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§ Abstract

A framework for damage mechanics of brittle solids is exploited in the design and
numerical implementation of an anisotropic model for the tensile failure of concrete. The
key feature exploited in the analysis is the hypothesis of maximum dissipation, which
specifies a unique damage rule for the elastic moduli of the solid once a failure surface is
specified. A complete algorithmic treatment of the resulting model is given which renders a
useful tool for large scale inelastic finite element calculations. A rather simple three-surface
failure model for concrete, containing essentially no adjustable parameters, is shown to
produce results in remarkably good agreement with sample experimental data.
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§1. Introduction

Degradation of the stiffness properties under loading, an effect commonly referred
to as damage, is a complex phenomenon displayed by many materials for which only a
limited knowledge of the actual micro-mechanical processes involved is known. Typically,
experimental measurements are available that define an envelope of admissible states in
some limited range of stress or strain space. This is often referred to as the failure surface.
Points lying in the interior of the domain enclosed by the failure surface define states that
do not lead to damage evolution in the material. In some situations, it is also possible
to characterize the changes in shape experienced by the failure surface under sustained
loading. This limited information is often all that is known about the damage in the
material beyond some general conjectures about the actual physical mechanisms taking

place.

For brittle materials such as ceramics, glasses, rocks or plain concrete, the latter being
the case of interest here, the stress response can be characterized via linear elastic stress-
strain relations. Damage in these materials is reflected at the macroscopic level in the
progressive degradation experienced by the elastic moduli under sustained tensile loading,
at states lying on (or above) the failure surface. The key piece of additional information
needed to construct a complete constitutive model is an evolution law that characterizes
this degradation process; i.e, a damage rule. The pioneering work of KACHANOV [1958] fur-
nishes the first example of a damage rule, restricted in principle to either one-dimensional
or isotropic theories, via the concept of effective stress. Proposals aimed at generalizing
this original idea to account for anisotropy often introduce a fourth order tensor that maps
between the stress and effective stress spaces, see e.g., LEMAITRE [1992] for a review of
the extensive literature on this subject. The precise identification of this tensor in actual
materials, plain concrete in particular, appears not to be readily accomplishable.

~ The purpose of this paper is to address in detail continuum and computational issues
involved in the modeling of brittle materials, specifically in plain concrete, by exploiting
an alternative framework that yields a fully anisotropic damage rule free from adjustable
parameters. This approach employs an internal variable formalism that relies on two phe-
nomenological assumptions which, in a sense, make up for our lack of detailed information
on the micromechanics leading to damage evolution.

i. The choice of the elastic moduli as the set of internal (damage) variables. The
idea of adopting the elastic moduli themselves or, equivalently, the compliance tensor as
internal variables first appears in ORTIZ [1985] and SiM0 & Ju [1987)].

ii. The principle of maximum (damage) dissipation. This single hypothesis auto-
matically renders a fully anisotropic damage evolution law for the tensor of elastic moduli
which, as alluded to above, is free from any adjustable parameters. The use of the principle
of maximum dissipation as a means of uniquely defining the damage rule first appears in
SiMo & Ju [1987].

It should be noted that the second hsfpothesis 1s also the basis for the classical model
of associative plasticity. In this context, assumption ii is often credited to von Mises
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(see HILL [1983]) and is known as the principle of maximum plastic work. The continuum
model so constructed, therefore, furnishes the counterpart in continuum damage mechanics
of associative plasticity; and importantly it is completely defined once a failure surface is
specified. Additionally, it is pointed out that assumption ii is also known to be valid in
the disparate area of the modeling of damage due to Mullins’ effect (GOVINDIEE & SiMO
[1992]) '

As in the case of softening plasticity, damage degradation of the elastic moduli leads to
strain softening and, therefore, leads inevitably to the appearance of strongly discontinuous
solutions; see BAZANT & BELYTSCHKO [1985]. The underlying mechanism can be traced
back to a local loss of Hadamard'’s strong ellipticity condition, see e.g. SLUYS [1992] for
one of many derivations of this well-known fact, which typically takes place on sets of
zero measure (BAZANT & BELYTSCHKO [1985]). As a result, rate-independent models
exhibiting softening render ill-posed the boundary value problems for the quasi-static case
(or the initial boundary value problems in the dynamic case). In simulations, lack of well-
posedness manifests itself in numerical solutions exhibiting a strong mesh—dependence.
Motivated in part by these undesirable features, a number of authors (e.g., READ &
HEGEMIER [1984]) have questioned the common point of view which regards loss of stiffness
as a true material property of a continuum.

A number of techniques have been proposed to circumvent the preceding difficulties,
from the early approaches of PIETRUSZCZAK & MROZ [1981] or BAZANT & OH [1983]
based on the use of a characteristic length to more recent methodologies that introduce a
“regularization parameter.” Representative examples of the latter approach are the viscous
regularization, advocated in NEEDLEMAN [1987] and others, and regularization techniques
based on the use of generalized continuum, as in SCHREYER [1990] or DEBORST [1991]. An
alternative approach that retains the rate-independent character of the softening model
and restores well-posedness, without resorting to a characteristic length, is described in
SiMo, OLIVER & ARMERO [1993]. Since the emphasis in this paper is placed on modeling
issues, amongst the many proposed techniques, only two methods are considered in detail:
the viscous regularization and the characteristic length method in the form given in OLIVER
[1989]. The goal here is to illustrate how existing regularization approaches fit within the
proposed framework.

An outline of the remainder of this paper is as follows: In Section 2 we summarize the
continuum framework for the design of continuum damage models based on assumptions i
and ii, following the original presentation given in SIMO [1988a]. In Section 3 we consider
in some detail computational issues involved in the implementation of the general model.
These include, numerical integration, inclusion of rate effects and an alternative implemen-
tation of the concept of characteristic length. Section 4 describes in detail the formulation
of an anisotropic continuum damage model model for the tensile cracking of concrete. A
set of three simple damage surfaces are postulated for concrete which together with the
damage evolution formulation of Section 2 renders a set of anisotropic evolution laws for
the rank 4 stiffness tensor of the material and a set of softening variables. These evolution
laws are then integrated using the algorithmic formulation of Section 3 and placed within
a finite element code. Example calculations are shown to demonstrate various features of
the model and to establish comparisons with available experimental data. These examples
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demonstrate the full three-dimensional anisotropic features inherent in the model.

