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Abstract

Enabling Synthetic Data Usage for Medical Research

by

Charlie Ann Fornaca

Master of Science in Computer Science

University of California, Davis

Professor Vladimir Filkov, Chair

Acquiring data can be a major hurdle to any data science problem. Sometimes there isn’t
enough data or, as is particularly the case for healthcare data, it may contain sensitive
information such as personal identifiers that should not be shared. By generating synthetic
health data, researchers aim to overcome obstacles of data access and privacy concerns and
thereby allow for quicker and broader use of data by the research community. Through
this thesis I have surveyed the current state of synthetic data usage in medical research,
recorded the thoughts, experiences, and opinions of synthetic data use in medical research
from interviewing medical researchers, selected synthetic data generation tools, assessed the
accessibility, usability, and efficacy of the selected data generation tool with the help of two
different use case groups, experimented with creative ways to use the chosen synthetic data
tool, and used my experiences to write resources for current and future researchers who need
assistance getting started with synthetic data generation through the UC Davis DataLab.
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Chapter 1

Introduction

1.1 Synthetic Data

Artificial intelligence, machine learning, and data science has advanced to a point in which

we can give an algorithm some data and have it return a new dataset that is both similar

and different from the original data. These datasets maintain the statistical properties and

distributions of the original data, but can also hide what exactly the original data looked

like. In medicine this means that the rows in a synthetic dataset do not correspond to

identifiable patients or individuals in the original dataset which is paramount in protecting

patient privacy.

Both statistical simulation and computational derivation can be used to generate syn-

thetic data. In just a few moments, entire populations of patients can be created that statis-

tically simulate human physiology and disease states in a multi-dimensional many-featured

space. Methods for generating synthetic patient data all follow a similar scheme: provide
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private electronic medical record (EMR) data samples, choose and fit a model, and generate

new synthetic EMR samples from the chosen model.

1.2 Contributions

This thesis is the culmination of over twelve months of research efforts. I began my

research with completing a comprehensive survey on the current state of synthetic data

through the literature to form the background and theory behind my other contributions.

To date, there hasn’t been a survey of this scale for synthetic data generation in the clinical

realm from an academic standpoint and especially not that that hasn’t had an underlying

purpose to promote a particular paper, program, or algorithm. This survey is contained in

chapter 2 of this thesis and is included as the theoretical foundation and background for my

research and experiments.

Because of this background, I was able to round up a sum of tools for synthetic data

generation and freely available medical datasets to examine and report on in detail. Once

again, this is likely the largest comparison. Most papers have been able to compare only a

few synthetic data tools and methods – particularly ones including a method or algorithm

also created by the writing team.

I also uncovered previously unknown thoughts and experiences of medical researchers on

the topic of synthetic data use. Though there has been plenty of publications advocating for

why medical researchers should use synthetic data, I could not find any papers that delved

into how medical researchers use or understand synthetic data generation tools and methods.

In addition to this novel information, I conducted new ways to use an open source syn-
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thetic data generation tool to satisfy a use case. I also generated synthetic data for an

additional use case and reported on the efficacy.

In summary, my research contributions are:

• Surveyed the current state of synthetic data usage in medical research in order to

contextualize my research.

• Used the aforementioned literature survey to develop interview questions in order to

record the thoughts, experiences, and opinions of synthetic data use in medical research

from actual medical researchers.

• Used the findings from the interviews to guide the selection of a couple of synthetic

data generation tools.

• Assessed the accessibility, usability, and efficacy of the selected data generation tool

with the help of two different use case groups overseen by some of the medical re-

searchers I connected with.

• Experimented with creative ways to use the chosen synthetic data tool and produced

promising use case data.

• Used my experiences to write resources for current and future researchers who need

assistance getting started with synthetic data generation through the UC Davis Data-

Lab.

3
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1.3 Overview of Findings

The following is a brief overview of the various findings I have uncovered during my

research for this thesis.

The literature that currently exists has high hopes for synthetic data use in medical

research and yet very few of the medical researchers that I interviewed were familiar with or

had used synthetic data in their work. I also found that most of the researchers were willing

to use and willing to trust synthetic data where it is properly cited in publications. The

researchers that were interested in using synthetic data were at a loss for how to get started

with generating their own data. There are hundreds of proprietary synthetic data tools and

much fewer open source tools.

Using an open source synthetic data tool, such as SDV, is an accessible experience. SDV

in particular can be manipulated in ways to allow for creative use with promising results for

balancing unbalanced real datasets. The efficacy of the synthetic data generated was “good

enough” for use in research by the use case teams I worked with.

1.4 Purpose of Research

My research aims to answer the question of how we can serve clinical researchers at

UC Davis by enabling them to use synthetic data generation tools. To do this, I sought

to understand why researchers use or elect not to use synthetic data, how well researchers

might know about synthetic data availability and use cases in medical research. Additionally,

I sought to determine attitudes, stigmas, and experiences with using synthetic data for

research and published studies and gauge researchers’ familiarity with synthetic data tools,
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concepts, and practices. Once I understood this, I studied insights into how these tools

could help and then be improved to meet the needs of researchers as well as how these tools

and training on how to use them can be made more accessible to the people who conduct

research in clinical areas of interest at UC Davis.

The purpose of my research can be summarized as:

1. Uncover novel information about the relationship between clinical researchers and syn-

thetic data use.

2. Find out to what extent, if any, are researchers familiar with and trust synthetic data.

3. Use the findings of the previous items to pinpoint a synthetic data generation tool or

library that meets the needs of researchers at UC Davis.

4. Understand how the proposed solution to share works, how accessible it is, and how

reliable the results are.

5. Deliver synthetic data resources to the UC Davis DataLab for current and future

researchers to use.

DataLab at the University of California, Davis

The DataLab at the University of California, Davis, strives to increase UC Davis’s re-

search impact with expertise based on data-driven projects and collaborations, support the

next generation of data-capable researchers and students by hosting workshops, and foster

and coordinate data-enabled researchers and university efforts. DataLab facilitates research

in data science and applied data science in a myriad of domains. Through DataLab, UC
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Davis researchers at any stage in their career can receive training, advice, and collaboration

services.

A Toolkit for DataLab

By conducting this research, I will be able to develop a research “toolkit” on generating

synthetic data for DataLab. DataLab toolkits are self-service reference documents that help

researchers learn more about a tool or method regardless of their skill level [6].

These toolkits are also open source projects that depend on the community to contribute

to. The research in my thesis won’t just serve current clinical researchers at UC Davis, but

future researchers from any domain who are interested in using synthetic data to supplement

their projects will also be able to use the toolkit I develop.

On October 22nd, 2021, I gave a demonstration through DataLab to the greater UC Davis

research community about how to use two of the synthetic data generation tools that I had

been comparing. From this presentation and demonstration, I have produced an outline of

the toolkit for DataLab:

1. Background information

a) What is synthetic data?

b) How is synthetic data is created?

c) Why use synthetic data in health research?

2. Tools for synthetic data

a) Synthea
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b) Synthetic Data Vault (SDV)

c) A brief listing of other tools

3. Synthea Tutorial

a) Set-up and getting started

b) Running Synthea

c) Changing parameters

4. SDV Tutorial

a) Set-up and getting started

b) Running SDV

c) Changing parameters

The development of the toolkit is already underway and I plan to have it finished by

June of 2022.

1.5 Context: The Clinical Data Access Process

Obtaining data at UC Davis can be a lengthy process for physicians hoping to conduct

research. The following section illustrates the process of gaining access to clinical data for

research.

Clinicians can only see the data of patients with an alignment to their specialty or patients

who have been referred to them. UC Davis clinicians who are doing research have different

data access rights than UC Davis non-clinician researchers [2].
7
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All physicians have access to the electronic medical record (EMR) system and many also

have access to data storage environments such as Epic Clarity and Epic Caboodle as well as

data exploration tools like Epic SlicerDicer [12] [21]. Even with a tool like Epic SlicerDicer

which is self-service [2] and the allocated access, data is still limited as physicians can view

the data in a simple form but cannot run extractions. Ultimately, data access will depend

on both the privileges of the researcher requesting the data, what tools support the data

access, and whether that researcher even has the expertise to make use of those tools [2].

Simple form A physician can query the Epic SlicerDicer tool to see whether a patient

population exists. The tool can only provide a de-identified aggregate data dashboard

[2] about the population, but cannot provide data about an individual patient contained

in the population [21].

Extraction Taking data from the EMR, Epic Clarity, or Epic Caboodle. Data cannot be

extracted without going through a specific data request process through UC Davis’s

Clinical and Translational Science Center (CTSC) [2] [21].

After defining a query, the physician can make a request to the UC Davis Clinical and

Translational Science Center (CTSC) to acquire either identifiable or de-identified data. This

process requires IRB approval due to its nature of being human subject research [2] even if

only de-identified data is requested and if the research may be considered exploratory and no

Protected Health Information (PHI) is provided. With this data, the physician can explore

what exactly was extracted from EMR to fulfill their query. What is extracted may not

always reflect what is the true state in the EMR [2]. The CTSC will work with the physician

to understand what questions the physician [21].
8

Charlie
Sticky Note
None set by Charlie

Charlie
Sticky Note
MigrationNone set by Charlie

Charlie
Sticky Note
Unmarked set by Charlie



This data that is extracted is almost never [2] organized in tidy columns. Additionally,

there may be a lack of transparency of when, if any, cleaning and evaluation stages occurred.

The data cannot be assumed to be anything without prior insight into what data transfor-

mations have been previously applied [2]. Physicians and researchers might have to extract

data from verbose doctor’s notes stored in the EMR. By the time the researcher can use the

data, it will have had to be cleaned up a bit. At this point, the realization that there isn’t

enough data may occur [21].

Instead of going through the CTSC to acquire data, a physician could contact the clinical

research coordinators and research staff. This path will require the physician or principal

investigator to acquire IRB approval to collect patient information directly from the EMR.

This process, called a “direct patient extraction” [21], which is a research data request that

involves building a query in SQL or similar query language [2], is performed through querying

for status reports over a specified time period (daily, weekly, monthly) [21] and is merged

into one of three routes depending on the research intended. These three routes are Clinical,

Clinical Research, or Research. The Clinical route is for quality assurance and patient care

studies if there is no IRB. With an IRB, quality assurance and patient care studies merge

into Clinical Research. If there is no ability granted to look at the EHR data, the extraction

is merged into Research [2].

After the data is extracted and merged, it needs to be delivered to a specified secure

location. This is especially true if the data contains any PHI. From there, the data continues

to be monitored and managed under the requirements set by the IRB [2].

At this point, research associates will look at patient records as they pass through the

specific clinics and identify candidates that match the inclusion criteria. This will only

9
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happen under the case of “prep to research”.“Prep to research” is a specific term under

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) that disallows

the researcher to view the data and instead a separate “honest” entity who is reviewing the

charts of the patients extracted from the EMR to confirm the correctness of extraction [2].

The research staff can then approach the patients and enroll them into the study. The

patients’ information is collected (manually, most of the time) from the patients through

clinical systems, workflows, and labs depending on the needs of the research as defined in the

IRB protocol [2]. The patient is tracked over the previously established time period mandated

by the studying. Changes are monitored and researchers identify exclusion criteria as they

occur [21]. This might mean monitoring patients for adverse events within a prospective

study. In a retroactive study, this would be developing a phenotype iterative based on

repeated interactions with the EHR and data sources [2].

Depending on the skill of the principal investigator and the clinical research coordinator

or the clinical research office overseeing the associated department, the data collection could

potentially be manual, manual and automatic, or rarely completely automatic. Manual data

collection is when data is collected on paper, stored in physical binders, or digitally in local

Excel files and free text notes. Manual and automatic data collection is often collected

in certain parts by hand, usually as consent documents with physical patient signatures.

Other information may be collected automatically from the EMR. Completely automatic

data collection does not happen often and for various reasons [21].

Upon reflection of this whole process, it becomes clear to see how accessible synthetic

data generation tools would benefit researchers. Synthetic patient data can be generated at

a work or research personal computer with just a few inputs and a couple clicks of the mouse.

10
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It makes sense to begin the process of acquiring the actual data and in the interim using

synthetic data to begin pre-processing data and building models. Synthetic data, including

data that mimics human subjects or patient health records, requires no IRB [26].

11
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Chapter 2

Background & Theory

2.1 Overview

In this chapter, I explore the research that has already been completed regarding synthetic

data generation methods, tools, and evaluation in the domain of healthcare. I will also

expand on the reasons why medical researchers may be encouraged to use synthetic data. .

I determined a number of common themes surrounding the use of synthetic data in

healthcare research found in the current literature. These themes are by no means mutually

exclusive of each other. For example, privacy can be an issue in and of itself but it can also

be a concern in how we evaluate a synthetic data generating method.

The following themes derived from the literature are as follows:

• Why researchers use synthetic data

• Methods for generating synthetic data

• Validating synthetic data results
12
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• Privacy concerns

• Access and ownership of real and synthetic data

• Challenges and limitations of synthetic data

2.2 Why Researchers Use Synthetic Data

There is no shortage of reasons as to why the greater research community and specifically

medical research could be using synthetic data. In fact, synthetic data has been studied for

over thirty years now [34] and the arguments for the usage continue to strengthen as more

advances in the efficacy and reliability of synthetic data are made. Synthetic data has been

a key part in research, development, and education across a number of domains.

In medicine, synthetic data usage already has a robust resume of applications. Synthetic

data helps train assistant medical AI’s such as ones that help pathologists make decisions

when diagnosing tumors. It has also been used to tune and train clinical decision sup-

port tools to help eliminate bias in diagnosing skin cancer [3].Secondary uses for synthetic

data can include education, training, software testing, and machine learning and statistical

model development. Transfer learning applied from synthetic data to real data also improves

machine learning algorithms [10].

Cost, patient privacy, confidentiality limits conducting trials and studies using real pa-

tients and their data [24]. Far from retrospective studies, synthetic data finds use in clinical

trials. Synthetic data can be used to mimic a control group of patients receiving active

therapy in early phase clinical trials [8]. Synthetic data can also be used for large trials
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that consider novel targeted therapies involving genomic gadgets. With these kinds of trials

having a large enough randomized clinical trial is impractical [8]. A concrete example of how

synthetic data can benefit medical research can be illustrated through drug responsiveness

trials. Though randomized clinical trials are regarded as the gold standard to evaluate drug

effectiveness, the phase 3 clinical trials are notably expensive. Decision-makers can be pro-

vided evidence for validly conducted studies at an accelerated rate by using synthetic data

derivatives. Thus the costs of these trials can be lowered. Trials are not often designed or

have enough power to evaluate how effective a treatment is comparatively. Using synthetic

data, studies about assessing real-world treatment effectiveness and patient outcomes can

be implemented [8].

