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Real-time Free-moving Active Coded Mask 3D
Gamma-Ray Imaging

Daniel Hellfeld, Paul Barton, Donald Gunter, Andrew Haefner, Lucian Mihailescu, and Kai Vetter

Abstract—The ability to localize and map the distribution of
gamma-ray emitting radionuclides in 3D has applications ranging
from medical imaging to nuclear security. In the case of radi-
ological source search and nuclear contamination remediation,
the deployment of freely moving detection systems such as hand-
held instruments or ground/aerial-based vehicles are critical in
overcoming the inverse square law and complex shielding scenar-
ios. Using contextual sensors, these systems can simultaneously
generate 3D maps of the surrounding environment and track the
position and orientation of the gamma-ray sensitive detectors
in that environment. The fusion of contextual scene data and
gamma-ray detector data to facilitate real-time 3D gamma-ray
image reconstruction has been demonstrated with mobile HPGe
and CdZnTe-based Compton cameras for gamma-ray energies
ranging from a few hundred keV to several MeV. Here we apply
this approach for lower energy (50−400 keV) gamma-rays, using
a hand-held CdZnTe-based omnidirectional imaging system and
an active coded mask imaging modality. We present our approach
to real-time reconstruction using a scene data constrained GPU-
accelerated list-mode MLEM algorithm and show results from
several measurements in the lab and in the field.

Index Terms—3D gamma-ray imaging, spherical active coded
mask, real-time imaging, scene data fusion

I. INTRODUCTION

THE detection, characterization, localization and mapping
of gamma-ray source distributions are critical in fields

such as gamma-ray astronomy, medical imaging and nuclear
security. In the case of nuclear security, free-moving systems
are needed to efficiently find sources in potentially cluttered
environments or complex shielding scenarios as well as to
quickly map radiation fields across large areas. The distinc-
tion of a free-moving system is made here to discriminate
between portable systems that are designed to acquire data in
several static positions and mobile systems designed to acquire
gamma-ray data while the system is in continuous motion with
no constraints on position or orientation.

In radiological source search, hand-held free-moving sys-
tems are important in overcoming the inverse square law
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to get much closer to weaker sources or to view suspected
source locations from various perspectives in order to cir-
cumvent potential shielding (e.g., finding narrow streaming
paths) [1], [2], [3], [4]. In nuclear contamination remediation
and consequence management, unmanned ground-based or
aerial-based systems facilitate quick wide-area mapping of
gamma-ray source distributions while limiting dose to human
operators [5], [6], [7], [8], [9]. These maps can be used as a
guide for further remediation, to ensure the area is no longer
contaminated, or for contamination avoidance planning.

Traditionally, such mobile systems consist of non-imaging
detectors and produce proximity images or maps, using only
the gamma-ray flux modulation with distance as a means
for localization or source distribution estimation [9], [10].
Imaging capabilities can significantly enhance the localization
of sources and the mapping of complex distributions, though
the current state-of-the-art commercially available imagers
[11], [12] are designed for static data acquisition and produce
2D images. While sometimes combined with a visual camera
overlay for context, 2D images in many cases can result in
ambiguity as to the true location of the source relative to
the 3D scene (e.g., in or behind a box, in front or behind
a wall). Furthermore, the static standoff measurements may
require long dwell times (tens of min) to image weak or
shielded sources. In other cases, 2D gamma-ray images are
projected onto laser-based 3D models of the surrounding
environment [13], though this approach still suffers from the
same ambiguity problem when only one static gamma-ray
measurement is performed. The introduction of unrestricted
motion to these imaging systems can improve detection sen-
sitivity while facilitating 3D gamma-ray imaging.