§2. Summary of the General Model

Consider a continuum solid occupying a region B C R*. Since the interest here is in
brittle materials, the deformation of the solid is well described by the linear strain theory
and the assumption is made that no permanent (plastic) strains remain in the solid upon
unloading. It follows that the stress state is characterized via the stress-strain relations:

o==Ce, (2.1)

where o is the Cauchy stress tensor, € is the infinitesimal strain tensor, and C is the rank
4 stiffness tensor of the material. To account for damage degradation in the material, the
tensor C at time ¢ is considered to be a function of the deformation history up to time
t. According to the discussion in the introduction, it is further assumed that the elastic
domain or admissible stress states is the set defined by M functions ¢; as

Eo={r €S[¢x(r,q) <0 (k=1,.., M)} (22)

In this description, § stands for the set of symmetric rank 2 tensors and g is viewed as an
internal variable that determines the evolution in time of the shape of the admissible set
with progressive damage. The functions ¢ are assumed to be given from either experi-
mental data or physical arguments about the material under consideration. An example
of damage criterion suitable for brittle materials such as plain concrete is the Rankine
condition.

Without any further information on the detailed micromechanics governing damage
evolution, a unique damage rule can be specified by introducing the additional assumption
of maximum damage dissipation, as follows. The first step is to regard the elastic moduli
themselves as internal variables, leading to a free energy function for the material of the

form
U(e,C,a) = %e: C:e + S(a), (2.3)

where a is the internal variable conjugate to ¢, in the sense that ¢ = —9,5(a). Use
of the Legendre transformation yields the dual of (2.3), involving the stress field o and
the internal variable ¢, which is the starting point in ORTIZ [1985]. Equation (2.3), on
the other hand, is taken as a point of departure in SIMO & Ju [1987]. The first term
in (2.3) represents the elastic free energy in the system while the second term is the free
energy associated with the progressive degradation of the material. Degradation in brittle
materials is usually induced by microcracking.

The second step in the analysis involves the enforcement of maximum damage dissi-
pation. Recall that in the absence of thermal effects, the internal dissipation D is given by
(TRUESDELL & NOLL [1965])

Di=-U+0:6>0, (2.4)
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where superposed dots indicate ordinary time differentiation. Explicitly carrying out the
time differentiation for the assumed form of the free energy (2.3), enforcing the stress-strain
relations (2.1) and inserting the expression ¢ = —9,5(a) yields

D= %a: D:o 4 g& >0, (2.5)

where D = C™! denotes the material compliance tensor. The hypothesis of maximum dis-
sipation states that among all admissible states lying in E,, the actual state of stress in the
solid is the one which maximizes (2.5). For materials that exhibit softening, this hypothe-
sis 1s not strictly enforced. Instead, the hypothesis is reduced to finding the critical point
of dissipation since no such maximum exists. To perform this constrained optimization
problem one first constructs the associated Lagrangian

L(o,q) —D+Z'rk¢k, (2.6)

k=1

where yx > 0 are known as generalized Lagrange multipliers or consistency parameters.
The critical point of this Lagrangian is characterized by the classical optimality conditions
(see e.g. LUENBERGER, §10.8 [1984]):

0, L =0, 0,L=0, }
¢k <0, % >0 and Z,ICV_I__I Yok = 0.

Denoting by @ the tensor (or outer) product symbol, conditions (2.7) result in the damage
flow/evolution rules

(2.7)

M
B = Z %otk @%b 4 6 =3 10,0k (2.8)

a¢k a k=1

supplemented by the Kuhn-Tucker unilateral constraint conditions (2.7),, i.e.,

M
$r <0, % >0 and va = 0. (2.9)
k=1

Relations (2.9) give precise conditions for assessing active damage evolution (loading) or
inactive damage (elastic unloading) in the material. Their significance is identical to
the loading/unloading conditions for multi-surface plasticity in the form first stated in
KOITER [1953] and necessitate, therefore, no further elaboration. In a strict sense, the
damage rules and the derivation sketched above are valid if the constraints are of the form
¢k(o,q) = fr(o) — hi(q), with fr(o) homogeneous of degree one. This is a situation often
encountered in practice and, in particular, is the case of interest discussed in Section 4.

To carry one step further the formal analogy with classical plasticity, observe that
Equations (2.8) and (2.1) imply the following expression for the time rate of change of

stress: o
o = C: [é—Z’yk&,(ﬁk]. (2.10)
k=1
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The structure of this expression is essentially identical to that arising in the classical model
of associative plasticity, although its physical interpretation is quite different. In (2.10),
the “added” strain contribution arises from loss of stiffness in the material whereas the
analogous term in plasticity theory is due to the change in permanent (plastic) strains at a
constant stiffness. It is a straightforward matter to formally combine these two mechanisms
and arrive at a phenomenological model that incorporates both damage degradation and
permanent (residual) strains. Such a task, however, will not be pursued here.

Table 1. Rate Independent, Anisotropic Damage Model

Free energy [with elastic moduli C and compliance tensor D = C™'J:
¥(e,C,a) = 2e:Cie + S(a).
Stress-strain and internal variable relations:
o=Ce and ¢=—0,5.

Damage rule for compliance tensor and internal variable:

N 8o¢k®aa¢k e M
D-—;fyk Boor o and a-kzzlfykaqqﬁk.

Kuhn-Tucker damage/no-damage conditions:

M
$r(0,9) <0, 720 and ) (o, q)k = 0.
k=1

Consistency condition: }:ﬁ__l Q'Sk(lf, g = 0.

For completeness, the rate independent constitutive equations are summarized in Ta-
ble 1 above. As these equations stand, however, the the resulting model will yield an
ill-posed initial boundary value problem if the material exhibits softening. A brief discus-
sion of the issues involved is given in Section 2.2 below.

2.1. Rate Effects.

For materials that display rate effects, the model summarized in Table 1 can be easily
extended to incorporate first order rate dependencies. For single surface models (i.e.,
k = 1), the extension is patterned after the Prager-Perzyna model of viscoplasticity, and
amounts to replacing the Kuhn-Tucker optimality loading/unloading conditions by the

constitutive equation:
< ¢ >
Yk = m— (2.11)
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where < - >= Z[(-)+]-|] is known as the Macauley bracket and 7 is a scalar governing the
viscosity of the relaxation process. For hardening materials, it is well-known that as n—0
the rate independent solution is recovered. Whether the same property holds for softening
materials is an open question. The widespread use of the viscoplastic regularization as a
means of circumventing ill-posedness of the rate-independent problem rests on the belief
that this is not the case.