Synthetic data can pave the way for reducing bias in medical research. Generating

synthetic data facilitates finding live-saving insights that we aren’t currently able to see

for entire populations and select demographics [27]. Bias in data collection can occur in

unexpected places when it comes to medical data. For example, second-hand data is more

readily available than the data that needs to be collected for a specific analysis or question

in a well-designed clinical trial. This ratio of readily available general data to specific case

data is unbalanced. Data that is collected in a hospital contains the data of more severe

patients that have already been diagnosed with the specific disease. Ultimately, in available

data, there are far fewer patients who do not have the diagnosis or disease of the target

study than the number of patients specifically targeted with the diagnosis [34].

A consumer revolution in healthcare is dependent on analysis of cost data. Synthetic data

can solve this issue because of how financial outcomes can be incorporated into synthetic

data generation [29]. Financial data in healthcare such as total claims, claims amounts,
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negotiated rates, and billing codes are often proprietary and difficult to obtain for economic

and social improvement studies [29]. Additionally, financial healthcare data extracted from

a hospital system’s very own electronic medical health record database can often lack as-

sociated clinical data [29]. Generating synthetic financial healthcare data with complete

synthetic patient records hardly exists in the real world. Having this kind of data with real

statistical distributions can dissolve the isolation between different provider groups and lead

to better health and financial outcomes for patients [29]. Having this particular kind of

synthetic data at the ready allows for open source community members with different skills

and backgrounds to develop solutions to enhance the value of care [29].

There are many systems of interest that fall short of good quality data. Data is scarce

due to lack of collection tools or there is a limited rate of data acquisition [13]. Additionally,

depending on the data capture process, the recordings of clinical observations can vary greatly

and lack consistency. Determining if real clinical effects were truly represented and observed

becomes a challenge [24]. Large and representative datasets are required for researchers to

develop, refine, and improve treatment guidelines [8]. Synthetic data can be used in rare

disease studies to augment existing data [8] where there is simply just not enough data to

conduct a proper study.

Data can be increasingly difficult to share across organizations especially when it contains

sensitive patient information. For this reason, medical data is not broadly available to the

larger research community due to privacy concerns [10]. Even large research and medical

institutions might lack the infrastructure and support to increase a study size or share data at

scale internally between hospital systems [8]. One might think that “simply” de-identifying

clinical data should be enough to prepare the data for sharing, however determining the
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efficacy of de-identification methods on real data have been largely inconclusive especially

for large datasets [10].

Publicized medical datasets are difficult for outside researchers to gain access to because

of patient confidentiality. Ensuring proper usage when a researcher can access a database is

a lengthy process with strict legal requirements. Because of these restrictions and time until

research results, translational benefits to patient care are severely delayed [34]. Time is a

paramount factor when it comes to performing medical research. This has been especially

important during the global COVID-19 pandemic where rapid development, testing, and

deployment has been of the essence. The benefit that synthetic data has in healthcare is

pivotal to our success in advancing medical research and practice. Some say that it is our

ethical responsibility to find ways to use all technology and scientific advancements available

to us to improve healthcare [27]. Several factors that often are the culprits of taking up time

in research can be eliminated with the availability of good synthetic data or the necessary

tools to generate data as needed. In addition to the general limitations (privacy, regulations,

laws, security, data ownership) that are associated with accessing electronic medical record

(EMR) data, the approval process of the local institutional review board (IRB) can delay

research.By using synthetic data that contains no human subjects, research can commence

while approvals are underway. IRB approval, while important and valid to structured, ethical

research, can also create difficulties in collaboration and sharing data. Additionally, research

grants can be earlier applied for if preliminary data can be extracted or generated and

analyzed before beginning the IRB application process [26].

Unfortunately, in healthcare research there is no ImageNet or MNIST equivalent of safely

collected medical data [13] [27] and the datasets that do exist for use in research are often
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limited by the dearth of data submission and collection [28]. Representative samples of

human populations are necessary to improve and develop machine learning models [28] and

if there isn’t enough data, machine learning and predictive models cannot be built with

confidence. Being able to summon a synthetic dataset allows healthcare researchers to test

the algorithms they develop. These algorithms and models can be anything such as diagnosis

and treatment recommendation systems as well as future event prediction systems [28].

Oftentimes, developing and validating a machine learning method for certain tasks doesn’t

require real data at all and a synthetic dataset would work instead [27].

2.3 Methods for Generating Synthetic Data

There are several models, techniques, and approaches for generating synthetic data.

These approaches break down further in generating healthcare data into specific methods.

For example, one method has been to produce virtual patients with completely fabricated

individual medical histories.

Goncalves et al. identify and evaluate three methods of data-driven synthetic data gener-

ation approaches including probabilistic models, classification-based imputation models, and

generative adversarial neural networks (GANs) [10]. The importance of using data-driven

methods such as probabilistic models, classification-based imputation models, and generative

adversarial neural networks (GANs) for generating synthetic data is that it doesn’t require

a subject matter expert to curate the data [10]. These data-driven methods work by using

generative models that have been trained on observed data [10].
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Independent Marginals

A simple baseline method for generating synthetic data is to sample from independent

marginals (IM). This is completed by sampling the empirical marginal distributions of each

feature in a dataset. Though this particular approach is efficient and the estimations can be

performed in parallel, IM is not able to capture the statistical dependencies found amongst

the features of the dataset [10].

Iterative Proportional Fitting & Updating

Swarup and Marathe use two methods to generate a population of agents with realis-

tic demographic attributes: Iterative Proportional Fitting (IPF) algorithms and Iterative

Proportional Updating (IPU) algorithms [30].

The IPF method is achieved by feeding the algorithm marginal distributions over demo-

graphics from a sample of household census records. IPF maintains the dependence structure

of sub-samples within the greater sample by matching these dependencies to the whole pop-

ulation’s marginal totals. Columns and rows of data are adjusted incrementally to match the

given proportion.Once a satisfactory joint distribution has been established, it is repeatedly

sampled from and matched to demographic records to create a synthetic population [30].

Similarly, using IPU can specifically generate a population of individuals and households

with realistic demographic attributes whereas IPF was only applicable to the household level.

Another folly of the IPF method is that discrepancies in the distributions at the personal

level within generated households can occur. To avoid this in IPU the sampling weights of

the household records are adjusted in such a way that the distributions over individuals in
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the synthetic population more greatly resembles the results of individual-level IPF [30].

To augment these synthetic populations further, logistic regression and direct lookup in

probability tables is used to model the evolution of a population with life events such as

aging, mortality, birth, marriage and union formation and dissolution, and migration [30].

Imputation

Imputation based approaches for generating synthetic data conduct statistical analysis

with a focus reducing the risk of disclosure of sensitive data. Multiple imputation is per-

formed and then sensitive data is actually treated like missing data. Randomly sampled

imputed values are released in the place of the sensitive data. To achieve this, both linear

and nonlinear models can be used such as generalized linear regression and random forest or

neural networks respectively. Even though imputation methods are fully probabilistic, they

may not always generate a model that estimates the full joint probability of the population

that was sampled. However, any statistical modeling method that learns a joint proba-

bility distribution is still able to fully generate synthetic data. Multiple imputation based

methods are a popular choice for generating synthetic data from sensitive original datasets.

Using multiple imputation is quick and can easily handle continuous and categorical features.

However, it isn’t always certain that using a multiple imputation method estimates the joint

distribution of the data despite being probabilistic [10].
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Bayesian Networks

Using a bayesian network creates probabilistic graphical models of nodes representing a

random feature. The edges between the feature nodes represent probabilistic dependencies

amongst the features. These graph structures and conditional probabilities are inferred from

the real data in order to create synthetic data. This is done by first learning a directed

acyclic graph from the data.This graph contains all the pairwise independent or dependence

conditionals across the features and estimates the maximum likelihood for conditional prob-

ability tables (CDP) for each feature. Using a Bayesian network to generate synthetic data

scales well with the dimensionality of the dataset that it is generating from. Additionally,

it is computationally efficient. However, the full joint distribution involved in the network

is too generate and simplifies the assumption on the structure. This will cause the resulting

synthetic data to fail at representing higher-order dependencies found in the original data

[10].

Gaussian Methods

Gaussian methods for generating synthetic data use a lower dimensional continuous latent

space and nonlinear transformations to map points in the latent space to probabilities for

generating the categorical values. Latent space is the embedding of a set of items within a

set collection of points where items that resemble each other more closely are more closely

positioned to each other. These models assume that each patient record has some continuous

latent low-dimensional representation. The Gaussian method doesn’t use fully conjugate

models, but allows for techniques to vary. The Gaussian model doesn’t model dependence
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across features but it can capture the dependence across patients. In addition, the shared low-

dimensional latent space can capture the dependence across variables or features implicitly.

Using a Gaussian model has better latent non-linear mappings than using a Bayesian model.

These mappings can represent complicated full joint distributions. Additionally, clustering

and data visualization is facilitated when using a Gaussian model because of the inferred

low-dimensional latent space. Some of the drawbacks to using a Gaussian model include how

the non conjugacy of the model complicates inference. Additional Bayesian inference method

is required to overcome this drawback. The inference of Gaussian models also doesn’t scale

well regarding the data size [10].

Even though there are bottlenecks in the computational runtime of Gaussian synthetic

data generation methods, I do not think that they should be considered. The amount of

time saved by using synthetic data is already potentially eons of time saved versus waiting

for human data use IRB approval to come through.

Generative Adversarial Networks

The class of deep neural networks (DNN) known as Generative Adversarial Networks

(GANS) are used for completing unsupervised learning tasks by creative two jointly-trained

neural networks. One of these networks generates the synthetic data that mimics the real

data and the other network tries to discriminate and judge the synthetic data from the real

data. GANs tend to be better suited for generating image data and other high-dimensional

continuous datasets. GANs are more flexible than Bayesian and Gaussian networks as they

do not require strict probabilistic model assumptions. Additionally, GANs work well with

mixed categorical and continuous data types.
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The tuning of a GAN model, however, is an arduous process that requires great under-

standing of the hyper-parameters. GANs tend to have stability issues associated with the

min-max optimization problem and are also notoriously difficult to train [10]. Though they

perform better than other generative methods such as variational autoencoders (VAE), GANs

are typically known for not being used well for learning distributions of discrete variables

[5]. The efficacy of using a GAN or other autoencoding method to generate non-image syn-

thetic data is a hot debate with mixed results from validation experiments across the board.

There is also much concern over whether synthetic data generated by using an autoencoder

is considered free of privacy risk [26].

Generative models don’t always exist in a vacuum. There have been many research

efforts to include GANs and other similar models as a supplementary method. Some other

synthetic data generation tools use a generative model to build statistical similarities. By

using a generative model, assumptions about the specific distributions of the original data are

required. This is often difficult because these shapes can be very complex or nonparametric

[9].

Process-driven Methods

Alternatively, process-driven synthetic data generation methods such as numerical simu-

lations, Monte Carlo simulations, agent-based modeling and discrete-event simulations derive

the synthetic data from physical underlying processes represented by computational or math-

ematical models. These methods tend to require subject matter expertise to shepherd the

curation of synthetic data [10].
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Tools for Generating Synthetic Data

There are several out-of-the-box synthetic data generation tools available as proprietary

resources or as open source endeavors. The following is a brief overview of some of the tools

specifically mentioned in the literature I reviewed.

There are several open-source solutions for generating synthetic data such as synthpop

and SimPop for R and DataSynthesizer for Python [10].

The research conducted by Anat Reiner Benaim et al. compares several medical research

results based on synthetic data to their real data counterparts. In addition to their own

validation efforts, they open their publication by identifying several synthetic data generation

tools that were used to provide synthetic data for various medical studies [26].

Synthea is an open-source tool for generating synthetic patients complete with electronic

health care records. The goal of the Synthea project is to be able to provide readily available

synthetic electronic health records that can be used in industry and innovation, as well as

for research and educational purposes. In addition, Synthea’s synthetic electronic health

records are free of legal privacy, security, and intellectual property restrictions [35]. Having

general population data isn’t enough for some research. Synthea can additionally generate

data based on models of disease progression and the standards that correspond to treatment

of those diseases [35]. Using public datasets and health statistics, the Java-based synthetic

data generation tool, Synthea, can imitate the outcomes and progressions for many clinical

conditions. However, because Synthea creates data based on clinical guidelines and expertise,

it may be too “ideal” to be used in place of real data [26]. Additionally, Synthea links

synthetic patient records to financial records [29].
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The Observational Medical Dataset Simulator (OSIM). OSIM. OSIM uses observations

considering features such as time, gender, and age and then generates data based on dis-

eases and drugs using the probability distributions from real data. However, OSIM isn’t

able to reflect more complex relationships due to how restrictive the format is [26]. The

Observational Medical Outcomes Partnership (OMOP) developed one of the first simulated

data programs using an empiric approach. Unlike previous models, OMOP’s Observational

Medical Dataset Simulator (OSIM) modeled the characteristics of the data itself instead of

the biological processes captured in the data [24]. Later, OSIM2 was an Oracle SQL stored

procedure that was freely available through the OMOP website. Patients are generated using

an individual Monte Carlo approach selecting values from a module [24]. OSIM2 feasibility

testing was limited to comparing data characteristics and distributions [24].

As previously explained, Generative Adversarial Networks (GANs) have also been used

to generate synthetic patient data. With large datasets, an autoencoder can learn a repre-

sentation and then generate a new representation of the data that mimics the original. The

research of Choi has led to the development of medGAN which had generally impressive

results for both generated binary variables as well as count variables. medGAN is able to

generate high-dimensional, multi-label discrete variables that can represent the events found

in electronic medical records. However, it can only generate features of counts and binary

variables. It is unable to take into account the longitudinal nature that accompanies ob-

served medical events [26]. The medGAN method uses minibatch averaging to challenge

the issue of overfitting for a few samples [5]. To validate the medGAN method, comparing

the synthetic data results to real data results was demonstrated by reporting distribution

statistics and classification performance. Additionally, a medical expert reviewed the results
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[5].

Another GAN-based synthetic medical data generation tool, MDClone, seems to consis-

tently perform well in studies that pit the original data against synthetic data generated with

MDClone [9]. MDClone is a tool that directly queries an EMR based on what is of interest to

the researcher. It then generates a synthetic dataset based on the freshly-fetched underlying

queried data. To achieve this, the algorithm uses a covariance measure to generate all the

variables together. It does not assume the underlying distributions and Anat Reiner Benaim

et al. claims that it allows for the discovery of relationships that are not previously known

before loading the data [26].

