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Abstract

Towards Equity and Fairness in Data-Driven Management Systems

by

Yoon Lee

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Anil Aswani, Chair

This dissertation comprises three lines of work addressing societal challenges related to safe
water access, fair incentive design, and secure data sharing, utilizing mathematical model-
ing to propose comprehensive solutions. These projects collectively advocate for universal
resource and information access while prioritizing equity and fairness for marginalized com-
munities. The first project centers on optimizing water storage decisions, considering factors
such as cost, water quality, and wastage, with the core objective of promoting equitable
access to safe drinking water, particularly for those facing severe water scarcity. In the sec-
ond project, we address deficiencies in current incentive mechanisms for fairness, introducing
quantitative definitions rooted in fairness principles to prevent harm to specific groups and
encompass disadvantaged segments of society. Lastly, the third project delves into the in-
tricacies of responsible scientific data sharing, presenting a novel cybersecurity insurance
contract to incentivize healthcare providers while safeguarding privacy and livelihoods, es-
pecially for vulnerable populations. In sum, this research strives to develop solutions that
facilitate equal and inclusive access while mitigating risks, with the goal of addressing cultural
and societal issues concerning resource allocation and information sharing for underserved
communities.
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Chapter 1

Introduction

In an era defined by the omnipresence of data and its pivotal role in decision-making across
various domains, the need for equity, fairness, and privacy in data-driven management sys-
tems has never been more critical. As we increasingly rely on data to guide our choices, be it
in resource allocation, incentive design, or healthcare decisions, the potential for inequities,
bias, and breaches of privacy looms large. This dissertation emerges from the recognition
that the power of data must be harnessed with a profound commitment to societal values. It
seeks to address the pressing challenges and opportunities at the intersection of data-driven
decision-making, ethics, and technology, recognizing that the decisions made within these
systems can have far-reaching consequences, impacting individuals, communities, and society
at large.

This study embarks on a journey to unveil innovative solutions that promote equity in
inventory management, fairness in incentive design, and privacy in medical data sharing,
all of which are critical pillars of responsible and ethical data utilization. At its core, this
dissertation is driven by the aspiration to not only elucidate the complexities of data-driven
management but also to catalyze a transformation in how we conceptualize, design, and
implement these systems. By doing so, it endeavors to shape a future where data is harnessed
as a force for good, serving the collective well-being of society, and advancing the cause of
equity and fairness in an increasingly interconnected and data-driven world.

1.1 Contributions and Outline

In this dissertation, we present significant contributions in three key areas, each addressed
in a separate chapter:

• Chapter 2: Inventory Management with Controlled Reset
In Chapter 2, we address inventory management problems with periodic and control-
lable resets, which are commonly encountered in contexts such as managing water
storage in the developing world and retailing limited-time availability products. We
tackle the complexities of determining optimal policies using dynamic programming,
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which becomes challenging due to the non-convex nature of the problems. Our pri-
mary contribution lies in establishing sufficient conditions that ensure an interpretable
structure for the optimal policy, thus extending the well-known (s, S) policy from
the operations management literature. Additionally, we demonstrate that under these
mild conditions, the optimal policy exhibits a four-threshold structure. Computational
experiments are conducted to illustrate these policy structures in various inventory
management scenarios. This chapter is based on work from [46].

• Chapter 3: Fairness in Incentive Design
Chapter 3 shifts the focus to integrating fairness into incentive design, a dimension often
overlooked in existing approaches. We introduce fairness into optimization problems
within principal-agent models, with specific attention to scenarios involving adverse se-
lection and moral hazard. Our contributions encompass the formulation of quantitative
fairness definitions and the derivation of policy structures for fair optimal contracts.
By delving into the underlying intuition behind these contracts, we emphasize the pro-
found impact of fairness on incentive design. Furthermore, a case study is provided
to illustrate the practical implications of incorporating fairness considerations into the
design process.

• Chapter 4: Cybersecurity Insurance for Medical Data Sharing
Chapter 4 addresses the critical issue of sharing medical data, which holds immense
potential for advancing healthcare but simultaneously poses risks to both patients and
healthcare providers. We investigate the problem of designing optimal cybersecurity
insurance contracts to incentivize responsible data sharing. Using a principal-agent
model with moral hazard, we model various scenarios, derive optimal contracts, dis-
cuss their implications, and conduct numerical case studies. Two specific scenarios
are considered: healthcare providers selling data to technology firms and healthcare
providers sharing data for collaborative research. Our study aims to provide valuable
insights into risk mitigation and the promotion of responsible scientific data sharing.
This chapter draws upon work from [45].
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Chapter 2

Local Water Inventory Management
for the Developing World

2.1 Introduction

The study of inventory management with stochastic demand has been a key discipline in
operations management since the inception of the field. In general, these problems consider
a decision-maker who must choose either an order quantity or a replenishment level in order
to minimize their overall expected supply chain costs or to maintain a certain level of service
with high probability. Several models have been proposed in the literature to address this
setting, such as the newsvendor model for single-period replenishment [3], the (r,Q) model
for continuous review policies [27], and the (s, S) model for periodic review policies [75].
These models primarily aim to find an optimal inventory policy, which is a decision rule
mapping the current inventory level of the facility to an order quantity. Classical models
have mainly focused on balancing holding costs (i.e., the costs incurred from holding excess
inventory) and shortage costs (i.e., the costs associated with not having enough units on
hand to satisfy demand) to determine this policy. However, these assumptions underlying
classical policies may not hold when products are perishable or subject to strict health and
safety regulations.

Many settings, such as food procurement [89, 5, 22], medical supply chain management
[69, 64, 78], and certain seasonally sensitive retail supply chains [13, 57], require manag-
ing perishable inventory and thus deviate from the classical inventory management models
mentioned earlier. To address this constraint, strategic discarding policies are commonly em-
ployed. Essentially, decision-makers rank the products based on value and discard expired
units individually, considering costs and health constraints. Although applicable to many
contexts, if the managed goods are commingled or not easily separable, it becomes infeasible
to discard individual units strategically, necessitating the discarding of the entire inventory.
For instance, in the case of residential water storage, newly purchased water mixes with
older water that is more likely to have been tainted and cannot be readily separated from
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the previous water in the tank.
This chapter proposes new models and techniques to address the setting of perishable

or deteriorating inventory with known expiration times, where strategic discarding is not
possible. Specifically, we propose modeling these systems as inventory control problems with
strict reset constraints. In this setting, the decision-maker faces two key decisions at each
epoch: first, whether to discard the entire inventory on hand; and second, whether to order
inventory up to a certain level. Since the inventory is set to expire after a predetermined time,
the decision-maker must discard the entire inventory after a fixed number of epochs. The
main challenge in this problem is to find an inventory policy that balances safety constraints
with holding and shortage costs by making refresh and reorder decisions.

Applications

The setting of mixing perishable inventory with reset decisions is common in many real-world
applications. Here, we present two settings that exemplify the assumptions of the model.
First, we consider a non-profit example of managing water storage in a residential building
in the developing world. Next, we describe a profit example in the case of a retail supply
chain with switching product lines.

Non-Profit: Water Storage Problem

Water availability is a significant global public health concern, with over 300 million people
worldwide experiencing intermittent access to water supplies [39]. This problem is partic-
ularly severe in the developing world, where the existing distribution infrastructure fails to
provide continuous water supplies. Consequently, most households resort to communal and
personal water storage containers to maintain a water supply throughout the day. These
containers are filled once every few days during intermittent periods of water availability
[94, 92]. However, water stored in these containers is prone to contamination, and long-term
storage increases the likelihood of higher concentrations of bacterial and viral pathogens [25,
95, 18, 84, 44, 38]. The problem of managing local water storage can be formulated within
the framework of perishable inventory, as described previously. Each day, the decision-maker
must determine the additional water quantity to purchase to satisfy the demand for that
day. Since water becomes more susceptible to contamination as it sits in the tank, this can
be modeled as a holding penalty to prevent excessive storage duration. Similarly, if the pur-
chased water quantity is lower than the realized demand for the day, expediting the shipment
of additional water may incur a shortage penalty. Finally, since the risk of contamination
renders water perishable and contaminated water cannot be easily separated from clean wa-
ter, the only available option for the decision-maker is a “reset” action, discarding the entire
inventory.
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Profit: Retail Management Problem

In the context of retail supply chain management, product demand is highly dependent on
seasonal tastes or trends. This affects various types of products, ranging from apparel and
food to consumer electronics [52, 14, 15]. Particularly, the discontinuation of products within
retail outlets such as Trader Joe’s and Costco warrants consideration. These retailers, in
contrast to traditional supermarkets, meticulously curate their product offerings, focusing
exclusively on high-demand items. This is because these retailers operate within limited
shelf space, and their business models are predicated on the efficient turnover of sought-
after merchandise. Consequently, when a particular product fails short of expected demand
or price standards, it becomes a candidate for discontinuation. This strategic approach
enables them to maintain competitive pricing structures and operational efficiency [53, 35].
In an environment where retail success hinges on precise inventory management and cost-
effective supply chain practices, these discontinuations represent a concerted effort to align
business models with the ever-evolving landscape of consumer preferences and supply chain
complexities. Hence, the key challenge in designing an inventory policy in this setting is akin
to the water storage problem, where the decision-maker must consider the optimal timing
to initiate a “reset” action, corresponding to the introduction of a new product line.

Related Literature

In this chapter, we examine the problem of perishable inventory with reset control, which
is a special case of multi-period inventory management with periodic review and stochastic
demand. In the context of supply chain theory, a policy is a function that maps the current
state of our inventory into an ordering decision [80]. For periodic-review inventory models
with stochastic demands, a base-stock policy (e.g., newsvendor model) or an (s, S) policy is
an example of an inventory control policy. The fundamental idea underlying the (s, S) policy
is as follows: in each time period, we observe the current inventory position. If the inventory
position falls below s, we place an order of sufficient size to bring the inventory position to S,
where the quantity s is known as the reorder point and S is the order-up-to level [3, 75]. To
this classical framework, we seek to extend the (s, S) policy by incorporating a reset control
action to empty the entire inventory for the problems at hand. [54] previously studied this
approach numerically, and our contributions include the theoretical analysis of the optimal
policy in the presence of periodic and controllable resets. Additionally, we draw upon two
main streams of literature, namely inventory management and dynamic programming, as
the basis for our modeling and analysis.

Inventory and Supply Chain Management

The problem we address in this study is closely related to the management of perishable
inventory [65, 58, 31, 32, 16, 36, 17], which has primarily been explored within the context of
healthcare settings. In these perishable inventory models, costs arise from either not having
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enough inventory to meet demand (shortage costs) or holding excess inventory (holding
costs) that must be discarded due to the perishable nature of the goods. Unlike our setting,
this stream of literature generally assumes that expired units of inventory can be disposed
of individually, allowing for salvage and disposal costs to be incorporated into the holding
cost. Consequently, strategic inventory removal policies can be employed [70, 71]. In our
setting, however, decision-makers cannot strategically dispose of single units of their stock.
For example, in the water storage problem, fresh water may mix with still water, and they
cannot be easily separated. Instead, the decision-maker must decide whether to keep or
dispose of the entire inventory to reduce the risk of consuming contaminated water. Similarly,
in the retail management problem, we determine whether to retain or discontinue an entire
product line. If the product line is discontinued, all inventory must be discarded to free up
space for the new product line.

Dynamic Programming and Optimal Control

It is well known in the operations literature that periodic-review inventory management
problems can be modeled as continuous-state dynamic programs [75, 4]. While it is possible
to derive structural results for the functional form of the optimal policy in most of these
models, finding a closed-form solution for the parameters of the policy is often difficult. Thus,
numerical algorithms are commonly used to determine the relevant parameter values. The
main numerical methods developed to solve these dynamic programming problems are value
and policy iteration [4]. These procedures involve finding a fixed point in either the value
function or the policy space, respectively. However, these fixed points may exist in infinite-
dimensional functional spaces, which can make convergence problematic. Even in finite high-
dimensional state spaces, exact calculation using these approaches is numerically difficult, a
phenomenon often referred to as the “curse of dimensionality.” To address this challenge,
several approximate dynamic programming approaches [4, 23, 67, 73, 37, 29] have been
developed. These approaches perform value or policy iteration with inexact representations
of the value function or policy to achieve tractability. However, the convergence rate of both
exact and approximate value and policy iteration is governed by the discount factor, and
convergence becomes slow for discount factors close to 1 [4, 97]. Given the specific structure
of the problem we examine in our setting, we propose the use of the Binary Dynamic Search
algorithm (BiDS), originally devised by [54]. In contrast to value and policy iteration, which
operate in function spaces, the BiDS algorithm finds a fixed point in a vector space using
binary search. Since the state space for water storage and retail management problems is
small, our numerical results solve the exact dynamic program. However, in principle, the
BiDS algorithm could also be used for approximate dynamic programming.

Contributions and Outline

Our study primarily focuses on the structural analysis of inventory management problems
with periodic review and reset control. As part of this analysis, we theoretically characterize
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and prove the structure of the optimal policy for these inventory management problems.
Our analysis demonstrates that the resulting policy follows a threshold structure, which can
be seen as a generalization of the classic (s, S) policy. Moreover, our analysis provides new
theoretical methods for analyzing inventory policies, as the non-convexity induced by our
problem structure differs from that of classical inventory models.

In addition to studying the structural properties of the problem, another key contribution
of ours is the implementation of a novel algorithm for solving stochastic optimal control
problems with controlled resets to a single state and constraints on the maximum time
between system resets. Unlike value and policy iteration, which require finding a fixed point
in an infinite-dimensional functional space [4], we employ the Binary Dynamic Search (BiDS)
algorithm [54]. This algorithm transforms the problem into finding a fixed point in a vector
space using binary search. The BiDS algorithm significantly reduces computational cost
compared to value and policy iteration. We apply BiDS to numerically solve this specific
problem and experimentally validate our structural results. By doing so, we generalize the
previous (s, S) inventory policy to a new threshold structure that incorporates reset control.
To explore the broad applicability of this new structure, we demonstrate its interpretability
and implementability in both profit and non-profit operations.

The rest of the chapter is organized as follows. In Section 2.2, we describe the stochastic
optimization problem for the general reset control model and provide applications to the
water storage problem and retail management problem. Section 2.3 discusses the struc-
tural properties of the optimal policy and presents the sufficient conditions that ensure the
threshold structure. In Section 2.4, we introduce the Binary Dynamic Search algorithm and
present the numerical results obtained for both the water and retail problems.

2.2 Reset Control Formulation and Applications

In this section, we introduce a broad class of stochastic optimal control problems with con-
trolled resets to a single state and with constraints on the maximum time span between
resets of the system. Let the subscript n ∈ Z+ denote the index of the decision epoch, and
consider the discrete-time dynamical system defined as follows:

xn+1 = h(ξn, τn, un, wn)

tn+1 = τn + 1

ξn = xn · (1− rn) + ζ · rn
τn = tn · (1− rn)

(2.1)

where xn× tn ∈ Rnx×Z+ are states, ξn×τn ∈ Rnx×Z+ are pseudo-states, un×rn ∈ Rnu×B
are control actions, wn ∈ Rnw are i.i.d. random variables representing disturbance terms,
and h : Rnx × Z+ × Rnu × Rnw → R is a deterministic function. The control rn = 1 resets
the system to a known initial state ζ ∈ Rnx , the state tn keeps track of the number of time
steps since the last system reset, and the function h describes the system dynamics when no
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reset occurs. The pseudo-states ξn and τn capture the reset dynamics by being set to the
known initial states when rn = 1.

Given the discount factor γ ∈ [0, 1), our goal is to solve the following stochastic control
problem:

min E
[∑∞

n=0 γ
n
(
g(ξn, τn, un, wn) + s(xn, tn, wn) · rn

)]
,

s.t. (2.1), tn ≤ k, un ∈ U(ξn, τn, wn), for n ≥ 0.
(2.2)

where g : Rnx × Z+ × Rnu × Rnw → R+ is a non-negative and continuous stage cost, and
s : Rnx×Z+×Rnw → R+ is a non-negative and continuous reset cost with s(ζ, t, w) ≡ 0. The
constraint un ∈ U(ξn, τn, wn) restricts the possible control actions to lie in a set U(ξn, τn, wn),
and the constraint tn ≤ k requires the system be reset at least once every k time steps. For
notational convenience, we will simply refer to the set Un := U(ξn, τn, wn).

While this stochastic control formulation is quite general, we now present two instanti-
ations of this model in real-world settings. First, we discuss a non-profit example of water
storage control, and then we describe a for-profit example of retail management with chang-
ing product lines.

Example: Water Storage Problem

In this section, we consider the stochastic inventory control problem of water management
in the developing world, where a single decision-maker must maintain the level of potable
water in a residential water tank. Unlike water management in the developed world, we
assume that the residence does not have access to a continuous source of water. Therefore,
water must be purchased in bulk at the beginning of each day from a communal source.
Additionally, the tank needs to be fully emptied every few days for cleaning to eliminate
pathogen growth. In this setting, the decision-maker has two actions they can take each day:
deciding whether to purge the tank and determining the amount of water to purchase at the
beginning of the day. These decisions must be made in a way that optimally balances the
financial cost of purchasing water or expediting purchases when the amount is short, and
the implicit health costs of letting water sit longer in the tank (which can be thought of as
a holding cost).

This problem can be modeled as a stochastic control problem that is a special case of
the formulation presented in Section 2.2. For day n, let xn ∈ R+ be the state variable
representing the amount of water stored in the tank, and let tn ∈ Z+ be the state variable
representing the number of days since the tank was last emptied. The decision-maker’s
actions, the amount of water to purchase at the start of the day and whether or not to
empty the tank, are represented by un ∈ R+ and rn ∈ B, respectively. We model the
demand for each day as the i.i.d. random disturbance process wn ∈ R+.

The dynamics of the system are described as follows:

xn+1 = (xn · (1− rn) + un − wn)
+ , (2.3)

tn+1 = tn · (1− rn) + 1, (2.4)
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where (x)+ = max{x, 0} and (x)− = min{x, 0}. Here, (2.3) states that the water level at
day n + 1 equals the current level at day n plus the amount of water purchased that day
minus the amount of water demanded, but it cannot go below zero. If the tank is flushed on
day n, then (2.3) states that the water level of the tank at day n+1 does not depend on the
amount of water at day n. Likewise, (2.4) states that the number of days since the tank has
been flushed increments by 1 each day until the day it is flushed, at which point the count
resets to 1. Let q : R+ → R+ be a non-negative and non-decreasing function that represents
the increased health costs associated with letting water sit in the tank for additional days.
Let c, cr, p ∈ R+ represent the variable cost of purchasing water, the per-unit cost of purging
the tank, and the shortage penalty for not having sufficient water to meet demand. Using
these cost parameters, state variables, dynamics equations, and discount factor γ ∈ [0, 1),
the decision-maker’s problem can be formulated as follows:

min E
[∑∞

n=0 γ
n
(
cun − p · (ξn + un − wn)

−

+ q(τn) · (ξn + un − (ξn + un − wn)
+) + crxnrn

)]
, (2.5)

s.t. xn+1 = (ξn + un − wn)
+, (2.6)

tn+1 = τn + 1, (2.7)

ξn = xn · (1− rn), (2.8)

τn = tn · (1− rn), for n ≥ 0 (2.9)

rn ∈ B, (2.10)

tn ≤ k, (2.11)

un ∈
[
0, cmax − ξn

]
, (2.12)

For this formulation, the state space is augmented to include pseudo-states ξn, τn that
represent intermediate values of water in the tank and time since the last reset, given the
reset action on day n, respectively. Using these states, the objective terms p · (ξn+un−wn)

−

and q(τn) · (ξn + un − (ξn + un −wn)
+) represent the total shortage cost and health costs at

day n, respectively. The interpretation is that the decision-maker pays shortage costs only
when demand exceeds water supply, and that water quality deteriorates only if a surplus
remains in the tank. The quantity (ξn + un − (ξn + un − wn)

+) is the amount of water
consumed on the n-th day because ξn+un is the amount of water available at the beginning,
and (ξn + un −wn)

+ is the amount of water that is still unused at the end of the day. Since
the function q is assumed to be monotonically increasing, the q(τn) term indicates that the
quality of water deteriorates as time passes between emptying the tank and also ensures that
consuming water that has been stored for longer durations of time is more heavily penalized.
Likewise, the terms cun and crxnrn represent the total costs of purchasing water and flushing
the tank, respectively, where the flushing cost is only incurred if the reset action is taken.
The constraint (2.11) ensures that the tank is purged at least once every k days, and the
constraint (2.12) ensures that water is not purchased in excess of the tank capacity cmax.
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A defining feature of this problem is that instead of considering the holding/shortage cost
trade-off, we formulate the problem based on how long water has been stored and how much
water has actually been consumed. In circumstances where people do not have a continuous
supply of water and thus have no other choice but to store water in a local container that
lacks disinfection capabilities, we take an optimization approach to decide when to drain the
water tank and how much water to fill it when available. The objective is to reduce the
risk of contamination and shortage. In Section 2.4, we will numerically solve this problem
to design an efficient, interpretable policy for managing water storage systems. This policy
can be easily implemented using a lookup table that can be widely distributed to the public
through paper pamphlets or the internet.