The system position and orientation (i.e., pose) must be
known at every measurement in order to image in 3D. In
contrast to medical imaging, in which the detector system has a
fixed and known geometry relative to a stationary image space,
free-moving systems require auxiliary sensors and tracking
algorithms for accurate pose estimation. Mihailescu et al.
[14] demonstrated 3D imaging with a mobile system by
first acquiring data from multiple static locations around a
source and manually determining the system pose at each
measurement using a laser rangefinder. More recent work has
developed the use of simultaneous localization and mapping
(SLAM) [15], [16] for real-time pose tracking of continuously
moving mobile systems. This was first demonstrated with
RGB-D Microsoft Kinect cameras and RGB-D SLAM [17]
on a free-moving cart-based double-sided-strip HPGe detector
[18] and a hand-held dual-plane CdZnTe detector array [19].
The active infrared depth sensors on the Kinect have a range
of 4−6 m and are limited to indoors mapping scenarios.



Other work has demonstrated the use of light detection and
ranging (LiDAR) sensors for indoor, outdoor, and wide-area
(10−100 m) SLAM on a variety of manned and unmanned
platforms [20], [21].

In addition to pose estimation, SLAM generates a 3D model
of the environment around the detector. The 3D scene model
can be used to provide context to the 3D gamma-ray image
and to constrain the image reconstruction, increasing image
accuracy, decreasing noise, and improving the computational
efficiency of the reconstruction. This approach is referred to
as scene data fusion (SDF) [18]. The contextual tracking and
mapping as well as gamma-ray imaging can be performed in
real-time, providing a 3D scene and gamma-ray model to the
user during a measurement, allowing for course correction and
decreasing the time to detect and image suspected sources.

Previous work has focused on the Compton imaging modal-
ity for gamma-ray energies from several hundred keV to
a few MeV. Here we extend these concepts to the active
coded mask modality for lower gamma-ray energies (tens
of keV to a few hundred keV) of significant interest to
nuclear security, safeguards and nonproliferation. We present
our approach to real-time 3D imaging using the maximum
likelihood expectation maximization (MLEM) reconstruction
algorithm [22] in the list-mode formalism [23] with graphics
processing unit (GPU) acceleration. Several reconstruction
scenarios are shown, both in the lab and in the field. The
measurements in this work are limited to unshielded point-
sources, with activities ranging from µCi (37 kBq) to mCi
(37 MBq) and gamma-ray energies from 59 to 356 keV.
The Portable Radiation Imaging Spectroscopy and Mapping
(PRISM) detector system, described below, is used here as
the platform for development and demonstration.

This paper is organized as follows: the PRISM detector
system is described in Sec. II, the 3D coded mask imaging and
SDF approach is presented in Sec. III, the real-time imaging
results are shown in Sec. IV, and conclusions in Sec. V.

II. PRISM

The PRISM system is a free-moving hand-held spherical ac-
tive coded array of many 1 cm3 coplanar-grid (CPG) [24], [25]
CdZnTe (CZT) detector modules, designed for omnidirectional
dual-mode (coded mask and Compton) gamma-ray imaging
(see Fig. 1). The first prototype design and demonstration of
4π active coded mask imaging was previously described in
[26]. In this work, we utilize the next iteration of the prototype
system, hereby referred to as PRISM-v1. A brief overview of
the system is provided here, but a more detailed description
and characterization will be presented in future work.

The �14 cm spherical array was designed with a total
of 192 available detector slots. Currently, 100 detectors are
loaded in the sphere, in an optimal configuration for coded
mask imaging. The optimization of the number and configu-
ration of detectors was addressed in our previous work [26].
Each CPG-CZT detector crystal is connected to a dedicated
application specific integrated circuit (ASIC) board to read-
out, process (i.e., collecting and non-collecting anode grid
differencing with relative gain), shape and amplify both the
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Fig. 1. (Color online) (Top) PRISM-v1 prototype system with accompanying
wireless tablet for remote control and visualization. (Bottom) Annotated
diagram of PRISM-v1 components and internal design. The 1 cm3 CZT
detector modules (packaged with individual read-out ASIC boards) snap into
the interior of the spherical enclosure with the CPG anodes facing outwards.