MDClone works by querying the actual data and then generating an obfuscated syn-

thesis [26]. This is implemented by using an algorithm that is multivariate and generates

the variables all together using a measure of covariance [26]. To support patient privacy,

values of populations that may be grouped and considered identifiably unique, are censored

and the algorithm continues to derive statistical characteristics from the data thus giving

the synthetic dataset similar properties [26]. Though I highly value the research done by

Anat Reiner Benaim et al. and it is important to criticize developing methods of medical

data synthesis, I am skeptical about the claims made in their comparative study. In their

study, they claim that MDClone, a proprietary software, has been used in their institute’s

information technology platform since 2017. Though they may be familiar with MDClone,

I am inclined to reject the praise they bestow upon the tool in their comparison.

Finally, a handful of synthetic patient models will build groups of patients. These groups

are then used to create individual patients. MDClone uses this technique to generate entirely

new synthetic patients. Because of the extra “jump” in generating these synthetic patients,
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original patient privacy is confidently assured [9].

Virtual Patient Models

Kartoun has proposed a method for creating repositories of virtual patients called elec-

tronic medical records bots or EMRBots. These bots are generated from the given configu-

ration of population-level and patient-level characteristics. Kartoun makes it clear that this

methodology should be used for training, education, assisting in hackathons, and develop-

ing computational methods. Kartoun advises that these EMRBots are not ideal for use in

studying or predicting outcomes for real patients [18].

A unique feature of the virtual patient model described by R. Shamsuddin, B. M. Maweu,

M. Li, and B. Prabhakaran [28] is that this particular method can include synthetic time-

series data. Time-series data has proven to be a challenge to generate for medical research

purposes and is often cited as a limitation to what we can emulate with synthetic data.

R. Shamsuddin, B. M. Maweu, M. Li, and B. Prabhakaran were able to achieve this by

implementing a genetic algorithm.

Other Methods of Data Synthesis

Other approaches to population synthesis reweighting methods like combinatorial opti-

mization and generated regression weighting (GREGWT). For example, combinatorial opti-

mization estimates a micro-population by stochastically reweighting the given micro sample

data. It then randomly allocates individual points of data to each feature and iteratively

replaces the data based on how it improves the fit [30].
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Tucker introduces a method of generating synthetic data based on probabilistic graphical

models [34]. One simple approach to generating synthetic data is to add noise to existing

real data. Usually this will not be enough to protect patient privacy in the case of medical

data. This can be slightly improved by using a distribution such as a Laplace mechanism

[34].

Another method is using generative models of data that can capture relationships be-

tween data features. Sometimes these relationships must be hardcoded. Other times, these

relationships can be inferred using Bayesian networks and neural networks [34]. After a

Bayesian or neural network can identify the relationships present in an existing dataset, a

GAN could be a possible solution for generating synthetic data. It is said that GANs can

be used to create a more robust and less biased dataset than one generated on the real data

alone [34].

Researchers commonly use Synthetic Minority Oversampling Technique (SMOTE) to

resample data in machine learning when working with unbalanced samples. The synthetic

data points generated using SMOTE are then used to supplement the existing data [34].

Synthetic Databases

Synthetic data databases are also available for researchers to utilize. For example, Gretel

is an open-source synthetic data library that can generate electronic health records while

maintaining the privacy of the patients in which the data was derived from [36].
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2.4 Validating Synthetic Data Results

To test the robustness of synthetic data, traditional statistics, machine learning ap-

proaches, and spatial representations of the data can be used [9]. Because different methods

of data generation have different evaluation metrics, comparing data generation methods is

difficult [10]. There is a dearth of discussion and agreed-upon metrics for synthetic data

validation [10].

What will be considered “good” synthetic data has the potential to vary greatly. Aspects

of data that might be satisfiable when developed for a time series study, for example, might

not suffice for a static study [27]. Additionally, requirements for the evaluation of synthetic

data will depend on what the intended usage of the dataset was. For each need in healthcare,

such as predictions, survival analysis, clinical trials, causal inference, and decision-making,

specific types of synthetic data, performance metrics, and evaluation methods will also be

required [27].

We need to validate synthetic data in order to ensure that biases, overfitting, and high

variance can be discovered and accounted for [34]. To be effective at imitating electronic

medical records, the synthetic data generated should reflect both linear and nonlinear rela-

tionships between features. In addition, the data should also consider the temporal arrange-

ment of medical events [26]. The fidelity at the individual sample level should make sense for

generated data. For example, a cisgender male patient shouldn’t have gynecological records

generated [10]. If a trained machine learning model performs well on synthetic data, then it

is indicative that the synthetic data is similar to the real data [17].

Some may agree that effectiveness of synthetic data can be measured by how closely the
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generated dataset resembles and reflects the original data. In M. van der Schaar and N.

Maxfield’s article, it is stated that synthetic data be compared “in terms of the joint distri-

bution of features,” which takes into account the multidimensionality of datasets especially

in medical research [27]. Marginal and joint distributions of features should also make sense

bringing fidelity at the population level [10].

Though this isn’t a priority in my thesis research, privacy preservation should also be a

metric of concern [10].

Common Metrics for Validation

The simplest approach for validating synthetic data is to compare the distributions of

the columns across the original and the resulting synthetic dataset. The distributions for all

datatypes should match [36].

Kullback-Leiber (KL) divergence doesn’t measure dependencies among features. It can

successfully measure the probability mass functions (PMG) for each given feature. When

both synthetic data and real data distributions are identical, the KL divergence is zero.

The higher the value, the more divergence is observed between datasets [10]. Because KL

divergence or relative entropy measures how one probability distribution is different from a

second, features that have a high KL divergence may not be ideal for synthetic data. This

could be due to randomness or other limiting factors [36].

Insights and relationships must also be maintained across the features of a generated

dataset. By measuring the correlation using a method, such as Pearson’s correlation coeffi-

cient, between two values can be quantitatively expressed [36]. Pairwise correlation difference

(PCD) measures correlation between features. The smaller a PCD value is, the more similar
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the synthetic data is to the real data. PCD specifically measures the difference in terms of

the Frobenius norm of the Pearson correlation matrices [10].

Measuring log-clustering metrics demonstrates the similarity of the underlying latent

structures of the clustering in the synthetic and real datasets. Cluster analysis is performed

on a merged synthetic-real dataset. Large values of the log-cluster metrics indicate differences

in the distribution of the synthetic and real data [10].

Support coverage metrics measure how coverage of the synthetic data features support

the real data. The ratio of the cardinalities of a feature’s number of levels is considered.

This metric can catch if a synthetic dataset is not representing less frequent categories [10].

Cross-classification metrics capture how a synthetic dataset represents the statistical

dependence structures that exist in the original data. Using this technique measures depen-

dence using the predictions generated for one variable based on variables using a classifier.

There are several classification methods that can be used for this metric [10].

Comparing the synthetic data and the ground truth data in machine learning classifica-

tion tasks and sensitivity analysis can give insight into the efficacy of the generated synthetic

data [34]. Essentially, a comparison between any two algorithms that were used on synthetic

data should reflect the comparisons of the same two algorithms on real data [17]. The metric

is improved when more algorithms are included [17].

Alternative Validation Methods

Tucker’s study uses chi-squared, KS, and KLD tests between the real data samples and

the synthetic data samples [34].

Instead of evaluating the synthetic dataset as a whole, Alaa et al. proposes auditing
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each individual sample to test their quality. If a single sample doesn’t appear authentic

according to their evaluation metrics, the sample is discarded from the dataset. Thus the

entire remaining dataset is improved [1].

Alaa et al. propose a three-part approach to validating the effectiveness of synthetic

data: fidelity, diversity, and generalization. Fidelity is the quality of a model’s synthetic

samples and can be measured with α-Precision which is the fraction of synthetic samples

that resemble the “most typical” α real samples. Diversity is defined as the extent to which

these samples cover the full variability of the real samples. Diversity is measured using β-

Recall which is the fraction of real samples covered by the most typical β synthetic samples.

Lastly, generalization is the extent to which a model overfits, thus copying, the original

training data. This measure is quantified by an authenticity metric implemented with a

hypothesis test for data copying based on the observed proximity of synthetic samples to

real ones in the embedded feature space [1]. Alaa et al. claims that using α-Precision

and β-Recall works better than using typical precision and recall techniques to evaluation

synthetic data because the actual probability densities of both distributions are taken into

consideration [1].

Autoencoding methods such as GANs cannot be properly evaluated using likelihood

metrics. This is because likelihood metrics including log metrics do not scale well in highly

dimensional spaces. Additionally, points of model failure are blended into one number that

does not give much context as to where the model is failing [1].

In previous research, time-series data has been particularly challenging to generate [28].

However, we see methods now for generating synthetic time-series data [27]. A comparative

analysis of time between two points (such as time between similar conditions, time between
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sequential conditions, number of days with conditions, time between first and last conditions

of the same type, time between similar drug starts, time between consecutive drug starts, and

number of days with drug starts) can help evaluate the longitudinal fortitude of synthetic

data. Feasibility for lengths of time can be analyzed using correlation coefficients (R2̂) [24].

In R. Shamsuddin, B. M. Maweu, M. Li, and B. Prabhakaran’s paper, the effectiveness

of using synthetic data in their machine learning algorithms is done by using a compara-

tive analysis of predictive outcomes. Models such as support vector machine (SVM), naive

Bayes, and “bagging” were used to measure how successful the synthetic data reflected the

relationship between the labels and features [28].

The van der Schaar Lab has defined an approach to measuring synthetic data quality

called Synthetic Ranking Agreement (SRA) [17]. This method enables researchers to choose

the best algorithms to try on real data after comparing the performance of trained and

untrained machine learning algorithms on synthetic data. This allows algorithms to be

passed to the real data tenant if they were developed separately from the final tenant. The

method of SRA entails comparing a smaller set of algorithms over time in order to develop

the machine learning algorithm. Curiously, the creators claim that to score highly using

SRA, it does not need the synthetic data to be distributed in the same way the real data

would be [27] [17]. Additionally, the van der Schaar lab has tested the SRA method with

another metric, Synthetic data and Testing on Real data (TSTR), and has concluded that

SRA has stronger privacy guarantees than TSTR [17].
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2.5 Privacy Concerns

Using synthetic data can mitigate the risk of invading patient privacy when forming

research hypotheses and estimating analyses [26].

There are no standards or universally accepted definitions that are quantifiable for data

“identifiability” [27]. Officially, there are no tangible requirements set in stone for privacy

regulatory efforts. Neither the General Data Protection Regulation (GDPR) of the European

Union nor the United States’ Health Insurance Portability and Accountability Act of 1996

(HIPAA) is able to provide the proper definitions, safeguards, or reassurances for data privacy

[27].

There is risk even in de-identified datasets. The possibility of linking de-identified patient

data to other datasets (such as social media data) can open up new risks for patient identifi-

cation [34]. Removing identifiable features, “perturbing” them by adding noise, or grouping

variables into broader categories to ensure that there is at least more than one individual in

each category are all current approaches for obscuring or de-identifying patient data [34].

Simply de-identifying data does not completely eliminate the risk of privacy concerns.

Residual patterns can still be distinguished using features such as diagnoses, lab tests, visits

across healthcare providers, and genomic variants [5]. Though generating data can cre-

ate less-risky, workable synthetic patient data, data synthesis is not itself a method for

anonymization or de-identification [8]. Data anonymization techniques in generating syn-

thetic data often include aggregation, subsampling, and adding noise . Aggregation general-

izes certain features of a dataset by associating a higher category to some of them. To achieve

the target population size, subsampling is derived from a larger population. These tech-
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niques, however, generate some skepticism in the quality of the resulting synthetic dataset

[9].

I will not be focusing on evaluating privacy metrics in the scope of my master’s thesis,

but it makes for an excellent topic for further research. Some researchers use the term

“differential privacy” as a metric to measure how well synthetic data obfuscates or departs

from the real data in which it was generated from [27]. For quantifying privacy itself, the

closeness of individual synthetic data to real patient data can be scored by using outlier

statistics and distance metrics [34].

2.6 Access and Ownership

Data guardians, not data users, are the entities that set the terms for providing data

for distribution or research [27]. Data shareability essentially solves the issue of being able

to reproduce research [27] as private medical datasets cannot be shared with third parties

wishing to verify models [26]. Lack of data ownership in the hands of the patient makes

receiving care and resolving financial matters for care a lot harder [29].

Sharing data between research and hospital systems is essential for developing cross-

institutional and generalizable insights in medical research [8]. Comparing and contrasting

new patient data with other hospitals and health organizations on a local and global scale

can greatly improve the process and speed of treating patients [36]. Being able to combine

different datasets from across institutions also helps to create a more comprehensive view of

the proverbial patient [8].

Sharing data and synthetic data derivatives across institutions can shorten the idea-
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to-insight time from years down to hours [8]. This increases efficiency and lowers costs

for research and development [8]. This can be done much more easily than sharing real

data across institutions. Synthetic data isn’t subject to the same regulatory and ethical

impediments for sharing, securing, storing, and transferring [26]. Sharing synthetic data

enables out-of-organization researchers to access data similar to the real data without the

risk or regulations that come with sharing real data.

Synthetic data can be generated and distributed across domains, not necessarily just

healthcare. This allows for many researchers to build models and algorithms to use on the

real data once returned to the original data holder [17].

Patient files can vary across systems and even within the same system. For example,

multiple patients may have the same type of appointment in a hospital, then have the same

type of lab work done in the same building. However, the data recorded in the files may

vary. This variance is wasteful, harmful to patients, and reduces the speed of care access to

patients [29].

Having a third-party platform to create synthetic data installed on an institution’s data

storage systems can reduce data ownership concerns.The data created from a proprietary

software can often be combined and shared across institutional boundaries. Sharing synthetic

data lessens legal and ethical barriers traditionally encountered in sharing real patient data

[8].
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2.7 Challenges and Limitations for Synthetic Data

No agreement has been formally established on how a synthetic dataset should be gen-

erated. Researchers note that defining domain and model neutral evaluation for synthetic

data generation models is both important but has yet to be universally agreed-upon [1]. As

early as 2018 there hasn’t been any approval from the Food Drug Administration in the

United States on guidance of using synthetic datasets for studies [8]. To complicate matters

further, we do not yet know if drug responsiveness studies are better predicted using fully

synthetic versus even a partially synthetic dataset [8].

Most of the research on the validity of synthetic data has been focused on structured data.