Remark 2.1. :
Difficulties arise in the generalization of (2.11) to the case of an elastic domain defined
by M > 1 intersecting surfaces, unless further restrictions are placed on the gradients
O ¢k of the constraints; see SIMO, KENNEDY, & GOVINDJEE [1988] for additional
details. In particular, the conditions set forth in this latter reference show that the
inviscid limit is well-behaved (for hardening materials) if the gradients are stiffness—
orthogonal, i.e. if

a,gzsk:C:@,,qﬁj =0 (2.12)

for j # k. This observation will prove useful in the rate-dependent extension of the
model described in Section 4. [

2.2. Dissipation and Characteristic Lengths.

Equations like those in Table 1 are well known to produce ill-posed initial boundary
value problems when the elastic domain defined in Equation (2.2) contracts with the evolu-
tion of the internal variables ¢. The severe difficulties associated with lack of well-posedness
are quite different from those arising from global lack of uniqueness of the initial boundary
value problem (sce DEBORST [1987] for an illustration of these latter difficulties). READ &
HEGEMIER [1984], for instance, have advanced a physical mechanism that correlates “ill-
posedness” of conventional softening models with attempts to model a structural response
as a continuum response, thus suggesting the introduction of a length scale in the problem.
From a purely mechanical standpoint, a source of difficulty in the model in Table 1 lies in
the expression for the dissipation, which is intrinsically defined per unit volume and given
by Equation (2.5). Typically, however, for brittle materials the dissipation mechanism is
the generation of cracks. Such a mechanism dissipates energy on a per unit area basis.
Hence the model derived above and the physical mechanism are incompatible in their basic
length scales.

As pointed out in the introduction, a number of approaches can be found in the litera-
ture that introduce a length scale into the model in an attempt to resolve the Inconsistency
between the model and the physical mechanism. A review of the main methods currently
employed can be found in SLUYS [1992]; these include higher order gradient theories, rate
effect theories, Cosserat theories, and direct characteristic length theories. The use of
higher order gradient or Cosserat methods requires strict physical justification because
of their increased complexity over the two other approaches mentioned. The inclusion of
rate effects as described above provides for one rather simnple method of introducing an
implicit length scale into the formulation. This method, however, is lacking in several
respects. One, in the limit of the rate independent model, the equations may once again
produce ill-posed initial boundary value problems. Two, the viscosity parameter governs
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both the rate characteristics of the material as well as the characteristic length of the ma-
terial; see SLUYS [1992]. These two phenomena should, however, be governed by separate
parameters as they are separate physical mechanisms that are not intimately associated
with each other in general. Note also that in an algorithmic setting there may be time
step restrictions on otherwise “unconditionally stable” integration algorithms in order to
maintain the “well-posedness” of the problem {(SiM0 [1988b]). Finally, no conclusive proof
currently exists on the effectiveness of this approach other than experience gained in nu-
merical simulations. Direct characteristic length methods, on the other hand, require a
reasonable understanding of the physical cause of the material’s degradation; in the case

of brittle materials, this information is often available.

An example of a direct characteristic length theory is that of OLIVER [1989]. In this
theory, a dissipation constraint is used to enforce a desired amount of dissipation in a
volume of material with a single crack growing through it. The appeal of this construction
lies in its theoretical and computational simplicity over, perhaps, more correct but also
more complex approaches such as the non-local damage theory of PIIAUDIER-CABOT &
BAZANT [1987] or Cosserat theories as in DEBORST [1991]. The basic idea is that, if
the fracture energy per unit area crack advance Gy is a known material property, then
the energy dissipated per unit volume gy in the continuum theory is related through the
expression

gr=Gy/", (2.13)

where [* is know as the characteristic length and is given as the reciprocal of the directional
derivative of the crack indicator function in the direction of the crack plane normal; see
OLIVER [1989] for more details. Equation (2.13) provides a practical restriction on the
softening properties of the model. This is seen to be the case since

gf =/DdP, (2.14)
T

where the path of integration I' in (2.14) is from a state of no damage to a state of
total failure. Equation (2.14) involves the softening properties of the model through the
dissipation rate D and hence together with (2.13) provides a restriction on the softening
parameters of the material. Note that since (2.14) is a path dependent integral the path
chosen must correspond to that used to experimentally determine Gy. An application of
this method is shown in Section 4.

A completely different approach based on the mathematical analysis of the discon-
tinuous solutions that arise in the presence of softening is described in SiM0O, OLIVER
& ARMERO [1993]. The “regularized” softening model strictly remains rate-independent
and the initial boundary value problem becomes well-posed, leading to numerical solutions
exhibiting no mesh-dependence whatsoever. The notion of a characteristic length plays no
role in this approach at the continuum level. The results of this analysis provide a partial
justification for the preceding methodology.

§3. Computational Issues
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Because of the nonlinear nature of the equations in Table 1, numerical methods are
usually employed when using them to solve initial boundary value problems. The discussion
that follows is restricted to their use in the standard strain driven framework that exists in
most finite element codes — whether globally performing load or displacement controlled
calculations. This framework assumes that the strain €”, the stiffness C", and the internal
variables o™ are all known at time ¢". In addition, it is assumed that the strain e™*!
at time t"*! > ¢" is known and that the stresses and values of the stiffness and internal
variables at time t"*1 are desired. In what follows, superscript n’s and n + 1’s will always
denote quantities evaluated at times ¢t and t"*! respectively.

3.1. Return Mapping Algorithm.

The method of solving for the desired unknowns parallels very closely the so-called
return mapping algorithms of classical plasticity (see the comprehensive review in SIMO
[1993]). The only substantial difference lies in the details of the consistency parameter
calculation when softening is involved, as will be seen in Section 4. To begin, the flow
rules for the compliance tensor and the internal variables are integrated using the implicit
backward Euler rule. This results in the following two expressions:

n+l n+1
® 0,6},
n-+1 n
D™+ =D +§ jA ¢n+1 g (3.1)
a™t!l ="+ E A’n(%cﬁ"“, (3.2)
k=1

where Ay, > 0 is a discrete consistency parameter. Note that Equation (3.1) can be in-
verted using the Sherwin-Morrison-Woodbury formula (see for example DENNIS & SCHN-
ABEL §8.3 [1983]) to the give the stiffness tensor at time ¢t"*?.

Equation (3.1) can now be combined with the stress-strain relation (2.1) at time #"*!
to give an 1mplicit expression for the current value of the stress tensor as

The expression for the current values of the internal stresses is simply
"t = —0,S(a™t). (3.4)

We now require the Kuhn-Tucker damage/no-damage conditions (2.9) to be satisfied at
time t"*1; ie. for (k=1,..,M):

M
$p71 <0, An >0 and Y ¢ Ay =0, (3.5)
k=1

Thus at the end of every time step in a calculation the constraints on the admissible stress
states are always satisfied. Further examination of Equations (3.1)-(3.5) results in the
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observation that, just as in the time continuous case, when qﬁ;:“ < 0, then Ay, = 0 and
no damage evolution takes place with respect to the k** damage surface. Algorithmically,
this motivates the notion of a trial “elastic” predictor state defined by Ay, = 0 for all %.
The trial stress is given by

o't = C"emt! (3.6)

trial

and the trial internal stresses are given by
n+1 —v
iy = 4" (3.7)
A “predictor—corrector” type algorithm can now be defined as:

1. .For e.ach k check whether @x(of1,¢"+]) < 0. If so, then assume the surface is
inactive and set Ay = 0.