anode grid and cathode signal waveforms [27]. The modules
(crystal and ASIC) are packaged in Lexan casings that snap
into the interior of the spherical enclosure. The crystals are
oriented such that the cathodes face in towards the center of the
sphere. A flexible circuit connects the individual ASIC boards
to 12 analog-to-digital converter (ADC) cards (384 channels)
on the signal acquisition motherboard. A total of 384 channels
are available for processing the anode and cathode signals of
all 192 detector slots, allowing for the number and configura-
tion of the detector modules to change without modification
to the electronics pipeline. The digitized signals are processed
with a field programmable gate array (FPGA) on a digital
signal processing board based on the CAPTAN architecture
[28]. The processed signals are then routed to a single-board
computer (Intel NUC7i7BNH [29]) via ethernet for further
data processing, analysis and image reconstruction.

The auxiliary sensor package includes an optical camera
(FLIR flea3 camera [30] with Kowa 3.5 mm/F1.4 lens [31]),
LiDAR (Velodyne Puck Lite [32]) and inertial measurement
unit (IMU) (VectorNav VN-200 [33]) for real-time contextual
mapping and tracking. Contextual data processing and SLAM
(via the Google Cartographer package [34]) are also performed
on the onboard computer. A wireless tablet is used for real-



time remote control and visualization, connected to the system
via WiFi. A single 98 Wh Li battery powers the entire system
for ∼1 hr, though the battery life may fluctuate depending
on the demand placed on the computer (e.g., from image
reconstruction and SLAM). The system can be powered on
and begin acquiring data in < 30 s. With the battery attached,
the system weight is approximately 6.35 kg.

Each CPG module read-out facilitates the event-by-event
determination of depth-of-interaction (DOI) along the anode-
cathode axis. The increase in information density of each
event and the higher frequency features in the low-energy
response will improve the angular (and spatial) resolution of
the active coded mask imaging modality. The depth sensitivity
also improves Compton imaging by reducing the lever arm
uncertainty. A thorough characterization of the DOI response
of PRISM-v1 and the implementation of DOI into the real-
time 3D imaging approach will be the subject of future work.
Only the anode signals were utilized for event reconstruction
in the work presented here.

III. METHODS

A. Active Coded Mask Imaging
The traditional coded aperture approach [35] utilizes a pas-

sive high-Z (e.g., Pb, W) mask in front of a position-sensitive
gamma-ray detector. The mask is designed to uniquely modu-
late the incident gamma-ray flux based on the source direction
(i.e., the spatial pattern of events in the detector uniquely de-
termines the direction of the source). The reconstruction of the
estimated source distribution is typically limited to a region-
of-interest (ROI) in energy, using only full-energy absorption
(i.e., photopeak) events. The effectiveness of the coded mask
decreases with increasing energy as the attenuation of photons
weakens and the detection pattern blurs.

The passive mask approach presents several problems for
imaging systems of relevance for radiological source search
and distributed source mapping. First, the reconstruction re-
lies on gamma-ray events being discarded. This is not ideal
in count-starved scenarios such as weak or shielded source
search, where statistics are important to solve the detection
problem. Second, the weight of the mask material can result
in cumbersome detectors, limiting the overall mobility of free-
moving systems. Third, the traditional planar construction of
these types of imagers suffers from a limited coded field-of-
view (FOV). Finally, the characteristic fluorescence photons
(58−85 keV) from high-Z masks can obstruct low-energy
reconstruction such as the 59 and 81 keV lines from 241Am
and 133Ba, respectively [36].

The replacement of passive mask materials with active
(detector) elements has been explored to increase sensitivity,
decrease weight, improve the coded FOV, and enable Compton
imaging [37], [38]. The PRISM system was the first to intro-
duce and experimentally demonstrate a spherical active coded
mask design for omnidirectional coded mask and Compton
imaging. The coded mask imaging modality is used in the
energy range of 50−400 keV in PRISM-v1. Above this range,
the gamma-ray mean free path is larger than the average path
length through a 1 cm3 cube and the Compton scattering cross-
section is ∼2 times larger than photoelectric absorption. Below

this range, the data are dominated by background, down-scatter
and low-energy electronics noise.