More research on the validity of synthetic medical imaging and natural language processing

(NLP) data is called for [26].

As a recurring theme: bad data generates bad data or as is heard frequently in the realm

of data, “garbage in, garbage out”. This is also true when generating synthetic data from

ground truth data. Certain general trends of a dataset can be replicated in the synthetic

dataset [8]. If the data being fed to the synthetic generation model is flawed, biased, or oth-

erwise captures a trend, these respective properties will likewise be reflected in the resulting

synthetic datasets.

Even highly-structured data can also be incomplete and imperfect. Results from syn-

thesizing data are drawn directly from the original data [26]. Missing values can cause a

limitation to generating synthetic data. Because imputation of missing values can vary from

researcher to researcher, inconsistencies may arise in how the data is generated either by

researcher input or algorithmic decision [26]. Missing data, which is quite commonly found
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in medical datasets, can have a myriad of effects on how synthetic data from the dataset is

generated. During the modeling process, missing data must be accounted for. Missing data

may have value in itself or be a part of a greater pattern of missing data. When put to the

test, Tucker found that distributions are generally closer to the original data when missing

data is preserved and included in the model [34].

Low sample size, high sparsity, high dimensionality, and highly irregular distributions can

affect the resulting generated synthetic data and also how it can be interpreted compared

to the real data [9]. Small populations can be a challenge for synthetic data generation

because they can limit the quality of statistical characteristics especially for high-dimensional

multivariate distributions and outliers. In addition, a small population used as seed data

can create a selection bias if there are safeguards for protecting identifiable features leading

back to a specific patient in the original data [26].

Another challenge is getting the synthetically generated data to be “different enough.”

This is a challenge because, yet again, of the lack of any particular standards to hold synthetic

(and as we’ve seen previously, the original data) to. The data shouldn’t be so similar as to

risk a breach in personal information and privacy. The aforementioned SRA technique of

the van der Schaar Lab supposedly overcomes privacy issues because of a characteristic of

the method where the distribution of the synthetic data doesn’t have to match the actual

data that it will be implemented on [27] [17].

Individual synthetic data generation methods and tools also come with their own chal-

lenges. Such as with OSIM2, some synthetic data methods cannot precisely approximate the

clustered nature of encounter-based data. Models may assume that the relationships of cer-

tain features remain stable over time when in reality that may not be the case [24]. MDClone
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also struggled with converting longitudinal data into a format that facilitates synthetic data

generation [9].

Medical research presents plenty of unique challenges for synthetic data. The temporal

nature of many types of health data can impact the production of realistic synthetic data

[34].The delicacy of patient privacy exacerbates some of these challenges. Eliminating the

issue of patient data re-identification via the use of synthetic data comes with the trade-off

of potentially relying on domain-specific knowledge bases and curating the generated data

manually [10].

The main challenge of generating high-fidelity synthetic patient data is preserving rela-

tionships, distributions, predictive capabilities, and patients’ privacy [34]. Patient records

are usually high-dimensional datasets and have complicated distributions [27]. This is fur-

ther complicated by small numbers of people who have rare diseases or may be an outlier

[27]. This makes it more of a challenge to represent the complexity of a realistic patient

without duplicating a specific individual’s data [27].

The “black box” problem is an additional challenge faced when generating synthetic data

for medical research. The black box problem occurs when the relationships between features

are not explicitly identified and biases arise from this. Unwanted correlations are not easily

identifiable either. Some suggested approaches to handle the black box problem include

using a probabilistic graphical model and tree-based models [34].

Multivariate categorical data in high dimensions with a dependence on the structure

of the data is common in electronic health records. Though Bayesian networks could be

used to smoothly handle this kind of data, Gaussian and Dirichlet mixture models are more

flexible non-parametric models that don’t necessarily require the aforementioned dependence
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structure [10].

2.8 Propositions

An analysis of existing synthetic generation tools and methods reveal that some may

be an accessible option for clinical researchers at UC Davis. Furthermore, an analysis of

experiences, thoughts, and opinions on synthetic data use in healthcare research reveals how

DataLab can support researchers at UC Davis. By experimenting on a set of use cases with

some of these tools, we can affirm whether they are viable solutions to offer our medical

researchers as they come to DataLab for assistance with generating synthetic data.

2.9 Scope

The scope of this study covers what a researcher comting to the UC Davis DataLab would

expect to benefit from.

Open source promotes an advancement of common, community-driven computing. Most

open source tools and repositories are free to use and contribute code to. Because of this,

using an open source tool would be cost-effective and time-effective as most proprietary

tools do not list their pricing information and require that you request a demonstration or

consultation session with a non-engineer representative before moving forward.

A Python library solution would be ideal since my familiarity is with Python and the

typical modern data science stack (Numpy, Pandas, and Scipy). A library that is open source

and has a robust community of developers and users is optimal.
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Most importantly, the tool has to have good efficacy and meet the researcher’s needs. The

tool will have to be flexible enough to cover the wide array of data types and relationships

found in medical research.
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Chapter 3

Methods

3.1 Introduction

I used three methods to carry out my research. First, I researched the tools that are

available for synthetic data generation. I interviewed several clinical researchers at the

University of California, Davis. Finally, I worked with two different research teams and

applied a selected synthetic data generation library that meets their needs. We conferred on

what metrics should be used and evaluated the resulting synthetic data.

3.2 Synthetic Data Tools Research Design

Using the literature that I reviewed, I searched for tools that can be potentially used

for my use case experimentation, written into DataLab educational toolkits, and eventually

adopted for use by our medical researchers. I also included some open medical datasets

available on the internet that were also mentioned in the literature.
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To compare the synthetic data generation tools, I maintained a Google Sheets table

containing the name, a link to the tool’s documentation, how the tool is procured, data

requirements, whether the tool is open source or a proprietary service, any associated pub-

lications, how the tool handles data privacy, a brief description and assessment, and any

additional notes.

It was sometimes challenging to track down the tools that were previously discussed in

the literature. I found that some of the names of tools may have changed as well as the

ownership of the tool. Some tools that were open source were purchased by companies and

no longer accessible for me to test out in my research. I encountered a lot of dead links when

following the links included in the bibliographies of the papers I read.

I chose this table approach to evaluate the tools because it allowed me to reduce my list

to just a few viable options. This also gave me the context of tools that were general purpose

or for purposes completely unrelated to medical research.

3.3 Interview Design

Interviewing researchers at UC Davis allows me to collect qualitative data in order to

build a framework surrounding my research objectives to:

• Understand using synthetic data or electing not to use synthetic data from the per-

spective of researchers.

• Understand the context of specific situations and actions in how synthetic data fits in

a researcher’s personal schema.
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• Understand how well researchers might know about synthetic data availability and use

cases in medical research.

• Determine attitudes, stigmas, and experiences with using synthetic data for research

and published studies.

• Determine researchers’ familiarity with synthetic data tools, concepts, and practices.

• Determine insights into how these tools could be improved to meet the needs of re-

searchers.

• Determine insights into how these tools and training on how to use them can be made

more accessible to researchers.

I developed a series of interview questions to gain insight into the above objectives. The

questions would be used to explore researchers’ experience level with synthetic data.These

semi-structured interview questions are as follows:

1. Once the data is retrieved, cleaned, and prepared for analysis, do you have enough of

it?

2. Does the amount of available data ever discourage certain studies?

3. What options do the researchers have if there is not enough data for a study?

4. Have you heard about synthetic data use in research?

5. Have you ever used synthetic data?

6. How did you generate your synthetic data?
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7. Were there any challenges to generating your synthetic data?

8. Is there anything you know now that you wished you would have known when you

began using synthetic data?

9. Why did you use synthetic data?

10. Did you generate synthetic data from data you already had?

11. Is pure synthetic data enough to use in a study?

12. Do you use a hybrid of synthetic and actual data?

13. What validation do you need for synthetic data to be useful?

14. If you feel that synthetic data is not ideal, what would make it “good enough”?

15. In your opinion, what are the pros and cons of using synthetic data?

16. Do you have any cultural reasons not to use synthetic data (i.e. stigma)?

17. Do other researchers frown upon using synthetic data?

18. Can you publish your research if you use synthetic data?

19. If you knew that there are cited studies that have used synthetic data would you be

more inclined to use it?

20. Could we have gained something (during COVID) by using synthetic data when there

wasn’t enough in time?

21. Clinical vs. Research – would you use synthetic data in one but not the other?
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After developing my interview questions, I trained and applied for IRB approval for

human subject research. Following the approval (IRB number: 1751771-1), I networked to

find UC Davis medical researchers to be interviewed.

To perform the interviews, meetings were conducted over Zoom, a secure video and voice

conferencing software.This software was necessary because the research took place during

the COVID-19 pandemic.

Tracking down willing medical researchers that work with large amounts of data who

actually have time to sit on a Zoom call for thirty minutes to an hour was a challenge. Most

of my sample of research participants were referred to me by each other. The sample is not

very representative of the entire population of medical researchers at UC Davis nor is it very

large.

Going into this part of my research, I expected a great deal of skepticism of synthetic

data use in medical research based off of what I learned in the literature review. I also

hypothesized that researchers would be moderately familiar with synthetic data tools.

Sample

I interviewed eight different researchers associated with the University of California,

Davis, in the School of Medicine. For the researchers that I interviewed, the specialities

and areas of research are outlined in the included table.
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Subject Specialty Title(s) Date of Interview

A Vascular Assistant Clinical July 8th,

neurological Professor, MD 2021

emergencies

B Pulmonology, Assistant Professor of July 9th,

Critical care, Clinical Medicine, 2021

Internal medicine MD, MAS

C Critical care Clinician, Clinical July 26th

Researcher, MD 2021

D Point of care, Clinical Nurse Scientist, July 30th,

novel technologies PhD, RN 2021

E Quality improvement, Assistant Adjunct Professor, November 1st,

Critical care PhD, MBA, MSN 2021

F Clinical data Senior Data Engineer, November 2nd,

Data Scientist, MS 2021

G Psychiatry, Leadership role, November 9th

Behavioral Medicine MD 2021

H Vascular and Radiology Assistant Professor, January 3rd

Interventional MD, PhD 2022

Radiology

Table 3.1: Subject list of researchers that were interviewed.

Interview Methodological Assumptions & Limitations

There are a few notable assumptions and limitations to my interview subject list. First,

all researchers interviewed are associated with the UC Davis School of Medicine. This means

that their experiences and the scope of the interviews are going to be limited to this particular

school in this particular university. Though some of the researchers work with data across

the different University of California campuses and with some start-up companies in the

neighboring San Francisco Bay Area, the experiences of the researchers are assumed to be
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linked geographically to California.

Second, as mentioned previously, this is only a small sample of clinical researchers. UC

Davis Health & the School of Medicine has hundreds of clinical researchers from a myriad of

specialties. I was only able to connect with eight busy researchers. Some of the researchers

in this group were actually recommended by each other. The close connection between this

particular group of researchers could be of concern if opinions shared between researchers

are based on familiarity or proximity.

3.4 Use Case Design

The purpose of experimenting with two different use cases is to investigate the practical

approaches to synthetic data generation for two approaches:

1. How fully generated data based off of parameters performs for the use case.

2. How generated data to augment existing datasets performs for the use case.

Synthetic Data Vault (SDV)

I chose the Python library, Synthetic Data Vault, or SDV to generate synthetic datasets

for my use case teams. SDV was easy to install into my Python Anaconda environment,

has fairly good documentation, is open source with a lively community accessible by Slack,

a communication chat platform commonly used by technology teams and workplaces. SDV

was originally developed by the Massachusetts Institute of Technology (MIT) Data to AI

Lab in 2016.
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SDV has four models available for single tabular data:

GaussianCopula (Sometimes just referred to as “the Gaussian model” throughout my

thesis) Copulas are functions that describe a joint distribution of multiple random

variables by analyzing the dependencies between their marginal distributions [20].

TVAE Tabular variational autoencoder (TVAE) is an autoencoding method for mixed-type

tabular data generation. TVAE differs from existing VAE models by the alteration of

the loss function [37].

CTAN Conditional Tabular Generative Adversarial Network (CTGAN) is a GAN method

that models tabular data distributions and rows from the original data’s distribution.

CTGAN uses mode-specific normalization [37].

CopulaGAN CopulaGAN is a modification of the CTGAN model. It uses a cumulative

distribution function (CDF) based transformation that the GaussianCopulas apply to

facilitate learning the data by the underlying CTGAN model [20].

SDV also has an extensive testing suite that offers many metrics to gauge the efficacy of

the synthetic data that has been generated. Below is a small sampling of some of the metrics

that were most notable and potentially useful to use in the evaluation of the use case data

along with some commentary and concerns surrounding the evaluation approaches.

Some of the choice statistical approaches included:

Kolmogorov-Smirnov test This metric uses the two-sample Kolmogorov-Smirnov (KS)

test to compare distributions of columns with continuous values using the empirical

cumulative distribution function (CDF). The output for each column is 1 minus the
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KS test statistic. This score indicates the maximum distance between the expected

CDF and the observed CDF values [20].

For the KS test, the value returned is 1-D where D is the KS test statistic. This

statistic is a measure of the maximum distance between the two distributions. Since

this works on probabilities and is an absolute value it must be between 0 and 1. D will

equal 0 if the two distributions are identical. Therefore, for output from the KS test,

numbers close to 1 are viable values.

Chi-Squared test This metric uses the Chi-Squared test to compare the distributions of

two discrete columns. The output for each column is the CSTest p-value, which indi-

cates the probability of the two columns having been sampled from the same distribu-

tion [20].

When using SDV’s CS test, p-values are returned and the CS test is testing the null

hypothesis that the distributions across categories is the same between the original and

synthetic datasets. This may be a bit dubious due to sometimes with very large sample

sizes the null hypothesis can be rejected for small, clinically non-significant deviations

while for small sample sizes the null hypothesis can easily fail to be rejected due to lack

of power. This could cause clinically meaningful deviations to be missed. However,

SDV’s CS test is still simple to calculate and is a familiar statistic.

The CS test as it is provided in SDV’s evaluation can be used to assess distributional

similarity but should be interpreted within the context of the observed frequencies.

Both the KS test and CS test assess whether the distributions are similar between the

synthetic and real data.KS tests are applicable to numeric data while the CS test is for
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categorical variables. According to the SDV documentation, if the test is provided with two

data sets it will automatically only apply the KS test to numeric variables and CS test to

categorical variables [20]. The documentation does not specify how the test will determine

whether your features are categorical or numeric. We can assume that data types that are

a float or integer, for example, are assumed to be numeric.

