main parameters controlling the form of wavelet,

αβ,γ = 2

(
eγ

β

)β/γ
is a normalization constant, and H(ω) is the Heaviside step function. Besides showing an addi-

tional degree of freedom in the GMWs, the two parameters β and γ control the time-domain and

frequency-domain decay respectively. The peak frequency ωβ,γ := (β/γ)1/γ is the frequency at

which the derivative of Ψβ,γ vanishes [78,80].

2.3.2.1. Interpretation of parameters in GMWs. Next, we will discuss the interpretations of the

pair of parameters (β, γ). Figure 2.8 in the time domain and Figure 2.9 in the frequency domain

which were generated by the JLab package [77] visualize different pairs of (β, γ) in the Morse

wavelets.

When β = 0, γ > 1, the GMW becomes

ψ0,γ(t) =
1

π

∫ ∞
0

e−ω
γ
eiωt dω,(2.24)

Alternatively, we can define a kernel for time-domain transformation

Kγ(t, u) :=

∫ ∞
0

1

2π
eiωt−iωγu dω.(2.25)

By the fact that Ψ0,1(ω) = 2e−ω, one has

ψ0,γ(t) =
1

2π

∫ ∞
0

Ψ0,1(ωγ)eiωt dω

=
1

2π

∫ ∞
0

(∫ ∞
−∞

ψ0,1(u)e−iωγu du

)
eiωt dω

=

∫ ∞
−∞

ψ0,1(u)

(∫ ∞
0

1

2π
eiωt−iωγu dω

)
du

=

∫ ∞
−∞

ψ0,1(u)Kγ(t, u) du.

(2.26)

In particular, when γ = 1, we have

K1(t, u) =

∫ ∞
0

1

2π
eiω(t−u) dω = δ(t− u).(2.27)
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Figure 2.8. The GMWs with various parameters in the time domain. The blue
and red colours in the plots correspond to real and imaginary parts.

as the Dirac delta function. Therefore, increasing the value of γ from ψ0,γ=1(t) can be done by

warping in the frequency domain.

For β > 0, we can obtain ψβ,γ(t) by differentiation in time domain [80]:

ψβ,γ(t) = αβ,γ(−i)β
1

2

dβ

dtβ
ψ0,γ(t)(2.28)

Hence, the value of β from ψ0,γ(t) can be increased by differentiation with respect to β in the time

domain. While the parameter γ controls the decay of high-frequency content of the wavelet, we will

show that β controls the decay in time domain. Since expression in the second equality of Equation
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Figure 2.9. The GMWs with various parameters in the frequency domain.

(2.29) is Abel summable [133], we can interchange the integral and summation such that

ψβ,γ(t) =
1

2π

∫ ∞
0

αβ,γω
βe−ω

γ
eiωt dω

=
1

2π

∫ ∞
0

αβ,γ

∞∑
s=0

(−1)s

s!
ωγs+βeiωt dω

= αβ,γ

∞∑
s=0

(−1)s

s!

1

2π

∫ ∞
0

ωγs+βeiωt dω

= αβ,γ

∞∑
s=0

(−1)s

s!
e

iπ(sγ+β+1)
2

Γ(sγ + β + 1)

tsγ+β+1

∼ αβ,γe
iπ(β+1)

2
Γ(β + 1)

tβ+1
, |t| → ∞

(2.29)
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Hence, the wavelet ψβ,γ(t) has a O(t−(β+1)) asymptotic behaviour. From Figure 2.8, we see

the the more rapid long-time decay as β increases. Figure 2.8 further shows that the filter central

portion broadens when β increases. On the other hand, as γ increases, the curvature of the envelope

of the filter reduces at the center, therefore leading to a broader central portion, while not altering

the long-time decay.

There are several cases on the parameter pair (β, γ) that have been investigated:

(1) When γ = 1, the GMWs are regarded as “Cauchy” wavelets [138], and are equivalent

to a solution to Schrödinger equation suggested by Morse [87]. The wavelet form in the

frequency domain is a generalized Gamma distribution [75,113]. The generalized Gamma

distribution has been reexamined with applications in physics of elementary particles and

fields [52]. In particular, if β = 0, the Morse wavelet is analytic Cauchy wavelet

ψ0,1(t) =
1

π

∫ ∞
0

e−ωeiωt dω

=
1

π(1− it)

=
1

π(1 + t2)
+ i

t

π(1 + t2)
.

(2.30)

If β ≥ 1, by Equation (2.28), the wavelet has the from

ψβ,1(t) =

(
e

β

)β Γ(β + 1)

π(1− it)β+1
.(2.31)

(2) When γ = 2, the GMWs are the analytic “Derivative of Gaussian” (DoG) wavelets [80].

Lilly and Olhede [80] also mentioned that this class of wavelets is less ideal for the analysis

of oscillatory signals than the class of wavelets with γ = 3.

When β = 0, we have

ψ0,2(t) =
1

π

∫ ∞
0

e−ω
2
eiωt dω

=
1

2
√
π

e−t
2/4 +

i

π
e−t

2/4

∫ t/2

0
eu

2
du.

(2.32)
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By differentiating β times on the wavelet ψ0,2, we obtain

ψβ,2(t) = αβ,2(−i)β
1

2

dβ

dtβ
ψ0,2(t).(2.33)

The doublet of parameters (β, γ) = (2m, 2) for m ∈ N can be exactly computed using the

discrete Fourier transform [92].

(3) When γ = 3, the GMWs are known as “Airy wavelets”. They approximate Gaussian

distribution closely while being exactly analytic [80]. This family of wavelets can be

derived from the inhomogeneous Airy function Hi(z) [54, p. 448]:

Hi(z) =
1

π

∫ ∞
0

e−u
3/3ezu du.(2.34)

When β = 0, the wavelet has the form

ψ0,3(t) =
1

π

∫ ∞
0

e−ω
3
eiωt dω

=
1

31/3
Hi

(
it

31/3

)
.

(2.35)

Again, we can obtain ψβ,3(t) for any β > 0 by Equation (2.28).

(4) When γ = 4, the GMWs are the “Hyper-Gaussian” wavelets [80]. The analytic “Derivative

of Gaussian” (DoG) wavelet ψ0,2(t) can be produced by wrapping the analytic Cauchy filter

Ψ0,1 in the frequency domain such that

ψ0,2(t) =
1

2π

∫ ∞
−∞

Ψ0,1(ω2)eiωt dω.(2.36)

Then the “Hyper-Gaussian” wavelet can be given by

ψ0,4(t) =
1

2π

∫ ∞
−∞

Ψ0,2(ω2)eiωt dω.(2.37)

We have discussed different family of generalized Morse wavelets above. The numerical imple-

mentation and experiment by Lilly and Olhede [78, 80] illustrate that the GMWs are supported

only on positive frequencies unlike the Morlet wavelets. Thus the statistical properties will not be

destroyed due to departures from analyticity if one adopts the GMWs.
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There are extensive applications for the estimation of characteristics in non-stationary signals

using GMWs. For instance, Olhede and Walden used Morse wavelets to reduce the noise in quadra-

ture Doppler ultrasound blood flow data [93]. The Morse wavelets are also used in solar magnetic

field data to detect coherent motion [90]. Brittain et al. applied multiple Morse wavelets to con-

struct spectra and bivariate statistics on neurophysiological data [16]. When γ = 1, the GMWs

are applied in physical fading models for communications [103,135] and threshold autoregressive

conditional duration model in econometrics [136].

2.4. Monogenicity: Analyticity in Higher Dimension

As suggested by our research goal to analyze the 2-D signals, we are interested in analyzing the

high-dimensional signals with an interpretable representation similar to the analytic representation

of the 1-D signals. However, it is more difficult to find the analogue of the analytic signal in higher

dimensions and hence the analogue of the amplitude and the phase. Fortunately, we can extend

the idea to higher dimensions. The 1-D analytic signal is actually the limit of an analytic function

which satisfies the Cauchy-Riemann equations in the upper half of the complex plane [49]. The

materials are essential and drawn from Reference [?].

Definition 1. (The hyperanalytic function)

A hyperanalytic function is a vector-valued function k+(x,y) with a spatial variable x ∈ Rq, and

associated auxiliary variable y ∈ Γ(p) :=
{
y : yi > 0 for i = 1, · · · , p

}
that satisfies the generalized

Cauchy-Riemann equations for the auxiliary variable y. Note that p, q ∈ N.

A vector-valued function g+(x) which can be expressed as the limit of a hyperanalytic function

k+(x,y) as y → 0+ is a hyperanalytic signal.

The 2-D Riesz system [114] is a natural choice of a 2-D generalization to the Cauchy-Riemann

equations for functions of variable z = x+ iy. The 2-D Riesz system of equations is defined by the

three variables (x1, x2, y) and is satisfied by a function F = (f1, f2, f3) such that

x3 = y,

3∑
k=1

∂fj
∂xk

= 0,
∂fj
∂xk

=
∂fk
∂xj

, 1 ≤ j, k ≤ 3.
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Any solution of the Riesz system in the upper half-space y > 0 is said to be a monogenic [30].

We then need to introduce the quaternion, which has the form

e := e1 + e2i + e3j + e4k ∈ H,

where H is the 4-D real associative algebra of the quaternions, i, j,k are the quaternion units and

el ∈ R, l = 1, · · · , 4. The quaternion units satisfy the following multiplication rules:

i2 = j2 = k2 = −1; ij = −ji = k; jk = −kj = i; ki = −ik = j.

In addition, if e ∈ H, then we have e∗ = e1−e2i−e3j−e4k, and ‖e‖ =
√
ee∗ =

√
e2

1 + e2
2 + e2

3 + e2
4.

We need the notion of quaternion when we introduce: (1) the definition of the Fourier transform

of a high-dimensional signal by identifying the quaternion unit j as the imaginary unit i; and

(2) the Riesz transform for two orthogonal directions, x1 and x2. The Fourier transform of of a

d-dimensional signal g(x) is expressed by

G(ξ) :=

∫
Rd
g(x)e−2πjξTxdx.

If k+(x, y), where x ∈ R2, is a monogenic function, then the anti-monogenic function

k−(x, y) := k+∗(x, y)

is a solution of the Riesz system in the lower half-space y < 0. Let rl be the Riesz kernel [114] [48].

Define Rl to be the Fourier transform of rl, and R be the Riesz transform of a given signal. There

exists some constant c = 1/(2π) for dimensional normalization such that

rl(x) := c
xl
‖x‖3

Rl(ξ) := −j ξl
‖ξ‖

for l = 1, 2.

(2.38)
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Also, the Riesz transform is given by

Rg(x) := iR1g(x) + jR2g(x)

Rlg(x) := g(l)(x) := (rl ∗ g)(x) = c p.v.

∫
g(x− τ )τl
‖τ‖3

dτl for l = 1, 2.
(2.39)

In the 2-D case, if τ = τ1 + jτ2, then by Equation (2.38), the Riesz transform

Rg(x) = c p.v.

∫
g(x− τ )(τ1 + jτ2)

‖τ‖3
dτ(2.40)

has the Fourier transform

F [Rg](ξ) = −jξ1 + jξ2

‖ξ‖
G(ξ) =

ξ2 − jξ1

‖ξ‖
G(ξ).(2.41)

Let y → 0+, the monogenic signal g+(x) can be computed from the hyperanalytic function

k+(x, y). The monogenic signal g+ and anti-monogenic signal g− of the signal g are defined by

introducing an operator M [31] such that

g±(x) :=M±g(x)

:= g(x) ± Rg(x)

= g(x) ± ig(1)(x) ± jg(2)(x).

(2.42)

The 1-D analytic signals can be decomposed into amplitude and phase. Similarly, the monogenic

signal g+(x) can be further decomposed into amplitude, phase, and phase direction for an easy

interpretation [19], as described in the following theorem on the local polar representation of the

monogenic signal.

Theorem 2.4.1. (local polar representation) Let g+(x) be the monogenic signal of the original

signal g(x). We have the polar representation

g+(x) = ‖g+(x)‖
(

g(x)

‖g+(x)‖
+

ig(1)(x) + jg(2)(x)

‖ig(1)(x) + jg(2)(x)‖
‖ig(1)(x) + jg(2)(x)‖

‖g+(x)‖

)
= A(x)(cosφ(x) + ν(x) sinφ(x)),

(2.43)

where

A(x) := ‖g+(x)‖ =
√
|g(x)|2 + |g(1)(x)|2 + |g(2)(x)|2
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Figure 2.10. The monogenic representation of a 2D chirp signal.

denotes the amplitude of the monogenic signal g+(x),

φ(x) := cos−1

(
g(x)

‖g+(x)‖

)
denotes the local phase and

ν(x) :=
ig(1)(x) + jg(2)(x)

‖ig(1)(x) + jg(2)(x)‖

denotes the local phase direction.

2.4.1. Example of monogenic representation. Theorem 2.4.1 outlines the local polar rep-

resentation of a monogenic signal. We provide two examples to illustrate the monogenic represen-

tation from some 2-D signals.

The first example is the monogenic representation of a 2-D chirp signal. Let

g(x, y) = cos(1000x2 + 1000y2).

We sample the variables x = y = 0 : 1
100 : 2. We can compute the mongenic signal g+(x, y)

by Equation (2.41) in the Fourier domain. In particular, the Riesz x-component g(1) corresponds
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to the i component of the Riesz transform in Equation (2.39), while the Riesz y-component g(2)

corresponds to the j component of the Riesz transform as shown in Figure 2.10. The figure il-

lustrates that the Riesz x-component analytically extracts the horizontal texture, while the Riesz

y-component analytically extracts the vertical texture of the 2-D chirp signal. In other words, the

monogenic signal

g+(x, y) = g(x, y) + g(1)(x, y) i + g(2)(x, y) j

can be visually represented by the top three subfigures in Figure 2.10. By Equation (2.43), we can

obtain the Riesz amplitude A(x), the local phase φ(x) and the local phase direction (angle) ν(x)

from the monogenic signal g+:

(1) The amplitude A(x) is the monogenic amplitude for phase-invariant contour detection.

(2) The local phase φ(x) captures and classifies the shape of the contour such as edges and

lines.

(3) The local phase direction ν(x) captures the local spatial orientation.

These three new components can be viewed by the bottom three subfigures in Figure 2.10.

We also visually illustrate the monogenic representation of the well-known “Barbara” image in

the research community in Figure 2.11. The “Barbara” image was initial applied a low pass filter

for signal de-noising. Then we extract the Riesz-x and Riesz-y components from the image that

place emphasis respectively on the horizontal and vertical lines or edges. Again, we can compute

the amplitude A, the local phase φ and the local phase direction (angle) ν from the monogenic

signal by Equation (2.43). In particular, the local phase captures sharp edges and lines.
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Figure 2.11. The monogenic representation of the Barbara image.
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CHAPTER 3

From Convolutional Neutral Network to Scattering Transform

With the explosion of data and the availability of cloud computing resources to store and process

gigantic amount of data, neural network approach has become popular in image and signal process-

ing. After presenting the concept of neural network and convolutional neural network (CNN), we

will review one application of convolutional neural network in image restoration from Reference [20]

authored by the dissertation author as the first author. Then we will discuss scattering transform

(ST) which was used to develop mathematical theory of deep CNN by Mallat [82].

3.1. Overview of Neural Network

3.1.1. Fundamentals of neural network. Neural network is a network of biological neurons

that are connected to other neurons with different weights. The inputs taken by the network are

combined with different weights through linear combinations. The resulting output then passes

through a nonlinear activation layer such as the commonly-known ReLU layer [1] to deliver the

activated output for the next layer. This algorithmic process is called a perceptron. When we

combine multiple perceptrons in a sequential order, we can form a feedforward neural network with

multiple layers, and the new algorithmic process is known as multi-layer perceptron (MLP). The

layers that are between the input layer and the output layer are called “hidden” layers.

The process of learning the weights between neurons is called backpropagation. The weights are

updated backward through stochastic gradient descent (SGD) [4], which is a method to iteratively

optimize an objective function using gradient descent. Nevertheless, a deep neural network is diffi-

cult to train through backpropagation due to the enormous amount of parameters to update. One

common issue in training is the gradient vanishing problem [94], where we completely terminate

the learning process as backpropagation employs chain rule to compute gradients through multi-

plication. Since the magnitudes of gradients are exponentially smaller with more layers, the neural

network stops updating these gradients at early stages.
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There are some other common stochastic optimization methods to address the issue of small and

noisy gradient, such as Adam [65] which is an algorithm to update stochastic gradients based on

adaptive estimates of lower-order moments and Momentum [118] which is a method to accelerate

learning in the directions of low curvature in the surface of the objective function together with

SGD, while keeping stability in the direction of high curvature in optimization. Together with the

feedforward process, we train a neural network that can require searching considerable amount of

hyperparameters and updating a gigantic amount of weights.

However, the complexity of the neural network often leads to overfitting when we do not have

sufficient amount of data required for training the neural network and addressing variability refer-

ring to the estimate on how the model prediction varies given different training data. Increasing

the sample size with quality is always the most straightforward solution to reduce variability, but

we may not acquire such gigantic amount of data for training the neural network. There are other

different ways to reduce variability in model prediction:

(1) Standardize features fed into the neural network to zero mean and unit variance.

(2) Add dropout layers [112] in the neural network to randomly deactivate some portion of

neurons at each step of training.

(3) Perform batch normalization [56], meaning that we batchwisely normalize the values after

activation in order to reduce variability in the hidden layer representation.

(4) Perform transfer learning by using pre-trained model, such as a model trained from Ima-

geNet [28], and an additional layer with specific training proposes.

A specific type of neural network that has wide range of applications is convolutional neural net-

work (CNN), which captures the spatial dependencies of images through filters. In general, the

convolutional layers extract underlying features from an image, and the pooling layers extract the

most prominent features locally and reduce the dimension from the previous layers [58]. Lastly,

the intermediate output is mapped into the fully connected layer for classification, regression or

other machine learning purposes.

3.1.2. Generative adversarial networks. The CNN structure has been used in many deep

networks. For example, Goodfellow at al. [43] proposed generative adversarial networks (GANs)

that define two different competitors with CNN structures: the generator Gθ and the discriminator
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Dξ, where θ, ξ are parameters in the generator and the discriminator respectively. The generator

synthesizes samples from a noise space Z while a discriminator discriminates generated sample

Gθ(zi) and actual sample yi. The main goal of the generator is to synthesize samples that are

perceptually persuasive and difficult to be distinguished by the real samples. We can describe the

competition between the generator G and the discriminator D through the formulation of minimax

objective:

(3.1) min
G

max
D

E
x∼Pr

[logD(x)] + E
x̃∼Pg

[log(1−D(x̃))],

where Pr denotes the data distribution and Pg denotes the distribution generated by x̃ = G(z),

where the vector z is sampled from a noise distribution. i.e., z ∼ N (0, In). The main benefit of

GANs is the capability to synthesize clear samples of high perceptual quality.