B. List-mode MLEM
Given a set of I measurements, x[I×1] = [x1, x2, . . . , xI ]T ,

we wish to solve for the distribution of J source intensities in
a voxelized spatial domain, λ[J×1] = [λ1, λ2, . . . , λJ ]T , from
which the measured data originated. The source intensities are
related to the measurement space by

x̄ = C · λ , (1)

where x̄ are the mean-rates and C [I×J] is the system matrix,
which describes the geometric and detector efficiency of the
I measurements relative to the J image voxels, given by

Cij ≈ ηijξijti|~ri − ~rj |−2 , (2)

where ηij is the angular response of measurement i to image
voxel j, ti is the integration time of measurement i, ~ri and ~rj
are the global position coordinates associated with measure-
ment i and image voxel j, respectively, and ξij is the trans-
mission probability of a gamma-ray between ~ri and ~rj . The
angular response is determined either through measurement
or simulation. In this work, the angular response of PRISM-
v1 was generated in the far-field limit using Monte Carlo
simulations in Geant4 [39]. All measurements in this work
were performed with source standoffs appropriate for the far-
field approximation (> 75 cm). The transmission probability
matrix was assumed to be unity everywhere due to unknown
voxel material composition and the additional computational
burden of pose-to-voxel ray-casting.

Due to the individual counting of discrete events, gamma-
ray measurements follow Poisson statistics. The negative log
of the Poisson likelihood of measuring x given λ is

`(x|λ) = [C ·λ−x� log (C · λ) + log[Γ(x+ 1)]]T · 1 , (3)

where � denotes element-wise multiplication and Γ(·) is
the gamma function. MLEM is an iterative algorithm that
solves for an estimate of the source intensity distribution
λ̂ that maximizes the likelihood, or minimizes `(x|λ). The
computational complexity of each MLEM iteration is O(IJ).
In a “bin-mode” formulation of MLEM [22], the dimension I
is of size P × D where P is the number of poses and D is
the number of detectors. A typical free-moving measurement
scenario can contain 103 to 104 poses, therefore I can easily be
on the order of 105 to 106 when using the PRISM-v1 system
with 100 detectors. In most cases, the number of measured
gamma-ray counts N in a particular ROI is significantly
smaller than P × D. Therefore a “list-mode” formulation of
MLEM [23], in which the dimension I is of size N , is more
appropriate for this type of imaging problem.

The list-mode data x[N×1] consists of N events, where each
event xn represents a single measured interaction in detector
d ∈ [1, D] at pose p ∈ [1, P ] with energy deposition E in
some ROI (e.g., 122 ± 10 keV). The {n, j} element of the
system matrix C [N×J] represents the probability of a gamma-
ray emitted from voxel j producing event xn. The list-mode
MLEM update equation (at iteration q + 1) is given by

λ̂
q+1

= (λ̂
q
� ς)�CT · [1� (C · λ̂

q
)] , (4)



where � denotes element-wise division. The sensitivity
ς [J×1] = C̃

T
·1 and C̃

[PD×J]
represents the complete system

matrix over all possible events (P ×D), not just the N events
measured in x. The convergence of MLEM is not dependent
on the initial estimate, thus the source intensities are typically
initialized (q = 0) with a uniform distribution (λ̂

0
= 1).

The number of iterations used in MLEM represents a bal-
ance between contrast recovery and image noise amplification
[40]. A statistical stopping criterion can be used (e.g., a
predefined tolerance on the change in the Poisson likelihood),
however the likelihood monotonically increases and thus does
not translate directly to an image quality metric in terms of
noise or artifacts [41]. In many cases, the number of iterations
is set to an arbitrary number based on past experience or, in
the case presented here, reconstruction speed requirements.