Example: Retail Management Problem

Next, we consider the setting of retail inventory management in the case of changing product
lines. In this setting, the decision-maker is tasked with managing the inventory of limited-
time availability product lines and must decide the quantity of stock to store and the timing
for changing to a new product line in order to minimize inventory costs. This involves
balancing the trade-offs between ordering costs, holding costs for storing inventory, shortage
costs, stock wastage from emptying the inventory, and the cost of switching the product line.

Similar to the water storage problem, this retail inventory problem can also be modeled
as a special case of the reset control problem presented in Section 2.2. For each week n,
let the state variables xn ∈ R+, tn ∈ Z+ represent the amount of inventory in stock for the
current product line at the beginning of the week, and the number of weeks since the current
product line has been offered, respectively. Let the decision-maker’s weekly control actions,
representing how much new inventory to add and whether or not to replace the current
product line with a new one, be denoted by un ∈ R+ and rn ∈ B, respectively. Much like the
water storage case, we model demand as an i.i.d. disturbance process wn ∈ R+. The state
dynamics for this model are identical to those in (2.3) and (2.4), with the interpretation of
(2.3) reflecting that the inventory level increases with each additional product purchased,
decreases by the realization of weekly demand (or the taking of a reset action), but cannot go
below zero. Similarly, (2.4) now reflects the age of the current product line. Let c, ku > 0 be
the variable and fixed ordering costs associated with the current product line, respectively,
and cr, kr > 0 be the associated variable and fixed ordering costs of purchasing units from
the new product line. Furthermore, let p, q > 0 be the per-unit shortage and holding costs,
respectively. Using these costs, states, dynamics, and discount factor γ ∈ [0, 1), the decision-
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maker’s problem can be formulated as follows:

min E
[∑∞

n=0 γ
n
(
(cun + ku) · 1R∗

+
(un)− p · (ξn + un − wn)

−

+ q · (ξn + un − wn)
+ + (crxn + kr) · rn

)]
(2.13)

s.t. xn+1 = (ξn + un − wn)
+, (2.14)

tn+1 = τn + 1, (2.15)

ξn = xn · (1− rn), (2.16)

τn = tn · (1− rn), for n ≥ 0 (2.17)

rn ∈ B, (2.18)

tn ≤ k, (2.19)

un ∈
[
0, cmax − ξn

]
, (2.20)

where the function 1R∗
+
: R 7→ B is defined as the indicator

1R∗
+
(u) =

{
1, if u > 0,

0, otherwise.
(2.21)

The total cost incurred in the n-th week comprises up to four components: (i) the purchasing
cost cun + ku, where c is the cost per unit ordered and ku is the fixed cost associated with
a positive inventory order; (ii) the shortage cost p · (ξn + un − wn)

−, representing the loss
incurred when demand is unmet; (iii) the holding cost q · (ξn + un − wn)

+ for having excess
inventory relative to actual demand; and (iv) the reset cost crxn + kr, where cr is the waste
penalty per unit discarded and kr is the fixed cost associated with resetting the product line.
The constraint (2.19) ensures that the product line is fully changed at least once every k
weeks, and the constraint (2.20) ensures that the inventory capacity cmax is not exceeded.

What differentiates this inventory management problem from the classic (s, S) setting is
the inclusion of reset controls. When the reset control action is taken at time n (i.e., rn = 1),
all products are removed, and the system is reverted to the state (xn, tn) = (0, 0). This means
that by solving this problem, the firm can change product lines earlier than planned if it is
advantageous to do so. In other words, this problem determines the best business strategy
tailored for limited-time products, encompassing not only the optimal inventory (i.e., how
much stock to order each period) but also the optimal timing (i.e., when to switch the
product line).

2.3 Structural Results

In this section, we analyze the structure of the reset control problem (2.2). We begin by
describing the dynamic programming equations first. Let J : Rn×Z+ 7→ R+ be the optimal
cost-to-go function. That is, J(x, t) is defined as the minimum value of (2.2) for the initial



CHAPTER 2. LOCAL WATER INVENTORY MANAGEMENT FOR THE
DEVELOPING WORLD 12

conditions x0 = x and t0 = t. Let J0 = J(ζ, 0) denote the cost-to-go from the reset state.
Then the dynamic programming equations can be characterized using the following result
from [54].

Proposition 1. The dynamic programming equations for (2.2) are given by

J(ζ, 0) = min
u∈U0

E
[
g(ζ, 0, u, w) + γJ(h(ζ, 0, u, w), 1)

]
,

J(x, t) = min
{
J0 + E

(
s(x, t, w)

)
,min
u∈Ut

E
[
g(x, t, u, w) + γJ(h(x, t, u, w), t+ 1)

]}
,

J(x, k) = J0 + E
(
s(x, k, w)

)
,

(2.22)

where the middle J(x, t) holds for all x and t = 0, . . . , k − 1.

These are the new dynamic programming equations that result from introducing reset
control. As shown here, excluding the last period (t = k) at which the inventory must be
reset, we evaluate every period whether resetting is more favorable. The proof for the above
equations can be found in [54].

Our main results in this section will prove that under a set of reasonable assumptions, the
optimal fixed point policy π∗ : R× Z+ 7→ B× R to (2.22) is a threshold policy. Specifically,
we show that it can be characterized by four time-dependent parameters st, St, σt,Σt and a
constant φ, and has the following form:

π∗(x, t) =


r = 1, u = φ, for x ∈ [0, σt),

r = 0, u = St − x, for x ∈ [σt, st),

r = 0, u = 0, for x ∈ [st,Σt),

r = 1, u = φ, for x ∈ [Σt,∞).

(2.23)

The intuition behind this policy is as follows: In the region [0, σt), there is so little inventory
that the cost of resetting is negligible, and thus resetting is the optimal decision. In the
region [σt, st), there is enough stock such that the reset cost is too high, and it is likely
that the system will experience a shortage, so additional stock must be ordered. In the
region [st,Σt), there is enough stock present such that shortages are less likely than excess
inventory, so no additional stock is ordered. Finally, in the region [Σt,∞), the stock level is
so high that it will almost surely spoil, making it more beneficial to reset the system.

To prove these results, we will first describe a set of sufficient assumptions that guarantee
the structure of the optimal policy. Then we will present the proof for the structure of the
policy, showing that it follows from the particular structure of J by induction on the states.

Technical Assumptions

For our structural analysis of the optimal policy, we make the following technical assump-
tions.
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Assumption 1 (State). The states are xn ∈ R+, and the state dynamics are

h(ξn, τn, un, wn) = (ξn + un − wn)
+.

A1 assumes that the inventory is non-negative, meaning that unfilled demand at each
stage is lost and not backlogged. This is represented by the system equation xn+1 =
max{0, ξn + un − wn}, instead of xn+1 = ξn + un − wn. The state dynamics in this as-
sumption represent the remaining inventory from the last period, which is the positive part
of the stock quantity stored in the inventory plus the amount of stock added, minus the
amount of stock demanded.

Assumption 2 (Stage cost). The stage cost satisfies

E(g(ξn, τn, un, wn)) = cun +K · 1R∗
+
(un) +H(ξn + un, τn) (2.24)

for a function H(·, t) that satisfies |∂xH(x + u, t)| ≤ κt and ∂xxH(x + u, t) ≥ mt. Here,
∂xH(·, t) denotes the first derivative with respect to the first argument, and ∂xxH(·, t) denotes
the second derivative with respect to the first argument. The constants c,K, κt ≥ 0 are non-
negative, and the constants mt > 0 are positive for t = 0, . . . , k − 1.

In A2, the stage cost is decomposed into three parts. The first term represents the
ordering cost, the second term represents the fixed cost associated with a positive inventory
order, and the third term represents the stage cost, which could be the holding/shortage
cost. This assumption requires the function H(·, t) be strongly convex, which is crucial in
proving the convexity of the value function with no reset and establishing the optimality of
the (s, S) policy.

Assumption 3 (Reset cost). The known initial state is ζ = 0. The reset cost R(x, t) :=
E(s(x, t, w)) is concave and non-decreasing in x. Moreover, its derivative ∂xR(·, t) is bounded
as |∂xR(x, t)| ≤ ηt, and is Lipschitz continuous as

|∂xR(xn, tn)− ∂xR(x′n, tn)| ≤ Lt · |xn − x′n| (2.25)

for non-negative constants ηt, Lt ≥ 0 for t = 0, . . . , k − 1.

A3 assumes that the entire inventory is emptied when the system is reset, and that
the reset cost is concave and non-decreasing, reflecting the law of diminishing marginal
utility. This assumption also requires the function R(·, t) be ηt-Lipshitz and Lt-smooth.
These conditions are crucial in determining the threshold that ensures the optimal policy
structure.

Assumption 4 (Input). The input constraints are

Un = {u : 0 ≤ u ≤ cmax − ξn},

where cmax ≥ 0 is a non-negative constant.
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A4 enforces an upper bound cmax on the stock level that can be accommodated, acting
as an input constraint.

Assumption 5 (Demand). The wn are i.i.d., and the density of wn is given by a function
f(w) that satisfies: f(w) = 0 for all w < 0, is Lipschitz continuous for w ≥ 0 with a non-
negative constant L, and is bounded such that |f(w)| ≤ P for all w ≥ 0 with a non-negative
constant P .

A5 assumes that demand is non-negative and its density is supported on the set of non-
negative real numbers. The density function f(w) is required to be Lipschitz continuous
and bounded from above. This assumption is fairly mild and accommodates a wide range of
probability distributions, such as exponential, gamma, and truncated normal distributions.

We will use the above five assumptions for our theoretical analysis. Furthermore, we
define the following function for convenience:

G(z, t) = cz +H(z, t) + γE(J((z − w)+, t+ 1)).

Note that under the above definitions, we have the relation

min
u∈Ut

E
[
g(x, t, u, w) + γJ(h(x, t, u, w), t+ 1)

]
= min

z∈[x,cmax]
G(z, t) +K · 1R∗

+
(z − x)− cx.

Proof Technique

To prove our main result, we will use proof by induction to show that the particular structure
of the policy and value function is preserved. Our approach will be to show a series of results
that hold under a temporary assumption (i.e., the induction hypothesis). These results will
then be proved to hold under assumptions A1–A5 in a final theorem that concludes our
proof. The temporary assumption is as follows:

Assumption T (Temporary). For any fixed t ∈ {0, . . . , k− 1}, we can represent J(z, t+1)
as

J(z, t+ 1) = Ji(z, t+ 1) if z ∈ Zi,t for i = 1, . . . , nt, (2.26)

where Zi,t = [zi−1,t, zi,t] forms a partition of the domain [0, cmax] with

0 = z0,t < z1,t < · · · < zn,t = cmax. (2.27)

Moreover, the derivative of each piece ∂zJi(z, t + 1) is absolutely bounded by a finite, non-
negative constant Mt+1 and is Lipschitz continuous.

AT assumes that the value function is continuous and piecewise differentiable. It can
also be partitioned into multiple pieces, where the derivatives of each piece are Lipschitz
and bounded. This assumption is necessary to characterize the policy structure, which
is complicated by the non-convexity induced by the reset control. These pieces represent
different regions of the optimal policy, which we investigate in the subsequent analysis.
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Proof of the Optimal Policy Structure

To begin the proof, we first present a result on the smoothness of the cost-to-go function.

Proposition 2. If A1–A5 and AT hold, then E(J((z − w)+, t + 1)) has a derivative that
is Lipschitz continuous with a non-negative constant (Lcmax +P )Mt+1, and the derivative is
absolutely bounded by Mt+1.

The detailed proof of this proposition can be found below. Here, we provide a brief
overview. First, we show that E(J((z − w)+, t + 1)) is differentiable using AT and the
Leibniz integral rule for derivatives. Subsequently, by introducing an auxiliary function with
the same expectation as the cost-to-go function, we establish the Lipschitz continuity of this
derivative. Integrating over the domain and applying Lemma 2 leads to the desired result.
Finally, we prove that the derivative is absolutely bounded by Mt+1 using standard integral
and absolute value inequalities.

Proof. We first show that E(J((z − w)+, t+ 1)) is differentiable. Consider any z ∈ [0, cmax],
and observe that

J((z − w)+, t+ 1) =

{
J1(0, t+ 1), if z − w ≤ 0

Ji(z − w, t+ 1), if z − w ∈ Zi,t

=

{
J1(0, t+ 1), if w ≥ z

Ji(z − w, t+ 1), if w ∈ [z − zi,t, z − zi−1,t]

(2.28)

Now, let m be the smallest integer such that z ∈ Zm,t. Then the expectation is given by

E(J((z−w)+, t+1)) =

∫ ∞

0

J((z−w)+, t+1)f(w)dw =

∫ z−zm−1,t

0

Jm(z−w, t+1)f(w)dw

+
m−1∑
i=1

∫ z−zi−1,t

z−zi,t

Ji(z − w, t+ 1)f(w)dw +

∫ ∞

z

J1(0, t+ 1)f(w)dw. (2.29)

Since by assumption both Ji(z, t+1) and ∂zJi(z, t+1) are continuous for z ∈ Zi,t, using the
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Leibniz integral rule gives

∂zE(J((z−w)+, t+1)) = Jm(zm−1,t, t+1)f(z−zm−1,t)+

∫ z−zm−1,t

0

∂zJm(z−w, t+1)f(w)dw

+
m−1∑
i=1

(
Ji(zi−1,t, t+1)f(z−zi−1,t+1)−Ji(zi,t, t+1)f(z−zi,t)+

∫ z−zi−1,t

z−zi,t

∂zJi(z−w, t+1)f(w)dw
)

− J1(0, t+ 1)f(z) +

∫ ∞

z

∂zJ1(0, t+ 1)f(w)dd =

∫ z−zm−1,t

0

∂zJm(z − w, t+ 1)f(w)dw

+
m−1∑
i=1

∫ z−zi−1,t

z−zi,t

∂zJi(z − w, t+ 1)f(w)dw +

∫ ∞

z

∂zJ1(0, t+ 1)f(w)dw

=

∫ ∞

0

∂zJ((z − w)+, t+ 1)f(w)dw, (2.30)

where the last equality follows from the fact that f(·) is Lipschitz continuous and J(·, t +
1) is differentiable almost everywhere on its domain since it is piecewise differentiable by
assumption. Hence, we can conclude that E(J((z − w)+, t+ 1)) is differentiable.

Next, we show that this derivative is Lipschitz continuous. Define

JA(x, t+ 1) =


J(0, t+ 1), x ≤ 0

J(x, t+ 1), x ∈ [0, cmax]

J(cmax, t+ 1), x ≥ cmax

(2.31)

where the subscript A indicates “auxiliary”. Then for z ∈ [0, cmax] and w ∈ [0,∞), we have
J((z − w)+, t + 1) = JA(z − w, t + 1). Note that E(JA(z − w, t + 1)) =

∫∞
0
JA(z − w, t +

1)f(w)dw =
∫∞
−∞ JA(z−w, t+1)f(w)dw = (JA(·, t)∗f)(z) (i.e., the convolution of JA(·, t+1)

and f(·)), where the second equality follows since f(w) = 0 for w ∈ (−∞, 0) by assumption.
This implies that

∂z(JA(·, t+ 1) ∗ f)(z) = ∂zE(JA(z − w, t+ 1))

= ∂zE(J((z − w)+, t+ 1))

=

∫ ∞

0

∂zJ((z − w)+, t+ 1)f(w)dw

=

∫ ∞

0

∂zJA(z − w, t+ 1)f(w)dw

= (∂zJA(·, t+ 1) ∗ f)(z).

(2.32)

Observe that

∂zJA(z, t+ 1) =


0, x < 0

∂zJ(z, t+ 1), z ∈ (0, cmax)

0, x > cmax

(2.33)
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This means
∫∞
−∞ |∂zJA(z, t+1)|dz =

∫ cmax

0
|∂zJ(z, t+1)|dz ≤ cmaxMt+1 since we had assumed

|∂zJ(z, t + 1)| ≤ Mt+1. Thus, Lemma 2 implies ∂zE(J((z − w)+, t + 1)) is Lipschitz with
constant (Lcmax + P )Mt+1.

Lastly, we show that the derivative is absolutely bounded byMt+1. From (2.32), we have

|∂z(JA(·, t+ 1) ∗ f)(z)| = |(∂xJA(x, t+ 1) ∗ f)(z)|

=

∣∣∣∣∣
∫ ∞

0

∂zJ((z − w)+, t+ 1)f(w)dw

∣∣∣∣∣
≤

∫ ∞

0

∣∣∂zJ((z − w)+, t+ 1)
∣∣ · ∣∣f(w)∣∣dw

≤Mt+1

∫ ∞

0

∣∣f(w)∣∣dw
≤Mt+1,

(2.34)

where in the last line we have used the facts that f(w) is a probability density, and hence
non-negative, and integrates to one.

If the cost-to-go function is piecewise differentiable and the derivative of each piece is
Lipschitz continuous, the expected cost-to-go has a Lipschitz derivative. This is because
taking the expectation smooths the function through convolution. Next, we show a result
concerning the structure of G(z, t).

Proposition 3. If A1–A5 and AT hold, then the function G(z, t) is continuous and convex
on z ∈ [0, cmax] for all fixed γ such that 0 ≤ γ ≤ mt/((Lcmax + P )Mt+1).

The complete proof of this proposition is provided below, and here we present a brief
outline. To establish this result, we observe that G comprises a linear function, a twice differ-
entiable function, and, as indicated by Proposition 2, a function with a Lipschitz derivative.
Since this implies that G is absolutely continuous in its first argument, we demonstrate that
it has a non-decreasing derivative, meaning convexity within the specified interval.

Proof. We first recall the definition

G(z, t) = c · z +H(z, t) + γE(J((z − w)+, t+ 1)).

Note that c ·z is linear, that H(z, t) is twice differentiable by assumption, and that E(J((z−
w)+, t+1)) has a Lipschitz derivative by Proposition 2. Hence, G(·, t) is absolutely continuous
in its first argument. Since the domain [0, cmax] is closed and bounded, this means that G(·, t)
is convex if it has a non-decreasing derivative (see page 115 of [24]). From A2, we have that
∂zz(c · z +H(z, t)) ≥ mt, and Proposition 2 gives that ∂zE(J((z − w)+, t + 1)) is Lipschitz
with constant (Lcmax+P )Mt+1. Thus, by Lemma 1, we have that ∂zG(z, t) is non-decreasing
for γ such that 0 ≤ γ ≤ mt/((Lcmax + P )Mt+1).
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This proposition intuitively states that the sum of the expected single-stage cost (strongly
convex) and the expected cost-to-go (non-convex but smooth) maintains convexity under
suitable conditions, which can be computed using the parameters of the two functions. For
example, f1(x) = x2/2+ γ sin(x) is convex for γ ≤ 1, whereas f2(x) = x2/2− γ|x| will never
be convex unless γ = 0. This exemplifies the critical role of the discount factor, with the
smoothness of the expected cost-to-go, as proved in Proposition 2, being even more crucial
in preserving the convexity of the sum.

Our next result generalizes the known result (i.e., Lemma 4.2.1 in [4]) in inventory man-
agement models to the case of a closed feasible set.