2. If qSk(a:rm,qm;}) > 0, then assume the surface is active and that A~ > 0.

3. If all the surfaces are inactive, then

n+1 __ n+41
4 = O rial
n+1 __ n+l
q = Qtrial
ntl n (3.8)
(87 =
Dn+] — Dn

and the state of the system at time t"*! is fully defined.
4. If any of the surfaces are active, then use the consistency conditions that qﬁz“ =0
for k € {active surfaces} and Equations (3.1)-(3.4) to simultaneously solve for the

unknowns, Ayx, 0", and ¢"*!, and then update the other state variables a™*! and

Dn+1

Remark 3.1.
When the orthogonality condition (2.12) is not met, a fifth step must be added to
algorithm to insure that the proper set of active surfaces was chosen. For further
details see SIMO, KENNEDY, & GOVINDJEE [1988]. O

Remark 3.2.
In general, these equations form an intractable highly nonlinear system of equations
that must be simultaneously solved for the unknowns; however, for a certain class of
popular damage surfaces this nonlinearity is tractable from the standpoint of practical
calculations. Consider the case of a single active damage surface of the form

¢(o,q) = fle)—o0s+¢=0, (3.9)

where o is a scalar constant and the internal stress ¢ is also a scalar. In this case.
Equations (3.3)-(3.4) reduce to

o™t = at"r‘l;} — AYC™: 8, f(a™ 1) (3.10)

g"t = —0,5(a" + Av). (3.11)
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By substituting Equation (3.11) into (3.9), one obtains an equation in terms of o™*?
and Avy. This equation together with Equation (3.10) forms a complete set of equa-
tions that may solved for the unknowns o™*! and Ay. In the case where d,f is a
constant the system of equations reduces even further into a single (in general non-
linear) equation for the scalar Ay. These arguments also hold true for the case of
multiple damage surfaces. [J

§.2. Rate Dependent Model.

The development of the algorithm for the rate dependent case exactly mimics the rate
independent case. The viscoplastic flow rules are first integrated with a backward Euler
difference scheme to give

M 1 +1 +1
- o ¢ﬂ+1. n+1 T
k=1 7 oPr O
M n+1
< > At
a"=a" 4 )" SO >4 By ™, (3.13)
k=1 n
where At = t*t1 — ¢t*. The stress at time t"*! can now be written as
M n+1
< > At
ot =C" e - Z-—----¢k i (3.14)

k=1 R

The internal stress expression (3.4) with a™*! now given by Equation (3.13) also holds.

For the rate dependent problem there are no Kuhn-Tucker conditions but one can still
use an algorithm that is similar to the one defined for the rate independent case. This
follows because Equations (3.12) and (3.13) indicate that damage evolution does not take
place with respect to the k** surface unless ¢x > 0. Thus the following algorithm can be
defined:

1. For each k check whether ¢k(a';’r£},q3m) < 0. If so, then assume the surface is

. . ntls At
inactive and set <2281 _ .
K n+1 A
2. If ¢x(o™H1 ¢g™*F1) > 0, then assume the surface is active and that =% 22" < ¢
trial * Qtrial ’ ; n
3. If all the surfaces are inactive, then
n+1 __ n+1
o = Oyrial
+1 __ +1
" = gy (3.15)
Ctn+1 — an
Dn+1 — Dn

and the state of the system at time t"*! is fully defined.

4. If any of the surfaces are active, use the damage surface equations qﬁ:“ for k €
{active surfaces} and Equations (3.12)—(3.14) and (3.4) to simultaneously solve for
<¢p +‘,>At’ ot

” , and ¢"*!, and then update the remaining state variables.
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Remark 3.3.
For the general case, it is seen that the main difference between the rate dependent
and rate independent case is that Av; has been replaced by —ﬁ—;——)-é—t-. The other

difference lies in the fact that ¢7*! # 0 for k € {active surfaces} in the rate dependent
case. However, since ¢} ! > 0 for k € {active surfaces}, one can write the analog to
the rate independent equation oy 1 =0 as

n+1
-(20) [iﬁ”ﬁjﬂ] +éuom, ") = 0. (3.16)

Note that in Equation (3.16) the quantity <o >t is considered as one variable to
be solved for; therefore, in the limit as  — 0 the rate independent case is recovered
(assuming the orthogonality condition (2.12) is satisfied). This observation also makes
1t possible to use the same solver code for both cases by always using (3.16) in the
iteration process. []

3.8. Characteristic Length.

In conjunction with the algorithms outlined above, an algorithm for calculating the
characteristic length is needed. The discussion that follows pertains to the method pro-
posed by OLIVER [1989] and is restricted to the context of isoparametric C° finite elements.
Recall, first, OLIVER’S algorithm for calculating the characteristic length, *:

Nnodes

Z 8INA(w)TA} -n(zx), (3.17)

A=1

(") =07 -n = [

where N 4(-) are the element shape functions, Npodes is the number of element nodes, 74
are the nodal values of the crack indicator function 7, and n(z) is the normal to the
smeared crack plane at a point . According to OLIVER’S definition, the crack indicator
function should take the value of 1 in front of the crack field and 0 behind the crack field.
Front and back are determined by the following relation

_J1 (za—=x) n(z)>0
Rt e .

where & represents the point in the body where one is trying to evaluate the characteristic
length, & 4 is the nodal coordinate, and . represents the center of element in which «
lies. In the context of 2-D problems examined by OLIVER, Equation (3.18) is adequate.
However, for 3-D problems using the common 8-noded C° brick element Equation (3.18)
leads to a discontinuous characteristic length function (3.17). This can best be seen by
considering an example. Consider the 8-noded C° brick in the isoparametric domain where
points are denoted by € = (§;,£2,&3). In this case,

Nnodes

() =8 - n=[(8:6)nl D TaONa(f) 7. (3.19)

A=1
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In (3.19), 2 = (8:£)n/||(8:&)n|| which by construction is of unit norm; hence 7 can be
completely defined by a set of two angles (6, ) with respect to the isoparametric coordinate
frame; see Figure 1. Doing so allows one to write

cos @ sin p
L= {sianinap . (3.20)
| cosg
Equation (3.19) is now evaluated for two cases that should produce characteristic length
values arbitrarily close to each other. For case 1, (6,¢) = %, 1 +¢) where e << 1. This
implies by (3.18), that 3 = 7y = 7m =73 =land 7y = 7 = 75 = 75 = 0 when using a
standard node numbering scheme as shown in Figure 2. The second case corresponds to
(0,9) = (5 +06, T +¢) for arbitrarily small but positive 6. In thiscase, 74 =75 = 77 = 75 = 1
and 7y = 7y = 73 = 76 = 0; see Figure 3.
If (3.19) is to be continuous with respect to the orientation of the crack field then
cases 1 and 2 should produce virtually the same result within a small tolerance that is a
function of 6. For case 1, Equation (3.19) gives

0:7-n = “(azf)nllé sinfsiny ~ |](6x€)n||~\£—% . (3.21)

For case 2, Equation (3.19) gives
1 : ;
0,7 -n = [|(5I£)n]]1(sinﬁsinap + cos)(1 + £;&3). (3.22)

Only when £1€s = 0, does (3.22) reduce to (3.21). If one assumes that a full quadrature
rule is being used and tries to evaluate the characteristic length at the Gauss points
(:k—%, :f:o—}ﬁ, :i:%), then Equation (3.22) reduces to

07 U(azé)nll%g(l + %)’ (3.23)

where the sign in (1 + %) depends upon the Gauss point chosen. Clearly (3.23) does not
tend to (3.21) in the limit of vanishing é.