The reconstruction approach described neglects a priori
information about the source distribution, apart from the SDF
constraint described below. We found that the un-regularized
MLEM algorithm performed well for the source scenarios
we present in this work. For more complex source distribu-
tions, techniques such as total variations regularization [42] or
wavelet de-noising [43] could be explored to improve recon-
struction. However, these methods currently impose challenges
on real-time 3D reconstruction.

C. Scene Data Fusion

In the current implementation, the pose estimates and 3D
scene model are generated at a rate of ∼10 Hz. The list-
mode data are time-correlated with the pose estimates to
provide the position and orientation of the detection system
in the global image space at every event. The image space is
defined with a uniformly voxelized grid based on the extent
of the measurement path. The bounds of the grid are set at
5 m from the path extremes in each spatial dimension. This
distance represents a balance between creating a large image
space and maintaining appreciable sensitivity in every voxel.
The choice of voxel size also presents a trade-off between
the spatial resolution of the image space and the gamma-ray
reconstruction time (which scales with the number of voxels).

The point cloud (i.e., the collection of 3D points from the
SLAM-aligned laser-scans) is used to generate an occupancy
grid over the voxel space, returning only the voxels that
contain points and that have neighboring voxels. To reduce
noise from spurious points in the cloud, we require each voxel
to contain at least 10 points and have at least 4 neighbor
voxels. The gamma-ray reconstruction is then constrained to
the occupied voxels, limiting the source distribution to the
surfaces of objects in the scene in which the LiDAR measured
a reflection. The voxel constraint can improve image accu-
racy and decrease noise under the assumption that gamma-
ray sources are not present in free-space, and the overall
reduction in the number of voxels can be substantial (> 90%),
significantly improving reconstruction speed. A threshold is set
on the number of occupied voxels (e.g., 105) to regulate the
reconstruction time. If the threshold is crossed, the voxel size
is increased.

D. GPU Acceleration

The number of poses P and voxels J used in the recon-
struction will increase as the measurement progresses and the
system explores new space. The memory required to store the
complete system matrix (of size P×D×J) can quickly exceed
the available RAM on a small onboard computer. In this case,
elements of the system matrix must be computed on the fly
during reconstruction. This approach can take O(min) when
performed on a low-parallelizable CPU. The use of a highly-
parallelizable GPU can significantly increase computational
efficiency, facilitating real-time, O(s), imaging.

The list-mode MLEM algorithm was parallelized using the
OpenCL framework [44]. OpenCL was chosen here as it can
be run on CPUs, integrated graphics cards, and dedicated
GPUs without any restrictions on hardware architecture (unlike
e.g., CUDA [45], which is only compatible with NVIDIA
products). The PRISM-v1 implementation utilizes the Intel
Iris Plus Graphics 650 integrated graphics card in the onboard
computer. In addition to cost, dedicated GPUs tend to be large
in size and have considerable power requirements, currently
prohibiting their use on small free-moving systems.

E. Visualization

Visualizing a high dimensional 3D data product including
scene, pose, and gamma-ray information with enough contrast
and little clutter can be challenging. In this work, we use
three different methods of visualization, depending on the
demonstration. First, we superimpose the gamma-ray image
as iso-surfaces of intensity (i.e., a 3D contour plot) on the 3D
point cloud. The point cloud is colorized by the LiDAR return
intensities (i.e., a measure of reflectivity) for added contrast.
Multiple viewpoints of the scene are provided to give a sense
of depth. This method is used to convey the advantage of the
SDF constraint over a full voxelization scheme (Sec. IV-A)
because the independent 3D contours can be placed without
reference to the point cloud. However, generating and transmit-
ting 3D images can be computationally expensive and prohibit
a real-time visualization framework. Therefore to demonstrate
the real-time imaging performance and how the image re-
construction progresses with time (Sec. IV-B), we simply
show top-down 2D projection images on a downsampled point
cloud.