Proposition 4. If G(·, t) is continuous and convex on [0, cmax], there exists S such that
G(S, t) ≤ G(z, t) for all z ∈ [0, cmax]. Furthermore, let s = inf{z ∈ [0, S] | G(S, t) + K =
G(z, t)}. If such s exists, then

1. G(S, t) +K = G(s, t)

2. G(·, t) is a non-increasing function on [0, s]

3. G(S, t) +K ≤ G(z, t) for all z ∈ [0, s]

4. G(y, t) ≤ G(z, t) +K for all y, z with s ≤ y ≤ z ≤ cmax

The full proof of this proposition can be found below, but here we present a sketch of the
proof. First, we note that because G(·, t) is continuous on the closed interval, it must have a
minimizer, which shows the existence of S. Next, by continuity of G(·, t), we note that there
may exist s such that G(s, t) = G(S, t) +K, thus proving C1. We then prove C3 using the
convexity of G(·, t). Then using these conditions and convexity, we prove C2. Finally, C4
follows from combining these results.

Proof. Since G(·, t) is continuous on the closed interval [0, cmax], there exists a minimizer
of G(·, t). Let S ∈ argminz∈[0,cmax]G(z, t). For the remainder of the proof, we consider
the case where s exists. By the continuity of G(·, t) and the definition of s, we must have
G(S, t)+K = G(s, t). Next, for all z ∈ [0, s], there exists λ ∈ [0, 1] such that s = λz+(1−λ)S
and

G(s, t) ≤ λG(z, t) + (1− λ)G(S, t) ≤ λG(z, t) + (1− λ)G(z, t) = G(z, t), (2.35)

where the inequalities follow from the convexity of G(·, t) and the definition of S, respectively.
Next, consider any z1 and z2 with 0 ≤ z1 ≤ z2 ≤ s, and note that there exists λ ∈ [0, 1] such
that z2 = λz1 + (1− λ)s. Then we have

G(z2, t) ≤ λG(z1, t) + (1− λ)G(s, t) ≤ λG(z1, t) + (1− λ)G(z1, t) = G(z1, t), (2.36)

where the second inequality follows by (2.35). This shows G(·, t) is non-increasing on [0, s].
Since G(·, t) is continuous, this means by definition of s that G(S, t) +K ≤ G(s, t). Using
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the above result that G(·, t) is non-increasing on [0, s], we have Gt(S) +K ≤ Gt(z) for all
z ∈ [0, s]. By definition of s, for any y ∈ [s, cmax], we have Gt(S) +K ≥ Gt(y). However, we
also know that Gt(S) ≤ Gt(z) for any z ∈ [y, cmax]. Combining the two yields the last part
of the result.

This proposition proves the optimality of the (s, S) policy when the functions G(·, t) are
convex and have upper and lower bounds on the allowable values of the stock. We now
extend this result to the functional structure present in the reset control problem.

Proposition 5. Suppose 0 ≤ γ ≤ mt/((Lcmax+P )Mt+1) for all t = 0, . . . , k− 1. If A1–A5
and AT hold, then an optimal policy has the following four-stage structure with (st, St, σt,Σt)
thresholds:

1. If xt ∈ [0, σt), then r
∗
t = 1 and u∗t = φ

2. If xt ∈ [σt, st), then r
∗
t = 0 and u∗t = St − xt

3. If xt ∈ [st,Σt), then r
∗
t = 0 and u∗t = 0

4. If xt ≥ Σt, then r
∗
t = 1 and u∗t = φ

where φ ∈ [0, cmax] is a constant.

The full proof of this result can be found below, but here we present a sketch. First,
we define φ as the optimal value of u from the known reset state ζ with t = 0. Because
of this, from Proposition 1, we note that if the optimal reset action is r∗(x, t) = 1, that
means u∗(x, t) = φ. Hence, we focus the proof on determining the reset policy. We consider
the set IR, which is the set of all states for which a reset action would not be taken. We
then consider the case when this set is empty, meaning a reset action should be taken for
all states. When this set is not empty, we define σt, σ

′
t as the infimum and supremum of

IR, respectively. By Proposition 4, we note that there exists S ′
t = argminz∈[0,cmax]G(z, t).

However, we are not guaranteed that s′t = sup{z ∈ [0, S ′
t] | G(S ′

t, t) +K ≤ G(z, t)} to exist.
In the case where s′t does not exist, we demonstrate that the threshold st should be set to σt
because u∗(x, t) = 0 will be the minimizer for all states in this case. Next, we show that if s′t
does exist, then we should set the threshold st to s

′
t, since the optimal action u∗(x, t) will be

to order up to level S ′
t if x < s′t, and order nothing otherwise. Using continuity, convexity,

Proposition 3, and A3, we show that the region of the state space where it is optimal not
to take a reset action is the interval [σt, σ

′
t). This means that the optimal policy will use

the previously defined σt as one of the thresholds, and will use Σt = σ′
t if σ

′
t < cmax and

Σt = +∞ otherwise. Finally, we show that the threshold St should be set to S ′
t based on its

definition and the properties of st and σt.

Proof. We first define the constant

φ = arg min
u∈U0

E
[
g(ζ, 0, u, w) + γJ(h(ζ, 0, u, w), 1)

]
. (2.37)
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From Proposition 1, we have u∗t (x) = φ whenever r∗t (x) = 1. So, our proof will be structured
around determining an optimal reset policy r∗t (x). We define the functions

JR(x, t) = J0 + E(s(x, t, w)),
JN(x, t) = min

u∈[0,cmax−x]
G(x+ u, t) +K · 1R∗

+
(u)− c · x, (2.38)

where the subscript R indicates “reset”, and the subscript N indicates “no reset”. Observe
that these are the value functions corresponding to rt = 1 and rt = 0, respectively. Next,
define the set IR = {x ∈ [0, cmax] | JR(x, t) ≥ JN(x, t)}, and observe that IR is bounded by
construction. Now, we consider two cases:

The first case is when IR = ∅. Then by definition of IR, we have JR(x, t) < JN(x, t) for
all x ∈ [0, cmax]. For this case, an optimal policy is to choose σt = st = Σt = +∞ since it is
optimal to choose r∗t (x) = 1 for all x ∈ [0, cmax].

The second case is when IR ̸= ∅. Let σt = inf{x ∈ [0, cmax] | JR(x, t) ≥ JN(x, t)}
and σ′

t = sup{x ∈ [0, cmax] | JR(x, t) ≥ JN(x, t)}, and note that σt and σ′
t are finite since

IR is bounded and non-empty. Let S ′
t = argminz∈[0,cmax]G(z, t) and define s′t = sup{z ∈

[0, S ′
t] | G(S ′

t, t) + K ≤ G(z, t)}. Note that by Proposition 4, S ′
t is guaranteed to exist

whereas s′t may or may not exist. We consider two subcases based on the existence of s′t:
The first subcase is when s′t does not exist. Then an optimal policy chooses st = σt

because in this subcase, a minimizer to the optimization problem defining JN(x, t) is u
∗
t (x) =

0 for all x ∈ [0, cmax]. Note that by setting st equal to σt, the second policy region vanishes,
which ensures that u∗t (x) = 0 for all x ∈ [0, cmax] with our policy.

The rest of the proof considers the second subcase in which s′t exists. We set st = s′t,
since

u∗t (x) =

{
S ′
t − x, if 0 ≤ x < s′t

0, if s′t ≤ x ≤ cmax

(2.39)

is optimal for the optimization problem defining JN(x, t). We now observe that for x ∈
[0, st), JN(x, t) = G(S ′

t, t) + K − c · x, which is non-increasing in x. For x ∈ [st, cmax],
JN(x, t) = G(x, t) − c · x, which is convex in x since G(x, t) is convex by Proposition 3.
Clearly, JN(x, t) is continuous for x ∈ [0, st) since it is linear in this region, and JN(x, t) is
continuous for x ∈ (st, cmax] since G(·, t) is continuous by Proposition 3. The only question
about continuity occurs at x = st. Since G(S

′
t, t) +K = G(st, t) by definition, we have that

G(S ′
t, t)+K− c · st = G(st, t)− c · st. This proves that JN(x, t) must be continuous at x = st

since the left and right side of the last equality with G(·, t) are the limits of JN(·) in the
two respective regions. This means JN(x, t) is continuous on x ∈ [0, cmax]. Because JR(·, t)
is continuous by A3, this means that JR(σt, t) ≥ JN(σt, t) and JR(σ

′
t, t) ≥ JN(σ

′
t, t) by the

definitions of σt and σ
′
t.

Next, consider any x ∈ [σt, st] (note that our argument still holds even if this set is
empty). Since JN(x, t) is non-increasing for x ∈ [0, st], and since JR(x, t) is non-decreasing
in x by A3, we have

JR(x, t) ≥ JR(σt, t) ≥ JN(σt, t) ≥ JN(x, t) (2.40)
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for x ∈ [σt, st]. This argument also implies that JR(st, t) ≥ JN(st, t). Next, consider any
x ∈ [st, σ

′
t], and observe that there exists µ ∈ [0, 1] such that x = µst + (1− µ)σ′

t. Since we
showed above that JN(·, t) is convex, this means that for any x ∈ [st, σ

′
t], we have

JN(x, t) = JN(µst + (1− µ)σ′
t, t) ≤ µJN(st, t) + (1− µ)JN(σ′

t, t)

≤ µJR(st, t) + (1− µ)JR(σ′
t, t)

≤ JR(µst + (1− µ)σ′
t, t) = JR(x, t),

(2.41)

where the last inequality follows because JR(·, t) is concave by A3. Combining the above
shows that JR(x, t) ≥ JN(x, t) for all x ∈ [σt, σ

′
t].

Now, observe that JR(x, t) < JN(x, t) for x ∈ [0, σt) and for x ∈ (σ′
t, cmax]. (If this last

statement were not true, then we could choose an x′ ∈ [0, σt) or an x′ ∈ (σ′
t, cmax] such

that JR(x
′, t) ≥ JN(x

′, t). Hence, we would have x′ ∈ IR, which reaches a contradiction
since, by the definition of σt and σ

′
t, we would have σt ≤ x′ or σ′

t ≥ x′.) Consequently, an
optimal policy uses this value of σt. If σ′

t < cmax, then an optimal policy uses Σt = σ′
t, and

if σ′
t = cmax, then an optimal policy chooses Σt = +∞.
Finally, we must choose a correct value for St. We must consider three sub-subcases.

The first sub-subcase is when S ′
t < σt. Since s′t ≤ S ′

t by definition of s′t, this means the
second policy region is empty when st = s′t, which ensures that u∗t (x) = 0 for all x ∈ [σt, σ

′
t]

with our policy. Thus, we can choose St = S ′
t. (Any arbitrary choice of St would give an

optimal policy because the corresponding region is empty.) The second sub-subcase is when
σt ≤ S ′

t ≤ σ′
t. Then an optimal policy chooses St = S ′

t. The third sub-subcase is when
S ′
t > σ′

t. By definition of σt and σ
′
t, this means JR(S

′
t, t) < JN(S

′
t, t) and σ

′
t ≥ σt. Thus, in

this sub-subcase, we have

JN(σ
′
t, t) = G(σ′

t, t)− c · σ′
t ≥ G(S ′

t, t)− c · S ′
t = JN(S

′
t, t), (2.42)

where we have used the definition of S ′
t in the last inequality. Recalling that JR(x, t) ≥

JN(x, t) for all x ∈ [σt, σ
′
t], we have

JR(S
′
t, t) < JN(S

′
t, t) ≤ JN(σ

′
t, t) ≤ JR(σ

′
t, t). (2.43)

However, this last statement is a contradiction since σ′
t < S ′

t and JR(·, t) is non-decreasing
by A3. Therefore, this sub-subcase is not possible.

The regions in Proposition 5 represent that (i) the inventory is sufficiently small such that
reset cost is negligible, and thus resetting the system and ordering a one-step quantity is
optimal; (ii) the stock is sufficient such that ordering up to a given quantity and consuming
the majority prior to the stock becoming too obsolete or contaminated is optimal; (iii) the
stock in the system is sufficient to satisfy possible future demands, and thus resetting the
system or ordering additional stock is not optimal (a.k.a., do-nothing region); and (iv) there
is so much stock in the inventory that it will almost certainly never be consumed, hence
making it optimal to reset the system and reorder up to a baseline amount. Next, we show
how this policy influences the structure of the cost-to-go function.
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IR s′t S ′
t σt st St Σt Interpretation

IR = ∅ +∞ +∞ - +∞ Always reset
IR ̸= ∅ ∄s′t σt σt - σ′

t (σ
′
t < cmax), Missing [σt, st)

+∞ (σ′
t = cmax)

∃s′t S ′
t < σt σt s′t - σ′

t or +∞ Missing [σt, st)
σt ≤ S ′

t ≤ σ′
t σt s′t S ′

t σ′
t or +∞ All four stages

S ′
t > σ′

t - - - - Not possible

Figure 2.1: Proof sketch for Proposition 5

Proposition 6. Suppose 0 ≤ γ ≤ mt/((Lcmax+P )Mt+1) for all t = 0, . . . , k− 1. If A1–A5
and AT hold, then the function J(x, t) for t = 0, . . . , k − 1 has the following form with
(st, St, σt,Σt) thresholds:

J(x, t) =


J0 + E(s(x, t, w)), x ∈ [0, σt)

c(St − x) +K +H(St, t) + γE(J((St − w)+, t+ 1)), x ∈ [σt, st)

H(x, t) + γE(J((x− w)+, t+ 1)), x ∈ [st,Σt)

J0 + E(s(x, t, w)), x ≥ Σt

(2.44)

Furthermore, each piece has a Lipschitz derivative, and the derivative of each piece is abso-
lutely bounded by Mt = ηt + c+ κt +mt/(Lcmax + P ) for t = 0, . . . , k − 1.

The full proof of this proposition can be found below. Here, we present a proof sketch.
The functional structure of the policy follows directly as a consequence of Proposition 5, so
we focus on showing the properties of the derivative of the cost-to-go function. We examine
each piece of the function individually. The result is proven for the first and fourth pieces
as a consequence of A3, and we note that in the second region, J(x, t) is linear and thus
satisfies the result. For the third piece, the result follows as a consequence of Proposition 2
and A2.

Proof. The policy structure in Proposition 5 implies that the value function J(x, t) takes
the form (28). This means we have to analyze the derivative of at most four pieces. In
the first and fourth regions, by A3, we have that J(x, t) has a derivative that is Lipschitz
with constant Lt, and that the derivative is absolutely bounded by ηt. In the second region,
J(x, t) is linear in x and thus has a Lipschitz derivative that is absolutely bounded by c. In
the third region, we know that the first term has a Lipschitz derivative because it is twice
differentiable by A2, and that the second term has a Lipschitz derivative by Proposition
2. Thus, the third region has a Lipschitz derivative because it is the sum of two functions
with Lipschitz derivatives. To bound its derivative, we note that ∂xH(x, t) is absolutely
bounded by κt by A2. From Proposition 2, we know that the derivative of the second term
is absolutely bounded by γMt+1. Thus, the third piece has a derivative that is absolutely
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bounded by κt + γMt+1. This means the derivative of each piece is absolutely bounded by
ηt + c + κt + γMt+1. As 0 ≤ γ ≤ mt/((Lcmax + P )Mt+1), the derivative of each piece is
absolutely bounded by Mt = ηt + c+ κt +mt/(Lcmax + P ).

The policy structure from Proposition 5 implies that the value function has up to four
thresholds. The first two thresholds, namely s and S, are obtained from the value function
when there is no reset, which is linear and then convex. The points of intersection that
result from juxtaposing the value functions with and without reset give us the last two
thresholds, σ and Σ, thereby yielding an optimal cost-to-go function that is continuous and
piecewise differentiable, as shown in Figure 2.2. We now complete the proof by induction
and demonstrate that the optimal policy and cost-to-go functions indeed follow the forms
described above.

linear then convex concave points of intersection continuous, piece-
(s, S) thresholds (σ,Σ) thresholds wise differentiable

Figure 2.2: Proof sketch for Proposition 6

Theorem 1. Suppose γ is such that 0 ≤ γ ≤ min{γt | t ∈ {0, . . . , k − 1}} for

γk−1 =
mk−1

(Lcmax + P ) · ηk
,

γt =
mt

(Lcmax + P ) · (ηt+1 + c+ κt+1) +mt+1

for t = 0, . . . , k − 2.
(2.45)

If A1–A5 hold, then the policy described in Proposition 5 is optimal, and the value function
has the structure described in Proposition 6.

The complete proof of the theorem can be found below, but here we present a sketch.
First, we note that when t = k, the optimal policy will choose to reset the system for all
x ∈ [0, cmax], which means J(x, k) = J0 + E(s(x, k, w)). The remaining proof follows from
Propositions 5 and 6, along with induction on t.
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Proof. First, note that we can choose Mk = ηk using A3, since an optimal policy at t = k is
to choose r∗k(x) = 1 for all x ∈ [0, cmax], which means J(x, k) = J0+E(s(x, k, w)). Inductively
applying Propositions 5 and 6 implies the desired result.

This concludes our proof by induction, from which we obtain the threshold for the dis-
count factor that guarantees the structural properties of the optimal policy. We have shown
that assumptions A1-A5 are sufficient to establish the policy structure, and the temporary
assumption AT can be safely removed. Proposition 6 demonstrates that the value func-
tion can be partitioned into at most four pieces, each of which is Lipschitz continuous and
absolutely bounded.

Policy Structure for Water Storage and Retail Management
Problems

In this section, we provide sufficient conditions for both water storage and retail problems to
exhibit the four-threshold structure of the reset problem. We outline the conditions under
which each model satisfies assumptions A1-A5. First, we discuss the conditions for the
water storage problem.

Proposition 7. Suppose A5 (the assumption about the distribution of wn) holds, and that
f(w) > 0 for all w ∈ [0, cmax]. If p− q(t) > 0 for all t = 0, . . . , k − 1, then the water storage
problem described in Section 2.2 satisfies A1–A5.

The complete proof of this proposition can be found below, but here we present a sketch.
First, we establish that A1, A4, and A5 hold based on the problem definition and assump-
tions. We then demonstrate that by reformulating the stage cost and setting the fixed cost
to zero, the problem satisfies A2. Finally, we show that A3 follows from the reset conditions
in the water storage problem.

Proof. A1 andA4 hold by the definition of the water problem, andA5 holds by assumption.
To show A2, we first note that

ξn + un − (ξn + un − wn)
+ = ξn + un − (ξn + un − wn) + (ξn + un − wn)

−

= wn + (ξn + un − wn)
−.

(2.46)

This means the single stage cost can be rewritten as

g(ξn, τn, un, wn) = cun − p · (ξn + un − wn)
− + q(τn) · (ξn + un − (ξn + un − wn)

+)

= cun − (p− q(τn)) · (ξn + un − wn)
− + q(τn) · wn.

(2.47)

Hence, (2.24) is satisfied by setting K = 0 and

H(z, t) = −(p− q(t))
∫ ∞

z

(z − w)f(w)dw + q(t) · E(w). (2.48)



CHAPTER 2. LOCAL WATER INVENTORY MANAGEMENT FOR THE
DEVELOPING WORLD 25

Note that using the Leibniz integral rule twice gives

∂zH(z, t) = −(p− q(t))
∫ ∞

z

f(w)dw,

∂zzH(z, t) = (p− q(t)) · f(z).
(2.49)

Thus, we have |∂zH(z, t)| = | − (p − q(t))
∫∞
z
f(w)dw| ≤ p − q(t) since f(w) is a density.

Since H(·, t) is twice differentiable, this means it is absolutely continuous. Thus, H(·, t) is
strongly convex on [0, cmax] since ∂zzH(z, t) = (p−q(t)) ·f(z) ≥ (p−q(t)) · infz∈[0,cmax] f(z) =
(p− q(t)) ·minz∈[0,cmax] f(z) > 0 for z ∈ [0, cmax], where the second equality holds because a
Lipschitz continuous function attains its minimum in a compact domain. This shows that
A2 holds. To show that A3 holds, we first note that the water storage problem as described
in Section 2.1 implies ζ = 0. Next, note that the reset cost R(x, t) = crx is linear. Hence,
the conditions of A3 follow immediately.