However, as described by Salimans et al. [107], there are undesirable issues such as vanishing

gradients, which has been discussed in Section 3.1.1, and mode collapse in the training. The mode

collapse problem occurs when the generator synthesizes only one or a few outputs. The conceptional

reason of the existence of the problem is that the generator too effectively discovers a few outputs

that can deceive the discriminator easily in the minimax competition (3.1). So the generator keeps

producing certain outputs only.

The challenges can also be explicated by equivalence of minimizing the objective function for

GANs and minimizing the Jensen-Shannon (JS) divergence between the data and model distribu-

tions. The latter objective often leads to vanishing gradients. Arjovsky et al. [6] introduced the

weaker Wasserstein-1 distance W (Pr,Pg) to address the gradient vanishing problem and provide

clear gradients almost everywhere in the GAN model. The competition between the two networks

is then reformulated as the following minimax optimization objective:

(3.2) min
G

max
D∈D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃)],

where D is the set of 1-Lipschitz functions. The original enforcement of the Lipschitz constraint

suggested by Arjovsky et al. [6] is to clip the weights to [−c, c]. Gulrajani et al. [46] proposed
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another approach by adding the term for gradient penalty:

(3.3) λ E
x̃∼Pg

[(‖∇x̃D(x̃)‖2 − 1)2].

Hyperparameter tuning is not required and the method is robust to the architecture of generator. In

contrast to the conventional CNN, GANs can synthesize much clearer images. WGAN-`1 proposed

by Kupyn et al. [69] has shown effectiveness in deblurring images.

3.2. Application of Convolution Neural Network: Turbulence Removal Network

As discussed in the last section, we sometimes need to deal with the data scarcity problem for

training a neural network. For instance, the direct use of deep learning approaches are not feasible

for image reconstruction from atmospheric turbulence. The goal for restoring turbulence-distorted

images is to remove both geometric distortions and space-time varying blurs. It is challenging to

simultaneously discard both the geometric distortions and blurs by mathematical modelling. How-

ever, we lack sufficient turbulence-distorted video frames for training a neural network. Therefore

a simple and effective data augmentation approach was developed to overcome the data scarcity

problem. The approach samples real atmospheric turbulence with deformation fields and different

extent of blurs to generate sufficient data for training. A variety of turbulence-distorted videos can

be produced from a single image based on the randomly generated artificial turbulence. Normally,

the image restoration performance is commensurate with the sample size in training. However, the

training sample size requirement is not highly demanding and restrictive in the proposed Turbulence

Removal Network (TRN) to reconstruct the distorted images under turbulence with data augmen-

tation method. The material of the whole subsection 3.2 is drawn from the previously published

work by Chak et al. [20].

3.2.1. Data Augmentation. Since a massive sample size is required in deep learning, we re-

view a data augmentation algorithm to generate sufficient amount of artificially turbulence-distorted

training data. The approach was new, simple and yet effective to reduce variability in deep learning

model prediction from initially a small set of data.

To be precise, we transform a single clean image I of height h and width w to another new

image It with blurs and geometric distortions in the following manner. Firstly, we randomly pick
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(w − 2N)× (h− 2N) pixel locations, where N ∈ N. At each randomly picked pixel location (x, y)

in the image, we examine a local patch PNx,y of size (2N + 1) × (2N + 1) around the pixel. We

then generate a motion vector field V x,y = (u, v) for each local patch PNx,y. For every p ∈ PNx,y,

we sample the stochastic vector (u(p), v(p)) from a normal distribution, which is then blurred by

a Gaussian kernel and multiplied entry-wisely by a value measuring the distortion strength. The

vector field V x,y can be mathematically written as:

(3.4) V x,y = S (Gσ ∗ N1, Gσ ∗ N2),

whereN1 andN2 are random variables drawn from a normal distributionN (0, 1), S is the distortion

strength value and Gσ is the Gaussian kernel with standard deviation σ. The vector field V x,y can

then be applied to the whole image by padding zero outside the local patch PNx,y. We warp the

original image I by V x,y to transform the image, and iterate the whole process by M times.

After M iterations, we obtain the overall motion vector field V = (u, v) by fusing the vector

fields on local patches together. In other words,

(3.5) V =
∑

(x,y)∈Q

V x,y,

where Q is the set of (w − 2N)× (h− 2N) randomly picked pixel locations.

Let It be an image after transformation according to the previous procedures. Then the trans-

formed image It is smoothened by a Gaussian kernel

η(x) = e−
x2

2B2 ,

where the parameter B is sampled from the uniform distribution U [0.1, 1]. The transformed image

at the final stage under the occurrence of blurs and geometric distortions is given by

Ii = η ∗ It.

With these randomized parameters, an original clean image I is transformed into a sequence of

video frames {I1, ..., In} with blurs and geometric distortions for training a deep neural network.

Figure 3.2 displays some images under transformation with different values of distortion strength.
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Figure 3.1. The overall procedure of the algorithm for data augmentation.

(a) S = 0.1 (b) S = 0.2 (c) S = 0.3 (d) S = 0.4

Figure 3.2. Generation of frames under turbulence distortion of different strength
S and fixed blur constant B = 1 for the propose of illustration. The extent of the
distortion on the image can be captured by the strength value S.

Supported by the experimental results later, the data augmentation algorithm successfully covers

a wide range of deformations. It also suggests that deep neural network can learn geometric

distortions. See Algorithm 1 for the summary of the whole data augmentation algorithm for

turbulence-distorted video synthesis. Also, see Figure 3.1 for the overall procedure of the algorithm.

3.2.2. Subsampled Turbulence Removal Network. Based on the fundamentals of the

deep CNN as covered in this chapter, we will review the approach, namely, the Turbulence Removal

Network (TRN). Figure 3.3 shows that whole network architecture for both our generator network

G and the critic network D.

3.2.2.1. WGAN−`1 with multiframe input. The TRN proposed is a WGAN with subsampled

multiframe input and the incorporated `1 penalty in the model. Multiframe input in the TRN is a

video created by an original image in greyscale under deformation from turbulence. Then, we train

TRN to discard blurs and geometric distortions based on the WGAN architecture. The additional

`1 penalty attempts to extract the important textures of the original image under optimization.

3.2.2.2. Multiframe input. The conventional input for GANs is a noise vector z ∈ RN randomly

generated from the normal distribution. Then we transform the noise vector z into the desired
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Algorithm 1 Blur and Distortion Systhesis

Parameters:
N = 32 : the patch size 2N − 1
M = 1000 : the number of iterations
σ : the standard deviation of the Gaussian kernel
B : the blur constant sampled from the uniform distribution U [0.1, 1]
S : the distortion strength sampled from the uniform distribution U [0.1, 0.4]
Commands:
rand: return uniformly distributed random numbers
randi: return uniformly distributed pseudorandom integers
randn: returns an n-by-n matrix of normally distributed random numbers

1: procedure DistortBlur (Img, σ, N , M , S, B)
2: Create a Gaussian kernel from a Normal distribution N (0.2 ∗ rand− 1, σ2).
3: for i = 1→M do
4: x← randi(−2 ∗N + width) +N
5: y ← randi(−2 ∗N + height) +N
6: u(x−N : x+N, y −N : y +N)

← u(x−N : x+N, y −N : y +N) + S ∗ randn
7: v(x−N : x+N, y −N : y +N)

← v(x−N : x+N, y −N : y +N) + S ∗ randn
8: Convolve the (u, v) vector field with the Gaussian kernel
9: end for

10: Warp the image with (u, v) vector field.

11: Blur the image by convoluting with a Gaussian smoothing window w(x) = e−
x2

2B2

12: return Video Frames under Distortion and Blur
13: end procedure

output through the generator with a U-Net structure [101]. Our network is similar to DeblurGAN

[?], which has an architecture requiring blurred image as an input and produce an image without

blurs. Although space-time varying blur is one of the consequences of turbulence in the frames

under observation, one single frame from a turbulence-discarded video as an input is shown to be

ineffective in recovering the original image in our experiment.

Hence, using the given architecture from DeblurGAN is not sufficient enough to remove unde-

sirable effects such as the geometric distortions under turbulence. Motivated by this observation,

our input in the network is a turbulence-degraded multiframe input originated from a clear image.

Therefore, our new architecture is adjusted to use multiple frames as the input. However, instead

of using the whole video sequence as the input, only some frames under subsampling are chosen.

With the data augmentation approach described in this subsection, the training data is a

multiple frames ITD = (I
(1)
TD, I

(2)
TD, ..., I

(n)
TD) (TD: turbulence-distorted) which are then transformed
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Figure 3.3. The generator network G has the architecture of a U-Net, and the
critic network D is the standard conventional CNN. Before passing through into
generator network G, the turbulent frames under subsampling are concatenated.

from the original clean image I of size r×s. In TRN, the input is a selected subsampled frames from

ITD. Instead of using the whole sequence of frames as an input, we randomly pick m = 20 frames

from the whole video in training as the generator input in the GAN model. In the testing stage,

we combine a subsampling method [71] to choose the frames with best quality as the input. The

incorporation of the subsampling approach into the network is effective in restoring a significantly

better image. As we intend to focus more on the CNN architecture in this dissertation, the section

about our proposed subsampling approach will be skipped. See Reference [20] for more details.

3.2.2.3. U-Net architecture in generator network. The generator network G we employ is the

U-Net [101], which comprises five different types of layers:

(1) Convolutional layer

(2) De-convolutional layer

(3) Max-pooling layer
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(4) ReLU activation layer / Randomized leaky ReLU activation layer (α = 0.2) [134]

(5) Instance normalization layer [123].

The U-Net is known to involve a symmetric expanding path for localization and a contracting path

for contextual preservation. It was successful in image segmentation, image denoising and image

super-resolution. As a result, we use U-Net as the architecture for our generator network G.

The turbulence-degraded multiframe under subsampling passes through 7 blocks of convolu-

tional layers and 6 blocks of deconvolutional layers to produce a clear image. The first 7 blocks

B
(1)
C , B

(2)
C , ..., B

(7)
C consists of convolutional layers, followed by the 6 remaining blocksB

(1)
D , B

(2)
D , ..., B

(6)
D

contains deconvolutional layers with kernel size of 2 × 2 and strike size of 2 × 2. Each block B
(i)
C

contains convolutional layers with kernel size of 3× 3 and zero padding, nonlinear activation layers

and instance normalization layers. The temporal features collected in every block are then down-

sampled by max-polling, except for the features of the last block B
(7)
C . In particular, the temporal

features in B
(6)
C and B

(7)
C are concatenated before passing into the deconvolutional block B

(1)
D in

order to retain the deep features without too much information loss. The feature extracted in the

first block B
(1)
D is then concatenated with the feature from the block B

(5)
C to output the feature in

the second block B
(2)
D . Repeating the procedure, we obtain a reconstructed clear image I which

has the same size as the original undistorted image.

There is no pre-training in the generator network G, since the architecture input is different

from the conventional one. The conventional model takes images with the three channels as input.

On the other hand, we have subsampled turbulence-degraded video frames J , which are randomly

selected in training and chosen by the subsampling method from Reference [20] in the testing

stage. We then train the generator network G after the critic network D is trained several times

to generate a clearer image ITD = (I
(i1)
TD , ..., I

(im)
TD ). The loss function on the generator network G

for removing blurs and geometric distortion is defined by

(3.6) LG = −D(G(ITD)) +
γ

N
‖I −G(ITD)‖1,

where γ is a hyperparameter for regularization in the second term. The first term of the total loss

function LG is the adversarial loss which encourages solutions to reside on the manifold of natural

images. In order to extract the inherited textures from the turbulence-degraded frames, we further
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incorporate the `1 loss into the loss function LG. The combination of the adversarial loss with the

pixel-wise error term has an advantage. It was shown that the minimization of the loss function

that consists of only the pixel-wise error term, such as the `1 or `2 error, is insufficient to generate

a clear image [74]. Besides, the `2 error term can often cause image blur. Therefore, we use `1 loss,

instead of the `2 loss, in our total loss function LG to avoid making the image blurry. Experimental

results exhibit that the combination of the two terms in the total loss function LG can effectively

discard geometric distortions and undesirable artifacts like image blurs.

3.2.2.4. Critic network. In the WGAN [6], the critic network D is a deep CNN consisting of

convolutional layers, fully-connected layer, ReLU activation layer [88], and instance normalization

layer [123]. We denote the first 6 convolutional layers by L(1), L(2), ..., L(6) and the final fully

connected layer by L(7). The critic values D ◦ G(ITD) and D ◦ I are passed through the critic

network D to compute the Wasserstein-1 distance

(3.7) max
D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃)],

where D is 1-Lipschitz. We train the critic network D till optimal before updating the generator

network G. The loss function of the critic network D in training is given by:

LD = D(G(ITD))−D(I)

+ λ

(∥∥∥∇D(αI + (1− α)G(ITD)
)∥∥∥

2
− 1

)2

,

(3.8)

where α is randomly generated from the uniform distribution U [0, 1]. The additional gradient

penalty term in Equation (3.8) is robust to the architecture of the generator. Since there is no

pre-trained model involved in the generator network G, it takes a longer time foe training the

networks. We impose the weight constraint λ further to enforce the 1-Lipschitz assumption in the

critic network D. We add the weight constraint by clipping the weights in the interval [−c, c] so

that the training process becomes more stable.

3.2.3. Summary of the experimental results from TRN. The image data for training

were gathered from Flicker. It comprises 1000 images of chimneys and 1500 images of buildings,

each of which is resized to 256 × 256 and is deformed synthetically by our turbulence generator
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algorithm. More precisely, each image is deformed to generate hundreds of turbulence-degraded

video sequences. Hence, the full dataset is enlarged by a factor of 100. We then test the trained

network on more than 400 testing data, which are separated from the training dataset. The

testing dataset comprises simulated video sequences as well as the real turbulence-distorted video

sequences.

After gathering the data, we conduct experiments in PyTorch [95] under a CUDA-enabled

GPU. We implement the data augmentation algorithm in MATLAB® before the training process

begins. The strength value of distortion S and the blurring parameter B are sampled from uniform

distributions U [0.1, 0.4] and U [0.1, 1] respectively. We initialize the weights in the convolutional

layers and the batch normalization layers by sampling them from the normal distributionN (0, 0.01).

ADAM solver [65] is employed as the optimization scheme for gradient descent with a learning rate

of 10−4, and ADAM learning parameters β1 = 0.5 and β2 = 0.99 for both the generator Gθ and the

critic network Dξ. We set 3 gradient descent steps for the critic network Dξ and then 1 step for the

generator Gθ. We then apply the instance normalization and dropout with a dropout rate of 0.5

to improve the training without overfitting. Besides the gradient penalty term [46], we enforce the

parameters ξ in the range [−0.01, 0.01]. For each epoch, we train both the networks with batch size

of 1. Then we set λ = 10 in Equation (3.8) and γ = 1000 in Equation (3.6). Moreover, we randomly

pick m = 20 frames from the video sequence as our input. The whole training for 40 epochs takes

around 3 days. Figure 3.4 shows that the performance of image restoration is gradually better in

the training process. The network firstly removes geometric distortion from the turbulence in the

first few epochs and then gradually deblur and preserve the quality and texture of the original image

in the remaining epochs. After we thoroughly train the TRN, we test the performance on more

than 400 testing data which consist of simulated and real turbulence-degraded videos. The test

data before data augmentation are different from the training data. We report some experimental

results.

In Figure 3.5, we exhibit the restoration performance on some simulated turbulence-degraded

frame sequences that captures various buildings. The first column displays the observed frames

from each turbulence-degraded image sequences with both geometric distortions and blurs. The

middle column displays the restoration performance by the TRN, without the incorporation of the
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Figure 3.4. The training process begins at the 1st epoch (left) to the 7th epoch
(right). Each image displayed from its left image, except the first one, are generated
with 1-2 epochs. In the first few epochs, the generator network Gθ learns to discard
geometric distortion. After removing the distortion to a great extent, it learns to
refine the quality and texture of the images, and make it less blurry in the remaining
epochs. The performance under training is gradually improved when we increase
the number of epoch.

(i) Observed (ii) TRN (no sub) (iii) TRN (sub) (i) Observed (ii) TRN (no sub) (iii) TRN (sub)

Figure 3.5. Restoration of turbulence-distorted “building” images. Column (i)
shows the observed frames from each video. Column (ii) shows the restoration results
using the proposed TRN without subsampling. Column (iii) shows the restoration
results using TRN with subsampling.

proposed subsampling approach. Although some amount of distortions can still be observed, most

blurs and geometric distortions are discarded. The right column displays the restoration perfor-

mance using the TRN with the incorporation of the proposed subsampling approach. With the

incorporation of subsampling, blurs and geometric distortions can be discarded more successfully.
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Table 3.1. PSNR and SSIM [126] of the restored building images with (sub) and
without (no sub) subsampling algorithm. The symbol bi refers to the i-th building
image, counting vertically from top-left corner to bottom-right corner.

b1 b2 b3 b4 b5 b6 b7 b8

SSIM (no sub) 0.878 0.830 0.846 0.834 0.828 0.806 0.781 0.878

SSIM (sub) 0.904 0.859 0.872 0.861 0.829 0.816 0.830 0.872

PSNR (no sub) 24.8 22.5 26.1 24.0 21.4 22.7 20.2 27.3

PSNR (sub) 25.7 23.4 26.5 24.3 21.6 23.3 20.8 26.9

That is because frames that are highly degraded are successfully filtered out without harming the

overall quality of the input. Hence restoration performance is more satisfactory compared to those

without subsampling. It demonstrates the benefit of the incorporation of the subsampling method

into the deep network. In addition, these visual results are quantitatively evaluated as displayed

in Table 3.1.

We also test our deep network on image sequences of chimney. Figure 3.6 shows the restora-

tion performance of some simulated turbulence-distorted image sequences that captures different

chimneys. Again, the first column shows the observed frames from each turbulence-degraded image

sequences by both geometric distortions and blurs. The middle column shows the restoration results

using the TRN without the incorporation of the subsampling approach. The right column shows

the restoration results using the TRN with the incorporation of the subsampling approach. With

the incorporation of the subsampling method, blurs and geometric distortions can be removed more

successfully. The restoration results are more satisfactory compared to those without subsampling.

It further demonstrates that the incorporation of the subsampling method into the deep network

is beneficial. The results are further shown in Table 3.2.

Other than the simulated examples, we evaluate the performance of TRN on real turbulence-

degraded videos without a clear ground-truth image. Figure 3.7 shows the restoration results of a

real turbulence-degraded image sequence of a chimney. An observed frame from the image sequence

is shown in Figure 3.7 (a). Then the restoration results using TRN without and with subsampling

is displayed in Figure 3.7 (b) and (c) respectively. With the subsampling method, the results are
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(i) Observed (ii) TRN (no sub) (iii) TRN (sub) (i) Observed (ii) TRN (no sub) (iii) TRN (sub)

Figure 3.6. Restoration of turbulence-distorted “chimney” images. Column (a)
shows the observed frames from each video. Column (b) shows the restoration results
using the proposed TRN without subsampling. Column (c) shows the restoration
results using TRN with subsampling.