It 1s observed that the difficulty that arises is due to the discontinuous nature of the
definition of the nodal values for the crack indicator function. To circumvent this difficulty.
a simple continuous definition for 74 can be made as follows:

_ (s —z.) n(z)— rmin

TA 7max __ pmin ? (3~24)
where
min __ : _ . LS
T 4omin {(za—zo) n(z)) (3.25)
max — ' T4 — 1) . 3.26)
7 aomax {(za—xo) n(z)) (3.26)

The redefinition of (3.18) as (3.24) removes the continuity problems noted above and yet
remains faithful to the original idea proposed by OLIVER.
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§4. Application: Concrete

In this section, an application is made of the developments of Sections 2 and 3. The
example problem to be considered is the brittle tensile failure of concrete. Failure in the
material is assumed to initiate when the 1% principal stress in the material exceeds some
threshold value. In the discussion that follows, the principal direction associated with this
principal stress is assumed known and given by the eigenvector 7. This vector defines the
normal to a “smeared” crack field that is locally fixed in the material after initiation. Across
this smeared crack field, tensile tractions are limited by some critical value that decreases
exponentially with increasing deformation. Likewise, shear tractions across the smeared
crack field are limited by some critical value that decreases with increasing deformation.
The progressive degradation of strength as employed here is a generalization of the original
smeared crack model of RASHID [1968] and represents the more modern viewpoint that
the degradation is progressive; see e.g. DEBORST & NAUTA [1985].

4.1. Damage Surfaces.

To begin, a set of damage surfaces must be defined. Based on the description above,
three coupled surfaces are postulated — the first to control the tensile tractions across the
smeared crack field and the second two to control the shear tractions across the smeared

crack field:

¢1251:a_fn+anS0y (41)
¢2 =[Sz 0| — fs + kg <0, (4.2
¢3 =|S3:0| — f + kg < 0. (4.3)

In the above, S$; =n®@n, S; = {(n®m+m@n),and §; = I(ne@l+1l®n); m and
1 denote unit vectors that together with m form an orthonormal basis; f, is the critical
tensile traction that can be held across the smeared crack field; f, is the critical shear
traction that can be held across the smeared crack field; q is an internal scalar softening
stress tending to f,; and k, and k, are coupling constants that are chosen so that the
tensile and shear tractions across the smeared crack field reach their asymptotic values
simultaneously.

Theoretically, one would like to choose k, = 1, however, for computational reasons
it is better to choose k, = (1 — B,) where 3, is a small number. The effect of this is
to give the material a small amount of residual tensile strength. The constant k, 1s set
in a similar manner to {‘7(1 — B,), where (3, represents the residual shear strength of the
material. Ideally, this value would be pressure dependent, however, for simplicity this
added complexity is avoided here. Additionally, the softening stress is assumed to be given
by the following relationship:

g = fa(l —exp[-Ha]) = =0, 5, ' (4.4)

where H is a softening decay constant that is determined by Equations (2.13) and (2.14).
The motivation for this expression comes from the experimental observation of exponential
type softening behavior.
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4‘.2: Flow Rules and Consistency Parameters.
Using (4.1)-(4.3) in (2.8) gives the damage flow rules. By noting that d,¢; = S;,
092 = sign(S,:0)S;, and J,¢3 = sign(S;: 0)Ss, one has that

51®51+ 52®52+ 53 ® 853
Sito T Sya] S, o
& = ko1 + koy2 + ko3 (4.6)

D=m (4.5)

Remark 4.1.
Flow rule (4.5) indicates that if the material is initially isotropic then the orthogonality
condition (2.12) is satisfied. This follows since §;: S, = S1: S3 = S5: S3 = 0 and that
5,:C°%: S, = S;:C%: 8, = S,: C°: S35 = 0 where C° is the initial undamaged isotropic
stiffness of the material. [J

Utilizing the orthoganality condition and the consistency conditions, the consistency
parameters are given by

3
Ye=Y giids, (4.7)
=1
where the vector
! S]ZCié
d = ( sign(S,:0)5,:C: € (4.8)

| sign(Ss:0)8;:C:é

and the matrix

511C2SI - kna'qu —kn672q ~kn6.73q
g = S2:C: Sy — k,0..,q —ks0..q (4.9)
sym. 532 C: 53 - k3373q

where 0,,q = kn foH exp(—Ha) and 0,9 = 04,9 = ks fn H exp(—Ha).

4.8. Dissipation Constraint.

For brittle materials like concrete, the fracture toughness (energy per unit crack ad-
vance) is usually measured under pure mode I conditions. Thus the expression for the
dissipation that should be used in (2.14) is

S
D = l0’: [’71 I®Sl
5120'

5 } (o +ga, (4.10)

where all the shear terms have been assumed zero. Simplifying (4.10) with the aid of (4.1)
and substituting into (2.14) gives

1. .
T n
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The path of integration is from a state of no-damage, o = 0, to a state of complete damage
a.. The state of complete damage is defined by g(a.) = f,. However, in the present case
there is no such state for finite a; see Eq. (4.4). Therefore, a. is set as the value where ¢
reaches a predefined fraction of its asymptotic limit. Equally, one could define a. through
the relation Ha, = A, where for instance a value of A = 4 would correspond to a value of
g within 2 percent of its asymptotic limit f,. Doing so in (4.11) implies that

g5 = %— [A - ka”k; ! (1- exp[-)\])] : (4.12)

Thus, the softening decay constant is constrained by (2.13) to be

2k, —1
2kn

fn
H=101"2% ) -
Gf[

(1- exp[-)\])} i (4.13)
4.4. Algorithmic Issues.
The algorithmic approximation of the above equations follows from Section 3. In par-
ticular note that Remark 3.2 applies to the postulated damage surfaces. For completeness
the time integrated equations are given below. For the flow rules:

51®51 52®52 S3®53
D" =D + Ay —— + Ay e 4.14
Tem S, on+! + 7218, g ] PG ot (4.14)
o™ = a™ + ka Ay 4 ks Ayg + ks A7z . (4.15)

For the stress like variables:

trial

g"fl =gt - C™ [A7151 + sig11(52:0"+])A7252 + sign(Ss: 0'"+1)A7353] (4.16)

and
¢"T! = fo(1 — exp[-Ha"]). (4.17)

The algorithm given in Section 3 is used to advance the solution from time t" to time
t"+1 The main issue to be addressed in using the algorithm is Step 4; 1.e. how does one
solve for the unknowns? Because Remark 3.2 applies to the proposed model, the problem
reduces to a nonlinear root-finding problem in several variables. So as to make this root
finding problem transparent, we first consider the case where only the tensile surface is
active. The case of three active surfaces is considered after that and the case of two active
surfaces is given by a trivial modification of the three-surface case.