The following proposition presents sufficient conditions for the retail problem to have the
same threshold policy structure.

Proposition 8. Suppose A5 holds, and that f(w) > 0 for all w ∈ [0, cmax]. Then the retail
management problem described in Section 2.2 satisfies A1–A5.

The full proof of this proposition can be found below, but here we provide a brief outline.
First, we note that A1, A4, and A5 hold based on the problem definition and assumptions.
Next, letting the fixed cost K = ku and using the Leibniz integral rule, we demonstrate that
A2 is satisfied. Finally, we show that A3 follows from the reset cost structure in the retail
management problem.

Proof. A1 and A4 hold by the definition of the retail problem, and A5 holds by assumption.
To show A2, we first note that the single stage cost can be written as

g(ξn, τn, un, wn) = cun + ku · 1R++(un)− p · (ξn + un − wn)
− + q · (ξn + un − wn)

+ (2.50)

Hence, (2.24) is satisfied by setting K = ku and

H(z, t) = −p
∫ ∞

z

(z − w)f(w)dw + q

∫ z

−∞
(z − w)f(w)dw. (2.51)

Note that using the Leibniz integral rule twice gives

∂zH(z, t) = −p
∫ ∞

z

f(w)dw + q

∫ z

−∞
f(w)dw,

∂zzH(z, t) = (p+ q) · f(z).
(2.52)

Thus, we have |∂zH(z, t)| = | − p
∫∞
z
f(w)dw+ q

∫ z

−∞ f(w)dw| = (p+ q) ·F (z)− p ≤ q, since
F (z) ≤ 1 for z ∈ [0, cmax]. Since H(·, t) is twice differentiable, this means it is absolutely
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continuous. Thus, H(·, t) is strongly convex on [0, cmax] since ∂zzH(z, t) = (p + q) · f(z) ≥
(p+ q) ·minz∈[0,cmax] f(z) > 0 for z ∈ [0, cmax]. This shows that A2 holds. To show A3 holds,
we first note that the retail management problem as described in Section 2.2 implies ζ = 0.
Next, note that the reset cost R(x, t) = crx+kr is linear. Hence, the conditions of A3 follow
immediately.

2.4 Numerical Results

In this section, we present numerical studies to validate the theoretical structure derived
in Section 2.3. The computations are performed in MATLAB 2018b on a laptop computer
with a 2.6GHz processor and 16GB of RAM. We begin by introducing the numerical dynamic
programming algorithm used to compute the optimal value functions and policies. We then
explore two case studies, the water storage problem and the retail management problem, to
numerically verify that their value functions and optimal policies align with the theoretical
structure.

Binary Dynamic Search Algorithm

Algorithm 1 Binary Dynamic Search (BiDS) Algorithm [54]

1: initialize v ← 0 and v ← ( 1
1−γ

)minu E[g(ζ, 0, u, w0) + γ · s(h(ζ, 0, u, w0), 1, w1)]
2: repeat
3: set v ← (v + v)/2
4: set V (x, k, v) = v + E[s(x,w, k)]
5: for t = (k − 1), (k − 2), . . . , 0 do
6: set V (x, t, v) = min

{
v+E[s(x,w, t)],minu∈Ut E[g(x, t, u, w)+ γV (h(x, t, u, w), t+

1, v)]
}

7: end for
8: set Υ(v) = minu∈U0 E[g(ζ, 0, u, w) + γV (h(ζ, 0, u, w), 1, v)]
9: if v > Υ(v) then
10: set v ← v
11: else
12: set v ← v
13: end if
14: until (v − v) ≤ ϵ
15: set v∗ = (v + v)/2

The Binary Dynamic Search (BiDS) algorithm, initially developed by [54], is employed
to solve dynamic programming equations. In classical discounted reward settings, value
functions and optimal policies are typically computed using value iteration (VI) and policy
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iteration (PI) algorithms. However, when dealing with an infinite state space, this computa-
tion becomes equivalent to finding a fixed point in an infinite-dimensional functional space.
While strong convergence guarantees exist in a discounted setting, the rate of convergence
is highly dependent on the discount factor and can be prohibitively slow [4]. As a result, ap-
proximate dynamic programming methods are commonly used in practice for such problems.
However, the BiDS algorithm leverages the specific structure of reset control problems to
calculate the optimal policy and value function with arbitrary precision. BiDS converts the
problem into finding a fixed point in a vector space using binary search, with the vector rep-
resenting the optimal value function evaluated at the reset state and time 0. The algorithm
initializes the search space using upper and lower bounds on the value function at the reset
state, and then uses backward induction to compute the implied reset state cost. By com-
paring this value with the candidate for the iteration, a new search interval is selected using
the same procedures as a binary search. The algorithm terminates either when a true fixed
point is found or when the numerical tolerance ϵ is reached. The theoretical convergence
and computational guarantees of BiDS are outlined in [54].

Example: Water Storage Problem

(i) value function

(ii) optimal control actions 
(blue for optimal fill amount and red for reset control action)

(iii) different zones defined by the optimal policy

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Figure 2.3: Example of an optimal policy for the water storage problem
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We use BiDS to numerically solve the water storage problem introduced in Section 2.2.
Random demand is generated from a truncated normal distribution bounded from below by
zero [11]. To ensure flushing occurs at least once a week, we set k = 7. The cost parameters
are carefully chosen to place more weight on shortage cost compared to purchasing and
flushing costs (i.e., p > c > cr). Furthermore, the cost of consuming water that has been
stored long-term exceeds the cost of flushing water (i.e., q(t) < p for all t, but q(t) ≥ cr for t
close to k). This design favors resetting the tank more frequently to prevent contamination.
In addition, while exponential microbial growth is normally assumed [50], we present a
simplified model with linear growth to account for fluctuations in the microbial load that
result from water usage and refilling. It should be noted that any other health penalty could
be used as long as it satisfies the monotonicity condition.

In Figure 2.3, the top row shows the value function, the second row displays the optimal
control actions (blue for the optimal fill amount and red for the reset control action), and the
bottom row presents the different zones for the optimal policy. In the policy visualization,
yellow corresponds to flushing the tank and reordering water, cyan represents ordering water
without flushing, and dark blue indicates not taking any action. The x-axis represents the
state x (amount of water in the tank), and the subplots from left to right correspond to
states t = 1, . . . , 7 (number of days since the tank was last emptied).

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Yellow – flushing tank 
and reordering water
Cyan – ordering water 
without flushing
Dark blue – not taking 
any action

(i) reference policy (from Figure 2.3)

(ii) when there is a high risk of contamination (health penalty ↑)

(iii) further exacerbated by limited access to water (purchase cost ↑)

Figure 2.4: Optimal policy for different cases of the water storage problem

With all other parameters fixed from Figure 2.3 (top), we analyze the following two
scenarios in Figure 2.4. When there is a high risk of contamination (middle), we impose
a larger penalty on water consumption to reflect this condition. It can be observed that
the optimal policy suggests flushing the tank more frequently, as indicated by the thicker
yellow and thinner cyan bands, in order to reduce the risk of consuming contaminated water.
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Further exacerbation due to limited access to water (bottom), which is often the case in the
developing world [88, 91], can be modeled by assigning a higher cost to purchasing water.
In this case, the control policy is primarily composed of the reset (yellow) and do-nothing
(dark blue) regions, with their thresholds slightly shifted to the left compared to the previous
policy. As illustrated by wider blue and narrower yellow regions, this regrettably implies
that resetting cannot be afforded as often. Nevertheless, our model provides robust and
reliable guideline, especially when faced with difficult choices, whether it suggest pursuing a
breakthrough or adopting a compromise strategy.

Example: Retail Management Problem

In this section, we solve the retail management problem described in Section 2.2 using the
BiDS algorithm under two different cases, as depicted in Figure 2.5. In the first case, where
a firm lacks the required flexibility to swiftly change the product line (top), we model this by
assigning a higher reset cost. It can be observed that the optimal policy essentially reduces
to an (s, S) policy, similar to classical inventory management problems where firms do not
have the infrastructure and resources to frequently switch the product line. Conversely,
in the second case, where a company is situated in a rapidly evolving industry and thus
equipped with the speed and adaptability demanded by the market (bottom), we assign a
lower reset cost but a higher holding cost to take the ephemeral nature of our merchandise
into consideration. In this case, the inventory policy features a yellow region on the right,
indicating the need to change inventory when there is too much stock. This epitomizes the
appropriate response to the transience of a trend.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

(i) static environment

(ii) dynamic environment (reset cost ↓ + holding cost ↑) 

Figure 2.5: Optimal policy for different cases of the retail management problem

At each t, there are at most three thresholds that separate the control policy into four
regions. In the first region (yellow), the trivial amount of stock renders the inventory reset
cost negligible. Hence, emptying the inventory and ordering an optimal one-step quantity
is optimal. In the next region (cyan), the sufficiency of stock in the inventory makes it
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optimal to order up to some quantity and still consume most of the stock before it becomes
obsolete. In the third ‘do-nothing region’ (blue), it is not optimal to reset the inventory or
order further stock as potential future demand can already be satisfied. In the final region
(yellow), the inventory stock is almost certain to never be consumed, and it is thus optimal
to empty the inventory and reorder up to some optimal quantity, changing the product line
if appropriate. Also, note that while these regions cover all possible stages suggested by the
optimal policy, the actual policy may not include all of them, as seen in the case of Figure
2.5.

Figure 2.6: Example of an optimal policy for deteriorating item with linear time-dependent
holding cost

2.5 Conclusion

Inventory management that empowers us to flexibly adapt to change is necessary to survive in
a market and society that continues to evolve with growing acceleration. Previous inventory
policies were contingent upon the trade-off balance between holding and shortage costs, and
informed us only of the optimal inventory position, or the quantity that must be ordered,
for each period. By introducing the option to reset inventory into such classical frameworks,
we are pioneering the design of more dynamic policies that overcome the limitations of pre-
existing static policies. Furthermore, this enables us to continuously assess whether resets are
more profitable at the preset periodic intervals or at earlier time points. In this chapter, we
(i) conducted a theoretical investigation of the structural properties underlying the optimal
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policy for this problem, and (ii) implemented the appropriate algorithm to numerically solve
and empirically validate the policy structure. Finally, we demonstrated the broad utility of
this problem by providing examples in both non-profit and for-profit contexts.

The original motivation for this study stemmed from the management of water inventory
in developing nations [54] where clean water is not consistently available throughout the day
due to the absence of comprehensive water distribution networks. As a result, residential
buildings rely on water storage systems that are filled during limited time windows when the
distribution network is active. However, these systems are not equipped with disinfection
capabilities. This leads to water being stored for long durations, thereby exposing people to
substantially increased bacterial and viral contamination [18, 44, 39]. Furthermore, obtaining
even the minimum quantity of water required for survival poses significant challenges for
individuals without a continuous water supply at home, forcing them to compromise their
health by using less water or collecting water from unsafe sources [91]. Our model aspires to
promote universal and equitable access to safe water by providing decision-making guidance
in such healthcare dilemmas.

Our formulation and proof are also sufficiently flexible to account for general reset control
problems in supply chain management. For instance, we can incorporate modifications, such
as including a time-varying holding cost that considers the depreciation rate and penalizes
based on the duration of storage, to effectively manage aging inventories (see Figure 2.6).
Finally, our results suggest that the sufficient conditions for ensuring the threshold structure
of the optimal policy are marginally conservative as they are not necessary conditions, and
that there may exist a relaxation of these conditions, which we leave for future studies.
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Chapter 3

Incorporating Fairness into
Principal-Agent Models with Adverse
Selection and Moral Hazard

3.1 Introduction

Principal-agent models form a foundational pillar in the study of incentive design, with
particular emphasis on navigating the complexities of adverse selection and moral hazard.
Historically, the objective has been the efficient alignment of interests and the mitigation of
associated risks. Yet, an evident lacuna in this methodology has been the marginalization of
fairness as a vital consideration, which can inadvertently perpetuate disparities for specific
demographic cohorts, notably delineated by race, gender, or other salient attributes. Such
an omission not only threatens the integrity of these models but also raises pressing ethical
quandaries about their broader societal implications. Against this backdrop, this chapter
endeavors to reconcile these concerns by addressing two cardinal principles: (i) the theoret-
ical pursuit of what is fair and equitable; and (ii) the numerical considerations of what is
feasible and optimal, in the context of contract design. By incorporating fairness into the
optimization framework, this study seeks to augment the traditional paradigm, fostering a
more holistic and ethically robust approach to incentive design.

Principal-Agent Model

Let us consider the following hypothetical situation: a company is organizing a picnic and
intends to purchase sandwiches. The company is capable of utilizing every sandwich pro-
duced, but there are diminishing returns associated with the value of each additional sand-
wich. Additionally, the restaurant from which the company sources the sandwiches can be
either efficient or inefficient, although the company is unaware of the restaurant’s type. In
this context, efficiency is assessed based on the cost of producing each sandwich, which en-
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compasses factors such as raw ingredients, energy inputs, and equipment purchases. Given
this scenario, an intriguing problem arises: how should the company structure the contract
for hiring the restaurant? It is worth noting that this example is just one instance within a
broader range of similar situations.

Principal-agent models represent situations in which a principal (e.g., manager) wishes to
delegate a task to an agent (e.g., employee). The example of a company (principal) hiring a
restaurant (agent) aligns with this pattern. There is a well-established literature on principal-
agent models in economics [26, 28] and in operations management [41]. These models are
classified based on the type of the information asymmetry arising between the principal and
the agent. This asymmetry typically appears in the form of either adverse selection (hidden
information) or moral hazard (hidden actions) [10]. The company-restaurant context above
is an example of an adverse selection setting, wherein the agent is aware of their efficiency
level, while the principal lacks this knowledge. On the other hand, moral hazard arises
when the agent possesses knowledge about their effort level, which remains unknown to the
principal [30]. These information asymmetries complicate the contract design problem, as
an effective contract is one that encourages the agent to reveal their private knowledge, even
though doing so may require offering some information rent to the agent.

Contributions and Outline

The motivation behind this study stems from the observation that existing approaches to
incentive design often overlook the incorporation of fairness. Fairness is a crucial aspect
of incentive systems since inadequate design can result in harm to individuals from spe-
cific groups (e.g., based on race or gender). For instance, consider financial incentives for
demand-responsive electricity usage that impose varying fees based on current transmission
costs and supply availability. Improperly designed incentives can lead to disadvantages for
individuals residing in certain locations, thus introducing biases related to race, ethnicity,
and socioeconomic factors, given the unequal distribution of the population across demo-
graphics. Similar concerns regarding fairness also arise in the realm of healthcare, spanning
aspects such as insurance contract composition, procedure pricing, and the allocation of
scarce medical resources.

Our contribution lies in integrating the concept of fairness into the framework of incen-
tive design, particularly within the context of principal-agent models involving either adverse
selection (Section 3.2) or moral hazard (Section 3.3). In both cases, we will formulate the
problem mathematically, derive the optimal contract that satisfies fairness criteria, and ex-
plore its implications. By incorporating fairness considerations into incentive design, we
aspire to address the potential biases and disparities that may arise from traditional ap-
proaches. Our analysis will provide insights into how to construct contracts that not only
optimize economic objectives but also ensure fairness among different groups or individuals.
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3.2 Adverse Selection

Suppose the principal contracts the agent to produce q units of a good. The value to the
principal of the q units of the good is given by the function S(q), where S(0) = 0, S ′ > 0,
and S ′′ < 0. This means that the marginal value of the good is positive (i.e., producing
more goods is better) but exhibits diminishing utility. In this model, the production cost of
the agent is unobservable to the principal. However, there are certain facts known to both
parties. Both the principal and the agent are aware of the fixed costs F , the cost function
of the agent C(q, θ) = θq + F , where θ represents the marginal cost. Additionally, it is
known that the agent can be either inefficient (θ = θI) or efficient (θ = θE), with θI > θE,
indicating higher marginal costs for the inefficient type. While the agent is aware of its own
type, the principal does not possess this information. Instead, the principal has knowledge
of, or can estimate, the probability that an agent is efficient, denoted as P(θ = θE) = α,
and the probability that an agent is inefficient, denoted as P(θ = θI) = 1 − α = β. The
decision-making process in this model revolves around the design of a menu of contracts. The
principal has the authority to specify multiple production levels along with the associated
payments or transfers t for each production level. Each contract in the menu is represented
by a tuple (q, t), and the menu consists of multiple such tuples. In this simple case, there
should be two contract tuples, one for the efficient agent and the other for the inefficient
agent.

Consider a scenario where the principal has full knowledge of the agent’s type. In this
case, the principal should design the contract in such a way that the principal’s marginal
utility of a good equals the agent’s marginal cost, resulting in the principal achieving maxi-
mum utility. This implies selecting production levels qI1 and qE1 that satisfy S ′(qI1) = θI and
S ′(qE1 ) = θE, respectively. However, it is important to note that agents will only agree to
participate in a contract if the offered transfer t ensures they do not incur a financial loss.
Thus, we must consider participation constraints that guarantee the transfers in the contract
are at least as large as the costs incurred by the agents:

tE − θEqE − F ≥ 0,

tI − θIqI − F ≥ 0.

Taking everything into account, our menu of contracts is as follows: If the agent is of type
θI , the principal offers the contract (qI1 , θ

IqI1 + F ). Similarly, if the agent is of type θE, the
principal offers the contract (qE1 , θ

EqE1 + F ). These production levels are referred to as the
first-best production levels. What is interesting about these contracts is that the agents
make no profit. This means that their transfer is equal to their cost regardless of their type,
indicating that the agents receive no additional financial benefit from participating in the
contract.

Now, return to the general setting where the principal does not have knowledge of the
agent’s type. The initial näıve approach might be for the principal to offer a menu of
contracts (qI1 , t

I
1), (q

E
1 , t

E
1 ) and hope that the inefficient agent chooses the contract designed
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for inefficiency (qI1 , t
I
1), while the efficient agent chooses the contract designed for efficiency

(qE1 , t
E
1 ). However, this is not what occurs in practice. It is in the best interest of the efficient

agent, who has a lower marginal cost, to pretend to be inefficient and accept the contract
designed for inefficiency (qI1 , t

I
1). This behavior is known as adverse selection. Adverse

selection arises because for a fixed production level, say qI1 , the efficient agent has lower
production costs compared to the inefficient agent (θEqI1+F < θIqI1+F ). Since the contract
is designed such that tI1 − θIqI1 + F = 0, it implies that tI1 − θEqI1 + F > 0, resulting in a
profit for the efficient agent who pretends to be inefficient.

Ideally, our goal is to design a menu of contracts in such a way that each agent selects
the contract that aligns with their true type. This means we want the agents to be truthful
about their type. The property of being truthful is also known as being strategy-proof or
incentive compatible, and it is captured by the following incentive compatibility constraints :

tE − θEqE − F ≥ tI − θEqI − F,
tI − θIqI − F ≥ tE − θIqE − F.

The intuition behind these incentive compatibility constraints is that the profit an agent
earns when selecting a contract originally designed for their own type should be greater than
or equal to the profit they would earn if they were to select a contract designed for the
opposite type. By enforcing these constraints, we ensure that agents have no incentive to
misrepresent their type and that it is in their best interest to be truthful about their type
when selecting a contract.

The profit earned by an agent is referred to as information rent. In the case of efficient
and inefficient agents, their information rents are defined as

UE = tE − θEqE − F,
U I = tI − θIqI − F.

Even when a contract is designed to satisfy the incentive compatibility constraints, it is
common for the efficient agent to receive some amount of information rent. To illustrate
this, consider the scenario where the efficient agent pretends to be inefficient. In this case,
its payment would be

UE = tE − θEqE − F ≥ tI − θEqI − F = tI − θIqI − F + (θI − θE)qI = U I + (θI − θE)qI .

Hence, even if the contract is designed such that U I = 0, there would still exist a nonzero
information rent of (θI − θE)qI . However, this rent can be reduced by decreasing the value
of qI , thereby posing an important problem of how to achieve this reduction.