Table 3.2. PSNR and SSIM of the restored chimney images with (sub) and without
(no sub) subsampling method. The symbol ci corresponds to the i-th Chimney
image, counting vertically from top-left corner to bottom-right corner in Figure 3.6.

c1 c2 c3 c4 c5 c6 c7 c8

SSIM (no sub) 0.948 0.931 0.898 0.897 0.837 0.880 0.896 0.847

SSIM (sub) 0.956 0.951 0.935 0.932 0.914 0.924 0.931 0.931

PSNR (no sub) 25.3 24.5 27.3 27.5 24.7 29.8 25.8 23.6

PSNR (sub) 25.7 26.2 28.7 28.0 25.8 30.4 27.4 24.3

more satisfactory compared to those without subsampling. It again demonstrates the effectiveness

of incorporating the subsampling approach into the deep neural network.

Another real example is the turbulence-distorted image sequence capturing a building being

restored by the TRN as presented in Figure 3.8. Again, we display an observed frame from the

building image sequence, the restored frame using TRN without subsampling and the restored
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(a) Observed (b) TRN (no sub) (c) TRN (with sub)

Figure 3.7. Restoration of real turbulence-distorted image sequence capturing a
chimney. (a) shows an observed frame from the image sequence. (b) shows the
restored image using TRN without subsampling. (c) shows the restored image using
TRN with subsampling.

(a) Observed (b) TRN (no sub) (c) TRN (with sub)

Figure 3.8. Restoration of real turbulence-distorted image sequence capturing a
building. (a) shows an observed frame from the image sequence. (b) shows the
restored image using TRN without subsampling. (c) shows the restored image using
TRN with subsampling.

frame using TRN with subsampling in Figure 3.8 (a), (b), and (c) respectively. As before, with

subsampling, the results are more satisfactory than those without subsampling. It shows that the

turbulent generator is able to synthesize useful data for training and avoid overfitting with just

a limited amount of available data. The result shows that it is possible to apply deep learning

approach with scarce training data by using data augmentation method. It is similar to human

vision in the sense that we learn instead of memorizing knowledge from just a few examples.

3.3. Scattering Transform and the Mathematics of Deep Learning

The data scarcity problem has been widely discussed and addressed by the machine learning

community. Often models with high complexity such as a deep neural network may not be necessary

in real-life applications. However, the hierarchical manner of locally extracting features like a
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CNN is a promising direction to perform tasks in machine learning. We will show that scattering

transform network (STN) can be an alternative to maintain the advantage of CNN without relying

on a huge amount of data for feature extraction. Besides, the STN is a natural choice for interpreting

the result from the coefficients of scattering transform.

3.3.1. Importance of More Interpretability in Machine Learning. With the rising

applications of data science and modelling, modellers do not only work on minimizing a specific

objective function, but have the responsibility to explain or interpret how the model leads to the

conclusion, which can be helpful or sometimes even legally necessary [44]. Nevertheless, there

is often a trade-off between model interpretability and model performance. A linear model is

easy to interpret by examining the weight or the p-value of coefficients, but it has a high bias in

predicting the true values. An example of linear model is recursive least squares (RLS) adaptive

noise cancellation (ANC) filtering for fetal signal extraction, which was used in the published

work [63] by Kasap et al., with contribution from the dissertation author as a co-author of the

work.

Features extracted by some “black-box” machine learning models can be interpreted using the

Shapley values [117], which are the average marginal contribution of a feature over all combinations

of inputs under the game-theoretic formulation. However, the Shapley values can rely heavily

on how the machine learning model performs on unrealistic inputs [38]. In the setting of deep

neural network, it is challenging to interpret the neurons and their significance contributing to the

model performance. However, the STN allows interpretability of scattering coefficients and their

importance leading to the result.

3.3.2. STN Architecture. A STN has an architecture similar to a CNN with a relatively

shallow layers up to M . The STN undergoes layers of wavelet transform which is then followed

by the nonlinear and pooling operations. After passing several layers of wavelet transform with

nonlinear and pooling operations, we vectorize the resulting coefficients and compress them for

feature extraction. We can use linear models or simple machine learning models to perform tasks

by feeding these compressed ST coefficients. Figure 3.9 shows the analogue between the STN and

CNN.
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Figure 3.9. A comparison between the ST network and the CNN.

We then describe the STN in detail, which can be visualized in Figure 3.10 based on the

reference by Mallat [82]. At layer m, let Om be a finite rotation group in Rd. Let Λm be the index

set at the m-th layer comprising the rotation q ∈ Om and the scale index j ∈ Z and j > −J for

some J ∈ Z. Let ψ be a mother wavelet, such as a Morlet or generalized Morse wavelet. Denote

λm = (q, j) ∈ Λm

the mult-index of a generator (multiscale directional wavelet filter) which can be acquired by ro-

tating and dilating ψ at layer m. Let ψλm denote the generator, and its formula is provided by

ψλm(x) := 2
2j
Qm ψ(2

j
Qm q−1x), x ∈ Rd,(3.9)

where Qm ∈ R+ is the quality factor for adaptive scale readjustment. We assume the generator

ψλm ∈ L1(Rd) ∩ L2(Rd). The low frequency portion not covered by the generators is captured by

a father wavelet ϕ0 followed by further scaling:

ϕ(x) := 22Jϕ0(2Jx).(3.10)
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Figure 3.10. A typical STN architecture. The multi-index λj1,j2,··· ,jm corresponds
to the scale j1 in layer 1, j2 in layer 2, and so on.

There exists frame bounds Am and Bm such that for any f ∈ L2(Rd),

Am‖f‖22 ≤ ‖f ? ϕ‖22 +
∑
λ∈Λm

‖f ? ψλm‖22 ≤ Bm‖f‖22.(3.11)

In the CNN, we extract features by convolution followed by a nonlinear operation and a pooling

operation such as averaging pooling [58] and maximum pooling [58,99]. Meanwhile, we outline the

wavelet transform in the setting of ST which is convolution with filters extracted from a mother

wavelet with scaling and rotation. To be precise, let f ∈ L2(Rd), and define a translation operator

Tbf(x) := f(x− b), b ∈ Rd,

and an involution operator operator

If(x) := f(−x).

Then, a frame atom is defined by

ψb,λm := TbIψλm .

which corresponds to a receptive field in a layer of a CNN [132]. Note that 〈f, ψb,λm〉 = f ∗ψλm(b).
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A contraction operator Mm which is Lipschitz continuous with a Lipschitz bound lm can also

be defined as a nonlinear operator, and satisfies

Mmf(x) = 0⇒ f(x) = 0.

One particular choice of Mm is the modulus operator. That is,

Mmf(x) := |f(x)|.

We define an operator Um : Λm × L2(Rd)→ L2(Rd) from layer m− 1 to layer m such that

(3.12) Um[λm]f(x) := Mm(f ∗ ψλm)(rmx),

where rm ≥ 1 denotes a subsampling rate for average pooling as the default setting in the ST

package ContinuousWavelet.jl [127].

The operator Um is well-defined since

‖Um[λm]f(x)‖22 =

∫
Rd
|Mm(f ∗ ψλm)(rmx)|2 dx

=
1

rdm

∫
Rd
|Mm(f ∗ ψλm)(rmx)|2 d(rmx)

=
1

rdm

∫
Rd
|Mm(f ∗ ψλm)(y)|2 dy

=
1

rdm
‖Mm(f ∗ ψλm)‖22

≤ l2m
rdm
‖f ∗ ψλm‖22

≤ Bml
2
m

rdm
‖f‖22

(3.13)

Therefore, we have a scattering path of indices λ ∈ Λm × · · · × Λ1 such that

(3.14) U [λ]f(x) := Um[λm]Um−1[λm−1] · · ·U1[λ1]f(x).

The operator U is also well-defined by the Inequality (3.13):

‖U [λ]f(x)‖22 ≤

(
m∏
k=1

Bkl
2
k

rdk

)
‖f‖22(3.15)
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For each layer m, we define the operators Sm and Φm to generate the feature coefficients of the

STN for a given input signal f(x) by

Sm[λ]f(x) := (ϕ ∗ U [λ]f)(r′mx),(3.16)

Φmf(x) := {Sm[λ]f(x)}λ∈Λm×···×Λ1
,

where ϕm is an averaging function which is also the father wavelet of a certain scale corresponding

to the mother wavelet ψ. The subsampling rate r′m ≥ 1 provides another subsampling alternative

after the averaging process. Note that for m = 0, we have

S0[∅]f(x) = S0f(x) := (ϕ0 ∗ f)(r′0x).

The feature extractor from the entire scattering transform is denoted by

Φ[f ] :=

∞⋃
m=0

Φm[f ].(3.17)

3.3.3. Theory Behind Scattering Transform. Mallat [132] initially formulated the math-

ematical analysis of deep CNNs for feature extraction. His paper proved a result about translation

invariance in the sense that the increasing network depth determines the extent to which the ex-

tracted features become progressively more translation invariant.

We assume the weak admissibility condition is satisfied in the layers of scattering transform,

meaning that the upper bound Bm is sufficiently small relative to the subsampling factor rm and

the Lipschitz bound lm for the Lipschitz continuous operator Mm.

To be specific, for a m-layer STN, we have

Bm ≤ min{1, l−2
m r−2

m }.(3.18)

Also, the nonlinear Lipschitz continuous operator Mm commutes with the translation operator:

MmTx[f ] = TxMm[f ](3.19)
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It aligns with the setting in the framework of CNN, where most nonlinearities covered in deep

learning literatures are point-wise, hence commuting with the translation operator. These include

ReLU [1], hyperbolic tangent [55,58] and shifted logistic sigmoid [42].

The main difference between the ST in Reference [132] and our ST setting is the pooling

operator which can be any type of pooling in the reference.

Based on these assumptions, we state the theorems of of Wiatowski and Bölcskei [132] on the

stability of the resulting feature on small deformation in frequency and space [131].

Let f ∈ L2
a(Rd) be a band-limited signal with the support of its Fourier transform limited

to [−a, a]. Suppose Dτ ,ω is a space-frequency deformation operator with respect to a nonlinear

distortion f(x− τ (x)) and deformation by modulation e2πiω(x)f(x) with the form

Dτ ,ω[f ](x) := e2πiω(x)f(x− τ (x))(3.20)

For this type of signal class, we have the deformation sensitivity bound. The same technique

for the bound derivation can be extended to all signal classes that show deformation insensitivity.

Definition 2. A class of signal C ⊂ L2
R(Rd) is called deformation-insensitive if there exists

C,α1, α2 > 0 such that for any distortion parameter τ ∈ C1(Rd,R) with ‖∇τ‖∞ ≤
1

2d
and modu-

lation parameter ω ∈ C(Rd,R), we have∥∥∥Dτ ,ωf − f∥∥∥
2
≤ C

(
‖τ‖α1

∞ + ‖ω‖α2
∞

)
(3.21)

Classes of band-limited, cartoon and Lipchitz signals [45] are deformation insensitivity. In

particular, the band-limited signal f ∈ L2
a(Rd) has the deformation sensitivity bound for the defor-

mation error
∥∥∥Dτ ,ωf − f∥∥∥

2
given by the following inequality [132],

∥∥∥Dτ ,ωf − f∥∥∥
2
≤ C‖f‖2

(
a‖τ‖∞ + ‖ω‖∞

)
.(3.22)

To show the deformation-insensitive bound for the feature extractor Φ from the scattering

transform, Mallat [132] verified that Φ is Lipschitz continuous.
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Proposition 3.3.1. For any function f ∈ L2(Rd), define the norm of the feature extractor Φ

by

∥∥∥Φ[f ]
∥∥∥ :=

∞∑
m=1

∑
q∈Λm

∥∥∥ϕm ∗ U [λ]f
∥∥∥

2
.(3.23)

By the weak admissibility condition (3.18), the feature extractor Φ is Lipschitz continuous. i.e.,

For any f, h ∈ L2(Rd),

∥∥∥Φ[f ]− Φ[g]
∥∥∥ ≤ ‖f − h‖2.(3.24)

The immediate result of the Lipschitz continuity of Φ is the robustness with respect to the

additive noise η ∈ L2(R). That is, for any f ∈ L2(Rd),

∥∥∥Φ[f + η]− Φ[f ]
∥∥∥ ≤ ‖η‖2.(3.25)

By the inequality (3.22) and (3.24), we are ready to establish the deformation-insensitive bound

for the feature extractor Φ in the following theorem.

Theorem 3.3.1. Let ω ∈ C(Rd,R) be the frequency shift and τ ∈ C1(Rd,Rd) be the shift in

space domain. Define the shift operator according to Equation (3.20).

Denote L2
a(Rd) as the set of L2(Rd) functions with the support of Fourier transform limited to

[−a, a]. If ‖∇τ‖∞ ≤
1

2d
, then there exists C > 0 which is independent of the feature extractor Φ

such that for any function f ∈ L2
a(Rd) , we have the deformation sensitivity result given by

∥∥∥Φ[Dτ ,ωf ]− Φ[f ]
∥∥∥ ≤ C‖f‖2(a‖τ‖∞ + ‖ω‖∞

)
.(3.26)

Theorem 3.3.1 also applies to the CNN feature extractor, showing a similar deformation sen-

sitivity bound for CNN with general nonlinear modulus operator and pooling operator which are

both Lipschitz-continuous [82,132].

Then we explore the translation invariance property of scattering transform in deeper layer

[131]. The extent of translation invariance can be controlled through pooling under hierarchically

subsampling.

46



Theorem 3.3.2. Let f ∈ L2(Rd). With the assumptions above, the feature extractor Φm in the

m-th layer has the property that

Φm[Txf ] = T x
r1···rm

[
Φm[f ]

]
.(3.27)

Also, if there exists a global bound K such that the atom ϕm is bounded in the Fourier domain and

satisfy the decay condition

‖ϕ̂m(ξ)‖2 ‖ξ‖2 ≤ K, a.e. ξ ∈ Rd for all m ∈ N,(3.28)

then for any x ∈ Rd,

∥∥∥Φm[Txf ]− Φm[f ]
∥∥∥ ≤ 2πK‖x‖2

r1 · · · rm
‖f‖2.(3.29)

The above theorem is also applicable to the study of CNN because the nonlinear operators

used mostly in deep learning are pointwise, hence satisfying the property (3.19) to commute with

the translation operator. In addition, the pooling operators used mostly in deep learning fulfill the

condition (3.19). The details are included in Reference [132].

Alternatively, based on Reference [102, Chapter 7], the decay condition (3.28) in the above

theorem can be replaced by

sup
m

{
‖ϕm‖1 + ‖∇ϕm‖1

}
<∞.(3.30)

Moreover, if lim
m→∞

r1 · · · rm = ∞, we can reach translation invariance asymptotically by the

Inequality (3.29). That is, for any f ∈ L2(Rd) and x ∈ Rd,

lim
m→∞

∥∥∥Φm[Txf ]− Φm[f ]
∥∥∥ = 0.(3.31)

The result [82, Theorem 2.10] that is unique to scattering transform is the asymptotic trans-

lation invariance with respect to the scale (or resolution) parameter under the same condition in

Theorem 3.3.2, without depending on the depth of the network. i.e.,

lim
J→∞

∥∥∥Φ(J)
m [Txf ]− Φ(J)

m [f ]
∥∥∥ = 0.(3.32)
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3.4. Machine Learning Models for Scattering Coefficient Processing

The machine learning tasks can be performed after collecting extracted features from the scat-

tering transform. These extracted features, or the layer-specific features, are fed into a machine

learning model as inputs, as shown in Figure 3.9. Often, we compress the feature vectors before

feeding into a machine learning model.

3.4.1. Dimension reduction. The dimension of scattering coefficients is sometimes too high

to feed into a machine learning model. Another problem of high-dimensional input is the curse of

dimensionality, meaning that when the feature dimension grows, we need to exponentially increase

the size of the training data to maintain a comparable density of the training data. In particular,

Richard Bellman mentioned the problem of the exponential growth in volume due to the increment

of dimension to Euclidean space [10]. A lower density of our training data in the feature dimension

can result in overfitting, as the model cannot generalize well to the test data from the limited

training data. When getting sufficient data is not always possible, we can conduct dimension

reduction which tries to retain as much important information as possible while reducing the feature

dimension.

Principal component analysis (PCA) [96], which linearly transforms variables with a high fea-

ture dimension into a smaller set of new variables by retaining as much variance present in the

extracted features as possible, is a common method for dimension reduction. The new set of

variables in the lower dimensional space after PCA is called principal components.

To be more specific, we have n data points x1,x2, · · · ,xn ∈ Rp which are then projected

onto a k-dimensional affine subspace for the best approximation, where k � p. That is, suppose

that {v1,v2, · · · ,vk} is an orthonormal basis for the k-dimensional affine subspace. Define the

V := [v1,v2, · · · ,vk] to represent the subspace. Denote the sample mean

µ :=
1

n

n∑
k=1

xk.

Then we solve the least square problem for PCA

min
V TV=I

n∑
j=1

‖(xj − µ)− V V T(xj − µ)‖22,
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or equivalently,

max
V TV=I

n∑
j=1

(xj − µ)TV V T(xj − µ)⇔ max
V TV=I

Tr[V TΣV ],

where the sample covariance matrix

Σ :=
1

n− 1

n∑
j=1

(xj − µ)(xj − µ)T.

Hence, we can find the principal components by the eigenvectors corresponding to the k largest

eigenvalues of the matrix Σ. The number of principal components can be predetermined by a

threshold accounting for the precent of variance explained by the principal components. In par-

ticular, Bruna and Mallat [18] demonstrated that PCA enhances classification performance by

compressing the feature extractor from the scattering transform.

3.4.2. Support vector machine (SVM). The goal of support vector machine (SVM) [130]

is to separate the training data linearly by a hyperplane. The margin is defined as the minimum

distance between the decision boundary of SVM to any training data point. The nearest data point

to the hyperplane is known as the support vector. For example, the SVM classifier transforms the

compressed features from STN further to new representations in which the different classes are

separated with margins that are as wide as possible.

To be more specific, suppose that we have the weight w, training data x and label y. We

mimimize the following expression[
1

n

n∑
i=1

max
(

0, 1− yi(wTxi − b)
)]

+ λ‖w‖2.(3.33)

By solving the Lagrangian dual, we obtain the expression

max
α

[ n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi
Txj

]
(3.34)

such that 1 ≤ αi ≤ C for any i = 1, 2, · · · , n and
n∑
i=1

αiyi = 0.