Likelihood metrics attempt to fit a probabilistic model to the real data and later on

evaluate the likelihood of the synthetic data on it. Some notable likelihood metrics offered

by SDV are:

Bayesian Network This metric fits a Bayesian network to the real data and then evaluates

the average likelihood of the rows from the synthetic data on it [20]. It was determined

that the log likelihood metric below would be a better likelihood metric than the regular

Bayesian network metric offered by SDV.

Log Bayesian Network This metric fits a Bayesian network to the real data and then

evaluates the average log likelihood of the rows from the synthetic data on it [20].

Gaussian Mixture This metric fits multiple Gaussian Mixture (GM) models to the real

data and then evaluates the average log likelihood of the synthetic data. GM models

are a sort of k-means clustering that assumes all data points are generated from a

mixture of a finite number of Gaussian distributions with unknown parameters [25].

If these models can capture the between-variable correlation structure of the data or if

they are building independent models for each variable, then the offered likelihood metrics

will be both viable and valuable for evaluation the synthetic data/ However, there is not
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enough information in the documentation nor in any of the documentation’s citations with

additional info that would help to assess this.

Detection metrics measure how hard it is to distinguish the synthetic data from the real

data by using a machine learning model. The metrics mix the original data and the generated

synthetic data together with flags indicating whether the data is real or synthetic. It then

cross-validates a machine learning model that will attempt to predict the flag. The output of

the metrics will be the 1 minus the area under the average receiver operating characteristic

curve (ROC) across all the cross-validation splits [20].

Logistic Regression Classification A detection metric based on a Logistic regression

classifier from scikit-learn, a free machine learning library in Python.

SVC Classification A detection metric based on a Support Vector Classifier (SVC) also

from scikit-learn.

A limitation and concern of the detection metrics that SDV offers is the uncertainty

of what the default settings are. The documentation for the evaluation does not go into

further detail. For example, are they fitting a straight logistic regression or are they using a

penalized approach such as ridge, LASSO, or elastic net? If SDV is using a straight logistic

method, is it using a stepwise procedure based on p-values? If so, how does it handle high

correlation among variables? If using a penalized approach, which approach are they using?

Furthermore, which cross-validation approach is being used to select penalty parameters? Is

there a training and testing split or is it using the full data?

Finally, SDV also offers machine learning efficacy metrics. These metrics are evaluated

by trying to solve a machine learning problem and can only be used on datasets that contain
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a target column that can be predicted using the rest of the data [20].

Other Python Libraries and Tools

In addition to using the SDV library to generate synthetic data, I used several other

libraries commonly used in the Python data science stack. I performed my coding with

Jupyter Notebooks [19] in an Anaconda Python 3 environment.

Pandas Pandas is an open source community-supported data science and analytics library

for Python. Pandas gives access to the DataFrame object which is a flexible table-like

data container. Pandas allows for easy reading and writing of data from or into a

variety of different file types. It also makes reshaping, filling, computing data easy and

perfect for this research [33].

NumPy Though used a bit less frequently in this endeavor, NumPy is an open source

library that enables numerical computing with Python. It allows use of the NumPy

array data type [11].

Matplotlib Matplotlib is a Python visualization library that facilitates rapid plotting of

data within the Jupyter Notebook [14].

Plotly Plotly is a free and open source Python graphing library [15]. The interactive capa-

bilities of using Plotly visualizations facilitated exploration of the data.
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Liver Oncology

The liver oncology data comes from the UC Davis DataPath, a standardized warehouse

maintained by UC Davis. It is a de-identified dataset with features including:

• An identifier, gender, race, ethnicity, age, status of cancer, status of diabetes, HIV

status, hypertension status, and obesity status

• Several kidney measurements such as blood urea nitrogen and creatinine

• Information about the patients’ electrolyte levels including platelet count, sodium, and

potassium

• Liver metrics such as Alkaline phosphatase (ALP), Alanine aminotransferase (ALT),

Aspartame amino transferase (AST), and bilirubin

• One fasting lipid profile, cholesterol

• Liver scarring such as fibrosis-4 (fib-4) metrics

• Finally, a column indicating whether or not the patient developed cancer

The goal of this use case is to create a balanced outcome dataset based on the demo-

graphics represented in the original data. Structuring the division of the data generation and

essentially experimenting with how the tool can be used is the method for achieving this.

The team acknowledges the limitation of losing precision but in turn gaining an increased

N-value for certain population demographics. The demographics represented could ideally

be any feature column. In this study, race, ethnicity, and gender will be the primary focus

of how the data is to be balanced.
53

Charlie
Sticky Note
None set by Charlie

Charlie
Sticky Note
MigrationNone set by Charlie

Charlie
Sticky Note
Unmarked set by Charlie



To balance the data by structuring how the SDV tool is used, I use the GaussianCopula

model. As discussed in the literature, GAN methods would not be the ideal method to use

since the data is tabular and not, for example, composed of images. The general procedure

I created for achieving a balanced dataset is as follows:

Algorithm 1 Balancing demographic data using SDV

Create an empty list for the ending DataFrame

for each demographic in a list of possibilities for that demographic do

Get all cells within the DataFrame where the current demographic is a match

Create a new GaussianCopula model

Fit the model to the data based on the current demographic

Sample from the model ▷ Sample size = number of rows / number of possibilities

Append the sample above to the empty list from outside the loop

end for

Concatenate each of the DataFrame samples within the list of DataFrames

The liver oncology team generally evaluates their data by considering recall, precision,

sensitivity, specificity, accuracy, F-measure, and measuring Cohen’s kappa. Though the

efficacy outcome is less important than whether a balanced population can be achieved, in

the experimentation, I evaluate how similar the synthetic data is compared to the original

data in addition to whether the target outcome of whether the patient developed cancer or

not is captured accurately in the synthetic data.
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Postoperative Respiratory Failure (PRF)

Postoperative Respiratory Failure (PRF) is a pulmonary complication that can happen

after a patient goes through surgery. Clinical events seem to be a better indicator to recognize

early signs of PRF versus the actual blood gas exchange measurement that characterizes this

complication [4]. This kind of research is hindered due to the rareness of the complication.

The patient population is not great enough to generalize findings by clinical models.

That being said, the goals of this use case are to be able to augment rare case data and

see how faithful each model is to the original data and to find out what parameters and

changes within using the model can be made to get better results. The original dataset

contains only 828 rows and the research team requests to see how the synthetic data changes

at double the amount of data.

From the literature, we already know that GANs do not perform as well when replicating

tabular, non-image data. However, SDV’s own CTGAN claims to perform just fine when

generating tabular synthetic data. To put this to the test, for the PRF use case team, all

four SDV models are used to generate synthetic data to augment the original sample size.

The best-performing model out of the four will be further modified and the results will be

evaluated once again.

In addition to exploring whether SDV can meet the needs of our researchers, doing

experiments demonstrates how amenable the software is to changes to get us into what is

acceptable for those needs. There are several parameters that can be altered when using the

SDV models. For example, in the GaussianCopula model, customization can include setting

transforms, setting bounds, specifying rounding for numerical columns, exploring probability
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distributions, setting distributions for individual variables, and conditional sampling [20].

The dataset in this use case is a small de-identified table of patient data that includes

metrics such as:

• An indication of whether the data is case or control data.

• Qualitative demographic information such as sex, combined race & ethnicity and quan-

titative information about the patient’s age, weight in kilograms, and height in cen-

timeters.

• Primary payer insurance information. These values included Medicare, private insur-

ance (including military), Medicaid, and “other”.

• The patient’s ASA Physical Status Classification [7]. This system helps assess and

communicate a patient’s pre-anesthesia medical comorbidities. The classification values

found in the dataset were ASA I, II, III, IV, V, and the lack thereof indicated by a nan

(“not a number”).

ASA I A normal healthy patient

ASA II A patient with mild systemic disease

ASA III A patient with severe systemic disease

ASA IV A patient with severe systemic disease that is a constant threat to life

ASA V A moribund patient who is not expected to survive without the operation

• Alcohol use and smoking indication.
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• Functional status indicating if the patient is independent or partially or totally depen-

dent at home prior to surgery.

• A column each with a String indicator of whether or not the patient has: asthma, kid-

ney disease, chronic obstructive pulmonary disease (COPD), cardiac disease, dementia,

diabetes, dysphagia, dyspnea, gastroesophageal reflux disease (GERD), heart failure,

hypertension, impaired sensorium, liver disease, neurologic disease, sleep apnea, and

recent unexplained weight loss.

• Measures of hemoglobin, creatinine, and albumin.

Efficacy of the synthetic data for each model is measured with KS testing, mean squared

difference of the correlations, summary statistics with input from the team’s domain ex-

pert, and pairwise correlation. I also use SDV’s logistic detection metric which provides a

normalized score (from [0,1]). This is a custom score that matches how the other metrics

demonstrate a “better” score with a higher (closer to 1) score.
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Chapter 4

Findings

4.1 Tool Comparison Findings

I found that were numerous synthetic data tools including proprietary platforms, open

source toolkits, and downloadable datasets. Strangely, a handful of tools disappeared or

became defunct from the time I started my research in the end of 2020 to the time of writing

this thesis in 2022. This chapter contains a few tables with the results of my exploration

into what tools exist for the synthetic data generation needs of researchers.

Table 4.1 contains the tools and datasets that I examined in detail. This table contains

the name of the tool, how the tool is procured, any data requirements needed to use the

tool, whether the tool is open source or not and which license it contains, any associated

publications used in the literature review, privacy information if provided, and a number

that corresponds to the numbered notes that follows the table.
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1. Medicare Coverage Database Contains Medicare claims data. Use is limited to use

in Medicare, Medicaid or other programs administered by the Centers for Medicare and

Medicaid Services (CMS) [22].

2. Medicare Claims Synthetic Public Use Files (SynPUFs) SynPUF data may be

used to develop software applications, train researchers, and support safe data mining

operations. The data structure of the Medicare SynPUFs is very similar to the CMS

Limited Data Sets, but with a smaller number of variables [23].

3. Biovia & Medidata (Formerly known as Accelys) A product sold by the company,

Dassault Systemes. Life sciences database and platform solution. Offers synthetic data

for clinical trials via Synthetic Control Arm tool [31].

4. Accelario Can be integrated with Oracle. Does not disclose method of generating

synthetic data. Couldn’t find any publications specifically that used the synthetic

data generation tools.

5. Eunomia No longer exists in CRAN. Originally an R package for testing and demon-

stration. Contained a general CDM package. Part of the HADES product of The

Observational Health Data Sciences and Informatics (OHDSI).

6. MDClone Not much information is given on their website. They do however keep a

list that is easy to access of publications using data from MDClone.

7. Synthea Generates populations of synthetic patients with extensive health history.

Extremely easy to set-up and use with basic Java knowledge.
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8. SDGym A benchmarking framework for synthetic data. Not a synthetic data gener-

ation tool itself. By the same laboratory that SDV came from.

9. Synthetic Data Vault (SDV) Generates synthetic data based off of four models.

Completely open source. Thriving and accessible community on Slack. Can be used

with tabular, multi-table, and timeseries data. Quite flexible. Decently documented.

Domain-agnostic.

In comparing the tools, I downloaded and tested out some of the open source ones

available including SDV and Synthea. SDV was accesisble enough that I found it could be

used in further experimentation (see use cases). Instead of established a use case for Synthea,

I presented a demonstration through the UC Davis DataLab on how to install and use the

software.

Start-up culture seems to have also affected the niche of synthetic data generation. I found

a myriad of mostly-proprietary software companies offering these synthetic data solutions.

The trend of not-disclosing how the synthetic data generation tool works is apparent on the

websites of most of these solutions.

The following tables are a directory of the aforementioned solutions. Table 4.2 contains

tools that generates structured synthetic data whereas table 4.3 contains tools that generate

unstructured synthetic data. These solutions will be discussed further later on in this thesis.
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Structured synthetic data platforms & tools

Sogeti ADA Diveplane Datomize Geminai

Facteus Generatrix Gretel Hazy

Instill AI Kymera Labs KerusCloud MDClone

Mirray.AI Mostly.AI Octopize Oscillate.AI

Pionic.AI Informatica Sarus Statice

Syndata Syntegra Synthesized Syntheticus

Synthetig Syntho Tonic YData

Veil.AI BizData Curiousity Synth

ExactData GenRocket iData

The Synthetic Data Generator Test Data Manager

Replica Analytics

Table 4.2: Additional structured synthetic data platforms & tools that have yet to be ex-
amined.

Unstructured synthetic data platforms & tools

Alreverie Anyverse Autonom AI Bifrost

Cvedia Coohom Cloud Datagen DeepVision Data

edgecase.ai Lexset mindtech neurolabs

Oneview Parallel Domain Neuromation Reinvent Systems

Rendered.AI Scale Sky Engine Simerse

Synthetaic SD Synthetik Synthesis AI

Vypno Yuva AI ZumoLabs

Table 4.3: Additional unstructured synthetic data platforms & tools that have yet to be
examined.
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A B C D E F G H

Have you previously heard No No Yes No No Yes No Yes

about “synthetic data”?

Have you ever No No No No No Yes No Yes

used synthetic data?

Have you ever used “imputed” Yes Yes Yes Yes Yes Yes Yes Yes

or “simulated” data?

Do you often find Yes Yes Yes Yes Yes Yes Sometimes Yes

yourself without enough

data for your study?

Do you think research using Yes Yes Yes Yes Yes Unsure Unsure Yes

synthetic data can be published?

Table 4.4: A sampling of interview findings

4.2 Interview Findings

Further discussion of the interviews can be found in chapter 5 of this thesis. The following

findings from the interview are more of a presentation of the results as a survey.

As seen in table 4.4, out of eight researchers, three had previously heard about synthetic

data generation. One of these three researchers had only heard about synthetic data before

from a recent presentation hosted by the UC Davis DataLab. Only two out of the eight

researchers said that they have worked with synthetic data before. However, all eight re-

searchers recalled using “imputed” or “simulated” data in their research. All but one of the

eight researchers recall often finding that they do not have enough data to embark on a study

right away. The one researcher that did not say yes, instead replied that they find they do

not have enough data on a case-by-case basis (“sometimes”). Six out of eight researchers

believe that studies using synthetic data can be published in research journals. Two out of
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Data Column to SDV Demographic Outcome

Input Balance Model Result Result

Original Race Gaussian Perfectly balanced Lost fidelity,

data dropped category

Original Outcome Gaussian Lost fidelity, Perfectly balanced

data dropped categories

Original Outcome TVAE Lost fidelity Perfectly balanced

data but kept categories

Synthetic data Race TVAE Perfectly balanced Nearly

(result from balanced

(previous row)

Table 4.5: Results of synthetic liver oncology datasets

eight researchers were unsure if studies using synthetic data could be published in this way.