Following the conclusion of a measurement, high-resolution
3D images can be produced with offline processing, inO(min).
Currently the point cloud is colorized by interpolating the
gamma-ray intensity map and using graphics software to
render the final product. The lower 10% of the gamma-ray
intensities are replaced with the LiDAR return intensities to
provide higher contrast. This method is used in Sec. IV-B and
IV-C. Photogrammetry software such as [46] can be used to
generate colorized point clouds based on the RGB camera
stream during the measurement.

IV. RESULTS

A. SDF Constraint and GPU Acceleration

We first demonstrate free-moving 3D active coded mask
imaging and the effects of the SDF constraint and GPU paral-



(a.1) (a.2)

(b.1) (b.2)

Fig. 2. (Color online) MLEM reconstruction (10 iterations) of a 35 s free-moving measurement (path shown in red) around a 241Am source (marked with
an arrow) in a small indoor cluttered lab space (∼70 m2). (a) Full voxelized model [(1) top-down and (2) isometric viewpoints] and (b) SDF-constrained
model [(1) top-down, (2) isometric], superimposed on the 3D point cloud colorized with LiDAR return intensities. Measurement parameters: 10 cm voxel
size, 2× 106 total voxels, 5× 104 occupied voxels (2.5% of total), 320 poses, 92 detectors, and 1095 counts in the photopeak region (59 ± 5 keV).

lelization on both image quality and computational efficiency.
An unshielded point-source localization scenario in a small
indoor cluttered laboratory space is considered. A 20 µCi
(0.74 MBq) 241Am source was placed in the corner of a
large (∼1 m3) plastic case, approximately 25 cm from the
top of the case. The PRISM-v1 system was walked around
the lab, mapping the ∼70 m2 space in less than 35 s (total
of 320 poses). The 3D space surrounding the measurement
path was uniformly discretized with 10 cm voxels, resulting
in a total of 2 × 106 voxels and 5 × 104 occupied voxels
(2.5% of the total). The list-mode gamma-ray data used in
the reconstruction was limited to a 10 keV wide ROI around
the 241Am photopeak at 59 keV. A total of 1095 counts were
collected in the ROI over the measurement from 92 detectors.

For comparison, the MLEM reconstruction was performed
on both the full and SDF-constrained image space and on
both the CPU and integrated GPU. Ten iterations were used
to balance image quality and overall reconstruction speed.
The full and constrained images are shown in Fig. 2 as 3D
contour plots superimposed on a downsampled point cloud
with top-down and isometric viewpoints. The color scales
have units of relative intensity as the system matrix used for
reconstruction is currently not quantitative. Sample run-times
for the sensitivity calculation and MLEM iterations on the

onboard CPU and integrated GPU are shown in Table I.
The full voxelization reconstruction results in a bias towards

the measurement path and a rather diffuse estimate in space.
The SDF constrained image localizes the source with a higher
degree of both accuracy and precision. In addition to image
quality, the SDF constraint reduces the overall dimensionality
of the reconstruction, leading to significant speed increases
on both hardware. The GPU-based reconstruction shows a
drastic increase in reconstruction speed over the CPU (∼10×),
improving overall run-times to O(s).

TABLE I
SENSITIVITY AND LIST-MODE MLEM ITERATION (ITR) RUN-TIMES ON THE

PRISM-V1 SINGLE-BOARD COMPUTER FOR THE IMAGES IN FIG. 2.

Hardware
Sensitivity (s) MLEM itr (s)

Full SDF Full SDF

Intel i7 dual-core 3.50 GHz (CPU) 550.8 14.2 49.0 1.1
Intel Iris Plus Graphics 650 (GPU) 47.3 1.3 7.5 0.2

B. Real-time Online Reconstruction

The results shown in the previous section were for data
collected over the entire measurement. However, Table I shows



Fig. 3. (Color online) Time sequence of the top-down projection SDF-constrained MLEM reconstruction (10 iterations) during a free-moving measurement
(shown with a red line) in a small indoor space (∼240 m2). Two sources (133Ba and 137Cs) were placed in the scene and are marked with arrows. Reconstruction
was performed on the high-energy 133Ba photopeak (356 ± 5 keV). The source was correctly localized within ∼20 s.