The expression above can be rewritten with a kernel function,

max
α

[ n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)

]
,(3.35)
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with some kernel function such as

(1) Polynomial kernel: K(xi,xj) = (a+ xi
Txj)

l for some degree l.

(2) Gaussian kernel: K(xi,xj) = exp(−γ‖xi − xj‖2).

In general, the model complexity of SVM is higher than some simple methods like logistic

regression. However, the SVM does not work well on a huge dataset since it is computationally

challenging to find a hyperplane to separate data points with different target classes that are likely

overlapping. In addition, lack of interpretability is a drawback of using SVM.

3.4.3. Lasso and Elastic-Net Regularized Generalized Linear Models (GLMNet).

The Lasso and Elastic-Net Regularized Generalized Linear Models (GLMNet) fit a generalized

linear model with Lasso regularization through penalized maximum likelihood, and the GLMNet

coefficients are denoted by θ, which are sparse [51, Chap. 3].

These models try to solve the following problem:

min
θ0,θ

1

N

N∑
i=1

wil(yi, θ0 + θTxi) + λ

[
1− α

2
‖θ‖22 + α‖θ‖1

]
,

l(yi,xi) is the negative log-likelihood for observation i. For instance, if we assume yi follows a

Gaussian distribution, then we can set

l(yi,xi) =
1

2
(yi − θ0 + θTxi)

2.

The observation yi is assumed to follow a multinomial distribution for multi-label classification

problems. In addition, the regularization path corresponding to the Lasso penalty was computed

using cyclic coordinate descent. Here, α is the elastic net penalty and λ controls the strength of

the penalty. In particular,

(1) α = 1: Lasso regression problem.

(2) α = 0: Ridge regression problem.

For the sake of interpretation, the importance of the STN coefficients can be captured by the

nonzero entries of θ.

50



CHAPTER 4

Techniques in Scattering Transform with Analytic Wavelets

We present the techniques in scattering transform with analytic wavelets in this chapter. In

particular, the content of the work on the STN with the generalized Morse wavelets will be extracted

from the Reference [22] written by the dissertation author and Professor Saito. See Chapter 2 for

the background of AWT and Chapter 3 for the background of STN.

4.1. Numerical Implementation of scattering transform network

In this subsection, we discuss the implementation of the generalized 1-D scattering transform

in the package ScatteringTransform.jl [128] in the Julia programming language [11]. The

ContinuousWavelet.jl [129] covers the 1-D analytic wavelet transforms such as the commonly-

used Morlet wavelet transform. The new incorporation of the generalized Morse wavelet into the

1-D scattering transform will be presented in Subsection 4.2.

4.1.1. Wavelet transform in the scattering transform network. As mentioned in Sub-

section 2.1, wavelets can decompose an input signal into different frequency components. Then each

component can be investigated and analyzed with different scales or resolutions in the scattering

transform. In particular, the Morlet wavelet was defined in Equation (2.21) in Section 2.3. In our

scattering transform implementation, the daughter Morlet wavelet before normalization is given by

ψ̂
(s,W )
0 (ξ) = cξπ

−1/4

[
exp

(
−
∣∣∣∣ ξs − σW

∣∣∣∣2)−Kσ exp
(
− 1

2

∣∣∣ξ
s

∣∣∣2)],(4.1)

where s is the scale, W is the width for variance adjustment, cξ is the normalizing constant and

Kσ is defined by the admissibility criterion. The effective computation of the values of the scale s

and the width for variance adjustment W will be discussed in Subsection 4.1.2.

The continuous wavelet transform (CWT) was introduced in Equation (2.16). In particular,

the Morlet wavelet is often used in the actual implementation. In the discrete case, we need to
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sample the scale parameter s indexed by k ∈ N. One common way to sample s is uniform sampling

by sk = xk for x > 0 [60, Chapter 6]. In particular, one can set x = 21/Q, where Q is the quality

factor as further explained below. The quality factor Q can be different across different layers

in the scattering transform, as presented in Equation (3.9). It allows the adaptive adjustment of

the scaling of the wavelets in the discrete setting, as opposed to the conventional convolutional

neural network (CNN) with fixed filter size in each layer. There are several parameters in the

implementation of the wavelet transform:

(1) Quality Factor (Q)

The quality factor (or scaling factor) Q is the number of wavelets between the octaves.

For example, the quality factor of 8 is suitable for audio and music signals. Without any

extra adjustment on the scale, Q is exactly the number of wavelets in each octave.

(2) Decreasing Factor (p)

Since many wavelets with finer scales can sometimes be unnecessary created in the discrete

setting, the number of wavelets can be decreased per octave by the decreasing factor p.

(3) Average Length (l)

The average length l is the number of octaves that are covered by averaging.

(4) Averaging Type

The parameter determines whether the averaging filter is a “Dirac” or a “Father” wavelet.

We set the default averaging type as “Father”.

(5) Boundary Condition

Our boundary condition in the wavelet transform is set to be periodic. That is, we add a

flipped version of the signal in the end.

(6) Normalization factor (α)

If we set the α to be a positive constant, we normalize the wavelet ψ0 by

ψ =
ψ0

s1/α
.

Otherwise, if we set α =∞, then the normalized wavelet becomes

ψ =
ψ0

‖ψ0‖∞
.
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4.1.2. Quality factor computation. If the number of wavelets Q per octave is fixed in each

index of wavelet, the wavelets densely and unnecessarily cover low frequencies in many applications

such as image and signal processing. Hence, some approach to reduce such number of low frequency

wavelets has to be applied. Let Q, l, p be the quality factor, average length and decreasing factor

respectively. Instead of the the log-linear distribution of the scale sk = 2k/Q, we sample the scale

sk = 2bk
1/p
,(4.2)

where b can be determined in the following procedure.

Let x be an index of wavelet and y be the logarithm of the scale parameter, Their relationship

is given by

y(x) = bx1/p.

In particular, if p = 1, then Q is exactly the number of wavelets in each octave because of the

linearity between the index of wavelet and the logarithm of the scale parameter. The wavelets skew

more to cover high frequencies when p is increased. There are several additional conditions:

(1) We want the first wavelet to be scaled by 2l. Hence, the first logarithm of the scale

parameter y1 is given by y(x1) = l. Then the corresponding index of wavelet x1 is

(
l

b

)p
.

(2) Let O be the number of octaves. Suppose there are m indices of wavelet. Note that for

the last wavelet, the the logarithm of the scale parameter is y(xm) = O + l.

(3) To find the slope b, we assume that at the last index,

dy

dx
=
b

p
x

1−p
p =

1

Q
,

in order that the “instantaneous” number of wavelets is Q in the last octave.

Therefore, we have a system of equations
O + l = bx

1
p
m

b =
p

Q
x
p−1
p

m .

(4.3)
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By substituting b into the first equation, we find the last index

xm = Q× O + l

p
.

When xm is substituted into the second equation, one has

b =

(
p

Q

)1/p

(O + l)
p−1
p .

On the other hand, for the start of the last octave, we have y(xm−1) = O + l − 1. Therefore,

the second last index

xm−1 =

(
y(xm−1)

b

)p
=

(
O + l − 1

b

)p
.

As we would like to make sure that there are Q wavelets in the last octave, we define the step

size ∆x as

∆x =
xm − xm−1

Q
.

Since we intend to evenly partition the graph, the number of wavelet will be

m = round

(
xm − x1

∆x

)
+ 1.

and the scale s are sampled from 2y1 , 2y2 , · · · , 2ym .

Let u and w be defined by

u :=
1

100 + e−O
,

w :=
pu − 1

(m− 1)p
.

Then the corresponding width for variance adjustment Wk of the k-th wavelet is

Wk = 1 + w(m− k)p,(4.4)

where k = 1, 2, · · · ,m. Note that W is a polynomial of order p from 1 at the highest frequency to

pu at the lowest frequency. The variable u ensures that W is small when there are fewer octaves.

Figure 4.1 shows an example of the relationship between the index of wavelet x and the logarithm

of the scale parameter y. If O = 7, l = 4, p = 4, Q = 8, there are m = 24 wavelets. The first
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logarithm of the scale parameter y(x1) = l = 4. Each of these O = 7 octaves is separated by the

red lines.

Figure 4.1. The logarithm of the scale parameter y for average length l, decreasing
factor p and quality factor Q with respect to the index of wavelet x.

4.1.3. Discrete scattering output in the scattering transform. Besides the wavelet

transform, pooling and modulus operators are necessary in the scattering transform. In particular,

we use the average pooling with a subsampling rate rm. Unless otherwise specified, the default

subsampling rate rm = 3/2, meaning that we take the summation over the sliding local windows

of size 2 over 3 consecutive entries. The continuous theory of scattering transform presented

in Subsection 3.3.3 does not include the subsampling r′m for each layer m after averaging with

the father wavelet. The scattering output Sm in Equation (3.16) was subsampled to reduce the

redundancy in the low-frequency portion of the father wavelet.

On the other hand, the normalization in the scattering transform network for each layer can be

processed through

S(1)
m [λ]f =

S
(0)
m [λ]f ·Nm

‖Φmf‖2
,(4.5)
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where the subscript {0} and {1} is before and after normalization respectively, Nm is the number

of scattering paths Λm in the m-th layer. Each time before we compress the scattering output

by dimension reduction method such as PCA, we vectorize the scattering transform output and

normalize it to have mean zero and unit variance.

4.2. scattering transform network with Generalized Morse Wavelets

The Generalized Morse Wavelets (GMWs) have been shown to be a superfamily of exactly

analytic wavelets in Subsection 2.3. On the other hand, the Morlet wavelet was widely employed in

Equation (3.12) for the STN when processing the 1-D signals. However, Lilly et al. [78] numerically

demonstrated that even with a small leakage to negative frequencies by the Morlet wavelet, the

wavelet transform could lead to abnormal transform phase variation. The possible leakage to

negative frequencies under the Morlet wavelet transform is due to the fact that Morlet wavelet is

not exactly analytic. Therefore, we attempt to fill the gap by incorporating the GMWs in the

context of scattering transform. The abbreviation GMW-STN refers to the scattering network

incorporating the GMWs in this subsection.

The GMWs were originally numerically implemented in JLAB, which is a MATLAB® pack-

age [77]. We further implemented the STN incorporated with both Morlet wavelets and GMWs

in Julia [11]. Figure 4.2 visualizes the Morlet wavelet with ν = 2π in Equation (2.21) on the left.

It also displays the GMW in the time domain on the right, which consists of the real component

represented by the blue colour and real component represented by the red color, with two main

parameters (β, γ) = (4, 2) in Equation (2.23).

4.2.1. Applications in Music Genre Classification. Music genre classification is a funda-

mental research problem in music information retrieval [100,124]. In particular, it is challenging

to categorize music into different genres such as classical, country, jazz, hiphop, pop and so on.

Part of the reasons is that music genre classification plainly by human judgement can be ineffective

and subjective. We would like to distinguish the music information automatically.

The DNN have been shown to be effective to extract hierarchical features for a variety of

applications with gigantic training datasets [72], including music categorization using the 2D con-

volutional recurrent neural network (CRNN) proposed by Choi et al. [24]. The local deep feature
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(a) Morlet wavelet with ν = 2π (b) GMW with (β, γ) = (4, 2)

Figure 4.2. The Morlet wavelet and the GMW used in our experiments

extracted by the CNN and the summarization of the extracted features by the recurrent neural

network are shown to achieve effective music classification. Besides, Allamy and Koerich [3] also

mentioned the effectiveness of 2D CNN [25] and suggested the use of 1D residual CNN in the

GTZAN dataset [122] to automatically classify music genres. While there is a concern about the

lack of sufficient data for training a deep network, data augmentation may be able to generate

enough data and improve the performance [3]. Similarly, we have already described a data aug-

mentation algorithm to synthesize turbulence on images in Subsection 3.2; see also [20]. However,

the method depends heavily on the quality of the dataset before data augmentation, and it is not

clear whether the augmentation technique is appropriate for the GTZAN dataset.

Moreover, data augmentation does not help us understand how to interpret the result from

the deep network. It is of interest to know how the music features are interpreted, so that we can

explain the high classification rate with a better understanding of the characteristics of different

genres. On the other hand, the STN can generate interpretable coefficients unlike the conventional

CNN. See Section 3.3 for more details.

Our contributions in the work [22] are:

(1) the novel incorporation of the GMW in the STN (GMW-STN) for the analysis of 1-D

nonstationary signals such as the music signals;
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(2) the demonstration of the superior performance of the GMW in the STN than the Morlet

wavelet for classifying music genres, which the result can be explained by the analyticity

of the wavelet; and

(3) he demonstration of the interpretability of the STN coefficients computed from the music

signals, with which CNNs/DNNs have difficulty.

We now describe the dataset we used for music classification. Below, we will also illustrate how

to interpret the hierarchical coefficients from STN, so that we understand how music information

can be retrieved for each layer. In this subsection, the doublet of parameters (β, γ) of the GMW

in our implementation is set to be (4, 2) as visualized in Figure 4.2 considering the balance of the

time-frequency decays.

4.2.2. Data Preparation. In our numerical experiment, we use the GTZAN dataset [122]

to assess the performance of music genre classification using the STN with the GMW as well as

Morlet wavelet. The GTZAN dataset consists of thousands of 30-second 22050Hz audio music

tracks. These tracks are distributed evenly into 10 music genres: blues, classical, country, disco,

hiphop, jazz, metal, pop, reggae, and rock. For each music genre, there are 100 tracks recorded

under different conditions.

We split each 30-second track into 15 overlapping music segments, each of which is 5 second

long. Let k denote the index of the music segment. The time interval of the k-th music segment is

[kL/3 + 1, kL/3 + L]

for k = 0 : 14, where L = 22050 · 5 samples. That is, the hop size is L/3, i.e., the two adjacent

segments have 2/3 · 5 ≈ 3.33 second overlap.

4.2.3. STN Parameter setting. In our STN with 3 layers, we set the inter-layer subsampling

rate to rm = 8 and the averaging subsampling rate to r′m = 32 in Equations (3.12) and (3.16).

At the nonlinear stage, the modulus operator Mm(·) = | · | was used. We generated the following

number of the STN coefficients for each input signal of length 110250: the 0th layer: 3445; the 1st

layer: (431, 33); the 2nd layer: (54, 14, 33); and the 3rd layer: (7, 10, 14, 33). Table 4.1 summarizes
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the STN dimension, which is the same for both the STN incorporating the GMW and the Morlet

wavelet.

We also set the quality factors as (Q1, Q2, Q3) = (8, 4, 4), and the maximum scale indices as

(J1, J2, J3) = (32, 13, 9). These numbers mean that we used

(1) 33 scales with j1 = 0, 1, · · · , 32 and the quality factor Q1 = 8 in the 1st layer,

(2) 14 scales with j2 = 0, 1, · · · , 13 and the quality factor Q2 = 4 in the 2nd layer,

(3) 10 scales with j3 = 0, 1, · · · , 9 and the quality factor Q3 = 4 in the 3rd layer.

The first numbers in Table 4.1, 3445, 431, 54, and 7, are the size of the output STN coefficients in

each path in the respective layers.

Table 4.1. Output dimension of STN for each music track.

Layer index Size / Length
Input 110250
0 3445
1 (431, 33)
2 (54, 14, 33)
3 (7, 10, 14, 33)

4.2.4. Interpreting Music Features in different layers. In the 1st layer m = 1, we

obtained a spectrogram-like output from the GMW-STN as shown in Figure 4.3 for a jazz track.

The horizontal and vertical axes for each of these 15 overlapping segments indicate the timestamp

0, 1, · · · , 430 (in sample numbers) and the scale j1 = 0, 1, · · · , 32 indices, respectively. Most of the

energy of the signal resides in low to medium frequency bands. Hence, the 1st layer STN reveals

spectrogram-like time-frequency information of the original signal that is interpretable and can be

used for genre classification. In the context of deep learning, spectrogram extracted from music

audio signals can be fed into the 2-D CNN, and the performance on the categorization of music

genres is much better than simply feeding the music tracks into a 1-D CNN [25]. The result can

be explained partly by the additional structured frequency content extracted in spectrogram.

The paths from the 2nd layer have two different frequency measurements, which are indexed

by the tuple (j2, j1) where j2 = 0, 1, · · · , 13 and j1 = 0, 1, · · · , 32. Figure 4.4 displays the 2nd layer

output from the GMW-STN, with a small number of timestamps 0, 1, · · · , 53 in each segment due
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Figure 4.3. The normalized 1st layer output of GMW-STN from a Jazz track.

to subsampling between layers. Each block in this figure represents the 2nd layer output from the

GMW-STN associated with the scale of the 2nd layer j2 and the kth segment of the jazz track,

and the row index within each block corresponds to the scale from the 1st layer j1 = 0, 1, · · · , 32.

The features corresponding to the 2nd layer scale j2 = 0 has more variations than those features

with a larger value of j2 that represents a finer scale. In other words, the larger the value of j2 is,

the more stable and less noisy the outputs from the GMW-STN become. The hierarchical features

in the deeper layer of the GMW-STN become more invariant (or stable) to the local deformations,

compared to the hierarchical features in the 1st layer of the GMW-STN. However, there are still

noticeable variations across different overlapping segments in the 2nd layer output from the GMW-

STN due to nonstationarity of the jazz music signal.

In the GMW-STN, the 3rd layer paths add a third scale variation, indexed by (j3, j2, j1), where

j3 = 0, 1, · · · , 9. Figure 4.5 displays output from the 3rd layer of the GMW-STN. Each block in this

figure indicates the 3rd layer output indexed by the 3rd layer scale j3 and the kth segment of this

jazz track. The row index within each block corresponds to the 2nd layer scale j2 = 0, 1, · · · , 13,

while the columns within each block are arranged by the 1st layer scale j1 = 0, 1, · · · , 32. For each
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Figure 4.4. The normalized 2nd layer output of GMW-STN from a Jazz track.

j1, there are 7 coefficients after subsampling between the 2nd layer and the 3rd layer. Hence, there

are 33× 7 = 231 columns in each block of the figure. The major advantage of using the 3rd layer

in the GMW-STN is the increased quasi-translation invariance of the extracted feature. Similar to

what we observe in the 2nd layer, we see more stable patterns when the 3rd layer scale j3 is larger.

The main difference from the 2nd layer is that there are more similar patterns across different

music segments in the 3rd layer. These suggest that the 3rd layer output from the GMW-STN

can capture intrinsic features of the music genre. Thus, we expect the hierarchical features to have

more discriminant power to categorize music signals into different music genres than the original

music tracks. The interpretation of the higher extent of translation invariance in the deeper layer

is connected to Theorem 3.3.2.

4.2.5. Results for Music Classification. This subsection outlines the results of our nu-

merical experiment for classification of music genres on the GTZAN dataset [122]. We compare

the classification performance between the STN using Morlet wavelet (Morlet-STN) and our newly

proposed GMW-STN. Moreover, we will explain the numerical results based on the information

retrieved from each layer of STNs.
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Figure 4.5. The normalized 3rd layer output of GMW-STN from a Jazz track.