4.3 Use Case Findings

Liver Oncology: Balanced Data

The original liver oncology dataset has 4,272 rows of data. Out of these 4,272 patients,

173 patients (4.0%) developed cancer and 4,099 patients (96.0%) did not develop cancer

(see right bar in figure 4.1). For the racial composition of the original dataset as illustrated

in the right bar of figure 4.2, 67 (1.6%) patients were identified as American Indian or

Alaska Native, 294 (6.9 %) were Asian, 292 (6.8%) were Black or African American, only

36 (0.8%) were Native Hawaiian or other Pacific Islander, 2,745 (64.3%) were White, 220

(5.1%) patients were of unknown race, and 618 (14.5%) were denoted as “other”.

After using the GaussianCopula model to generate a new dataset of the same size based
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off of the original data, the new data was examined to see if the statistics were maintained.

Figure 4.1: Left: Patient outcomes in the original data. Middle: Balance of patient
outcomes in resulting GaussianCopula model synthetic dataset. Right: While balancing
the race composition, the GaussianCopula model did not pick up on the original compositon
of outcomes. Note how the Gaussian model did not pick up on the original composition of
the patient outcomes in the original dataset.

For patient outcomes of whether the patient did or did not develop cancer, the original

statistics were not maintained. As pictured in the bottom of figure 4.1, the model was not

able to mimic the split between 4.0% of patients who developed cancer and the 96.0% of

patients who did not. Instead, the model produced a dataset where 100% of the patients

did not develop cancer.

However, when it came to the racial statistics of the new dataset, the original composi-

tion matched perfectly with 67 (1.6%) patients were identified as American Indian or Alaska

Native, 294 (6.9 %) were Asian, 292 (6.8%) were Black or African American, only 36 (0.8%)

were Native Hawaiian or other Pacific Islander, 2,745 (64.3%) were White, 220 (5.1%) pa-
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Figure 4.2: Left: Composition of patient race demographics in original dataset. Middle:
Composition of patient race demographics in the GaussianCopula model synthetic dataset
with no balancing applied. Note how the Gaussian model was able to mimic the composition
exactly in the resulting synthetic dataset. Right: Race-balanced synthetic dataset using the
GaussianCopula model.

tients were of unknown race, and 618 (14.5%) were denoted as ”other” shown in the middle

bar of figure 4.2

Using the algorithm outlined in chapter 3 and choosing race as the category to balance,

the resulting dataset (see right bar of figure 4.2) produced seven equally balanced groups of

610 patients with each group contributing to 14.3% of the new dataset. But just as the model

produced a dataset previously in which 100% of the generated patients were classified as “Did

not develop” cancer, this dataset unfortunately also disregarded the original statistics of the

outcome column (see right bar of figure 4.1).

When generating a synthetic dataset using the GaussianCopula model with the goal of
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balancing the outcome column so that patients who did develop cancer and patients who did

not develop cancer constitute an even 50% split each (such as in the right bar of figure 4.3),

the composition of the racial representation of the dataset became more unbalanced than

the original data (see bottom figure 4.4).

Figure 4.3: Left: Original data composition of outcome column. Middle: Composition
of the race-balanced GaussianCopula model outcome column. Right: Outcome-balanced
outcome column using the GaussianCopula model. Note: how the race feature dropped two
categories (Other Race and Unknown) as well as the overall change in composition.

Significantly different results were achieved by using the TVAE model from SDV instead

of the GaussianCopula model. When using the algorithm in conjunction with the TVAE

model to balance by patient outcome (50% developed cancer, 50% did not develop cancer),

all seven races that were in the original data were represented in the resulting balanced

synthetic dataset. Note that when using the GaussianCopula model to balance outcome

data, the GaussianCopula model was only able to represent five (White at 72.7%, Native

Hawaiian or Other Pacific Islander at 0.3%, Black or African American at 13.2%, Asian

67

Charlie
Sticky Note
None set by Charlie

Charlie
Sticky Note
MigrationNone set by Charlie

Charlie
Sticky Note
Unmarked set by Charlie



Figure 4.4: Note how the race feature dropped two categories (Other Race and Unknown)
as well as the overall change in composition.

at 12.7%, and American Indian or Alaska Native at 1.1%). Though the composition of

all seven categories within the race column are changed to no longer resemble the original

statistics, the fact that the TVAE model was still able to retain all seven categories is the

key component for the following dataset result.

Using the aforementioned dataset (TVAE-created, balanced by patient outcome) and

the balancing algorithm once again this time with race as the column to balance, a second

synthetic dataset that is both demographically-balanced and a massive step in the right

direction for balancing the patient outcome emerges (see figure 4.5). This dataset’s patient

outcome is comprised of 67.8% of synthetic patients not developing cancer and 32.2% of

synthetic patients developing cancer. This is clearly no longer the 50/50 split as it was

previously balanced to be, but it is significantly closer to a 50/50 split than what was
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Figure 4.5: Top: Outcome composition of race-balanced dataset made from out-come bal-
anced dataset using the TVAE model. Once again, the data is balanced to equally represent
each category found in the race column of the dataset. Bottom: Race composition of
race-balanced dataset made from out-come balanced dataset using the TVAE mode. In
generating a race-balanced dataset, the TVAE model maintained a patient outcome column
that is much closer to being fully balanced. 69
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represented in the original dataset (96.0% did not develop cancer; 4.0% did develop cancer).

PRF: Model Performance

The following visualizations present the mean, interquartile range, minimum, maximum,

and outliers found in the quantitative variables of the PRF dataset for each of the synthetic

data models (GaussianCopula, TVAE, CTGAN, and CopulaGAN) and the original data.

Figure 4.6 shows that the GaussianCopula model’s output was the most similar out of the

four models to the original data for the age of the patient population. The Gaussian model

also performed well in comparison to the other models in generating heights for the synthetic

patient population as seen in figure 4.9.

Figure 4.7 displays an unusual result. The original data contains outliers that none of the

models were able to mimic, but all but the GaussianCopula model was able to generate. The

creatinine summary statistics of figure 4.8 are also mixed. At a glance, it appears that the

CopulaGAN produced the most similar results. Both hemoglobin (figure 4.10) and weight

(figure 4.11) also produced mixed resulting datasets.
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Figure 4.6: Summary statistics for the age column in the original and generated datasets.

Figure 4.7: Summary statistics for the albumin column in the original and generated datasets.
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Figure 4.8: Summary statistics for the creatinine column in the original and generated
datasets.

Figure 4.9: Summary statistics for the height column in the original and generated datasets.
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Figure 4.10: Summary statistics for the hemoglobin column in the original and generated
datasets.

Figure 4.11: Summary statistics for the weight column in the original and generated datasets.
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In addition to the general spread of the summary statistics for the age group, the PRF

team also found value in viewing how the models performed in generating patient ages based

on significant groups. This is represented in figure 4.12 where it appears that the Gaussian

model maintains the best mimicry when compared to the other models.

In comparing the original correlations (figure 4.13), there is a moderate (0.41) positive

correlation between patient weight and height. There is a small positive correlation between

hemoglobin measurement and the patient’s height (0.22) and weight (0.20). Additionally

there seems to be a slight (0.13) positive correlation between hemoglobin and ablumin.

Finally, there is a small (-0.22) negative correlation between hemoglobin and creatinine. If

the models perform well, we would expect to see these correlations show up in the resulting

synthetic datasets.

Figure 4.13: Correlation matrix of the original dataset.

The GaussianCopula model (figure 4.14) was able to mirror the positive correlations

but also over-estimated the amounts that these variables were correlated. Some of these
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over-estimations were greater than others. For example, the correlation between hemoglobin

and albumin increases by 161% (from 0.13 to 0.34) which is over triple the amount from

the ground truth dataset. In addition, the negative correlation between hemoglobin and

creatinine was not significantly reflected in the GaussianCopula correlation matrix.

Figure 4.14: Correlation matrix of the data generated by the GaussianCopula model.

The TVAE correlation matrix (figure 4.15) shows some mixed results. Some of the

postitive correlations were reflected in the TVAE dataset while others were dropped. The

TVAE model overestimated a larger negative correlation where there was previously a smaller

correlation but missed the negative correlation between hemoglobin and creatinine.

Both the GAN models, CTGAN ( 4.16) and CopulaGAN (figure 4.17), performed poorly

upon observing their correlation matrices. CTGAN’s data was barely correlated across the

board (≤ 0.11 in any direction) and the data that CopulaGAN generated was even less so

(≤ 0.06 in any direction).
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Figure 4.15: Correlation matrix of the data generated by the TVAE model.

Figure 4.16: Correlation matrix of the data generated by the CTGAN model.
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Figure 4.17: Correlation matrix of the data generated by the CopulaGAN model.

To determine meaning in the distances between the correlation of the original data and

the better-performing datasets (GaussianCopula and TVAE), I calculated the squared differ-

ences. Because both of the GAN models produced data where hardly any correlation could

be detected, I did not calculate the squared differences for the correlations of CTGAN and

CopulaGAN. Between the GaussianCopula (figure 4.18) and the TVAE (figure 4.19) squared

differences, the GaussianCopula produced more results closer to 0 which indicates that the

difference between the correlations of the original and GaussianCopula datasets are more

similar.

Samples of pairwise correlations of the different resulting synthetic datasets were mapped

against the original data. I transform each synthetic dataset as well as the original into its

correlation matrix. Doing so compares every possible pair of quantitative variables and

summarizes the relationship as the correlation between each pair. The pairwise correlations

in figure 4.20 show a familiar split in performance. The GaussianCopula pairwise correlation
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Figure 4.18: Squared differences between the original correlations and the GaussianCopula
data correlations.

Figure 4.19: Squared differences between the original correlations and the TVAE data cor-
relations.
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and the TVAE pairwise correlation both resemble one another while the CTGAN pairwise

correlation and the CopulaGAN pairwise correlation resemble each other respectively.

(a) GaussianCopula pairwise correlation (b) TVAE pairwise correlation

(c) CTGAN pairwise correlation (d) CopulaGAN pairwise correlation

Figure 4.20: Pairwise correlations of the synthetic datasets versus the original data correla-
tions

I also used a chi-squared (CS) test to examine the association of the categorical features

of the generated data to the categorical features of the original dataset. In addition to the

CS test, I also calculated Cramer’s V to measure the association between nominal variables

(table 4.6). I was surprised at how high the CTGAN model’s data scored (0.9423) in the chi-

squared test compared to the rest of the datasets and especially compared to the CopulaGAN

dataset’s dismal score. Otherwise, the GaussianCopula model scored (0.8953) similarly to
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Dataset Chi-squared result Cramer’s V result

Gaussian 0.8953 0.0013

TVAE 0.8109 0.0013

CTGAN 0.9423 0.0014

CopulaGAN 0.6818 0.0012

Table 4.6: Categorical feature association scores compared to original dataset

the TVAE model (0.8109) which was to be expected after seeing so many other scoring

similarities between the two models. The Cramer’s V results followed similar suite to the

chi-squared scores. Both the Gaussian and the TVAE Cramer’s V scores resulted in 0.0013.

CTGAN received the highest score at 0.0014 and CopulaGAN received the lowest at 0.0012.

After determining that the GaussianCopula model performs the best out of all four of

the models, I started to experiment with the transforms that can be used with the model.

By default, the GaussianCopula model uses one-hot encoding to interpret the variables of

the columns. Instead of using one-hot encoding which would generate a column for each

possible value within a feature, using a field encoder such as label encoding, for example,

will replace values within a feature with a unique integer value. By changing how the features

are interpreted, the fitting process of the model should improve [20].

The original dataset contains many columns in which a string value indicates “yes [con-

dition]” and “no [condition]”. In addition to using the field encoders provided by SDV, I also

make a dataset where I manually change the string literals of “Yes/No” to boolean values of

“True/False”. I refer to the datasets generated with this data as boolean GaussianCopula

models.

Because the field encoding applies to individual columns, on some models and resulting
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datasets, I apply multiple encodings to columns in which they make sense to apply. For ex-

ample, SDV’s boolean encoding is applied to the “Yes/No” columns while SDV’s categorical

encoding is applied to the categorical columns within the original dataset.

GaussianCopula is the initial dataset generated from the original data without changing

any parameters in the model function. No field encoding is applied.

Boolean GaussianCopula is the initial dataset with manual pre-processesing where the

“Yes/No” features are changed to boolean object types before any encoding or model-

ing.

GaussianCopula with label encoding the initial GaussianCopula model with SDV’s la-

bel encoding applied to categorical features.

GaussianCopula with categorical encoding is the initial GaussianCopula model with

categorical encoding applied to categorical features.

Boolean GaussianCopula with categorical encoding this model uses categorical en-

coding on the pre-processed original data.

GaussianCopula with fuzzy categorical encoding in this model, categorical features

receive fuzzy categorical encoding which adds gaussian noise.

Boolean GaussianCopula with fuzzy categorical encoding Boolean encoding is ap-

plied to the “Yes/No” features. The categorical features recieve fuzzy categorical

encoding which adds gaussian noise.
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Dataset SDV KS-Test SDV CS-Test SDV Logistic Detection

GaussianCopula 0.88 0.89 0.22

Boolean GaussianCopula 0.87 0.19 0.0

GaussianCopula 0.87 0.90 0.24

with label encoding

Boolean GaussianCopula 0.87 0.2 0.0

with boolean

encoding

GaussianCopula 0.88 0.90 0.33

with categorical

encoding

Boolean GaussianCopula 0.87 0.19 0.00

with categorical

encoding

GaussianCopula 0.87 0.82 0.34

with fuzzy

categorical encoding

Boolean GaussianCopula 0.87 0.23 0.0

with fuzzy

categorical encoding

Table 4.7: Results from applied various field encoders to the GaussianCopula model.
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To begin with, the plain GaussianCopula data performed well with a KS-test score of 0.88,

a CS-test score of 0.89, and a logistic detection score of 0.22 (see table 4.7). Applying either

categorical encoding or label encoding improved the performance of the model. Applying

categorical encoding to the GaussianCopula model did not change the KS-test score but

improved the CS-test score by 0.10 points. It also improved the logistic detection score

which rose from 0.22 to 0.33. Label encoding also slightly improved the CS-test and logistic

detection scores but did not improve the KS-test score. Fuzzy categorical encoding slightly

decreased the CS and KS-test scores but improved the logistic detection score by 0.12 points.