Considering that the efficient agent is entitled to receive some information rent, an in-
triguing question arises: How can the contract be designed to minimize the rent provided
and enhance overall efficiency for the principal? This can be formulated as an optimization
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problem:

max
(qE ,tE),(qI ,tI)

α(S(qE)− tE) + β(S(qI)− tI)

s.t. tE − θEqE − F ≥ 0

tI − θIqI − F ≥ 0

tE − θEqE − F ≥ tI − θEqI − F
tI − θIqI − F ≥ tE − θIqE − F

Recall that the first two constraints represent the participation constraints, ensuring that the
transfers are sufficient to cover the costs for both types of agents. The last two constraints are
the incentive compatibility constraints, guaranteeing that each agent is better off choosing
their own contract rather than pretending to be the other type.

This optimization problem can be solved by analyzing its optimality conditions, leading
to solutions known as the second-best production levels. Here, we provide a summary of
the obtained results. The production level for the efficient agent remains unchanged and is
denoted as qE2 = qE1 . However, the production level for the inefficient agent is reduced to qI2 ,
satisfying S ′(qI2) = θI + α

β
(θI − θE). The corresponding second-best transfers are given by

tE2 = θEqE2 + (θI − θE)qI2 + F and tI2 = θIqI2 + F . Notably, only the efficient agent receives
a strictly positive information rent, denoted as UE

2 = (θI − θE)qI2 . Furthermore, this rent is
lower than the information rent UE

1 extracted from the menu of contracts designed for the
first-best production levels.

Using this framework, we will formulate a principal-agent model with adverse selection
that incorporates fairness as follows:

maximize principal’s expected utility

subject to agent’s participation

agent’s incentive compatibility

(+ contract fairness)

Fair Principal-Agent Model with Adverse Selection

In this section, we will address the following questions:

• What if we introduce a protected group alongside the efficiency types?

• If we have a protected group, how can we design a contract that ensures fairness among
different groups of agents?

• Most importantly, how should we precisely define fairness in this context?

Consider a scenario with two distinct groups and two different types of agents, resulting
in a total of four possible combinations. To clarify, agents are classified into two groups
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that we aim to ensure fairness with respect to, and they also possess efficiency types based
on their production costs. An additional assumption is made that one group, as a whole,
exhibits higher efficiency compared to the other. This implies that each group comprises a
different proportion of efficient and inefficient agents, leading to one group having a higher
conditional probability of being efficient than the other.

Our objective is to explore the possibility of formulating a contract that provides the same
expected profit for agents from both groups. This quantitative definition of fairness involves
equating the expected profit of agents across all groups, thereby making profit independent
of group membership. In the following sections, we will examine two different menus of
contracts to incorporate fairness into the design of incentives.

Model 1

Assume that there are two groups of agents, A and B. Their probabilities are given by the

matrix P =

(
α β
γ δ

)
, where Pij = P(group = i, efficiency = j), with 0 < α, β, γ, δ < 1 and

α + β + γ + δ = 1. If we choose to offer a menu of contracts {(qE, tE), (qI , tI)}, then the
optimization problem is given by

max
(qE ,tE),(qI ,tI)

α(S(qE)− tE) + β(S(qI)− tI) + δ(S(qE)− tE) + γ(S(qI)− tI) (3.1)

s.t. tE − θEqE − F ≥ 0 (3.2)

tI − θIqI − F ≥ 0 (3.3)

tE − θEqE − F ≥ tI − θEqI − F (3.4)

tI − θIqI − F ≥ tE − θIqE − F (3.5)

α

α + β
(tE − θEqE − F ) + β

α + β
(tI − θIqI − F ) (3.6)

=
γ

γ + δ
(tE − θEqE − F ) + δ

γ + δ
(tI − θIqI − F )

The following theorem presents an important result that proves the infeasibility of the
aforementioned optimization problem, thereby highlighting the impossibility of achieving an
optimal fair contract when contracts are offered solely based on agent type.

Theorem 2. If α
α+β
̸= γ

γ+δ
and qI > 0, then there exists no feasible solution that simultane-

ously satisfies both incentive compatibility and fairness constraints.
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Proof. Fairness constraint (3.6) implies that(
α

α + β
− γ

γ + δ

)
(tE − θEqE − F ) =

(
δ

γ + δ
− β

α + β

)
(tI − θIqI − F )

=

((
1− γ

γ + δ

)
−
(
1− α

α + β

))
(tI − θIqI − F )

=

(
α

α + β
− γ

γ + δ

)
(tI − θIqI − F ),

so we have tE − θEqE −F = tI − θIqI −F . However, combined with incentive compatibility
constraint (3.4), this implies that tI − θEqI − F ≤ tE − θEqE − F = tI − θIqI − F , which
means θIqI ≤ θEqI and thus θI ≤ θE. This is a contradiction since we had assumed θI > θE.
Hence, fairness and incentive compatibility are not jointly feasible.

The conditions outlined in Theorem 2 are justifiable. The first condition indicates that
there must be a difference in overall efficiency levels between the two groups. Otherwise, the
groups would be identical, and there would be no need to incorporate fairness into contract
design. The second condition ensures that the production level must be strictly positive to
prevent the less efficient type from being shut down, which may result in excessive screening
of types.

The key takeaway is that if we offer two contracts, one for each agent type, we discover
that there is no feasible solution. In other words, if we only consider the agent’s type when
designing contracts, it is not possible to achieve our definition of fairness across different
groups. It is intriguing to observe that we cannot formulate a fair optimal contract by solely
considering the types of agents when there is a discrepancy between groups, such as a gap in
their group-wise efficiency. This epitomizes the importance of factoring in protected groups
when designing incentives to ensure fairness.

Contract E Contract I

Efficient                     Inefficient

A

B

Contract AE Contract AI

Contract BE Contract BI

Efficient               Inefficient

A

B

Figure 3.1: Visualization of the transition from Model 1 to Model 2
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Model 2

In addition to our previous assumptions, we make another assumption that agents can pre-
tend to be of the opposite type, but they must truthfully report which group they belong
to. This assumption is crucial in our analysis because we are primarily concerned with de-
signing contracts that do not discriminate against agents based on their group membership.
By allowing agents to potentially misrepresent their type only, we are able to focus our
attention on designing contracts that are fair with respect to group membership while still
incentivizing truthful reporting of individual efficiency characteristics.

With a menu of contracts {(qEA , tEA), (qIA, tIA), (qEB , tEB), (qIB, tIB)}, the optimization problem
is given by

max
{(q,t)}

α(S(qEA)− tEA) + β(S(qIA)− tIA) + γ(S(qEB)− tEB) + δ(S(qIB)− tIB) (3.7)

s.t. tEA − θEqEA − F ≥ 0 (3.8)

tIA − θIqIA − F ≥ 0 (3.9)

tEB − θEqEB − F ≥ 0 (3.10)

tIB − θIqIB − F ≥ 0 (3.11)

tEA − θEqEA − F ≥ tIA − θEqIA − F (3.12)

tIA − θIqIA − F ≥ tEA − θIqEA − F (3.13)

tEB − θEqEB − F ≥ tIB − θEqIB − F (3.14)

tIB − θIqIB − F ≥ tEB − θIqEB − F (3.15)

α

α + β
(tEA − θEqEA − F ) +

β

α + β
(tIA − θIqIA − F ) (3.16)

=
γ

γ + δ
(tEB − θEqEB − F ) +

δ

γ + δ
(tIB − θIqIB − F )

Define information rents for each group-type combination:

UE
A = tEA − θEqEA − F,
U I
A = tIA − θIqIA − F,

UE
B = tEB − θEqEB − F,
U I
B = tIB − θIqIB − F.

By substituting transfers in the principal’s objective with functions of information rents
and outputs, we reformulate the decision variables as {(q, U)}. This modification enhances
the economic insights derived from the optimal contract and enables us to evaluate the
distributional effects of asymmetric information, with a particular emphasis on information
rents.



CHAPTER 3. INCORPORATING FAIRNESS INTO PRINCIPAL-AGENT MODELS
WITH ADVERSE SELECTION AND MORAL HAZARD 40

The revised optimization problem can be expressed as follows:

max
{(q,U)}

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA) + γ(S(qEB)− θEqEB) + δ(S(qIB)− θIqIB) (3.17)

− (αUE
A + βU I

A + γUE
B + δU I

B)

s.t. UE
A ≥ 0 (3.18)

U I
A ≥ 0 (3.19)

UE
B ≥ 0 (3.20)

U I
B ≥ 0 (3.21)

UE
A ≥ U I

A +∆θqIA (3.22)

U I
A ≥ UE

A −∆θqEA (3.23)

UE
B ≥ U I

B +∆θqIB (3.24)

U I
B ≥ UE

B −∆θqEB (3.25)

α

α + β
UE
A +

β

α + β
U I
A =

γ

γ + δ
UE
B +

δ

γ + δ
U I
B (3.26)

where ∆θ = θI − θE > 0.
A primary hurdle in tackling this problem is discerning the constraints imposed by partic-

ipation and incentive compatibility that are crucial, in other words, those that are binding at
the optimal solution. One might initially consider employing Lagrangian techniques. How-
ever, given the number of constraints, a more pragmatic tactic would be to conjecture the
active constraints first, and subsequently verify that the disregarded constraints are indeed
strictly satisfied, as in [41]. In the context of our model, this method proves more bene-
ficial in both solving the optimization problem and gaining a clearer understanding of the
underlying economic rationale within this model.

Firstly, let us examine contracts featuring positive production levels or outputs, denoted
as qIA, q

I
B > 0. The capacity of the efficient agent to impersonate the inefficient agent ensures

that the efficient agent’s participation constraint is consistently strictly satisfied. In fact,
this can be readily understood, as the conjunction of the inefficient agent’s participation
constraint (3.19, 3.21) and the efficient agent’s incentive constraint (3.22, 3.24) directly sub-
stantiates the efficient agent’s participation constraint (3.18, 3.20). Moreover, the inefficient
agent’s incentive constraint (3.23, 3.25) is immaterial given that the challenge arises from
an efficient agent potentially feigning inefficiency, rather than vice versa. This reduction in
the number of pertinent constraints results in only three remaining constraints: the efficient
agent’s incentive compatibility constraint (3.22, 3.24), the inefficient agent’s participation
constraint (3.19, 3.21), and the fairness constraint (3.26).

Special Case

To gain a better understanding of the impact of adding a fairness constraint to the opti-
mization problem, we will first consider a special case where one group is composed entirely
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of a single type of agents, for instance, inefficient agents. Specifically, we will set the proba-
bilities γ = 0 and δ = 1 − α − β. With these assumptions, the optimization problem takes
the following form:

max
{(q,U)}

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA) + δ(S(qIB)− θIqIB) (3.27)

− (αUE
A + βU I

A + δU I
B)

s.t. U I
A ≥ 0 (3.28)

U I
B ≥ 0 (3.29)

UE
A ≥ U I

A +∆θqIA (3.30)

α

α + β
UE
A +

β

α + β
U I
A = U I

B (3.31)

In the following theorem, we will present a characterization of the optimal fair contract
for this problem.

Theorem 3. If γ = 0 and δ = 1 − α − β, then an optimal solution exists and follows a
specific structure outlined as follows:

qEA : S ′(qEA)− θE = 0, UE
A = ∆θqIA

qIB : S ′(qIB)− θI = 0, U I
B =

α

α + β
∆θqIA

qIA : S ′(qIA)− θI =
α/β

α + β
∆θ, U I

A = 0

Proof. We can easily verify that the participation constraint for group A (3.28) and the
fairness constraint (3.31), when combined, imply the participation constraint for group B
(3.29). We then incorporate the fairness constraint (3.31) into the objective (3.27) as follows:

αUE
A + βU I

A + δU I
B =

(
1 +

δ

α + β

)
(αUE

A + βU I
A) =

1

α + β
(αUE

A + βU I
A).

To see that the two remaining constraints (3.28, 3.30) are binding, we use a proof by
contradiction. If they were not binding, we could lower U I

A and UE
A to increase the objective

while satisfying all constraints and keeping all outputs the same. Therefore, we must have
U I
A = 0 and UE

A = ∆θqIA. With these values, we have an unconstrained optimization problem
as follows:

max
qEA ,qIA

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA) + δ(S(qIB)− θIqIB)−
α

α + β
∆θqIA

The first-order optimality conditions yield:

qEA : S ′(qEA)− θE = 0

qIB : S ′(qIB)− θI = 0

qIA : S ′(qIA)− θI =
α/β

α + β
∆θ
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The information rents and corresponding transfers are given by:

UE
A = ∆θqIA, tEA = θEqEA + F +∆θqIA

U I
B =

α

α + β
∆θqIA, tIB = θIqIB + F +

α

α + β
∆θqIA

U I
A = 0, tIA = θIqIA + F

The interpretation of this result is that when there are no efficient agents in group B,
inefficient agents in group B will receive a strictly positive information rent. Interestingly,
the amount of this information rent is dependent upon the production level assigned to the
inefficient agents in group A. This is due to the fairness constraint that ensures expected
profit equivalence across the two groups. Here, the objective can be seen as the expected
utility minus the expected information rent. Thus, the principal can balance the trade-
off and accept some distortions away from efficiency to decrease the agent’s information
rent. Consequently, the inefficient agents in group A, who determine the actual amount of
information rents paid to all stakeholders, face a downward output distortion. We can verify
this by noting that S ′(qIA)− θI =

α/β
α+β

∆θ, which is greater than the second-best output level
of α

β
∆θ. Another interesting aspect of this contract is that the inefficient agent of group

B will be assigned to their first-best production level. This is because we assumed that
efficient agents are missing from group B, and thus there is no need to consider incentive
compatibility for them.

This is the first step towards understanding how to design a fair contract in accordance
with our quantitative definition when we have two groups that differ in their group-wise
efficiency levels. This special case will be particularly useful in contexts where one group is
significantly more disadvantaged and underprivileged relative to the other group. We aim to
prepare a menu of contracts that does not discriminate against certain groups and, hopefully,
can even narrow the differential between them.
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General Case

Let us now return to the general case where we assume α, β, γ, δ ∈ (0, 1) and α+β+γ+δ = 1.
It is important to recall that the optimization problem can be written concisely as follows:

max
{(q,U)}

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA) + γ(S(qEB)− θEqEB) + δ(S(qIB)− θIqIB)

− (αUE
A + βU I

A + γUE
B + δU I

B)

s.t. U I
A ≥ 0 (PC-A)

U I
B ≥ 0 (PC-B)

UE
A ≥ U I

A +∆θqIA (IC-A)

UE
B ≥ U I

B +∆θqIB (IC-B)

α

α + β
UE
A +

β

α + β
U I
A =

γ

γ + δ
UE
B +

δ

γ + δ
U I
B (FC)

Here, the acronyms stand for the following constraints: PC represents participation con-
straints, IC denotes incentive compatibility constraints for each group, and FC stands for
the fairness constraint.

The main challenge in addressing this problem is identifying the constraints that are rel-
evant in the optimal solution. Our approach is to initially hypothesize the active constraints
and then verify afterwards that the neglected constraints are indeed strictly satisfied.

Proposition 9. At least one of the participation constraints must be binding, implying that
either U I

A = 0 or U I
B = 0. This indicates that an inefficient agent from either group receives

zero information rent.

Proof. Suppose there exists an optimal solution with U I
A > 0 and U I

B > 0 (this is a proof by
contradiction). Then we can construct another solution with a better objective. Without
loss of generality, assume U I

B ≥ U I
A = ϵ > 0. Now, subtract ϵ from U I

A and U I
B, while

keeping the outputs qIA and qIB unchanged, to obtain such a solution. We can verify that the
constraints still hold:

• (PC-A) U I
A − ϵ = 0,

• (PC-B) U I
B − ϵ ≥ 0,

• (IC-A) UE
A − ϵ ≥ U I

A − ϵ+∆θqIA,

• (IC-B) UE
B − ϵ ≥ U I

B − ϵ+∆θqIB,

• (FC) α
α+β

(UE
A − ϵ) + β

α+β
(U I

A − ϵ) = α
α+β

UE
A + β

α+β
U I
A − ϵ = γ

γ+δ
UE
B + δ

γ+δ
U I
B − ϵ =

γ
γ+δ

(UE
B − ϵ) + δ

γ+δ
(U I

B − ϵ).
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The objective strictly increases by ϵ since −(α(UE
A −ϵ)+β(U I

A−ϵ)+γ(UE
B −ϵ)+δ(U I

B−ϵ)) =
−(αUE

A + βU I
A + γUE

B + δU I
B)+ (α+ β+ γ+ δ) · ϵ = −(αUE

A + βU I
A + γUE

B + δU I
B)+ ϵ. Thus,

this solution is not optimal, and it must be the case that U I
A = 0 or U I

B = 0.

This proposition states that in the optimal solution, at least one of the participation
constraints must be active, which implies that either the inefficient agent from group A (U I

A)
or the inefficient agent from group B (U I

B) receives zero information rent. This result provides
a weaker guarantee compared to the contract solely based on the incentive compatibility
constraints. Nevertheless, it underscores the necessity of efficiency in the incentive design,
wherein at least one group’s inefficient agents must forgo any information rent.

We will now eliminate the equality constraint by incorporating it into the objective
function and the inequality constraints, expressing them in terms of UE

A and U I
A. Using FC,

the last term in the objective can be rewritten as:

αUE
A + βU I

A + γUE
B + δU I

B =

(
α + β + γ + δ

α + β

)
(αUE

A + βU I
A) =

1

α + β
(αUE

A + βU I
A).

Next, we proceed to the constraints. FC implies that U I
B = γ+δ

δ
( α
α+β

UE
A + β

α+β
U I
A−

γ
γ+δ

UE
B ).

Substituting this into IC-B and PC-B yields:

UE
B ≥

α

α + β
UE
A +

β

α + β
U I
A +

δ

γ + δ
∆θqIB (IC-B*)

UE
B ≤

γ + δ

γ
·
(

α

α + β
UE
A +

β

α + β
U I
A

)
(PC-B*)

Based on Proposition 9, assume U I
A = 0. Later, we will show that it does not matter which

we assume to be binding, as an optimal contract will induce inefficient agents from both
groups to receive zero information rent. The optimization problem now becomes:

max
{(q,U)}

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA)

+ γ(S(qEB)− θEqEB) + δ(S(qIB)− θIqIB)−
α

α + β
UE
A

s.t. UE
A ≥ ∆θqIA (IC-A)

UE
B ≥

α

α + β
UE
A +

δ

γ + δ
∆θqIB (IC-B*)

UE
B ≤

α

α + β
· γ + δ

γ
UE
A (PC-B*)

An arbitrary feasible UE
B exists as long as it satisfies both IC-B* and PC-B*. Since the

problem is now independent of UE
B (but still a function of qEB), we can combine these con-

straints as α
α+β

UE
A + δ

γ+δ
∆θqIB ≤ α

α+β
· γ+δ

γ
UE
A to obtain a new constraint:

UE
A ≥

α + β

α
· γ

γ + δ
∆θqIB (IPC-B)
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Finally, we have the following optimization problem:

max
{(q,U)}

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA)

+ γ(S(qEB)− θEqEB) + δ(S(qIB)− θIqIB)−
α

α + β
UE
A

s.t. UE
A ≥ ∆θqIA (IC-A)

UE
A ≥

α + β

α
· γ

γ + δ
∆θqIB (IPC-B)

We will now solve the problem above and present the following theorem characterizing the
optimal fair contract.

Theorem 4. If we choose to offer four contracts, one for each combination of type and
group, an optimal solution exists and follows a specific structure outlined as follows:

qEA : S ′(qEA)− θE = 0, UE
A = ρ∆θqIB

qIA : qIA = ρqIB, U I
A = 0

qEB : S ′(qEB)− θE = 0, UE
B = ∆θqIB

qIB : ρ · β(S ′(ρqIB)− θI) + δ(S ′(qIB)− θI)−
γ

γ + δ
∆θ = 0, U I

B = 0

where ρ = α+β
α
· γ
γ+δ

.

Proof. Since UE
A is included as a negative term in the objective function that we wish to

maximize, it is necessary for either IC-A or IPC-B to be binding, as they impose lower
bounds on the value of UE

A . In this proof, we will consider both cases and solve the resulting
problems.