4.2.5.1. Training and Testing Stage. We used the three-fold cross validation scheme in our ten

different experiments. In each experiment, the 1000 music tracks were shuffled and distributed into

three folds by 340, 330 and 330 samples. We use two folds for training and one fold for testing.

Then we iterated the process three times by permutating the folds for each experiment. In other

words, we ran the experiments 30 times in total. Each fold of the experiment contains all music

genres that are evenly distributed. For instance, there are 34 music files for each music genre in the

first fold that consists of 340 files. In each fold, we split each music track further into 15 segments

as described in Subsection 4.2.2.

In the training stage, we extracted the STN outputs from all the music segments in the training

set. Then these outputs were compressed using the top 1000 principal components using PCA as

implemented in [59] based on the experimental performance, and are fed into a classifier. Then

in the testing stage, each music signal was assigned a label based on the majority vote among the

labels of its 15 music segments predicted by the trained classifier.

4.2.5.2. Classifier. In our numerical experiments, we mainly use the Support Vector Machine

(SVM) [51, Sec. 3.6] as a classifier for feeding the STN outputs. The SVM classifier transforms

62



the input features further to new representations in which the different classes are separated with

margins as wide as possible. The STN coordinates that were compressed under PCA were fed to

the SVM classifier of a polynomial kernel of degree 1 implemented in the LIBSVM.jl package [67]

which is built from the C++ library LIBSVM [23].

Our work contributes further to the interpretability of the information retrieved for the music

genre classification. In order to further interpret the classification result, we used GLMNet that we

explained in Section 3.4.3 (see also [51, Chap. 3]) in our experiments. The GLMNet fits a generalized

linear model with Lasso or ElasticNet regularization through penalized maximum likelihood, and

the GLMNet weight is parameterized by θ. The regularization path corresponding to the Lasso

penalty was computed by cyclic coordinate descent. We capture the significance of the scattering

coefficients in distinguishing the music genre by the θ weight parameter, when the mean loss is

minimized by the GLMNet.jl package [66].

4.2.5.3. Classification results and evaluation. We evaluated the music classification performance

of various methods (Morlet-STN vs GMW-STN with different classifiers) by comparing the pre-

dicted labels and the ground truth of the music tracks. We computed the classification accuracy

by first computing the mean accuracy under one experiment of the three-fold cross validation, and

then computing the average of the mean accuracies of these ten repeated experiments.

Table 4.2 indicates the superior performance of the GMW-STN with the SVM classifier com-

pared to the Morlet-STN with the SVM classifier. The novel incorporation of the GMW into the

STN improved the test accuracy by more than 4% in the third layer. Moreover, this table indi-

cates that as the number of layers of the STN increases, the classification accuracy also increases

regardless of the wavelet filters. The increase in accuracy is most significant from the first layer to

the second layer.

Table 4.2. Average classification accuracy on music genres using GMW-STN and
Morlet-STN.

GMW-STN Morlet-
STN

Layer GLMNet SVM SVM
1 52.3711% 53.0529% 48.8776%
2 70.2504% 73.7329% 70.0517%
3 74.5500% 77.9088%73.7178%
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Figure 4.6. The test accuracy of all music genres.

In comparison to the SVM classifier, the GLMNet classifier performed slightly worse in tagging

music genres by the GMW-STN (∼3%). Nevertheless, we will show in Subsection 4.2.6 that the

GLMNet classifier can explain the numerical results, and shed light on the music information

extracted by the STN coefficients, which is impossible with the SVM classifier.

We further show the performance of the GMW-STN with the SVM classifier for each individual

music genre in Figure 4.6. The GMW-STN with SVM performed best in classifying classical music

(94.9%) followed by metal (88.2%), jazz (84.9%), and blues (81.4%). However, it did not perform

well in classifying pop (66.8%) and rock music (59.6%). See Subsection 4.2.6 for the explanation

on the difference of the accuracies among the music genres.

Our result is comparable to the reported accuracy (76.02%) without data augmentation and

(80.93%) with data augmentation using 1D CNN [3]. However, we can uniquely provide the ex-

planation of the numerical results based on the additional music information retrieved in deeper

layers. These structured information from the music tracks can be visualized and interpreted from

the STN outputs. On the other hand, it is quite difficult to explain the results and interpret the

intermediate representations in deep learning. Thus, interpretability is a major advantage of our

method over CNNs.

4.2.6. Significance of STN Coefficients. As we mentioned in the previous subsection, the

SVM classifier cannot provide the explanation of which part of features extracted from the GMW-

STN coefficients mainly contribute to the correct music genre classification. Unlike the SVM
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Figure 4.7. The normalized significance score from the third layer scattering co-
efficients for each genre.

classifier, the GLMNet classifier helps us explain how the information retrieved from the STN

coefficients relate to the music genre classification.

Since the GLMNet coefficient vector θ for each genre was computed on the top 1000 PCA

components of the third layer GMW-STN coefficients, we inverted the PCA and projected the PCA

components back to get a set of coefficients corresponding to the third layer GMW-STN. We then

normalized these coefficients so that the maximum value became 1, which we call the significance

scores, and display them in Figure 5.7, with the lower bound clamped to 0.4. The significance scores

of ten music genres from Figure 5.7 were computed to illustrate which music information collected

from the STN coefficients contribute to the classification result. The θ parameter in GLMNet

associated to the significance of GMW-STN coefficients can be utilized for the explanation of the

music genre classification.
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Figure 5.7 shows that information quantified in the third layer GMW-STN is critical in the low

frequency portion, especially in the (j3, j2) = (0, 1) blocks. In general, the concentration in the

lower frequency region is positively associated to the high classification rate. For example, from

Figure 5.7, the classical music has the highest scores in the lower frequency portion of the 3rd layer

coefficients, while pop and rock have more dispersed score distributions. The dispersion in the

score distribution can be attributed to the variations of the patterns in these music genres, which

in turn may have contributed to the lower classification accuracies for these music genres.

In short, we demonstrated that the GMW-STN outperformed the conventional Morlet-STN.

It can be explained by the importance of analyticity of the underlying wavelet transform. Since

the input signals here are digital music signals, which are nonstationary and oscillatory, we should

be able to observe the advantages of using the GMWs over the Morlet wavelets. Moreover, the

classification accuracy became higher with deeper layers in the STN since we could retrieve ad-

ditional relevant music information that are stable with respect to local deformations. We could

demonstrate the connection between the music information retrieved from the GMW-STN and the

classification results in our experiment, which would be impossible when using the CNNs. In addi-

tion, it turned out that the lower frequency portion of the retrieved music information from the 3rd

layer GMW-STN coefficients attributed mainly to the performance of music genre classification.

4.3. GMW-STN with Different Parameters (β, γ)

After evaluating the performance of the GMW-STN using the parameter pair (β, γ) = (4, 2),

we evaluated the performance with different pairs of (β, γ). Particularly, the “Airy” wavelets

corresponding to γ = 3 is of interest and also is recommended by the Lilly et al. [80]. This family

of the GMWs approximate the Gaussian distribution closely while being exactly analytic [80]. See

Subsection 2.3.2.1 for more details about different families of the GMWs. Therefore, we decided to

conduct more experiments in this subsection on the pairs of parameters (β, γ = 3) in the GMW-

STN. We still used the GTZAN dataset [122] for music genre classification.

Our experimental settings in this section are the same as the last section, except the choice of

the pairs of parameters (β, γ) in the GMWs. In the same three-fold cross validation scheme, the

test accuracy using the GMW-STN with the SVM classifier is still the best when (β, γ) = (4, 2).
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The GMW family with γ = 3 had the test accuracy of less than 75% in classifying music genres

along with β = 3, 9, 27, as indicated in Table 4.3. It suggests experimentally that the analytic

“Derivative of Gaussian” (DoG) wavelets (γ = 2) is more suitable for analyzing the music signals

than the Airy wavelets (γ = 3).

Table 4.3. Average accuracy using the GMW-STN with different pairs of (β, γ) in
music genre classification.

(β, γ) Test Accuracy
(4, 2) 77.9088%
(3, 2) 74.4058%
(9, 2) 74.6138%
(27, 2) 75.6488%
(3, 3) 74.4052%
(9, 3) 74.7891%
(27, 3) 73.7472%

As concluded by Lilly et al. [80], the class of wavelets for γ = 2 is less ideal for the analysis

of oscillations than the Airy wavelets with γ = 3. Perhaps the music signals in general are not as

oscillatory as signals that can be analyzed through analytic wavelets with an approximate Gaussian

distribution, we can use the parameter γ = 2 to analyze the music signals. We recall from Subsection

2.3.2.1 that the wavelet ψβ,2 can be obtained by differentiating ψ0,2 with respect to β in the time

domain according to Equation (2.28). We see the central portion of the filter increases when β

increases and β is not asymptotically large. Therefore, the Morse wavelet with β = 4 and γ = 2

(i.e., ψ4,2) allows more sufficient analysis of the signal with larger central portion of the filter, than

the GMW β = 0 and γ = 2 (i.e., ψ0,2).
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CHAPTER 5

Monogenic Wavelet Scattering Network

This chapter is devoted to present the novel STN, which is called Monogenic Wavelet Scattering

Network (MWSN), for 2-D signals (e.g., images) by taking the advantage of monogenicity. We

extend the 1-D STN discussed in Chapter 4, to 2-D STN by the natural extension of analyticity

to monogenicity. See Subsection 2.4 for the mathematical background on monogenicity in 2-D

signals. We extract materials extensively from Reference [21] written by the dissertation author and

Professor Saito in this chapter. The topic was also presented in the CeDAR Research Symposium

2022.

5.1. Architecture for Monogenic Wavelet Scattering Network

The generalized STN was initially implemented by Weber [128] in the Julia package. After

that, the dissertation author implemented the new MWSN based on the foundation of the STN,

with the ability to hierarchically extract “analytic” features in higher dimension among scattering

layers. The MWSN architecture as a whole can be described in Figure 5.1. We will then briefly

discuss how to incorporate the monogenic wavelet transform (MWT) in the STN.

We follow the strategy of Soulard and Carré [111] for the MWT implementation as follows.

Firstly, we create an M ×N grid of Fourier coordinates. Let

X1 :=
1

M

[
− bM/2c,−bM/2c+ 1, · · · , dM/2e − 1

]
11,N ,

X2 :=
1

N
1M,1

[
− bN/2c,−bN/2c+ 1, · · · , dN/2e − 1

]
,

where 11,N is a 1 ×N row vector of all ones, and 1M,1 is a M × 1 column vector of all ones. We

define a variable η ∈ RM×N such that

η[i, j] = 2π
√
X1[i, j]2 +X2[i, j]2.
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Figure 5.1. The MWSN architecture

Let W be the inverse zero-frequency shift (ifftshift) operator in 2-D. Then we can compute the

radial frequency coordinate ξ by

ξ = W (η).

We define a Gaussian high-pass filter H in the 2-D Fourier domain by

H(ξ) := 1− e−
‖ξ‖22

2 .

Then we define the Gaussian high-pass filter at scale j, denoted by Hj by

(5.1) Hj(ξ) := H(2j−1ξ), j ∈ {1, . . . , J},

where we typically use the maximum scale J = 4 in practice.

A corresponding low-pass filter Lj at scale j can then be defined as

Lj(ξ) :=
√

1− (Hj(ξ))2.
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In the MWSN framework, the MWT filter bank has intensive interaction with the feature from

the previous layer. In Figure 5.1, the salmon-pink disks represent operators, i.e., Hj , Lj , and R.

Note that the convolution with the father wavelet ϕm at the mth layer in Equation (3.16) in the

conventional STN corresponds to the low-pass filtering with L1 at every layer in the MWSN. The

zeroth (m = 0) layer output is indicated by the blue box S0f(x) (s(0) for short) after the low-

pass filtering with L1 of the input image f followed by subsampling. The superscript (0) indicates

the isotropic filtering is applied. In the first (m = 1) layer, the vectors U1[λ1]f(x), λ1 ∈ Λ1 in

the conventional STN of Equation (3.12) is now denoted by the vectors in the yellow boxes, u
(l)
j ,

j ∈ {1, . . . , J}, l ∈ {0, 1, 2}, where j is the scale parameter, and l ∈ {0, 1, 2} indicates the isotropic

component, the vertical and horizontal Riesz components obtained by R1, R2, respectively. The

output vectors of the first layer, indicated by blue boxes such as s
(0)
1 and s

(0)
J , are obtained by

subsampling u
(l)
j , low-pass filtering with L1, and yet another subsampling. Note that the other

first-layer outputs, i.e., s
(0)
j ,j ∈ {2, . . . , J − 1} and s

(l)
j , l ∈ {1, 2}, j ∈ {1, . . . , J} are omitted due

to the crowded graphics. Now, in the second (m = 2) layer, the vector U [λ]f(x) = U [λ2]U [λ1]f(x)

in the conventional STN of Equation (3.14) is denoted by u
(l1,l2)
j1,j2

, jk ∈ {1, . . . , J}, lk ∈ {0, 1, 2},

k = 1, 2, where l1, j1 indicate the inherited first layer path information whereas l2, j2 are the

parameters specified in the second layer. The outputs of the second layer are again obtained by

applying the same procedure as the first layer to u
(l1,l2)
j1,j2

, which are indicated by blue boxes s
(l1,l2)
j1,j2

.

Finally, the arrows in this diagram show the flow of the data; in addition, the thick arrows indicate

that the subsampling operations are performed before reaching the destination disks or boxes while

their color (gray or black) suggests that a potentially different subsampling rate can be set.

5.1.1. A Simple illustration of MWSN using MNIST dataset. The features extracted

by the MWSN can be visualized and interpreted on MNIST [73] dataset. The MNST dataset

contains 70000 handwritten digit images, which we split into 60000 images for the training set and

10000 images for the test set in our classification experiments. Each 28×28 image indicates a digit

from 0 to 9 with the corresponding digit label. Figures 5.2 (digit 0) and 5.3 (digit 1) show the

hierarchical features extracted from the MWSN with the maximum scale J = 4 in the first and

second layer respectively and without applying the modulus operator. While the subsampling rate

rm between layers is 3/2, there is no subsampling in the averaging stage. That is, r′m = 1.
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Figure 5.2. The MWSN layer1 (left) and layer 2 (right), scale 4 representation of
a digit 0 image in the MNIST dataset.

The first column of the left figures in Figures 5.2 and 5.3 corresponds to the isotropic component

under the MWT, with increasing scales indicated by the row indices. The second and third columns

correspond to the Riesz components in the MWT. In particular, the second column represents the

Riesz components in the x-direction. The resulting features in the second column emphasize on the

horizontal edges. Meanwhile, the resulting features in the third column, which correspond to the

Riesz components in the y-direction, emphasize the vertical edges. Together we know the overall

magnitude, phase and orientation based on the quaternion expression as shown in Equation (2.43).

The second layer in the right figures in Figures 5.2 and 5.3 has more contextual details than the

first layer. Each row index s in the figure has the corresponding scale ds/3e and the corresponding

contextual emphasis in the 1, i or j components. The columns within each block are arranged

by the 1st layer scale j = 1, · · · , 4 and monogenic components. The implication is that we can

look into the resulting features with different directional contexts in a broad perspective from the

first layer. We can visualize the contextual details further with different resolutions and different
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Figure 5.3. The MWSN layer1 (left) and layer 2 (right), representation of a digit
1 image in the MNIST dataset (with J = 4).

directional contextual emphasis in the second layer. We will show that the additional hierarchical

features allow us to better distinguish the digits.

In our experiment on the MNIST dataset, we used different sample sizes to compare the clas-

sification performance among the original images, the hierarchical features of the first layer in the

MWSN, and the corresponding PCA features with no more than 1000 PCA dimensions. The Julia

package for the SVM with the Gaussian kernel [23]

(
γ =

1

sample size

)
was used as the classifier.

To demonstrate that the MWSN does not require a gigantic dataset, we conducted numerical

experiments and evaluated the performance on small training sample sizes. Let M be the sample

size. For each of the 100 random trials, we randomly selected M training samples and 10000 testing

samples. For each training set, we sampled each digit evenly in the MNIST dataset. That is, if

M = 500, we sampled 50 images for each digit. Then we computed the average training and test

accuracies among the 100 random trials. In Figure 5.4, the test accuracy with the PCA hierarchical
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Figure 5.4. The performance on the MNIST dataset.

features from MWSN using the SVM was the highest among all the other inputs (i.e., the original

images and the 1st-layer MWSN coefficients) if the sample size is greater than 500.

5.2. Rotated Monogenic Wavelet Scattering Network

In the implementation of the MWSN, the dissertation author further incorporated the rotation

operators in the MWSN. Unlike the 1-D signals as discussed in Chapter 4, 2-D signals can be

analyzed through multiple directions such as the horizontal, vertical and diagonal directions. The

additional rotation operator allows us to extract the Riesz directions in the MWSN effectively along

directions other than the horizontal and vertical directions.

Let f be a 2-D signal. According to the notation we used in Section 2.4 about monogenicity,

we can write the monogenic signal as

f+(x) := f(x) + if (1)(x) + jf (2)(x),

where f (1)(x) and f (2)(x) corresponds to the Riesz-x and Riesz-y components respectively.
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Suppose that Oφ is a rotation operator which rotates points about the origin in the 2-D Eu-

clidean space in the counterclockwise manner through an angle φ with respect to the positive x-axis.

To be specific,

Oφ(x) :=

cosφ − sinφ

sinφ cosφ

x1

x2

 .(5.2)

We define

hφ(x) := Oφh(x) = h(O−φx)

for any given 2-D signal h.

In reality, the 2-D signal f may be rotated to recognize different Riesz directions under orien-

tations. The rotated monogenic and anti-monogenic signals f±φ (x) along the rotation angle φ are

given by

f±φ (x) = Oφ[f(x)±Rf(x)]

= Oφf(x)±OφRf(x)

= Oφf(x)±
(
iOφf

(1)(x) + jOφf
(2)(x)

)
.

(5.3)

Note that the rotation operator Oφ and the Riesz transform R do not commute [19]. That is,

OφRf(x) 6= ROφf(x) = Rf(O−φx).

Therefore, we have the following property:

O−φROφ 6= R.(5.4)
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Based on this property, we define instead

f±−φ,φ(x) := O−φ[f(O−φx)±Rf(O−φx)]

= O−φf(O−φx)±O−φRf(O−φx)

= O−φOφf(x)±O−φ

(
if (1)(O−φx) + jf (2)(O−φx)

)
= f(x)±

(
iO−φf

(1)(O−φx) + jO−φf
(2)(O−φx)

)
.

(5.5)

Here O−φf
(1)(O−φx) is the component corresponding to the Riesz direction along the rotation

angle φ from the x-axis, while O−φf
(2)(O−φx) is the component corresponding to the Riesz direc-

tion along the rotation angle φ from the y-axis in the counterclockwise direction. Therefore, we

can extract new feature by the new operator O−φROφ.