Pre-processing the data into boolean object types did not improve CS-test scores or lo-

gistic detection scores for the GaussianCopula model. It severely diminished KS-test scores

were not affected by pre-processing the data. In fact, all resulting datasets that were gen-

erated from pre-processed data diminished greatly in their logistic detection scores when

compared to the plain GuassianCopula model with default field encodings.

84

Charlie
Sticky Note
None set by Charlie

Charlie
Sticky Note
MigrationNone set by Charlie

Charlie
Sticky Note
Unmarked set by Charlie



Chapter 5

Discussion

5.1 Discussion of Tool Research

Considerations for Choosing Readily Available Datasets

Although free-to-use datasets, such as the aforementioned Medicare Coverage Database,

aren’t classified as synthetic data in any means, I felt that they were important enough to

include in the discussion of choosing a tool to generate, or rather to be provided with data

for medical research. These datasets share similar features to generating one’s own synthetic

data as both are accessible and can tear down barriers to getting to real data. Both synthetic

datasets and readily available datasets can achieve similar goals in facilitation the speed and

development in research. Readily available datasets can also often be the foundation in

which synthetic data is generated from until real data is available.

The GO FAIR Initiative is an organization that offers principles to evaluate data for how it

can be found, accessibility, interoperability, and reusability (FAIR) [16]. The principles that
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FAIR provides can be broken down based on further examinations of the dataset in question.

These principles can be used as guidance for evaluating a potential research dataset.

The dataset should be easy to find. For example, the dataset could be reached via Google,

in a repository, or perhaps through a publication citing the dataset without much trouble on

the seeker’s behalf. The dataset should additionally have a unique and persistent identifier

such as a Digital Object Identifier (DOI) or a Uniform Resource Identifier (URI). The ease

of finding and identifying a dataset should give a seeker confidence that the dataset found is

indeed the one they originally set out to find. It is also important to consider how a dataset

is versioned. As a dataset may be dynamic, versioning will give context into the snapshot of

time in which the dataset is used for a particular bit of research. Metadata also plays a role

in choosing a good dataset to work with. Examining the metadata should tell a researcher

how the dataset was generated or collected. Additionally, it should be clear what kind and

how many files are available within the offered data.

A benefit to using synthetic data is that it facilitates experiment repeatability. The

same could be said for readily available datasets found online. The rights and restrictions

of a dataset should be reviewed and finding how to cite the dataset will also aid in sharing

research results for potential repetition.

Considerations for Choosing a Proprietary Synthetic Data Tool

I found that proprietary software platforms often do not disclose what methods are

being used to generate synthetic data with the exception of MDClone. MDClone, however,

does not go into detail on their customer website, but rather discusses the methods used

to generate data in the Foraker [9] and Reiner Benaim [26] papers discussed in chapter 2.
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With all proprietary software packages, an appointment or consultation must be set-up with

a member of the sales team to explore whether the platform is a viable solution for the

customer’s (researcher’s) needs. These tools are often integrated with bigger systems that

one can assume a company or institution uses within their greater technology ecosystem.

Though this kind of system likely exists for my institution, as an individual researcher

hoping to fiddle with the tools, I wouldn’t have been able to gain access and invite these

companies into the system.

There are several considerations that came from the research into synthetic data gener-

ation tools. The following considerations will help guide researchers choosing a proprietary

software for their synthetic data generation needs.

To begin, it is essential to consider the environment in which the researcher will be

conducting their research in. Is the synthetic data generation tool in question browser-

based or does it run on a standalone client on the researcher’s computer? Furthermore,

is the software machine agnostic – will it run regardless of the operating system that the

researcher is using? In order to share research and enhance portability of models and data,

it would also be important to determine if the software can run on multiple machines or

operating systems.

Most proprietary solutions are going to require payment and licensing and thus it would

make sense to consider the pricing plans and the licensing arrangements when. This is also

a good time to consider how data and model ownership will be outlined with engaging a

software company. What data does the company have privy to via the terms and conditions?

Where is generated data stored? Where are the original data or data seeds stored? Who

has access to generated data and data seeds?
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Publication both in the past and the future also play an important role. Finding out

what papers have been published, if any, using the tool in question should be paramount

to considering the software. Who published those papers? Who funded the research? The

standards for giving credit and citing the tool when used for research or product development

should also be considered. Does the company of the proprietary tool receive compensation

of some kind for innovation derived from generated data?

Data focused considerations include how much data is needed to get started with generat-

ing using the tool and whether or not a pre-existing schema needs to be uploaded. Consider

how the underlying algorithms of the tool works as well. If a tool is built around GAN-based

engineering, perhaps it would be better suited for image data but not for tabular data. Does

it detect the feature type from a schema or bit of example data? Does it randomly generate

data or does it generate data based on pre-existing relationships between features? Also

consider whether the tool will work for the data that the research uses. For example, tabular

data may be no issue to generate, but perhaps time series data is a weakness of the software.

It is crucial to understand how the developers were able to validate the efficacy of the

synthetic data that their tool produces. This should also be transparently documented.

Finally, consider whether this data generation tool has been used for medical research

or can be recommended as a viable tool for medical research. Some companies will only

recommend that their software be used for model building, testing, or demonstrations. As

previously mentioned, finding publications in which the tool in question was used would be

particularly helpful.
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5.2 Discussion of Researcher Interviews

Awareness of Synthetic Data

Synthetic elements of a study are commonplace. For example, there are already a lot of

studies that routinely take place in a simulated environment or laboratory. These controlled

studies often have very little noise and do not capture the essence of real life. Sometimes

they might not even reflect real-world observations. Settings and conditions such as these

provide researchers with “lab-grown data”. As long as the purpose of the experiment is

clear, this kind of data can suffice for proof-of-concept work.

Out of all the participants, only two were familiar with deep learning synthetic data

generation techniques. One of these individuals is a data scientist who was working with the

open source synthetic patient generation tool, Synthea. The other individual is a clinical

researcher who has had experience using TensorFlow to create synthetic imaging data. This

researcher also noted that augmenting and greeting synthetic image data is commonplace in

medical imaging research.

Availability and Abundance of Data

Every researcher (clinical researchers and resident data scientists alike) all encountered

times in their research where they did not have enough data. Some had to reframe their

research question and goals to accommodate the lack of data. Some had to drop the study

entirely.

Sometimes it isn’t the nature of the data that influences its scarcity. The lack of available

“manpower” to record the data after designing the study contributes to the scarcity. Having
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an underpowered studies can hinder receiving funding from grants. For example, the National

Institutes of Health (NIH) will not fund studies where too few patients have been enrolled.

A handful of researchers noted that they can sometimes find some data for their studies

with established clinical databases. Most of the researchers that were interviewed were all

familiar with the MIMIC III database and several other clinical databases that are often

freely available online. Though MIMIC may be accessible online, other databases are not

so readily available. For example, the National EMS Information System (NEMSIS) sends

researchers a sample of data via a physical flash drive USB device to prove that the data

can be opened on the researcher’s computer before sending more. Other researchers default

to a quick Google search to determine if the data they need for their study exists. Other

databases can only be accessed if a researcher knows someone or is mentored by someone

who can sponsor their access.

There can be some “cultural” rules surrounding use of external databases. Data might

be copyrighted or protected as property by the stewards. If a researcher is allowed to use

a group’s data, the group is often included as a collaborator as “payment” for using the

data. Additionally, navigating these databases is not a consistent experience. Data often

isn’t documented formally and the best guides are stumbled upon by finding forums online.

The amount of available data is often considered before starting a study – notably in

retrospective analyses.If there isn’t enough data, the research question guiding the study

is refined in hopes of landing on a question that can be pursued with existing data. In

prospective studies, it is typical to under-enroll patients. This leads to a dearth of freshly

collected data for a study. Oftentimes a researcher may start with a retrospective study and

then write a grant to obtain funding. Finally after securing funding, a prospective study can
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be initiated. It isn’t uncommon to drop a study entirely after refining the research question

several times and still not having enough data to carry-out the study.

Readily available data is not always ideal for a researcher’s specific study. Collecting

data oneself is the most assured method of getting the exact type of data needed for the

research question. This however is not always possible due to various reasons such as lack

of funding, nature of the data (i.e. emergency room, ambulatory), existence outside of the

researcher’s system, etc. If the study is particularly specific, data that would be valuable

for the actual study and data that is adjacent to what is needed for the study is sometimes

grouped together. For example, in a study for Chronic Obstructive Pulmonary Disorder

(COPD) ventilator data where there is little COPD data, Acute Respiratory Distress Syn-

drome (ARDS) may be used to supplement the COPD dataset. Grouping datasets like this

doesn’t actually mean the datasets that are being grouped are necessarily similar. Grouping

the data like this ultimately loses precision.

For researchers that work with ambulatory and emergency room data, gathering data

can be a challenging task. Unlike a clinical study, emergency room patients cannot be

“recruited” or volunteer to be subjects. Because of this, the data accumulates slowly over

time. Additionally, ambulatory and emergency room data is observational data. Once that

information is changed, it is no longer observational and becomes retrospective. Physiological

data captured in the emergency room or within an ambulance cannot be retrospectively

“recaptured”.

If there isn’t enough data for a study collected from ambulatory and emergency room

patients, researchers must rely on wider confidence intervals. Wider confidence intervals

are also used when precise estimation is not possible or when measurements are physically
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collected incorrectly often due to human error in intense situations.

Sometimes studies can be discouraged due to lack of data. Only recently have ambulances

started collecting the type of data specifically used in certain studies such as in suspected

stroke patients. Groups of patients are broad and can now start to be identified within the

ambulance thanks to the new technology and standards for paramedics to collect data on

the go. However, this technology is still not widely available and sometimes doesn’t become

available until the patient makes it from the ambulance into the emergency room.

Challenges of Available Data

Even when real data is available, it is not without challenges and issues. Oftentimes, data

for small populations (populations with a high sampling rate, but a low number of patients)

is too heterogeneous to be useful in any meaningful way to the researchers.

Gaps in data and missing data are not uncommon either. Human error is a monumental

issue with clinical data collection. This can be a common case when clinical practitioners

are collecting data during an appointment with a patient. Discrete, quantifiable records

in a flow sheet are easier to capture accurately than text notes or other categorical data.

One researcher estimated that capturing race ethnicity in electronic medical health records

is expected to be 30% inaccurate. Race and ethnicity information is important to capture

for social equity and inclusion. The malpractice of incorrectly or neglecting to capture this

data was observed during the COVID-19 pandemic and obstructed efforts towards improving

equity of care.

The format for accessing data across campuses in the University of California system is

also varied. There is no uniform format for sharing or accessing medical data. Gaining access
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to other campuses’ healthcare data is labor intensive and there is no guarantee that another

campus will even have enough data for the interested party. For example, one researcher

lamented on how out of five UC schools, the initial 60,000 retrieved data points decreased

to 600 confirmed case samples. After further filtering, the researcher was left with only 400

valid data samples. This researcher was not able to find data outside of the UC system

that fit their needs. To complicate matters further, data wasn’t always digital. Without

a streamlined method of transferring data, often this researcher had to receive printed-out

health records and had to manually enter the data into a digital format.

Validity of Synthetic Data

When asked about what would make synthetic data “good enough” for research, the

researchers shared their thoughts. Data that creates new knowledge about the question that

is being asked is good enough for one researcher. Sensitivity analysis performed to account

for uncertainties in synthetic data would be an agreeable method to determine the quality

of synthetic data as input.

One researcher suggested that to compensate for synthetic data not being a true clinical

entity, cohort separate consolidation and cohort comparison to true patient data should be

put to the test with a high bar to meet. To see how well one predicts the other could

potentially give a sense of how valid the synthetic data is.

However, if synthetic data is generated using a base dataset, then the validity of the

synthetic dataset might match that of the original data. In order to know when a true dataset

has been properly collected without bias and is being used in a publication, the reader must

assume that the researcher had no malicious intention. Sometimes with animal studies, the
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data might seem “too good”. In human studies, good faith is assumed if the research has

been properly reviewed and published. If a single study supports a novel conclusion, fellow

researchers do want to see these types of studies replicated nonetheless.

One researcher felt strongly that synthetic data can be validated at different levels. For

example, a synthetic dataset that is going to be used in published research should be validated

at a higher level than a synthetic dataset used to prototype a model in development. This

would allow for speed of research and proper validation by the scientific community.

Places for Synthetic Data Use

The researchers were asked about where they could see synthetic data being helpful to

generate or augment data in the clinical realm. They also had input into the specifics of

where they could see or would want to see synthetic data fitting in.

Data from multiple sources – whether it is synthetic or real – could increase reproducibil-

ity of studies. One researcher recalled the Framingham study out of Massachusetts and how

a demographic from one geographical region might produce different results when applied to

a demographic hailing from a different region.

Bias might also be partially alleviated by using synthetic data to supplement true data.

Randomization doesn’t get rid of biases but instead equally distributes biases across the

groups being compared to each other. If synthetic data could account for the biases that

are not yet known, this would be helpful. The challenge would be to anticipate what is

unknown.

Synthetic data may be good for hypothesis generation for future studies. It could also

give an idea of the variance or power within a large trial. Using synthetic data for proof-of-
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concept work, developing methodological approaches to analysis, and training and student

learning were popular scenarios that the researchers could see synthetic data being used in.

Acquiring a larger quantity of data or acquiring more unique data is more involved when

asking for permissions. One researcher lamented that there is almost a discouragement from

speed in acquiring needed data. The “hoops” that a researcher needs to jump through

to acquire more data is almost as detrimental as not having enough data to begin with.

Sometimes it takes one and a half years to convince stakeholders and committees that more

or diverse data is needed. Sometimes this is just enough time for a research partner to lose

vested interest in the project. Occasionally there is no alternative if the resource that you

have permission to use isn’t sufficient in data quantity and quality.

Most of the researchers mentioned that synthetic data would have been of great use

during the COVID-19 pandemic. Besides its uses for rapid prototyping, real data collection

was often put on pause during the surges of the pandemic. Synthetic data could be a solution

to fill in the blanks left behind when the care and treatment became focused on treating

COVID-19.

One researcher described a need for data that you can “play with” that isn’t the pro-

duction data set. This researcher notes the importance of being able to embed and tes

technologies in siloed environments. Another researcher found that using synthetic data

was especially helpful in stress-testing systems and models. Because copious amounts of

data can be generated in the blink of an eye, high throughput can be simulated easily. The

patient population that is being tested can also be rapidly changed to represent different

demographics or health statuses.