First, consider the case where IC-A is binding. This implies that UE
A = ∆θqIA ≥

α+β
α
·

γ
γ+δ

∆θqIB. Consequently, the optimization problem transforms into:

max
q

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA)

+ γ(S(qEB)− θEqEB) + δ(S(qIB)− θIqIB)−
α

α + β
∆θqIA

s.t. qIB ≤
α

α + β
· γ + δ

γ
qIA

By observing the objective, we can deduce that we should increase qIB until the marginal
utility equals the marginal cost (i.e., S ′(qIB) = θI), which corresponds to the first-best pro-
duction level discussed earlier. However, due to the presence of the incentive compatibility
constraint, which is implicit by the existence of a feasible UE

B as assumed, this condition will
not be met. Therefore, we can safely assume that the remaining constraint is also binding,
as it places an upper bound on qIB. Hence, the resulting problem is to maximize:

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA) + γ(S(qEB)− θEqEB) + δ(S(qIB)− θIqIB)−
α

α + β
∆θqIA,
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where qIB = α
α+β
· γ+δ

γ
qIA.

Now, consider the case where IPC-B is binding. This implies that UE
A = α+β

α
· γ
γ+δ

∆θqIB ≥
∆θqIA. Consequently, the optimization problem transforms into:

max
q

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA)

+ γ(S(qEB)− θEqEB) + δ(S(qIB)− θIqIB)−
γ

γ + δ
∆θqIB

s.t. qIA ≤
α + β

α
· γ

γ + δ
qIB

Using a similar reasoning as in the previous case, we can assume that the constraint on qIA
is also binding. Hence, the resulting problem is to maximize:

α(S(qEA)− θEqEA) + β(S(qIA)− θIqIA) + γ(S(qEB)− θEqEB) + δ(S(qIB)− θIqIB)−
γ

γ + δ
∆θqIB,

where qIA = α+β
α
· γ
γ+δ

qIB. The important point to note is that this problem is equivalent to
the one derived when assuming IC-A is binding. Hence, irrespective of the assumed binding
constraint, we ultimately arrive at the same optimization problem.

Next, we assess the feasibility of UE
B by leveraging IPC-B. This leads to the following

implications:

UE
B ≥

α

α + β
UE
A +

δ

γ + δ
∆θqIB = ∆θqIB (IC-B*)

UE
B ≤

α

α + β
· γ + δ

γ
UE
A = ∆θqIB (PC-B*)

Hence, the feasible region defined collectively by IC-B* and PC-B* implies UE
B = ∆θqIB.

Since UE
A = α+β

α
· γ
γ+δ

∆θqIB and U I
A = 0, applying FC reveals that U I

B = 0. This explains why

the choice of assuming U I
A or U I

B to be zero, as stated in Proposition 9, is inconsequential.
Regardless of which one we select, it becomes evident that the optimal contract induces both
U I
A and U I

B to be zero.
Finally, the first-order optimality conditions yield:

qEA : S ′(qEA)− θE = 0

qIA : qIA = ρqIB

qEB : S ′(qEB)− θE = 0

qIB : ρ · β(S ′(ρqIB)− θI) + δ(S ′(qIB)− θI)−
γ

γ + δ
∆θ = 0

where ρ = α+β
α
· γ
γ+δ

.
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This theorem indicates that efficient agents from both groups will continue to produce at
their first-best levels (i.e., qEA = qEB = qE1 ), while inefficient agents will experience a downward
(or possibly upward) distortion based on their group affiliation. The reason behind this
can be understood by recalling that the incentive compatible contract involves a trade-off
between minimizing information rent and sacrificing overall efficiency. Introducing a fairness
constraint further complicates the problem. In the absence of fairness, if one group is more
efficient than the other, the more efficient group would receive a higher amount of information
rent as a whole. Therefore, in addition to the factors already considered, achieving optimal
balance in expected profit across different groups while minimizing efficiency loss (i.e., decline
in total production levels) becomes crucial. This relationship will be further explored in the
following corollary.

Corollary 1. Depending on the value of ρ, the optimal fair contract exhibits the following
characteristics:

• If ρ > 1, then qIA < qIB and UE
A < UE

B .

• If ρ < 1, then qIA > qIB and UE
A > UE

B .

• If ρ = 1, then qIA = qIB = qI2 and UE
A = UE

B = UE
2 .

where ρ = α+β
α
· γ
γ+δ

.

Proof. For ρ ̸= 1, the relationships qIA = ρqIB and UE
A = ρUE

B are straightforward. However,
when ρ = 1, further attention is required. The condition ρ = 1 implies α

α+β
= γ

γ+δ
, or

equivalently, β
α+β

= δ
γ+δ

. The value of qIB is determined by the equation (β + δ)(S ′(qIB) −
θI)− γ

γ+δ
∆θ = 0. Simplifying, we have:

S ′(qIB)− θI =
γ

(β + δ)(γ + δ)
∆θ

=
γ

β(γ + δ) + δ(γ + δ)
∆θ

=
γ

δ(α + β) + δ(γ + δ)
∆θ

=
γ

δ(α + β + γ + δ)
∆θ

=
γ

δ
∆θ,

which is identical to the equation for the second-best production level in the incentive com-
patible contract.

The corollary provides insights into the impact of the coefficient ρ, which quantifies the
disparity between the efficiency levels across the groups, on the optimal fair contract. In
cases where ρ ̸= 1, indicating the presence of a gap in group-wise efficiency levels, the optimal
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fair contract takes this into account. It achieves fairness by redistributing the profit through
assigning more production to the less efficient group. This allocation of resources empowers
them to obtain a greater share of the information rent.

When ρ = 1, it signifies that the groups are indistinguishable in terms of their collective
efficiency. In this case, the optimal fair contract coincides with the incentive compatible
contract. Consequently, inefficient agents from both groups will produce at their second-
best levels (i.e., qIA = qIB = qI2). This results in efficient agents from both groups receiving
the same information rents as in the incentive compatible contract (i.e., UE

A = UE
B = UE

2 ).
This contract ensures equal treatment for both groups, acknowledging their similar efficiency
levels and providing equitable outcomes.

In conclusion, to design contracts that align with our definition of fairness, which man-
dates equal expected profit for both groups, an optimal menu of contracts includes additional
assignments and payments to the less efficient group in order to compensate for the disparity
resulting from the implementation of the fairness constraint. Our interpretation is that by
using this particular definition of fairness to derive an optimal contract, we are supporting
the less efficient group, which may have limited resources or inadequate physical infrastruc-
ture compared to the more efficient group. This approach aims to subsidize the less efficient
group, leveling the playing field for all participants involved.

3.3 Moral Hazard

Now, let us consider another form of information asymmetry known as moral hazard. Re-
turning to the example of the sandwich restaurant, we previously discussed adverse selection
where the company lacks knowledge about the restaurant’s efficiency type. In moral hazard,
the focus shifts from efficiency types to unobservable effort levels chosen by the agents. In
this case, the restaurant has the ability to select either a high or low level of effort when
making sandwiches. The chosen effort level influences the production outcome in a prob-
abilistic manner. If the restaurant exerts a high level of effort, it increases the likelihood
of achieving a high production level. Conversely, if they exert low effort, the probability
of obtaining a low production level is higher. Importantly, the company’s payment to the
restaurant is based on the production level achieved, rather than the level of effort exerted.
This is because only the restaurant is privy to the information regarding their actual effort
exertion.

Mathematically, the agent decides on one of two effort levels: low (e = 0) or high (e = 1).
These efforts incur costs, ψ(e), where ψ(e = 0) = 0 and ψ(e = 1) = ψ. We model an
agent’s utility function, given payment t, as U = u(t) − ψ(e), where u(0) = 0, u′ > 0, and
u′′ < 0. Similarly, the principal’s valuation of goods produced q is represented by S(q),
with S(0) = 0, S ′ > 0, and S ′′ < 0. To account for information asymmetry, we introduce a
random production function, where an agent’s production level can be either low (q = qL)
or high (q = qH). The agent’s choice to exert high effort strictly increases the probability of
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high production, with the probabilities defined as:

P(q = qH | e = 0) = π0,

P(q = qH | e = 1) = π1 > π0.

Within this framework, the contract design problem entails the principal offering a menu of
contracts to the agent, each represented as (q, t), where q denotes the production level and
t the associated transfer payment. This menu of contracts allows the agent to choose the
most suitable option. The principal’s objective is to design an optimal menu of contracts
that maximizes their utility.

When the agent exerts low effort, the principal’s expected utility is expressed as:

π0(S(q
H)− tH) + (1− π0) · (S(qL)− tL).

Similarly, when the agent exerts high effort, the principal’s expected utility is given by:

π1(S(q
H)− tH) + (1− π1) · (S(qL)− tL).

To optimize this situation, we consider the concept of the first-best level of effort, assuming
that the principal can observe effort. To do this, the payments must ensure that the agent
does not anticipate negative utility, leading to the participation constraint :

π1u(t
H) + (1− π1)u(tL)− ψ ≥ 0.

In this case, the principal can enforce zero expected utility with tL = tH = t1, where
u(t1) = ψ. Next, we delve into the question of whether the principal can induce effort:

π1(S(q
H)− tH) + (1− π1) · (S(qL)− tL) ≥ π0 · S(qH) + (1− π0) · S(qL).

This equation compares the expected utility with payment and high effort (left-hand side)
against the expected utility with no payment and low effort (right-hand side). Rearranging
the terms reveals:

(π1 − π0)(S(qH)− S(qL)) ≥ π1t
H + (1− π1)tL.

Here, the left-hand side reflects the expected gain from exerting effort, while the right-hand
side indicates the first-best cost of inducing effort, that is, t1 = u−1(ψ).

Now, returning to the situation where the principal cannot verify effort, and with a risk-
neutral agent, we have U = u(t)−ψ(e) = t−ψ(e). To induce high effort, the principal seeks
to maximize:

max
tH ,tL

π1(S(q
H)− tH) + (1− π1)(S(qL)− tL) (3.32)

s.t. π1t
H + (1− π1)tL − ψ ≥ 0 (3.33)

π1t
H + (1− π1)tL − ψ ≥ π0t

H + (1− π0)tL (3.34)
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where the second constraint is the incentive compatibility constraint, ensuring that the agent
prefers to exert high effort. Upon solving this, if the principal intends to induce high effort,
the optimal payments can be determined as follows:

tH =
1− π0
π1 − π0

ψ, tL = − π0
π1 − π0

ψ.

The expected payment equals π1t
H + (1 − π1)t

L = ψ, aligning with the first-best cost of
inducing effort, making moral hazard less problematic for a risk-neutral agent.

We can further impose a limited liability constraint, tL ≥ −ℓ, where ℓ ≥ 0, to ensure
that transfers remain above a certain threshold. If ℓ > π0

π1−π0
ψ, the optimal payments remain

unchanged, as previously discussed. However, if ℓ ≤ π0

π1−π0
ψ, then the optimal payments are

revised to:

tH = −ℓ+ 1

π1 − π0
ψ, tL = −ℓ.

Consequently, the agent earns a limited liability rent of π1t
H+(1−π1)tL−ψ = −ℓ+ π0

π1−π0
ψ >

0, resulting in a higher cost of inducing effort.
In the context of this framework, we will formulate the principal-agent model with moral

hazard as follows:

maximize principal’s expected profit

subject to agent’s participation

agent’s incentive compatibility

agent’s limited liability

(+ contract fairness)

Similar to the previous model, our objective in this context is to design a contract that
achieves agent participation and motivates them to exert a high level of effort. However, we
also wish to address the fairness aspect to bridge the gap between the protected groups in
terms of their abilities, which may have originated from disparities in resources, infrastruc-
ture, or socioeconomic barriers.

In this particular model, we consider the existence of two groups of agents, where one
group has a higher probability of success, indicating a greater likelihood of attaining a high
production level compared to the other group.
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Fair Principal-Agent Model with Moral Hazard

Model 1

With a menu of contracts {(qH , tH), (qL, tL)}, the optimization problem is given by

max
tH ,tL

π1,A(S(q
H)− tH) + (1− π1,A)(S(qL)− tL)

+ π1,B(S(q
H)− tH) + (1− π1,B)(S(qL)− tL) (3.35)

s.t. π1,At
H + (1− π1,A)tL − ψ ≥ 0 (3.36)

π1,Bt
H + (1− π1,B)tL − ψ ≥ 0 (3.37)

π1,At
H + (1− π1,A)tL − ψ ≥ π0,At

H + (1− π0,A)tL (3.38)

π1,Bt
H + (1− π1,B)tL − ψ ≥ π0,Bt

H + (1− π0,B)tL (3.39)

tL ≥ −ℓ (3.40)

π1,At
H + (1− π1,A)tL − ψ = π1,Bt

H + (1− π1,B)tL − ψ (3.41)

where the probabilities are constrained within the range of 0 to 1, specifically 0 < π1,A, π1,B,
π0,A, π0,B < 1, and with the conditions that π1,A > π0,A and π1,B > π0,B (indicating that
an agent choosing to exert high effort strictly increases the probability of high production).
Additionally, we assume π1,A ̸= π1,B to introduce a distinction in the overall group-wise
productivity levels between the two groups, and ℓ ≥ 0 to guarantee that the agent’s transfer
always exceed a certain pre-determined level.

The following theorem presents a significant result demonstrating the infeasibility of the
above optimization problem, thus underscoring the impossibility of attaining an optimal fair
contract when contracts are solely based on production levels.

Theorem 5. If π1,A ̸= π1,B and ψ > 0, then there exists no feasible solution that satisfies
both incentive compatibility and fairness constraints.

Proof. Fairness constraint (3.41) implies that (π1,A − π1,B)tH = (π1,A − π1,B)tL, so we have
tH = tL. However, combined with incentive compatibility constraint (3.38), this implies that
tL − ψ ≥ tL, which means ψ ≤ 0. This is a contradiction since we had assumed ψ > 0.
Hence, fairness and incentive compatibility are not jointly feasible.

The conditions outlined in Theorem 5 are well-founded. The first condition posits that
there must be a discernible distinction in overall productivity levels between the two groups.
Without such differentiation, the groups would be indistinguishable, and there would be no
imperative to incorporate fairness into the contract design. The second condition ensures
that the cost associated with exerting high effort must be unequivocally positive. This factor
accounts for the reality that agents bear a cost commensurate with their effort level, which
is at the heart of the moral hazard issue stemming from the information asymmetry.

Similar to our findings in the context of adverse selection, a key observation arises: when
offering two contracts, each tailored to specific production levels, we encounter a fundamental
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challenge. In essence, if our contract design focuses solely on production levels, achieving our
definition of fairness across distinct groups becomes infeasible. An intriguing aspect to note is
that we cannot craft a fair optimal contract by considering production alone, especially when
disparities exist between groups, such as variations in their group-wise productivity. This
embodies the vital importance of inclusively considering protected groups when fashioning
incentive structures to uphold principles of fairness in our analysis.

Model 2

With {(qH , tHA ), (qL, tLA)} for A and {(qH , tHB ), (qL, tLB)} for B, the optimization problem is
given by

max
tH ,tL

π1,A(S(q
H)− tHA ) + (1− π1,A)(S(qL)− tLA)

+ π1,B(S(q
H)− tHB ) + (1− π1,B)(S(qL)− tLB) (3.42)

s.t. π1,At
H
A + (1− π1,A)tLA − ψ ≥ 0 (PC-A) (3.43)

π1,Bt
H
B + (1− π1,B)tLB − ψ ≥ 0 (PC-B) (3.44)

π1,At
H
A + (1− π1,A)tLA − ψ ≥ π0,At

H
A + (1− π0,A)tLA (IC-A) (3.45)

π1,Bt
H
B + (1− π1,B)tLB − ψ ≥ π0,Bt

H
B + (1− π0,B)tLB (IC-B) (3.46)

tLA ≥ −ℓ (LC-A) (3.47)

tLB ≥ −ℓ (LC-B) (3.48)

π1,At
H
A + (1− π1,A)tLA − ψ = π1,Bt

H
B + (1− π1,B)tLB − ψ (FC) (3.49)

Here, the acronyms represent the following constraints: PC for participation constraints,
IC for moral hazard incentive compatibility constraints, LC for limited liability constraints
for each group, and FC for the fairness constraint.

Similar to our approach in addressing adverse selection, a primary challenge in solving
this problem lies in identifying the constraints imposed by participation and limited liability
that are binding at the optimal solution. Due to the multitude of constraints, our strat-
egy involves first hypothesizing the active constraints and subsequently verifying that the
disregarded constraints indeed hold strictly. This method proves advantageous in both solv-
ing the optimization problem and enhancing our comprehension of the underlying economic
rationale within the context of our model.

To simplify the problem, we identify redundant constraints and eliminate the equality
constraint by integrating it into the objective function and the inequality constraints, ex-
pressing them in terms of tHA and tLA. This approach allows us to initially postulate the active
constraints, with subsequent verification that the omitted constraints remain satisfied.

We can easily observe that the participation constraint for group A (3.43) and the fairness
constraint (3.49), when combined, inherently imply the participation constraint for group B
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(3.44). We then incorporate the fairness constraint (3.49) into the objective (3.42) as follows:

max (3.42) = max −(π1,AtHA + (1− π1,A)tLA + π1,Bt
H
B + (1− π1,B)tLB)

= min π1,At
H
A + (1− π1,A)tLA + π1,Bt

H
B + (1− π1,B)tLB

= min 2(π1,At
H
A + (1− π1,A)tLA)

= min π1,At
H
A + (1− π1,A)tLA.

Likewise, we can incorporate the fairness constraint (3.49) into the incentive compatibility
constraint for group B (3.46). This reformulates the optimization problem using only tHA and
tLA, making it independent of tHB and tLB, and can be expressed concisely as follows:

min
tHA ,tLA

π1,At
H
A + (1− π1,A)tLA (3.50)

s.t. π1,At
H
A + (1− π1,A)tLA − ψ ≥ 0 (PC-A) (3.51)

π1,At
H
A + (1− π1,A)tLA − ψ ≥ π0,At

H
A + (1− π0,A)tLA (IC-A) (3.52)

tLA ≥ −ℓ (LC-A) (3.53)

Now, we can proceed to solve the simplified problem for group A. However, it is essential
to verify that the omitted constraints, namely (PC-B), (IC-B), and (LC-B), are satisfied
when identifying a feasible solution for group B. We will present the following theorem
characterizing the optimal fair contract.

Theorem 6. If we choose to offer four contracts, one for each combination of production
and group, an optimal solution exists and follows a specific structure outlined as follows:

• If ℓ > τA, then

tHA =
1− π0,A
π1,A − π0,A

ψ, tLA = −τA

tHB =
1− π0,B
π1,B − π0,B

ψ, tLB = −τB

• If τB ≤ ℓ ≤ τA, then

tHA = −ℓ+ 1

π1,A − π0,A
ψ, tLA = −ℓ

tHB = −ℓ+ π0,A/π0,B
π1,A − π0,A

ψ, tLB = −ℓ

• If 0 ≤ ℓ < τB, then

tHA = −ℓ+ 1

π1,A − π0,A
ψ, tLA = −ℓ

tHB = −ℓ+
(

1

π1,A − π0,A
+
π1,A
π1,B

(τA − τB)
)
ψ, tLB = −ℓ+ (τA − τB)ψ
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where τA =
π0,A

π1,A−π0,A
ψ and τB =

π0,B

π1,B−π0,B
ψ.

Proof. To solve this problem, we will begin by introducing two key constants: τA and τB,
defined as follows: τA =

π0,A

π1,A−π0,A
ψ and τB =

π0,B

π1,B−π0,B
ψ. These constants represent threshold

values that determine when agents become protected by the limited liability clause. They
are essential for considering scenarios where either group A, group B, or both, are subject to
limited liability constraints. For the purpose of this proof, we will make the assumption that
τA ≥ τB. It is important to note that a parallel proof can be formulated for the opposite
direction. We will now analyze the problem by exploring three distinct cases: (i) ℓ > τA, (ii)
τB ≤ ℓ ≤ τA, and (iii) 0 ≤ ℓ < τB.

Firstly, if ℓ > τA, the problem effectively reduces to solving it in the absence of lim-
ited liability constraints, and the optimal solution aligns with the first-best contract. This
outcome arises because the value of ℓ exceeds the thresholds at which limited liability con-
straints provide meaningful protection. In simpler terms, since ℓ > τA and ℓ > τB, this
implies that agents fare better by receiving either τA or τB instead of ℓ. Furthermore, the
fairness constraint is automatically met in this specific scenario, as agents from both groups
anticipate zero profit.