When only the tensile surface is active, the problem to be solved is

$1=81:0™ — fo+kog"t = 0. (4.18)

Substituting (4.16) and (4.17) into (4.18) gives a single nonlinear equation with only one
unknown, Avyy:

¢1(A71) = Slzan+] - A7151: Cn: Sl - fn =+ knfn - knfn eXp(”HknA'X]) ={. (419)

trial

This equation can be solved using Newton’s method or any other suitable root finder.
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Remark 4.2.
Unlike conventional metal plasticity Equation (4.19) is not convex in A~;; rather, it is
concave. This follows by considering the second derivative of ¢; with respect to A~;:

8¢

a7 = InknH exp(~HknAm) < 0. (4.20)

Thus a qualitative plot of ¢; reveals that the starting iterate for a Newton-like method
must lie to the right of the curve’s apex; see Figure 4. The apex location is given by
the condition that 5%92;—1 = 0. A more simple way of choosing a starting value is to
choose a value to the right of the desired root by setting exp(—Hk,A~v;) to zero in
(4.19). This gives a starting value of

o_ Siiofii = (1 —ka)f

trial

§,:C™: 85,

Ay (4.21)

Algorithmically, this is a convenient formula because all the required quantities are
also used elsewhere in the algorithm. [

Remark 4.3.
Once A7; has been solved for, Equations (4.14)-(4.17) may be used to update all the
other required quantities. [

Remark 4.4. .
If the single surface chosen had been ¢, then the equation to be solved would have

been . .
$2(Av2) = | Sy a'tnr_itxl — sign(.Sy: a’"+1)A7252: C": S, (4.92)
— fs+ ksfn — ksfnexp(—Hk,Avy) = 0. o

Note that sign(S,: o™*!) = sign(S;: o.f)). This follows from Equation (4.16) when
it is noted that Avy,; > 0 by the Kuhn-Tucker conditions and that §,:C": S, > 0 for
the material to satisfy the Second Law of Thermodynamics. Thus, the initial starting
value for a Newton iteration method can be obtained in the same manner as above.

This leads to: 1
_ |52: Utnr;al - fs + kafn

(4]
AT S,:C"™: S,

(4.23)
A similar result holds for ¢3. [

The case where all three surfaces are active requires the solution of a set of three
nonlinear equations in three unknowns:

$1(Avk) = Siiofl —AnSi1Ch S, - fr+kng" (D) =0

trial

$2(Avik) = |Se: o0 f 1| — A7252:C™: Sy — fo + kg™ T (Ayk) =0 (4.24)

trial

$3(Avk) =|S3:07 | — Av383:C™: S5 — fo 4 kg (Avk) = 0.

trial
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This set of equations can be solved, as in the single surface case, by using Newton’s method.
When doing so, the update formula for the vector of unknowns is given by

Ayt = Ay 4 6laq), (4.25)
where the the superscripts in parentheses indlcate Newton iteration numbers and
s(ayY] = ji: ge; . ' (4.26)
In the above, the vector
(1)
(&
d¥ = { ¢, (4.27)
P3
and the matrix
A 51:C": 8 — kp,Op4, g™} ~knOny,q" ! ~knOpq" ! )
g(') = S,:C": 8y — ksaA‘72qn+l “ksaﬂﬁsqn—H
sym. S3:C": S5 — kyOny,q" !
(4.28)
where
8A71qn+l = fuHkn exp(_Han+l)
41 . . (4.29)
6A72qn = aA‘Yaqn+ = ankS eXp(-—HO(n+ )
Remark 4.5.

The initial guess for the iteration scheme can be chosen by applying the same technique
as was used in the single surface case; i.e. by setting exp(—Ha™t!) = 0 and solving for
(A%, Av2°, Ay;%). Note this produces the same starting value formulae as before,
because the procedure of setting the exponential to zero uncouples the three equations.

O

Remark 4.6.
To use the expressions given above, a knowledge of the material stiffness is required.

As was mentioned before, the Sherwin-Morrison-Woodbury formula may be used to
invert the compliance expression to give the stiffness. Doing so gives

3
crtl =Cn 4+ Zrk(C": Sk)®(C™: Sy), (4.30)
k=1
where
ry = —Am
17 8 ot 4 Ay 85:;:C™: Sy
.- —872 (4.31)
2 |S2: 0™ + A 85,: C™: S, .
— Ay
T3 =

[S3:0mt | + Av3S;3:C™: S5
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Remark 4.7,
Crack closure is easily incorporated into this scheme by setting the material stiffness
to its undamaged value whenever S;:o0 < 0. Upon re-encountering a state where
S§1:0 > 0'the damaged stiffness tensor can be “recovered”. [J

4.5. Algorithmic Tangents.

When solving initial boundary value problems it is often desirable to have the algo-
rithmic tangent modulus of the material model. Note that this modulus differs from the
continuum tangent modulus as was pointed out by SIMO & TAYLOR [1986]. By following
the well established procedure presented in SIMO [1993], the tangent modulus for the case
of only the tensile surface active is given by

Cn+1 Cn -, (Sl:Cn)®(SI:Cn)
algo ™ §1:C": 8y — k2 f.H exp(—Hant1)’

(4.32)

In the three surface case, the identical procedure leads to the following expression for the
tangent modulus:

3 3
Cot =C" =YY " 3;(3:0k) ® (850;), (4.33)
k=1 ':

where the matrix § is given in (4.28). Note in particular that the algorithmic tangent is
symmetric.