In the MWSN, we can implement its rotated version inspired by the calculations above. Before

passing the signal into the network, we rotate the signal f by the rotation operator Oφ. Then

we process the rotated signal in the network. After that, we rotate the resulting features back by

O−φ. The new i, j components of the rotated MWSN in the first layer are associated to the i, j

components in the rotated monogenic representation f+
−φ,φ. The second layer of the rotated MWSN

encourages extraction of hierarchical features along the new components. We can concatenate the

MWSN features with the rotated MWSN features by the rotation operator Oφ1 ,Oφ2 , · · · ,Oφl , with

2l + 2 Riesz directions. We write RMWSN as the abbreviation of the rotated MWSN.

5.3. Applications in Texture Image Classification

The content of the whole subsection was investigated in Reference [21].

5.3.1. Dataset. The texture image dataset we used in this subsection is the Columbia-Utrecht

Reflectance and Texture (CUReT) database [26]. For each of 61 texture classes in the CUReT

dataset, we selected 92 texture images that were then cropped to retain a central region of size

200 × 200, and converted to grayscale from RGB. Therefore, the total number of texture images

available is 5, 612.

5.3.2. Experimental setting. We evaluated the classification performance of our MWSN

and compared with that of the standard 2-D STN based on Morlet wavelets [17, 18]. The 2-D
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Dimension Classification
Method before PCA Accuracy
MWSN 90,000 97.34%

RMWSN 180,000 98.19%
Kymatio-STN (L = 2) 11,875 94.50%
Kymatio-STN (L = 4) 38,125 96.18%
Kymatio-STN (L = 6) 79,375 96.56%
Kymatio-STN (L = 8) 135,625 96.61%

Table 5.1. Table of average test accuracy over 10 experiments

STN was implemented by Andreux et al. [5] in the the Kymatio package (Kymatio-STN) using

the Python programming language. All the other codes for our experiments were conducted on

the Julia programming language [11]. We also compared the performance of our MWSN and our

rotated MWSN (RMWSN) with a rotation operator Oπ/4. In the RMWSN, we concatenated the

features and rotated features by Oπ/4 from the original MWSN.

In the MWSN, we set the maximum scale parameter J = 4 in Equation (5.1) , which exactly

corresponds to J = 3 in the Kymatio package. For both methods, we only used the 2nd layer

outputs since they contain the most relevant information in the input texture images.

We set the subsampling rates in the MWSN (and RMWSN) to 2 regardless of the layers, while

the default values were chosen in the Kymatio-STN. Since the Kymatio-STN allows the users to

select the number of orientations of the Morlet wavelets, we tried the number of orientations L =

2, 4, 6, 8. In each scenario, we used the PCA method implemented in the MultivariateStats.jl

package [59] to reduce the dimension of the scattering coefficients / feature vectors of the MWSN

(and RMWSN) and the Kymatio-STN. After the experiments, we decided to use the top 30 PCA

coordinates in all cases.

Next, we fed those coordinates to the SVM classifier with a polynomial kernel of degree 1

implemented in the LIBSVM.jl package [67] which was build from the C++ library LIBSVM [23].

We then compared the predicted classes of the texture images by the SVM with the ground truth.

5.3.3. Experimental Results. Table 5.1 lists the average test accuracy by repeating two-fold

cross validation 10 times in each case together with the coefficient / feature vector before the PCA

was applied. The accuracy achieved by our proposed MWSN was better than the Kymatio-STN

even with the higher number of orientations due to the natural extension of analyticity in 1-D to
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(a) An input im-
age

(b) The 1st-layer output

Figure 5.5. A CUReT image and its MWSN first layer output

monogenicity in 2-D. Because of the “leak” of the energy to the negative frequency range, the CWT

with Morlet wavelets used in the Kymatio-STN retains less properties than the MWT. Together

with the fact that the Riesz kernels are effective 2-D edge detectors, fewer contextual directions

in the MWSN could still extract sufficient textural information and achieved better classification

result than the Kymatio-STN. In addition, the best accuracy could be achieved by the RMWSN,

showing that our proposed network performed even better with more number of orientations.

The output coefficients have a total size of (25, 25, 12, 12) for each image, of our proposed

MWSN were also “interpretable”. Interpretability was rarely considered in the earlier studies on

texture classification. Figure 5.5b and Figure 5.6 exhibit the additional orientation information of

an image shown in Figure 5.5a captured by the Riesz transforms, R1 and R2 with different scales
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Figure 5.6. The MWSN 2nd-layer output of the image shown in Figure 5.5a

along with subsampling and modulus operation. In Figure 5.6, the (i, j)-th block consists of 25×25

MWSN coefficients s
(l1,l2)
j1,j2

with

(1) l1 = (i− 1) mod 3,

(2) l2 = (j − 1) mod 3,

(3) j1 = b(i− 1)/3c+ 1,

(4) j2 = b(j − 1)/3c+ 1,
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where i, j ∈ {1, . . . , 12}. For example, the lower right (i, j) = (12, 12)-th block represents s
(2,2)
4,4 .

As we traverse from left to right at each row of Figure 5.6, we capture more intricate texture

information. Hence, we can visualize the complex textures in the 2nd-layer.

Figure 5.7. The normalized score on test dataset to measure the extent of the
feature map in contribution to the effective classification

5.3.4. Result Interpretation. Our work goes beyond plain classification. We also explored

the possibility to explain the result by determining which MWSN coefficients are significant in
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Dimension Classification
Method in PCA Accuracy

Kymatio-ST-GLMnet 30 91.1190%
MWSN-GLMnet 30 93.2038%
MWSN-GLMnet 100 95.1247%

RMWSN-GLMnet 30 95.0143%
RMWSN-GLMnet 100 95.8446%

Table 5.2. Table of average test accuracy over 10 experiments with MWSN-
GLMnet

texture classification using GLMNet [51, Chap. 3]. Table 5.2 shows the test accuracy by repeating

two-fold cross validation 10 times in each case together with PCA-compressed coefficient / feature

vectors. We could also draw the same conclusion that the MWSN performed better than Kymatio-

ST, and our RMWSN showed a better performance than that of the MWSN. Even though the

accuracy was higher with slightly higher PCA dimension (say 100) than PCA dimension of 30, we

set the same PCA dimension to 30 for the rest of our experiments using MWSN for consistency.

The normalized scores as demonstrated in Figure 5.7 could be computed by finding the PCA

component index that corresponds to the highest standard score of the parameter |θ|, where |θ| :=[
|θ1|, . . . , |θn|

]
, for which the mean loss is minimized in GLMNet. Our result from Figure 5.7 showed

that the mixed directional textures (i, j) did not attribute a higher contribution in the effective

classification than the directional textures (1, i), (1, j), (i, i), (i, j). Meanwhile, the result could be

attributed more to the vertical textures than the horizontal textures. In particular, the vertical

textures were significant in all frequency components represented by the scale indices in Figure 5.7.

In summary, our newly proposed MWSN and RWSN are able to extract the texture information

that are easily interpretable. Our work addresses the lack of interpretability from the conventional

deep learning algorithms. In addition, we made use of the MWT to construct a new STN that

performed better than Kymatio-STN under the same setting and allows a straight-forward interpre-

tation on the textures. To improve the interpretability of the MWSN coefficients that are important

for classification, we have two plans: 1) convert the second layer coefficients s
(l1,l2)
j1,j2

into the instan-

taneous amplitude, phase, and orientation representation via Equation (2.43) before applying the

PCA; and 2) replace the PCA by the Local Discriminant Basis (LDB) method [104, 105] since
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the latter can directly extract features that are helpful for classification instead of extracting high

variance features by the PCA.
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CHAPTER 6

Scattering Transform in Sonar Signal Processing

In this chapter, we present the work which is an extension of Reference [106] from Professor

Saito’s group with the new setting of 2-D STN. The work contributes to the presentation on

“Robust features Extraction from Acoustic Wavefields for Object Classification” in the Office of

Naval Research (ONR) MCM Virtual Program Review in 2021 and 2022. In particular, the 2-D

acoustic wavefields can be represented as a matrix consisting of waveforms collected at different

receiver locations relative to an object of interest. Analyzing the 2-D acoustic wavefields should

allow us to extract more object information such as the the curvature of hyperbolic events than

analyzing the individual 1-D waveforms separately. We believe a 2-D STN is able to extract more

robust features from the 2-D acoustic wavefields than applying 1-D STN on 1-D acoustic waveforms

separately.

6.1. Problem Overview in Sonar Signal Processing

Mine or underground object detection depends on beamforming of sonar waveforms and in-

terpretation of resulting images generated from those sonar waveforms. In particular, unexploded

ordinance (UXO), which is any military ammunition that has failed to function as designed, can be

detected through deploying unmanned underwater vehicles (UUV) supplied with synthetic aperture

sonar (SAS). See Figure 6.1 for some examples of UXO. As a consequence of many human conflicts,

plenty UXO remains are found on the seabed [70], hence imposing risks to ships and contaminating

the environment. One possible way of detecting and classifying them like dolphins do is to make

use of the raw sonar waveforms and the wavefield scattered from an object.

Some preliminary work for direct automated detection of UXOs from the raw sonar signals have

been done in Professor Saito’s group [76, 83, 84]. Scattering transform is recently used as a tool

to naturally process the sonar data [106]. The modeled mechanism for generating the waveforms

allows us to characterize the variation by space-frequency deformation due to the properties of the
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Figure 6.1. Example of unexploded ordinance (UXO) in a target environment [61].

objects and the measurement conditions. Then the PCA-compressed scattering coefficients are fed

into a linear classifier such as the GLMNet [51, Chap. 3]. Meanwhile, the result can be naturally

interpreted by the scattering coefficients and the fitted coefficients in the linear model as we already

discussed in Chapters 4 and 5.

The prior work by Saito and Weber [106] applied the scattering transform on the BAYEX14

dataset [61] which contains acoustic wavefields scattered from 14 objects partially buried at multiple

distances from the location of the transducer/receiver pair with various rotated positions on the

top of a sand ocean bed at a depth of about 8 meters in a layer of shallow mud. A sensor on a rail

as shown in Figure 6.2 on the right rotates around the object and records at different angles, each

of which generating a 2-D wavefield. Multiple sensor locations on a rail act like a multi-detector for

fetal peak detection [63] which enables an improvement in detecting sonar objects. See Appendix

A for more details of the published work [63].

The sensor in practice acts like an imaginary grid under water. It sends an acoustic wave and

records the response coming from transmissions and reflections at each nod of the grid. On the
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Figure 6.2. The 1-D signal can be generated from a sensor on an receiver location
detecting an underwater object using Gabor signal as a source.

other hand, synthetic waveform by a numerical fast solver using the Helmholtz equation which are

integral equations of scattering theory, in the low- and mid-frequency regimes at different sound

speed can be produced [13,14,15]. The solver we used in the numerical experiments in this chapter

models what happens when an underground transmitter delivers an acoustic wave to track objects

characterized by their shape and the wavespeed into them.

6.2. Sonar Wavefield Generation using Gabor Function as the Source

6.2.1. 2-D Helmholtz equation. Each receiver point on the rail sends an acoustic wave

which is harmonic in time and propagates in two different fields. Firstly the wave propagates

into a material until reaching the object. Then a part of the wave under transmission to the

object propagates again until reaching the next edges of the object, and other part of the wave is

reflected. Mathematically, we define the acoustic impedance Zi into the field indexed by i as the

sound pressure divided by the speed of particle and the surface area in which an acoustic wave
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propagates. The transmission and reflection coefficients are given by

ηreflection =

(
Z1 − Z2

Z1 + Z2

)2

ηtransmission =

(
4Z1Z2

Z1 + Z2

)2

.

(6.1)

In our simulation model, there are two components: one inside the object where the wave

frequency does not alter, one outside the object with change in wavenumber. Boundary conditions

like reflection and transmission are also crucial in the interface. The 2-D Helmholtz equation, which

models scattering from an interface between two fluids, synthesizes the SAS dataset as described

in Reference [13] as follows.

Set Ωc to be the surrounding 2-D space and Ω to be the object. Let u be the response to a

sinusoidal signal in the domain Ω with frequency ω. Note that the wavenumber ki = ω/ci, where

ci is the speed of sound in the material. For example, c1 is the speed of sound of the object and c2

is the speed of the surrounding medium, i.e., water. Let v be the response outside the domain Ω.

Then the partial differential equation (PDE) is

∆u+ k2
1u = 0 in Ω

∆v + k2
2v = 0 in Ωc

u− v = g on ∂Ω

∂νu− ∂νv = ∂νg on ∂Ω√
|x|(∂|x| − ik2)v(x)→ 0 as |x| → ∞,

(6.2)

where the function g can be set to 0 and ∂ν is the normal derivative. In particular, if the last

condition in Equation (6.2) is dropped, then the solution can be written as

w(x, t) = u(x)eiωt.

Note that the ranges of the speed of sound ci are from 343 m/s in air, 1503 m/s in water to

5100 m/s in aluminum. A fast solver developed by Ian Sammis and James Bremer [13, 15] can

be employed to synthesize our sonar dataset. The initial data generation method was proposed by

Vincent Bodin [12], who is a summer intern formerly under the supervision by Professor Saito. We
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model the material as a fluid in an 2-D interface with just one layer, and establish the following

settings:

(1) The sensor follows a straight-line trajectory line called rail.

(2) The surrounding space where the acoustic waves propagate is sent is a 2-D space.

(3) The borders in the surrounding space are not taken into account in the entire 2-D space.

The observation point x0(r) = (x, r) on a rail can be visualized in Figure 6.2 on the right,

where x = 10m is the distance between the center on a rail and the underwater object, and r is the

displacement of a receiver on the rail ranged from −6m to 6m. In the simulation process, the 481

receiver points (indexed from -240 to 240) on the rail are spaced out evenly to emit acoustic waves

and record the responses. Define xθ(r) = Rθx0(r) as the point of the rotated rail by the rotation

matrix Rθ.

Let s ∈ L1(R) ∩ L2(R) be a multi-frequency input signal. An example of input signal is a

Gabor function which is displayed on the left in Figure 6.2. The response from the input signal s

can be approximated by integrating across different frequencies. Suppose v is the solution to the

2-D Helmholtz equation outside the domain Ω as described in Equation (6.2), and P is the phase

information from v. For a transmitter located at x ∈ Ωc , the ideal reconstruction of the response

f to the input signal s is given by

f(t,x) =

∫
R
F [s](ω)v(ω,x)e

iω

(
t−P (ω,x)

)
dω.(6.3)

Zero padding on the input signal s is crucial to generate the sonar data by the Helmholtz equation in

order that the periodic version computed through FFT is similar to the version with finite support.

Note that in practice the response f is computed using the associated frequencies range used to

generate the input source signal.

6.2.2. 2-D Wavefield Generation. Our first SAS synthesis data setup is the target shape

discrimination between triangular object and shark-fin object as shown in Figure 6.2. These objects

can be designed before we proceed to the PDE solver on the 2-D Helmholtz Equation as described

in Equation (6.2).
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Figure 6.3. Example of 2-D wavefields in the SAS dataset at angle 0.

(1) The vertices of a triangular object centered at 0 are located at

(−0.625,−0.375), (0.375,−0.375), (0.375, 0.625).

(2) The vertices p1 =
(
p

(0)
1 , p

(1)
1

)
, p2 =

(
p

(0)
2 , p

(1)
2

)
, p3 =

(
p

(0)
3 , p

(1)
3

)
of a shark-fin object are

the same as those of the triangular object. We can parametrize edges of the shark-fin object

by a a quadratic curve across the vertices. The intermediate points to fit the polynomial

of degree 2 are(
p

(0)
1 + p

(0)
2

2
,
9p

(1)
2 + p

(1)
3

10

)
,
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2

)
,

(
p

(0)
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(0)
2

2
,
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(1)
1 + 3p

(1)
3

4

)
.

We can generate the full 2D wavefields for both triangular object and shark-fin object as shown

in Figure 6.3 for object characterization.

For each object, we synthetically generate sonar signals with the following scenarios:

(1) 3 different acoustic velocities (2000 m/s, 2250 m/s, 2500 m/s).
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(2) 5 different distances (5.2m, 10.2m, 15.2m, 20.2m, 25.2m) from the center of rail to the

center of the object.

We also rotate each object with 36 different angles, uniformly from 0 degree to 350 degree. There-

fore, there are 540 wavefields generated for each object. We normalize the signal by the matrix

norm ‖ · ‖2, and add the white Gaussian noise with signal-to-noise ratio (SNR) = 5dB.

As mentioned in Subsection 6.1 of this chapter, we need to create a database for a set of

monochromatic signals that retrieve the response as the wavefield. The set of 320 frequencies

covered in the database is

{
1 ∗ 156.25 Hz, 2 ∗ 156.25 Hz, · · · , 320 ∗ 156.25 = 50000 Hz

}
.

In each signal, we have 641 time samples and 481 1-D waveforms. We split the data evenly and

randomly into training and testing set to perform two-fold cross validation by 10 times.

6.3. Sonar Detection by Monogenic Wavelet Scattering Network

Let g(x) be a 2-D shark-fin wavefield. We can extract additional information based on the

monogenic representation of the sonar signal. For instance, Figure 6.4 displays the Riesz-x and

Riesz-y components of the monogenic signal of a shark-fin signal shown in Figure 6.3. We write

the monogenic signal as

g+(x) = g(x) + ig(1)(x) + jg(2)(x),

where g(1)(x) and g(2)(x) corresponds to the Riesz-x and Riesz-y components respectively. See

Subsection 2.4 for more details on the mathematical background on monogenicity.

Based on Equation (2.43), the monogenic signal also has its own monogenic amplitude, local

phase and local phase direction. While the monogenic amplitude measures the phase-invariant

magnitude of the monogenic signal, the local phase is an angular quantity by comparing the ratio

of the signal g(x) as the adjacent side, and the amplitude of the monogenic signal ‖g+(x)‖ as the

hypotenuse. Based on the local phase in Figure 6.4, the contextual information with strong ampli-

tude (i.e., the sensible curves in the middle) is dominated by the arches bent from the horizontal

line, while the background is dominated by the vertical lines.
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Figure 6.4. The monogenic signal of a shark-fin object.