Secondly, when τB ≤ ℓ ≤ τA, the limited liability constraint becomes active. In this
scenario, the optimal solution for group A is equivalent to the second-best contract. Now,
the challenge lies in identifying a feasible solution for group B that adheres to the omitted
constraints. An optimal contract for group B is jointly determined by

π1,Bt
H
B + (1− π1,B)tLB − ψ ≥ π0,Bt

H
B + (1− π0,B)tLB (IC-B)

tLB ≥ −ℓ (LC-B)

π1,Bt
H
B + (1− π1,B)tLB − ψ = π1,At

H
A + (1− π1,A)tLA − ψ = −ℓ+ π0,A

π1,A − π0,A
ψ (FC)

If we let both (IC-B) and (LC-B) be binding, then tLB = −ℓ, and the problem becomes

π0,Bt
H
B − (1− π0,B)ℓ = −ℓ+

π0,A
π1,A − π0,A

ψ.

Solving for tHB yields

tHB = −ℓ+ π0,A/π0,B
π1,A − π0,A

ψ.

Finally, if 0 ≤ ℓ < τB, the limited liability constraint becomes applicable to both groups.
As a result, the optimal solution for group A aligns with the second-best contract. Now,
the task at hand is to identify a feasible solution for group B that fulfills the unconsidered
constraints. In this scenario, it also involves finding an optimal balance between group A
and group B, as both are governed by limited liability constraints, and the fairness constraint
dictates that they should have the same expected profit. An optimal contract for group B
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is jointly established by

π1,Bt
H
B + (1− π1,B)tLB − ψ ≥ π0,Bt

H
B + (1− π0,B)tLB (IC-B)

tLB ≥ −ℓ (LC-B)

π1,Bt
H
B + (1− π1,B)tLB − ψ = −ℓ+ π0,A

π1,A − π0,A
ψ (FC)

If we assume (IC-B) to be binding, then we have the following system of equations:

π1,Bt
H
B + (1− π1,B)tLB − ψ = −ℓ+ π0,A

π1,A − π0,A
ψ

π0,Bt
H
B + (1− π0,B)tLB = −ℓ+ π0,A

π1,A − π0,A
ψ

Solving for tHB and tLB yields

tHB = −ℓ+
(

1

π1,A − π0,A
+
π1,A
π1,B

(τA − τB)
)
ψ, tLB = −ℓ+ (τA − τB)ψ.

where (LC-B) is satisfied because tLB = −ℓ+(τA−τB)ψ ≥ −ℓ since we had assumed τA ≥ τB
and ψ > 0.

In an intuitive sense, these regions can be understood as follows:

• ℓ > τA: In this scenario, the limited liability constraints are essentially irrelevant, and
the principal can enforce a contract that results in zero expected profit, irrespective of
production levels and group membership.

• τB ≤ ℓ ≤ τA: This case is particularly interesting. Without the fairness constraint, it
would lead to an outcome where group A is covered by limited liability, while group
B is not. In other words, an optimal contract would leave zero profit for group B,
whereas group A expects strictly positive profit due to their coverage by the limited
liability clause. However, the presence of the fairness constraint complicates matters.
To achieve a fair contract, a delicate balance must be struck between the information
rent the principal would originally have paid and the allocation of this rent to the group
that would not have received it had fairness not been a consideration. Moreover, the
value of tHB is determined in such a way that it offers higher compensation to groups
with a lower probability of success under this contract. It becomes evident as follows:
tHB > tHA when π0,A > π0,B, and conversely, tHA > tHB when π0,A < π0,B. This essentially
translates into providing support or a subsidy to the group characterized by lower
overall productivity and, consequently, a reduced chance of success.

• 0 ≤ ℓ < τB: This represents a situation where the limited liability constraints apply
to both group A and group B. Under these constraints, both groups are protected,
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ensuring that agents receive strictly positive expected profits. This scenario holds a
particular interest, as it demands the simultaneous fulfillment of both fairness and
limited liability constraints, necessitating the precise determination of supplementary
compensation for agents within group B. Specifically, for tHB , this additional payment
amounts to

π1,A

π1,B
(τA − τB)ψ. This term hinges on the interplay between π1,A and π1,B,

reflecting that the extra compensation is intricately calibrated based on the genuine
disparity between these two groups. In essence, the greater the gap in their probabilities
of achieving high production levels, the larger this supplementary payment becomes.
This can also be construed as a form of financial support extended to the group with
a lower probability of attaining high production.

We would like to briefly discuss the implications of the assumption made in this proof. It
was assumed that τA ≥ τB, but it can be demonstrated in a similar manner for the reverse
direction. In practical applications, we can always designate the group with the higher
threshold as group A and the other as group B. Upon closer examination of these thresholds,
the numerator represents the probability of success when low effort is exerted, while the
denominator reflects the difference between the probabilities of success when high and low
effort is applied. It is numerically possible for these threshold values to be equal, even when
one group, say group A, has a significantly higher chance of success than the other, group
B. For instance, we might have τA = τB = 1 when π1,A = 2π0,A = 2π1,B = 4π0,B. However,
it is more reasonable to assert that τA ≥ τB for two key reasons. First, the numerator will
be larger for group A because group A has a higher probability of success when they choose
not to exert high effort, i.e., π0,A ≥ π0,B. Furthermore, the denominator will be smaller
for group A. In real-world scenarios, the difference between the probabilities for different
levels of effort is often relatively minimal for group A, whereas it may be substantial for
group B. This could be attributed to factors such as group B’s relative lack of resources or
infrastructure, which could disproportionately affect their probabilities of success.

To sum up, by adopting a menu of contracts specifically tailored to each group and po-
tential outcome, we can paradoxically create a contract that is agnostic to group membership
in terms of the expected profit agents derive from participating in the incentive scheme. If
we disregard the fairness constraint and optimize the problem separately for each group, we
would generate a set of contracts that favor the group with a higher likelihood of achieving a
high production level. This approach could perpetuate and potentially exacerbate the exist-
ing disparities between the two groups. Therefore, our objective is to devise a contract that
is independent of group membership, ensuring that agents from both groups attain the same
expected profit regardless of their group affiliation. To achieve this, we propose the idea of
an additional payment, which can be seen as aid or subsidy provided to the less privileged
group with a lower probability of success. This additional payment serves as an investment
to narrow the gap between the groups in the future, promoting fairness as defined in our
model.
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Example: Fair Incentives for Green Retrofitting

The buildings sector accounts for approximately 76% of electricity and 40% of total energy
consumption, along with associated greenhouse gas emissions, in the U.S. [85]. According to
the UN Environment Programme [87], over 80% of a building’s energy consumption occurs
during the occupancy operation stage, rather than the construction stage. To mitigate the
environmental and economic costs of existing buildings, governments increasingly promote
green (i.e., low-carbon) retrofitting projects through financial incentive mechanisms [12, 48].

A crucial aspect of green retrofitting involves the installation of solar panels to harness
renewable energy technologies. The design of solar retrofitting projects comprises a principal-
agent problem between the government (i.e., principal) and building owners (i.e., agents).
Various alternatives for solar panels (e.g., monocrystalline, polycrystalline, etc.) come with
differing energy efficiency levels and price points. Building owners decide on the type of
solar panels for their roofs primarily based on government incentives. However, a significant
challenge arises because many private building owners lack enthusiasm for adopting energy-
conscious behaviors [77, 81, 48, 68]. As a result, governments often encounter a moral
hazard problem when designing incentive policies, as they remain uninformed about the
owners’ efforts in selecting more efficient panels. The level of effort exerted by owners
directly influences the cost savings and energy efficiency achieved through solar retrofitting.

In addition to the building owner’s effort level, the effectiveness of government incentive
policies is significantly influenced by the socioeconomic barriers in the property market in
which the building is situated—whether it falls within a low-income or high-income region.
Research indicates that current governmental incentives have deterred building owners in
low-income regions from engaging in retrofitting [1, 74, 93, 42]. Recognizing these disparities,
our analytical results highlight the need to devise new subsidy structures. The fair incentive
policies proposed in this study aim to bridge the gap in retrofitting subsidies between the two
income groups. These policies not only tackle the socioeconomic barriers but also encourage
greater participation in green retrofitting projects, thereby advancing the broader goals of
environmental sustainability and equitable development.

3.4 Conclusion

In the realm of incentive design, principal-agent models have long been a cornerstone for
ensuring efficient outcomes. Traditionally, the primary focus has been on aligning inter-
ests, mitigating risks associated with adverse selection, and overcoming challenges related to
moral hazard. However, a glaring oversight in this framework has been the omission of fair-
ness considerations, potentially leading to detrimental consequences for certain demographic
groups, especially when viewed through the lenses of race, gender, or other defining charac-
teristics. The repercussions of such oversight are manifold, ranging from societal inequalities
to a pervasive sense of inequity. It prompted us to question not only the efficiency of these
incentive structures but also their ethical underpinnings. Through this work, we delved into
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the core of these concerns by addressing two fundamental dimensions: (i) discerning what is
feasible and optimal, and (ii) unraveling what is fair and equitable, particularly in the milieu
of contract design. In doing so, we sought to illuminate the path towards a more inclusive
and just framework for incentive design by introducing fairness into optimization problems
and elucidating the profound implications of this integration.
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Chapter 4

Optimally Designing Cybersecurity
Insurance Contracts to Encourage the
Sharing of Medical Data

4.1 Introduction

The rapid development of new artificial intelligence algorithms for health care has the po-
tential to lead to an era of computational precision health [72, 43, 55, 96, 60, 2, 33]. The
development of these algorithms requires access to large sets of medical data. Nonetheless,
the sharing of such medical data poses risks to patients due to the possible loss in privacy or
livelihood that can occur when medical data is stolen or used in non-permitted ways. New
ideas for the cybersecurity of medical data are needed to ensure that these new advances
can continue to be developed.

Privacy Risks from Sharing Medical Data

A unique aspect of medical data is that even when it has been anonymized/deidentified
[82, 49, 47, 20] (in accordance with legislation like HIPAA [86] or GDPR [21]) prior to
sharing, the data can often be deanonymized/reidentified [59, 62, 19, 63]. Examples include
deanonymization of a Massachusetts hospital database by joining it with a public voter
database [83] and reidentification of a physical activity data set from the National Health
and Nutrition Examination Survey (NHANES) using standard machine learning [56].

In addition, a recent study has revealed that more than two-thirds of hospital data
breaches include sensitive demographic and financial information that could lead not only to
fraud and identity theft but also to discrimination and violation of fundamental rights [34].
This highlights the necessity of developing approaches to safeguard patients and health care
providers against cybersecurity threats.
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Cybersecurity of Medical Data

The above described privacy risks deter health care providers from sharing their data [90, 66].
One possible approach to mitigating some of the risks with sharing health data is through
the design of cybersecurity insurance contracts. For instance, cybersecurity insurance can
be used to partially compensate for the costs involved with recovery from a cyber-related
security breach or similar incidents [51].

A growing literature studies cybersecurity insurance. For instance, [40, 61, 9] focus on the
interdependent security problem to verify whether firms have adequate incentives to invest in
protection against a risk whose magnitude depends on the action of others. The work in [6,
7] introduces new models and measures for the correlation of cyber-risks within and across
independent firms, while [79] investigates the issue of information asymmetries, namely in
the form of moral hazard, when cyber-insurers cannot observe individual user security levels.
The studies [8, 76] provide a unifying framework to address the aforementioned hurdles that
complicate risk management via cyber-insurance.

Contributions and Outline

In this chapter, we study the problem of incorporating cybersecurity insurance, which has
been mainly explored in the setting of interdependent and correlated networks, into the
design of contracts that govern the sharing of medical data. Such contracts would not
only protect health care providers against losses resulting from a cyber-attack, but have the
potential to foster the sharing of medical data.

In Section 4.2, we analyze the scenario in which a health care provider sells medical data
to a technology firm that uses the data to develop new artificial intelligence algorithms.
We provide mathematical models for both parties, formulate a contract design problem in
the setting of a principal-agent model with moral hazard [41], derive the optimal contract,
and discuss insights gained from the optimal contract. In Section 4.3, we analyze a second
scenario in which a group of health care providers forms a consortium to share medical data
with each other for the purpose of conducting scientific research and improving patient care.
Again, we provide a mathematical model for the health care providers, formulate a contract
design problem, derive the optimal contract, and discuss insights gained from the optimal
contract.

4.2 Scenario A: Health Care Provider Selling Medical

Data to Technology Firm

The first scenario we study is that of a health care provider selling medical data to a tech-
nology firm that is developing artificial inteligence algorithms using the shared data. Here,
an important consideration to the health care provider is the quality of cybersecurity that
the technology firm uses to protect any medical data they receive. If the firm suffers from a
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data breach, then the health care provider itself will face liability from those patients whose
medical data has been breached. Thus, the health care provider will want to structure their
contract with the firm in such a way that the firm is incentivized to invest in the cybersecurity
of the medical data.

In this scenario that we consider, the health care provider has two options available to
mitigate the liability risks associated with a data breach. The first is that the health care
provider is able to impose a fine or penalty on the firm if the technology firm suffers from a
data breach. If this fine or penalty is sufficiently large, it can incentivize the firm to invest
in cybersecurity that protects the data. This fine or penalty is in addition to the fee that
the firm is charged in return for access to the medical data. The second is that the health
care provider is able to purchase cybersecurity insurance from an external insurance agency.

Technology Firm Model

The financial value to the technology firm of the shared medical data is V . This financial
value is derived from the firm’s ability to use the data to develop new artificial intelligence
algorithms for health care, which can be sold to various health care providers. To get this
data, the firm must pay the quantity ϕ to the health care provider. The technology firm is
responsible for securing the data they receive. If the firm suffers from a data breach, they
are required by the contract to pay a fine or penalty t to the health care provider.

The technology firm chooses an investment level i in cybersecurity that protects the data.
The firm chooses between a high (i = 1) or low (i = 0) level of investment. If the firm chooses
high investment, then the probability of a breach is α ∈ (0, 1), and the firm spends ψ for
this investment level. If the firm chooses low investment, then the probability of a breach is
γ ∈ (0, 1), and (without loss of generality) the firm has zero expenditure for this investment
level. We assume that α < γ, meaning that a high level of investment strictly lowers the
probability of a data breach. We assume that the technology firm chooses their investment
level by maximizing their expected profit:

i∗(ϕ, t) = argmax
i∈{0,1}

(1− i) · F l(ϕ, t) + i · F h(ϕ, t), (4.1)

where expected profit under a low level of investment is

F l(ϕ, t) = V − ϕ− γ · t, (4.2)

and the expected profit under a high level of investment is

F h(ϕ, t) = V − ϕ− ψ − α · t. (4.3)

Note that the technology firm is risk neutral in this model.
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Health Care Provider Model

The financial value to the health care provider of their own medical data isW . This financial
value is derived from the provider’s ability to use the data to self-improve the quality of its
health care services through improved patient treatment and care delivery processes, as well
as through medical research. If the technology firm suffers a data breach, then the health
care provider has to spend L to address its various liabilities to the affected patients. Since
t is a fine or penalty on the firm in the event of a breach, we assume t ≤ L. Having t > L is
unrealistic because it would mean the healthcare provider profits from a data breach at the
firm.

Furthermore, the health care provider can choose to purchase a policy to insure against
their liabilities in the event of a breach. Under the assumption of an actuarially fair policy
[76], which would be expected to occur when there are a large number of insurers in the
insurance marketplace, the health care provider can purchase an insurance policy that pays
out Lc under the event of a data breach at the cost of pLc, where p is the probability of a
data breach.

Finally, we assume the health care provider is risk averse. This means that if the health
care provider earns a financial revenue of x, then their utility for that revenue is U(x) for a
function U(·) that is strictly increasing and concave. Under the additional assumption that
U(·) is differentiable, this risk aversion assumption means that U ′(·) > 0 and U ′′(·) < 0.

Contract Design Problem

In this scenario, the health care provider faces a contract design problem in which their goal
is to pick the purchase price ϕ, the value of the fine or penalty t, and the insurance policy
payout Lc so as to maximize their own expected utility. This contract design problem can
be written as the following bilevel program:

max
ϕ,t,Lc

(1− i∗(ϕ, t)) ·H l(ϕ, t, Lc) + i∗(ϕ, t) ·Hh(ϕ, t, Lc)

s.t. i∗(ϕ, t) = arg max
i∈{0,1}

(1− i) · F l(ϕ, t) + i · F h(ϕ, t)

(1− i∗(ϕ, t)) · F l(ϕ, t) + i∗(ϕ, t) · F h(ϕ, t) ≥ 0

ϕ ≥ 0, t ∈ [0, L], Lc ≥ 0

(4.4)

where we note that the health care provider’s expected utility when the technology firm has
a low level of investment in cybersecurity of the health data is given by

H l(ϕ, t, Lc) = γ · U(W + ϕ− γ · Lc − L+ t+ Lc) + (1− γ) · U(W + ϕ− γ · Lc), (4.5)

the health care provider’s expected utility when the technology firm has a high level of
investment is

Hh(ϕ, t, Lc) = α · U(W + ϕ− α · Lc − L+ t+ Lc) + (1− α) · U(W + ϕ− α · Lc), (4.6)
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and the second constraint in (4.4) is a participation constraint that ensures the purchase cost
ϕ and fine or penalty t are such that the technology firm does not expect to lose money.

Optimal Contract

We next proceed to solve the contract design problem (4.4) through a series of steps. Let
ϕ∗, t∗, L∗

c denote the optimal contract, meaning they maximize the objective function of (4.4).
We first characterize the optimal insurance coverage pay out.

Proposition 10. We have that L∗
c = L− t∗.

Proof. We first consider the case where i∗(ϕ∗, t∗) = 0. In this case, the objective function of
(4.4) is H l(ϕ, t, Lc), and the second constraint in (4.4) is F l(ϕ, t) ≥ 0. Next, note that the
first-order stationarity condition is

0 = ∂LcH
l(ϕ, t, Lc) = γ · (1− γ) · U ′(W + ϕ− γ · Lc − L+ t+ Lc)

− γ · (1− γ) · U ′(W + ϕ− γ · Lc). (4.7)

Since we assumed that U ′′(·) < 0, this means the above is satisfied when W + ϕ − γ · Lc −
L+ t+Lc = W +ϕ−γ ·Lc. Hence at optimality we have L∗

c = L− t∗, which is feasible since
t∗ < L implies L∗

c ≥ 0. The proof for the case i∗(ϕ∗, t∗) = 1 proceeds almost identically.

The implication of the above result is that we can rewrite the contract design problem as

max
ϕ,t

(1− i∗(ϕ, t)) ·H l(ϕ, t) + i∗(ϕ, t) ·Hh(ϕ, t)

s.t. i∗(ϕ, t) = argmax
i∈{0,1}

(1− i) · F l(ϕ, t) + i · F h(ϕ, t)

(1− i∗(ϕ, t)) · F l(ϕ, t) + i∗(ϕ, t) · F h(ϕ, t) ≥ 0

ϕ ≥ 0, t ∈ [0, L]

(4.8)

where

H l(ϕ, t) := H l(ϕ, t, L− t) = U(W + ϕ− γ · (L− t)), (4.9)

Hh(ϕ, t) := Hh(ϕ, t, L− t) = U(W + ϕ− α · (L− t)). (4.10)

We next use the above reformulation to characterize the optimal purchase price and fine or
penalty amount.

Proposition 11. If i∗(ϕ∗, t∗) = 0, then an optimal choice solves the optimization problem

max
ϕ,t

ϕ+ γ · t

s.t. ϕ+ γ · t ≤ V

(γ − α) · t < ψ

ϕ ≥ 0, t ∈ [0, L]

(4.11)
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If i∗(ϕ∗, t∗) = 1, then an optimal choice solves the optimization problem

max
ϕ,t

ϕ+ α · t

s.t. ϕ+ α · t ≤ V − ψ
(γ − α) · t ≥ ψ

ϕ ≥ 0, t ∈ [0, L]

(4.12)

Proof. We first consider the case where i∗(ϕ∗, t∗) = 0. In this case, we have that F l(ϕ, t) >
F h(ϕ, t) (which is equivalent to ψ > (γ − α) · t), that the second constraint of (4.8) is

F l(ϕ, t) = V − ϕ− γ · t ≥ 0, (4.13)

(which is equivalent to ϕ + γ · t ≤ V ), and that the objective function of (4.8) is H l(ϕ, t).
Since U ′(·) > 0, this means H l(ϕ, t) is strictly increasing in ϕ+ γ · t. The above observations
imply that (4.11) provides an optimal choice. The proof for the case i∗(ϕ∗, t∗) = 1 is nearly
identical.