Fig. 4. (Color online) Final 3D image reconstruction from Fig. 3, shown as a colorized point cloud (visualization processed offline). The 133Ba source is
correctly localized to the top of the file cabinet in the back corner of the office. Point cloud tracks can be seen in the left room and are a result of people
moving in the scene during the measurement. Points from the ceiling and floor have been removed for clarity.

that the SDF constrained GPU-based imaging approach can
facilitate online reconstruction and return images to the user
in real-time during the measurement. In this section, we
demonstrate the real-time online 3D imaging capability in an
indoor office space, consisting of two large rooms connected
by a hallway (total area of ∼240 m2). A 20 µCi (0.74 MBq)
133Ba source and a 20 µCi (0.74 MBq) 137Cs source were
placed on top of filing cabinets on opposite sides of one room.
The PRISM-v1 system was walked around both rooms in

under 2 min. A 10 keV wide ROI was placed around 356 keV
to localize the 133Ba source and to demonstrate the coded mask
imaging capability at higher energies. The 662 keV line from
137Cs is better suited for high-energy imaging modalities (i.e.,
Compton imaging).

Figure 3 shows a series of top-down projection images
(10 iterations MLEM) including the point cloud and pose
estimates during the course of the measurement, each with
a timestamp and additional reconstruction parameters such



as the number of poses, occupied voxels, counts, and the
reconstruction time (sensitivity and all iterations) for the state
of the measurement up to that point. The image reconstruc-
tion is always performed in 3D, and 2D projection is done
only for visualization. Both the scene and the gamma-ray
reconstruction update over time as new space is explored.
The system first approaches the 137Cs source and produces
a localization estimate around its position, likely due to
the Compton continuum of the 662 keV gamma-ray in the
356 keV ROI. As the system gets closer to the 133Ba source,
however, the image quickly corrects and localizes the 133Ba
source. The solution converges in < 40 s and remains roughly
static as the system continues to explore new space.

Figure 4 shows multiple views of the final 3D image,
visualized as a colorized point cloud (processed and rendered
offline). Points from the ceiling and floor have been removed
for clarity. Several blurry tracks can be seen in the point cloud,
particularly in the room with the sources. The points arise from
people moving through the scene during the measurement. We
are currently exploring techniques such as those in [47] to
remove transient points in the point cloud.

C. Wide-area Outdoor Localization

In contrast to structured light sensors based on infrared light
(e.g., Kinect), the use of LiDAR facilitates SLAM in wide-area
outdoor settings. To demonstrate the performance of the 3D
active coded mask imaging modality in this setting, PRISM-v1
was walked toward and around a single vehicle parked among
several vehicles in a large open field. A strong plutonium
surrogate [194 µCi (7.2 MBq) 252Cf, 530 µCi (19.6 MBq)
133Ba, 35 µCi (2.0 MBq) 137Cs] was placed in the open trunk.
An area of ∼2,500 m2 was mapped in under 1.3 min. The
SDF-GPU MLEM image reconstruction (10 iterations) was
run on a 10 keV ROI around the low-energy 81 keV 133Ba
photopeak. Figure 5 shows the results of the reconstruction
as a colorized point cloud from several viewpoints. The 133Ba
source is correctly localized to the trunk of the car, with a hot-
spot accuracy on the order of tens of cm. Gamma-ray intensity
is also seen on the open trunk door and the ground beneath the
source and likely represents down-scattering from the primary
source. In addition to 3D source localization in large outdoor
settings, the results also highlight the benefit of LiDAR to
produce dense, high-resolution, context-rich point clouds.