Being able to change patient population data to represent different patient demographics
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or types serves a dual purpose since algorithms need to be built to be tuned to specific pop-

ulations. It is the case that generalized algorithms don’t work well for predicting conditions

such as clinical deterioration or sepsis. Each population subset contained within the general

patient population can be “incredibly unique”.

Just a step out of the clinical realm, synthetic data has been helpful for co-validation

when medical researchers are partnering with start-up companies. Having synthetic data

available helps maintain a controlled environment.

Sample size is important for building models and testing them with enough volume of

data. Often researchers will use a sample size calculation tool to determine how many

patients may be needed to reach a certain N-value. These calculations are also referred to

as “power calculations”. In addition to calculating, clinical expertise for estimating proper

N-values based on previous studies is used to determine the number of patients needed.

The distribution of unknown data is presumably unknown until it is actually collected

and analyzed. When power calculations are performed, the researcher must compute them

assuming several characteristics that the potential data will have such as it being normally

distributed when this is not always the case. Retrospective studies can help with the as-

sumptions but do not provide a guarantee.

In addition to distribution and characteristics of the uncollected data, the effect that will

be measured from the data needs to be assumed in order to perform the power calculations

as well. A huge effect size will require a smaller N-value and thus fewer patients. Likewise,

a slight effect size will require a larger sample of patients. It seems like it would be difficult

to predict what has yet to be gathered.

Using larger synthetic sample sizes wouldn’t benefit prospective studies other than use
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as a placer until more true data can be collected. However, with synthetic data to augment

sample datasets, predictive scoring can be implemented on retrospective studies with large

gaps in the data. If the validation cohort is a success in these types of studies, then the use

of synthetic data to supplement the true data is a success as well.

Concerns and Questions about Synthetic Data

Clinical researchers wanted to know more about how synthetic data is generated and

used in research. Questions they had about synthetic data included the following:

How is synthetic data protected from bias? One doctor wanted to know if the biases

within a generated synthetic dataset are able to be known and accounted for. If so,

they would be most agreeable to using synthetic data in their research. Synthetic data

generated from data-driven methods will retain biases found in the original dataset

given. To solve the problem of bias in synthetic data, the problem of bias in the real

data would need to be solved first. As they say frequently in computer science and

research disciplines in reference to the quality of data given: “garbage in, garbage out.”

How similar is synthetic data generation to general data imputation? Another doc-

tor wanted to know how similar synthetic data generation is to general data imputation.

Imputation is a form of data-driven, as opposed to process-driven, synthetic data gener-

ation. The presence of this question might suggest that researchers are currently using

synthetic data generation methods and not knowing it by name or how the underlying

algorithms operate.
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Much of the researchers’ concerns with synthetic data match their concerns with real data.

If real data can be biased, then synthetic data could be biased or objectively bad as well. If

real data can’t be used in evaluating how good a classification algorithm is performing, there

is a concern that synthetic data wouldn’t be a viable remedy. The outcome of the study

becomes the most significant concern.

There were also doubts about whether synthetic data can be used for diagnostic research

to see how common a certain disease is. The concern would be that the synthetic data

wouldn’t reflect the real world and have a different measure of prevalence. Specifically,

sensitivity analysis ranges from a 5% to 30% prevalence.

More broadly, researchers are concerned about the quality of the data that is produced.

Standards for data assessment would be ideal to have for synthetic data to ensure reporting

accuracy. One researcher suggested using a system similar to the Equator Network which

provides reporting guidelines for medical studies. The goal for these guidelines is to commu-

nicate the biases found in data for greater understanding. A standard like this would have

to be globally implemented to be most effective. Additionally, to be published in a high-end

medical journal, the data used in a study must meet the Equator Network guidelines.

Some of the researchers were very interested in gaining a deeper understanding of how

synthetic data is generated. They believed that learning about how GANs, neural net-

works, deep learning, and artificial intelligence works would earn more trust in the medical

community.

The interviewees gave mixed answers when asked about publishing research that used

synthetic data. Some interviewees expressed that research that uses synthetic data should be

publishable while others were more hesitant. All interviewees agreed that if synthetic data is
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used in a study, the fact should be made known in the subsequent publication and reiterated

when discussing interpretations of the data. Additionally, instructions for replication of the

study using different synthetic or true data must be included in the publication as well.

With some familiarity of synthetic data generation, one researcher ensuring that the

techniques for generating synthetic data can handle and correctly acknowledge the statistical

properties of non-normal distributed data or skewed data was a concern for some of the

researchers. This is a common pattern found in clinical data for features such as length of

stay. These types of features are often hand-manipulated to reflect accuracy. Synthetic data

generative tools would have to be aware that not all features can be generated following a

normal distribution.

All researchers that were interviewed agreed that there needs to be more collaboration

between clinical researchers and data scientists. The concern that people who do not have

clinical perspectives or expertise may be performing research on publicly available health

data. One interviewee offered ideas for solutions to the lack of collaboration including talking

a common language and developing Data Provision Units where subject researchers can learn

to ask and narrow down precise questions in order to get the data they need.

Another researcher was concerned that synthetic data may not be “good enough” solely

because the base real dataset in which the synthetic data would be generated from may have

missing values or issues from human error input.

Suggestions for Synthetic Data Use

Some researchers shared how having a sandbox environment would be helpful to play

and test synthetic data.
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One doctor from the interview was particularly concerned about why synthetic data isn’t

a subject that is being regularly covered within the UC Davis’s own Master of Clinical

Research program.

One of the interviewees expressed how it is “unreasonable” to expect clinicians to un-

derstand the statistics behind validation or artificial intelligence behind algorithms. They

noted that people who do have that expertise can provide that security.

Final thoughts shared in the interview

The researchers all believed that sharing data is the future for advances in healthcare.

One particular researcher shared how they believe the culture at UC Davis might actually

be conducive to synthetic data use. They believe that as an academic community, we are

“hyper-focused” on innovation. The UC Davis health system is already imbued with the

culture of a technology start-up. We as a university have access to the “coolest technologies”

and we just have to “connect the dots”.

Interview Discussion

I had expected all the clinical researchers that were interviewed to be much more familiar

with synthetic data by the name of “synthetic data” rather than “imputed values”. I suspect

that even though imputation and synthetic data generation are essentially the same concept,

there is a larger discrepancy other than naming conventions that set them apart from each

other in how clinical researchers understand and use them. This could be because of the

associated methods for generating or imputing data. It seems that “imputation” implies
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statistical modeling whereas “generating synthetic data” is grouped in with a schema related

to modern artificial intelligence practices such as machine learning and deep learning.

Definitions

Institutional Review Board (IRB) An administrative body established to protect the

rights and welfare of human research subjects recruited for research.

N-value Generally the usable sample size.

Prospective Study A study type in which data is collected as the study progresses. Data

definitions are clearly identified and fields with gaps are filled in for all patients in the

study. These studies cost a lot of time and money (Example: clinical trial).

Retrospective Study A study type in which the data has already been collected (Example:

Electronic Medical Health Record).

Sandbox environment An isolated, virtual code testing space separate from the produc-

tion environment. New features in a system can be tested here without worrying about

affecting the production environment.

Sensitivity analysis Studies how uncertainty in the output of a model can be determined

by the source of the input. Recalculates outcomes using alternative assumptions to

test the robustness of a model. Helps to understand the relation between the input

and output of a model.

TensorFlow An open source platform for machine learning. Contains tools, libraries, and

community resources.
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5.3 Discussion of Use Case Results

The answer to whether the data generated in the use cases was good enough for clinical

research “depends”. Expertise is recommended to check if the data makes sense. With

synthetic data tools that are easy for clinical experts to use, the data generated can be

reviewed as soon as it is appears on the screen. With the PRF use case, generating data

was the easy part. Evaluating the data was much more difficult. For the liver oncology use

case, generating the data presented more challenges than evaluating the balance of the mix.

Liver Oncology Use Case Discussion

Going into this thesis research, I thought that balancing data would easy enough. In

practice, it is much more difficult than I anticipated. There are many vectors in which the

“balance” can be disturbed. Using a synthetic data generation library like SDV creatively

offers novel solutions in how we generate synthetic data. Because SDV was so flexible,

and generally quick enough to run on my old and dubious laptop, I was able to achieve a

“balanced” dataset that both filled the requirements for reducing demographic imbalance and

broadening the patient outcome results. When efficacy is less important than composition,

SDV’s flexibility really shines.

I recommend that a researcher keep the limitations of synthetic data generation in mind

when using a tool such as SDV in this way. However, by no means should those limitations

discourage creative applications and iterations. With a good plan to judge the efficacy of

the resulting data and a clear idea of what is important or what the purpose of the resulting

data should serve, using SDV is conclusively a viable and valuable resource for researchers.
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PRF Use Case Discussion

As explored in the tangible results from chapter 4, the GaussianCopula model frequently

produced the best (most similar) results in comparison to the original dataset. Following

close behind was the TVAE model. The two GAN models (CTGAN and CopulaGAN) often

performed poorly which was to be expected since GANs are generally better-suited for tasks

such as imitating image data. However, when looking at the chi-squared results from the

initial four generated datasets (table 4.6), it is remarkable how high the CTGAN model

scored. It is almost like the CTGAN model might be better suited to generate synthetic

data for datasets that have mostly categorical features. Conversely, the other GAN model,

CopulaGAN, performed extremely poorly in comparison.

I encourage further research into the performance of the CTGAN model from the SDV li-

brary for generating synthetic datasets with many categorical features. If the CTGAN model

is truly better at generating this kind of data, I would then recommend that a researcher

tries using the CTGAN model instead of the GaussianCopula model for generating synthetic

datasets. Otherwise, if there are more quantitative features in the original dataset, I would

recommend that the researcher use the GaussianCopula model to generate their synthetic

data.

I am not sure of how SDV differentiates between categorical encoding and label encoding.

I assume that is it similar to what Scikit-learn can do with ColumnTransformer /citescikit-

learn. Even so, ColumnTransformer in Scikit-learn uses one-hot encoding which is what SDV

uses by default. However, the SDV default field encoder is not the categorical encode. It is

by default set to one hot encoding [20].

103

Charlie
Sticky Note
None set by Charlie

Charlie
Sticky Note
MigrationNone set by Charlie

Charlie
Sticky Note
Unmarked set by Charlie



Despite the lack of clarity in SDV’s documentation, specifying the field encodings for

the model to use was simple. In addition to field encodings, SDV also allows the user to

specify distributions to set for any particular column. I did not experiment successfully with

this feature solely due to my lack of subject matter expertise in what different distributions

should typically look like in medical records.
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Chapter 6

Conclusion

To summarize, I explored the current literature on what exists for synthetic data and

patient population generation technology for clinical research. I familiarized myself with the

methods and theory behind generating synthetic data as well. Because of the background

research that I performed I was able to look at some of the open source projects that anyone

could get started with. I also explored a few proprietary solutions for synthetic healthcare

data generation. I extensively studied how to evaluate synthetic data.

After laying down the initial groundwork, I interviewed medical researchers at UC Davis

to find out the extent of their experiences and opinions about using synthetic data in their

research. Drawing from these interviews, I chose a synthetic data generation library to test

out with two different use cases. After generating and evaluating several rounds of synthetic

data with my use case teams, I have a better understanding on how to use and evaluate the

data and the tool used to create the data. Going forward, I am now equipped to write a

toolkit for the UC Davis DataLab so that future researchers can use synthetic data in their
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project if they would like.

Using the Synthetic Data Vault library (SDV) was very accessible and easy to set-up and

use. I definitely conclude that it would be a good tool to write about in a toolkit offered by

DataLab. When it is used to generate balanced data, it needs to be carefully curated in such

a way that the data created is maintaining all components needed to keep the context of

the original data. This can be done by iterating upon the generated data and experimenting

with whether the GaussianCopula model or the TVAE model work best for the particular

use case. For use cases that involve careful numbers and extremely high scores in efficacy,

viable data generated by SDV may be trickier to achieve. It really all comes down to what

will be “good enough” for the particular use case.

6.1 Implications

My research aimed to answer the question of how we can serve clinical researchers at

UC Davis by enabling them to use synthetic data generation tools. Researchers are already

accustomed to using synthetic data, but know it under a different name such as “imputed”

or “simulated” data. From my small interview sample, most researchers were interested in

using it but unsure how to get started. They generally seemed to agree that synthetic data

could be used in publishing to medical journals as long as it is clearly communicated that

the data used in a study is synthetic. By commencing with the creation of a synthetic data

toolkit for the UC Davis DataLab, researchers can learn how to set-up and produce their

own synthetic data and go forth to publish their research.
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6.2 Limitations

As an individual researcher, I was limited by the synthetic generation tools that were

available to me. It would be interesting and valuable research to see a neutral institution

pit some of the proprietary tools against each other in a battle for the best synthetic data

results. For example, does Accelario’s Synthetic Control Arm generate better synthetic data

than MDClone can? Additionally, there is no shortage of commercial solutions for synthetic

data generation. I have listed out a small handful of other synthetic data solutions that

could be researched further in Appendix D.

6.3 Questions and Suggestions for Further Research

While creating my literature review, I kept accumulating more and more questions for

further research. Some of them are closely related to the literature while others are tangential

to what has been discussed. I want to know how exactly does synthetic data help fight data

bias in medical research? What would the creation of universally accepted standards for

synthetic data generation and population representation look like? What are the arguments

against using synthetic data in healthcare research? Can artificial “sensitive” data be used as

a honeypot in secure systems? How is research funding, if at all, affected by using synthetic

data?

As I concluded my interviews, I found myself wondering about further research and

questions that I would like to see addressed in the future:

• How does the level of prestige of a scientific or medical journal affect whether research
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is published or not?

• Would reviewers for a medical journal be biased about use of synthetic data in studies

under review?

• Is information about synthetic data being taught in academic programs such as UC

Davis’s Master in Clinical Research?

• How common is data imputation? Are researchers aware that data imputation is

considered synthetic data?

• What makes some data registries more user-friendly than others?
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Appendix A

Abbreviations

CTSC Clinical and Translational Science Center (at UC Davis)

EMHR Electronic Medical Health Record

EMR Electronic Medical Record

HIPAA The Health Insurance Portability and Accountability Act of 1996

IPF Iterative Proportional Fitting

IPU Iterative Proportional Updating

OSIM Observational Medical Dataset Simulator

OMOP Observational Medical Outcomes Partnership

SMOTE Synthetic Minority Oversampling Technique

GAN Generative Adversarial (Neural) Network
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DNN Deep Neural Network

IM Independent Marginals

CDP Conditional probability tables

PCD Pairwise correlation difference

FHIR Fast Healthcare Interoperability Resources Specification

VAE Variational autoencoder
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