We conclude by using the above characterization to finish deriving an optimal contract
for this scenario.

Theorem 7. If ψ > (γ−α) ·L or ψ > (γ−α) ·V/γ, then an optimal contract is (ϕ∗, t∗, L∗
c) =

(V, 0, L). If ψ ≤ (γ−α) ·L and ψ ≤ (γ−α) · V/γ, then an optimal contract is (ϕ∗, t∗, L∗
c) =

(V − γ/(γ − α)ψ, ψ/(γ − α), L− ψ/(γ − α)).

Proof. If ψ > (γ − α) · L, then this means W + V − γ · L > W + V − ψ − α · L, which
implies H l > Hh since U ′(·) > 0. Hence, the optimal choice is i∗(ϕ, t) = 0. This means
the choice t∗ = 0 and ϕ∗ = V is optimal by Proposition 11. If ψ > (γ − α) · V/γ, then
(4.12) is infeasible. This means applying Proposition 11 tells us that the optimal choice is
i∗(ϕ, t) = 0, and that we can again choose t∗ = 0 and ϕ∗ = V . Finally, if ψ ≤ (γ − α) · L
and ψ ≤ (γ − α) · V/γ, then this means W + V − γ · L ≤ W + V − ψ − α · L, which implies
H l ≤ Hh since U ′(·) > 0. Moreover, the condition ψ ≤ (γ − α) · V/γ implies that (4.12) is
feasible. This means the choice t∗ = ψ/(γ−α) (and note t∗ ≤ L since ψ/(γ−α) ≤ L in this
case) and ϕ∗ = V −ψ−α/(γ−α)ψ = V − γ/(γ−α)ψ provides an optimal contract for this
case.

Insights from the Optimal Contract

Several insights can be gained from the optimal contract in Theorem 7. The most interesting
insights are related to the conditions that result in a contract where the technology firm
makes a high or low investment in cybersecurity:

When ψ > (γ −α) ·L or ψ > (γ −α) · V/γ, the optimal contract leads to the technology
firm making a low investment in cybersecurity. If ψ > (γ−α)·V/γ, then a high investment ψ
by the technology firm in cybersecurity is relatively costly compared to the financial value V
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to the technology firm of the medical data, and the technology firm will not want to make a
high investment in cybersecurity. If ψ > (γ−α)·L, then this means that a high investment ψ
by the technology firm in cybersecurity is relatively costly compared to the liability L of the
health care provider in the event of a data breach. It is surprising that the optimal contract
when ψ > (γ − α) · L holds also leads to the technology firm making a low investment in
cybersecurity.

Another interesting aspect of the optimal contract when ψ > (γ−α)·L or ψ > (γ−α)·V/γ
is that the optimal contract is such that there is no penalty or fine t∗ = 0 to the technology
firm in the event of a data breach. In this case, it is instead optimal to charge as much as
possible for the data, meaning it is optimal to charge ϕ∗ = V .

On the other hand, the optimal contract induces the technology firm to invest in cy-
bersecurity only when ψ ≤ (γ − α) · L and ψ ≤ (γ − α) · V/γ. A numerical example of
these thresholds are shown in Fig. 4.1. Here, a high investment ψ by the technology firm in
cybersecurity is relatively cheap compared to the financial value V to the technology firm of
the medical data and relatively small compared to the liability L of the health care provider
in the event of a data breach.
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Figure 4.1: This plot shows the expected utility from an optimal contract as a function of
ψ. We can observe that there exists a threshold beyond which the cost of investment is
relatively high compared to either the financial value of the medical data or the liability in
the event of a data breach, and thus it is optimal to induce i∗ = 0 if ψ is above this threshold
value.
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4.3 Scenario B: Consortium of Health Care Providers

Sharing Data

The second scenario we study is that of a group of health care providers sharing medical data
amongst themselves. We assume that the cybersecurity level of each health care provider is
fixed, and that all health care providers have identical models. Here, the primary consid-
eration is each health care provider’s decision of whether or not to join the consortium. If
any single health care provider in the consortium suffers from a data breach, then all the
health care providers in the consortium will face liability from those patients whose medical
data has been breached. Thus, the health care providers must decide whether any benefits
accrued from being in the consortium outweigh the increased risks of data breach due to
sharing medical data.

In this scenario that we consider, each health care provider has two options available to
mitigate the liability risks associated with a data breach. The first is that consortium can
impose a fine or penalty on the health care provider that suffers from a data breach, which is
equally shared by the remaining health care providers. The second is that each health care
provider is able to purchase cybersecurity insurance from an external insurance agency.

Health Care Provider Model

The financial value to a health care provider of their own medical data is W , and the
financial value to a health care provider of the medical data from a consortium of k health
care providers is v(k) · W , where the function v(·) > 0 is strictly increasing and concave
with v(1) = 1. This financial value is derived from the provider’s ability to use the data to
self-improve its health care services through improved patient treatment and care delivery
processes, as well as through medical research. This model says that more quantity of data
gives more financial value, but that there are diminishing financial returns to increasing
quantities of data.

If any consortium member suffers a data breach, then each health care provider in the
consortium has to spend L to address its various liabilities to the affected patients. The
probability of a data breach among k health care providers is given by p(k) ∈ (0, 1). We
assume that this function p(·) is concave and increases with a sublinear growth rate such
that p(k) < k · p(1). Furthermore, the health care provider responsible for the data breach
is required to pay a fine or penalty of (k − 1) · t that is equally divided among the (k − 1)
remaining health care providers, where we assume t ≤ L. Having t > L is unrealistic because
it would mean a healthcare provider profits from a data breach elsewhere.

Each health care provider can choose to purchase a policy to insure against their liabilities
in the event of a breach. Under the assumption of an actuarially fair policy [76], each health
care provider can purchase an insurance policy that pays out Lc under the event of a data
breach at the cost of pLc, where p is the probability of a data breach.

Finally, we assume each health care provider is risk averse. This means that if a health
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care provider earns a financial revenue of x, then their utility for that revenue is U(x) for a
function U(·) that is strictly increasing and concave. Under the additional assumption that
U(·) is differentiable, this assumption of risk aversion means that U ′(·) > 0 and U ′′(·) < 0.

Contract Design Problem

In this scenario, the consortium faces a contract design problem in which their goal is to pick
the value of the fine or penalty t and the insurance policy payout Lc so as to encourage par-
ticipation in the consortium and thus motivate data sharing. This contract design problem
can be written as the following:

max
s,t,Lc

(1− s) ·H1(Lc) + s ·Hk(t, Lc)

s.t. s ∈ {0, 1}, t ∈ [0, L], Lc ≥ 0
(4.14)

where we note that a health care provider’s expected utility when they do not participate in
the consortium is given by

H1(Lc) = p(1) · U(W − p(1) · Lc − L+ Lc) + (1− p(1)) · U(W − p(1) · Lc), (4.15)

and a health care provider’s expected utility when they do participate in the consortium is
given by

Hk(t, Lc) = p(1) · U(v(k) ·W − p(k) · Lc − L− (k − 1) · t+ Lc)

+ (p(k)− p(1)) · U(v(k) ·W − p(k) · Lc − L+ t+ Lc)

+ (1− p(k)) · U(v(k) ·W − p(k) · Lc). (4.16)

Optimal Contract

We next proceed to solve the contract design problem (4.14) through a series of steps. Let
s∗, t∗, L∗

c denote the optimal contract, meaning they maximize (4.14). We first characterize
the optimal fine or penalty amount.

Proposition 12. We have that t∗ = 0.

Proof. If s∗ = 0, then the objective function of (4.14) is H1(Lc). This means the objective
function value does not depend on t, and so any feasible t is optimal. Hence, we can pick
t∗ = 0 in this case. If s∗ = 1, then the objective function of (4.14) is Hk(t, Lc). Now, consider
the partial derivative with respect to t:

∂tH
k(t, Lc) = −(k − 1) · p(1) · U ′(v(k) ·W − p(k) · Lc − L− (k − 1) · t+ Lc)

+ (p(k)− p(1)) · U ′(v(k) ·W − p(k) · Lc − L+ t+ Lc). (4.17)

Since we assumed that U ′′(·) < 0, this means U ′(v(k) ·W − p(k) ·Lc−L− (k− 1) · t+Lc) >
U ′(v(k) ·W − p(k) · Lc − L + t + Lc) since v(k) ·W − p(k) · Lc − L − (k − 1) · t + Lc <
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v(k) ·W − p(k) · Lc − L + t + Lc. Recalling that p(k) > p(1) and U ′(·) > 0 by assumption,
we thus have

∂tH
k(t, Lc) ≤

[
− (k − 1) · p(1) + (p(k)− p(1))

]
× U ′(v(k) ·W − p(k) · Lc − L− (k − 1) · t+ Lc). (4.18)

Since we assumed that p(k) < k · p(1) and U ′(·) > 0, this means ∂tH
k(t, Lc) < 0. Thus

choosing t∗ = 0 is optimal because we are constrained in (4.14) to choose t ∈ [0, 1].

The implication of the above result is that we can rewrite the contract design problem as

max
s,Lc

(1− s) ·H1(Lc) + s ·Hk(Lc)

s.t. s ∈ {0, 1}, Lc ≥ 0
(4.19)

where H1(·) is as defined in (4.15), and

Hk(Lc) := Hk(0, Lc) = p(k) · U(v(k) ·W − p(k) · Lc − L+ Lc)

+ (1− p(k)) · U(v(k) ·W − p(k) · Lc). (4.20)

We next use the above reformulation to characterize the optimal insurance coverage payout.

Proposition 13. We have that L∗
c = L.

Proof. If s∗ = 0, then the objective function of (4.19) is H1(Lc). Next, note the first-order
stationarity condition is

0 = ∂LcH
1(Lc) = p(1) · (1− p(1)) · U ′(W − p(1) · Lc − L+ Lc)

− p(1) · (1− p(1)) · U ′(W − p(1) · Lc). (4.21)

Since we assumed that U ′′(·) < 0, this means the above is satisfied when W − p(1) · Lc −
L+ Lc = W − p(1) · Lc. Hence at optimality we have L∗

c = L, which is feasible since L > 0
implies L∗

c ≥ 0. The proof for the case s∗ = 1 proceeds almost identically.

The implication of the above result is that we can rewrite the contract design problem as

max
s∈{0,1}

(1− s) ·H1 + s ·Hk, (4.22)

where

H1 := H1(L) = U(W − p(1) · L), (4.23)

Hk := Hk(L) = U(v(k) ·W − p(k) · L). (4.24)

We conclude by using the above characterization to finish deriving an optimal contract for
this scenario.
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Theorem 8. If W − p(1) · L > v(k) ·W − p(k) · L, then an optimal contract is given by
(s∗, t∗, L∗

c) = (0, 0, L). If W −p(1) ·L ≤ v(k) ·W −p(k) ·L, then an optimal contract is given
by (s∗, t∗, L∗

c) = (1, 0, L).

Proof. If W − p(1) · L > v(k) · W − p(k) · L, then this means H1 = U(W − p(1) · L) >
Hk = U(v(k) ·W − p(k) · L) since U ′(·) > 0. Hence, the optimal choice is s∗ = 0. This
means the choice t∗ = 0 and L∗

c = L is optimal by Propositions 12 and 13. If W − p(1) ·L ≤
v(k) ·W − p(k) · L, then this means H1 = U(W − p(1) · L) ≤ Hk = U(v(k) ·W − p(k) · L)
since U ′(·) > 0. Hence, the optimal choice is s∗ = 1. This means the choice t∗ = 0 and
L∗
c = L is optimal by Propositions 12 and 13.

Insights from the Optimal Contract

Several insights can be gained from the optimal contract in Theorem 8. One interesting
insight is that the optimal contract has t∗ = 0, meaning that there is no penalty or fine in
the event of a data breach, even when the health care providers participate in the consortium.
This has an important practical implication, which is that participation in the data sharing
consortium can only be encouraged by the ability of a health care provider to purchase an
insurance policy from an external insurance company. Specifically, the optimal contract has
L∗
c = L. This means Hk = Hk(L) > Hk(0), or in words that purchasing insurance gives each

participating health care provider a strictly higher utility than not purchasing insurance.
Restated, the ability to purchase insurance for the event of a data breach makes it more
likely for a health care provider to be willing to share data. Furthermore, Fig. 4.2 shows
that depending on the particular functional forms, there is often a maximum consortium
size beyond which costs associated with the increased likelihood of data breaches exceeds
the value of sharing more data.

4.4 Conclusion

In this chapter, we designed contracts that help to mitigate the risks associated with data
sharing so as to encourage health care providers to share their medical data. We first studied
a scenario where a single health care provider sells medical data to a technology firm that is
interested in using the data to develop new artificial intelligence algorithms. We next studied
a scenario where multiple health care providers share data with each other for the purpose of
conducting scientific research and improving patient care. Both cases required managing a
trade-off between the value of sharing data with the liabilities associated with data breaches.
The key concepts towards managing the risks associated with data breaches were the ideas
of imposing a fine or penalty and purchasing external insurance to mitigate liabilities in
the event of a data breach. Our results suggest that it is possible to devise contracts that
promote the sharing of medical data while preserving the integrity and privacy of the data.
By implementing the correct incentives, it may be possible to overcome the barriers to data
sharing and facilitate the use of health information for science, technology, and policy.
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Figure 4.2: The red solid line is a health care provider’s expected utility when they partic-
ipate in the consortium, and the blue dashed line is the expected utility when they do not
participate, where k is the number of health care providers in the consortium. The black
dotted line represents the participation threshold beyond which the risks outweigh the ben-
efits of sharing data by participating in the consortium.



71

Chapter 5

Conclusion

This dissertation has combined three lines of work that investigate societal problems related
to safe water access, secure data sharing, and fair mechanism design. These projects em-
ployed mathematical modeling to propose solutions that advocate for universal and equitable
access to information and resources while taking into account issues of equity and fairness,
especially for underserved populations.

In Chapter 2, we focused on safe water access, a critical public health crisis in many
developing countries. We proposed a model that helps communities determine the optimal
quantity of water to store in local water containers. Our model considered the financial
costs of purchasing water, the potential degradation of water quality, and the possibility
of water wastage. Our goal was to empower communities to make informed decisions that
promote equitable access to safe drinking water, especially for those who face difficulties
obtaining even the minimal amount of water necessary for survival. A potential future
direction would be to explore improving visualization for better interpretability and relaxing
the set of conditions that ensure the threshold structure of the optimal policy.

In Chapter 3, we delved into the shortcomings of current approaches to incentive design
with respect to fairness considerations. We introduced quantitative fairness criteria that
integrated principles of equity and justice into the mechanism design framework. Our model
took into account different forms of inequalities to ensure that the incentive system did not
adversely affect individuals from specific socioeconomic backgrounds. Our objective was to
establish several quantitative definitions of fairness that comprehensively captured the full
spectrum of qualitative attributes, thereby encompassing marginalized segments of society.
A possible future direction would be to generalize the results to more than two types of
efficiency (adverse selection) and levels of effort (moral hazard), and to consider risk-averse
agents instead of augmenting risk-neutrality with limited liability.

Chapter 4 explored the challenges of medical data sharing, which has the potential to
advance healthcare but also exposes patients and healthcare providers to various risks. We
proposed an optimal cybersecurity insurance contract that incentivized healthcare providers
to responsibly share medical data while effectively mitigating associated risks. Our goal was
to encourage the sharing of medical data for furthering scientific research, all while ensuring
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the protection of privacy and livelihood for all stakeholders, including the most vulnerable
populations. A possible future direction would be to relax the actuarily fair assumption that
allows us to simplify the insurance policy structure, and also to consider multiple levels of
cybersecurity as a function of investment.

Overall, this dissertation aimed to contribute to the development of innovative solutions
that facilitated equal and inclusive access to resources while mitigating risks and ensuring
fairness. This work intended to support disadvantaged and underrepresented populations by
addressing cultural and societal problems pertinent to resource allocation and information
sharing.
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Appendix A

Statement and Proof of Lemmas

Lemma 1. Consider two functions f(x) and g(x) defined on a compact interval [a, b]. Sup-
pose that f(x) is differentiable, that its derivative is bounded from below by a positive constant
Dxf(x) ≥M > 0, and that g(x) is Lipschitz continuous with constant L ≥ 0. Then for any
fixed λ such that 0 ≤ λ ≤M/L, the function f(x)+λg(x) is non-decreasing and continuous.

Proof. The continuity of f(x) + λg(x) is immediate by the differentiability of f(x) and the
Lipschitz continuity of g(x). So we focus on showing f(x)+λg(x) is non-decreasing. Consider
any x1, x2 ∈ [a, b] with x2 ≥ x1. Since Dxf(x) ≥ M , we have f(x2) − f(x1) ≥ M(x2 − x1).
Since g(x) is Lipschitz continuous with constant L, we have |g(x2) − g(x1)| ≤ L(x2 − x1).
Combining these two inequalities implies

f(x2)− f(x1) + λ(g(x2)− g(x1)) ≥M(x2 − x1)− λL(x2 − x1)
≥ (M − λL) · (x2 − x1) ≥ 0.

(A.1)

where the last inequality follows because x2 ≥ x1 and because 0 ≤ λ ≤ M/L, which means
M − λL ≥ 0. Since we have shown f(x2) − f(x1) + λ(g(x2) − g(x1)) ≥ 0 for any x2 ≥ x1,
this implies f(x) + λg(x) is non-decreasing.

Lemma 2. If
∫∞
−∞ |f(x)|dx is finite,

∫∞
−∞ |g(x)|dx is finite, f(x) = 0 for x < 0, |f(x)| ≤

M , |g(x)| ≤ P , and on x ≥ 0, we have that f(x) is Lipschitz with constant L, then the
convolution (f∗g)(x) =

∫∞
−∞ f(x−z)g(z)dz is Lipschitz with constant (L·

∫∞
−∞ |g(z)|dz+MP ).
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Proof. Without loss of generality, we assume that x ≤ y. Observe that

|(f ∗ g)(x)− (f ∗ g)(y)| = |
∫∞
−∞ f(x− z)g(z)dz −

∫∞
−∞ f(y − z)g(z)dz|

= |
∫∞
−∞(f(x− z)− f(y − z)) · g(z)dz|

= |
∫ x

−∞(f(x− z)− f(y − z)) · g(z)dz −
∫ y

x
f(y − z) · g(z)dz|

≤ |
∫ x

−∞(f(x− z)− f(y − z)) · g(z)dz|+ |
∫ y

x
f(y − z) · g(z)dz|

≤
∫ x

−∞ |f(x− z)− f(y − z)| · |g(z)|dz +
∫ y

x
|f(y − z)| · |g(z)|dz

≤
∫ x

−∞ L|(x− z)− (y − z)| · |g(z)|dz +
∫ y

x
MP · dz

≤
∫ x

−∞ L|x− y| · |g(z)|dz +MP · |x− y|
≤ (L ·

∫∞
−∞ |g(z)|dz +MP ) · |x− y|.

(A.2)
This shows the convolution is Lipschitz continuous.

Lemma 3. Consider a function f(x) that is finite at the point y (i.e., |f(y)| is bounded). If
f(x) is Lipschitz with constant L on a compact domain [a, b] with y ∈ [a, b], then it is finitely
bounded |f(x)| ≤ L(b− a) + |f(y)| for x ∈ [a, b].

Proof. For any x ∈ [a, b], we have

|f(x)| = |f(x)− f(y) + f(y)|
≤ |f(x)− f(y)|+ |f(y)|
≤ L|x− y|+ |f(y)|
≤ L(b− a) + |f(y)|.

(A.3)

Since the interval [a, b] is compact, this means a, b are finite. This gives the desired bound.