4.6. Rate Effects.

As was noted before, the rate dependent case can be trivially treated once the rate
independent case has been worked out. In particular, the system of three equations that
must be solved in the rate independent case (4.24) are trivially modified by replacing A~k

by ——ﬁ—ﬂ—>é—t- This results in the following three equations that must be simultaneously

ti>ar

< oit > At < ot S A

n n, 7 . oon _
Sioyiy — (51:C 51+ ) — fn + kng “(“‘“““—n““—"*)—
n+1 n+1
< > At > At :
1200k = (SaiCm 8, 4 L)< P2 2B gy g e SOT 28 (g
7 n
n < o3t > At < ot > At
Ss: okl = (851 C72 8y + 2 TH_Z2t g (SA 22

The iteration method (4.25)-(4.28) can still be employed to solve these equations through
a couple of trivial modifications. One, replace instances of §4: C™: Sy by Sx: C™: Sy + = in
g and, two, replace d by the residual of (4.34). The starting values for the iteration scheme

<eptiac ) °
n

are obtained from the rate independent formulas by replacing Ay{ by on

the left hand side and Si: C™: Sk by §;:C": S 4+ ZL on the right hand side. The identical
substitutions also convert the rate independent algorithmic moduli (4.32) and (4.33) to
the rate dependent case.
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Remark 4.8.
The regularizing effect of viscosity (NEEDLEMAN [1987]) is now transparently seen
through its effect on the algorithmic tangent moduli. Consider the single surface case
given in Equation (4.32) which converts to

crtl . _cn (5;:C")®(5::C")
algo,visc (S]I c™: S, + 'g‘t‘) - k%aneXp(—Ha"+l) '

S~
r{'_.
(%]
(@11

R

Stability of a Newton-Raphson finite element global solver will depend strongly on
how close the denominator of the second term on the right is to zero. The effect of
the viscosity is easily seen to make the denominator more positive and to lessen any
numerical ill-conditioning caused by a small denominator. Note however that one may
be required to decrease the time step At appreciably to take advantage of this effect
— depending, of course, on the material properties. Thus viscous behavior is seen
to provide an added stabilizing effect on numerical calculations for sufficiently small
time steps — in addition to providing an implicit characteristic length scale for the

model. [

4.7. Ezample Calculations.

To close this section, a series of numerical examples are provided to demonstrate the
effectiveness of the model. The first example is concerned with plain concrete and examines
the effect of the shear surfaces ¢o and ¢3. The second example is the analysis of a notched
plain concrete beam in three point bending. The third example is the analysis of a lightly
reinforced beam under three point bending and the last example is the analysis of an overly
reinforced beam under three point bending,.

Calculations were made using either the finite element code FEAP from the University
of California at Berkeley or the finite element code NIKE3D from the Lawrence Livermore
National Laboratory. All calculations were done with 8 noded brick elements with a
standard Galerkin formulation and the characteristic length method described above.

Tapered Wedge

In this example a tapered wedge is analyzed. The geometry, material properties, and
loading for this example are shown in Figure 5; the loading is displacement controlled
across the entire top face of the wedge. The three hidden faces in Figure 5 are symmetry
planes. “Shown in Figure 6 are two load-deflection plots for the response of the wedge
on its top face. The dashed line represents the analysis when only surface ¢; (no shear
surfaces considered) is used in the calculation and the solid line represents the analysis
when all three damage surfaces are employed. The two curves remain identical up to a
displacement of 0.0013 inches where they diverge with the solid line giving a more realistic
result. This is due to the 3-D nature of the stress field near the centerline of the wedge
where the smeared crack normals are not perfectly parallel to the horizontal plane. The
result is that the imposed loading produces shear stresses across these crack planes. In the
case of the solid line, the damage surfaces ¢; and ¢3 become activated and control and
degrade this transmission of stress — resulting in the total separation of the block. In the
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case of the dashed line, these shear stresses are not controlled and eventually become the
dominant mechanism for the transfer of load across the smeared crack planes — resulting,
eventually, in the load-displacement plot having a non-physical positive slope at large
extensions. The control shear stresses (tractions) across smeared crack planes is clearly
required for problems of this nature.

Notched Plain Concrete Beam

In this example a notched plain concrete beam in 3 point bending is analyzed. The
geometry, material properties, and loading for this example are shown in Figure 7, where
the rear face and left end of the geometry shown are symmetry planes. The material
properties given are the mean values reported from experiments conducted at the Naval
Civil Engineering Laboratory on this beam geometry; see MALVAR & WARREN [1988]
and MALVAR & FOURNEY [1990]. The critical shear value was obtained from a simple
Mohr’s circle argument as half of the reported compressive strength, f! = 4206 psi; the
tensile retention value was chosen for numerical stability close to machine zero and the
shear retention value was arbitrarily set to a moderately small number. In the range
chosen the actual value of the shear retention parameter does not affect the beam'’s overall
response appreciably. The calculation itself was displacement controlled. As the deflection
is increased, the calculation results predict a narrow smeared crack originating at the notch
root and propagating up the center of the span. The resulting load-deflection curve under
the load point is plotted in Figure 8; the solid line is the calculation and the triangles
represent the mean of the data from several experimental runs. The overall agreement is
seen to be reasonably good and adjustment of the mesh and the properties would likely
improve the agreement. Note that agreement beyond a deflection of 0.018 in. deteriorates
rapidly. This is due to the fact that the response of the beam is effectively governed by
only a few 8 noded brick elements in the top fibers of the beam and these elements are
known to respond poorly in pure bending.

Moderately Reinforced Concrete Beam

In this example, a moderately reinforced beam under 3 point displacement driven
bending is analyzed. The geometry, material properties, and loading for this example
are shown in Figure 9, where the left face and the rear face are symmetry planes. This
problem corresponds to an experiment conducted by BURNS & SEISS [1962] — beam J4.
Note, however, that for simplicity the reinforcing pattern for this beam was altered by
removing the stirrups in the same fashion as in ' Kwak & FILIPPOU [1990]. The material
properties are those reported by BURNS & SEISs [1962] where indicated. The tensile shear
strength of the concrete was estimate using the relation f, = 5\/ﬁ where f! was reported
to be 4820 psi; the shear strength was estimated to be 5 times the tensile strength. The
Young’s modulus of the concrete was taken from KWAK & FILIPPOU [1990]. The remaining
concrete properties were arbitrarily set within the spread of data for concrete. For the
rebar, the hardening modulus was estimated from the experimental data.

In the calculation, as the loading is applied to the beam, a diffuse crack field propagates
up from the lower fibers of the beam with a dominant crack in the center of the span. The
cracks furthest from the centerline of the beam also curve in towards the loading. This
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description corresponds well to the observed crack pattern. Figure 10 shows the resulting
load—deflection curve underneath the load point; the solid line is the calculation and the
triangles are the data. Up to a load of about 10 kips the beam behaves elastically. At this
point the concrete starts to crack and load is transferred into the reinforcing rods (which
were discretely modeled with elasto-plastic beam elements). When the reinforcing rods
reach their yield point the beam loses almost all of its tangent stiffness, as indicated by
both the data and the calculation results in the figure. Note that in this calculation the
effects of the shear damage surfaces are not appreciable until the reinforcing rods begin to
yield and, that after yielding, the slope of the load-deflection curve is strongly governed by
both the hardening modulus of the reinforcing rods and the shear degradation properties
of the concrete. As noted in the original report and later by KwAK AND FILipPOU [1990],
for the level of loading shown, the effect of reinforcing rod slippage is minimal.