Furthermore, Figure 6.5 shows that the monogenic signal can be transformed with different

scales. The subfigures in the first three columns have the same notation as the 1st-layer scattering

outputs represented by the yellow boxes in the MWSN in Figure 5.1, except that the monogenic

representations in Figure 6.5 do not go through the subsampling process. For every scale j, the

monogenic signal at that scale can be expressed as

g+
1,j(x) = g1,j(x) + ig

(1)
1,j (x) + jg

(2)
1,j (x),

where g1,j(x), g
(1)
1,j (x) and g

(2)
1,j (x) are the 2-D signal, the Riesz-x component, Riesz-y component

respectively at the scale j as displayed in Figure 6.5. The subscript 1 refers to the 1st-layer of

the MWSN. For each monogenic signal g+
1,j , we can find the monogenic amplitude, local phase and
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Figure 6.5. The multi-resolutional monogenic signal of a shark-fin object.

local phase direction in reference to Equation (2.43). Again, for every scale in the 5th and 6th

columns of Figure 6.5, the contextual information corresponding to the large monogenic amplitude

is dominated by the arches bent from horizontal, and the background is dominated by the vertical

lines.

6.3.1. The MWSN features extractor and classification performance in SAS. As

mentioned in Subsection 6.1, we used the SAS sonar dataset [12,106,129] for evaluating the clas-

sification performance for different objects. The dataset consists of raw sonar waveforms scattered

from certain objects for the SAS processing. In this subsection, we employed the synthetic ex-

amples from two objects (shark-fin and triangular objects) as described in Subsection 6.2.1. We
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Figure 6.6. The 1st-layer MWSN (left) and 2nd-layer MWSN (right) representa-
tion of a 2-D signal from the shark-fin object in the SAS dataset.

compared the classification performance among the original 2-D wavefields, the 1st- and 2nd-layer

MWSN features, and the corresponding PCA hierarchical features with no more than 1000 features

dimensions.

Figures 6.6 and 6.7 show the MWSN features from a shark-fin object and a triangular object

respectively with the maximum scale J = 4. In particular, Figure 6.6 display the 1st-layer MWSN

features on the left and the 2nd-layer MWSN features on the right from a shark-fin object. The

1st-layer MWSN features have a very similar structure with the multiscale monogenic signal repre-

sented in Figure 6.5, except that 1st-layer MWSN features were extracted through the additional

subsampling operations and averaging with a low-pass filter. To be specific, we set the subsampling

rate rm = r′m = 2 in the MWSN. The 2nd-layer MWSN features on the right has more contextual

details than the 1st-layer features. Each row index s in the right subfigure has the corresponding

scale ds/3e and the corresponding contextual emphasis (isotropic, Riesz-x, Riesz-y) on the 1, i or
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Figure 6.7. The 1st-layer MWSN (left) and 2nd-layer MWSN (right) representa-
tions of a 2-D signal from the triangular object in the SAS Dataset.

j components respectively. The column index represents the 1st-layer information from top left

to bottom right order in the left subfigure, which is used to compute the 2nd-layer information.

Hence, we can look at the resulting features with different directional information with different

scales from the 1st-layer, and visualize the contextual details further microscopically with different

resolutions and paired directions in the 2nd-layer. The similar patterns of the 1st-layer MWSN

features on the left and the 2nd-layer MWSN features from the triangular object can be observed in

Figure 6.7. To discriminate these features, we need a classifier and performance metric to quantify

the classification performance.

The area under the curve (AUC) of the receiver operating characteristics (ROC), which is

a performance metric with graphical visualization for binary classification at multiple threshold

settings [29]. The ROC curve is a probability curve plotted with the true positive rate (TPR) on

the y-axis against the false positive rate (FPR) on the x-axis. The AUC, which measures the degree
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of separability, can be computed by finding the area under the ROC curve. The range of the AUC

is from 0.5 for random guessing, to 1 for a perfect classifier.

We computed the AUC from our experiments by repeating two-fold cross validation 10 times

together. In our experiments, the Julia package for GLMNet [66] was used as the classifier. Dimen-

sion reduction is necessary before feeding the features into the GLMNet classifier because the initial

features dimension is too large for our classifier, and we used the PCA as implemented in [59]. We

set the PCA dimension to be 1000 at maximum for our MWT and MWSN features. The precise

PCA dimension was determined by the PCA algorithm with the ratio of variance preserved in the

principal subspace (pratio) set to be 0.99. We compared the classification performance with various

features fed into the the classifier:

(1) original wavefields

(2) Absolute value of the 2-D Fourier transform (AVFT)

(3) Monogenic wavelet transform (MWT)

(4) the 1st-layer MWSN (L1-MWSN)

(5) the 2nd-layer MWSN (L2-MWSN)

(6) AVFT of the 1st-layer MWSN (L1-AVFT-MWSN)

(7) AVFT of the 2nd-layer MWSN (L2-AVFT-MWSN).

The ROC curves of the following features are shown in Figure 6.8. In particular, the AUC was

around 0.9802 for the L2-AVFT-MWSN features , i.e., the absolute value of the Fourier transform

(AVFT) of the MWSN in the 2nd-layer. The L2-AVFT-MWSN features outperformed the other

features in our experiments. The AVFT together with the hierarchical features extracted in the

MWSN capture more intrinsic geometric information in the 2-D wavefields. It suggests that our

L2-AVFT-MWSN features together with a classifier is capable of discriminating the two objects

from their 2-D wavefields under various scenarios.

We further explored the possibility to interpret the results from the 2nd-layer MWSN features.

The features shown in Figure 6.9 is the projection of the L2-MWSN space from the single top prin-

cipal components. Each row index has the corresponding scale and the corresponding contextual

direction on the 1 (isotropic), i (time), and j (offset) components. We found the PCA component

index corresponding to the highest standard score of the parameter |θ| from the L2-AVFT-MWSN
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Figure 6.8. The AUC performance on the SAS dataset under the ROC curve.

features for which the mean loss is minimized in GLMNet, and then projected it back to obtain

a set of significant coefficients corresponding to the L2-MWSN. We indicated the most significant

components by red boxes, which correspond to the isotropic and the Riesz-x components (corre-

sponding to the time) of larger scales. Taking the absolute value of the Fourier transform of the

L2-MWSN coefficients has improved the classification rates thanks to the additional translation

invariance.

6.4. Object Classification using the dolphin’s Clicks

6.4.1. Dolphin’s clicks as the source for synthesizing 2-D acoustic wavefields. Ob-

stacle avoidance technology is crucial for the US Navy to conduct shallow water and very shallow

water (SW and VSW) mine counter-measure (MCM). In particular, UXO is a concern as mentioned

in Subsection 6.1. To address the problem of mine detection and hunting, the dolphin-based ma-

rine mammal systems (MMS) are adopted in the US Navy [86]. The trained bottlenose dolphins

naturally possess a SW and VSW-adapted biological sonar. With the native echolocation abilities
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Figure 6.9. The normalized score in the 2nd-layer MWSN.

of dolphins adapted for their habitats, it has been demonstrated that the dolphins’ biological sonar

outperforms hardware systems available for mine detection and classification in various difficult

environments such as SW and VSW and with buried mines [86].

As described by Au [8], dolphins have naturally evolved high-frequency echolocation which is

similar to the biosonar possessed by bats. Being a predator and prey like bats, dolphins coevolves

prey hearing and predator signaling through increasing frequencies of echolocation signals to extend

outside their preys and predators [119]. Herzing [53] suggested that dolphins use echolocation to

distinguish different preys such as fish and squid. The echolocation signals can be produced by

dolphins with bimodal frequency spectra of a relatively low-frequency peak from 40 to 50 kHz, and
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Figure 6.10. The processed dolphin signal.

a very high-frequency peak from 110 to 130 kHz [9]. Some underwater hearing experiments have

revealed that bottlenose dolphins can detect low frequency sound between 50 and 150 Hz, with

similar response patterns to the test signal at higher frequencies [121].

Because of the advantage of dolphin’s echolocation capabilities, we used dolphins’ clicks as a

source instead of the Gabor function in the previous subsections, to generate the responses from

the triangle and shark-fin objects. We obtain the recordings of clicks of a dolphin from Dr. Dorian

Hauser of National Marine Mammal Foundation, as shown in Figure 6.10 on the left. A dolphin

typically generates many clicks successively, resulting in more complicated patterns. In our signal,

there are 2 dolphin clicks, and the first click possesses the most information. The sampling rate for

the dolphin signal is 2 MHz, i.e., the sampling rate is

∆t = 1/(2× 106) = 0.5µ second.
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Initially, we circularly shifted (circshift) the dolphin signal in Figure 6.10 so that the support

of the signal is closer to the origin, just like the Gabor-function signal in Figure 6.2. We cropped

the signal with length of 1281 as indicated on the right of Figure 6.10. To further discard the

noise in the cropped dolphin signal, we replace the second half portion (i.e., t = 641, 642, · · · , 1281)

of the cropped signal by the portion (i.e., t > 1281) after the cropped portion. The response

generated from the dolphin signal is mainly dependent on the first half portion which is similar to

the Gabor-function signal.

6.4.2. Wavefield generation using 2-D Helmholtz equation. We can generate the wave-

fields from the 2-D Helmholtz equation (6.2) using the dolphin signal as the source. As described

in Subsection 6.2.1, a sensor acts like an imaginary grid under water, sends an acoustic wave and

records the response coming from transmissions and reflections at each node of the grid. Subsection

6.2.2 outlines the detailed procedure to generate 2-D wavefields using the 2-D Helmholtz equation,

except that we use the dolphin signal as a main source here. In addition, we alter the database for

a set of monochromatic signals that retrieve the response from the dolphin signal. The set of 640

frequencies covered in the new database is

{
1 ∗ 80 Hz, 2 ∗ 80 Hz, · · · , 640 ∗ 80 = 51200 Hz

}
.

Figure 6.11 display the 2-D wavefields generated from triangular object and shark-fin object

using the dolphin signal as a source.

6.4.3. The multiscale MWT of wavefields. Figure 6.12 displays the monogenic signal of a

shark-fin object with different scales using the dolphin signal as the source for wavefield generation.

In the first three columns, the subfigures have the same notation as the scattering outputs in the first

layer represented similarly by the yellow boxes in the MWSN in Figure 5.1. The major difference

is the omission of the subsampling procedure for the multiscale monogenic signal representation in

Figure 6.12. For every scale j, the monogenic signal at that scale can be written as

g+
1,j(x) = g1,j(x) + ig

(1)
1,j (x) + jg

(2)
1,j (x),
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Figure 6.11. The generated wavefields of the triangular and shark-fin objects using
the dolphin signal as a source.

where g1,j(x), g
(1)
1,j (x) and g

(2)
1,j (x) are the isotropic, the Riesz-x and Riesz-y components respectively,

as shown in Figure 6.12. For each monogenic signal g+
1,j , we can compute the monogenic amplitude,

local phase, and local phase direction according to Equation (2.43). The contextual information is

dominated by the arches bent from the horizontal line to a large extent based on the local phase

and the phase direction.

6.4.4. Classification performance. We used AUC as the classification performance metric

and repeated the experiments 10 times with two-fold cross validation. Again, the Julia package

for GLMNet [66] was used as the classifier, with PCA [59] as the dimension reduction method.

We set the PCA dimension to be 1000 at maximum for our MWT and MWSN features. The

PCA dimension was determined by the PCA algorithm with the ratio of variances preserved in
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Figure 6.12. The multi-resolutional monogenic signal of a shark-fin object using
the dolphin signal as the source.

the principal subspace (pratio) set to be 0.99. We compared the classification performance with

various features fed into the the classifier:

(1) original wavefields

(2) Absolute value of the 2-D Fourier transform (AVFT)

(3) Monogenic wavelet transform (MWT)

(4) the 1st-layer MWSN (L1-MWSN)

(5) the 2nd-layer MWSN (L2-MWSN)

(6) AVFT of the 1st-layer MWSN (L1-AVFT-MWSN)

(7) AVFT of the 2nd-layer MWSN (L2-AVFT-MWSN).
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Figure 6.13. The AUC performance on the SAS dataset using the dolphin signal
as the source.

Note that the MWSN features were generated under the subsampling rate rm = 3 and r′m = 2.

Therefore, before applying PCA on the vectorized MWSN outputs, the length of the 1st-layer

MWSN is round(1281/3/2) = 214. Then the length of the 2nd-layer MWSN is round(1281/3/3/2) =

71. Table 6.1 shows the output dimension of MWSN for each 2-D wavefield.

Table 6.1. Output dimension of MWSN for each wavefield.

Layer index Size / Length
Input 1281
0 641
1 (214, 80, 12)
2 (71, 26, 12, 12)

Figure 6.13 demonstrates the ROC curves of the these features. The original 2-D wavefield

had an AUC of 0.7479, which shows the discriminative power of using the dolphin signal as a

source without additional features extraction. Also, the AUC of the 1st and 2nd-layer MWSN were
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around 0.8301 and 0.9293 respectively, which were higher than using Gabor signal as a source. The

AUC was around 0.9793 for L2-AVFT-MWSN, which was extracted by taking the absolute value

of the Fourier transform (AVFT) of the MWSN in the 2nd-layer. Again, the L2-AVFT-MWSN

features outperformed the other features in our experiments, with comparable performance using

the dolphin and Gabor signals as sources. It suggests that our L2-AVFT-MWSN features together

with the GLMNet classifier is capable of discriminating the two objects from their 2-D wavefields

under various scenarios.

We then interpreted the performance purely from the 2nd-layer MWSN features. The features

displayed in Figure 6.14 is the projection of the L2-MWSN space from the top principal compo-

nents based on the GLMNet parameter |θ|. Each row index has the corresponding scale and the

corresponding contextual direction with respect to the 1 (isotropic), i (time), and j (offset) compo-

nents. We determined the PCA component index corresponding to the highest standard score of

the parameter |θ| from the L2-MWSN features for which the mean loss is minimized in GLMNet.

Then we projected the corresponding PC component back to obtain a set of significant coefficients

corresponding to the L2-MWSN. The most significant components correspond to the isotropic and

the Riesz-x components (with respect to time) of larger scales. Taking the absolute value of the

Fourier transform of L2-MWSN coefficients has improved the classification rates thanks to the

additional translation invariance.

On the other hand, the L2-AVFT-MWSN features is hard to be visualized. After the 2-D Fourier

transform, the most prominent Fourier coefficients are condensed into the left hand corner for each

block in the ST features space. In order to visualize the score for L2-AVFT-MWSN, we again

found the PCA component index corresponding to the highest standard score of the parameter |θ|

from the L2-AVFT-MWSN features for which the mean loss is minimized in GLMNet. Then we

projected the corresponding PC component to obtain a set of significant coefficients corresponding

to the L2-AVFT-MWSN. We took take the average of these significant coefficients in each block

and then normalized over all blocks to generate in Figure 6.15. Based on Figure 6.15, we indicated

the most significant components by the red box in Figure 6.16, which correspond to the isotropic

and the Riesz-x components (corresponding to the time) and Riesz-y components (corresponding

to the offset) of the largest scale from the 1st-layer of the MWSN.
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Figure 6.14. The normalized score in the 2nd-layer MWSN.

6.5. Object Material Classification Using the Dolphin Signal

In this subsection we seek to examine the effect of the change in the object property, in particu-

lar, the speed of sound. Besides the ability to discriminate object shapes, a good classifier should be

also sensitive to the other object properties. Reflection coefficients as shown in Equation (6.1) and
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Figure 6.15. The normalized score in the L2-AVFT-MWSN with averaging.

the Snell’s law [106, Section 3.3] can be used to determine the effect on the detected response from

the change of the speed of sound. As stated in Reference [106, Section 3.3], the scale information

should be a strong indicator of the effect of the speed of sound in the object material. As the

absolute value of the 2-D Fourier transform (AVFT) has the access of the frequency information,
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Figure 6.16. The L2-MWSN features, with the red box indicating the significant
blocks. Each significant blocks are determined by the normalized score in the L2-
AVFT-MWSN as shown in Figure 6.15.

we will show that it is a good indicator on the material differences. Below, we will also display the

performance using the MWSN coefficients with different scales.
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Figure 6.17. The AUC performance on the material discrimination in the trian-
gular object on the SAS dataset using the dolphin signal as the source under the
ROC curve.

We compared two different speed of sound, c
(1)
1 = 2000 m/s and c

(2)
1 = 2500 m/s, in the

triangular object, using the dolphin signal as a source to generate the 2-D wavefields without

the Hanning window. We again used the AUC metric to measure the classification performance

between different materials (i.e., c
(1)
1 and c

(2)
1 ). We performed two-fold cross validation in 10 different

experiments and computed the average AUC for three individual cases:

(1) Absolute value of the 2-D Fourier transform (AVFT)

(2) AVFT of the 2nd-layer MWSN (L2-AVFT-MWSN) with a maximum scale of 4

(3) AVFT of the 2nd-layer MWSN (L2-AVFT-MWSN) with a maximum scale of 5.

The L2-AVFT-MWSN features were selected as we showed that they could perform better than

the L2-MWSN features. The PCA-compressed features of pratio = 0.99 and of dimension 1000 in

each case are fed into the GLMNet classifier [51, Chap. 3]. The ROC curve which visualizes the

classification result in each case is shown in Figure 6.17. The AVFT of the input 2-D wavefields

performed very well with an AUC of 0.9667. The L2-AVFT-MWSN with a finer scale of 5 has an
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AUC of 0.9788 which is better than its coarser version of J = 4. The frequency resolution is not

sufficient enough with a scale of 4 in these experiments. However, the L2-AVFT-MWSN with a

maximum scale of 5 is the most discriminative on the different speed of sound among all cases. The

result using the MWSN coefficients aligns with the result in Reference [106].
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CHAPTER 7

Conclusion

Throughout the course of the preceding chapters in this dissertation, we develop new scattering

transform frameworks in reference to the mathematical concept of analyticity and monogenicity,

and solve image and signal processing problems with machine learning tools. These new frameworks

allow us to achieve better classification performance in various numerical experiments. Since the

scattering coefficients and linear models such as GLMNet are interpretable, we can explain these

experimental results, whereas interpretation from the conventional convolutional neural networks

is extremely challenging.

We now summarize our contributions of this dissertation. In Chapter 3, the Turbulence Removal

Network (TRN) was proposed for the first time to restore images from videos distorted by atmo-

spheric turbulence using deep neural network in the face of data scarcity. To synthesize sufficient

videos for data-hungry deep neural network, we introduced a new data augmentation algorithm to

simultaneously distort the image with blurs and geometric distortion. The approach has shown to

generalize atmospheric turbulence well by illustrating the performance in both synthetic and real

cases. Considering that deep neural networks lack interpretability and there are some scenarios

when training deep convolutional neural network (CNN) is an overkill, we can use the scattering

transform as an alternative to CNN.