Another outdoor wide-area source search scenario measure-
ment was performed with a collection of small and large
house-like structures made of various materials (e.g., clay,
brick) as well as a few steel L-shaped cargo containers.
A 5 mCi (185 MBq) 133Ba source was placed in one of
the cargo containers and PRISM-v1 was walked around the
∼4,500 m2 site in less than 2.5 min. The SDF-GPU MLEM
image reconstruction (10 iterations) was run on a 10 keV ROI
around the high-energy 356 keV 133Ba photopeak, again to
demonstrate the energy range of active coded mask imaging.
Figure 6 shows the 3D reconstruction results as a colorized
point cloud from several viewpoints. The gamma-ray hotspot
was accurately localized to the correct cargo container among
> 10 structures in the scene.

Fig. 5. (Color online) Final MLEM reconstruction (10 iterations) of 133Ba
from a 1.3 min measurement (path shown by the red line) around a vehicle
containing a strong plutonium surrogate source in a wide-area outdoor setting
(∼2,500 m2), shown as a colorized point cloud (visualization processed and
rendered offline). Measurement parameters: 15 cm voxel size, 7× 104 occu-
pied voxels (2.9% of total), 755 poses, 91 detectors, 4542 photopeak counts
(81 ± 5 keV), 10 s reconstruction time.

Since the SDF constraint currently limits the reconstruction
to the point cloud (i.e., surfaces), voxels inside the containers
are labelled as free and not included in the reconstruction.
The source was placed inside of the container and there-
fore the reconstruction only shows the surface gamma-ray
emission profile of the container. The dual-state occupancy
model (occupied/free) could be improved with a tri-state model
(occupied/free/unknown) to capture voxels inside of closed
volumes or unexplored spaces (e.g., behind a wall). The
reconstruction could then be performed over both occupied and
unknown voxels to facilitate a full volumetric reconstruction.
Open-source tools utilizing ray-casting techniques such as [48]
could be used to determine tri-state occupancy.

Finally, a laser-scan mismatch can be seen in Fig 6 (the
indicated structures seem to have two front walls), highlighting
the fact that the gamma-ray reconstruction is currently limited
by errors in the point cloud and pose uncertainties. We expect
SLAM algorithms to improve with continued developments



Fig. 6. (Color online) Final MLEM reconstruction (10 iterations) from
a < 2.5 min measurement (path shown by the red line) in a wide-area
outdoor setting (∼4,500 m2) containing several house-like structures and
steel L-shaped cargo containers. A 133Ba source was placed inside one of
the containers and is marked with an arrow. Measurement parameters: 30 cm
voxel size, 7×104 occupied voxels (7.3% of total), 1400 poses, 88 detectors,
9566 photopeak counts (356 ± 5 keV), 20 s reconstruction time.

in autonomous vehicles, however detailed characterizations
of SLAM uncertainties will be necessary to understand their
impact on free-moving gamma-ray image reconstruction and
SDF.

V. CONCLUSIONS

The use of free-moving systems and the integration of
contextual sensors and SDF have been shown to improve
source localization and distribution mapping capabilities for
applications ranging from nuclear security to consequence
management. In this work, we experimentally demonstrated
our approach to low-energy real-time 3D gamma-ray imaging
with SDF and GPU-accelerated list-mode MLEM using a

hand-held CZT-based dual-mode omnidirectional active spher-
ical coded mask system. Source localization of unshielded
point-sources was successful over energies from 59−356 keV,
activities from 20−5000 µCi, and areas of size 70−4500 m2.
Small indoor and wide-area outdoor scenarios were considered
and measurements were all < 3 min, exemplifying the capa-
bility of free-moving systems to overcome the inverse square
law for efficient localization. Additional work is required to
demonstrate the ability to image shielded or extended sources
and map distributed sources in real-time with the active coded
mask modality.

The reconstruction time increases as the image dimension-
ality grows during the course of a measurement. The current
implementation increases the voxel size over time to limit the
number of occupied voxels, but continued effort is necessary
to develop a more scalable image reconstruction approach.
This could include, for example, the implementation of a more
robust real-time probabilistic occupancy model, the removal
of transient points in the point cloud, and an adaptive non-
uniform spatial discretization scheme.
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