Hedvily Reinforced Concrete Beam

In this example, an overly reinforced beam (1.53% volume of rebar) under 3 point
bending is analyzed. The geometry, material properties, and loading for this example are
shown in Figure 11, where the left face and the rear face are symmetry planes; (the stirrup
spacing is 8.25 inches). The beam corresponds to an experiment reported in BRESLER &
SCORDELIS [1963] — beam A1l. The tensile strength of the concrete was estimated to be
roughly one-tenth of the reported compressive strength of 3.49 ksi and the shear strength
of the concrete was estimated to be roughly half of this value. The Young’s modulus
and Poisson ratio were taken from KwAK & FILIPPOU [1990] and the remaining concrete
properties were estimated within the acceptable range for concrete. The hardening moduli
for the reinforcing rods were estimated from the given data — note however that there is
no rebar yield in this calculation.

The heavy reinforcing pattern makes the inclusion of bar slip in this example impor-
tant. For the calculation, the bar slip behavior was modeled with a simplistic stick-slip
law which was implemented in the 1-D slideline logic in NIKE3D by MAKER & LAURSEN
[1993]. A slip value of 150 psi for a wetted area load was chosen by trial and error.

In the calculation (displacement controlled), load results in a very diffuse crack field
which propagates from the lower fibers of the beam towards the top. This crack field
eventually forms a series of prominent cracks spaced out along the length of the beam
and the overall crack field tends to point towards the load point. Figure 13 shows the
smeared crack field projected onto the outer face of the beam half way through the loading;
the intensity of the crack opening is indicated by the intensity of the shading. Note, in
particular, that horizontal cracks underneath the load point are predicted by the model.
The overall crack field qualitatively corresponds well to the observed experiment. Figure
14 shows the resulting load—deflection curve underneath the load point; the solid line
represents the calculation and the triangles represent the data. The agreement is seen to
be good. If the slippage of the bar had not been included in the calculation, the predicted
response of the beam would have diverged sharply from the actual data around a deflection
of about 0.3 inches.

85. Closure
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An. alternative framework for continuum damage mechanics has been exploited in
the design and numerical implementation of a constitutive model for the tensile failure
of plain concrete. For a given failure surface, often specified via experimental testing,
the model automatically furnishes a generally fully anisotropic damage evolution law un-
der the single assumption of maximum (damage) dissipation. Once the failure surface
is specified, no adjustable parameters are present in the model. A detailed algorithmic
treatment has been presented which addresses issues related to time integration as well
as regularization approaches leading to mesh-independent calculations. Although no spu-
rious mesh-dependencies arise, the global solution to the initial boundary value problem
generally retains the characteristic lack of uniqueness inherent to this class of problems. In
spite of recent advances, the design of robust procedures for dealing with this issue remains
unsettled.

The proposed three failure surface model for plain concrete exhibits remarkably good
agreement with experimental results, thus lending support to the hypothesis of maximum
dissipation that dictates the form of the damage rule. It is emphasized that the pro-
posed damage model for the brittle failure of concrete contains a minimal set of material
constants, which can be determined from standard tests.
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Figure 1. Smeared crack normal in the isoparametric space.



Figure 2. Standard node numbering scheme for 8 noded brick element and orientation
of crack plane for Case 1.



Figure 3. Orientation

of crack plane for Case 2.
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Figure 4. Concave character of damage surface as a function of the algorithmic
consistency parameter.



Displacement Driven Face
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Figure 5. Tapered wedge shown in one-eighth symmetry with 27 8 noded brick
elements. Material properties: E = 4 » 10°® psi, v = 0.21, f, = 400 psi, f, = 2000 psti,
Bs = 0.01, Gy = 1.72 lbs/in, and n = 0 psi-sec.
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Figure 6. Load versus displacement response for tapered wedge example. The solid
gives the response when both tensile and shear tractions are taken into account. The
dashed line gives the response when only tensile tractions are accounted for.
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Anisotropic Modeling and Numerical Simulations
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m.mmﬁ.,m 7. m.wmno element discritization of the notched plain concrete beam. The
beam is shown in quarter symmetry. Material properties reported: E = 3.15 x 10° psi,
fn = 449.6 psi, and Gy = 0.436 Ibs/in. Material properties estimated: v = 0.2, f, = 2103

psi, B, = 0.03, n = 0 psi-sec.



34

Figure 8. Load versus displacement curves under the load point for the notched plain

concrete beam. The solid line gives the calculation and the triangles give the experimental
data MALVAR & FOURNEY [1990].
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Figure 9. Finite element discritization of the moderately reinforced concrete beam.
The beam is shown in quarter symmetry with the inset showing the reinforcing pattern.
Material properties reported: (concrete) E = 3.5 x 10° psi, (rebar) E = 29.5 x 10° psi,
and o, = 44.9 x 10° psi. Material properties estimated: (concrete) v = 0.2, fn = 350
psi, fo = 1750 psi, B, = 0.05, Gy = 1.0 Ibs/in, 7 = O psi-sec, (rebar) v = 0.3, and
H = 27.0 x 10® psi.
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Figure 10. Load versus displacement curves under the load point for the moderately
reinforced concrete beam. The solid line gives the calculation and the triangles give the
experimental data BURNS & SEiss [1962].
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Figure 11. Finite element discritization of the heavily reinforced concrete beam. The
beam is shown in quarter symmetry with the inset showing the reinforcing pattern. Ma-
terial properties of concrete (all estimated): E = 3.4 x 10° psi, v = 0.167, f, = 350 psi,
fs = 1750 psi, B, = 0.05, Gy = 4.0 lbs/in, and n = 0 psi-sec. Material properties of
lower four rebar (#9’s): (reported) E = 31.6 x 10° psi, (estimated) v = 0.3, (reported)
oy = 80.5 x 10° psi, and (estimated) H = 31.6 x 10® psi. Material properties of upper two
rebar (#4’s): (reported) E = 29.2 x 10° psi, (estimated) v = 0.3, (reported) o, = 50.1x10°
psi, and (estimated) H = 29.2 x 10% psi. Material properties of stirrups rebar (#2’s): (re-
ported) E = 27.5 x 10° psi, (estimated) v = 0.3, (reported) o, = 47.2 x 10 psi, and
(estimated) H = 27.5 x 103 psi. Material properties of upper two
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Figure 13. Load versus displacement curves under the load point for the heavily
reinforced concrete beam. The solid line gives the calculation and the triangles give the
experimental data BRESLER & SCORDELIS [1963].
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