In Chapter 4, we created a new framework to incorporate the generalized Morse wavelet in

the scattering transform network (GMW-STN) for the analysis of 1-D nonstationary signals. We

demonstrated a better performance of the GMW-STN than Morlet-STN for music genres classifi-

cation. The result can be explained by the analyticity of the wavelet as reviewed in Chapter 2. In

addition, we showed that the accuracy in music genres classification is higher when we increase the

number of layers in the scattering transform network. Above all, we provided the interpretation

of the scattering transform coefficients computed from the music signals, whereas the conventional

deep learning methods cannot.
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In Chapter 5 we proposed and developed the novel framework of the 2-D scattering transform

network. Motivated by the ideas of monogenicity as a natural extension of analyticity in higher

dimension, as examined in Chapter 2, we developed the Monogenic Wavelet Scattering Network

(MWSN). The new network together with the support vector machine (SVM) classifier exhibited a

better accuracy in 2D texture image classification than the standard 2-D scattering transform net-

work using Morlet wavelet with the SVM classifier. Our MWSN extracts interpretable coefficients,

which can aid the explanation of these experimental results along with a linear machine learning

model.

Lastly, the research on the scattering transform in object classification using sonar signals in

Chapter 6, which is supported by the Office of Naval Research (ONR), is a promising direction. The

dissertation extends the research [106] from Professor Saito’s group by evaluating the performance

in object classification using sonar signals and the new MWSN as proposed in Chapter 5. We have

promising results on the synthetic aperture sonar (SAS) dataset using both Gabor functions and

dolphin’s clicks as source signals.

We conclude by exploring a number of open future research directions. First, the comparison

between the MWSN applied to the spectrograms of the input music tracks and the GMW-STN

applied to the input music tracks in Chapter as shown 4 raises new and interesting research.

Second, we can enhance the interpretability of the MWSN coefficients by further leveraging the

advantage of monogenic wavelet transform (MWT). We can convert the 2nd-layer coefficients into

the instantaneous monogenic amplitude, local phase, and orientation as stated in Equation (2.43).

We can explore different dimension reduction methods such as he Local Discriminant Basis (LDB)

method [104, 105] as the latter can extract discriminant features directly instead of gathering

features of high variance by the PCA.
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APPENDIX A

Multi-Detector Signal Extraction for Transabdominal Fetal Pulse

Oximetry

This appendix highlights the work on multi-detector fetal signal extraction [63]. Existing signal

extraction algorithms such as REpeating Pattern Extraction Technique (REPET) [98] and Adaptive

REPET [97] identify the audio segments that are periodically repeating through spectrograms.

Reference [63] used the recursive least squares (RLS) adaptive noise cancellation (ANC) filtering

for fetal signal extraction. The work relates to the dissertation theme by the linear model (i.e., the

RLS ANC filtering) used in the research and the advantage of multi-detector in detecting objects

at difference distances from the emitters. See Subsection 3.3 and 6.1 for these respective references

in the main content. Some materials in this appendix are extracted from Reference [63] with the

dissertation author as a contributing author of the publication.

A.1. Problem overview

Through the use of ultrasound Doppler signal, we can track the fetal heart rate (FHR) through-

out pregnancy for the assessment of antenatal fetal well-being [37]. To detect fetal hypoxia and

reduce fetal mortality, uterine contraction followed by fetal bradycardia were suggested as proto-

col [108], even though electronic FHR monitoring adversely leads to an increased rate of emergency

cesarean deliveries [89]. Some studies further indicated that there was no significant reduction of

hazards to fetus due to fetal hypoxia in face of the rising number of cesarean deliveries [2,85]. Some

challenges such as the interference of the maternal and fetal breathing reduces FHR detection ac-

curacy using Doppler ultrasound [62]. Normal physiological responses can sometimes interrupt

non-reassuring FHR monitoring [2]. A high false positive rate is expected by simply relying on

FHR monitoring, hence causing inefficacies in surgical intervention by obstetricians. [7,40].
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Figure A.1. The overview of transabdominal fetal pulse oximetry, with the optical
probe for the emitters and photodetectors on the left.

Transabdominal fetal pulse oximetry (TFO) was recently developed as a non-invasive device

to measure fetal oxygen saturation [35, 41]. Figure A.1 shows the overview of the TFO [34].

In the reflectance-based TFO, the LED light sources in near-infrared (NIR) region emit photons

that propagate through maternal abdomen and scatter through maternal tissue before reaching

the fetus [137]. As fetal tissue is a few centimeters away from the maternal abdomen’s surface,

higher optical penetration depth are selected in the emitters from NIR region [32, 34]. Then a

portion of the photons traveling through fetal tissue are reflected back to the surface and captured

by photodetectors [32]. See Figure A.1 for the optical probe on the left for the NIR emitters and

five photodetectors (D1-D5) at various distances from the NIR emitters. As the distance between

photodetector and NIR emitter increases, the detected light signal travels through a longer distance

and hence penetrates deeper into the tissue.

When the detected signal travels through both the maternal and fetal medium, it carries a

mixture of maternal and fetal information. In particular, the maternal heart rate (MHR), maternal

respiration rate (MRR) and Mayer waves are included in maternal information [36]. The main

challenge however is to extract the fetal signal from the mixed signal carrying most maternal infor-

mation, so as to evaluate fetal oxygen saturation [33]. The closest detector (D1) to the emitter in
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Figure A.1 captures maternal information only. Far photodetectors capture more fetal information

as opposed to near photodetectors, but the captured signal is weaker due to the attenuation of the

detected light penetrated through a longer distance. In Section 6.1, multiple sonar sensor locations

on a rail also collect more object information than a single sensor.

A.2. Fetal signal extraction in multi-photodetector

We present a multi-detector fetal signal extraction method to recover weak fetal information

gathered by TFO from the mixed signal which has both maternal and fetal information. Then we

evaluate the proposed method on data gathered from a hypoxic fetal lamb in utero. Details on

data acquisition from hypoxic lamb model can be found in Reference [63].

A.2.1. ANC in RLS. RLS is an algorithm to recursively find coefficients that minimize a

weighted linear least squares function and match the desired signal given a reference signal. We

applied RLS for ANC. In particular, we treat the noise-only (maternal-only) signal as the reference

signal, which is captured by the nearest photodetector D1 with 1.5 cm away from the emitter. The

reference signal contains maternal heart rate (MHR) (1 Hz - 1.7 Hz / 60-100 breaths per minute

(bpm) ), maternal respiration rate (MRR) (∼ 0.2 Hz - 0.5 Hz / 12-20 bpm) and Mayer waves (∼

0.1 Hz) [36]. On the other hand, the FHR is our desired signal which was then extracted from

photodetectors D2 to D5 by ANC, together with signal preprocessing.

A finite impulse response (FIR) filter is a filter with a finite durational response to any input

of finite length. To be precise, let b = (b0, b1, · · · , bN ) be the N -th order FIR filter. Let x,y be

the input and output signals respectively. The output y can be expressed as a convolution of the

input x with the most recent values and the vector b as the weight given by the FIR filter:

yn =

N∑
k=0

bkxn−k,(A.1)

where xn−k is commonly known a the k-th tap of the input x.

Suppose that x is the reference signal (i.e., maternal-only signal) and d is the desired signal (i.e.,

fetal-only signal). The goal of the algorithm is to recover the desired signal d from the reference
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input x using the FIR filter w with p+ 1 taps:

dn ≈
p∑
i=0

wixn−i

= wTx(n),

(A.2)

where x(n) = (xn, xn−1, · · · , xn−p) is a vector containing the most recent values of x. Denote the

approximation of the recovered desired signal as

d̃n =

p∑
i=0

w
(n)
i xn−i

= w(n)Tx(n),

(A.3)

where w(n) is the current estimate of the filter w.

A.2.2. Derivation of the RLS algorithm in algebraic equation. Let λ ∈ (0, 1] be the

forgetting factor which weighs the importance of the most recent samples. Define the error e by

en = dn − d̃n(A.4)

We then introduce a cost function C such that

C(w(n)) =

n∑
k=0

λn−ke2
k

=

n∑
k=0

λn−k|dk − d̃k|2

=

n∑
k=0

λn−k|wTx(k) −w(k)Tx(k)|2.

(A.5)
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By taking the partial derivative with respective to the recent coefficient vector w(n) and setting it

to be zero, one has, for j = 0, 1, · · · , p,

0 =
∂C(w(n))

∂w
(n)
j

=
n∑
k=0

λn−k2ek
∂ek

∂w
(n)
j

= 2
n∑
k=0

λn−kekxk−j

= 2
n∑
k=0

λn−k
(
dk −

p∑
i=0

w
(k)
i xk−i

)
xk−j .

(A.6)

Therefore,

n∑
k=0

λn−kdkxk−j =

n∑
k=0

λn−k
p∑
i=0

w
(k)
i xk−ixk−j .(A.7)

We denote Rx(n) be the weighted sample covariance matrix for x. Also, we denote rdx(n) as

the equivalent estimate for the cross-covariance between d and x. Then we can express the above

equation by

Rx(n)w(n) = rdx(n)

w(n) = R−1
x (n)rdx(n).

(A.8)

A.2.3. Derivation of the RLS Algorithm in Recursive Form. Let ∆w(n−1) is the cor-

rection factor at the time n− 1. We will derive a solution of the form

w(n) = w(n−1) + ∆w(n−1).(A.9)

Let x(j) = (xj , xj−1, · · · , xj−p). We write the cross covariance in terms of the recursive form:

rdx(n) =
n∑
k=0

λn−kdkx
(k)

=

n−1∑
k=0

λn−kdkx
(k) + dnx

(n)

= λrdx(n− 1) + dnx
(n).

(A.10)
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Likewise, the sample covariance matrix can be written in terms of recursive form:

Rx(n) =
n∑
k=0

λn−kx(k)x(k)T

= λRx(n− 1) + x(n)x(n)T.

(A.11)

To find R−1
x in Equation (A.8), we apply the Woodbury matrix identity [47]:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.(A.12)

Let A := λRx(n− 1), U := x(n), C := I, V := x(n)T. Then

R−1
x (n) =

(
λRx(n− 1) + x(n)x(n)T

)−1

= λ−1Rx(n− 1)−1 − λ−1Rx(n− 1)−1x(n)(I + x(n)Tλ−1Rx(n− 1)−1x(n))−1x(n)Tλ−1Rx(n− 1)−1.

(A.13)

Define P (n) and g(n) by

P (n) := R−1
x (n)

= λ−1P (n− 1)− g(n)x(n)Tλ−1P (n− 1),

g(n) := λ−1P (n− 1)x(n)(I + x(n)Tλ−1P (n− 1)x(n))−1

= P (n− 1)x(n)(λ+ x(n)TP (n− 1)x(n))−1.

(A.14)

We can further derive

g(n) = P (n− 1)x(n)(λ+ x(n)TP (n− 1)x(n))−1

g(n)(λ+ x(n)TP (n− 1)x(n)) = P (n− 1)x(n)

g(n)λ+ g(n)x(n)TP (n− 1)x(n) = P (n− 1)x(n)

g(n)λ = P (n− 1)x(n) − g(n)x(n)TP (n− 1)x(n)

g(n) = λ−1[P (n− 1)− g(n)x(n)TP (n− 1)]x(n)

= P (n)x(n).

(A.15)
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Then,

w(n) = P (n)rdx(n)

= λP (n)rdx(n− 1) + dnP (n)x(n)

= λ[λ−1P (n− 1)− g(n)x(n)Tλ−1P (n− 1)]rdx(n− 1) + dng(n)

= P (n− 1)rdx(n− 1)− g(n)x(n)TP (n− 1)rdx(n− 1) + dng(n)

= P (n− 1)rdx(n− 1) + g(n)[dn − x(n)TP (n− 1)rdx(n− 1)].

(A.16)

Therefore,

w(n) = w(n−1) + g(n)
[
dn − x(n)Tw(n−1)

]
.(A.17)

Let αn = dn − x(n)Tw(n−1) be a prior error. Then

w(n) = w(n−1) + g(n)αn.(A.18)

A.2.4. Summary of the RLS Algorithm. The details of the RLS algorithm for the p-th

order RLS filter are shown as follows:

1. Parameters:

(i) p: the order of the RLS filter

(ii) λ: the forgetting factor

(iii) δ: the value for initialization of P (0)

2. Initialization:

(i) w(n) = 0

(ii) x(k) = 0 for k = −p, · · · ,−1

(iii) d(k) = 0 for k = −p, · · · ,−1

(iv) P (0) = δIp+1
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Figure A.2. The Multi-Photodetector Fetal Heart Rate Extractor.

3. Procedure:

For n = 1, 2, · · · , we define

x(n) = (xn, xn−1, · · · , xn−p)

α(n) = d(n)− xT(n)w(n− 1)

g(n) =
P (n− 1)x(n)

λ+ xT(n)P (n− 1)x(n)

P (n) = λ−1

(
P (n− 1)− g(n)xT(n)P (n− 1)

)
w(n) = w(n− 1) + α(n)g(n).

(A.19)

A.2.5. ANC in multi-photodetector system. As described in the problem overview A.1,

we have a multi-photodetector system where photodetectors D2 to D5 capture fetal signal. De-

tectors D2 to D5 are 3, 4.5, 7, and 10 centimeters respectively away from the NIR emitters

[35], generating 4 different mixed signals which are then processed by the ANC algorithm (with

λ = 0.99, p = 100) for fetal signal extraction. As opposed to the existing single-detector FHR ex-

traction approach [39], we propose the more robust multi-photodetector FHR extraction approach

that ultilizes the extracted FHRs from four photodetectors. A diagram of the multi-photodetector

FHR extractor implemented in MATLAB is presented in Figure A.2.
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Figure A.3. Example of material, mixed and extracted fetal signals in the time
domain from round 1.

To remove noise components from high frequency and very low frequency before applying

ANC, we used bandpass filters between 0.2 Hz - 15 Hz on the the maternal signal captured by

photodetector D1, and mixed signals captured by photodetectors D2 to D5. We remove MRR and

MHR from the mixed signal by the RLS adaptive filtering algorithm so that the resulting signal

mainly contains the fetal information. The power spectral density (PSD) of the resulting signal

was then calculated by Yule-Walker autoregressive method [64] of order 100. Then the PSD passed

to FHR estimation block which recorded the frequency with highest PSD within a pre-defined

search span of 110 bpm - 270 bpm (1.83 Hz - 4.5 Hz) on FHR in reference to the FHRs found

in the literature [125]. We assigned weight on each photodetector based on the source-detector

distance and the prior information on the photodetectors as described in the overview A.1. The

weights of D2, D3, D4, D5 are 1, 3, 2, 2 respectively. We reject the FHR estimations which are 3

Median Absolute Deviation (MAD) away from the weighted median. Eventually, the mean FHR is

computed from the remaining weighted FHR estimates.
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Figure A.4. Power-Spectral Densities of respective signals in Figure A.3.

A.3. Results of fetal heart rate estimation

In the hypoxic lamb model, we recorded for 53 and 31 minutes in round 1 and 2 respectively. We

split the dataset into 1-minute long windows with 30-second window for overlapping datapoints.

Hence, we computed a new FHR for every 30 seconds, and estimated the FHR for a 1-minute

timeframe. Figure A.3 displays a maternal signal at photodetector D1, a mixed-signal captured at

photodetector D3 and the extracted fetal signal after ANC from round 1 in the time-domain. Figure

A.4 shows the corresponding PSD. The three peaks (from left to right) in Figure A.4 are maternal

respiration rate (MRR), maternal heart rate (MHR) and fetal heart rate (FHR). The figures show

effective cancellation of MRR and MHR to give a significant FHR peak. The mixed signal has

similar patterns with the maternal-only measurement which leads to better ANC performance.

Figure A.5 shows the FHR estimations from all four photodetectors D2-D5 in the whole duration

from the 1st round, with the mean FHR computed in Table A.1. The soar in FHR towards the end

in Figure A.5 is due to fetal hypoxia. Root-mean-square error (RMSE) was the performance metric

between estimated FHRs and reference FHRs measured by hemodynamics. The performance in

photodetector D3 was the best among all photodetectors in Table A.1.

We display he FHR estimations with noisier data collected in 2nd round in Figure A.6, with a

performance summary in Table A.2. We see that the performance is consistently better measured
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Figure A.5. Hypoxic lamb FHR estimates in the 1st round.

RMSE (bpm) Minimum Absolute Error (bpm) Maximum Absolute Error (bpm)
D2 FHR 6.4381 0.0079 49.6693
D3 FHR 3.2584 0.0035 27.5689
D4 FHR 6.0331 0.0035 50.8693
D5 FHR 10.4637 0.0039 28.0960

mean FHR 3.2457 0.0035 27.2355

Table A.1. Summary of hypoxic lamb FHR estimates in the 1st round.

RMSE (bpm) Minimum Absolute Error (bpm) Maximum Absolute Error (bpm)
D2 FHR 43.4845 4.5531 100.8720
D3 FHR 4.7262 0.0427 24.2303
D4 FHR 23.5761 0.0324 104.8720
D5 FHR 10.2379 0.2765 33.4131

mean FHR 3.8492 0.0221 10.2075

Table A.2. Summary of hypoxic lamb FHR estimates in the 2nd round.

by mean FHR as we can gather more information from all four photodetectors. These results

illustrate that multi-detector FHR extraction approach provides more robust and more accurate

fetal signal information as opposed to single-detector. Our method is superior to the latter one

because the multi-detector can compensate for data loss and noise found in a single detector.
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Figure A.6. Hypoxic lamb FHR estimates in the 2nd round.

A.4. 1.5-D scattering transform and classification performance in SAS

We compared the classification performance between 1.5-D scattering transform and the 1-

D scattering transform using the Morlet Wavelet. Here 1.5D scattering transform refers to the

incorporation of the 2-D monogenic feature into the 1-D signals which were then fed into a 1-D

scattering transform network.

We generated the 2-D wavefield using dolphin signal as a source. See Section 6.4.2 for more

details. In Section , we showed the monogenic signal from the 2-D wavefield. We set the scale j of

MWT to be 6. Then a subset of the MWT components were stacked to be ST features:

(1) Isotropic component of scale 4

(2) Isotropic component of scale 5

(3) Riesz component (space) of scale 5

(4) Isotropic component of scale 6

(5) Riesz component (space) of scale 6

As we seen from the score analysis in Section 6.4.4, features with higher scales contributed to

a higher success in classification. In particular, the isotropic texture and the texture along space
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axis of higher scales were more significant in sonar classification. Then we processed these features

by 1-D scattering transform network using Morlet wavelet.

We used AUC as the classification performance metric and repeated the experiments 10 times

with two-fold cross validation. Again, the Julia package for GLMNet [66] was used as the classifier,

with PCA [59] as the dimension reduction method. We set the PCA dimension to be 1500 at

maximum for our MWT and MWSN features. The PCA dimension was determined by the PCA

algorithm with the ratio of variances preserved in the principal subspace (pratio) set to be 0.99.

We compared the classification performance with various features fed into the the classifier:

(1) the 2nd layer MWSN (L2-MWSN) using all MWT features

(2) the 2nd layer MWSN (L2-MWSN) using a subset of MWT features

The reported AUC using all MWT features was 0.9314, while the AUC using a subset of MWT

features was 0.9512. Hence, we concluded that selecting a subset of MWT features further improved

the classification performance in 1-D scattering transform.
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